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"Imagination is more important than knowledge. 
 Knowledge is limited.  

Imagination encircles the world" 
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Abstract 

The activation of molecular hydrogen (H2) via either homolytic or heterolytic cleavage 

is one of the most attractive subjects in sustainable chemistry. So far the cleavage of H-H 

bond is commonly achieved by using transition metal complexes based on precious metals 

such as ruthenium, rhodium, platinum, palladium or iridium. Due to the low availability and 

price issues in the last decades an unceasing amount of research has been carried out in order 

to find more attractive substitute metals. Looking at the first-row transition metals, iron is 

offering a good alternative being non-toxic, abundant, inexpensive and eco-friendly.      

Inspired by Nature several groups have developed structural and functional iron 

complexes mimicking the active site of the iron-hydrogenases, which show high reactivity in 

the H2 cleavage. Usually pendant bases have been incorporated onto families of Fe complexes 

in order to achieve active systems. In the view of these recent developments, in chapter two, 

we investigated the possibility of synthesizing novel iron (II) complexes bearing an amine 

internal base and providing an open site for substrate binding as catalysts for H2 activation. 

Pentacoordinated Fe(II) low spin complexes [(
Ph

PNP)Fe(CO)(bdt)] (1),  [(
Ph

PNP)Fe-

(CO)(Nbt)] (4), [(
Cy

PNP)Fe(CO)(Nbt)] (5), [(dppe)Fe(CO)(Nbt)] (6) and the paramagnetic 

complex [(
Cy

PNP)FeCl2] (10)  have been synthesized and fully characterised. Unfortunately, 

when these complexes were tested as catalysts for hydrogenation reaction of a wide range of 

unsaturated substrates, no appreciable reactivity was observed. Same behaviour was observed 

in the case of complexes [(
Cy

PNP)Fe(CO)(Cp)] (11) and [(
Cy

PNP)Fe(CH3CN)(Cp)] (12) 

where the Cp ligand was installed in order to modulate the electronic and steric properties on 

the iron center.  

In chapter three, a new class of well-defined iron pincer complexes is reported. 

Several Fe(II) complexes supported by a 2,6-bis(phosphinito)pyridine ligand (PONOP) have 

been synthesized and fully characterised. In particular, the Fe-hydride complexes 

[(
iPr

PONOP)-Fe(CO)(H)Br] (14) and [(
iPr

PONOP)Fe(CO)(H)(CH3CN)](OTf) (15) could 

activate H2 at room temperature. Moreover, complexes 14 and 15 served as catalysts for the 

selective hydrogenation of aldehydes at room temperature. In presence of sodium formate as 

hydrogen donor, 14 and 15 showed an excellent reactivity in hydrogen transfer reaction of 

aldehydes. The mechanism of hydrogen activation and hydrogenation is discussed based on 

the observed reactivity of iron complexes. The feature of being chemoselective towards 
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aldehydes and a broad functional-group tolerance make these iron-hydride systems 

remarkable in the class of the earth-abundant-metal hydrogenation catalysts. 

Chapter four is dedicated to the tuning of the Fe-PONOP systems reported in chapter 

three in order to synthesize similar iron(II) complexes exhibiting enhanced reactivity for H2 

activation and hydrogenation of unsaturated substrates. As first attempt, complexes 

[(
Cy

PONOP)Fe(CO)Br2] (22) and the analogous chloride [(
Cy

PONOP)Fe(CO)Cl2] (23) bearing 

the stronger donor 
Cy

PONOP ligand were synthesized and tested as catalysts for 

hydrogenation reaction, but none of the substrates employed was reduced. As second attempt, 

the CO ligand was substituted with the better donor ligand tert-butyl isocyanide in presence of 

iPr
PONOP as pincer ligand. Several Fe-PONOP complexes were synthesized and fully 

characterized. In particular the Fe-hydride complex [(
iPr

PONOP)Fe(
t
BuNC)(H)Br] (25) 

exhibited reactivity towards hydrogenation of aldehydes under the same reaction conditions 

reported for 14. No reaction was observed in presence of acetophenone, cyclohexene and 1-

decene demonstrating that, although spectroscopically different, 25 did not exhibit enhanced 

reactivity relative to 14.  

 

Keywords: hydrogen activation, hydrogenation reaction, hydrogen transfer reaction, iron-

hydride complexes, hydrogenases, pincer ligands, homogeneous catalysis, aldehydes. 
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Résumé 

L'activation d'hydrogène moléculaire (H2) via un clivage homolytique ou un clivage 

hétérolytique est l'un des sujets les plus attractifs de la chimie durable. Jusqu'à présent, le 

clivage de la liaison H-H est communément réalisé par l'utilisation de complexes basés sur 

des métaux de transition tels que le ruthénium, le rhodium, le platine, le palladium ou 

l'iridium. A cause de leur faible disponibilité et de problèmes de coût ces dernières décennies, 

d'incessantes recherches ont été menées afin de trouver des métaux de substitution plus 

attractifs. Parmi les métaux de transition de la première rangée, le fer offre une bonne 

alternative tant par sa non-toxicité, son abondance, son bas coût que par son caractère 

écologique. 

S'inspirant de la nature, plusieurs groupes de recherche ont développé des complexes 

de fer mimant par leur structure et par leur fonction le site actif des hydrogénases à fer, qui 

font preuve d'une réactivité élevée pour le clivage de H2. Des bases pendantes ont été 

généralement incorporées dans les familles de ces complexes de fer afin d'obtenir des 

systèmes actifs. Dans l'optique de ces récents développements, le chapitre 2 présente les 

recherches sur la possibilité de synthétiser de nouveaux complexes de fer (II) portant une base 

amine interne et fournissant un site libre pour lier les substrats en tant que catalyseurs 

d'activation de H2. Les complexes pentacoordinés de Fe(II) bas spin [(
Ph

PNP)Fe(CO)(bdt)] 

(1),  [(
Ph

PNP)Fe(CO)(Nbt)] (4), [(
Cy

PNP)Fe(CO)(Nbt)] (5), [(dppe)Fe(CO)(Nbt)] (6)  et le 

complexe paramagnétique [(
Cy

PNP)FeCl2] (10)  ont été synthétisés et entièrement 

caractérisés. Malheureusement, lorsque ces complexes ont été testés comme catalyseur des 

réactions d'hydrogénation d'une grande variété de substrats insaturés, aucune réactivité 

appréciable n'a été observée. Le même comportement a été observé dans le cas des complexes 

[(
Cy

PNP)Fe(CO)(Cp)] (11) et [(
Cy

PNP)Fe(CH3CN)(Cp)] (12) dans lesquels le ligand Cp a été 

placé afin de moduler les propriétés électroniques et stériques du centre métallique fer.  

Dans le chapitre 3, une nouvelle classe de complexes "pincer" de fer bien définis est 

exposée. Plusieurs complexes de Fe(II) supportés par un ligand 2,6-bis(phosphinito)pyridine 

(PONOP) ont été synthétisés et entièrement caractérisés. En particulier, les complexes 

d'hydrure de fer [(
iPr

PONOP)-Fe(CO)(H)Br] (14) et [(
iPr

PONOP)Fe(CO)(H)(CH3CN)](OTf) 

(15) peuvent activer H2 à température ambiante. De plus, les complexes 14 et 15 ont servi 

comme catalyseur pour l'hydrogénation sélective des aldéhydes à température ambiante. En 

présence de formate de sodium comme donneur d'hydrogène, 14 et 15 ont montré une 
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excellente réactivité pour la réaction de hydrogénation par transfert des aldéhydes. Le 

mécanisme d'activation de l'hydrogène et d'hydrogénation est discuté en se basant sur la 

réactivité observée de ces complexes de fer. Le caractère chémiosélectif envers les aldéhydes 

et une grande tolérance aux groupes fonctionnels rendent ces systèmes d'hydrure de fer 

remarquables dans la classe des catalyseurs d'hydrogénation à base de métaux abondants sur 

Terre.  

Le chapitre 4 est consacré à la mise au point de systèmes Fe-PONOP décrits au 

chapitre 3 afin de synthétiser des complexes de fer (II) similaires exhibant une réactivité 

améliorée pour l'activation de H2 et l'hydrogénation de substrats insaturés. Comme premiers 

essais, les complexes [(
Cy

PONOP)Fe(CO)Br2] (22) et l'analogue chloré 

[(
Cy

PONOP)Fe(CO)Cl2] (23) portant le ligand 
Cy

PONOP plus fortement donneur ont été 

synthétisés et testés comme catalyseurs pour la réaction d'hydrogénation mais aucun des 

substrats employés n'a été réduits. En deuxièmes essais, le ligand CO a été substitué par le 

ligand tert-butyle isocyanide, meilleur donneur, en présence du ligand "pincer"
 iPr

PONOP. 

Plusieurs complexes Fe-PONOP ont été synthétisés et entièrement caractérisés. En particulier, 

le complexe d'hydrure de fer [(
iPr

PONOP)Fe(
t
BuNC)(H)Br] (25) a montré une certaine 

réactivité pour l'hydrogénation des aldéhydes sous les mêmes conditions rapportées pour le 

complexe 14. Aucune réaction n'a été observée en présence d'acétophénone, de cyclohexène 

et de 1-décène, ce qui démontre que le complexe 25, bien que différent par analyse 

spectroscopique, ne fait pas preuve d'une réactivité améliorée par rapport au complexe 14.  

 

Mots-clés: activation de l'hydrogène, réaction d'hydrogénation, réaction de transfert 

d'hydrogène, complexe d'hydrure de fer, hydrogénase, ligands "pincer", catalyse homogène, 

aldéhyde 
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Riassunto 

L'attivazione di idrogeno molecolare (H2) tramite sia scissione omolitica che 

eterolitica è uno dei temi più affascinanti della chimica verde. Normalmente, la scissione del 

legame H-H avviene utilizzando catalizzatori a base di metalli di transizione come rutenio, 

rodio, platino, palladio o iridio che sono considerati metalli preziosi. A causa della loro scarsa 

disponibilità e prezzi piuttosto alti, negli ultimi decenni la ricerca si è concentrata 

nell'individuazione di metalli alternativi. Soffermandosi sui metalli della prima fila di 

transizione della tavola periodica, il ferro offre una buona alternativa essendo un metallo non 

tossico, abbondante, economico ed ecologico. 

Numerosi gruppi di ricerca, ispirandosi alla Natura, hanno sviluppato complessi di 

ferro sia strutturali che funzionali in grado di mimare il sito attivo dell'enzima ferro-

idrogenasi esibendo una elevata reattività nella scissione dell' H2. Solitamente la presenza di 

basi "pendenti" incorporate all'interno dei complessi di Fe è fondamentale per l'ottenimento di 

sistemi reattivi.  Alla luce di questi recenti sviluppi, nel secondo capitolo si è cercato di 

sintetizzare complessi di ferro (II) che presentassero come base interna un' ammina e che 

fornissero un sito di coordinazione vacante per l'approccio del substrato fungendo da 

catalizzatori per l'attivazione dell' H2. I complessi pentacoordinati di Fe (II) a basso spin 

[(
Ph

PNP)Fe(CO)(bdt)] (1),  [(
Ph

PNP)Fe(CO)(Nbt)] (4), [(
Cy

PNP)Fe(CO)(Nbt)] (5), [(dppe)Fe-

(CO)Nbt)] (6) e il complesso paramagnetico [(
Cy

PNP)FeCl2] (10) sono stati sintetizzati e 

caratterizzati. Sfortunatamente, quando testati come catalizzatori per l'idrogenazione di una 

vasta gamma di substrati insaturi, nessuno di questi complessi si è rivelato attivo. Lo stesso 

comportamento è stato osservato per i complessi [(
Cy

PNP)Fe(CO)(Cp)] (11) e [(
Cy

PNP)Fe-

(CH3CN)(Cp)] (12) in cui il legante Cp è stato aggiunto in modo da modulare sia le proprietà 

elettroniche che steriche del centro metallico. 

Nel terzo capitolo, viene riportata una nuova classe di complessi "pincer" di ferro. 

Diversi complessi di Fe (II) supportati dal legante 2,6-bis(fosfino)piridina (PONOP) sono stati 

sintetizzati e caratterizzati. In particolare, i complessi Fe-idruro [(
iPr

PONOP)Fe(CO)(H)Br] 

(14) e [(
iPr

PONOP)Fe(CO)(H)(CH3CN)](OTf) (15) si sono rilevati efficienti catalizzatori sia 

per l'attivazione dell'H2 che per l'idrogenazione selettiva delle aldeidi a temperatura ambiente. 

In presenza di formiato di sodio come donatore di idrogeno, 14 e 15 si sono rivelati attivi 

nella reazione di trasferimento di idrogeno di aldeidi. I meccanismi di attivazione dell' 

idrogeno e della reazione di idrogenazione sono stati discussi in base alla reattività osservata 
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dai complessi di ferro. La caratteristica di essere chemioselettivi nei confronti delle aldeidi 

assieme ad un'ampia tolleranza verso diversi gruppi funzionali rendono questi sistemi ferro-

idruro di notevole importanza nella famiglia di catalizzatori per la reazione di idrogenazione a 

base di metalli abbondanti sulla Terra. 

Il quarto capitolo è dedicato alla messa a punto dei sistemi di Fe-PONOP riportati nel 

capitolo tre con l'obiettivo di sintetizzare complessi di ferro (II) simili ma che presentassero 

allo stesso tempo una migliore reattività sia nell' attivazione dell' H2 che nella reazione di 

idrogenazione di substrati insaturi diversi dalle aldeidi. Come primo tentativo, il complesso 

[(
Cy

PONOP)Fe(CO)Br2] (22) e il cloruro analogo [(
Cy

PONOP)Fe(CO)Cl2] (23) avente il 

legante 
Cy

PONOP che è un donatore piu' forte,  sono stati sintetizzati e testati come 

catalizzatori nella reazione di idrogenazione anche se nessuno dei substrati utilizzati è stato 

ridotto. Come secondo tentativo, il ligante CO è stato sostituito con il ligante tert-butyl 

isocyanide che è noto esser un miglior donatore, in presenza di
 iPr

PONOP come legante 

pincer. In particolare il complesso Fe-idruro [(
iPr

PONOP)Fe(
t
BuNC)(H)Br] (25) si è 

dimostrato reattivo nei confornti della reazione di idrogenazione delle aldeidi utilizzando le 

condizioni di reazione già riportate per 14. Sfortunatamente, nessuna reattività è stata 

osservata in presenza di substrati quali acetofenone, cicloesene e 1-decene, dimostrando che 

anche se spettroscopicamente diverso, 25 non esibisce una migliore reattività rispetto a 14. 

 

 

Parole chiave: attivazione di idrogeno, reazione di idrogenazione, reazione di trasferimento 

di idrogeno, complessi ferro-idruro, idrogenasi, leganti "pincer", catalisi omogenea, aldeidi. 
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 Symbols and abbrevation  

δ chemical shift  

λ wavelenght 

br broad 

bdt 1,2-benzenedithiol 

Cl2bdt 3,6-dichloro-1,2-benzenedithiol 

Nbt 2-aminobenzenethiol 

Me
Nbt 2-dimethyl-aminobenzenethiol 

Bn benzyl 

Bu butyl 

calcd calculated 

cat catalyst 

CH2Cl2 dichloromethane 

cod 1,5- cyclooctadiene 

Cy cyclohexyl 

Cp Cyclopentadienil 

D- or d deuterated 

d doublet 

dba dibenzylideneacetone 

dd doublet of doublets 

DBU 1,8-diazabicycloundec-7-ene 

DFT density functional theory 

dq doublet of quartets  

dt doublet of triplets 

e.e enantiomeric excess 

equiv. equivalent 

ESI electrospray ionization 

Et3N triethylamine 

Et ethyl 

fac facial 

EtOH ethanol 

FID flame ionization detector 

GC gas chromatography 
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h hour 

i
Bu iso-butyl 

i
Pr iso-propyl 

Me methyl 

MeOH methanol 

MHz mega-hertz 

mer meridional 

MS mass spectrometry 

n-BuLi normal-Butyllithium  

n-pentane normal pentane 

NaOMe sodium methoxide 

HCOONa sodium formate 

NMR nuclear magnetic resonance 

O
t
Bu tert-butoxide 

O
i
Pr iso-propoxide 

OAc acetate 

OTf triflate 

Ph phenyl 

PPh3 triphenylphosphine 

dppp 1,3-bis(diphenylphosphino)propane 

Ph
PS 2-(diphenyl-phosphino)benzenethiol 

r.t. room temperature 

s singlet 

t triplet 

T temperature 

t
Bu tert-butyl 

THF tetrahydrofuran 

TMEDA tetramethylethylenediamine 

TMS trimethylsilyl 

TON turnover number 

TOF turnover frequency 

Cy
PONOP 2,6-bis(dicyclohexylphosphinito) pyridine 

Et
PONOP 2,6-bis(diethylphosphinito) pyridine 
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iPr
PONOP 2,6-bis(diiso-propylphosphinito) pyridine 

tBu
PONOP 2,6-bis(ditert-butyl phosphinito)  

 

Units and Prefixes  

Å angstrom  

o
 degree 

atm atmosphere 

g gram 

h hour 

J joule 

K Kelvin 

l liter 

M molar 

mol mole 

s second 

k kilo- (10
3
) 

c centi- (10
-2

) 

m mili- (10
-3

) 

μ micro- (10
-6

) 
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List of Complexes 

1 [(
Ph

PNP)Fe(CO)(Cl2bdt)] 

2 [(
Ph

PNP)Fe(CO)(bdt)] 

3 [(dppp)Fe(CO)( Cl2bdt)] 

4 [(
Ph

PNP)Fe(CO)(Nbt)] 

5 [(
Cy

PNP)Fe(CO)(Nbt)] 

6 [(dppe)Fe(CO)(Nbt)] 

7 [Fe(
Me

Nbt)2]2 

8 [Fe(CO)2()]  

9 [Fe(
Ph

PS)2]3 

10  [(
Cy

PNP)FeCl2]  

11  [(
Cy

PNP)Fe(CO)(Cp)](FeCl4) 

12 [(
Cy

PNP)Fe(CH3CN)(Cp)](BAr
F

4)  

13 [(
iPr

PONOP)Fe(CO)Br2]  

14 [(
iPr

PONOP)Fe(CO)(H)Br] 

14-D [(
iPr

PONOP)Fe(CO)(D)Br] 

15 [(
iPr

PONOP)Fe(CO)(H)(CH3CN)](OTf) 

16 [(
iPr

PONOP)Fe(CO)(H)(η2-H2)](Br) 

16-D [(
iPr

PONOP)Fe(CO)(H)(η2-D2)](Br) 

17 [(
iPr

PONOP)Fe(CO)(D)(η2-HD)](Br) 

18 [(
iPr

PONOP)Fe(CO)(H)(η2-HD)](Br) 

19 [(
iPr

PONOP)Fe(CO)(H)2] 

20 [(
iPr

PONOP)Fe(CO)(H)]
+
 

21 [(
iPr

PONOP)Fe(H)(CO)(OOCH)] 

22 [(
Cy

PONOP)Fe(CO)Br2] 

23 [(
Cy

PONOP)Fe(CO)Cl2] 

24 [(
iPr

PONOP)Fe(
t
BuNC)Br2]  

25 [(
iPr

PONOP)Fe(
t
BuNC)(H)Br] 

27 [Fe(CO)3(
iPr

PON)]  

29 [(
iPr

PONOP)FeBr2]  

30 [(
Cy

PONOP)FeBr2] 

31 [(
iPr

PONOP)Fe(CO)(H)(PEt3)] 
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1.1 Industrial processes involving hydrogen 

Hydrogen production is a large and growing industry. Globally, around 40-50 million 

tons of hydrogen are produced every year with an estimated consumption of about 868 billion 

cubic meters in 2018
1-3

. Nearly 96% of all hydrogen is derived from fossil fuels, with natural 

gas being by far the most frequently used with an estimated 49%, followed by liquid 

hydrocarbons at 29%, coal at 18%, and electrolysis and other by-product sources of hydrogen 

with 4% ( SRI Consulting
4
). 

Around half of the hydrogen produced is used for the production of ammonia via 

Haber process, thus in the production of fertilizers, around one fifth is used for hydrocracking 

in petroleum refining, with the balance used to make methanol and other industrial 

applications such as the cleaning of fossil fuels via hydrodesulfurization (Fig 1.1).  

 

 

 

 

 

 

Fig 1.1: Hydrogen usage in percentage. 

In the coming years, hydrogen itself is considered as a promising energy carrier. The 

term "hydrogen economy" refers to the vision of using hydrogen as a low-carbon energy 

source replacing, for example, gasoline as transport fuel. If generated from renewable sources, 

hydrogen can be considered a clean fuel because when burning it does not produce carbon 

dioxide but only water as byproduct. Yet, there are major problems to be overcome before it 

can be used as an alternative fuel such as its manufacture, storage and distribution. 

1.1.1 Ammonia production: the Haber process 

The industrial synthesis of ammonia from nitrogen and hydrogen has been considered 

of great importance to the modern world. Ammonia was first manufactured using the Haber 

process on an industrial scale in 1913 in the BASF's Oppau plant in Germany (Fig. 1.2). 

http://en.wikipedia.org/wiki/Ludwigshafen#Oppau
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The Haber process nowadays produces 450 million tonnes of nitrogen fertilizer per 

year, mostly in the form of ammonia, ammonium nitrate and urea
5
. Moreover, 3-5% of the 

world's natural gas production is consumed in the Haber process.  

 

 

 

 

Fig 1.2: Simplified flow scheme of the Haber process. 

 The reaction is typically conducted at 200-250 bar and 400-500 
o
C, with the gases 

passing over four beds of catalyst and reaching 15% of conversion on each passage. The most 

popular catalyst used in the process is a highly porous material made of iron with a small 

percentage of oxides of calcium, potassium, silicon and aluminium
6
.  

1.1.2 Methanol production  

Methanol is manufactured from synthesis gas, a mixture of carbon monoxide and 

hydrogen. With 65 million tonnes produced worldwide in 2013
7
, about 30 % of methanol is 

converted to formaldehyde therefore employed in the production of a variety of plastics. 

Polymers such as polyesters and polymethyl methacrylate use methanol as the original 

feedstock. Moreover, methanol is now the principal source for the manufacture of acetic acid 

(Fig 1.3). 

  

 

 

 

 

 

Fig 1.3: Uses of methanol (MTO "methanol to olefins", MTP "methanol to propene") 
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On industrial scale methanol is produced in two steps
8-10

. In the first step the feedstock 

natural gas is converted into a synthesis gas stream composed of CO, CO2, H2O and hydrogen 

by a catalytic reforming of feed gas and steam. In the second step, the gaseous mixture 

produced is converted into methanol by passing through a catalyst bed. If an external source 

of CO2 is available, the hydrogen in excess is converted in additional methanol (Scheme 1.1). 

 

  

Scheme 1.1: Synthesis of methanol on industrial scale 

The first industrial production of methanol employed as catalytic system a mixture of 

ZnO and Cr2O3 used at 300-450
o
 C and 250-350 bar, highly stable to the sulphur and chlorine 

contaminants present in synthesis gas. However, due to the extreme conditions of pressure 

and temperature required, the last methanol plant based on this process closed in the mid-

1980s. A low-pressure catalyst based on Cu-ZnO thermally stabilized with alumina was 

developed in 1966 showing high selectivity and stability
11

. Nowadays, all commercially 

available catalytic systems are based in Cu-ZnO-Al2O3 or Cr2O3with different additives such 

as zinc, chromium, magnesium and rare earth metals
12,13

.  

Possible alternative routes for the synthesis of methanol involve the use of either 

methane
14-16

 or CO2
17-19

 as starting material and both ways are currently active fields of 

research (methanol economy)
20

. In the latter case, the required hydrogen can be obtained from 

the electrolysis of water or, alternatively direct aqueous electrochemical or photochemical 

reduction of CO2 is also feasible. However, several challenges are still present: difficult 

conversion of methane to methanol owing to the strong methane CH bond (105 Kcal/mol) and 

the ease of over-oxidation of methanol, life-time, stability, resistance to poisoning and 

optimization of the catalysts employed. Because of these drawbacks so far none of these 

synthetic routes has been scaled up in industrial size. 

1.1.3 Hydrocracking 

Hydrocracking is an established and reliable method for transforming heavy aromatic 

feedstock into high-valued saturated hydrocarbons. As of 2014, the feedstock processing 

capacity of the hydrocrackers in the United States was 2'208'000 barrels per day
21

, with a 

hydrocracker consuming 140 tons of hydrogen a day
22

. In general, the hydrocracking process 
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depends largely on the nature of the feedstock and the relative rates of the two competing 

reactions involved: hydrogenation and cracking. 

Heavy oil fractions recovered from the crude are mixed with hydrogen at high 

pressure (35-200 bar) and temperature (260-425
0
 C) inside a reactor filled with the catalyst. 

The heavy feed is broken down or cracked to produce naphtha, kerosene ready to be used as 

jet fuel and crude oils blended together to make diesel (Fig. 1.4).  

 

 

 

 

  

 

Fig 1.4: Overview of the hydrocracking process 

 Most of the catalytic systems used in hydrocracking are bifunctional zeolite-based 

catalyst comprising a hydrogenation component and an acidic support for hydrocarbon 

absorption
23,24

. The supports mentioned in literature are mainly made of silica with different 

additive such as Al2O3, ZrO2, B2O3 or TiO2. The hydrogenation component is a metal such as 

cobalt, nickel, vanadium, molybdenum or a combination of metals. An increase of the 

performance of the catalyst can be achieved by altering the acidic function and/or the 

hydrogenation function in order to improve the activity whilst maintaining selectivity or vice 

versa.  

1.1.4 Hydrodesulfurization  

Hydrodesulfurization (HDS) is a well-established industrial catalytic process used to 

remove sulphur-containing impurities from refined petroleum products (gasoline, jet fuel, 

diesel) and heavy oils
24,25

 (Scheme 1.2). The sulphur-contaminants have a severe 

environmental impact, being the precursors of the highly toxic sulphur dioxide produced 

during the combustion of the petroleum-based fuels in automotive vehicles. Regulations have 

been introduced in many countries to reduce the sulphur content in fuels and the global trend 
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for sulphur content in diesel fuels is 10-15 ppm
26,27

. Moreover, in naphtha's pre-treating 

process the purpose of HDS is to avoid the poisoning of sulphur-sensitive metal catalysts used 

in reforming.   

 

 

Scheme 1.2: Hydrodesulfurization reaction 

In an industrial hydrodesulfurization unit called hydrotreater, the HDS reaction takes 

place in a fixed-bed reactor at elevated temperatures (300- 400 °C) and pressures (30-130 

bar), where the H2S produced is captured and converted into either sulphur or sulphuric acid. 

Typical HDS catalysts consist of CoO and MoO3 or NiO and MoO3 on alumina carrier
28-30

.   

Similarly to the HDS, the hydrodenitrogenation (HDN) process is used in industrial 

scale for the removal of nitrogen-containing impurities from petroleum. These impurities 

generate undesirable compounds upon combustion (in the specific the pollutant NOx) and 

poison the catalyst used in subsequent cracking transformations. If the sulphur content of 

crude oils usually ranges from 0.2 to 4%, the nitrogen one is approximately 0.1-0.9%
31,32

. 

Catalytic systems based on NiMoP/Al2O3 are generally used in HDN processes
33

 and this 

process is concomitant to the HDS one
34,35

. 

1.1.5 Pharmaceutical and fine chemical industries 

The higher complexity of pharmaceuticals and fine chemicals makes catalysis more 

demanding and process development more expensive than the production of commodity 

chemicals as the catalytic processes are mainly selectivity driven
36

. In particular, catalytic 

hydrogenation is a key process in both pharmaceutical and fine chemicals industry replacing 

chemical reduction methods employing stoichiometric amounts of metal hydride reagents  

that generate large quantities of waste
37,38

. Usually, the hydrogenation is carried out with 

heterogeneous catalysts
39

, but homogeneous catalysts are also applied for highly selective 

transformations such as enantioselective reductions
40

. For instance, the growing need for 

enantiopure chemical products has promoted the development of new catalytic systems and 

hydrogenation techniques
41

, and several significant inventions have been reported in the past 

years. 

http://en.wikipedia.org/wiki/Chemical_reactor
http://en.wikipedia.org/wiki/Temperatures
http://en.wikipedia.org/wiki/Pressures
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The most common hydrogenation reaction performed in industry is probably the 

stereoselective hydrogenation of C-C double bonds, intensively used in the synthesis of 

vitamins. Alpha-tocopherol is the form of vitamin E that is preferentially absorbed and 

accumulated in humans
42

 and it is the economically most important member of the group of 

vitamin E compounds due to its biological and antioxidant properties, produced on a scale of 

>30’000 tonnes per year. One of the key building blocks for the chemical production of 

synthetic vitamin E is trimethylhydroquinone (TMHQ), that is converted into (all-rac)-α-

tocopherol by condensation with (all-rac)-isophytol
43,44

(Scheme 1.3). 

 

 

 

 

 

Scheme 1.3: Synthesis of (all-rac)-alpha-tocopherol (vitamin E). 

 TMHQ is accessible via either catalytic hydrogenation of trimethylbenzoquinone 

(TMBQ) using a palladium on carbon catalyst, or from 2,6-dimethylbenzoquinone (2,6-

DMQ), which firstly undergoes hydrogenation, methylation, followed by hydrogenolysis
45

 

(Scheme 1.4). 

Scheme 1.4: Synthetic routes for the synthesis of TMHQ. 

 Differently, one of the synthetic routes for the production of isophytol starts from 

acetone building up the isoprenic side chain by a sequence of C2 and C3 elongations, or from 

the cheap isobutene. In both cases, the C3-elongation can be carried out by Saucy-Marbet or 

Carroll reactions and the C2 elongation by ethynylation or vinylation reactions
36,38

. In such 

reaction sequences several hydrogenations of C=C bonds are necessary
46,47

. In the past Pd/C 
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was used as catalyst (temperature of 80 °C and pressure of H2 <10 bar)
48

; but also Pd and Rh-

containing polymers on Al2O3 were investigated
49

. 

For the semi-hydrogenation of carbon-carbon triple bonds to alkenes, one of the most 

widely used selective catalysts is Lindlar catalyst consisting of palladium deposited on 

calcium carbonate
48,49

. The selectivity can be enhanced by using suitable catalyst poisons 

(lead acetate or sulphur) that modify the activity of the metal catalyst. Among several uses, 

Lindlar catalyst has been exploited by the fragrance industry for the synthesis of linalool and 

linalyl acetate mainly used as perfume components in soaps, shampoos and lotions due to 

pleasant floral and spicy odours
36,50

 (Scheme 1.5).  

 

 

 

 

 

Scheme 1.5:  Linalool and linalyl acetate synthesis. 

 Similarly to the hydrogenation of C-C multiple bonds, the hydrogenolysis of C-X 

bonds is another interesting reaction for the production of vitamins and fine chemicals. 

Approximately 100'000 tonnes of vitamin C (L-ascorbic acid) are produced worldwide every 

year
36

. The procedure employed for the synthesis of vitamin C is the Reichstein process in 

which D-glucose is firstly fully hydrogenated to D-sorbitol using a Ni-based catalyst. 

Successively, D-sorbitol is converted to L-ascorbic acid through a series of both chemical and 

microbiological steps 
51-53

(Scheme 1.6). 

 

 

 

 

Scheme 1.6:  Reduction of D-glucose to D-sorbitol in the Reichstein process for the synthesis of L-

ascorbic acid. 
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The reaction is usually carried out at high pressure and elevated temperature in a 

batch-mode or continuous process. Under these conditions D-sorbitol is obtained in high 

selectivity and almost quantitative yield with only minor amounts of D-mannitol and L-iditol 

as by-products.  

In the family of lactones, chiral D-lactone is a key intermediate in the commercially 

interesting biotin synthesis and it is produced through catalytic asymmetric reduction of the 

corresponding cyclic anhydride (Scheme 1.7). 

Scheme 1.7:  Industrial procedure for the synthesis of D-lactone. 

Until 2006, the reduction of the corresponding cyclic anhydride to D-lactone was only 

possible by using the chiral aluminium-based catalyst (R)-BINAL-H
54

 in over-stoichiometric 

amounts. Due to its high price the process definitely was not applicable on larger scale. A 

successful production of  D-lactone on tonne scale was possible only when Ir- and Rh-

complexes with atropisomeric ligands were adopted, reaching full conversion and ee values of 

>95%
40

.  

 

1.2 Hydrogenation reaction 

Catalytic hydrogenation of organic substrates using either molecular hydrogen (H2) or 

a different hydride source is one of the most commonly practiced reaction types in organic 

synthesis. The first catalytic systems used for this purpose were heterogeneous catalysts 

mainly based on platinum group metals
55

. In 1863 Debus discovered that by passing cyanide 

vapour mixed with hydrogen over a platinum block, methylamine was produced
56

.   

Non precious metal catalysts have been developed in this field. Due to its great 

stability and high catalytic activity in hydrogenation reaction under very mild conditions, the 

Raney nickel catalyst is today probably the most common used catalyst not only for 

laboratory uses but also intensively applied in a large number of industrial processes
55

. For 
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instance benzene is routinely reduced to cyclohexane using Raney nickel in industrial scale 

for the production of nylon
57

.   

In the mid 1960's Sir G. Wilkinson and co-workers performed a pioneering work in 

the field of homogeneous catalysis by developing a new versatile catalytic system based on 

rhodium
58

. Although homogeneous catalysts had been reported before, the complex 

RhCl(PPh3)3  where PPh3 = triphenylphosphine was the first one that compared in rates with 

the well-established heterogeneous counterparts showing great reactivity towards the 

hydrogenation of differently substituted olefines. Moreover, when the phosphine ligands were 

replaced by chiral ones (e.g. DIPAMP or chiraphos) the catalyst converted prochiral alkenes 

into alkanes with high enantiomeric excesses
59

. This catalyst is compatible with a variety of 

functional group such as ketones, ester, carboxylic acid, nitriles, nitro groups and ethers.  

In the well-established mechanism, RhCl(PPh3)3 activates the molecular dihydrogen 

by oxidative addition yielding a 16-e
-
 dihydride complex. In the next step the dihydride 

species binds to the olefin with the concomitant loss of solvent or PPh3 ligand. At this point, 

one of the hydride undergoes migratory insertion at the double bond (rate determining step) 

and the alkane is released rapidly by an irreversible reductive elimination step completing the 

catalytic cycle (Scheme 1.8).  

 

 

 

 

 

 

 

 

Scheme 1.8:  Mechanism of the hydrogenation of olefines catalysed by Wilkinson's catalyst. 

A year later Wilkinson's discoveries, L. Vaska synthesized the well-defined 

Ir(CO)(PPh3)3 catalyst, a 16-e
-
 complex able to reversibly activate hydrogen through an 
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oxidative addition pathway
60

. Noteworthy, the hydrogen adduct [H2IrCl(CO)(PPh3)2] was the 

first example of isolated and fully characterized hydride species
61

. 

Along the same lines, Osborn and Schrock made an important observation: cationic 

Rh(I) complexes of the type [Rh(cod)(PR3)2]
+ 

(with R= Ph, Cy, Me and cod=1,5-

cyclooctadiene) were also active catalysts for hydrogenation of olefins. By exposing complex   

[Rh(cod)(PPh3)2]
+ 

to H2 in polar and coordinating solvents such as THF, acetone and ethanol, 

the cod ligand dissociated and the corresponding solvate species [RhH2(solv)2(PPh3)2]
+ 

was 

isolated. In particular, these systems required dissociation of a solvent ligand rather than of a 

phosphine before the olefin accesses the active site like in Wilkinson's case
62

. 

Following the previous discoveries, particular importance received the catalytic 

system developed by Crabtree in the 1970s. The cationic complex [(PCy3)(cod)Ir(py)]PF6 

(where py =pyridine) resulted 100 times more active than the previous catalytic systems in the 

hydrogenation of olefines
63

 (Scheme 1.9).  Differently from Wilkinson's system that needed to 

undergo dissociation before the substrate could access the active site, in Crabtree's system the 

principal species seems to be the complex [Ir(olefin)2(py)(PCy3)]
+
 that interacts with H2 

yielding the corresponding dihydride complex
64

. 

  

 

 

  

 

 

 

 

Scheme 1.9:  Rate* of hydrogenation of substituted olefins with different catalytic systems
63

. *In mol 

of substrate reduced (mol of catalyst)
-1

 h
-1

. 

Decisive for the development of asymmetric hydrogenation of prochiral olefines was 

the concept of replacing the triphenylphosphine ligand of the Wilkinson's catalyst with a 
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chiral ligand. Aware of the developments on the synthesis of chiral phosphines
65

, Knowles 

and co-workers focused on bidentate chiral phosphine ligands such as (R,R)-1,2-Bis[(2-

methoxyphenyl)(phenylphosphino)]ethane (abbr. (R,R)-DIPAMP), whose stereogenic center 

lies directly on the phosphorus atom
66

.  

To date, this approach has been one of the most impressive achievements in 

asymmetric synthesis because it demonstrated that a chiral metal complex could effectively 

transfer chirality to a non-chiral substrate. Moreover, in the past when chiral compounds were 

needed chemists either adopted tedious biochemical processes or synthesized racemic 

mixtures that needed to be further separated with laborious techniques. 

Knowles and his co-workers found that the complex [Rh(R,R)-DIPAMP)(cod)]PF6 

hydrogenated in high enantiomeric excess α-acetamidocinnamatic acid, used in the synthesis 

of L-Dopa, an important pharmaceutical for the treatment of Parkinson’s disease
67

 (Scheme 

1.10). In this system the olefin binds to the metal center via either its si-face or re-face prior to 

the H2 oxidative addition that is the rate determining step of the reaction. 

 

   

 

 

 

Scheme 1.10: Hydrogenation of α-acetamidocinnamatic acid by [Rh(R,R)-DIPAMP)(cod)]PF6. 

A broad variety of bidentate chiral diphosphines have since been synthesized and used 

in the production of amino acids by hydrogenation of the corresponding enamides
68

 (Fig. 1.5).  

 

 

 

 

Fig. 1.5: Chiral diphosphine employed in asymmetric hydrogenation of enamides. 
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 Among these diphosphine BINAP is of particular importance being used in the 

asymmetric hydrogenation of ketones, aldehydes and imines. In the late 1980s, Noyori 

discovered that ruthenium complexes based on the BINAP ligand were excellent catalysts for 

the hydrogenation of prochiral β-keto carboxylic esters into optically active β-hydroxy esters 

in high enantiomeric purity at room temperature (23-30 
o
C) and at 70-100 bar of H2

69
(Scheme 

1.11). 

 

 

Scheme 1.11: Hydrogenation of β-keto carboxylic esters by using the Ru-BINAP system. 

Nowadays, the system [Ru((S)-BINAP)X2]2 is intensively used in several important 

industrial applications such as the synthesis of antibacterial levofloxacin from the (R)-1,2-

propandiol precursor, the synthesis of the antibiotic carbapenem from the (2S,3R)-methyl 2-

(benzamidomethyl)-3-hydroxybutanoate, and the synthesis of the anti-inflammatory drug 

naproxen obtained in 97% ee from an a-aryl-acrylic acid
70

. 

Few years later along the same line of reasoning, Noyori et all. found that 

hydrogenation in presence of [RuCl2(BINAP)(diamine)] complex plus an alkaline base 

provided a great solution in the challenging chemoselective reduction of C=O group in 

presence of C=C groups
71

. Among various complexes, the [RuCl2(xylbinap)(diapen)] system 

catalysed rapid and highly enantioselective hydrogenation of a range of aromatic, 

heteroaromatic and olefin ketones in presence of KOH as base and isopropanol (
i
PrOH) as 

solvent
72

 (Fig. 1.6). For instance, acetophenone and its derivatives were hydrogenated 

quantitatively with a ratio substrate/catalyst (S:C) of up to 100000:1 and in 99% ee.  

 

 

 

 

 

Fig. 1.6: Chiral [RuCl2(xylbinap)(diapen)] systems 
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This discovery not only increased the substrate scope for asymmetric hydrogenations, 

but most importantly it was at the origin of the new concept of metal-ligand bifunctional 

catalysis.  

In the BINAP/diamine-Ru catalytic system the hydrogenation of functionalized 

ketones is catalysed by a six membered cyclic transition state (TS) involving the metal center, 

the substrate and the ligand. The H-Ru-N-Hax moiety, having a small dihedral angle, forms a 

1,4-dipole which fits with the C=O dipole. This TS facilitates the hydrogenation of C=O 

bonds with higher rate and chemoselectivity compared to the four-center transition state of the 

BINAP-Ru systems
73,74

 (Fig. 1.7).  

 

 

 

Fig. 1.7: Metal-ligand bifunctional TS (left) and conventional [2+2] TS. 

 In the metal-ligand bifunctional catalysis the hydridic Ru-H and the protic NH are 

simultaneously transferred to the C=O group via the six-membered cyclic TS, yielding 

directly the alcoholic product. In this way, the metal and the ligand participate cooperatively 

in the bond-forming and bond-breaking processes
75

. In the proposed catalytic cycle, the 

ketone substrate reacts in an outer sphere mechanism with the 18-e
-
 RuH species without 

interacting with the metallic center, through the formation of the six-membered ring TS. 

Thereafter, the 16-electron Ru-amide complex reacts directly with H2 in a [2+2] manner, or 

by a stepwise mechanism assisted by an alcohol and a base, to give back the reducing RuH 

complex (Scheme 1.12). 
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Scheme 1.12: Catalytic cycle of chiral hydrogenation of ketones involving the six-membered TS. 

  Moreover, both the steric hindrance between the BINAP ligand and the substituent 

group on the ketone and the chirality of the BINAP/diamine-Ru complex make possible a 

differentiation of the enantiofaces of the prochiral ketone on the molecular surface of the 

coordinatively saturated RuH intermediate, allowing an enantioselective reduction of the 

substrate. The Si-TS leading to a (R)-alcohol is more favoured over the Re-TS which suffers 

significant nonbounded repulsion between the p-tolyl ring belonging to the BINAP ligand and 

the phenyl substituent of the ketone
70,75

(Scheme 1.13).  

 

 

 

 

 

 

 

 

Scheme 1.13: Reducing (S,SS)-RuH2 species and the two diastereomeric transition states in the metal-

ligand bifunctional catalysis. Si-TS favoured on the bottom left and the Re-TS unflavoured on the right.  
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 In the light of the previous discoveries, few years later Noyori et all. found that by 

replacing the diphosphine ligand with a η
6
-arene ligand differently substituted, systems such 

as [RuCl((R,R)-or(S,S)-YCH(C6H5)CH(C6H5)NH2)(η
6
-arene)] (Y=O or NTs) and their 

analogous ones catalysed asymmetric transfer hydrogenation of aromatic and acetylenic 

carbonyl compounds yielding the corresponding (S)-alcohols in high enantiomeric purity in 

presence of 
i
PrOH as solvent and an alkaline base

76-78
 (Scheme 1.14).   

 

 

 

 

Scheme 1.14: Metal-ligand bifunctional mechanism in asymmetric transfer hydrogenation catalysed by 

[RuH((S,S)-YCH(C6H5)CH(C6H5)NH2)(η
6
-arene)] (R= alkyl or D; Y=O or NTs). 

Both Knowles for its pioneering work in asymmetric hydrogenation reaction of 

olefines, and Noyori for its discoveries in the asymmetric hydrogenation of ketones, 

aldehydes and imines including the brilliant work in the metal-ligand bifunctional catalysis 

were awarded the Nobel Prize in Chemistry 2001 together with K. Barry Sharpless for his 

work on chirally catalysed oxidation reactions. 

1.3 Hydrogen transfer reaction 

Addition of hydrogen to a molecule from a source other than gaseous H2 is called 

hydrogen transfer (HT) reaction. In recent years, the HT methodology has gained increasing 

success in both laboratory scale and industrial applications cause of its operational simplicity 

and reduction of the risk associated with the use of an easily inflammable gas such as H2.The 

more active hydrogen donors for homogeneous catalysis are principally alcohols, formic acid 

and its salts, but also ascorbic acid, cyclohexene and cyclic esters can be found
79

.    

Among the alcohols, secondary ones have probed to be the best hydrogen donors 

cause of the hydrogen on the carbon attached to the hydroxyl group (α-hydrogen) that is 

easily transferred in the first reductive step. In particular, 
i
PrOH is the conventional hydrogen 

source for its favourable properties being stable, easy to handle (bp 82 °C), nontoxic, 

environmentally friendly and inexpensive. During the process 
i
PrOH is oxidised to acetone 
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making the reduction of ketones a reversible process. Moreover, to shift the equilibrium 

towards the desired product 
i
PrOH is used as solvent in the reaction since it dissolves easily 

many organic compounds. In order to activate the catalyst a base such as sodium or potassium 

carbonate, hydroxide or alkoxide is also added to the reaction mixture
80

.  

Another hydrogen donor used in HT reaction is the couple formic acid/triethylamine 

(HCOOH/Et3N). Formic acid and its salts are better suited hydrogen donors than 
i
PrOH 

because they are irreversibly converted to CO2 upon reduction of the substrate, shifting the 

reaction towards the desired product. An azeotropic 5:2 mixture of HCOOH and Et3N is most 

frequently employed as reducing agent, being miscible with many solvents at 20-60 
o
C

81
. The 

only drawback is that the catalyst could either undergo decomposition or react with the 

HCOOH losing its catalytic activity (Scheme 1.15). 

 

 

 

 

Scheme 1.15: Common sources of hydrogen in HT reaction: 
i
PrOH (a) and formic acid (b).  

At the beginning, aluminium isopropoxide was used as catalyst to promote transfer of 

hydrogen from 
i
PrOH to a ketone. This reaction was called the Meerwein-Ponndorf-Verlay 

(MPV) reduction from the names of its discoverers
82,83

. The reaction can also be run in the 

opposite direction and the inverse process was studied by Oppenauer in the middle of the 

1930s (Scheme 1.16). 

 

 

 

 

Scheme 1.16: The MPV reduction (top) and the Oppenauer oxidation (bottom). 
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Therefore, the two hydrogen transfer reactions (MPV and Oppenauer) are in 

equilibrium to each other and this equilibrium can be pushed in both directions by using an 

excess of either alcohol or ketone in the starting material. Thus, for the MPV reduction 
i
PrOH 

is used in excess, while for the Oppenauer oxidation acetone. Concerning the mechanism, it 

has been recently demonstrated that a direct hydrogen transfer mechanism involving a 

concerted six-member ring transition state is the most favourable pathway, with the hydride 

transfer as the rate determining step
84

. This mechanism is more likely to take place in 

presence of non-transition metals such as in the aluminium-catalysed MPV, while the 

"hydridic route" is believed being the mechanism for transition metal-based reduction 

catalysts since the corresponding hydride species have been isolated in some cases
85

 (Scheme 

1.17). 

 

 

  

 

   

Scheme 1.17: The direct transfer mechanism occurring in the aluminium-MPV reduction (top) and the 

hydridic route for transition metal-based reduction catalysts (bottom).  

In 2002 chiral ligands on the aluminium alkoxide were tested in order to affect the 

stereochemical outcome of the MPV reduction. The method employed 
i
PrOH as hydride 

source and the system 2,2'-dihydroxy-1,1'-biphenyl (BINOL) with AlMe3 as chiral catalyst 

leading to the reduction of substituted acetophenones in high ee (up to 83%)
86

.   

One of the main drawbacks for using aluminium alkoxides in HT reaction is that the 

aluminium salts are often required in stoichiometric amounts being inconvenient for scaling 

up and industrial applications. Moreover, the activity is relatively low by comparison with the 

transition metal-based systems.  

In the area of organic synthesis, the first well-established HT reaction was described in 

1952 when Braude, Linstead et al. found that hydrogen transfer was taking place between 

cyclohexene and a wide range of acceptors containing acetylenic, ethylenic, azo- and nitro- 

http://en.wikipedia.org/wiki/Ligand
http://en.wikipedia.org/wiki/Acetophenone
http://en.wikipedia.org/wiki/Organic_synthesis
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groups such as 1-octene, cinnamic acid, benzoquinone, N-benzylideneaniline etc., in refluxing 

THF and in presence of palladium black as catalyst 
87

.  

In 1971 the first ruthenium-catalysed HT reaction of practical use was reported by 

Sasson and Blum. The [RuCl2(PPh3)3] complex was employed for the reduction of α,β 

unsaturated ketones but it required very high temperature (200 
o
C) and the turnover 

frequencies were quite low
88,89

. As a consequence, a useful family of hydrogen transfer 

catalysts have been developed through the years, mainly based on ruthenium and rhodium 

complexes employing a wide variety of ligands
80,90

.  

Nowadays, half-sandwich π-complexes such as Ru-arene and Rh- or Ir-

cyclopentadienyl moieties are the most exploited metal fragments in the synthesis of 

transition metal-based reduction catalysts. Usually they are associated to protic ligands such 

as 1,2-amino alcohols or monotosylated diamine ligands in order to operate through a metal-

ligand bifunctional mechanism (Fig 1.8). 

 

 

 

 

 

Fig. 1.8: Privileged catalytic system for HT reaction. 

Very well-known catalysts belonging to this family are Noyori's complexes 

[RuCl((S,S)-Tsdpen)(p-cymene)] and [RuCl((S,S)-Tsdpen)(mesitylene)]. So far, both are the 

catalysts with the broadest substrate scope, providing significant enantiocontrol during the 

reaction
90,91

. These well-designed chiral Ru(II)-arene complexes catalyse the asymmetric 

transfer hydrogenation of ketones and imines in presence of either 
i
PrOH or formic acid as 

hydrogen source (Fig 1.9). 

http://en.wikipedia.org/wiki/Ruthenium
http://en.wikipedia.org/wiki/Rhodium
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Fig. 1.9: Some of the chiral products obtained by asymmetric transfer hydrogenation using Noyori's 

chiral Ru catalysts. 

Among the recent and successful evolutions of this structural motif there are tethered 

ruthenium catalysts developed by Wills and co-workers
92,93

, in which the monotosylated 

diamine is covalently bound to the arene group. This modification has been made in order to 

achieve an improved enantiocontrol by locking together the chiral elements with the aryl 

group, therefore to reach a better conformation for the transition state (Fig. 1.10).   

 

 

 

Fig. 1.10: Two examples of tethered chiral Ru(II) catalysts for asymmetric HT of ketones. 

 Both complexes have shown an enantioselectivity similar to the untethered 

counterpart, although the complex in which the tether is attached directly to the amino group 

has shown a higher catalytic activity compared to the one bearing the SO2 group in the tether. 

 Another fascinating example of catalyst for transfer hydrogenation to alkenes, alkynes, 

carbonyl groups and imines from alcohols, amines and dihydrogen is the Ru-based 

cyclopentadienone complex [(η
5
-C5Ph4O)2HRu2H(CO)4], discovered by Shvo et al. in the 

early 1980s. The compound, an air- and water-stable crystalline solid, contains a pair of 

equivalent Ru centres that are bridged by a strong hydrogen bond and a bridging hydride (Fig 

1.11)
94

. 

 

http://en.wikipedia.org/wiki/Bridging_ligand
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Fig. 1.11: Shvo's catalyst 

The mechanism of hydrogenation and dehydrogenation reactions catalysed by Shvo’s 

catalyst is unique among transition-metal catalysts since in solution it dissociates 

unsymmetrically in two moieties: [(η
5
-C5Ph4OH)RuH(CO)2] (the reducing moiety) and [(η

4
-

C5Ph4O)Ru(CO)2] (the oxidizing moiety) involved at the same time during the hydrogen 

transfer reaction, but with opposite reactivity. Thus, Shvo’s catalyst is an example of a ligand-

metal bifunctional catalyst wherein the redox activity is distributed between the metal center 

and the cyclopentadienone ligand. The concentrations of these active forms are governed by 

equilibrium effects, since the two species are interconverted in solution through the gain or 

loss of “H2” from donors and acceptors. Although there is no crystal structure for both 

species, solution NMR data, mechanistic probes, and trapping experiments have been utilized 

to establish their structures (Scheme 1.18)
95

. 

 

 

 

 

 

 

 

Scheme 1.18: Dissociation of Shvo's catalyst in two monomers in solution and the metal-ligand 

bifunctional HT mechanism. 

The mechanism of hydrogenation and dehydrogenation by Shvo’s catalyst has 

garnered intense interest. An outer-sphere mechanism in which the cyclopentadienone oxygen 

is involved in the transition state has been recently proven, displaying another example of 

ligand-metal bifunctional catalyst similar to Noyori's ones. According to recent DFT 

calculations of reversible formaldehyde reduction with Shvo's complex, an outer-sphere 

mechanism is lower in energy that the inner-sphere one involving the metal center
95

. 
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Many applications of Shvo’s catalyst have been reported since its discovery in the 

mid-1980s. Along the HT and hydrogenation reaction of ketones and alkenes, there is also the 

hydroboration of aldehydes and ketones, the alkylation of amines and the oxidation of 

steroidal alcohols, of amines to imines and of alcohols to form ketones
95

.  

 

1.4 Mechanistic aspects of transition metal-catalysed hydrogenation 

and HT reactions 

Catalytic cycles of both hydrogenation and hydrogen transfer reactions can be divided 

into two different parts: (1) the reaction of the hydride with the unsaturated compound, (2) 

and the regeneration of the hydride from either H2 or a hydrogen donor. Although mechanistic 

studies on transition metal-catalysed hydrogenation and HT reactions present common 

features, the first important question that needs to be answered is whether the hydride is 

transferred to the substrate coordinated to the metal (inner-sphere hydrogen transfer) or if 

there is a concerted transfer of hydrogen between the metal and the substrate (outer-sphere 

hydrogen transfer). The second question is whether the ligand assists or not the hydrogen 

transfer through a metal-ligand bifunctional catalysis. An explicative flowchart summarizing 

all these aspects has been presented by Morris and it is herein reported 
96

 (Scheme 1.19).  

 

 

 

 

 

 

 

 

Scheme 1.19: Flowchart to classify the mechanism involved, where H is hydrogenation; HT, hydrogen 

transfer; I, inner-sphere; O, outer-sphere; L, ligand assisted (metal-ligand bifunctional catalysis). 
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Mechanisms labelled as HI or HTI (inner-sphere mechanism) usually involve 

dissociation of an ancillary ligand in order to provide a vacant coordination site for substrate 

binding. Often the catalyst has a site occupied by a weakly coordinated solvent molecule 

serving for this purpose. Ancillary ligands L bounded to the metal and bearing an acidic 

hydrogen bond donor group provide additional activation of the substrate (Fig 1.12). 

 

 

 

Fig. 1.12: The attack of the hydride through an inner-sphere mechanism (left) and an inner-sphere 

ligand-assisted mechanism (right). Where Q = O/NR and E=electrophile. 

A drawback on catalysts operating through an inner-sphere mechanism is the lack of 

selectivity for C=O bonds over C=C bonds, presumably due to the competition of C=C and 

C=O for the vacant site, like in the case of α,β-unsaturated ketones and aldehydes. For 

instance, the complex [H2Ru(CO)2(PPh3)2] hydrogenates acetophenone through a proposed 

mechanism involving the coordination of the substrate to the metal, followed by its insertion 

into the ruthenium-hydride bond with formation of the corresponding alkoxide. But, when 

trans-4-phenylbut-3-en-2-one is used as substrate, the C=C double bond is preferentially 

hydrogenated with a high chemoselectivity (yield 92.4% at 100 °C)
97

. In addition, another 

undesired side reaction might be the isomerization of olefines and imines  promoted by metal 

mono-hydride complexes
96

. 

In a different route, the hydride transfer to the substrate can take place in the second or 

outer coordination sphere of the metal complex. Since the carbon in a C=O or C=N bond 

usually has a low hydride affinity, it needs an electrophilic activation by either an external or 

an internal electrophile (Fig. 1.13). In the latter case the electrophile usually belongs to an 

ancillary ligand, like in the case of metal-ligand bifunctional catalysis proposed by Noyori in 

which the ancillary ligand cis to the hydride provides a proton that is transferred meanwhile 

the hydride is transferred from the metal to the substrate
74

.  
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Fig. 1.13: The attack of the hydride through an outer-sphere mechanism (left) and an outer-sphere 

ligand-assisted mechanism (right). Where Q = O/NR and E=electrophile. 

1.4.1 Hydrogen activation 

In the hydrogenation catalytic cycle, hydrogen gas has to coordinate firstly to the 

metal at its vacant site as an η
2
- dihydrogen ligand. In general, dihydrogen complexes are 

more than intermediates for oxidative addition of H2. They can be generated as either stable 

species or elusive intermediates, in the course of both hydrogenation and dehydrogenation 

processes. The H-H orbitals donate electron density to an empty metal d orbital of 

symmetry. This interaction is augmented by back-donation from filled metal d orbitals
98

 

(Fig. 1.14).  

 

 

 

 

 

 

Figure 1.14: Bonding model in transition metal dihydrogen complexes illustrating the synergistic flow 

of electrons (left) and interaction diagram of H2 interacting with ML5 metal fragment (right). 

Moreover, the η
2
-H2 ligand does not necessarily need the intervention of molecular 

hydrogen to be formed as it may also be obtained from a terminal hydride by treatment with 

various proton donors; including many solvents of common use in organometallic synthesis 

and homogeneous catalysis.  

In general, once H2 binds the metal center, the H2 splitting might occur via either 

homolytic, heterolytic H2 splitting or -bond metathesis
99,100

 (Figure 1.15). 
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Fig 1.15:  Comparison of different H2 splitting mechanisms. Where L=ligand and E=heteroatom. 

The oxidative addition or homolytic splitting of H2 activate the dihydrogen molecule, 

changing the acidic or basic characteristics of the H sites. In this case, both of the H atoms 

possess the same reaction potential. Many homogeneous hydrogenation catalysts, including 

Wilkinson's catalyst, induce homolysis of H2
101-104

. Heterolytic cleavage is also well known 

but it is normally achieved only by strong bases, since H2 is a very weak acid. The reported 

pKa of H2 in THF is 35
105

. When H2 is coordinated to a metal center, particularly to a cationic 

metal center, H2 can be dramatically activated with respect to heterolysis
106

. This possibility 

was first realized by Crabtree and Lavin in [Ir(PPh3)2(bq)(η
2
-H2)H]

+107
. The process of 

heterolytic splitting, which occurs with formal generation of H
+
, in general generates a metal 

hydride complex and a corresponding protonated base.  

  On the other hand, σ-bond metathesis is another possible mechanism. In general, the 

reaction proceeds via a [2σ + 2σ] cycloaddition of a metal−ligand bond with a substrate 

throughout a concerted process. Therefore, the formal cycloaddition step is a transition state 

rather than an intermediate. Reactions proceeding via σ-bond metathesis should favor 

substrates that possess more favorable orbitals to engage in continuous bonding, despite the 

obvious geometric constraints of a four centered transition state. Historically, this 

transformation is typical for early-transition-metal complexes, in particular to metal 

compounds with a d
0
 electron count, where the metal centers are in their highest possible 

oxidation states and are unable to change to lower states, thus excluding reductive elimination 

and oxidative addition mechanisms
108-110

.  
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1.5 Iron as alternative to precious metals 

Nowadays, sustainable catalysis is emerging as key point in the field of green 

chemistry. Catalytic chemical processes that minimize waste formation, while maximizing 

yield and selectivity are an important challenge, mainly due to unprecedented growth of the 

human population
111

 along with an increase of energy consumption
112

.  

During the last decades, most of the work in transition metal homogeneous catalysis 

has been performed using noble metal catalysts based on Pd, Rh, Ir and Pt, extremely efficient 

for a large number of applications. However, due to their limited availability, considerable 

toxicity and high price, these precious metal-based catalysts are unsuitable in terms of 

sustainable chemistry. Therefore, attention has been driven on first-row transition metals such 

as iron, copper or nickel because of their advantages and unique features. Especially iron is 

well-suited for the economic and regulatory pressures facing modern chemistry, because it is 

the second most abundant metal on earth's crust (~4.7 wt %) after aluminium and it is an 

inexpensive and environmentally benign transition metal
113,114 

(Fig. 1.16). Iron takes part of 

innumerable applications. From being a catalyst for a wide range of organic synthesis such as 

reduction, oxidation and coupling reactions to key element for the transport or metabolism of 

small molecules in biological systems such as metalloproteins, enzymes, nucleic acids
115

.    

Fig 1.16:  Market prices of transition metals in the time interval 2005-2014. Price fluctuation for 

platinum, rhodium, palladium, iridium and ruthenium metals on the left, for iron metal (iron ore) on the right
116

. 

Organoiron chemistry started in 1891 with the discovery of ironpentacarbonyl 

independently by Mond
117

 and Berthelot
118

. Fifty years later, Fe(CO)5 was used for the first 

time as catalyst in the Reppe process of hydroformylation of ethylene to produce 

propionaldehyde and 1-propanol in basic solutions
119

. In 1951 another important milestone in 

iron chemistry was the discovery of ferrocene
120

, followed by Na2Fe(CO)4 in 1959
121

.  
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Furthermore, iron is an effective catalyst at industrial level: the Haber process that utilises 

iron oxide as catalyst for the production of ammonia produces over 450 million tons of 

nitrogen fertilizer per year (section 1.1.1). Since then a number of impressive examples 

demonstrated the increased potential of iron as catalytic system in organic synthesis.  

1.5.1 Reduction of alkenes and alkynes  

The first breakthrough in the reduction of alkenes and alkynes was done by Bianchini 

et al. in early 90s
122

. Terminal alkynes were selectivity hydrogenated to alkenes by the iron 

(II) catalyst precursors [(PP3)FeH(N2)]BPh4 and [(PP3)FeH(H2)]BPh4 bearing aromatic 

tetraphosphine ligands  (PP3= P(CH2CH2PPh2)3) in THF under very mild conditions 

(temperature of 20-60 
o
C and 1 bar of H2). In the proposed catalytic cycle the key point is the 

formation of the Fe(η
2
-H2) species that undergoes reversible dissociation of one of the 

phosphine moieties of the PP3 ligand in order to create a free coordination site for alkyne 

insertion. The coordinated alkyne inserts into the Fe-H bond in the intermediate step leading 

to the formation of the Fe-vinyl species. The chemoselectivity was assumed to be due to the 

better bonding capabilities of the triple bond of the alkynes and electronic factors associated 

with the nature of the Fe-olefin bond
123

 (Scheme 1.20). 

 

 

 

 

 

 

Scheme 1.20: Proposed mechanism for the hydrogenation of terminal alkynes catalysed by 

[(PP3)FeH(H2)]BPh4. 

In 2004, Peters and co-workers found that complexes of the type [(PhBP
iPr

3)Fe-R] 

(where PhBP
iPr

3=[PhB(CH2P
i
Pr2)3]

- 
and R=Me,CH2Ph, CH2C(CH3)3) served as precatalysts 

for the hydrogenation of non-functionalised olefines (styrene, ethylene, 1-hexene, 

cyclooctene) and 2-pentyne reaching TOF up to 24h
-1

 under 1-4 bar of H2 pressure
124

.  
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In recent years, active pincer-type iron complexes have been reported by Chirik et al 

for hydrogenation and hydrosilylation of alkenes with excellent group tolerance
125,126

. As 

example, the aryl-substituted [(
iPr

PDI)Fe(N2)2] complex ( where 
iPr

PDI=2,6-(2,6-
i
Pr2-

C6H3N=CMe)2-C5H3N) served as effective precursor for the catalytic hydrogenation of 

oxygen-substituted and halogenated olefins in nearly quantitative conversion with 0.3 mol % 

of catalyst loading, 4 bar of H2 pressure and at room temperature. The activity decreased in 

the following order: terminal alkenes>internal alkenes= geminal alkenes> trisubstituted 

alkenes
127

 (Scheme 1.21). 

 

 

 

 

Scheme 1.21: Olefin hydrogenation catalysed by the [(
iPr

PDI)Fe(N2)2] complex. 

As an example of selective iron-catalysed transfer semihydrogenation of terminal 

alkynes, the iron-based system generated in situ by combining Fe(BF4)2
·
6H2O and tetraphos 

ligand [P(CH2CH2PPh2)3 , PP3], showed high selectivity towards a broad range of aromatic 

and aliphatic alkynes. This system, developed by Beller and co-workers in 2012, employs 

formic acid as hydrogen donor in base-free and mild conditions (5h, 40 
o
C). Besides, internal 

alkynes were found to be unreactive in presence of the same catalytic system. In a plausible 

reaction mechanism, the iron intermediate [Fe(PP3)F]
+
 is proposed as the catalytic active 

species
128

 (Scheme 1.22). Recently, this system has shown great reactivity in the transfer 

hydrogenation of aldehydes in presence of formic acid as hydrogen source (1.1 equiv.) at 60 

o
C in 2h. Remarkably, α,β-unsaturated aldehydes were selectively reduced under such base-

free conditions
129

. 

 

 

 

Scheme 1.22: Reduction of terminal alkynes to alkenes catalysed by Fe(BF4)2
·
6H2O and tetraphos. 
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 A new pincer-type iron system bearing 4,5-bis(diphenylphosphino)-acridine 

(
HACR

PNP) ligand active towards the hydrogenation of internal alkynes to produce E-alkenes 

has been recently reported by Milstein et al. The complex [(
HACR

PNP)Fe(CH3CN)(η
2
-

CH3CHCNBH3)] showed great selectivity yielding E-alkenes as major products with a small 

amount of over-reduced alkanes as by-product tolerating functional groups such as ester, 

nitrile, ketone and trimethylsilyl
130

 (Scheme 1.23).  

Scheme 1.23: Iron catalysed hydrogenation of alkynes to E-alkenes. 

1.5.2 Reduction of carbonyl derivatives (aldehydes, ketones and imines) 

The first catalytic effort on the reduction of carbonyl derivatives was presented by 

Marko' et al. in 1981. Reduction of acetophenone was possible in presence of Fe3CO12 and 

Fe2CO9 at 100 
o
C and 100 bar of H2. Thus, addition of triethylamine as co-catalyst was 

necessary to obtain reasonable yields
131

.  

One of the first efficient iron-catalysed hydrogenation of ketones and imines under 

mild conditions was reported in 2007 by Casey and Guan with Knölker's complex [2,5-

(SiMe3)2-3,4-(CH2)4(η
4
-C4C=O)]Fe(CO)2(HOCH2C6H5)] as catalyst. The hydrogenation 

reaction takes place at room temperature under low pressure of H2 (3 bar) and with 2 mol% of 

catalyst loading, showing high chemoselectivity in presence of esters, epoxides, isolated 

alkenes and alkynes groups. For α,β-unsaturated ketones both the carbonyl group and the C=C 

group were reduced. A detailed study of the mechanism indicated that both the hydride ligand 

and the hydroxyl group contributed in the reduction of the substrate in an inner-sphere and 

ligand-assisted mechanism. Notably, this catalytic system also displayed activity in transfer 

hydrogenation reaction using 
i
PrOH as hydrogen source

132,133
 (Scheme 1.24). 
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Scheme 1.24: Hydrogenation of carbonyl compounds in presence of Casey's complex. Both the hydride 

and the hydroxyl group contribute to the hydrogenation (TMS=trimethylsilyl). 

A year later Morris developed a new class of iron (II) complexes bearing chiral 

tetradentate diiminophosphines, PNNP-type ligands based on his previous results in the 

hydrogenation reaction catalysed by ruthenium complexes
134

. These complexes were the first 

examples of efficient catalysts for both asymmetric hydrogenation and asymmetric transfer 

hydrogenation of ketones from 
i
PrOH and without a base, under very mild conditions (25 bar 

of H2 and 50 
o
C for the hydrogenation and room temperature for the HT reaction), exhibiting 

good enantiomeric excess (up to 98 %). Moreover, it is noteworthy that both the activity and 

the enantioselectivity of these systems depend on the substituents on the diamine in the 

hydrocarbon bridge of the ligand 
135,136

(Fig. 1.17). 

 

 

 

 

 

Fig 1.17: Some examples of Morris' PNNP-based iron (II) complexes active in both hydrogenation and 

HT reactions. 

The complex [Fe(CO)(CH3CN)(
R
PNNP)]

2+
 with R=(R,R)-Ph (Fig 1.15, right) reduces 

acetophenone in 90% conversion and with ee up to 82% in 30 min and at room temperature, 

exhibiting TOF of 3600 h
-1

. With hindered ketones (e.g. 
t
BuCOPh) the reaction time ranges 

from 8 to 200 min achieving 14-99% of ee. Aliphatic ketones were also reduced with 

excellent conversions but moderate ee (up to 50%). Notably, when the α,β-unsaturated ketone 

E-PhCH=CHCOMe was used as substrate, the corresponding allylic alcohol was obtained as 

only product in 82% conversion and 60% ee
137

. 
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When the acetonitrile ligand was replaced by a bromide, the complex 

[Fe(CO)(Br)(
R
PNNP)] with R=(R,R)-Ph showed similar activities in the reduction of ketones, 

indicating that the ligand trans to the CO did not effect the reaction rate. Notably, detailed 

kinetic and DFT studies on this catalytic species elucidated the HT mechanism. The catalytic 

system is activated by a base resulting in a selective reduction of one imine group of the 

PNNP ligand, yielding an imino/enamido intermediate that reacts slowly with KO
i
Pr to 

generate the active species. The  active species, via an outer-sphere mechanism involving 

i
PrOH, generates the hydride species that reacts with acetophenone yielding 1-phenylethanol 

(Scheme 1.25)
138,139

.  

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.25: Proposed outer-sphere mechanism for the transfer hydrogenation of acetophenone 

catalysed by [Fe(CO)(Br)(
R
PNNP)], where R=(R,R)-Ph. 

Similar macrocyclic iron (II) systems providing significant enantiocontrol during the 

asymmetric transfer hydrogenation reaction of ketones have been recently reported by 

Mezzetti et al
140

.  The bis-isonitrile chiral complexes [Fe(CNR)2(N2P2)](BF4)2 (where R= 

CEt3 and N
i
Pr2) catalysed the reduction of several ketones, enones and imines in presence of 

i
PrOH as hydrogen source, NaOtBu as base, with low catalyst loading (0.1 mol %), at 40

o
C in 
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1h. Interestingly when benzylideneacetone was used as substrate, the corresponding allylic 

alcohol was obtained as only product with enantioselectivity up to 65-70% (Scheme 1.26). 

Scheme 1.26: Iron catalysed asymmetric transfer hydrogenation of ketones reported by Mezzetti. 

In 2014 Morris et al. described the unsymmetrical iron dicarbonyl complexes mer-

trans-[Fe(Br)(CO)2(P-CH=N-P')][BF4] (where P-CH=N-P'= R2PCH2CH=NCH2CH2PPh2 or 

P-CH=N-P'=(S,S)-Cy2PCH2CH=NCH(Me)CH(Ph)-PPh2) for the asymmetric hydrogenation 

of ketones into alcohols after treatment with LiAlH4 and KO
t
Bu as additive in THF at 50 °C 

and 5 bar H2, reaching turnover frequency (TOF) up to 2000 h
-1

 and enantioselectivity up to 

86% (Scheme 1.27)
141

. 

 

 

 

  

Scheme 1.27: Iron catalysed asymmetric hydrogenation of ketones recently reported by Morris. 

Another important milestone in the hydrogenation of ketones and aldehydes has been 

recently achieved by Milstein and his group. Two new pincer iron(II) complexes bearing 2,6-

bis(diisopropylphosphinomethyl)pyridine (
iPr

PNP type-ligand) have been synthesized and 

fully characterized (Fig. 1.18). Both [(
iPr

PNP)FeH(CO)Br] and [(
iPr

PNP)FeH(CO)(HBH3)] 

complexes exhibit great reactivity towards H2 in the reduction of a broad variety of ketones in 

ethanol at 4.1 bar of H2 (30 bar of H2 are needed for the hydrogenation of aldehydes), 

achieving turnover numbers (TON) up to 1780 and TOF of 300 h
-1

 for acetophenone 

hydrogenation. Mechanistic investigations and DFT calculations on these systems have led to 

the conclusion of an aromatization-dearomatization of the PNP ligand occurring during the 

catalytic cycle
142,143

 (full mechanism reported in section 3.1, scheme 3.2).  
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Fig 1.18: 
iPr

PNP- Iron (II) complexes active in the hydrogenation of ketones and aldehydes. 

An improvement in the reduction of the more challenging α,β-unsaturated aldehydes 

was achieved by Beller and his group by using the tricarbonyl(η
4
-1,3-bis(trimethylsilyl)-

4,5,6,7-tetrahydro-2H-inden-2-one)iron complex (Knölkner's type) as catalyst in 0.1-0.5 

mol% loading and 30 bar of H2 at 100 
o
C. After activation with K2CO3 in 

i
PrOH/water 

solution the hydrogenation of different α,β-unsaturated aldehydes occurred only on the 

carbonyl group achieving the corresponding allylic alcohols in 80-99% yields
144

(Scheme 

1.28, a). Similar results were also achieved by using the [FeF(tris(2-diphenylphosphino)-

phenylphosphino)]BF4 complex ([FeF(P(Ph2)3)]BF4, 0.2-0.4 mol%) in presence of 1-5 mol% 

of trifluoroacetic acid (TFA) in 
i
PrOH under 20 bar of H2 at 120 

o
C. Aromatic and aliphatic 

aldehydes were reduced with excellent yields (95-99%) and groups such as ester, sulphide, 

C=C bond and ketone were tolerated
145

 (Scheme 1.28, b). 

Scheme 1.28: Iron catalysed hydrogenation of α,β-unsaturated aldehydes by using a Knölker type 

catalyst (top. a) and [FeF(P(Ph2)3)]BF4 (bottom, b) as catalysts. 

In the proposed mechanism, when ([FeF(P(Ph2)3)]BF4 is used as catalyst, the catalytic 

species is the hydride complex [FeH(P(Ph2)3)]BF4 generated in two successive steps: the 

addition of H2 followed by release of HF as supported by NMR and DFT investigations. By 

reacting with a second H2 molecule the diamagnetic species [Fe(H)(H2)(P(Ph2)3)]BF4 forms, 

followed by dissociation of one of the phosphine moieties of the P(Ph2)3 ligand (via either an 
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acid catalysed or an acid-free route) in order to create a free coordination site for substrate 

insertion. After hydride insertion on the C=O bond the resulting allylic alcohol is produced
145

 

(Scheme 1.29). 

 

 

 

 

 

 

Scheme 1.29: Proposed mechanism for the chemoselective hydrogenation of α,β-unsaturated aldehydes 

using [FeF(P(Ph2)3)]BF4 via an acid catalyzed route. 

Beller's group also reported the first catalytic hydrogenation of imines to amines 

employing the Knölker's complex plus the chiral Brөnsted acid 3,3’-bis(2,4,6-triisopropyl-

phenyl)-1,1’-binaphthyl-2,2’-diyl hydrogen phosphate (TRIP) as catalytic system. The in situ 

catalyst reduced a wide range of N-arylketimines into the corresponding amines in 60-94 % of 

isolated yield and enantiomeric excess up to 94%, under 50 bar of H2 at 65 
o
C

146
(Scheme 

1.30). 

 

 

 

 

Scheme 1.30: Catalytic asymmetric hydrogenation of C=N bonds by Knölker complex and the chiral 

(S)-TRIP ligand.  

Other recent catalysts active in hydrogenation of both ketones and aldehydes under 

mild conditions have been recently reported by Kirchner et al. The pincer-type iron(II) 

complexes [Fe(
iPr

PNP)(H)(CO)L] (where L=Br, CH3CN, BH4
-
) based on the 2,6-

diaminopyridine scaffold bearing -NH or -NMe as spacers ([(PNP)Fe] and [(
Me

PNP)Fe] 
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respectively) catalyze the reduction of ketones and aldehydes under 5 bar of H2 at room 

temperature and in presence of KO
t
Bu as base. Noteworthy, the hydrogenation of ketones 

proceeds with a catalyst loading of 0.5 mol%, while in the case of aldehydes 5 mol% of 

loading is needed
147

 (Scheme 1.31). DFT calculations support a heterolytic dihydrogen 

cleavage occurring via metal oxide cooperation but without reversible aromatization-

dearomatization of the PNP ligand like previously reported by Milstein (for the 

aromatization/dearomatization mechanism see scheme 3.2).   

Scheme 1.31: Catalytic hydrogenation of aldehydes by [(PNP)Fe] and [
Me

(PNP)Fe] complexes. 

The Meerwein-Ponndorf-Verley-type reaction mechanism has been proposed for the 

iron(II) complex consisting of  bis(isonitrile) ligand (BINC) and FeCl2 in the ratio 2:1, 

described in 2010 by Reiser and co-workers. This complex catalysed the transfer 

hydrogenation of both aromatic and heteroaromatic ketones in presence of KO
t
Bu as base in 

i
PrOH with enantioselectivities up to 91%. On the basis of IR and NMR studies, the authors 

proposed a MPV mechanism in which the ketone binds via its carbonyl group (or alternatively 

through the respective heteroatom in the case of heteroaromatic substrates) to the iron centre 

of the catalyst acting as Lewis acid. Hydride transfer then occurs directly from the reduced 

isonitrile group that acts as the hydrogen donor
148

 (Scheme 1.32). 
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Scheme 1.32: Proposed mechanism for iron (II) –bis(isonitrile) catalysed hydrogen transfer. 

1.5.3 Reduction of carboxylic acid derivatives 

The reduction of carboxylic acid derivatives with respect to their reactivity at the 

carbonyl group is more challenging than that one of ketones and aldehydes. Usually this 

reaction is performed using stoichiometric amount of metal hydrides such as LiAlH4 or 

NaBH4, but some examples of iron catalysed reduction have been reported in recent years.  

In early 2014, Milstein and his group reported the selective hydrogenation of activated 

trifluoroacetic esters by using the PNP-type iron complex [(PNP)Fe(H)2(CO)]. The 

hydrogenation yields 2,2,2-trifluoroethanol and the corresponding alcohols derived from the 

ester alkoxy groups as products in 52-99% of yield, under 25 bar of H2, 1 mol% catalyst 

loading and 5 mol% of NaOMe as base. Although the steric hindrance of the alkoxy group 

has an influence on the reactivity of the system, functional groups such as C=C are 

tolerated
149

 (Scheme 1.33).  

 

 

 

Scheme 1.33: Hydrogenation of trifluoroacetic esters catalysed by [(PNP)Fe(H)2(CO)] complex. 
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 Catalytic hydrogenation of esters was also achieved simultaneously by Beller
150

 and 

Guan
151

. They both described the use of the bifunctional iron pincer-type complex [(PNP)Fe-

(H)(HBH3)] as an efficient catalyst of aromatic and aliphatic esters in base-free conditions. A 

wide range of esters were reduced under 30 bar of H2, at 100-120 
o
C in 6-19h as reported by 

Beller, while fatty-fatty esters were reduced in Guan's work (Scheme 1.34). 

 

 

 

 

 

Scheme 1.34: Hydrogenation of esters catalysed by [(PNP)Fe(H)(HBH3)]. 

 

1.6 The role of iron in hydrogenase enzymes  

Hydrogenases are a group of metalloenzymes that catalyse the conversion of H2 into 

two protons and two electrons and its reverse reaction. In particular, the heterogenesis of H2 

involves the respective coupling of H
+
 and H

-
. The reaction takes place at a metal center, in 

the core of the enzyme where the acidity of H2 is increased by interaction with the metal and 

the heterolytic splitting occurs accelerated by a nearby base. The heterolytic mechanism has 

been proven by H/D isotope exchange experiments
152

.  

Several organisms such as bacteria, archea and some eukarya utilise H2, therefore 

hydrogenases are widespread in nature and these enzymes are classified into three different 

types based on the metal included in their reactive sites: [NiFe], [FeFe] and [Fe] 

hydrogenases
153

(Fig. 1.19). 
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Fig 1.19: Active sites of structurally characterised representatives of the three classes of hydrogenases. 

GMP=guanyl nucleotide.  

In terms of active site composition the common feature is the presence of Fe and/or Ni 

as central ions connected by sulphur-bridge and coordinated by strong-field ligands such as 

CO and CN leading to low-spin iron complexes and providing empty acceptor orbitals for H2 

activation and heterolytic splitting. Hydrogenases are known to be highly efficient catalysts 

with high turnover number (up to 10
4
 s

-1
), low overpotential and good stability working even 

at elevated temperature
153

. 

Immediately after the publication of the crystal structures of the [NiFe]
154

 and 

[FeFe]
155

 hydrogenases in the mid-1990s and of the [Fe] hydrogenase
156

 in 2008, compounds 

mimicking the unusual active sites of the enzymes have been synthesized and fully 

characterised. This turned out to be challenging due to the complex chemistry required to 

correctly place the ligands around the metal core and to generate functional models with 

catalytic activity. It is for the capability of interacting with H2 that the active sites of these 

enzymes have become particularly interesting for the design and synthesis of model catalysts 

(either biomimetic or bio-inspired) for large scale production of hydrogen either 

electrochemically or photochemically. Although an increasing number of studies in structural 

models of the [NiFe], [FeFe] and [Fe] active sites has been developed so far
151

, in this section 

only some of the latest discoveries in functional models based on the active sites of the three 

different hydrogenases are resumed. 

1.6.1 [NiFe]-Hydrogenase functional model  

Among the family of functional model inspired by the [NiFe] active site, a recent 

breakthrough has been reported by Ogo et al. in 2013. The model complex [Ni(X)Fe-

(CH3CN)(P(OEt)3)3](BPh4)2 where X=N,N'-diethyl-3,7-diazanone-1,9-dithiolate   bears all the 

characteristics present in the [NiFe] active site: a bimetallic core, a sulphur bridge and ligands 

capable of accepting π-back donation from the iron center. This complex (the iron center 

specifically) activates H2 in a heterolytic manner in CH3CN/MeOH at room temperature and 
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under atmospheric pressure. In presence of a strong base such as NaOMe abstraction of a 

proton form the bounded H2 it's possible and this reaction yields to the corresponding hydride  

complex [Ni(X)Fe(H)(P(OEt)3)3](BPh4)2. In common with the [NiFe]-hydrogenase the 

hydride species is capable of reducing substrates by either hydride ion or electron transfer
157

 

(Scheme 1.35). 

 

 

 

 

 

Scheme 1.35: Heterolytic activation of H2 (0.1MPa) by [Ni(X)Fe(CH3CN)(P(OEt)3)3](BPh4)2 in 

CH3CN/MeOH in presence of NaOMe as base. 

1.6.2 [FeFe]-Hydrogenase functional model  

Over the last few decades close to a hundred functional and structural [FeFe] models 

have been synthesized and their stable intermediates have been characterized mostly by NMR, 

EPR, FTIR, and UV−Vis spectroscopy
158

. One of the last examples of heterolytic cleavage of 

hydrogen by an [FeFe] hydrogenase-inspired complex has been published by Bullock and co-

workers in 2014. DFT calculations on the [FeFe] active site have shown that the nitrogen 

atom is a suitable base for assisting heterolytic cleavage of hydrogen at the active site
159,160

. 

Therefore, they reported the synthesis and characterization of the complex [Cp
C5F4N

Fe-

(P
tBu

2N
tBu

2)Cl]  bearing two pendant amines crucial for the hydrogen cleavage. As expected, 

the complex cleaved hydrogen heterolytically leading to the corresponding hydride complex 

[Cp
C5F4N

FeH(P
tBu

2N
tBu

2H)]BAr
F

4 exhibiting a strong Fe-H
…

H-N dihydrogen bond (Scheme 

1.36). The structure was determined by single-crystal neutron diffraction where the measured 

distance H-H between the protic N-H
+
 and the hydridic Fe-H

-
 was remarkably short 

(1.489(10)Å). Due to these outstanding results, an experimental support for both the 

previously proposed binding of H2 to the distal Fe center of the [FeFe] hydrogenase enzyme 

and the participation of a pendant amine in the heterolytic cleavage have been provided
161

.  
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Scheme 1.36: Heterolytic H2 splitting by the bio-inspired complex [Cp
C5F4N

Fe(P
tBu

2N
tBu

2)Cl]. 

 Another significant discovery of synthetic models of the active site of the [FeFe] 

hydrogenase undergoing catalytic proton reduction while exhibiting doubly protonated 

intermediates was made in 2012 by Caroll et al. The complex [Fe2(adt
NH

)(CO)2(dppv)2] where 

dppv= cis-C2H2(PPh2)2 and adt
NH

=((SCH2)2NH)
2-

, undergoes protonation with strong acids to 

give a terminal hydride species [Fe-FeH(adt
NH

)(CO)2(dppv)2]. This specie can either undergo 

further protonation in presence of a strong acid yielding complex [Fe-FeH(Hadt
NH

)-

(CO)2(dppv)2] followed by reduction and release of H2, or can directly give proton reduction 

in presence of a weak acid
162

 (Scheme 1.37).  

 

 

 

 

 

 

 

Scheme 1.37: Proposed mechanism for proton reduction catalysed by [Fe2(adt
NH

)(CO)2(dppv)2] 

complex: two cycle are shown for weak and strong acids. 
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1.6.3 [Fe]-Hydrogenase functional model  

Despite all the structural model published so far
153

,  no functional synthetic analogue 

that mimics [Fe] hydrogenase reactivity has been yet developed. The functional model 

inspired by the frustrated Lewis pair concept reported by Meyer et al. in 2014 provides 

experimental insights into the enzyme's mechanism. Although based on ruthenium rather than 

iron, the complex [RuCp(CO)2] reacts in presence of H2 emulating the heterolytic splitting of 

H2 through the cooperative action of Lewis acid imidazolium salt ion serving as hydride 

acceptor (similar to the methenyl-H4MPT
+
 cofactor present on the [Fe] hydrogenase site), and 

the metal complex itself acting as Lewis base, accepting the proton and yielding the species 

[HRuCp(CO)2] (Fig. 1.20). In order to find a suitable hydride acceptor molecule structurally 

related to methenyl-H4MPT
+
, a variety of imidazolium salts was synthesized and screened 

with respect to their hydride accepting ability in a test reaction with NaBH4. The best results 

were achieved by using [
Tol

Im
F4

]
+
Br

-
 and [

Mes
Im

F4
]

+
Br

-
 as hydride acceptors

163
.   

 

 

 

 

 

Fig. 1.20: Comparison between the active site pf the [Fe] hydrogenase and the system imidazolium 

salt/ruthenium complex reported by Meyer et al. 
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2.1 Hydrogenases models based on earth-abundant metals 

 Determination of the structures of [FeFe] hydrogenases has revealed that active sites 

consist of bimetallic iron complexes bridged by a di(thiomethyl)amine ligand
1-6

, HN(CH2S
-
)2. 

In its reduced form, one iron is bound to two terminal CO ligands and one cyanide ligand with 

a vacant coordination site adjacent to the di(thiomethyl)amine ligand (Fig. 2.1). 

 

 

 

Fig. 2.1: Active site of the [FeFe] hydrogenase enzyme 

 DFT calculations have shown that the nitrogen atom is a suitable base for assisting 

heterolytic cleavage of hydrogen at the active site, providing a low energy pathway for the 

transfer of protons from the active site to the exterior of the enzyme via a proton-transfer 

pathway
7,8

. The reaction involving the N base is much more favourable than that one 

involving terminal CN or bridging S. A strong Fe-H
δ- 

··· H
δ+

-N "dihydrogen bond" has been 

found in the H2 heterolytic cleavage product. Noteworthy, the six-membered ring structure 

proposed in the [FeFe] hydrogenase has a boat conformation, so that the pendant amine is 

properly positioned to facilitate the binding and cleavage of the H2 ligand (Scheme 2.1). 

Scheme 2.1: Active site of the [FeFe] hydrogenase enzyme and its reaction with H2. This drawing 

focuses only on the active metal site and does not show the complexity of the protein surrounding the active site. 

Delivery of electrons occurs through an Fe2S4 cluster so that protons and H2 are delivered to and from the active 

site by channels present in the enzyme.   

Organometallic complexes mainly based on earth-abundant metals bearing pendant 

bases have shown great reactivity in the proton/hydride exchange reaction
9-16

 or as 

electrocatalysts for H2 production or oxidation
17-22

 (Scheme 2.2). 
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Scheme 2.2: General equation for the oxidation of H2 and production of H2 by reduction of protons 

(left). Proposed mechanism for H2 evolution via the formation of metal-hydride intermediate (right). 

A central concept in the design of efficient catalysts is the positioning of a pendant 

base in the second coordination sphere and close to a vacant coordination site on the metal, in 

order to lead to a bifunctional activation of H2 during the heterolytic cleavage or formation of 

the H-H bond. Systematic modifications of the steric and electronic properties of the ligands 

change the thermodynamic driving force for either oxidation or production of H2 (Scheme 

2.3). 

  

 

Scheme 2.3: Intramolecular deprotonation of H2 bounded to the metal center 

Useful thermodynamic measurements of H2 addition
19

 have been made on the 

complex [Ni(P
R

2N
R'

2)2]
2+

 (Scheme 2.4). Equation 1 shows the ability of the metal complex to 

accept the hydride, where -ΔG
0

H- is the free energy associated. In equation 2 is reported the 

energy of protonation of a pendant amine that can vary according to the groups present on the 

phosphine moieties. For the heterolytic cleavage of H2 in CH3CN the value of 76 Kcal/mol is 

calculated
23,24

.  
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Scheme 2.4: Thermodynamics of H2 addition to [Ni(P
R

2N
R'

2)2]
2+

 

The final free energy for addition of H2 calculated for the whole process ΔG
0

H2 

(equation 4) determines the nature of a potential catalyst. When ΔG
0

H2 is negative, 

incorporation of H2 into the metal complex is thermodynamically favourable, and therefore 

complexes would be good candidates for oxidation of H2. On the other hand, with a positive 

ΔG
0

H2 value the expulsion of H2 is favored, leading to more suitable catalysts for H2 

production. 

From this starting point, several research groups have focused on transition metal 

complexes containing pendant amines incorporated into diphosphane ligands, abbreviated 

P(N)P- or simply PNP-type ligands
25-31

 (Scheme 2.5). These complexes have a structural 

motif that should permit facile tuning of the electronic and steric properties by varying 

substituents on the phosphine moieties, whereas the pendant amine promotes facile heterolytic 

cleavage or formation of H-H bond.   

 

 

 

 

Scheme 2.5: Intramolecular proton/hydride exchange in an iron (II) complex bearing a chelating N-

containing bis-phosphane ligand. The PNHP
+
 ligand approach the hydride ligand in the boat conformation.  

While the incorporation of a pendant amine into the bis-phosphane ligand leads to a 

significant decrease in the overpotential for the electrocatalytic oxidation of H2, the six-

membered ring M-P(N)P undergoes chair/boat conversions as observed for cyclohexane-type 

ring structures. Consequently, the pendant amine is positioned optimally for interaction with a 
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M–H bond only when it is in a boat conformation
10,19,27

. A crystal structure of a derivative of 

[Ni(PNP)2]
2+

 (Scheme 2.4, with an nBu groups on each N) shows that both six-membered 

rings are in the chair form
28

 so conversion to the boat conformation contributes to the barrier 

for oxidation of H2 by [Ni(PNP)2]
2+

. 

As described in literature
32-36

, once H2 binds the metal center a dihydrogen complex 

forms, exhibiting a characteristic dihydrogen resonance visible at negative chemical shift in 

the 
1
H-NMR. Dihydrogen complexes can be generated as either stable species or 

intermediate. In scheme 2.6 is reported the example of an active iron complex bearing a 

pendant amine used as electrocatalyst for oxidation of hydrogen
20

.     

 

 

 

 

 

 

 

 

 

Scheme 2.6: Reactivity of [FePN2P] in presence of H2. 

Interestingly, complex [FePN2P-H2](BAr
F

4) exhibited a characteristic dihydrogen 

resonance at -13.45 ppm in the 
1
H-NMR, while [FePN2P-H] showed a triplet hydride signal 

at -16.99 ppm (JPH=60 Hz). 

In the view of previous developments, we decided to investigate the coordination 

chemistry and reactivity of novel iron (II) complexes bearing an amine as internal base for H2 

activation. 
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2.2 Synthesis and characterization of novel iron (II) complexes 

bearing an internal base 

In this section, the synthesis and characterization of several low spin iron (II) 

complexes bearing pendant amines incorporated into diphosphane ligands are reported. A low 

spin configuration on the metal center would allow both the donation of electron density from 

the orbital of H2 to an empty d orbital of symmetry on the metal (η2-H2)d

and 

the back-donation from filled d orbitals of the metal to the 

 orbital of H2 (d

π



η2-

H2 

All the complexes were tested for hydrogen activation and hydrogenation reaction of a 

large number of synthetically useful unsaturated substrates. Ligand synthesis  

2.2.1.1 PNP-type ligands 

The PNP-type ligands with a pendant amine were synthesized by reaction of two 

equivalents of R2PCH2OH (readily preformed from equimolar amounts of (CH2O)n and a 

secondary phosphine R2PH) with the appropriate stoichiometry of primary amine R'-NH2 in 

either refluxing MeOH or EtOH
37-39

 (Scheme 2.7 and 2.8).  High yields and clean products 

were obtained by working with air-free techniques.  

Scheme 2.7: Synthesis of the aromatic Ph2PNPPh2 ligand. 

 

 

 

 

 

 

Scheme 2.8: Synthesis of the aliphatic Et2PNPEt2 and Cy2PNPCy2 ligands. 
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The Ph2PNPPh2 (
Ph

PNP) ligand exhibited a characteristic signal at δ -27.58 ppm in the 

31
P- NMR while the aliphatic Et2PNPEt2 (

Et
PNP) at δ -32.13 ppm and Cy2PNPCy2 (

Cy
PNP) at 

δ -16.64 ppm.  

2.2.1.2 Amidothiophenolate ligands  

Strong π-donor ligands such as the 2-amidothiophenolate dianion are well known in 

the synthesis of 16-electron iron carbonyl complexes
40-42

. For this purpose the sodium 2-

aminobenzenethiolate was synthesized from the 2-aminobenzenethiol in presence of Na 

(Scheme 2.9). Differently, dithiolate ligands such as 1,2-benzenedithiol (bdt) and 3,6-

dichloro-1,2-benzenedithiol (Cl2bdt) were deprotonated in situ by addition of a slightly excess 

of Et3N.  

 

Scheme 2.9: Synthesis of sodium 2-aminobenzenethiolate. 

 As mono-anionic ligand, sodium 2-dimethyl-aminobenzenethiolate was synthesized in 

a 2-step synthesis from 2-[(2-aminophenyl)disulfanyl]phenylamine (Scheme 2.10). 

 

 

 

Scheme 2.10: Synthesis of sodium 2-dimethyl-aminobenzenethiolate. 

 

2.2.2 Metallation using iron salts  

Stable iron (II) low spin complexes were synthesized reacting the Ph2PNPPh2 ligand 

with FeCl2 in anhydrous MeOH or THF, under CO atmosphere and in presence of an anionic 

ligand as reported in literature
22

. Complex [(
Ph

PNP)Fe(CO)( Cl2bdt)] (1) was synthesized in a 

one-pot reaction mixing the Ph2PNPPh2 ligand with FeCl2 under CO (1.5 bar). After 30 min of 

stirring, a solution of Cl2bdt and Et3N was added in the reaction mixture affording 1 as dark 

powder in 42% yield after the work-up (Scheme 2.11). 
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Scheme 2.11: Synthesis of complex 1. 

 Complex 1 is a neutral pentacoordinated Fe(II) low spin complex providing an open 

site for substrate binding without the need of ligand dissociation. Moreover, it contains an 

amine functionality in the bis-phosphane ligand as a potential protonation site. Additional 

ether chains at the amine provided increased solubility in polar aprotic solvents. The 
31

P-

NMR spectrum exhibited a characteristic singlet at δ 48.95 ppm and the CO vibrational 

frequency measured was 1907 cm
-1

.   

 Similar complexes have been recently reported as active catalysts for H2 formation 

from weak acid at low overpotential showing good stability
22,43

 (Fig. 2.2, complex 2 and 3). 

The presence of the two chlorine atoms on the dithiolate ligand should lead to a higher acidity 

of 1 with respect to 2 thus, to a different electronic environment on the metal center as 

confirmed by FT-IR analysis. The reported X-Ray structure of 2 showed a square pyramidal 

geometry with the carbonyl group on the apical position. Unfortunately, no suitable crystals 

of 1 were obtained for X-Ray analysis due to its high solubility.  

 

 

 

 

 

 

Fig 2.2: Complexes 2 and 3 active catalysts for H2 formation from weak acids. 
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 In order to tune the electronic properties on the iron center the Cl2bdt ligand was 

substituted with the 2-aminobenzenethiol. When the synthesis was conducted as reported for 

1 (Scheme 2.9) only a mixture of products formed as demonstrated by the 
31

P-NMR spectrum. 

Therefore, a different synthetic procedure was adopted (Scheme 2.12). 

 

 

 

 

 

Scheme 2.12: Synthesis of complex 4. 

 The 2-aminobenzenethiol was substituted with sodium 2-aminobenzenethiolate (Nbt), 

the Et3N with a stronger base such as NaO
t
Bu and the CO pressure lowered at 0.3 bar. 

Complex [(
Ph

PNP)Fe(CO)(Nbt)] (4) was obtained in 78% yield and it exhibits a CO 

vibrational frequency of 1950 cm
-1

 and a characteristic signal at δ 56.75 ppm in the 
31

P-NMR. 

Suitable crystals of 4 for X-Ray analysis were obtained from THF.  

When the 2-aminobenzenethiolate was replaced by different ligands such as 1,2-

Diaminobenzene, 1,2-Diaminocyclohexane, the neutral 1,2-Bis(diphenylphosphino)-ethane 

(dppe) and the chiral (1R,2R)-2-(Diphenylphosphino)cyclohexylamine no reaction occurred.  

Likewise, when the Ph2PNPPh2 ligand was replaced by the aliphatic Et2PNPEt2 

phosphine a mixture of products was observed in the 
31

P-NMR. Differently, when 

Cy2PNPCy2 was used, complex [(
Cy

PNP)Fe(CO)(Nbt)] (5) was synthesized as dark powder in 

60% yield (Scheme 2.13).  
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Scheme 2.13: Synthesis of complex 5. 

 Complex 5 exhibited a characteristic signal at δ 60.35 ppm in the 
31

P-NMR with a CO 

vibrational frequency lowered at 1890 cm
-1

 due to the cyclohexyl groups on the phosphine 

ligand. Suitable crystals for X-Ray analysis were obtained by diffusion of n-pentane in a 

saturated solution of 5 in THF. 

A different low spin iron (II) complex [(dppe)Fe(CO)(Nbt)] (6) with a free 

coordination site was obtained by replacing the Ph2PNPPh2 ligand with the commercially 

available 1,2-Bis(diphenylphosphino)ethane (dppe). The synthetic procedure adopted was 

different than those reported above. The intermediate [FeCl2(CO)2(dppe)], was synthesized as 

reported in literature
44

, and it was reacted with sodium 2-aminobenzenethiolate in presence of 

NaO
t
Bu as base affording 6 as dark green powder in 75% yield (Scheme 2.14).  

 

 

 

 

Scheme 2.14: Synthesis of complex 6. 

 The CO vibrational frequency was observed at 1902 cm
-1

, while a characteristic 

singlet was measured at δ 94.84 ppm in the 
31

P-NMR, chemical shift slightly  higher 

compared to the previous complexes. 

 In order to synthesize a cationic complex similar to 6 that might allow the iron center 

to become more electrophilic, sodium 2-aminobenzenethiolate ligand was replaced by sodium 

2-dimethyl-aminobenzenethiolate. When the reaction was conducted as reported for 6, 

starting material was still observed after either prolonged stirring or refluxing. Thus, the 
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reaction mixture was refluxed overnight in THF with 2 equiv. of sodium 2-

aminobenzenethiolate ligand. Unfortunately, it was not possible to synthesize the desired 

product, but the dimeric iron complex [Fe(
Me

Nbt)2]2 (7) with sulphur atoms bridging the two 

metal centres formed, as confirmed by the X-Ray analysis (Fig. 2.3).  

 

 

 

 

Fig. 2.3: Complex 7. 

 Likewise, by changing the 2-aminobenzenethiolate ligand with the 2-(diphenyl-

phosphino)benzenethiol (
Ph

PS) it was not possible to synthesize a cationic iron (II) 16-e
-
 low 

spin complex because the stable 18-e
- 
complex [Fe(CO)2(

Ph
PS)] (8) formed as major product 

(Scheme 2.15).  

 

 

 

 

 

Scheme 2.15: Synthesis of complexes 8 and 9 

In 8 two 2-(Diphenyl-phosphino)benzenethiol ligands reacted with FeCl2 and CO 

yielding a neutral complex that exhibited a CO vibration frequency at 1900 cm
-1 

and a singlet 

at δ 74.00 ppm in the 
31

P-NMR. The structure was confirmed by X-Ray analysis on orange 

crystals obtained by diffusion of n-pentane in a saturated solution of 8 in THF. As minor 

product, complex [Fe(
Ph

PS)2]3 (9) crystallized as black crystals showing a trimeric iron 

complex with sulphur atoms bridging the metal centres. Selective synthesis of 8 was achieved 

by reacting FeCl2 with 2 equivalents of 2-(Diphenyl-phosphino)benzenethiol and NaO
t
Bu 

under CO (0.4 bar). 
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A 14-e
-
 paramagnetic Fe(II) complex [(

Cy
PNP)FeCl2] (10) bearing a pendant nitrogen 

base in the bis-phosphane ligand as a potential protonation site was synthesized by addition of 

Cy2PNPCy2 to FeCl2
.
 1.8 THF precursor in THF as solvent (Scheme 2.16).  

 

  

 

Scheme 2.16: Synthesis of complex 10. 

 Complex 10 was obtained in 80% yield and its structure confirmed by X-Ray analysis 

and Mass Spectrometry.  No reaction occurred when 10 was pressurized with CO (2 bar). 

 A different approach on the synthesis of stable iron (II) low spin complexes was 

possible by replacing the 2-aminobenzenethiolate ligand with the Cyclopentadienyl (Cp) one. 

The use of Cp ring substituents is an established and effective strategy for modulating the 

physical properties and chemical reactivity of Cp complexes
45,46

. In particular, in the field of 

heterolytic cleavage of H2 efficient iron complexes bearing a Cp ligand and a pendant amine 

in the bis-phosphane ligand as a potential protonation site have been reported
10,20

. 

 Direct reaction of 10 with NaCp ligand did not lead to a stable complex. Thus, the 

FeCp(CO)2Cl precursor was synthesized
47

 and reacted with Cy2PNPCy2 under UV light
10

 

affording complex [(
Cy

PNP)Fe(CO)(Cp)]
+
 (11) as a yellow powder in a 63 % yield (Scheme 

2.17).  

 

 

 

Scheme 2.17: Synthesis of complex 11. 

 The X-Ray structure of 11 showed [FeCl4]
2-

 as counter ion. Infrared spectroscopy of 

11 exhibited a CO vibration frequency at 1910 cm
-1 

, and a singlet at δ 53.00 ppm in the 
31

P-

NMR was observed.  



Chapter two 

 

 

62 

 

Because 11 is an 18-e
-
 complex with no free site for substrate binding, a second 

photolysis reaction was carried out with the intent of removing the CO ligand. Moreover, the 

counter ion [FeCl4]
2-

 was easily replaced by BAr
F

4 anion (Scheme 2.18). 

Scheme 2.18: Synthesis of complex 12. 

The stable cationic complex [(
Cy

PNP)Fe(CH3CN)(Cp)] (12) was synthesized and 

isolated only when CH3CN was used as solvent in the reaction. Suitable crystals for X-Ray 

analysis were obtained by diffusion of n-pentane in a saturated solution of 12 in THF.  

Unfortunately, when Cy2PNPCy2 ligand was replaced by Et2PNPEt2 only a mixture of 

products was observed in the 
31

P-NMR spectrum. 

2.2.3 Structures of Fe complexes   

The solid state structures of complexes 4, 5, 6, 7, 8, 9, 10, 11 and 12 were determined 

by X-Ray crystallography. The thermal ellipsoids are drawn at 30% probability and the 

hydrogen atoms are omitted for clarity in all the structure reported in this section. 

 The crystal structure of 4 showed a distorted square pyramidal geometry at the Fe 

center with the bidentate bis-phosphane and the 2-aminobenzenethiol ligand trans to one 

another. The apical CO ligand resulted trans to the free coordination center (Fig. 2.4). The 

six-member ring formed by the bis-phosphane ligand binding the metal center adopted a chair 

conformation with an angle Fe-P(1)-C(2) of 114.38(12) and P(1)-C(2)-N(2) of 116.39(6). The 

bite angle P(1)-Fe-P(2) was 93.13(2)
o
. The distance calculated between the pendant amine 

and the iron center was 3.676 Å. 
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Fig. 2.4: X-Ray structure of 4. The nitrogen atoms are coloured in blue, the phosphorous atoms in 

yellow, the sulphur atom in green and the oxygen ones in red. Selected bond lengths [Å] and angles [°]: Fe(1)-

C(1) 1.7371(19), Fe(1)-N(1) 1.8678(15), Fe(1)-P(1) 2.2098(6), Fe(1)-P(2) 2.1955(5), Fe(1)S(1) 2.2476(6), P(1)-

Fe(1)-P(2) 93.13(2), N(1)-Fe(1)-S(1) 85.04(5). 

Similarly, complex 5 showed a pentacoordinated iron complex with the CO ligand 

trans to the free coordination site (Fig. 2.5). The distance calculated between the iron center 

and the pendant base was 3.733 Å. The six-member ring formed by the bis-phosphane ligand 

binding the metal center adopted a chair conformation with an angle Fe-P(1)-C(2) of 

116.47(4), Fe-P(2)-C(3) of 111.89(4), P(1)-C(2)-N(2) of 116.08(8)
o
 and P(2)-C(3)-N(2) of 

111.91(7)
o
. The bite angle measured for the bis-phosphane ligand was 96.057(13)

 o
. 

 

 

 

 

 

 

  
          Fig. 2.5: X-Ray structure of 5. The nitrogen atoms are coloured in blue, the phosphorous atoms in 

yellow, the sulphur atom in green and the oxygen one in red. Selected bond lengths [Å] and angles [°]: Fe(1)-

C(1) 1.7563(12), Fe(1)-N(1) 1.8837(10), Fe(1)-P(1) 2.1752(4), Fe(1)-P(2) 2.2274(4), Fe(1)S(1) 2.2382(4), P(1)-

Fe(1)-P(2) 96.057(13)
 o
 , N(1)-Fe(1)-S(1) 84.96(3). 
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The crystal structure of complex 6 exhibited a distorted square planar geometry with 

the CO ligand in the apical position (Fig. 2.6). The bite angle of the dppe ligand was 

86.04(3)
o
. 

 

 

 

 

 

 

 

               Fig. 2.6: X-Ray structure of 6. The nitrogen atom is painted in blue, the phosphorous atoms in yellow, 

the sulphur atom in green and the oxygen in red. Selected bond lengths [Å] and angles [°]: Fe(1)-C(1) 1.719(3), 

Fe(1)-N(1) 1.893(3), Fe(1)-P(1) 2.2268(8), Fe(1)-P(2) 2.1868(9), Fe(1)-S(1) 2.2232(9), P(1)-Fe(1)-P(2) 

86.04(3), N(1)-Fe(1)-S(1) 86.35(9). 

 

 The structure of the dimeric iron complex 7 showed two sulphur atoms belonging to 

two different 2-dimethyl-aminobenzenethiol ligands, bridging the metal centres (Fig. 2.7). 

 

 

 

 

 

 

Fig. 2.7: X-Ray structure of 7. The nitrogen atoms are painted in blue and the sulphur atoms in green.  

The crystal structures of 8 and 9 (products of the reaction illustrated in scheme 2.15) 

are reported in Fig. 2.8 and 2.9. Complex 8 exhibited an octahedral geometry with the two 2-

(Diphenyl-phosphino)benzenethiol ligands trans one to another and the CO ligands in the 

apical positions. The bite angle of both 2-(Diphenyl-phosphino)benzenethiol ligands resulted 

86.26(4)
o
, comparable with the dppe ligand in 6. 
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   The structure of 9 resulted more complex, as it showed a trimeric iron complex with 

six sulphur atoms belonging to different 2-(Diphenyl-phosphino)benzenethiol ligands, 

bridging the metal centres.   

 

 

 

 

 

 

 

Fig. 2.8: X-Ray structure of 8. The sulphur atoms are coloured in green, the phosphorous atoms are 

reported in yellow and the oxygen ones in red. 

 

Fig. 2.9: X-Ray structure of 9. The sulphur atoms are coloured in green and the phosphorous atoms are 

reported in yellow. 

Complex 10 is a tetrahedral iron complex (Fig 2.10). The distance calculated between 

the iron center and the pendant base was 3.743 Å. The bite angle measured for the bis-

phosphane ligand was 92.67(7)
o
.  
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Fig. 2.10: X-Ray structure of 10. The chloride atoms are reported in green, the nitrogen atom in blue 

and the phosphorous atoms are reported in yellow. Selected bond lengths [Å] and angles [°]: Fe(1)-Cl(1) 

2.245(2), Fe(1)-Cl(2) 2.218(2), Fe(1)-P(1) 2.4498(15), Fe(1)-P(2) 2.4498(15), P(2)-Fe(1)-P(1) 92.67(7). 

Complex 11 adopted a typical three-legged piano stool geometry, where the Fe-C(6) 

bond length resulted shorter than the Fe-P bond (Fig. 2.11). The bite angle of the PNP ligand 

resulted 90.70(6)
o
 comparable with the other complexes reported above, and the calculated 

distance Fe-N was 3.775 Å. The six-member ring formed by the bis-phosphane ligand binding 

the metal center adopted a chair conformation with an angle Fe-P(1)-C(2) of  114.8(2)
o
,  Fe-

P(2)-C(3) of 110.2(2)
o 
, P(1)-C(2)-N of 114.1(4)

o 
and P(2)-C(3)-N of 110.0(4)

o
.  

 

 

 

 

 

Fig. 2.11: X-Ray structure of 11. The nitrogen atom is reported in blue, the phosphorous atoms are 

reported in yellow and the oxygen in red. The counter ion is omitted for clarity. Selected bond lengths [Å] and 

angles [°]: Fe(1)-C(1) 1.755(7), Fe(1)-P(1) 2.2266(17), Fe(1)-P(2) 2.252(17). 

 Similarly, complex 12 exhibited a three-legged piano stool geometry, where the Fe-

N(1) bond length resulted shorter than the Fe-P bond (Fig. 2.12). The bite angle of the PNP 

ligand was 90.30
o
 and the calculated distance Fe-N(2) resulted 3.759 Å. The six-member ring 

formed by the bis-phosphane ligand binding the metal center adopted a chair conformation 

with an angle Fe-P(1)-C(1) of 112.81(10)
o
, Fe-P(2)-C(2) of 111.65(10)

o
, P(1)-C(1)-N(2) of 

112.16(19)
o
 and P(2)-C(2)-N(2) of 112.27(19)

o
.   
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Fig. 2.12: X-Ray structure of 12. The nitrogen atoms are reported in blue and the phosphorous atoms in 

yellow. The counter ion is omitted for clarity. Selected bond lengths [Å] and angles [°]: Fe(1)-N(1) 1.901(3), 

Fe(1)-P(1) 2.2314(8), Fe(1)-P(2) 2.2138(8). 

 

2.3 Hydrogenation activation and Hydrogenation reaction using Fe 

complexes as catalyst   

Complexes 1, 2 and 4 bearing the Ph2PNPPh2 ligand; 5, 11 and 12 bearing Cy2PNPCy2 

and complexes 6 and 10 were tested as potential catalyst for both H2 activation and 

hydrogenation reaction of different unsaturated substrates.  

2.3.1 Hydrogen activation  

In a typical experiment for hydrogen activation, the iron complex was dissolved in a 

deuterated solvent and loaded into a high pressure sapphire NMR tube. Upon pressurization 

with H2 (typical pressure 80 bar) 
1
H-NMR experiments were performed in order to detect 

either the formation of an hydride ligand as subsequence of heterolytic cleavage of H2 upon 

interaction with the complex, or a η
2
-H2 ligand appearing at negative chemical shifts. The 

results are summarized in table 2.1. 

 Table 2.1: Hydrogen activation experiments  

Entry Complex Solvent Observations 

 

1 
 

1 

MeOD-d4 

THF-d8 

CD2Cl2 

 

No reaction 

 

2 
 

2 

MeOD-d4 

THF-d8 

CD2Cl2 

 

No reaction 

 

3 
 

4 

MeOD-d4 

THF-d8 

 

No reaction 
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CD2Cl2 

 

4 
 

5 

MeOD-d4 

THF-d8 

CD2Cl2 

 

No reaction 

 

5 
 

6 

MeOD-d4 

THF-d8 

CD2Cl2 

 

No reaction 

 

6 
 

10 

MeOD-d4 

THF-d8 

CD2Cl2 

 

No reaction 

 

7 
 

11 

MeOD-d4 

THF-d8 

CD2Cl2 

 

No reaction 

 

8 
 

12 

MeOD-d4 

THF-d8 

CD2Cl2 

 

No reaction 

Reaction conditions: complex (10 mg), H2 (80 bar), deuterated solvent (0.6 ml). 
1
H-NMR spectra were 

recorder every 2h for the first 8h and after 24h.   

Unfortunately, as depicted in the table above, no reaction occurred when the 

complexes were reacted in presence of H2.   

2.3.2 Hydrogenation reaction 

Screenings of the complexes as potential catalysts for hydrogenation reaction were 

performed. As standard condition, substrates such as benzaldehyde and acetophenone were 

tested in either MeOH, EtOH, 
i
PrOH, CH2Cl2 or THF as solvent. As bases NaO

t
Bu, NaO

i
Pr, 

KO
t
Bu, HCOONa and NaOMe were employed in slightly excess regarding the catalyst 

loading (10 or 20 mol%) and the reaction vessels were pressurized at 4 bar of H2 (Scheme 

2.19). 

 

   

 

Scheme 2.19: Reaction conditions used for the hydrogenation reaction. Substrate (0.3 mmol), base 

(10/20 mol %), catalyst (0.015 mmol, 5 mol %), H2 (4 bar), solvent (3 ml). 

The reactions were performed also in absence of base and with a higher pressure of H2 

(8 bar), but no products were detected by GC-MS analysis. As for the hydrogen activation 

reaction, no substrate was hydrogenated to the corresponding alcohol by using the iron 

complexes reported as catalysts. 
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2.4 Conclusions 

Concluding, new iron (II) low and high spin complexes bearing a pendant nitrogen 

base in the bis-phosphane ligand as a potential protonation site were synthesized (complex 1, 

2, 4, 5, 11 and 12). These complexes were tested as potential catalysts for hydrogenation 

reaction in presence of benzaldehyde and acetophenone as substrate and for hydrogen 

activation. Unfortunately, none of them served as catalyst for the reduction of these substrates 

and no reactivity was observed when treated with high pressure of H2.   

 

2.5 Experimental 

Materials and methods: 

 All experiments were carried out under an inert N2 (g) atmosphere using standard 

Schlenk or glovebox techniques. Solvents were purified using a two-column solid-state 

purification system (Innovative Technology, NJ, USA) and transferred to the glove box 

without exposure to air. Methanol (99.8%, extra dry, over molecular sieve) was purchased 

from AcroSeal®. Deuterated solvents were purchased from Cambridge Isotope Laboratories, 

Inc., and were degassed and stored over activated 3 Å molecular sieves. All other reagents 

were purchased from commercial sources and were degassed by standard freeze-pump-thaw 

procedures prior to use. 
1
H and 

31
P spectra were recorded at ambient temperature on a Bruker 

Avance 400 spectrometer. 
1
H NMR chemical shifts were referenced to residual solvent as 

determined relative to TMS (δ 0.00ppm). GC-MS measurements were conducted on a Perkin-

Elmer Clarus 600 GC equipped with Clarus 600T MS and Agilent J&W GC column, DB-

5MS UI 25m, 0.250mm, 0.25 µm. IR measurements were recorded on powder samples at 

ambient temperature on a Varian 800 FT-IT Scimitar Series spectrometer. Elemental analyses 

were performed on a Carlo Erba EA 1110 CHN Instrument. HRESI-MS measurements were 

conducted at EPFL ISIC Mass Spectrometry Service with a Micro Mass QTOF Ultima 

Spectrometer.   

Ph2PNPPh2 synthesis  

For the synthesis of Ph2PNPPh2, the procedure reported in the literature was 

followed
37,38

.  
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Et2PNPEt2 and Cy2PNPCy2 synthesis  

For Et2PNPEt2 and Cy2PNPCy2 a slightly modified procedure
39

 was followed. 

The phosphinoalcohol HOCH2PEt2 was obtained by dropwise addition of 1 g of Et2PH 

(0.011 mol) in 0.34 g of p-formaldehyde suspended in 30 ml of EtOH dry. The solution was 

stirred overnight upon complete dissolution of the p-formaldehyde. The day after 2.8 ml 

(0.0056 mol) of a 2M solution of NH2CH3 in MeOH were added to the reaction mixture, 

followed by addition of 1 ml of Et3N (0.0072 mol) freshly distilled. The clear solution was 

stirred at room temperature overnight. The next day all the volatiles and the solvent were 

evaporated affording a clear oil in a 72% yield.  

1
H NMR (400MHz, CD3CN, 20°C): δ 2.66 (s, 4H, PCH2N), δ 2.40 (s, 3H, NCH3), δ 

1.40 ppm (quadruplet, 8H, 
3
JHH = 8.0 Hz, PCH2CH3), δ 1.06 (quintuplet, 12H, 

3
JHH = 4.2Hz) 

ppm. 
31

P-NMR (162MHz, CD3CN, 20°C):  δ -32.49 (s) ppm 

The same procedure was followed for the synthesis of Cy2PNPCy2. The final product resulted 

in a white powder obtained in 83 % yield. 

 
1
H NMR (400MHz, CDCl3, 20°C): δ 2.65 (s, 4H, PCH2N), δ 2.38 (s, 3H, NCH3), δ 

1.77 ppm (m, 24H, cyclohexyl), δ 1.22 (m, 30H, cyclohexyl) ppm. 
31

P-NMR (162MHz, 

CD3CN, 20°C):  δ -16.74 (s) ppm 

Synthesis of sodium 2-aminobenzenethiolate  

2 g of 2-aminothiophenol (0.01195 mol) and 0.275 g of sodium (0.01195 mol) were 

mixed in 50 mL of dry THF in a round-bottom flask in the glovebox and the reaction mixture 

was stirred for 3 days (until complete dissolution of Na). A fine white powder precipitated 

during the reaction and it was filtered off, washed with excess of n-pentane and dried under 

vacuum (yield 92 %). 

Anal. calcd. for C6H6NNaS: C 48.97%, H 4.11%, N 9.52%. Found: C 48.65%, H 4.02 

%, N 9.47%.  

Synthesis of sodium 2-dimethyl-aminobenzenethiolate  

2 g of bis-(2-aminophenyl)-disulphide (0.0081 mol) were suspended in 50 ml of 

degassed water and 1.83 ml of (CH3)2SO4 (0.0193 mol) were added. The solution turned 



Chapter two 

 

 

71 

 

yellow and it was stirred for 2 h. The reaction mixture was then neutralized with 20% m/V 

KOH solution. A second aliquot of (CH3)2SO4 (1.8 ml) was added, and the mixture stirred 

overnight. The next day upon basification of the solution with 20% m/V KOH solution, the 

product was extracted with CH2Cl2 affording a yellow oil as crude of the reaction in 87 % 

yield. In the second step of the synthesis, the crude oil was dissolved in 50 ml of THF and 

0.32 g of sodium (0.014 mol) were added. A fine yellow powder precipitated during the 

reaction and it was filtered off, washed with excess of n-pentane and dried under vacuum 

(yield 75 %).  

Anal. calcd. for C8H10NNaS: C 54.84%, H 5.75%, N 7.99%. Found: C 54.55%, H 5.68 

%, N 7.85%. ESI-MS (m/z, pos) 154.00 (100%, C8H11NS).  

Synthesis of complex 1 

 0.26 g of FeCl2 (0.002 mol) and 1.087 g of Ph2PNPPh2 (0.002 mol) were mixed 

in 60 ml of MeOH dry in an ACE round-bottom pressure flask in the glovebox and the 

reaction mixture was pressurized with 1.5 bar of CO and stirred for 30 min. The color turned 

immediately orange. Successively, a solution of 0.433g of Cl2bdt (0.002 mol) and 0.55 ml of 

Et3N (0.004 mol) in 20 ml of dry MeOH previously prepared, was added dropwise to the 

reaction mixture and the flask pressurized back at 1.5 bar and stirred for additional 2h. The 

final dark solution was filtered through a PTFE filter and concentrated. n-Pentane was then 

added to promote the precipitation of the product as dark powder that was filtered and washed 

with additional n-pentane (yield: 42 %). The crude product obtained was purified by column 

chromatography on silica with CH2Cl2/hexane (7:3) as eluent. A dark grey powder was 

obtained in low yield (30 %).  

1
H NMR (400MHz, C6D6, 20°C): δ 8.06-6.80 (m, 22H, aryl-H), δ 4.60 (t, 1H, 

3
JHH = 

4.1Hz, CHO2), δ 4.11 (quint, 2H, CHCH3), δ 3.56 (m, 2H, PCHN), δ 3.50 (m, 2H, PCHN) 

PCHN), δ 3.38 (m, 2H, CHCH3), δ 2.70 (d, 2H, NCH, 
3
JHH = 3.8 Hz), δ 1.23 (t, 6H, CH3 

3
JHH 

= 3.8 Hz). 
31

P-NMR (162MHz, C6D6, 20°C):  δ 50.20 (s) ppm. FT-IR: ν[cm
-1

] 1907 (s, νCO). 
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 Fig. 2.13: 
1
H NMR of 1 (400 MHz, C6D6, 20°C) 

Synthesis of complex 2 

For the synthesis of 2 the procedure reported in the literature was followed
22

. 

Synthesis of complex 4 

0.3 g of FeCl2 (0.0024 mol) and 1.25 g of Ph2PNPPh2 (0.0024 mol) were mixed in 60 

ml of MeOH dry in an ACE round-bottom pressure flask in the glovebox and the reaction 

mixture was pressurized with 0.3 bar of CO and stirred for 30 min. The color turned 

immediately orange. Successively, 0.348 g of sodium 2-aminobenzenethiolate (0.0024 mol) 

and 0.227 g of NaO
t
Bu (0.0024 mol) in 20 ml of dry MeOH were added dropwise to the 

reaction mixture. The solution turned dark green and the flask was pressurized again at 0.3 bar 

and stirred for additional 2h. At the end, the dark solution was filtered through a PTFE filter 

and concentrated. n-pentane was then added and the product precipitated as dark green 

powder that was filtered off, washed with additional n-pentane and dried under vacuum 

(yield: 78%).  

1
H NMR (400MHz, CD2Cl2, 20°C): δ 8.33 (s, 1H, NH), δ 7.63-6.88 (m, 24H, aryl-H), 

δ 4.60 (t, 1H, 
3
JHH = 4.1Hz, CHO2), δ 4.12 (quint, 2H, PCHN), δ 3.60 (m, 2H, CHCH3), δ 
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3.41 (m, 2H, CHCH3), δ 3.19 (m, 5H, PCHN), δ 2.85 (d, 2H, NCHCH, 
3
JHH = 3.8 Hz), δ 1.13 

(t, 6H, CH3 
3
JHH = 3.8 Hz). 

31
P-NMR (162MHz, C6D6, 20°C): δ 56.74 (s) ppm. FT-IR: ν [cm

-

1
] 1950 (s, νCO). ESI-MS (m/z, pos) 737.23 (100%, C39H43FeN2O3P2S).  

Synthesis of complex 5 

 The complex was synthesized following the same procedure used for 4 but with 

Cy2PNPCy2 as bis-phosphane ligand. The dark product precipitated upon concentration of the 

reaction mixture, by addition of excess of n-pentane (yield: 75 %). 

1
H NMR (400MHz, CD3Cl, 20°C): δ 8.76 (s, 1H, NH), δ 7.86-6.95 (m, 4H, aryl-H), δ 

3.13 (m, 2H, PCHN), δ 2.39 (m, 5H, PCHN and NCH3), δ 2.05-1.11 (m, 44H, cyclohexyl). 

31
P-NMR (162MHz, CD3Cl, 20°C): δ 60.35(s) ppm. FT-IR: ν [cm

-1
] 1890 (s, νCO). ESI-MS 

(m/z, pos) 737.23 (100%, C39H43FeN2O3P2S).  

Synthesis of complex 6 

0.646g of Fe(CO)2dppeCl2 (0.0011 mol), previously synthesized
44

 were mixed with 

0.1635g of sodium 2-aminobenzenethiolate (0.0011 mol) and 0.1068g of NaO
t
Bu (0.0011 

mol) in 50 ml of THF dry. The reaction mixture was stirred overnight, during this time the 

color turned from orange to dark green. The final dark solution was filtered through a PTFE 

filter and concentrated. n-Pentane was then added to promote the precipitation of the product 

as dark green powder that was filtered, washed with additional n-pentane and dried under 

vacuum (yield: 75%). Suitable crystals for X-Ray analysis formed by diffusion of n-pentane 

in a saturated solution of 6 in THF.  

1
H NMR (400MHz, CD2Cl2, 20°C): δ 8.73 (s, 1H, NH), δ 7.75-6.93 (m, 24H, aryl-H), 

δ 2.67 (m, 2H, PCH), δ 2.46 (m, 2H, PCH). 
31

P-NMR (162MHz, CD2Cl2, 20°C): δ 94.84 (s) 

ppm. FT-IR: ν [cm
-1

] 1902 (s, νCO). ESI-MS (m/z, pos) 737.23 (100%, C39H43FeN2O3P2S).  

Synthesis of complex 8 

0.7g of 2-(Diphenyl-phosphino)benzenethiol (0.0024 mol) and 0.227g of NaO
t
Bu 

(0.0024 mol) were dissolved in 20 ml of dry MeOH. This solution was added dropwise to 

0.15g of FeCl2 (0.0012 mol) suspended in 30 ml of dry MeOH in an ACE round-bottom 

pressure flask. The color of the reaction mixture turned immediately brown and a fine powder 

precipitated. The flask was pressurized with 0.4 bar of CO and the solution stirred for 2h. The 
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powder formed during the reaction, was filtered off, washed with excess of n-pentane and 

dried under vacuum. The product resulted in an orange powder obtained in a 65% yield. 

Crystals formed by diffusion of n-pentane in a saturated solution of 8 in THF, or using the 

combination CH2Cl2 to dissolve the product and diethyl ether.    

1
H NMR (400MHz, CDCl3, 20°C): δ 7.65 (m, 5H, P-aryl-H), δ 7.42 (m, 5H, P-aryl-H), 

δ 7.17-6.93 (m, 4H, aryl-H) ppm. FT-IR: ν [cm
-1

] 1900 (s, νCO).  

Synthesis of complex 10 

0.5 g of FeCl2
.
1.8 THF (0.0019 mol) and 0.873 g of Cy2PNPCy2 (0.0019 mol) were 

mixed in 40 ml of THF dry. In order to help the solubilisation ca. 10 ml of MeOH dry were 

added.  The reaction mixture was stirred overnight. A white powder precipitated (1
st
 aliquot of 

product) and it was filtered off, washed with excess of n-pentane and dried under vacuum. 

The 2
nd

 aliquot precipitated from the reaction mixture after concentration of the solvent and 

addition of an excess of n-pentane. Overall yield 80% (combination of the two aliquots). 

Complex 10 is a paramagnetic species; therefore NMR analysis was not possible. The 

structure was confirmed by ESI-MS(m/z, pos): 578.23 (100%, C27H51FeCl2P2N). Suitable 

crystals for X-Ray analysis formed by diffusion of n-pentane in a saturated solution of 10 in 

THF.  

Synthesis of complex 11 

0.188 g of FeCp(CO)2Cl (0.00089mol) previously synthesized according to 

literature
47

, and 0.4 g of Cy2PNPCy2 (0.00089 mol) were mixed in 25 ml of dry THF. The 

reaction mixture turned immediately red and it was irradiated with an UV lamp for 2 h. The 

solution gradually changed from red to brown with concomitant formation of a yellow 

precipitate. The precipitate was filter off, washed with an excess of n-pentane and dried under 

vacuum (Yield 63%). Suitable crystals for X-Ray analysis formed by diffusion of diethyl 

ether in a saturated solution of 11 in either CH3CN or CH2Cl2.  

1
H NMR (400MHz, CD2Cl2, 20°C): δ 4.98 (s, 5H, Cp-H), δ 3.20 (m, 2H, PCH), δ 2.39 

(s, 3H, NCH), δ 2.28 (m, 2H, PCH), δ 2.08-1.76 (m, 22H, cyclohexyl), δ 1.53-1.21 (m, 22H, 

cyclohexyl) ppm. 
31

P-NMR (162MHz, CD2Cl2, 20°C): δ 54.09 (s) ppm. FT-IR: ν [cm
-1

] 1910 

(s, νCO). ESI-MS (m/z, pos) 600.32 (100%, C33H56FeNOP2).  
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Synthesis of complex 12 

0.15 g of 11 (0.0024 mol) and 0.21 g of NaBAr
F

4 were dissolved in 20 ml of PhF. The 

reaction mixture was stirred for 1h. The yellow solution gradually turned darker and a fine 

white powder precipitated. The reaction mixture was filtered through a PTFE filter and the 

solvent evaporated until dryness yielding a yellow product. The product was dissolved in 

20ml of CH3CN and irradiated with an UV lamp for 8h. The solution gradually changed from 

yellow to red. The solvent was evaporated affording an orange product that was washed with 

n-pentane and died under vacuum (Yield 68%).  Suitable crystals for X-Ray analysis formed 

by diffusion of pentane in a saturated solution of 12 in THF. FT-IR analysis did not show the 

typical CO signal, confirming the ligand exchange. 

1
H NMR (400MHz, CD2Cl2, 20°C): δ 7.72-7.56 (m, 12H, BAr

F
4),  δ 4.41 (s, 5H, Cp-

H), δ 2.96 (m, 2H, PCH), δ 2.30 (s, 3H, CH3CN) δ 2.19 (s, 3H, NCH), δ 2.13 (m, 2H, PCH), δ 

1.99-1.81 (m, 22H, cyclohexyl), δ 1.51-1.27 (m, 22H, cyclohexyl) ppm. 
31

P-NMR (162MHz, 

CD2Cl2, 20°C): δ 51.08 (s) ppm.  

General procedure for catalytic hydrogenation  

A 35 mL ACE pressure tube was charged with catalyst (0.03 mmol), substrate (0.3 

mmol), base (10/20 mol %, 0.3-0.6 mmol), dodecane (30μL, 0.133 mmol), 3 mL of dry 

solvent and 8 bar of hydrogen. The solution was stirred at ambient temperature (20-22 °C) for 

24h. The reaction was quenched by exposure to air and by addition of diethyl ether. The 

alcohol products were identified and quantified by GC-MS with dodecane as an internal 

standard. External calibration curves were made using the commercial available products 

(purity >98%) or the isolated ones with dodecane as an internal standard. 

X-ray Crystallography  

The diffraction data were measured using Mo Kα radiation on a Bruker APEX II CCD 

diffractometer equipped with a kappa geometry goniometer. The datasets were reduced by 

EvalCCD
48

 and then corrected for absorption
49

. The data were measured using Cu Kα 

radiation on an Agilent Technologies SuperNova dual system in combination with an Atlas 

CCD detector. The data reduction was carried out by Crysalis PRO
50

. The solutions and 

refinements were performed by SHELX
51

 .The crystal structures were refined using full-
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matrix least-squares based on F
2
 with all non hydrogen atoms anisotropically defined. 

Hydrogen atoms were placed in calculated positions by means of the “riding” model.  

 X-ray Structural Analysis of 4:  

Crystal Data:  C39H42FeN2O3P2S, 0.33 x 0.19 x 0.17 mm3, Triclinic, P-1, a = 9.8062(5) Å, 

b= 11.0654(19) Å, c = 18.183(2) Å, α= 90.908(11)°, β= 97.312(8)°, γ= 112.193(7)°. T= 

100(2) K, V= 1807.6(4) Å3, Z= 2, ρc= 1.353 Mg/m3, μ= 0.603 mm-
1
. 

Data Collection and Processing: 20494 reflections collected, -13 ≤ h ≤ 13, -15 ≤ k ≤ 15, -25 

≤ l ≤ 25, 30234 [R(int) = 0. 0287]. 

Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 10300 

data with 0 restraints and 435 parameters. Goodness-of-fit on F
2
=1.069, largest diff. peak= 

0.904 e.Å
-3

and hole= -0.857 e.Å
-3

.Final R indices [I>2σ(I)]: R1 = 0.0408, wR2 = 0.0910. R 

indices (all data): R1=0.0566, wR2 = 0.1015. 

 

             Table 2.2. Selected bond lengths and angles for 4. 

                                          Bond length [Å]                                         Bond angles [°] 

Fe(1)-C(1)  1.7371(19) 

Fe(1)-N(1)  1.8678(15) 

Fe(1)-P(2)  2.1955(5) 

Fe(1)-S(1)  2.2476(6) 

Fe(1)-P(1)                             2.2098(6) 

N(1)-Fe(1)-P(2) 132.45(5) 

P(1)-C(2)-N(2) 116.39(6) 

Fe-P(1)-C(2) 114.38(12)  

N(1)-Fe(1)-S(1) 85.04(5) 

P(2)-Fe(1)-P(1) 93.13(2) 

 

 X-ray Structural Analysis of 5:  

Crystal Data:  C34H56FeN2OP2S, 0.44 x 0.34 x 0.14 mm3, Triclinic, P-1, a = 9.9760(10) Å, 

b=10.8164(8) Å, c = 16.3672(14) Å, α= 89.602(8)°, β= 84.432(7)°, γ= 77.570(7)°. T= 100(2) 

K, V= 1716.4(3) Å
3
, Z= 2, ρc= 1.274 Mg/m3, μ= 0.622 mm-

1
. 

Data Collection and Processing: 38792 reflections collected, -15 ≤ h ≤ 14, -16 ≤ k ≤ 16, -22 

≤ l ≤ 25, 12989 [R(int) = 0.0267]. 

Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 12989 

data with 0 restraints and 375 parameters. Goodness-of-fit on F
2
=1.117, largest diff. peak= 

0.526 e.Å
-3

and hole= -0.424 e.Å-3. Final R indices [I>2σ(I)]: R1 = 0.0327, wR2 = 0.0709. R 

indices (all data): R1 = 0.0499, wR2 = 0.0805. 
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             Table 2.3. Selected bond lengths and angles for 5. 

                                          Bond length [Å]                                         Bond angles [°] 

Fe(1)-C(1)  1.7563(12) 

Fe(1)-N(1)  1.8837(10) 

Fe(1)-P(2)  2.2274(4) 

Fe(1)-S(1)  2.2382(4) 

Fe(1)-P(1)                             2.1752(4) 

P(2)-C(3)-N(2) 111.91(7) 

P(1)-C(2)-N(2) 116.08(8) 

Fe-P(1)-C(2) 116.47(4) 

N(1)-Fe(1)-S(1) 84.96(3) 

P(2)-Fe(1)-P(1) 96.057(13)
 
 

 

 X-ray Structural Analysis of 6:  

Crystal Data:  C33H29FeNOP2S, 0.45 x 0.31 x 0.28 mm3, Monoclinic, P21/c, a = 11.2243(4) 

Å, 13.4464(4) Å, c = 19.5307(7) Å, α= 90°, β= 94.783(3)°, γ= 90°. T= 293(2) K, V= 

2937.44(17) Å3, Z= 4, ρc= 1.369 Mg/m3, μ= 6.018 mm-
1
. 

Data Collection and Processing: 20494 reflections collected, -13 ≤ h ≤ 13, -16 ≤ k ≤ 11, -23 

≤ l ≤ 23, 5825 [R(int) = 0.0564]. 

Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 5825 

data with 0 restraints and 352 parameters. Goodness-of-fit on F
2
=1.034, largest diff. peak= 

0.693 e.Å
-3

and hole= -0.475 e.Å
-3

.Final R indices [I>2σ(I)]: R1 = 0. 0583, wR2 = 0.1584. R 

indices (all data): R1 = 0. 0646, wR2 = 0. 1693.  

 

             Table 2.4. Selected bond lengths and angles for 6. 

                                          Bond length [Å]                                         Bond angles [°] 

Fe(1)-C(1)  1.719(3) 

Fe(1)-N(1)  1.893(3) 

Fe(1)-P(2)  2.1868(9) 

Fe(1)-S(1)  2.2232(9) 

Fe(1)-P(1)  2.2268(8) 

C(1)-Fe(1)-S(1) 93.33(11) 

N(1)-Fe(1)-S(1) 86.35(9) 

P(2)-Fe(1)-S(1) 89.23(3) 

N(1)-Fe(1)-P(1) 94.22(8) 

P(2)-Fe(1)-P(1) 86.04(3) 

 

  

 X-ray Structural Analysis of 10:  

Crystal Data:  C27H51Cl2FeNP2, 0.30 x 0.26 x 0.18 mm3, Orthorhombic, Pmn21, a = 

21.2113(8) Å , b=8.0064(3) Å, c = 8.7683(4) Å, α= 90°, β= 90°, γ= 90°. T= 100(2) K, V= 

1489.09(10) Å3, Z= 2, ρc= 1.290 Mg/m3, μ= 6.833 mm-1. 

Data Collection and Processing: 9720 reflections collected, -22 ≤ h ≤ 26, -7 ≤ k ≤ 9, -10 ≤ l ≤ 9, 
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5825 2952 [R(int) = 0.0540]. 

Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 2952 

data with 7 restraints and 158 parameters. Goodness-of-fit on F
2
=1.179, largest diff. peak= 

1.681 e.Å
-3

and hole= -0.805 e.Å
-3

. Final R indices [I>2σ(I)]: R1 = 0.0602, wR2 = 0.1590. R 

indices (all data): R1 = 0.0609, wR2 = 0.1593. 

 

             Table 2.5. Selected bond lengths and angles for 10. 

                                          Bond length [Å]                                         Bond angles [°] 

Fe(1)-Cl(1)  2.245(2) 

Fe(1)-Cl(2)  2.218(2) 

Fe(1)-P(2)  2.4498(15) 

Fe(1)-P(1)  2.4498(15) 

C(13)-P(1)-Fe(1) 116.39(17) 

P(2)-Fe(1)-P(1) 92.67(7) 

Cl(2)-Fe(1)-Cl(1) 113.56(10) 

N(1)-C(13)-P(1) 111.2(4) 

 

 

 X-ray Structural Analysis of 11:  

Crystal Data:  C66H112Cl4Fe3N2O2P4, 0.371 x 0.281 x 0.212 mm
3
, Monoclinic, P21/n, a = 

13.5395(4) Å, b=15.8700(4) Å , c = 18.5093(5) Å, α= 90°, β= 108.032(3)°, γ= 90°. T= 140(2) 

K, V= 3781.77(19) Å
3
, Z= 2, ρc= 1.228 Mg/m

3
, μ= 6.951 mm

-1
. 

Data Collection and Processing: 27635 reflections collected, -16 ≤ h ≤ 16, -18 ≤ k ≤ 19, -20 

≤ l ≤ 22, 7461 [R(int) = 0.0386]. 

Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 7461 

data with 0 restraints and 390 parameters. Goodness-of-fit on F
2
=1.170, largest diff. peak= 

1.524 e.Å
-3

and hole= -0.628 e.Å
-3

. Final R indices [I>2σ(I)]: R1 = 0.0913, wR2 = 0.2023 R 

indices (all data): R1 = 0. 0933, wR2 = 0. 2312.  

 

             Table 2.6. Selected bond lengths and angles for 11. 

                                          Bond length [Å]                                         Bond angles [°] 

Fe(1)-C(1)  1.755(7) 

P(1)-C(2)  2. 837(6) 

Fe(1)-P(2)  2.2252(17) 

P(2)-C(3)  2.2232(9) 

Fe(1)-P(1)  2.2266(17) 

Fe-P(1)-C(2)   114.8(2) 

Fe-P(2)-C(3) 110.2(2) 

P(1)-C(2)-N 114.1(4) 

P(2)-C(3)-N 110.0(4) 

P(2)-Fe(1)-P(1) 90.70(6) 
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 X-ray Structural Analysis of 12:  

Crystal Data:  C70H79BF24FeN2OP2, 0.40 x 0.35 x 0.28 mm
3
, Monoclinic, I 2/a, a = 

28.5446(11) Å, b=12.9931(4) Å, c=39.5486(12)Å, α= 90°, β= 99.980(3)°, γ= 90°. T= 140(2) 

K, V= 14445.9 Å
3
, Z= 8, ρc= 1.424 Mg/m

3
, μ= 3.032 mm

-1
. 

Data Collection and Processing: 50530 reflections collected, -35 ≤ h ≤ 29, -16 ≤ k ≤ 12, -45 

≤ l ≤ 48, 14274 [R(int) = 0.0356]. 

Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 14274 

data with 0 restraints and 913 parameters. Goodness-of-fit on F
2
=1. 080, largest diff. peak= 

1.614 e.Å
-3

and hole= -1.109 e.Å
-3

. Final R indices [I>2σ(I)]: R1 = 0.0683, wR2 = 0. 1863 R 

indices (all data): R1 = 0. 0713, wR2 = 0. 1896.  

 

             Table 2.7. Selected bond lengths and angles for 12. 

                                          Bond length [Å]                                         Bond angles [°] 

Fe(1)-N(1)  1. 901(3) 

P(1)-C(2)  1.847(3) 

Fe(1)-P(2)  2. 2138(8) 

P(2)-C(3)  1.850(3) 

Fe(1)-P(1)  2. 2314(8) 

Fe-P(1)-C(1) 112.81(10) 

P(1)-C(1)-N(2) 112.16(19) 

P(2)-Fe(1)-P(1)                 90.30(3) 

Fe-P(2)-C(2)                     111.65(10) 

P(2)-C(2)-N(2)                 112.27(19) 
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3 Chapter 3 

 

Iron Complexes bearing a PONOP  

Pincer Ligand for Hydrogen Activation  

and Catalytic Hydrogenation 

 

 

 

 

The results presented in this chapter were published in: 

S.Mazza, R.Scopelliti, X. Hu "Chemoselective hydrogenation and transfer hydrogenation of 

aldehydes catalysed by iron(II) PONOP complexes", Organometallics, 2015, 34, 1538-1545. 
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3.1 Tridentate Pincer Ligands 

The concept of "Pincer Chemistry" was born in 1976 with the synthesis of the first 

pincer type ligand by Moulton and Shaw
1
. At that time the ligand 1,3-bis[(di-tert-

butylphosphino) methyl] benzene was considered as a new chelating diphosphine, and only in 

the late 80's the concept of pincer ligand was reconsidered a cause of the extraordinary 

stability of the corresponding metal complexes.  

 

 

 

Fig. 3.1: Pincer-ligand type moiety and possible modifications 

Although the pincer-transition metal chemistry concentrated firstly on PCP
1
 and SCS

2
 

ligands (where P- and S- are "soft" donor sites), variations have been developed by 

introducing "hard"  tertiary amine donor groups
3,4

 (NCN pincer type ligand).  

Regarding the central coordinating group position X (Fig. 3.1) many complexes 

feature a metal-carbon bond responsible of their stability, but nitrogenous donors, such as 

pyridines
5-7

 or amines
8,9

, can also be introduced. Therefore, the pincer type ligand can act as 

2e (via X), 4e (via X and D) or 6e (X, D, D') donor ligand (Fig. 3.1).  

Pincer complexes are generally viewed as stable compounds in which the pincer 

ligand framework remains unchanged during catalytic reactions. However, several cases of 

bifunctional catalysis involving the pincer ligand have been investigated during the last 

decades
10-14

. In particular, it has been found that PNP type ligands while binding metal 

centers, easily undergo deprotonation on the -CH2- spacer with concomitant dearomatization 

of the pyridine
15-18

 resulting in cooperative catalysts. As reported by Milstein et al.
16

 the PNP 

iron based system [(
iPr

PNP)Fe(H)(CO)Br] is an efficient catalyst for hydrogenation of ketones 

under mild conditions (Scheme 3.1).    
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Scheme 3.1: Hydrogenation of ketones catalysed by [(
iPr

PNP)FeH(CO)Br]. 

Based on NMR studies, the reaction might involve the formation of a reactive 

dearomatized species A as intermediate making the insertion of the ketone into the Fe-H bond 

possible. The proposed catalytic cycle is depicted in scheme 3.2. 

Scheme 3.2: Proposed catalytic cycle for the hydrogenation of ketones utilizing the dearomatization-

reprotonation chemistry displayed by complex [(
iPr

PNP)FeH(CO)Br]. 

A similar inner-sphere mechanism involving the reversible aromatization/ 

dearomatization of the pyridine moiety has been described by Kirchner et al. for the pincer-

type iron(II) complex [(
iPr

PN
NH

P)Fe(H)(CO)Br] based on the 2,6-diaminopyridine scaffold 

bearing -NH as spacer
19

.  

Therefore, the non-innocent behaviour of the PNP scaffold is a key feature for the 

reactivity of the corresponding metal complexes. Similar chemistry is not available for PCP 

ligands due to the higher resonance energy of the benzene
20

.  
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Thus, intrigued by the increasing attention on pincer type ligands as powerful tool to 

achieve stable and reactive transition metal complexes, we considered the possibility of 

synthesize new iron complexes bearing the phosphinite 
iPr

PONOP type ligand (
iPr

PONOP 

=2,6-bis(di-iso-propylphosphinito)pyridine). The PONOP ligand has the feature of an -O- 

bridging unit in both side arms which precludes the ligand deprotonation in the presence of a 

strong base followed by dearomatization of the pyridine as observed in Milstein's systems.   

The first tridentate PONOP type ligand (
tBu

PONOP=2,6-bis(di-tert-butylphosphinito) 

pyridine) was synthesized by Brookhart et al.
21

 in 2009, and used to stabilize reactive iridium 

(I) and Ir (III) complexes active for C-H bond cleavage. In the same year, Milstein et al.
22

 

described the first 18-electron Ru (0) complex based on the phosphinite PONOP type ligand, 

reactive towards water and different electrophiles. In 2011 new nickel, platinum and 

palladium PONOP pincer complexes, in which the pyridine was reduced in presence of 1 

equiv. of superhydride, were reported by Jones et al.
23,24

 Moreover, due to the stability of the 

PONOP ligand, iridium-hydride
25

, iridium-methylene
26-28

 and dihydrogen rhodium
29

 

complexes have been recently synthesized and fully characterized. To the best of our 

knowledge, to date only few iron complexes bearing the PONOP type ligand have been 

described
29

, but none of them showed a catalytic activity. 

In the light of the previous developments, we become interested in exploring the 

coordination chemistry and reactivity of iron (II) complexes stabilized by the phosphinite 

iPr
PONOP type ligand.  

 

3.2 Synthesis and characterization of iron (II) complexes bearing the 
iPr

PONOP pincer ligand   

In this section, the synthesis and characterization of three well-defined low spin iron 

(II) complexes bearing the tridentate ligand 2,6-bis(di-iso-propylphosphinito) pyridine 

(
iPr

PONOP) are reported. The novelty is that these complexes showed high catalytic activity 

for both hydrogenation and hydrogen transfer reactions of unsaturated substrates such as 

aldehydes.  
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3.2.1 Ligand Synthesis  

The ligand 
iPr

PONOP has been synthesized as reported in literature
22 

(Scheme 3.3). 

High yield and a clean product can be obtained by working with air-free techniques.  

 

 

 

Scheme 3.3: Synthesis of the 
iPr

PONOP type ligand 

3.2.2 Metallation using iron salts  

The new Fe-PONOP complexes were prepared following standard procedures in Fe-

pincer chemistry
16

 (Scheme 3.4).  Reaction of 
iPr

PONOP with FeBr2 in THF under pressure of 

CO gave [(
iPr

PONOP)Fe(CO)Br2] (13) as blue powder in very high yield. Complex 13 is 

diamagnetic and exhibited a characteristic singlet at δ 215 ppm in the 
31

P{
1
H} NMR 

spectrum. The Fe-bound CO ligand gives a strong IR band at 1961 cm
-1

.  

Scheme 3.4: Synthesis of the iron pincer complex 13. 

When complex 13 was reacted with a slightly excess of NaEt3BH in THF, the bromide 

was replaced by the hydride ligand affording complex [(
iPr

PONOP)Fe(CO)(H)Br]  (14) as 

yellow powder (Scheme 3.5). The CO vibrational frequency lowered to 1928 cm
-1 

in the IR 

spectrum.  In the 
31

P{
1
H} NMR spectrum of 14 one singlet was observed at δ 239 ppm while 

in the 
1
H NMR spectrum the hydride ligand showed a characteristic triplet at δ -20.74 ppm 

(
2
JPH = 56.6 Hz). 

 

 

 

 

 

 

Scheme 3.5: Synthesis of the iron-hydride pincer complex 14. 
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By adding an excess of TMSOTf to a solution of complex 14 in acetonitrile, the 

bromide ligand was replaced by a neutral acetonitrile molecule affording the cationic complex  

[(
iPr

PONOP)Fe(CO)(H)(CH3CN)](OTf) (15) as yellow powder (Scheme 3.6).  The 
31

P{
1
H} 

NMR spectrum of the cationic Fe-hydride complex was nearly identical to that of 14, while 

the 
1
H NMR signal of the hydride ligand was shifted to δ -18.48 ppm (

2
JPH = 53.7 Hz). The 

CO IR frequency was observed at 1951 cm
-1

, consistent with a lower electronic density at the 

iron center.  

Scheme 3.6: Synthesis of the iron-hydride cationic pincer complex 15. 

3.2.3 Structure of Fe-PONOP complexes   

The solid state structures of complexes 13, 14 and 15 were determined by X-Ray 

crystallography. The crystal structure of 13 showed a distorted octahedral geometry at the Fe 

center with the two bromine ligands trans to one another, and the CO ligand trans to the 

nitrogen of the pyridine (Fig. 3.2). 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2: X-Ray structure of 13; the thermal ellipsoids are drawn at 30% probability. The hydrogen 

atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Fe-C(3) 1.820(12), Fe-N 1.996(8), Fe-

P(1) 2.251(3), Fe-P(2) 2.257(3), ), Fe-Br(2) 2.4730(16),  Fe-Br(1) 2.4724(16), N-Fe-P(1) 81.7(2),  N-Fe-P(2) 

80.7(2), N-Fe-C(3) 177.0(4), P(1)-Fe-P(2) 162.23(10). 

 

The solid-state structure of complex 14 (Fig. 3.3) reveals a distorted octahedral 

geometry. The Fe-H bond is 1.38(3) Å. The hydride is trans to the bromide ligand while the 

CO is trans to the nitrogen of the pyridine. 
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Fig. 3.3: X-Ray structure of 14; the thermal ellipsoids are drawn at 30% probability. The hydrogen 

atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Fe-N  1.9839(16), Fe-Br  2.5156(4), Fe-

P(2) 2.1574(6), Fe-P(1) 2.1702(5), Fe-H 1.38(3), Fe-C(3) 1.736(2), P(2)-Fe-P(1) 160.89(2). 

 

The crystal structure of 15 indicates again a distorted octahedral geometry (Fig. 3.4). 

The hydride ligand is trans to the acetonitrile molecule and the Fe-H distance is 1.43(4) Å. 

The other bond distances are comparable for complexes 14 and 15.  

 

 

 

 

 

 

Fig. 3.4: X-Ray structure of 15; the thermal ellipsoids are drawn at 30% probability. The hydrogen 

atoms and the counter ion are omitted for clarity. Selected bond lengths [Å] and angles [°]: Fe-C(3) 1.734(5), Fe-

N(2) 1.972(3), Fe-N(1) 1.995(3), Fe-P(1) 2.1771(10), Fe-P(2) 2.1815(12), Fe-H 1.43(4), N(2)-Fe-P(2) 95.62(9), 

N(1)-Fe-P(2) 81.94(9), P(1)-Fe-P(2) 161.23(5). 

 

3.3 Hydrogenation and HT reactions catalysed by Fe-PONOP 

hydride complexes   

Surprisingly, the Fe-PONOP hydride complexes  [(
iPr

PONOP)Fe(CO)(H)Br]  (14) and 

[(
iPr

PONOP)Fe(CO)(H)(CH3CN)](OTf) (15) were found of being excellent catalysts for 
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hydrogenation and HT reactions of a wide range of aldehydes under very mild conditions. In 

this section test reactions, catalytic protocols and the substrate scopes are reported. 

3.3.1 Insertion reaction  

Firstly, the insertion reactions of iron hydride complexes 14 and 15 with a large 

number of unsaturated substrates including ketones, aldehydes, nitrobenzene, alkynes, and 

alkenes were tested. It's quite common for transition metal hydride complexes to have the 

hydride ligand acting as either hydride or proton source
31

. This strongly depends on the acidic 

or basic properties of the complex and on the influence of solvent effects. Unfortunately, in 

our case, no hydride insertion reaction took place in solvents such as MeOH, THF, CH3CN 

indicating a low hydridicity of the Fe-H bonds in both 14 and 15.  

 However, stoichiometric hydrogenation of benzaldehyde was observed under pressure 

of H2. When a high pressure sapphire NMR tube charged with 14 and 1 equiv. of 

benzaldehyde in MeOD-d4 was pressurized with 80 bar of H2, in the 
1
H-NMR spectrum the 

characteristic signal of the aldehyde group at 9.97 ppm disappeared with concomitant 

decrease of the hydride signal at -20.74 ppm within 2 hours (Scheme 3.7, Fig. 3.5). 

Unfortunately, it was not possible to detect the -CH2- signal of the related benzyl alcohol 

since, in the region between 4.5 and 5.0 ppm, there were both the signal of H2 and H2O 

present in MeOD-d4 overlapping it.  

Scheme 3.7: Insertion reaction of benzaldehyde with 14 under H2 (80 bar) in MeOD-d4. 

To overcome this problem a similar experiment was run but in presence of D2 (30bar) 

and using MeOH as solvent. After 2 h under pressure of D2, the solution contained in the high 

pressure sapphire NMR tube was dried and the powder dissolved in CDCl3. At this point, by 

switching to a 
2
H-NMR, it was possible to detect at 4.65 ppm the characteristic signal of the -

CHD- group belonging to the benzyl alcohol formed in solution.  
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Fig. 3.5: 
1
H-NMR spectrum of 14 and 1 equiv. of benzaldehyde in MeOD-d4 before (in blue) and after 

(in red) addition of H2 (80 bar). 

No stoichiometric hydrogenation of benzaldehyde was observed under pressure of H2 

using 15 as catalyst. Moreover, with 14 as catalyst other unsaturated substrates such as 

ketones, alkynes, or alkenes were tested under the same conditions, but no insertion reaction 

took place. 

3.3.2 Hydrogenation reaction  

The results obtained from the insertion reaction of benzaldehyde in presence of H2 

suggested that complex 14 could serve as chemoselective hydrogenation catalyst of 

aldehydes.  

A screening of conditions indeed led to a catalytic protocol using 14 as catalyst (Table 

3.1). The best performance could be achieved in MeOH using 10 mol% of catalyst loading, at 

room temperature, under 8 bar of H2, and within 24 h. Significantly, no reaction occurred in 

presence of other protic solvents such as EtOH, 
i
PrOH, EtOH/H2O, and in THF. The catalysis 

was slower with either a lower loading of catalyst or a lower pressure of H2. Without 14 no 

hydrogenation reaction occurred. 
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 Table 3.1: Screening of the conditions of the hydrogenation reaction using benzaldehyde as substrate 

and 3 as catalyst
a
. 

 

 

 

a
Reaction conditions: substrate (0.3 mmol), catalyst (0.015-0.03 mmol, 5-10mol%), in MeOH (3 mL), at room 

temperature in 24h. 
b
Yield of alcohol determined by calibrated GC analysis.   

When 14 was replaced by 15, under the same conditions, none of the aldehydes tested 

was hydrogenated. Although full conversion was observed, the only products detected were 

acetals from the nucleophilic addition of MeOH to the aldehyde.    

The optimized conditions using 14 as catalyst were applied for the hydrogenation of a 

wide range of aldehydes. The substrate scope and the reaction conditions are summarized in 

table 3.2.  

Table 3.2: Catalytic and chemoselective hydrogenation of aldehydes
a
 

  

 

Entry Aldehyde Product Yield[%]
[b] 

1 

  

90 (82) 

2 

  

88 (65) 

3 

  

94 (90) 

4 

  

96 (85) 

 4 bar H2 8 bar H2 

5   mol%  14 No product 25 % 

10 mol%  14  5 % 90 % 
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5 

  

65 (60) 

6 

  

74  

7 

  

60 

8 

  

55 

9 

  

80 (74) 

a
Reaction conditions: substrate (0.3 mmol), catalyst (0.03 mmol, 10 mol%), H2 (8 bar) in MeOH (3 mL), 24h. 

b
Yield of alcohol determined by calibrated GC analysis ; the isolated yields are in parenthesis.   

As already reported for the insertion reaction, benzaldehyde was hydrogenated in high 

yield (Table 3.2, entry 1). Both the electron-withdrawing Br substituent and electron donating 

OMe and Me groups on the aromatic system were tolerated with yields of 88-96% (Table 3.2, 

entries 2-4). Switching to aliphatic aldehydes the cyclic cyclohexanecarboxaldehyde, the 3-

cyclohexene-1-carboxaldehyde and the linear undecylenic aldehyde were hydrogenated in 

good yields (Table 3.2, entries 6-8).  

The chemoselectivity of hydrogenation is an important issue and a good test for 

chemoselectivity is the hydrogenation of α,β-unsaturated aldehydes. The Fe-PNP complex of 

Milstein was highly efficient for ketone hydrogenation, but was unselective for the 

hydrogenation of α,β-unsaturated ketones due to competitive reduction of C-C double 

bonds
16

. As reported in section 1.5, so far only two Fe catalysts could selective hydrogenate 

α,β-unsaturated aldehydes to the corresponding allylic alcohols, but they required elevated 

temperature and pressure
32,33

. To our delight, the hydrogenation reduced trans-

cinnamaldehyde yielding the corresponding allylic alcohol as the only product in a good yield 

(Table 3.2, entry 5). Moreover, the hydrogenation readily tolerates alkene groups (Table 3.2, 

entries 7 and 8). Most impressively, the hydrogenation is selective toward aldehyde even in 

the presence of a ketone group. Thus, hydrogenation of 4-acetylbenzaldehyde gave 

exclusively 1-[4-(Hydroxymethyl)phenyl]ethanone in a high yield (Table 3.2, entry 9). 
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3.3.3 Hydrogenation reaction promoted by HCOONa   

Interestingly, during the screening process it was found that hydrogenation of ortho-

methylbenzaldehyde was accelerated by a catalytic amount of HCOONa. For example, with 5 

mol% 14, 4 bar of H2, and at room temperature, the yield of this reaction was only 18 % after 

24 h. But in the presence of 10 mol% HCOONa, the reaction was much faster and nearly 

quantitative yield was obtained after 24 h. Without H2 the yields were below 8%, indicating 

the hydrogenation rather than transfer hydrogenation nature of the catalysis. The 

hydrogenation was carried out in the presence of excess of Hg, but no poisoning of the 

reaction was observed indicating a homogeneous process.  

However, when HCOONa was replaced by other bases such as NaO
i
Pr, KO

t
Bu, 

CH3COONa, Na2C2O4 and NaOMe in the same conditions, the hydrogenation was ineffective. 

Same results were obtained when MeOH was replaced by EtOH, 
i
PrOH, THF and CH3CN. 

The optimized conditions for HCOONa co-catalyzed reactions were then applied for 

the hydrogenation of functionalized aldehydes (Table 3.3). Interestingly, both complexes 14 

and 15 could serve as catalysts showing similar efficiency for most substrates. 

Table 3.3: Catalytic and chemoselective hydrogenation of aldehydes using HCOONa co-catalyst
a
 

 

 

 

Entry Aldehyde Product Yield[%]
[b] 

(cat = 14) 

 

Yield[%]
[b]

 

(cat = 15) 

1 

  

80 (75) 75 

2 

  

83 (80) 94 

3 

 

 

86 (81) 76 
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4 

  

92 (88) 72 

5 

  

56 (50) 53 

6 

  

95 (87) 76 

7 

  

66 (62) 76 

8 

  

71 57 

9 

  

65 (60) 78 

10   (64) 

 

 

(67) 

11 

  

70 (63) 64 

12  

 

87 (83) 92 

13 

  

84 90 

14 

 
 

60 68 

15 

  

58 65 

16 

 

75 83 
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17 

  

84 (76) 82 

a
Reaction conditions: substrate (0.3 mmol), HCOONa (0.03 mmol, 10 mol%), catalyst (0.015mmol, 5mol%), H2 

(4 bar) in MeOH (3 mL), 24h. 
b
Yield of alcohol determined by calibrated GC analysis ; the isolated yields are in 

parenthesis.  

Benzaldehyde was hydrogenated in over 80% yield (Table 3.3, entry 1). The presence 

of electron withdrawing substituents such as halogens on the aromatic system enhanced the 

activity of both complex 14 and 15 with yields up to 94% (Table 3.3, entries 2 and 3). 

Similarly, in presence of a strong electron donating group such as –OMe yields up to 92% 

were observed for the orto-anysaldehyde (Table 3.3, entry 4) while the para-anysaldehyde 

was reduced only in moderate yields (53-56%, Table 3.3, entry 5). Para-tolualdehyde and 2-

naphthaldehyde were also hydrogenated in good yields (Table 3.3, entries 6-7).  Interestingly 

also the sulfur- containing substrate 2-thiophenecarbaldehyde, which can potentially 

coordinate the iron center, was reduced in good yield (Table 3, entry 6).  

Gratifyingly, selective hydrogenation of the aldehyde group of α,β-unsaturated 

aldehydes was again possible (Table 3.3, entries 9-10). Furthermore, other potentially 

reducible groups such as ester and nitro were tolerated (Table 3.3, entries 11-12). Both  α 

branched and linear aliphatic aldehydes could be hydrogenated (Table 3.3, entries 13-16) 

achieving good chemoselectivity, as either internal or terminal C-C double bond were 

tolerated (Table 3.3, entries 15-16). Significantly, 4-acetylbenzaldehyde was hydrogenated 

only at the aldehyde group with a yield of 84% (Table 3.3, entry 17). 

Hydrogenation of benzaldehyde was also conducted in the presence of acetophenone under 

the same conditions (Scheme 3.8). In this case only the aldehyde but not the ketone was 

reduced highlighting the chemoselectivity of the hydrogenation method.  

Scheme 3.8: Hydrogenation of 1:1 mixture of acetophenone and benzaldehyde. Yield of the benzyl 

alcohol determined by calibrated GC analysis.  
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3.3.4 Hydrogen Transfer reaction promoted by HCOONa  

The promotion of catalytic hydrogenation by HCOONa described above suggested 

that complexes 14 and 15 might be used as transfer hydrogenation catalysts in presence of 

HCOONa as hydride source
34-37

. Transfer hydrogenation is convenient when handling of H2 is 

undesirable
38

. While a number of precious metal complexes have been reported as selective 

catalysts for transfer hydrogenation of aldehydes
39,40

,  there is only one precedent for an iron 

catalyst, generated in situ by reaction of Fe(BF)4 
.
 6H2O and P(CH2CH2PPh2)3 and exhibiting 

very high yields (up to 99%) and excellent chemoselectivity
41

. In our case both complexes 14 

and 15 catalysed transfer hydrogenation of aldehydes with HCOONa in MeOH. The 

optimized conditions are 5 mol% of catalyst, 5 equiv. of HCOONa, at 40 
o
C and in 6 hours. 

Table 3.4 shows the selectivity and tolerance of the catalysis.  

Table 3.4: Catalytic and chemoselective transfer hydrogenation of aldehydes using HCOONa as 

hydrogen donor
a 

 

Entry Aldehyde Product Yield[%]
[b] 

(cat = 14) 

Yield[%]
[b]

 

(cat = 15) 

1 

  

98 (91) 95 

2 

  

98 (93) 94 

3 

 

 98 (91) 95 

4 

  

97 (92) 85 

5 

  

93 (89) 86 

6 

  

99 (92) 96 



Chapter three 

 

 

99 

 

7 

  

99 (93) 98 

8 

  

82 79 

9 

  

85 (76) 72 

10   (72) 

 

 

(68) 

11 

  

78 (65) 69 

12  

 

97 (87) 95 

13 

 
 

95 75 

14 

 
 

95 90 

15 

  

97 84 

16 

  

98 94 

a
Reaction conditions: substrate (0.3 mmol), HCOONa (0.0015 mol, 5 equiv.), catalyst (0.015 mmol, 5 mol%), in 

MeOH (3 mL), at 40
0
C, 6h. 

b
Yield of alcohol determined by calibrated GC analysis ; the isolated yields are in 

parenthesis. 

To our delight, most of the substrates were converted to the corresponding alcohols in 

very high yields. Benzaldehyde was fully converted to benzyl alcohol (Table 3.4, entry 1). 

Halogen, methoxy, and methyl substitution at the aromatic rings were tolerated with yields up 

to 99 % (Table 3.4, entries 2-6). Similarly, naphthalene and thiophene groups were tolerated 

(Table 3.4, entries 7-8).  
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Once again various α,β-unsaturated aldehydes bearing different functional groups 

were selectively reduced on the formyl group (Table 3.4, entries 9-11). According to the 

literature, only few catalysts are capable of chemoselective transfer hydrogenation of α,β-

unsaturated aldehydes
37,39,42,43

. Aldehydes with sensitive and reducible functional groups such 

as methyl 4-formylbenzoate (Table 3.4, entry 12) and undecylenic aldehyde were selectively 

reduced (Table 3.4, entry 13). Aliphatic aldehydes were also reduced in high yields (Table 

3.4, entries 14-16). 

 

3.4 Mechanistic investigations 

Intrigued by the reactivity showed by 14 and 15, we decided to investigate possible 

mechanistic pathways for the H2 activation, hydrogenation and HT reactions.  

3.4.1 H/D scrambling reaction  

Both complexes 14 and 15 are capable of activating H2 as confirmed by H/D exchange 

experiments. When a solution of 14 in MeOD-d4 was pressurized with D2 (30 bar), the 

formation of H2 (δ 4.58, singlet) and HD (δ 4.54 ppm, 1:1:1 triplet, JH-D= 42 Hz) was 

observed within minutes in the 
1
H-NMR spectra. Meanwhile the hydride signal at δ -20.74 

ppm decreased in intensity and completely disappeared after 45 minutes (Fig. 3.6).  

 

 

 

 

 

 

 

 

Figure 3.6: The time-dependent 
1
H-NMR spectral change of the reaction of 14 with D2 (30 bar) in 

MeOD-d4 at ambient temperature. 

This indicates that the Fe-H moiety was converted into Fe-D during the process. The 

same behaviour was observed when the pressure of D2 was reduced at 1 bar, although the 
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hydride signal completely disappeared only after 32h. The H/D exchange on 14 also occurred 

in THF, but much slower. In CH3CN no exchange was observed but, interestingly, it was 

found that 14 slowly converted to 15 according to the 
1
H-NMR, due to the replacement of Br

-
 

by CH3CN which is in large excess (Table 3.5, Fig 3.7 and 3.8).   

Differently, complex 15 showed great stability in both THF and methanol where the 

CH3CN ligand was not replaced by the solvent molecule. The H/D exchange reaction 

mediated by 15 had a similar rate in methanol and in THF. 

 Overall, in methanol the H/D exchange mediated by 15 is slower than the exchange 

mediated by 14, but in THF the opposite order was observed. Neither 14 nor 15 mediated H/D 

exchange with D2 in CH3CN.   

Table 3.5: Comparison of the rates of H/D exchange
 
 

Entry Complex Solvent Time for 50% exchange(h) 

1 14
 MeOD-d4 0.18 

2 14 THF-d8 > 150
a
 

3 14 CD3CN no H/D exchange 

4 15 MeOD-d4 18 

5 15 THF-d8 20 

6 15 CD3CN no H/D exchange 

The rates of H/D exchange were calculated based on the decrease of the area of the hydride signals in 

the 
1
H-NMR spectra. 

a
After 150 h the conversion was 35%. 

 

 

 

 

 

 

 

Figure 3.7: Time-dependent H/D scrambling of complex 14 in MeOD-d4 (left) and THF-d8 (right) 

under 30 bar of D2 



Chapter three 

 

 

102 

 

0

20

40

60

80

100

0 10 20 30 40 50

%
 H

yd
ri

d
e

 

Time (h) 

0

20

40

60

80

100

0 10 20 30 40 50

%
 H

yd
ri

d
e

 

Time (h) 

 

 

 

 

 

 

Figure 3.8: Time-dependent H/D scrambling of complex 15 in MeOD-d4 (left) and THF-d8 (right) 

under 30 bar of D2 

The H/D exchange by complex 14 in THF might be rationalized by the following 

reaction sequence (Scheme 3.9): the complex first binds to D2 to form a dideuterium hydride 

complex 16-D, likely preceded by dissociation of Br
-
. Reversible splitting of D2 in 16-D 

followed by H/D scrambling gives complex 17. Release of HD then generates the iron 

deuterated complex 14-D. Repetition of this process produces also H2.  

 

 

 

 

 

 

 

 

Scheme 3.9: H/D exchange in THF mediated by complex 14. 

As reported in section 1.4.1 dihydrogen complexes are more than intermediates for 

oxidative addition of H2. They can be generated as either stable species or elusive 

intermediates, where the H-H orbitals donate electron density to an empty metal d orbital of 

symmetry. This interaction is augmented by back-donation from filled metal d orbitals
48

.  
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The η
2
-H2 ligand does not necessarily need the intervention of molecular hydrogen to 

be formed as it may also be obtained from a terminal hydride by treatment with various 

proton donors; including many solvents of common use in organometallic synthesis and 

homogeneous catalysis. In our case no H2 evolution was observed in the 
1
H-NMR spectra 

when complex 14 was treated with different acids in both MeOD and THF-d8 solvents 

although the hydride signal disappeared within few minutes.  

In general, once H2 binds the metal center, the H2 splitting might occur via homolytic, 

heterolytic H2 splitting or -bond metathesis
50,51

 (section 1.4.1, Fig. 1.15). 

In our case, homolytic H2 splitting requires a very electron-rich Fe center and yields 

formally to a Fe(IV) species. The electron-poor phosphinide in 14 seems incompatible to such 

homolytic splitting mechanism. Heterolytic cleavage is also well known but it is normally 

achieved only by strong bases, since H2 is a very weak acid. The process of heterolytic 

splitting, which occurs with formal generation of H
+
, in general generates a metal hydride 

complex and a corresponding protonated base. In our case, heterolytic H2 splitting is possible, 

as Br
-
 might serve as a base to deprotonate coordinated H2. Alternatively, the solvent might 

act as a proton acceptor. 

  On the other hand, σ-bond metathesis between coordinated H
-
 and H2 ligands can lead 

to the same H/D exchange. For σ-bond metathesis to occur, isomerization of 16-D so that the 

H
-
 and H2 ligands are cis to one another is required

51
. In general, the reaction proceeds via a 

[2σ + 2σ] cycloaddition of a metal−ligand bond with that of a substrate throughout a 

concerted process. Therefore, the formal cycloaddition step is a transition state rather than an 

intermediate. For our system the distinction between heterolytic H2 splitting and -bond 

metathesis is difficult with the available data, and it is perhaps best probed by future DFT 

calculations.  

The mechanism of H/D exchange in THF by complexes 14 and 15 should be similar. 

The faster exchange rate by 15 is possibly due to a more rapid substitution of CH3CN by H2 in 

15 than the substitution of Br
-
 by H2 in 14.  
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Two observations indicate that the H/D exchange in MeOH by complexes 14 and 15 is 

more complex: (1) In MeOD-d4 and under H2, H/D exchange occurred in presence of either 14 

or 15. (2) No H/D exchange was observed in absence of H2 under otherwise same conditions. 

Thus, MeOH is involved in the H/D exchange, which favours a heterolytic H2 splitting over 

-bond metathesis for reactions in methanol. We tentatively propose that MeOH acts as 

shuttle accepting the proton from 16 and becoming involved in the H2 splitting (Scheme 

3.10).  

 

 

 

 

 

 

 

 

Scheme 3.10: Methanol-assisted H/D exchange by complex 14. 

It is well known in literature that dihydrogen complex intermediates may play a role in 

intermolecular proton exchange between hydrides and alcohols
47,62

. The first intermolecular 

dynamic proton transfer equilibrium between an hydride and coordinated H2 mediated by 

ROH was observed in a Ru-hydride complex
63

. Moreover, also hydrogenases carry out this 

H
+
/D2 exchange efficiently, although this is not the physiological role of these enzymes

63,64
. 

In particular, two different mechanisms for the H
+
/D2 exchange have been described in the 

case of the [Ir(PPh3)2(bq)(H2O)H]
62 

(Scheme 3.11). In mechanism A, H2 and ROH compete 

for the same coordination site and for efficient catalysis their binding ability should be 

comparable. Differently, mechanism B requires an alcohol basic enough to deprotonate the H2 

ligand.   
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Scheme 3.11: General Mechanism A (top) and B (bottom) proposed for the H
+
/D2 exchange on Ir-

hydride complex. 

For our systems the H/D exchange rates for 15 are similar in methanol and in THF 

(Table 3.5). This suggests that the rate-determining step of H/D exchange does not involve 

methanol. Instead H2 binding is the rate determining for 15, and the binding appears to have a 

similar rate in methanol and in THF. In contrary, for 14 H/D exchange is significantly faster 

in methanol than in THF. This might be due to a more facile replacement of Br
-
 by H2 in 

methanol thanks to a better solvation of Br
-
 by methanol than by THF, or to a faster H/D 

exchange due to the involvement of MeOH.  

3.4.2 Mechanism of hydrogenation reaction 

  The mechanism of hydrogenation reaction is unclear for the moment, and only a 

hypothesis is outlined here (Scheme 3.12). 

 

 

 

 

 

 

 

Scheme 3.12: Proposed mechanism for hydrogenation of aldehydes in methanol by complex 14. 
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Because complexes 14 and 15 do not react with aldehyde in absence of H2, they may 

be considered as precatalysts. Taking 14 as an example, it might be activated by H2 to give the 

dihydrogen complex 16. Interestingly, if poisoning agents such as PEt3, CH3CN, pyridine, 

2,6-lutidine  (0.3 equiv. regarding the substrate) were added in the reaction mixture, no 

hydrogenation occurred, underlying that the free coordination site for H2 binding is 

indispensable for the reaction to take place.  

In the next step, it is proposed that 16 undergoes heterolytic H2 splitting assisted by 

MeOH to give a dihydride complex [(
iPr

PONOP)Fe(H)2(CO)] (19). Trans-dihydride iron PNP 

complexes have been reported to be important active species in hydrogenation reactions of 

unsaturated substrates
66-69

.  Unfortunately, in our case it was not possible to isolate 

independently this species from either 14 or 15. 

At this point, the proton generated in the process protonates the aldehyde and alcohol 

is formed following an outer-sphere hydride transfer from 19. The resulting monohydride 

complex 20 binds H2 to regenerate 16 and complete the catalytic cycle. Several penta-

coordinated PNP iron monohydride complexes, active intermediate in dehydrogenation 

reactions, have been recently synthesized and fully characterized
70,71

. Our findings are 

consistent with Guan's computational studies based on the iron catalysed reduction of 

acetophenone
72

. In his calculated mechanism, the reduction of the substrate proceeds via a 

trans-[Fe(PNP
iPr

)(CO)(H)2] species and involves an outer-sphere hydrogen transfer from the 

dihydride complex to the carbonyl carbon atom of acetophenone in EtOH as solvent (Scheme 

3.13). Noteworthy, the alcoholic solvent shows an essential role in the whole hydrogenation 

reaction, not only as stabilizer of the dearomatized intermediate but also more importantly, as 

assistant catalyst for the formation of the dihydride species.   
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Scheme 3.13: Proposed catalytic mechanism by Guan for hydrogenation of acetophenone 

An alternative mechanism involving the migratory insertion of a hydride ligand in 19 

to aldehyde is possible, (inner-sphere hydrogenation mechanism) but, in our case it would 

require prior decoordination of a ligand to create an open coordination site for aldehyde 

binding. Given that the Fe center is coordinatively saturated in 19, this mechanism is less 

likely. 

3.4.3 Mechanism of hydrogenation and HT reaction assisted by HCOONa 

For hydrogenation in presence of HCOONa, a formate complex [(
iPr

PONOP)Fe(H)-

(CO)(OOCH)] (21) might be formed. When an excess of HCOONa was added to a solution of 

complex 14 in MeOD-d4 a new species was detected by 
1
H-NMR spectroscopy (Fig. 3.9). 

This species gave a triplet hydride signal at δ -23.67 ppm (
2
JPH = 56.6 Hz) and a pattern of 

signals that could be assigned to the 
iPr

PONOP ligand belonging to the new species. 

Furthermore, two singlets at δ 8.19 ppm and at δ 8.62 ppm were observed. These two signals 

might be assigned to a HCOO
-
 ligand on Fe and excess of HCOONa in solution, respectively. 

The new species exhibited a 
31

P{
1
H} NMR signal at δ 237.5 ppm. Concentration of the 

solution containing 21 led to its decomposition which precluded the isolation of this species. 

It is proposed that 21 undergoes -H elimination to give a Fe dihydride complex 19 which 

then catalyses hydrogenation. The dihydride complex 19 is also proposed as the active species 

for the transfer hydrogenation. 
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Moreover, in presence of HCOONa both 14 and 15 serve as catalyst for both 

hydrogenation and HT reactions. The generation of 19, occurring at a similar rate in the 

presence of HCOONa for both complexes, might be considered the rate limiting step. 

Fig. 3.9: 
1
H-NMR of the reaction of 14 with HCOONa (1 equiv.) in MeOD-d4 at ambient temperature 

The establishment of mechanism, however, requires further experimental and 

computational work. 

 

3.5 Conclusions 

In summary, new Fe pincer complexes based on the PONOP ligand have been 

synthesized and fully characterized. The PONOP ligand is easy to prepare and modify. These 

complexes not only activate H2, but also catalyse hydrogenation of aldehydes under mild 

conditions and with high functional group tolerance. The chemoselectivy towards aldehyde 

versus alkene and especially ketone groups is remarkable and synthetically useful. The 

complexes also catalyse chemoselective transfer hydrogenation of aldehydes using HCOONa 

as the hydride source. The mechanisms of H2 activation, hydrogenation, and transfer 

hydrogenation are subject to future studies. 
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3.6 Experimental 

Materials and methods: 

 All experiments were carried out under an inert N2 (g) atmosphere using standard 

Schlenk or glovebox techniques. Solvents were purified using a two-column solid-state 

purification system (Innovative Technology, NJ, USA) and transferred to the glove box 

without exposure to air. Methanol (99.8%, extra dry, over molecular sieve) was purchased 

from AcroSeal®. Deuterated solvents were purchased from Cambridge Isotope Laboratories, 

Inc., and were degassed and stored over activated 3 Å molecular sieves. All other reagents 

were purchased from commercial sources and were degassed by standard freeze-pump-thaw 

procedures prior to use. 
1
H and 

31
P spectra were recorded at ambient temperature on a Bruker 

Avance 400 spectrometer. 
1
H NMR chemical shifts were referenced to residual solvent as 

determined relative to TMS (δ 0.00ppm). GC-MS measurements were conducted on a Perkin-

Elmer Clarus 600 GC equipped with Clarus 600T MS and Agilent J&W GC column, DB-

5MS UI 25m, 0.250mm, 0.25 µm. IR measurements were recorded on powder samples at 

ambient temperature on a Varian 800 FT-IT Scimitar Series spectrometer. Elemental analyses 

were performed on a Carlo Erba EA 1110 CHN Instrument. HRESI-MS measurements were 

conducted at EPFL ISIC Mass Spectrometry Service with a Micro Mass QTOF Ultima 

Spectrometer.   

Ligand synthesis: For the ligand synthesis the procedure reported in the literature 
 

was followed
21

.  

Synthesis of complex [(
iPr

PONOP)Fe(CO)Br2] (13): 

0.625 g of FeBr2 (0.0029 mol) and 1 g of 
iPr

PONOP (0.0029 mol) were mixed in 50 

mL of dry THF in an ACE round-bottom pressure flask in the glovebox and the reaction 

mixture was stirred for 1 h. Afterward the flask was pressurized with 0.35 bar of CO and 

stirred for additional 2 h. The color turned immediately from dark yellow/brown to deep blue. 

The solution was filtered through a PTFE filter and concentrated. n-Pentane was then added to 

promote the precipitation of the product as a fine blue powder that was filtered and washed 

with additional n-pentane (yield: 85%). Single crystals suitable for X-ray analysis were grown  

by diffusion of n-pentane in a concentrated solution of complex 13 in THF. Anal. calcd. for 

C18H32Br2FeNO3P2: C 36.76%, H 5.48%, N 2.38%. Found: C 36.46%, H 5.35%, N 2.40%.  
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Fig. 3.10: 
1
H NMR of 13 (400 MHz, CD2Cl2, 20°C) 

1
H NMR (400MHz, CD2Cl2, 20°C): δ 7.81 (t, 1H, 

3
JHH = 8.1Hz, aryl-H4), δ 6.95 (d, 

2H, 
3
JHH = 8.1Hz, aryl-H3,5), δ 3.51 (sept, 4H, 

3
JHH = 6.9Hz, , 

3
JHP = 13.4 Hz PCH(CH3)2), δ 

1.50 (dq, 24H, 
3
JHH = 7.5Hz, 

3
JHP = 67.1 Hz PCH(CH3)2) ppm.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.11:
 13

C NMR of 13 (400 MHz, CD2Cl2, 20°C) 



Chapter three 

 

 

111 

 

13
C{

1
H} NMR (101MHz, CD2Cl2, 20°C): δ 165.40 (t, Fe-CO 

2
JC-P = 6.3Hz), δ 143.59 

(s, aryl-C4), δ 104.28 (s, aryl-H3,5), δ 29.60 (t, 
1
JC-P = 9.1 Hz, PCH(CH3)2), δ 17.82 (s, 

PCH(CH3)2), δ 17.39 (s, PCH(CH3)2) ppm.
 
FT-IR: ν[cm

-1
] 1961 (s, νCO). ESI-MS (m/z, pos) 

508.05 (100%, [(
iPr

PONOP)Fe(CO)Br]
+
) 

31
P{

1
H} NMR (162MHz, CD2Cl2, 20°C):  δ 215.25 (s) ppm. 

Synthesis of complex [(
iPr

PONOP)FeH(CO)Br] (14): 

0.5 g of [(
iPr

PONOP)Fe(CO)Br2] (1 mmol) was dissolved in 25mL of dry THF and 1.2 

mL of  NaHBEt3 (1M in Toluene, 1.2 mmol) was added. The color turned immediately from 

blue to green within a few minutes. The reaction mixture was stirred for 3h, filtered with a 

PTFE filter and concentrated. Addition of n-pentane promoted the precipitation of the product 

as a fine yellow powder that was filtered and washed with additional n-pentane (yield: 70%). 

Single crystals suitable for X-ray analysis were grown by diffusion of n-pentane in a 

concentrated solution of complex 14 in THF.  

Anal. calcd. for C18H33BrFeNO3P2: C 42.46%, H 6.53%, N 2.75%. Found: C 42.60%, 

H 6.52%, N 2.66%. FT-IR: ν[cm
-1

] 1928 (s, νCO). ESI-MS (m/z, pos) 428.08 

([(
iPr

PONOP)FeH-(CO)]
+
), 400.25 ([(

iPr
PONOP)FeH]

+
). 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12: 
1
H NMR of 14 (400 MHz, CD2Cl2, 20°C) 
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1
H NMR (400MHz, CD2Cl2, 20°C): δ 7.53 (t, 1H, 

3
JHH = 8.0 Hz, aryl-H4), δ 6.58 (d, 

2H, 
3
JHH = 8.0 Hz, aryl-H3,5), δ 3.52 (sept, 2H, 

3
JHH = 7.1 Hz, , 

3
JHP = 14.4 Hz PCH(CH3)2), δ 

2.80 (sept, 2H, 
3
JHH = 6.6 Hz, , 

3
JHP = 13.3 Hz PCH(CH3)2, δ 1.51 (m, 12H, 

3
JHH = 6.8 Hz, 

3
JHP = 12.6 Hz PCH(CH3)2), δ 1.19 (q, 6H, 

3
JHH = 7.9 Hz PCH(CH3)2) δ 0.97 (m, 6H, 

3
JHH = 

7.2 Hz PCH(CH3)2) δ -20.74 (t, 1H,  
2
JHP = 56.6 Hz Fe-H) ppm.  

Fig. 3.13: 
13

C NMR of 14 (400 MHz, CD2Cl2, 20°C) 

13
C{

1
H} NMR (101MHz, CD2Cl2, 20°C): δ 164.12 (t, Fe-CO 

2
JC-P = 6.3Hz), δ 142.04 

(s, aryl-C4), δ 102.21 (s, aryl-C3,5), δ 31.88 (t, 
1
JC-P = 8.2 Hz, PCH(CH3)2), δ 28.62 (t, 

1
JC-P = 

11.5 Hz, PCH(CH3)2), δ 18.14 (t, 
2
JC-P = 4.7 Hz, PCH(CH3)2), δ 17.86-17.38 (m, PCH(CH3)2), 

δ 16.46 (t, JC-P = 2.2 Hz PCH(CH3)2) ppm.  

31
P{

1
H} NMR (162MHz, CD2Cl2, 20°C):  δ 239.00 (

3
JHP = 35.8 Hz) ppm. 

Synthesis of complex [(
iPr

PONOP)Fe(H)(CO)(CH3CN)]OTf (15): 

0.150 g of [(
iPr

PONOP)FeH(CO)Br] (0.295 mmol) was dissolved in 25mL of dry 

CH3CN and 80 μL of TMSOTf (1.5 equiv., 0.442 mmol) was added. The yellow solution was 

stirred for 7 h. The solvent was then evaporated and the resulting yellow sticky oil was 

dissolved in 2 mL of THF. The addition of n-pentane led the precipitation of the product as a 

fine yellow powder that was filtered and washed with additional n-pentane (yield: 80%). 
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Single crystals suitable for X-ray analysis were grown by diffusion of n-pentane in a 

concentrated solution of complex 15 in THF.  

Anal. calcd. for C21H35F3FeN2O6P2S: C 40.72%, H 5.86%, N 4.52%. Found: C 39.7%, 

H 4.72%, N 4.47%. FT-IR: ν[cm
-1

] 1951 (s, νCO). ESI-MS (m/z, pos) 469.15 

([(
iPr

PONOP)Fe(CO)(CH3CN)]
+
), 428.12 ([(

iPr
PONOP)Fe (CO)]

+
). 

 

 

 

 

 

 

 

 

 

Fig. 3.14: 
1
H NMR of 15 (400 MHz, Acetonitrile-d3, 20°C) 

1
H NMR (400 MHz, Acetonitrile-d3, 20°C):  δ 7.78 (t,1H, 

3
JHH = 8.1 Hz, aryl-H4), δ 

6.76 (d, 2H, 
3
JHH = 8.2 Hz, aryl-H3,5), δ 2.92 (m, 4H, 

3
JHP = 18.6 Hz, 

3
JHH = 9.4 Hz, 

PCH(CH3)2), δ 1.99 (m, 3H, CH3CN), δ 1.52 (dp, 12H , 
3
JHP = 27.0 Hz, 

3
JHH = 9.8 Hz, 

PCH(CH3)2), δ 1.28-1.18 (m, 6H, PCH(CH3)2 ), δ 1.02 (q, 6H, J = 7.2 Hz, PCH(CH3)2), δ -

18.53 (s, 1H,
 2
JHP = 53.7 Hz Fe-H) ppm. 
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Fig. 3.15: 
13

C NMR of 15 (101 MHz, Acetonitrile-d3) 

13
C NMR (101 MHz, Acetonitrile-d3) δ 216.52 (t, 

2
JCP = 19.8 Hz, Fe-CO), 163.50 (t, 

2
JPC = 5.7 Hz, aryl-C2,6), 144.73 (s, Ar-C4) , 103.41 (s, Ar-C3,5), 32.19 (t, 

1
JPC = 7.8 Hz, 

PCH(CH3)2), 29.85 (t, 
1
JPC = 13.2 Hz, PCH(CH3)2), 17.47 (t, 

2
JPC = 4.04 Hz, PCH(CH3)2), 

16.86 (s, PCH(CH3)2), 16.61 (t, 
2
JPC = 4.04 Hz, PCH(CH3)2), 16.35 (s, PCH(CH3)2).  

31
P{

1
H} NMR (162 MHz, Acetonitrile-d3, 20°C):  δ 237.83 (d, 

3
JHP = 49.2 Hz) ppm.  

General procedure for catalytic hydrogenation  

A 35 mL ACE pressure tube was charged with catalyst 14 (0.03 mmol), the aldehyde 

(0.3 mmol), dodecane (30μL, 0.133 mmol), 3 mL of dry MeOH and 8 bar of hydrogen. The 

solution was stirred at ambient temperature (20-22 °C) for 24h. The reaction was quenched by 

exposure to air and by addition of diethyl ether.The alcohol products were identified and 

quantified by GC-MS with dodecane as an internal standard. External calibration curves were 

made using the commercial available products (purity >98%) or the isolated ones with 

dodecane as an internal standard.. 

General procedure for catalytic hydrogenation assisted by HCOONa 

A 35 mL ACE pressure tube was charged with catalyst 14 or 15 (0.015 mmol), 300 μL 

(0.03 mmol) of a freshly prepared 0.1 M solution of HCOONa in MeOH, the aldehyde (0.3 
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mmol), dodecane (30μL, 0.133 mmol), 3 mL of dry MeOH and 4 bar of hydrogen. The 

solution was stirred at ambient temperature (20-22 °C) for 24h. The reaction was quenched by 

exposure to air and by addition of diethyl ether. The alcohol products were identified and 

quantified by GC-MS with dodecane as an internal standard. External calibration curves were 

made using the commercial available products (purity >98%) or the isolated ones with 

dodecane as an internal standard. 

General procedure for transfer hydrogenation 

In a vial were placed the catalyst (0.015 mmol), the aldehyde (0.3 mmol), dodecane 

(30μL, 0.133 mmol), HCOONa (0.0015 mol, 5 equiv.) and 3 mL of dry MeOH. The solution 

was stirred at 40 °C for 6h. The reaction was quenched by exposure to air and by addition of 

diethyl ether. The alcohol products were identified and quantified by GC-MS with dodecane 

as an internal standard. External calibration curves were made using the commercial available 

products (purity >98%) or the isolated ones with dodecane as an internal standard 

Reaction of 14 and 15 with H2 or D2 

In a typical experiment (NMR scale) a high pressure sapphire 5 mm NMR tube with a 

home-made titanium cap was charged with 10 mg of complex and 0.7 mL of deuterated 

solvent. H2 or D2 was added to the tube under a certain pressure.  

Time-dependent H/D scrambling of complexes 14 and 15 in MeOD-d4 and THF-

d
8
 under D2 

0.5 mL of a 0.023 M solution of the complex in a deuterated solvent was introduced 

into a sapphire NMR tube which was then pressurized with 30 bar of D2. The rates of H/D 

exchange were calculated based on the decrease of the area of the hydride signals in the 
1
H-

NMR spectra. 
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Fig. 3.16: Full spectra of the time-dependent 
1
H-NMR spectral change of the reaction of 14 with D2 (30 

bar) in MeOD-d4 at ambient temperature. 

 

Hydrogenation of benzaldehyde using different bases and solvents 

In preliminary studies different solvents like EtOH, iPrOH, THF and CH3CN were 

investigated using 5 mol % of catalyst loading and 10 mol% of different bases such as 

NaOiPr, KOtBu, CH3COONa, sodium oxalate and NaOMe. In all the cases benzaldehyde was 

only reduced in very poor yields (below 3 %). 

Hydrogenation of 1:1 mixture of acetophenone and benzaldehyde 

The catalytic hydrogenation of benzaldehyde under standard conditions (see General 

Procedure for catalytic hydrogenation) was selective in the presence of 1 equiv of 

acetophenone, yielding benzyl alcohol as the only product (72 % GC yield). 

Characterization of the isolated products  

All the products were purified thought silica column using a mixture of ethyl acetate 

and n-hexene as eluent. 
1
H NMR and 

13
C NMR spectra were collected in order to check the 

purity and compared with those of the commercial products.  Herein we report the 
1
H NMR 

and 
13

C NMR spectra of the non-commercial alcohols. 
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(E)-3-(4-methoxyphenyl)prop-2-en-1-ol:      

1
H NMR (400 MHz, CDCl3, 20°C): δ 7.34 (d, 2H, 

3
JHH = 8 Hz, Aryl-H3,5), δ 6.88 (d, 2H, 

3
JHH 

= 8 Hz,  Aryl-H2,6),  δ 6.57 (d, 1H, 
3
JHH = 16 Hz, CH=CH-CH2), δ 6.25 (dt, 1H,  

3
JHH = 15.8 

Hz, 
3
JHH = 5.9 Hz, CH=CH-CH2), δ 4.32 (d, 2H, 

2
JHH = 8 Hz CH=CH-CH2), δ 3.81 (s, 3H, 

CH3O-), δ 1.68 (bs, 1H, OH) ppm. 
13

C{
1
H} NMR (101MHz, CDCl3, 20°C): ) δ 159.38 (s, 

Aryl-C1), δ 131.03 (s, CH=CH-CH2), 129.78 (s, Aryl-C3,5), 127.78 (s, Aryl-C4), 126.35 (s, 

CH=CH-CH2), 114.11 (s, Aryl-C2,6), 64.02 (s, CH=CH-CH2), 55.40 (CH3O-) ppm. 

(E)-3-(2-nitrophenyl)prop-2-en-1-ol: 

1
H NMR (400 MHz, CDCl3, 20°C): δ 7.89 (dd, 1H, 

3
JHH = 8 Hz, Aryl-H6), δ 7.63-7.47 (m, 

2H, Aryl-H3,5),  δ 7.37 (d, 1H, Aryl-H4), δ 7.06 (d, 1H,  
3
JHH = 15.8 Hz, CH=CH-CH2), δ 6.33 

(dt, 1H, 
2
JHH = 5.3 Hz 

3
JHH = 15.7 Hz CH=CH-CH2), δ 4.36 (dd, 2H, 

2
JHH = 5.4 Hz CH=CH-

CH2), δ 2.26 (bs, 1H, OH) ppm. 
13

C{
1
H} NMR (101MHz, CDCl3, 20°C): ) δ 147.86 (s, Aryl-

C1), δ 134.3 (s, Aryl-C4), δ 133.2 (s, CH=CH-CH2) δ 128,83 (s, Aryl-C5) δ 128.19 (s, 

CH=CH-CH2), δ 125.78 (s, Aryl-C2,3), δ 124.57 (s, Aryl-C6), δ 63.27 (s, CH=CH-CH2) ppm. 

Methyl 4-(hydroxymethyl)benzoate:                        

1
H NMR (400 MHz, CDCl3, 20°C): δ 7.99 (d, 2H, 

3
JHH = 8.1 Hz, Aryl-H2,6), δ 7.40 (d, 2H, 

3
JHH = 8.1 Hz Aryl-H3,5), δ 4.73 (s, 2H, CH2), δ 3.89 (s, 3H, -OCH3), δ 2.38 (bs, 1H, OH) 

ppm. 
13

C{
1
H} NMR (101MHz, CDCl3, 20°C): δ 167.10 (s, CH3OCO), δ 146.10 (s, Aryl-C4), 

δ 129.98 10 (s, Aryl-C2,6), δ  129.44 (s, Aryl-C1), δ 126.59 (s, Aryl-C3,5), δ 64.83 (s, CH2), δ 

52.26 (s, -OCH3) ppm. 

1-(4-(hydroxymethyl)phenyl)ethanone: 

1
H NMR (400 MHz, CDCl3, 20°C): δ 7.79 (d, 2H, 

3
JHH = 8.0 Hz, Aryl-H3,5), δ 7.32 (d, 2H, 

3
JHH = 7.9 Hz Aryl-H2,6), δ 4.63 (s, 2H, CH2), δ 3.99 (s, 1H, OH), δ 2.47 (s, 3H, CH3) ppm. 

13
C{

1
H} NMR (101MHz, CDCl3, 20°C): δ 198.51 (s, CO), δ 146.75 (s, Aryl-C4), δ 135.80 (s, 

Aryl-C1), δ 128.41(s, Aryl-C2,6), δ  126.45 (s, Aryl-C3,5), δ 63.99 (s, CH2), δ 26.46 (s, CH3) 

ppm. 

X-ray Crystallography  

The diffraction data were measured using Mo Kα radiation on a Bruker APEX II CCD 

diffractometer equipped with a kappa geometry goniometer. The datasets were reduced by 

EvalCCD
73

 and then corrected for absorption
74

. The data of compounds 14 and 15 were 
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measured using Cu Kα radiation on an Agilent Technologies SuperNova dual system in 

combination with an Atlas CCD detector. The data reduction was carried out by Crysalis 

PRO
75

. The solutions and refinements were performed by SHELX
76

 .The crystal structures 

were refined using full-matrix least-squares based on F
2
 with all non hydrogen atoms 

anisotropically defined. Hydrogen atoms were placed in calculated positions by means of the 

“riding” model.  

Pseudo merohedral twinning was found for compound 13 and treated by the 

TWINROTMAT algorithm of PLATON
77

 obtaining four BASF values: 0.112(2), 0.170(5), 

0.021(2), 0.028(2). In the case of compound 15, extensive disorder was found in an isopropyl 

moiety of the main complex and in the CF3SO3 anion. The split model with reasonable 

restraints (SADI, SIMU cards) was used to correctly treat it. 

X-ray Structural Analysis of 13. Crystal Data:  C18H32Br2FeNO3P2, 0.43 x 0.39 x 

0.32 mm
3
, Triclinic, P-1, a = 10.4094(16) Å, b=14.9612(17) Å, c = 15.071(2) Å, α= 

84.994(12)°, β= 89.915(15)°, γ= 87.592(8)°. T= 100(2) K, V= 2336.2(6) Å
3
, Z= 4, ρc= 1.669 

Mg/m3, μ= 4.221 mm
-1

. CCDC number 1006505. 

Data Collection and Processing: 13285 reflections collected, -14 ≤ h ≤ 14, -21 ≤ k ≤ 

21, -21 ≤ l ≤ 21, 13285 independent reflections [R(int) = 0.0000] 

            Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 

13285 data with 0 restraints and 491 parameters. Goodness-of-fit on F
2
=1.149, largest diff. 

peak= 2.388 e.Å
-3

and hole= -2.572 e.Å
-3

.Final R indices [I>2σ(I)]: R1 = 0.0846, wR2 = 

0.2150. R indices (all data): R1 = 0.1161, wR2 = 0.2304.  

             Table 3.6. Selected bond lengths and angles for 13 

                                             Bond length [Å]                                         Bond angles [°] 

Br(1)-Fe(1)  2.4730(16)   C(1)-Fe(1)-N(1) 177.0(4) 

Br(2)-Fe(1)  2.4724(16)   C(1)-Fe(1)-P(1) 97.2(3) 

Fe(1)-C(1)  1.820(12)   N(1)-Fe(1)-P(1) 81.7(2) 

Fe(1)-N(1)  1.996(8)   C(1)-Fe(1)-P(2) 100.5(3) 

Fe(1)-P(1)  2.251(3)   N(1)-Fe(1)-P(2) 80.7(2) 

Fe(1)-P(2)  2.257(3)   P(1)-Fe(1)-P(2) 162.23(10) 

P(1)-O(1)  1.683(7)   P(1)-Fe(1)-Br(2) 94.32(8) 

P(2)-O(2)  1.694(7)   P(2)-Fe(1)-Br(2)     87.37(8) 
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X-ray Structural Analysis of 14. Crystal Data:  C18H32BrFeNO3P2, 0.45 x 0.18 x 

0.15 mm3, Monoclinic, P21/c, a = 16.7127(4) Å, b = 8.45507(19) Å, c = 16.6370(4) Å,  α = 

90°, β = 102.458(2)°, γ = 90°. T= 140(2) K, V= 2295.58(9)Å
3
, Z= 4, ρc= 1.470 Mg/m3, μ= 

8.762 mm
-1

. CCDC number 1006506. 

Data Collection and Processing: 15102 reflections collected, -20<=h<=20, -

7<=k<=10, -19<=l<=20, independent reflections 4540 [R(int) = 0.0389].  

          Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 

4540 data with 0 restraints and 240 parameters. Goodness-of-fit on F
2
=1.048, largest diff. 

peak=0.739 e.Å
-3

and hole= -0.442 e.Å
-3

.Final R indices [I>2σ(I)]: R1 = 0.0314, wR2 

=0.0846. R indices (all data): R1 = 0.0322, wR2 = 0.0854. The hydride was located on the 

difference Fourier density map and refined as isotropic with free coordinates. 

 

          Table 3.7. Selected bond lengths and angles for 14 

                                             Bond length [Å]                                         Bond angles [°] 

Br(1)-Fe(1)  2.5156(4)  C(18)-Fe(1)-N(1) 176.12(9) 

Fe(1)-C(18)  1.736(2) C(18)-Fe(1)-P(2) 97.48(8) 

Fe(1)-N(1)  1.9839(16) N(1)-Fe(1)-P(2) 82.16(5) 

Fe(1)-P(1)  2.1702(5) C(18)-Fe(1)-P(1) 96.39(15) 

Fe(1)-P(2)  2.1574(6) N(1)-Fe(1)-P(1) 81.79(5) 

Fe(1)-H(1)  1.38(3) P(2)-Fe(1)-P(1) 160.89(2) 

P(1)-O(1)  1.6835(15) P(1)-Fe(1)-Br(1) 94.063(17) 

P(2)-O(2)  1.6830(15) P(2)-Fe(1)-Br(1) 95.300(18) 

 

          X-ray Structural Analysis of 15. Crystal Data:  C21H35F3FeN2O6P2S, 0.49 x 0.37 x 

0.29 mm3, Monoclinic, P21/n, a = 12.5538(5) Å, b = 9.1895(3) Å, c = 25.0608(11) Å, α = 

90°, β = 98.165(4)°, γ = 90°. T= 140(2) K, V=2861.8(2) Å3, Z= 4, ρc= 1.435 Mg/m3, μ= 

6.472 mm
-1

. CCDC number 1006507. 

 

          Data Collection and Processing: 19034 reflections collected, -15<=h<=14, -

11<=k<=7, -30<=l<=31, Theta range for data collection 3.56 to 73.44°, independent 

reflections 5634 [R(int) = 0.0361] 
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          Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 

5634 data with 261 restraints and 431 parameters. Goodness-of-fit on F
2
=1.051, largest diff. 

peak=0.845 e.Å
-3

and hole= -0.926 e.Å
-3

.Final R indices [I>2σ(I)]: R1 = 0.0573, wR2 = 

0.1463. R indices (all data): R1 = 0.0614, wR2 = 0.1507. The hydride was located on the 

difference Fourier density map and refined as isotropic with free coordinates. 

 

          Table 3.8. Selected bond lengths and angles for 15 

                                             Bond length [Å]                                         Bond angles [°] 

Fe(1)-C(18)  1.734(5) C(18)-Fe(1)-N(2) 97.38(18) 

Fe(1)-N(2)  1.972(3) C(18)-Fe(1)-N(1)               171.39(17) 

Fe(1)-N(1)  1.995(3) N(1)-Fe(1)-P(2) 82.16(5) 

Fe(1)-P(1)  2.1771(10) N(2)-Fe(1)-N(1) 91.15(11) 

Fe(1)-P(2)  2.1815(12) N(2)-Fe(1)-P(1) 94.03(9) 

Fe(1)-H(1)  1.43(4) N(1)-Fe(1)-P(1) 81.80(9) 

P(1)-O(1)  1.682(3) P(1)-Fe(1)-P(2)                  161.23(5) 

P(2)-O(2)  1.679(3) C(18)-Fe(1)-H(1) 85.2(18) 
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4.1 From the tridentate PONOP to the bidentate PON ligand  

 The development of well-defined ligand systems enabling the tuning of the properties 

of the metal centres in a controlled manner is one of the most important goals in modern 

inorganic and organometallic chemistry
1
. 

As described in chapter three, among the several ligand systems that can be found in 

the chemical literature, pincer ligands
2,3

 and their complexes have attracted increasing interest 

mainly due to their stability, variety and tunability.  Although the first pincer ligands were 

synthesized in the late 1970s
4
, wide applications using pincer complexes were explored only 

starting from the late 1990s, switching this area into an intensively investigated subject in 

organometallic chemistry (Fig. 4.1). 

   

 

 

 

 

 

 

 

Fig. 4.1: Number of publications containing the word "pincer complex" [source: SciFinder]. 

 In this chapter, the tuning of the Fe-PONOP system previously described (chapter 

three) has been taken into consideration in order to enhance its reactivity in the hydrogenation 

and hydrogen transfer reactions of unsaturated substrates. Precisely, the PONOP ligand is a 

very versatile system, whose phosphorus donor atoms can be easily modified in order to 

influence the electronic properties and the steric hindrance of the metal center. 

 Moreover, the CO ligand present in the Fe-PONOP system could be replaced by the 

isoelectronic tert-butyl isocyanide (
t
BuNC). Isocyanides R

1
NC are capable of displaying great 

π-acceptor capacity as the CO one when linked to a metal center capable of strong π-

donation
5-9

. In particular tert-butyl isocyanide forms complexes that are stoichiometrically 

analogous to certain binary metal carbonyl complexes
10-12

, such as Fe2(CO)9 and Fe(
t
BuNC)5. 

Although structurally similar, the analogous carbonyls differ in several ways mainly because 

the 
t
BuNC is a better donor ligand. Thus, Fe(

t
BuNC)5 is easily protonated by HBF4

.
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anhydrous conditions
10

 yielding the complex [Fe(H)(
t
BuNC)5][BF4], whereas Fe(CO)5 is 

attacked by hydroxide
13

 giving [HFe(CO)4]
-
, intermediate in the preparation of [(H)2Fe(CO)4].  

 In the family of polydentate ligands, heterodifunctional ligands have been intensively 

investigated and used in coordination and organometallic chemistry
14-20

. In particularly, 

phosphanyl-pyridines have emerged as power tool, allowing for higher structural versatility 

and steric accessibility of the (first row) transition metal
21-24

. Thus, there is general interest in 

transition- metal complexes containing such hybrid ligands. Moreover, these soft/hard PN 

assemblies could coordinate reversibly to a metal center providing or protecting temporarily a 

vacant coordination site
25,26

.   

 Stable and versatile iron low-spin carbonyl complexes of the type [Fe(PN-
i
Pr)2(CO)X] 

and [Fe(PN-
i
Pr)(CO)2X2]  (where X=Cl, Br) have been recently synthesized

24
 by reacting cis-

Fe(CO)4X2 with a strong PN donor ligand (Scheme 4.1). Noteworthy, by switching from one 

to two equivalents of PN ligand, iron complexes with different electronic and steric properties 

were synthesized.   

  

 

 

 

 

 

 

  

Scheme 4.1: Versatile Fe-PN complexes  

In this context, the bidentate hybrid PON-
i
Pr ligand based on 2-aminopyridine in 

which the pyridine ring is separated from the phosphine moiety by an -O- bridging unit was 

synthesized and employed as ligand for the preparation of new stable iron complexes.  
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4.2 Modification of the PONOP ligand  

As first attempt to synthesize new Fe-PONOP complexes with an enhanced reactivity 

in hydrogenation and hydrogen transfer reactions of substrates such as ketones and 

unsaturated C-C bond, the modification of the 
iPr

PONOP ligand was taken into consideration.  

4.2.1 Ligand Synthesis  

An easy approach was to modify the phosphorus donor atoms by replacing the iso-

propyl groups with the stronger donor cyclohexyl, the bulkier tert-butyl or ethyl groups.   

The ligands 
Cy

PONOP, 
tBu

PONOP 
Et

PONOP have been synthesized using the same 

procedure employed for 
iPr

PONOP (Scheme 4.2). High yields and clean products could be 

obtained by working with air-free techniques. 

 

Scheme 4.2: Synthesis of the 
Cy

PONOP, 
tBu

PONOP and 
Et

PONOP type ligands. 

 

The syntheses were straightforward for 
Cy

PONOP and 
tBu

PONOP, while for 
Et

PONOP 

only a mixture of products was obtained. The 
Cy

PONOP ligand exhibited a characteristic 

signal at δ 143.96 ppm in the 
31

P- NMR few ppm lower than 
iPr

PONOP (δ 146.80), while 

tBu
PONOP at δ 155.27 ppm. 

4.2.2 Metallation using iron salts  

Attempts to synthesize stable iron (II) complex using 
Cy

PONOP or 
tBu

PONOP ligands 

were made by following standard procedures in Fe-pincer chemistry
27

.  Reaction of 
Cy

PONOP 

with FeBr2 in THF under pressure of CO gave [(
Cy

PONOP)Fe(CO)Br2] (22) as blue powder in 

very high yield (Scheme 4.3). Complex 22 is diamagnetic and exhibited a characteristic 

singlet at δ 207.58 ppm in the 
31

P-NMR spectrum. The Fe-bound CO ligand gives a strong IR 

band at 1976 cm
-1

. Suitable crystals for X-Ray analysis were obtained by diffusion of n-

pentane in a saturated solution of 22 in THF. 
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Scheme 4.3: Synthesis of the iron-
Cy

PONOP complex 22. 

By switching to FeCl2 as metal precursor, the stable [(
Cy

PONOP)Fe(CO)Cl2] (23) as 

purple powder was synthesized in high yield (Scheme 4.4). Similarly, complex 23 is a 

diamagnetic complex exhibiting a characteristic singlet at δ 207.77 ppm in the 
31

P-NMR 

spectrum. The Fe-bound CO ligand gives a strong IR band at 1977 cm
-1

 similar to complex 

22. Suitable crystals for X-Ray analysis were obtained by diffusion of n-pentane in a saturated 

solution of 23 in THF. 

Scheme 4.4: Synthesis of the iron-
Cy

PONOP complex 23 

In order to synthesize an iron-hydride complex bearing the 
Cy

PONOP ligand, both 

complex 22 and 23 were reacted in presence of different borohydride salts in the same fashion 

used for the synthesis of complex 13 reported in chapter 3 (Scheme 3.4). Unfortunately, 

reaction with NaEt3BH, LiEt3BH or NaBH4 (different equivalent) as hydride sources led to the 

formation of several species in solution, included the iron-hydride one that was difficult to 

isolate.  

As proof of the formation of the Fe-hydride species, a triplet at δ -20.64 ppm (
2
JPH = 

56.0 Hz) appeared in the 
1
H-NMR spectra of the crude product. This signal had been 

tentatively assigned to the complex [(
Cy

PONOP)Fe(CO)(H)Br] due to the similarity with the 

hydride signal of complex 14 and the characteristic phosphorus-hydrogen J coupling constant 

measured. 

When 
tBu

PONOP was reacted with FeBr2 in THF under pressure of CO a pale orange 

powder was obtained, differently from the intense blue color observed for both 22 and 13. 

Moreover, no characteristic CO band was detected in the FT-IR spectrum of the powder. The 

1
H-NMR spectrum exhibited broad signals typical of a paramagnetic compound, while the 

31
P-NMR showed two broad signals at  δ 153.10 ppm and δ 132.27 ppm.  
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Analysis of the crystals obtained by dissolution of the powder in THF revealed the 

decomposition of the 
tBu

PONOP ligand. 

 As recently reported in literature
28

, when FeCl2 was used as metal precursor and mixed 

in presence of the 
tBu

PONOP ligand in THF, [(
tBu

PONOP)FeCl2] formed as paramagnetic 

yellow product. Noteworthy, this species did not react in presence of CO to form a stable low 

spin iron-
 tBu

PONOP species. 

4.2.3 Structure of Fe complexes   

The solid state structures of complexes 22 and 23 were determined by X-Ray 

crystallography. The thermal ellipsoids are drawn at 30% probability and the hydrogen atoms 

are omitted for clarity in all the structure reported in this section. 

The crystal structure of 22 showed a distorted octahedral geometry at the Fe center 

with the two bromine ligands trans to one another, and the CO ligand trans to the nitrogen of 

the pyridine (Fig. 4.2). 

 

 

 

 

 

Fig. 4.2: X-Ray structure of 22. The nitrogen atom is depicted in blue, phosphorous atoms in yellow, 

the bromine in green and the oxygen ones in red. Selected bond lengths [Å] and angles [°]:Fe(1)-C(3) 1.7830, 

Fe(1)-N(1) 1.9968, Fe(1)-P(1) 2.25871, Fe(1)-P(2) 2.2503, Fe(1)-Br(1) 2.4690, Fe(1)-Br(2) 2.4511, P(1)-Fe(1)-

P(2)163.42. 

In the same fashion, complex 23 showed a distorted a distorted octahedral geometry at 

the Fe center. The two Fe-halogen bonds are shorter than in 22 and the CO ligand is trans to 

the nitrogen of the pyridine (Fig. 4.3). 
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Fig. 4.3: X-Ray structure of 23. The nitrogen atoms are depicted in blue, phosphorous atoms in yellow, 

the bromines in green and the oxygen ones in red. Selected bond lengths [Å] and angles [°]: Fe(1)-C(3) 1.7823, 

Fe(1)-N(1) 2.0043, Fe(1)-P(1) 2.2582, Fe(1)-P(2) 2.2465, Fe(1)-Cl(1) 2.3368, Fe(1)-Cl(2) 2.2986. 

4.2.4 Hydrogenation reaction  

Although it was not possible to synthesize and isolate an iron-hydride complex bearing 

the 
Cy

PONOP ligand, complex 22 and 23 were tested as catalyst for the hydrogenation of 

unsaturated substrate.   

As standard condition, substrates such as benzaldehyde and acetophenone were tested 

in either MeOH, EtOH, 
i
PrOH, CH2Cl2 or THF as solvent. As bases NaO

t
Bu, NaO

i
Pr, KO

t
Bu, 

HCOONa and NaOMe were employed in slightly excess regarding the catalyst loading (10 or 

20 mol %) and the reaction vessels ware pressurized at 4 bar (Scheme 4.5). 

 

 

   

 

Scheme 4.5: Reaction conditions used for the hydrogenation reaction. Substrate (0.3 mmol), base 

(10/20 mol %), catalyst (0.015 mmol, 5 mol %), H2 (4 bar), solvent (3 ml). 

The reaction was performed also in absence of base and with a higher pressure of H2 

(8 bar). Unfortunately, no substrate was hydrogenated to the corresponding alcohol by using 

either 22 or 23, as confirmed by GC-MS analysis.  
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4.3 Replacement of CO with the isoelectronic 
tBu

isocyanide  

As second attempt to synthesize new Fe-PONOP complexes with an enhanced 

reactivity, the CO ligand was replaced by the better donor ligand tert-butyl isocyanide in 

presence of 
iPr

PONOP as pincer ligand.  

4.3.1 Synthesis of Fe complexes   

By reacting 
iPr

PONOP with FeBr2 in THF and 1 equiv. of 
t
BuNC the complex 

[(
iPr

PONOP)Fe(
t
BuNC)Br2] (24) was obtained as an apple green powder in very high yield 

(Scheme 4.6). Complex 24 is a diamagnetic complex exhibiting a characteristic singlet at δ 

216.75 ppm in the 
31

P-NMR spectrum. The Fe-bound CN ligand gives a strong IR band at 

2121 cm
-1

. Suitable crystals for X-Ray analysis were obtained by diffusion of n-pentane in a 

saturated solution of 24 in THF. 

 

 

 

 

Scheme 4.6: Synthesis of complex 24. 

Complex 24 was reacted in presence of NaEt3BH and NaBH4 as hydride sources in 

order to synthesize the analogous iron-hydride species.  

When NaEt3BH was used (different equivalent), only a mixture of several species was 

detected in solution by 
1
H-NMR, included the iron-hydride species [(

iPr
PONOP)Fe-

(
t
BuNC)(H)Br] (25) that showed a characteristic triplet at δ -20.07 ppm. Unfortunately, it was 

not possible to isolate complex 25 since an oil appeared after evaporation of the solvent from 

the reaction mixture. When the oil was dissolved in CH2Cl2 few yellow crystals formed by 

addition of an excess of pentane. The X-Ray analysis confirmed the formation of 25 (Fig. 4.5 

in section 4.3.2).  

Differently, when NaBH4 was used as hydride source the iron-hydride species 25 

formed as only product (Scheme 4.7). 
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Scheme 4.7: Synthesis of complex 25 

Complex 25 is a low spin diamagnetic yellow powder exhibiting a characteristic 

singlet at δ 244.06 ppm in the 
31

P-NMR spectrum. The Fe-bound 
t
BuNC ligand gives a strong 

IR band at 1977 cm
-1

 and the structure was confirmed by ESI-Mass analysis. 

4.3.2 Structure of Fe complexes   

The solid state structures of complexes 24 and 25 were determined by X-Ray 

crystallography. The thermal ellipsoids are drawn at 30% probability and the hydrogen atoms 

are omitted for clarity. 

The crystal structure of 24 showed a distorted octahedral geometry at the Fe center 

with the two bromine ligands trans to one another, and the 
t
BuNC ligand trans to the nitrogen 

of the pyridine (Fig. 4.4). 

 

 

 

 

 

 

Fig. 4.4: X-Ray structure of 24. The nitrogen atoms are depicted in blue, phosphorous atoms in yellow, 

the bromines in green and the oxygen ones in red. Selected bond lengths [Å] and angles [°]: Fe(1)-C(3) 1.8428, 

Fe(1)-N(1) 1.9878, Fe(1)-P(1) 2.2464, Fe(1)-P(2) 2.2422, Fe(1)-Br(1) 2.4809, Fe(1)-Br(2) 2.4773. 

Similarly, complex 25 showed a distorted octahedral geometry at the Fe center. The 

bromine atoms are trans to the hydride ligand while the 
t
BuNC ligand is trans to the nitrogen 

of the pyridine (Fig. 4.5). 
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Fig. 4.5: X-Ray structure of 25. The nitrogen atoms are depicted in blue, phosphorous atoms in yellow, 

the bromines in green and the oxygen ones in red. Selected bond lengths [Å] and angles [°]: Fe(1)-C(3) 1.8207, 

Fe(1)-N(1) 1.9857, Fe(1)-P(1) 2.1757, Fe(1)-P(2) 2.1679, Fe(1)-Br(1) 2.5625, Fe(1)-H(1) 1.434. 

4.3.3 Hydrogenation and HT reactions  

Complex 24 and the corresponding iron-hydride 25 were tested as potential catalysts 

for both hydrogenation and HT reactions.  

As standard condition for the hydrogenation reaction, substrates with a carbonyl group 

such as benzaldehyde, acetophenone and with a C-C double bond such as cyclohexene and 1-

decene were tested in either MeOH, EtOH, 
i
PrOH, CH2Cl2 or THF as solvent. As bases 

NaO
t
Bu, NaO

i
Pr, KO

t
Bu, HCOONa and NaOMe were employed in slightly excess regarding 

the catalyst loading (10 or 20 mol %). The reaction vessels were pressurized at 4 bar (Scheme 

4.8). 

 

   

 

 

 

 

Scheme 4.8: Reaction conditions used for the hydrogenation reaction. Substrate (0.3 mmol), base 

(10/20 mol %), catalyst (0.015 mmol, 5 mol %), H2 (4 bar), solvent (3 ml). 

Complex 24 did not show any reactivity for the hydrogenation of unsaturated substrate 

also when the reaction was performed in absence of a base and with a higher pressure of H2 (8 

bar). 
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Differently, 25 served as catalyst for the hydrogenation of benzaldehyde. As reported 

for the analogous iron pincer complex [(
iPr

PONOP)Fe(CO)(H)Br2] (14),  the best performance 

could be achieved in MeOH using 5 mol% of catalyst loading, 10 mol% of HCOONa as base,  

at room temperature, under 4 bar of H2, and within 24 h reaching 90 % yield (Scheme 4.9). 

No reaction was observed in presence of acetophenone, cyclohexene and 1-decene.  Full 

conversion of benzaldehyde was observed in absence of base and with a higher pressure of H2 

(8 bar). 

 

 

 

Scheme 4.9: Reaction conditions for the hydrogenation reaction of benzaldehyde using 25 as catalyst. 

Substrate (0.3 mmol), base (10/20 mol %), catalyst (0.015 mmol, 5 mol %), H2 (4 bar), solvent (3 ml). Yield of 

alcohol determined by calibrated GC analysis.  

 The promotion of catalytic hydrogenation by HCOONa described above suggested 

that complex 25 might be used as transfer hydrogenation catalysts in presence of HCOONa as 

hydride source. As expected complex 25 catalysed the reduction of benzaldehyde in presence 

of 5 equiv. of HCOONa, at 40 
o
C, in 6 hours and in 95% yield (Scheme 4.10) as reported for 

the analogous iron pincer complex 14. Unfortunately, no reaction was observed when 

acetophenone, cyclohexene and 1-decene were used as substrates.  

 

 

 

 

Scheme 4.10: Reaction conditions for the HT reaction of benzaldehyde using 25 as catalyst. Substrate 

(0.3 mmol), HCOONa (0.0015 mol, 5 equiv.), catalyst (0.015 mmol, 5 mol%), in MeOH (3 mL), at 40
0
C, 6h. 

Yield of alcohol determined by calibrated GC analysis.  
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4.4 PON bidentate ligand  

In this section, the attempts to synthesise low spin iron (II) complexes bearing the 

iPr
PON bidentate ligand are reported. The iron complexes synthesized were further 

investigated as catalyst for hydrogenation reaction of unsaturated substrates. 

4.4.1 Ligand Synthesis  

The two 
iPr

PON bidentate ligands were synthesized starting respectively from the 2-

hydroxypyridine and the 2-hydroxy-6-methylpyridine by following the already reported 

procedure used for the analogous tridentate 
iPr

PONOP (Scheme 4.11). High yields and a clean 

products were obtained by working with air-free techniques. 

 

Scheme 4.11: Synthesis of the 
iPr

PON and 
iPr

PON(Me) bidentate ligands. 

 

The 
iPr

PON ligand exhibited a characteristic signal at δ 144.38 ppm in the 
31

P- NMR 

few ppm lower than 
iPr

PONOP (δ 146.80) while the 
iPr

PON(Me) at δ 143.41 ppm. 

4.4.2 Metallation using iron salts  

Although the preparation of the 
iPr

PON and 
iPr

PON(Me) bidentate ligands was 

straightforward, the metalation using different iron precursors resulted more complicated.  

When 
iPr

PON was stirred in presence of FeBr2 a red oil formed. 
1
H-NMR analysis of 

the oil showed a paramagnetic species present in solution while in the 
31

P-NMR no signals 

were detected. The red oil was reacted with CO (0.5 bar) but no carbonyl bands were 

observed in the FT-IR spectrum of the final product.  

The reaction of 2 equiv. of 
iPr

PON with FeBr2 led to the formation of a whitish 

powder. Neither 
1
H-NMR nor 

31
P-NMR analysis on the powder was possible due to the 

paramagnetic nature of the product, but the X-Ray analysis on the crystals showed the 
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decomposition of the ligand with the concomitant formation of a cationic exa-coordinated 

iron species, complex 26 (Scheme 4.12).   

   

 

 

 

Scheme 4.12: Decomposition of the 
iPr

PON ligand and formation of complex 26. 

When Fe(CO)5 was used as iron precursor, the 
iPr

PON did not metalate the iron center 

as evidenced by both the 
1
H-NMR and 

31
P-NMR spectra.  

In order to obtain stable Fe-
iPr

PON complexes a different iron precursor was 

synthesized: the complex (benzylideneacetone)iron tricarbonyl.  

This red coloured compound abbreviated [Fe(CO)3(bda)] is a reagent very well known 

in organometallic chemistry, principally used for transferring the Fe(CO)3 unit to other 

organic molecules
29-31

. [Fe(CO)3(bda)] was reacted with 1 equiv. of 
iPr

PON and the expected 

[Fe(CO)3(
iPr

PON)] (27) formed as clean orange product in 42 % yield (Scheme 4.13). 

 

 

 

 

 

Scheme 4.13: Synthesis of complex 27. 

 Complex 27 is a pentacoordinated diamagnetic iron (0) compound, exhibiting a 

characteristic signal at δ 237.63 ppm in the 
31

P-NMR spectrum. The Fe-bound CO ligands 

give strong IR bands at 1976 and 1884 cm
-1

. Unfortunately, no suitable crystals for X-Ray 

analysis were obtained, but the structure was confirmed by ESI- Mass analysis. 

 In order to synthesize a stable iron (II) species bearing the 
iPr

PON ligand, complex 27 

was oxidised in presence of either iodine (I2) or N-Bromosuccinimide (NBS), but in both 

cases only a mixture of different species was detected in the 
1
H-NMR and  

31
P-NMR spectra.  

4.4.3 Hydrogenation and HT reactions  

 Complex 27 was tested as catalyst for both hydrogenation and hydrogen transfer 

reaction.  
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As standard condition, substrates such as benzaldehyde and acetophenone were tested 

in either MeOH, EtOH, 
i
PrOH, CH2Cl2 or THF as solvent. As bases NaO

t
Bu, NaO

i
Pr, KO

t
Bu, 

HCOONa and NaOMe were employed in slightly excess regarding the catalyst loading (10 or 

20 mol %) and the reaction vessels were pressurized at 4 bar (Scheme 4.14). 

 

   

 

 

Scheme 4.14: Reaction conditions used for the hydrogenation reaction. Substrate (0.3 mmol), base 

(10/20 mol %), catalyst (0.015 mmol, 5 mol %), H2 (4 bar), solvent (3 ml). 

The reaction was performed in absence of base and with a higher pressure of H2 (8 

bar), but in all the cases no product was detected by GC-MS analysis. Similarly, for the HT 

reaction after screening different conditions, neither benzaldehyde nor acetophenone were 

reduced to the corresponding alcohols by using complex 27 as catalyst. 

4.5 Biomimetic approach 

A different approach was used with the bidentate ligand 
iPr

PON(Me). Bearing in mind 

the recent results and developments in the synthesis of model iron complexes miming the 

active site of the iron-only hydrogenase
32-35

 (scheme 4.15) a similar biomimetic approach was 

used to synthesize a stable iron (II) low spin complex starting from 
iPr

PON(Me) as precursor.   

 

 

 

 

Scheme 4.15: Synthesis of the biomimetic complex [(2-CH2CO-6-MeOC2H3N)Fe(CO)2I] reported in 

literature
32

.   

 As illustrated in scheme 4.15, the acylmethylpyridinyl bidentate unit was linked to the 

iron center by treatment of the in-situ generated methylpyridinyl anion with Fe(CO)5. 

Successive addition of I2 led to the oxidation of the iron center and the formation of a stable 

iron (II) low spin complex.  
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 In the same fashion, when using the bidentate ligand 
iPr

PON(Me), the methyl group 

could undergo activation in presence of n-BuLi and bind the Fe(CO)5 by forming the acyl 

group. This procedure should lead to the formation of a new type of pincer complex with two 

different side arms on the tridentate ligand (Scheme 4.16). 

 

 

 

Scheme 4.16: Attempt to synthesize a stable iron pincer complex bearing the 
iPr

PON moiety.  

Different attempts were made to synthesize the asymmetric iron pincer complex 

showed above by following the biomimetic synthetic route, but in all the cases a mixture of 

products, included the unreacted 
iPr

PON(Me), was detected in the 
31

P-NMR spectrum.  

When 
iPr

PON(Me) was reacted in presence of  [Fe(CO)3(bda)] in the same fashion 

used for 
iPr

PON and reported in scheme 4.14, the iron(0) complex [Fe
iPr

PON(Me)(CO)3(bda)] 

(29) formed as major species (scheme 4.17). Crystals of 28 were obtained by diffusion of n-

pentane in a saturated solution of the powder in dry THF.  

 

 

  

 

 

Scheme 4.17: Synthesis of complex 28. 

 

4.6 Conclusions 

 As attempt to synthesize new Fe-PONOP complexes with an enhanced reactivity, 

modification of the PONOP ligand resulted in the synthesis of two PONOP-type ligands: 

Cy
PONOP and 

tBu
PONOP. Although no metalation with iron salts was possible by using 

tBu
PONOP as ligand, stable iron (II) low spin complexes [(

Cy
PONOP)Fe(CO)Br2] (22)  and 
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[(
Cy

PONOP)Fe(CO)Cl2] (23) were obtained in presence of 
Cy

PONOP, which are newly 

reported compounds.  

 The crystal structure of complexes 22 and 23 showed a distorted octahedral geometry 

at the Fe center for both complexes. When these compounds were used as catalysts in 

hydrogenation reaction, none of the substrates employed was reduced. Differently than the 

similar Fe-
 iPr

PONOP complex [(
iPr

PONOP)Fe(CO)Br2] (13), it was not possible to isolate the 

analogous iron-hydride species starting from either 22 or 23.  

As second attempt to synthesize new Fe-PONOP complexes, the CO ligand was 

replaced by the better donor ligand tert-butyl isocyanide in presence of 
iPr

PONOP as pincer 

ligand. Complexes [(
iPr

PONOP)Fe(
t
BuNC)Br2] (24) and the analogous iron-hydride 

[(
iPr

PONOP)Fe(
t
BuNC)(H)Br] (25) were synthesized and fully characterized. When tested as 

catalysts for hydrogenation and HT reactions 24 did not exhibit any reactivity, on the contrary 

25 served as catalysts for hydrogenation and HT reactions of benzaldehyde. As reported for 

the analogous iron-hydride pincer complex [(
iPr

PONOP)Fe(CO)(H)Br] (14), the best 

performance could be achieved in MeOH using 5 mol% of catalyst loading, 10 mol% of 

HCOONa as base, room temperature, under 4 bar of H2, and within 24 h. No reaction was 

observed in presence of acetophenone, cyclohexene and 1-decene. Although spectroscopically 

different, 26 did not exhibit enhanced reactivity compared to 14.  

 A different approach on the synthesis of stable iron (II) complexes was used by 

synthesizing bidentate 
iPr

PON-type ligands: 
iPr

PON and 
iPr

PON(Me). The metalation using 

iron salts gave very complicated mixtures and only the iron (0) complex [Fe(CO)3(
iPr

PON)] 

(27) was isolated and fully characterized. No further oxidation of 27 was possible and it did 

not exhibit any catalytic behaviour for hydrogenation reaction of unsaturated substrates. Also 

the biomimetic approach used with 
iPr

PON(Me) did not lead to the formation of a stable iron 

complex.  
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4.7 Experimental  

Materials and methods: 

 All experiments were carried out under an inert N2 (g) atmosphere using standard 

Schlenk or glovebox techniques. Solvents were purified using a two-column solid-state 

purification system (Innovative Technology, NJ, USA) and transferred to the glove box 

without exposure to air. Methanol (99.8%, extra dry, over molecular sieve) was purchased 

from AcroSeal®. Deuterated solvents were purchased from Cambridge Isotope Laboratories, 

Inc., and were degassed and stored over activated 3 Å molecular sieves. All other reagents 

were purchased from commercial sources and were degassed by standard freeze-pump-thaw 

procedures prior to use. 
1
H and 

31
P spectra were recorded at ambient temperature on a Bruker 

Avance 400 spectrometer. 
1
H NMR chemical shifts were referenced to residual solvent as 

determined relative to TMS (δ 0.00ppm). GC-MS measurements were conducted on a Perkin-

Elmer Clarus 600 GC equipped with Clarus 600T MS and Agilent J&W GC column, DB-

5MS UI 25m, 0.250mm, 0.25 µm. IR measurements were recorded on powder samples at 

ambient temperature on a Varian 800 FT-IT Scimitar Series spectrometer. Elemental analyses 

were performed on a Carlo Erba EA 1110 CHN Instrument. HRESI-MS measurements were 

conducted at EPFL ISIC Mass Spectrometry Service with a Micro Mass QTOF Ultima 

Spectrometer.   

 Synthesis of 
Cy

PONOP tridentate ligand 

In a 100 ml Schlenk round bottom flask 0.381 g of 2,6-dihydroxypyridine (0.0026 

mol) were suspended in 30 ml of dry THF, followed by 0.8 ml of N,N,N',N'-

tetramethylethylendiamine (0.0052 mol) and 2.3 ml of Et3N (0.016 mol). The reaction 

mixture was cooled down at 0 
o
C. 1.33g of (Cy)2PCl (0.0057 mol) were dissolved in 20ml of 

dry THF and slowly added to the reaction mixture. After the mixture reached room 

temperature, it was refluxed at 60 
o
C for 20h. A fine with powder precipitated during the 

reaction. The reaction mixture was cooled, filtered through a fritted glass filter and dried 

affording a clear oil as pure product in 72 % yield. 

 
1
H NMR (400MHz, CD2Cl2, 20°C): δ 7.46 (t, 1H, aryl-H), δ 6.43 (d, 2H, aryl-H), δ 

1.91-1.67 (m, 22H, cyclohexyl-H), δ 1.41-1.21 ppm (m, 22H, cyclohexyl-H) ppm. 
31

P-NMR 

(162MHz, CD2Cl2, 20°C):  δ 142.02(s) ppm. 
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Synthesis of 
tBu

PONOP ligand 

The procedure reported in literature
36

 was followed for the synthesis of 
tBu

PONOP. The 

final product resulted in a clear oil obtained in 86 % yield. 
1
H NMR (400MHz, CD2Cl2, 

20°C): δ 7.51 (t, 1H, aryl-H), δ 6.57 (d, 2H, aryl-H), δ 1.18 (bs, 18H, CH), δ 1.15 (bs, 18H, 

CH) ppm. 
31

P-NMR (162MHz, CD2Cl2, 20°C):  δ 155.27 (m) ppm. 

Synthesis of complex [(
Cy

PONOP)Fe(CO)Br2] (22): 

0.128 g of FeBr2 (0.0006 mol) and 0.3 g of 
Cy

PONOP (0.0006 mol) were mixed in 50 

mL of dry THF in an ACE round-bottom pressure flask in the glovebox and the reaction 

mixture was stirred for 1 h. Afterward the flask was pressurized with 0.5 bar of CO and stirred 

for additional 3 h. The color turned immediately from dark yellow/brown to deep blue. The 

solution was filtered through a PTFE filter and concentrated. n-Pentane was then added to 

promote the precipitation of the product as a fine blue powder that was filtered out and 

washed with additional n-pentane (yield: 65%). Single crystals suitable for X-ray analysis 

were grown by diffusion of n-pentane in a concentrated solution of complex 22 in THF.  

FT-IR: ν[cm
-1

] 1976 (s, νCO). ESI-MS (m/z, pos): 746.08 [(
Cy

PONOP)Fe(CO)Br2], 

667.16 [(
Cy

PONOP)Fe(CO)Br]
+
. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6: 
1
H NMR of 22 (400 MHz, CD2Cl2, 20°C) 
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1
H NMR (400MHz, CD2Cl2, 20°C): δ 7.78 (t, 1H, aryl-H4), δ 6.90 (d, 2H, aryl-H3,5), δ 

3.33 (sept, 4H, PCH), δ 2.20 (m, 12H, CH-cyclohexyl), δ 1.90-1.71 (m, 16H, CH-cyclohexyl), 

δ 1.31 (m, 12H, CH-cyclohexyl) ppm. 
31

P-NMR (162MHz, CD2Cl2, 20°C):  δ 207.77(s) ppm. 

31
P-NMR (162MHz, CD2Cl2, 20°C):  δ 207.58(s) ppm. 

13
C-NMR (101MHz, CD2Cl2, 20°C): δ 

165.44 (t, Fe-CO 
2
JC-P = 6.3Hz), δ 143.43 (s, aryl-C4), δ 104.27 (s, aryl-H3,5), δ 40.74 (s, 

PCH), δ 26.72-26.81 (m, CH2-cyclohexyl) ppm. 

Synthesis of complex [(
Cy

PONOP)Fe(CO)Cl2] (23) 

0.115 g of FeCl2
.
2THF (0.00043 mol) and 1 g of 

Cy
PONOP (0. 00043 mol) were 

mixed in 50 mL of dry THF in an ACE round-bottom pressure flask in the glovebox and the 

reaction mixture was stirred for 2 h. Afterward the flask was pressurized with 0.5 bar of CO 

and stirred for additional 2 h. The color turned immediately from yellow to purple. The 

solution was filtered through a PTFE filter and concentrated. n-Pentane was added and the 

product precipitated as a fine purple powder. It was filtered off and washed with additional n-

pentane (yield: 65%). Single crystals suitable for X-ray analysis were grown by diffusion of 

n-pentane in a concentrated solution of complex 23 in THF.  

1
H NMR (400MHz, CD2Cl2, 20°C): δ 7.80 (t, 1H, aryl-H4), δ 6.89 (d, 2H, aryl-H3,5), δ 

3.09 (m, 4H, PCH), δ 2.27-2.03 (m, 12H, CH-cyclohexyl), δ 1.89-1.67 (m, 16H, CH-

cyclohexyl), δ 1.5-1.28 (m, 12H, CH-cyclohexyl) ppm. 
31

P-NMR (162MHz, CD2Cl2, 20°C):  

δ 207.77(s) ppm. 
13

C-NMR (101MHz, CD2Cl2, 20°C): δ 165.31 (t, Fe-CO 
2
JC-P = 6.3Hz), δ 

143.60 (s, aryl-C4), δ 104.09 (s, aryl-H3,5), δ 35.38 (s, PCH), δ 27.51-26.77 (m, CH2-

cyclohexyl) ppm. FT-IR: ν [cm
-1

] 1977 (s, νCO). 

Synthesis of complex [(
iPr

PONOP)Fe(
t
BuNC)Br2] (24): 

0.2 g of FeBr2 (0.00093 mol) and 0.32 g of 
iPr

PONOP (0. 00093 mol) were mixed in 

30 mL of dry THF in an ACE round-bottom pressure flask in the glovebox and the reaction 

mixture was stirred for 2 h. 106 μl of 
t
BuNC (0. 00093 mol) were added to the reaction 

mixture and stirred for additional 4 h. The color turned immediately from dark yellow/brown 

to apple green. The solution was filtered through a PTFE filter and concentrated. n-Pentane 

was then added to promote the precipitation of the product as a fine apple green powder that 

was filtered out and washed with additional n-pentane (yield: 71%). Single crystals suitable 

for X-ray analysis were grown by diffusion of n-pentane in a concentrated solution of 

complex 24 in THF.  
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FT-IR: ν[cm
-1

] 2121 (s, νCN). ESI-MS (m/z, pos): 642.04 [(
iPr

PONOP)Fe(
t
BuNC)Br2], 

667.16 [(
iPr

PONOP)Fe(CO)Br]
+
. 

1
H NMR (400MHz, CD2Cl2, 20°C): δ 7.63 (t, 1H, aryl-H4), δ 6.85 (d, 2H, aryl-H3,5), δ 

3.63 (m, 4H, PCH), δ 1.63 (q, 12H, PCH(CH3)2), δ 1.55 (s, 9H, CH-
 t
BuNC),  δ 1.46 (q, 12H, 

PCH(CH3)2), ppm. 
31

P-NMR (162MHz, CD2Cl2, 20°C):  δ 216.78(s) ppm. 

Synthesis of complex [(
iPr

PONOP)Fe(
t
BuNC)(H)Br] (25): 

To a suspension of 0.232 g of 24 (0.00036 mol) in 30 ml of EtOH dry, 40 mg of 

NaBH4 (4 equiv., 0.00144 mol) dissolved in 10 ml of dry EtOH were added. The color turned 

immediately from green to orange. The reaction mixture was stirred for 3 h and the solvent 

removed under vacuum affording a yellow/brownish powder. The powder was dissolved in a 

minimum amount of toluene and filtered firstly through celite and afterwards through neutral 

alumina. A yellow solution was collected and dried under vacuum affording 25 as yellow 

powder in 42 % yield.  

FT-IR: ν[cm
-1

] 1977 (s, νCN). ESI-MS (m/z, pos): 563.13 [(
iPr

PONOP)Fe(
t
BuNC)HBr], 

483.2 [(
iPr

PONOP)Fe(
t
BuNC)(H)]

+
. 

1
H NMR (400MHz, CD2Cl2, 20°C): δ 7.32 (t, 1H, 

3
JHH = 8.0 Hz, aryl-H4), δ 6.41 (d, 

2H, 
3
JHH = 8.0 Hz, aryl-H3,5), δ 3.29 (m, 2H, PCH(CH3)2), δ 2.78 (sept, 2H, PCH(CH3)2), δ 

1.48 (m, 12H,PCH(CH3)2), δ 1.27 (s, 9H, CH-
 t
BuNC), δ 1.19 (m, 6H, PCH(CH3)2), δ 0.98 

(m, 6H, PCH(CH3)2), δ -19.99 (t, 1H,  
2
JHP = 56.6 Hz, Fe-H) ppm. 

31
P-NMR (162MHz, 

CD2Cl2, 20°C):  δ 244.06(s) ppm. 

 

Synthesis of 
iPr

PON bidentate ligand 

In a 100 ml Schlenk round bottom flask 1g of 2-hydroxypyridine (0.0105 mol) were 

suspended in 30 ml of dry THF, followed by 1.6 ml of N,N,N',N'-tetramethylethylendiamine 

(0.0105 mol) and 3.5 ml of Et3N (0.0264 mol). The reaction mixture was cooled down at 0 
o
C. 

1.93 g of (
i
Pr)2PCl (0.0126 mol) were dissolved in 20ml of dry THF and slowly added to the 

reaction mixture. After the mixture reached room temperature, it was refluxed at 60 
o
C for 20 

h. A fine with powder precipitated during the reaction. The reaction mixture was cooled, 

passed through a fritted glass filter and dried, affording a clear oil as pure product in 95 % 

yield. 
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1
H NMR (400MHz, CD2Cl2, 20°C): δ 8.15 (m, 1H, aryl-H), δ 7.58 (t, 1H, aryl-H), δ 

6.89 (t, 1H, aryl-H), δ 6.82 (d, 1H, aryl-H), δ 1.97 (m, 2H, PCH), δ 1.17-1.08 ppm (m, 12H,  

PCH(CH3)2) ppm. 
31

P-NMR (162MHz, CD2Cl2, 20°C):  δ 144.38(m) ppm. 

Synthesis of 
iPr

PON(Me) bidentate ligand 

1.09 g of 2-hydroxy-6-metylpyridine (0.01 mol) were suspended in 30 ml of dry THF, 

followed by 1.6 ml of N,N,N',N'-tetramethylethylendiamine (0.0105 mol) and 4.3 ml of Et3N 

(0.0324 mol) in a 100 ml Schlenk round bottom flask. The reaction mixture was cooled down 

at 0 
o
C and 1.675g of (

i
Pr)2PCl (0.011 mol) dissolved in 20 ml of dry THF were slowly added 

to the reaction mixture. After the mixture reached room temperature, it was refluxed at 60 
o
C 

for 20 h. A fine with powder precipitated during the reaction. The reaction mixture was 

cooled, passed through a fritted glass filter and dried, affording a clear oil as pure product in 

78 % yield. 

 
1
H NMR (400MHz, CD2Cl2, 20°C): δ 8.49 (m, 1H, aryl-H), δ 7.51 (t, 1H, aryl-H), δ 

6.83 (m, 2H, aryl-H), δ 2.50 (m, 2H, PCH), δ 1.27-1.17 ppm (m, 12H, PCH(CH3)2) ppm. 
31

P-

NMR (162MHz, CD2Cl2, 20°C):  δ 237.64(m) ppm. 

Synthesis of the precursor [Fe(CO)3(bda)]: 

For the synthesis of the iron(0) precursor [Fe(CO)3(bda)] the procedure reported in 

literature was followed
29

. 

Synthesis of complex [(
iPr

PON)Fe(CO)3] (27): 

0.4g of [Fe(CO)3(bda)] were dissolved in 30ml of dry THF. To this solution 0.3g of 

iPr
PON (0.00142mol) dissolved in 20ml of THF were added. The color turned from orange to 

intense red within 1h and the reaction mixture was stirred overnight.  The day after the 

solution was filtered and dried affording a red oil. By addition of an excess of n-pentane and 

by cooling down the reaction mixture an orange powder precipitated, and it was filter off, 

washed with additional n-pentane and dried under vacuum. The orange product was obtained 

in 42% yield.   

FT-IR: ν[cm
-1

] 1976 (s, νCO), 1884 (sb, νCO). 
1
H NMR (400MHz, CD2Cl2, 20°C): δ 

7.46 (t, 1H, aryl-H), δ 6.75 (t, 1H, aryl-H), δ 6.64 (d, 1H, aryl-H), δ 2.42 (s, 3H, CCH3), δ 

1.96 (m, 2H, PCH), δ 1.21-1.11 ppm (m, 12H, PCH(CH3)2) ppm. 
31

P-NMR (162MHz, 

CD2Cl2, 20°C):  δ 237.64(m) ppm.  
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Biomimetic Attempts by using 
iPr

PON(Me) moiety.  

For the biomimetic attempts to synthesize iron pincer complex bearing the 
iPr

PON 

moiety, the procedure reported for the [Fe]-Hydrogenases models in literature was used
33

. 

Further modifications (amounts and temperature) were also tested. 

General procedure for catalytic hydrogenation  

A 35 mL ACE pressure tube was charged with catalyst (0.03 mmol), substrate (0.3 

mmol), base (10/20 mol %, 0.3-0.6 mmol), dodecane (30μL, 0.133 mmol), 3 mL of dry 

solvent and 8 bar of hydrogen. The solution was stirred at ambient temperature (20-22 °C) for 

24 h. The reaction was quenched by exposure to air and by addition of diethyl ether. The 

alcohol products were identified and quantified by GC-MS with dodecane as an internal 

standard. External calibration curves were made using the commercial available products 

(purity >98%) or the isolated ones with dodecane as an internal standard. 

General procedure for transfer hydrogenation 

In a vial were placed the catalyst (0.015 mmol), the substrate (0.3 mmol), dodecane 

(30μL, 0.133 mmol), base (0.0015 mol, 5 equiv.) and 3 mL of dry solvent. The solution was 

stirred at 40 °C for 6h. The reaction was quenched by exposure to air and by addition of 

diethyl ether. The alcohol products were identified and quantified by GC-MS with dodecane 

as an internal standard. External calibration curves were made using the commercial available 

products (purity >98%) or the isolated ones with dodecane as an internal standard. 

X-ray Crystallography  

The diffraction data were measured using Mo Kα radiation on a Bruker APEX II CCD 

diffractometer equipped with a kappa geometry goniometer. The datasets were reduced by 

EvalCCD
37

 and then corrected for absorption
38

. The data were measured using Cu Kα 

radiation on an Agilent Technologies SuperNova dual system in combination with an Atlas 

CCD detector. The data reduction was carried out by Crysalis PRO
39

. The solutions and 

refinements were performed by SHELX
40

 .The crystal structures were refined using full-

matrix least-squares based on F
2
 with all non hydrogen atoms anisotropically defined. 

Hydrogen atoms were placed in calculated positions by means of the “riding” model. 
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 X-ray Structural Analysis of 22:  

Crystal Data:C30H47Br2FeNO3P2, 0.34 x 0.29 x 0.11mm
3
, Monoclinic, P 21/c, a=16.3743(17) 

Å, b=8.4836(11) Å, c=23.797(3)Å, α= 90°, β= 101.499(7)°, γ= 90°. T= 293(2) K, V= 

3239.4(7) Å
3
, Z= 4, ρc= 1.532 Mg/m3, μ= 3.063 mm-

1
. 

Data Collection and Processing: 40750 reflections collected, -21 ≤ h ≤ 21, -10 ≤ k ≤ 11, -27 

≤ l ≤ 30, 7426 [R(int) = 0.0680]. 

Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 7426 

data with 138 restraints and 398 parameters. Goodness-of-fit on F
2
=1.116, largest diff. peak= 

0.720 e.Å
-3

and hole= -0.810 e.Å
-3

.Final R indices [I>2σ(I)]: R1 = 0.0492, wR2 = 0.0884. R 

indices (all data): R1 0.0830, wR2 = 0.1020. 

 

             Table 4.1. Selected bond lengths and angles for 22. 

                                             Bond length [Å]                                         Bond angles [°] 

Br(1)-Fe(1)  2.4690(7)    Br(1)-Fe(1)-Br(2) 178.83(3) 

Br(2)-Fe(1)  2.4512(7)   C(3)-Fe(1)-N(1) 179.73(17) 

Fe(1)-C(3)  1.781(4)   N(1)-Fe(1)-P(1) 81.66(10) 

Fe(1)-N(1)  1.996(3)   C(3)-Fe(1)-P(1) 98.20(13) 

Fe(1)-P(1)  2.2570(12)   N(1)-Fe(1)-Br(1) 89.13(9) 

Fe(1)-P(2)  2.2501(12)   P(1)-Fe(1)-P(2) 163.43(5) 

 

 X-ray Structural Analysis of 23:  

Crystal Data:  C30H48Cl2FeNO3P2, 0.45 x 0.31 x 0.28 mm3, Monoclinic, P 21/n, a= 18.937(3) 

Å, b=8.6178(12) Å, c=20.528(3)Å, α= 90°, β= 106.349(11)°, γ= 90°. T= 293(2) K, V= 

3214.62 Å3, Z= 4, ρc= 1.369 Mg/m3, μ= 6.018 mm-
1
. 

Data Collection and Processing: 20494 reflections collected, -13 ≤ h ≤ 13, -16 ≤ k ≤ 11, -23 

≤ l ≤ 23, 5825 [R(int) = 0.0564]. 

Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 5825 

data with 0 restraints and 352 parameters. Goodness-of-fit on F
2
=1.034, largest diff. peak= 

0.693 e.Å
-3

and hole= -0.475 e.Å
-3

.Final R indices [I>2σ(I)]: R1 = 0. 0583, wR2 = 0.1584. R 

indices (all data): R1 = 0. 0646, wR2 = 0. 1693.  
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             Table 4.2. Selected bond lengths and angles for 23. 

                                             Bond length [Å]                                         Bond angles [°] 

Cl(1)-Fe(1)  2.3368    Cl(1)-Fe(1)-Cl(2) 178.54 

Cl(2)-Fe(1)  2.2986   C(3)-Fe(1)-N(1) 179.42 

Fe(1)-C(3)  1.7823   N(1)-Fe(1)-P(1) 81.80 

Fe(1)-N(1)  2.0043   C(3)-Fe(1)-P(1) 97.90 

Fe(1)-P(1)  2.2582   N(1)-Fe(1)-Cl(2) 89.86 

Fe(1)-P(2)  2.2465   P(1)-Fe(1)-P(2) 163.43 

 

 X-ray Structural Analysis of 25:  

Crystal Data: C22H40Br2FeN2O2P2, 0.35 x 0.33 x 0.25 mm
3
, Triclinic, P-1, a = 9.3732(14) Å, 

b = 10.0051(3) Å, c = 16.7941(17) Å, α= 106.814(6)°, β=90.067(10)°, γ= 106.957(5)°. T= 

100(2) K, V= 1435.8(3) Å
3
, Z= 2, ρc= 1.485 Mg/m

3
, μ= 3.440 mm

-1
. 

Data Collection and Processing: 20860 reflections collected, -12 ≤ h ≤ 12, -12 ≤ k ≤ 12, -21 

≤ l ≤ 21, 6473 [R(int) = 0.0222]. 

Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 6473 

data with 141 restraints and 351 parameters. Goodness-of-fit on F
2
=1.129, largest diff. peak= 

0.505 e.Å
-3

and hole= -0.461 e.Å
-3

. Final R indices [I>2σ(I)]: R1 = 0.0261, wR2 = 0.0483, R 

indices (all data): R1 = 0.0413, wR2 = 0.0541.  

 

             Table 4.3. Selected bond lengths and angles for 25. 

                                             Bond length [Å]                                         Bond angles [°] 

Br(1)-Fe(1)  2.4808(4)    Br(1)-Fe(1)-Br(2) 178.228(15) 

Br(2)-Fe(1)  2.4777(4)   C(3)-Fe(1)-N(1) 176.43(8) 

Fe(1)-C(3)  1.842(2)   N(1)-Fe(1)-P(1) 82.22(5) 

Fe(1)-N(1)  1.9890(17)   C(3)-Fe(1)-P(1) 97.82(6) 

Fe(1)-P(1)  2.2458(6)   N(1)-Fe(1)-P(2) 82.49(5) 

Fe(1)-P(2)  2.2409(7)   P(1)-Fe(1)-P(2) 164.67(2) 

 

 X-ray Structural Analysis of 26: 

Crystal Data: C22H41BrFeN2O2P2, 0.44 x 0.24 x 0.20 mm
3
, Monoclinic, P21/n, a= 

10.5486(10) Å, b=15.8895(17) Å, c=16.3846(8) Å, α= 90.0°, β=94.448(7)°, γ=90.0°. T= 
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100(2) K, V= 2738.0(4) Å
3
, Z= 4, ρc= 1.366 Mg/m

3
, μ= 2.147 mm

-1
. 

Data Collection and Processing: 38684 reflections collected, -14 ≤ h ≤ 14, -22 ≤ k ≤ 22, -23 

≤ l ≤ 22, 7962 [R(int) = 0.0496]. 

Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 7962 

data with 8 restraints and 316 parameters. Goodness-of-fit on F
2
=1.162, largest diff. peak= 

0.518 e.Å
-3

and hole= -0.666 e.Å
-3

. Final R indices [I>2σ(I)]: R1 = 0.0393, wR2 = 0.0587, R 

indices (all data): R1 = 0.0841, wR2 = 0.0736.  

 

             Table 4.4. Selected bond lengths and angles for 26. 

                                             Bond length 

[Å] 

                                        Bond angles [°] 

Br(1)-Fe(1)  2.5625(4)    Br(1)-Fe(1)-H(1) 176.7(11) 

H(1)-Fe(1)  1.41(3)   C(3)-Fe(1)-N(1) 173.83(10) 

Fe(1)-C(3)  1.819(3)   N(1)-Fe(1)-P(1) 82.41(7) 

Fe(1)-N(1)  1.986(2)   C(3)-Fe(1)-P(1) 98.42(8) 

Fe(1)-P(1)  2.1724(8)   N(1)-Fe(1)-P(2) 82.47(7) 

Fe(1)-P(2)  2.1675(8)   P(1)-Fe(1)-P(2) 163.35(3) 
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I.1 Novel iron(II)-PONOP complexes  

In this appendix the synthesis and characterization of several new  iron (II)-PONOP 

complexes such as [(
iPr

PONOP)FeBr2] (29), [(
Cy

PONOP)FeBr2] (30) and [(
iPr

PONOP)-

Fe(CO)(H)(PEt3)] (31)  and a different synthetic route for the synthesis of complexes 13 and 

22 is described. 

Complex 30 is involved in the synthesis of [(
iPr

PONOP)Fe(CO)Br2] (13), while 30 is 

involved for the synthesis of [(
Cy

PONOP)Fe(CO)Br2](22). Complex 31 has been synthesized 

to understand the mechanism of hydrogenation of aldehydes catalysed by 14 and 15, which 

are reported in chapter 3.  

 

 I.1.1 Complex [(
iPr

PONOP)FeBr2]  

[(
iPr

PONOP)FeBr2] (29) was prepared by mixing 
iPr

PONOP with FeBr2 in THF 

(Scheme I.1). The reaction gave 29 as a pale yellow powder in a very high yield (75 %). Due 

to the absence of either CO or 
t
BuNC as 6

th
 coordinated ligand, complex 29 is a paramagnetic, 

16e
-
 species exhibiting distorted trigonal bipyramidal geometry in the solid state (Fig. I1) 

Scheme I.1: Synthesis of 29. 

 

 

 

 

   

Fig. I1: X-Ray structure of 29. The thermal ellipsoids are drawn at 30% probability. The hydrogen 

atoms and the counter ion are omitted for clarity. 

When complex 29 was solubilized in dry THF and exposed to a CO atmosphere (0.5 

bar), the color turned immediately from yellow to deep blue yielding complex 

[(
iPr

PONOP)Fe(CO)Br2] (13). When 
t
BuNC was added the color turned green yielding 
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[(
iPr

PONOP)Fe(
t
BuNC)Br2](25).  Interestingly, when solid 29 was exposed to medium 

pressure of CO (2 bar) it rapidly converted into solid 13 in quantitative yield. 

 

I.1.2 Complex [(
Cy

PONOP)FeBr2]  

Similarly, [(
Cy

PONOP)FeBr2] (30) was synthesized by reacting of 
Cy

PONOP with 

FeBr2 in THF (Scheme I.2). Complex 30 resulted in a paramagnetic pale yellow powder 

obtained in a 72% yield.   

Scheme I.2: Synthesis of 30. 

When 30 was solubilized in dry THF and exposed to a CO atmosphere (0.5 bar), the 

color turned immediately from yellow to deep blue giving complex [(
Cy

PONOP)Fe(CO)Br2] 

(22). When 
t
BuNC was added, the color turned green yielding complex 

[(
iPr

PONOP)Fe(
t
BuNC)Br2] (24). As reported for 29, exposure of 30 to CO (2 bar) gave 22 as 

only product in quantitative yield. 

 

I.1.3 Complex [(
iPr

PONOP)Fe(CO)(H)(PEt3)]  

Complex [(
iPr

PONOP)Fe(CO)(H)(PEt3)] (31) was synthesized by reacting 

[(
iPr

PONOP)Fe(CO)(H)(CH3CN)] (15) in presence of a slightly excess of triethylphosphine 

(PEt3) (Scheme I.3). The main purpose of this synthesis was to prove that no catalytic 

behaviour would be observed by 31 in the hydrogenation reaction of aldehydes if the labile 

bromide ligand was replaced by a strong σ-donor ligand such as PEt3.  

 

 

 

 

 

Scheme I.3: Synthesis of 31. 
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As for the analogous iron complexes, the crystal structure of 31 indicated a distorted 

octahedral geometry. The hydride ligand is trans to the phosphine PEt3, while the CO is trans 

to the nitrogen of the pyridine (Fig. I2). 

 

 

 

 

 

 

 

Fig. I.2: X-Ray structure of 31; the thermal ellipsoids are drawn at 30% probability. The hydrogen 

atoms and the counter ion are omitted for clarity. 

Complex 31 was tested as catalyst for hydrogenation reaction of benzaldehyde 

following the catalytic conditions reported for 14 (Scheme I.4).  

 

 

 

Scheme I.4: Reaction conditions used for the hydrogenation reaction. Benzaldehyde (0.3 mmol), 

catalyst (0.015 mmol, 5 mol %), H2 (8 bar), solvent (3 ml). 

Complex 31 did not show any catalytic activity for the hydrogenation of 

benzaldehyde, suggesting that the bromine dissociation in Scheme 3.9 and 3.10 (see chapter 

3) is a key step for the reaction to occur.   

I.1.4 Color of the Fe-PONOP complexes  

The PONOP-type complexes synthesised have different colours depending on the 

ligands coordinated to the iron center (Fig. I3). For the bis-bromide compounds of the type 

[(
X
PONOP)Fe(CO)Br2] where X = 

i
Pr or Cy, the color is blue (complexes 13 and 22), for the 

analogous bis-chloride [(
Cy

PONOP)Fe(CO)Cl2] (23) the color is purple. When the CO was 

replaced by 
t
BuNC in complex [(

iPr
PONOP)Fe(

t
BuNC)Br2]  (24) the color is apple green. All 

the remaining complexes bearing the hydride ligand show a bright yellow color (complexes 

14, 15, 25, and 31). 
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Fig. I3: blue color (vial 1) for 13 and 22; purple color (vial 2) for 23; yellow color (vial 3) for 14, 15, 

25 and 31; apple green color (vial 4) for 24. All complexes were dissolved in THF.  

 

Fig. I4: UV-Vis spectra of complexes 13, 14, 22, 23, 24 and 25. All complexes were dissolved in 

dichloromethane.  
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I.2 Experimental  

Materials and methods: 

 All experiments were carried out under an inert N2 (g) atmosphere using standard 

Schlenk or glovebox techniques. Solvents were purified using a two-column solid-state 

purification system (Innovative Technology, NJ, USA) and transferred to the glove box 

without exposure to air. Methanol (99.8%, extra dry, over molecular sieve) was purchased 

from AcroSeal®. Deuterated solvents were purchased from Cambridge Isotope Laboratories, 

Inc., and were degassed and stored over activated 3 Å molecular sieves. All other reagents 

were purchased from commercial sources and were degassed by standard freeze-pump-thaw 

procedures prior to use. 1H and 31P spectra were recorded at ambient temperature on a 

Bruker Avance 400 spectrometer. 1H NMR chemical shifts were referenced to residual 

solvent as determined relative to TMS (δ 0.00ppm). GC-MS measurements were conducted 

on a Perkin-Elmer Clarus 600 GC equipped with Clarus 600T MS and Agilent J&W GC 

column, DB-5MS UI 25m, 0.250mm, 0.25 µm. IR measurements were recorded on powder 

samples at ambient temperature on a Varian 800 FT-IT Scimitar Series spectrometer. 

Elemental analyses were performed on a Carlo Erba EA 1110 CHN Instrument. HRESI-MS 

measurements were conducted at EPFL ISIC Mass Spectrometry Service with a Micro Mass 

QTOF Ultima Spectrometer.  UV-Vis-absorption spectra were recorded with a Varian 50 Bio 

UV-Vis spectrometer. 

 

Synthesis of complex [(
iPr

PONOP)FeBr2] (29):  

0.627g of FeBr2 (0.0029 mol) and 1g of 
iPr

PONOP (0.0029 mol) were mixed in 30 mL 

of dry THF in a round-bottom flask in the glovebox and the reaction mixture was stirred 

overnight. The color turned yellow and then darker. The day after the solution was filtered 

through a PTFE filter and concentrated. Addition of n-pentane promoted the precipitation of 

the product as a fine pale yellow powder that was filtered off and washed with additional n-

pentane (yield: 75%). Single crystals suitable for X-ray analysis were grown by diffusion of 

n-pentane in a concentrated solution of complex 29 in THF.  

Due to the paramagnetic feature it was not possible to analyze 29 with NMR 

techniques. Anal. calcd. for C17H31Br2FeNO2P2: C 36.52%, H 5.59%, N 2.45%. Found: C 

36.57%, H 5.62%, N 2.43%. ESI-MS (m/z, pos) not detected. 
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Synthesis of complex [(
Cy

PONOP)FeBr2] (30):  

0.35 g of FeBr2 (0.0016 mol) were suspended in 30 ml of dry THF in a round-bottom 

flask in the glovebox. Afterwards 0.86g of 
Cy

PONOP (0.0016 mol) were added and the 

reaction mixture was stirred for 54h. The color turned yellow and then darker. The reaction 

mixture was filtered through PTFE filters and concentrated. By addition of n-pentane the 

product as a fine pale yellow powder precipitated and it was filtered off and washed with 

additional n-pentane (yield: 72%). 

Due to the paramagnetic nature of the compound, it was not possible to analyze 30 

with NMR techniques. Anal. calcd. for C29H47Br2FeNO2P2: C 48.42%, H 6.59%, N 1.95%. 

Found: C 48.50%, H 6.61%, N 1.97 %. ESI-MS (m/z, pos) not detected. 

Synthesis of complex [(
iPr

PONOP)Fe(CO)(H)(PEt3)] (31): 

0.1 g of [(
iPr

PONOP)Fe(CO)(H)(CH3CN)] (15) (0.00016 mol) was dissolved in dry 

THF and 0.05 g of PEt3 (0.0004 mol) were added. The reaction mixture was stirred for 2 days. 

Successively, the solvent was removed under vacuum and the yellow powder that appeared 

was dissolved in a minimum amount of THF dry. By addition of an excess of n-pentane the 

product precipitated as fine yellow powder. The product was collected and washed with 

additional n-pentane (yield 64%). Crystals were obtained by diffusion of n-pentane in a 

saturated solution of 31 in THF. 

1
H NMR (400MHz, CD2Cl2, 20°C): δ 7.75 (t, 1H, 

3
JHH = 8.0 Hz, aryl-H4), δ 6.76 (d, 

2H, 
3
JHH = 8.0 Hz, aryl-H3,5), δ 2.98 (m, 2H, PCH(CH3)2), δ 2.86 (m, 2H,  PCH(CH3)2, δ 1.61 

(m, 12H, PCH(CH3)2), δ 1.48 (m, 6H, PCH2CH3), δ 1.27 (m, 9H, PCH2CH3)  δ 0.94 (m, 12H, 

PCH(CH3)2), δ -11.81 (dt, 1H,  
2
JHP = 64Hz Fe-H) ppm. 

31
P-NMR (162MHz, CD2Cl2, 20°C):  

δ 235.9 (d, PONOP), δ 20.21(t, PEt3) ppm.  

X-ray Crystallography  

The diffraction data were measured using Mo Kα radiation on a Bruker APEX II CCD 

diffractometer equipped with a kappa geometry goniometer. The datasets were reduced by 

EvalCCD and then corrected for absorption. The data were measured using Cu Kα radiation 

on an Agilent Technologies SuperNova dual system in combination with an Atlas CCD 

detector. The data reduction was carried out by Crysalis PRO. The solutions and refinements 

were performed by SHELX. The crystal structures were refined using full-matrix least-
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squares based on F
2
 with all non hydrogen atoms anisotropically defined. Hydrogen atoms 

were placed in calculated positions by means of the “riding” model.  

 X-ray Structural Analysis of 31: 

Crystal Data:  C25H47F3FeNO6P3S, 0.49 x 0.39 x0.31mm
3
, Monoclinic, P 2(1)/c, a=9.5162(5) 

Å, b=17.925(3) Å, c=20.0006(17)Å, α= 90.0°, β=97.485(6)°, γ=90.0°. T= 100(2) K, V= 

3382.5(7) Å
3
, Z= 4, ρc=1.366 Mg/m

3
, μ= 0.702 mm

-1
. 

Data Collection and Processing: 62627 reflections collected, -16 ≤ h ≤ 16, -18 ≤ k ≤ 19, -20 

≤ l ≤ 22, 11681 [R(int) = 0.0451]. 

Solution and refinement: Refinement method used Full-matrix least-squares on F
2
. 11681 

data with 0 restraints and 376 parameters. Goodness-of-fit on F
2
=1.188, largest diff. peak= 

0.649 e.Å
-3

and hole= -0.443 e.Å
-3

. Final R indices [I>2σ(I)]: R1 = 0.0439, wR2 = 0.0806, R 

indices (all data): R1 = 0.0663, wR2 = 0.0902. 

 

             Table I.1. Selected bond lengths and angles for 31. 

                                             Bond length [Å]                                         Bond angles [°] 

P(3)-Fe(1)  2.3290(5)    H(1)-Fe(1)-P(3) 178.2(11) 

H(1)-Fe(1)  1.40(3)   C(1)-Fe(1)-N(1) 171.72(7) 

Fe(1)-C(1)  1.7533(18)   N(1)-Fe(1)-P(1) 82.09(4) 

Fe(1)-N(1)  1.9960(14)   C(1)-Fe(1)-P(1) 96.90(6) 

Fe(1)-P(1)  2.1913(5)   N(1)-Fe(1)-P(3) 91.81(4) 

Fe(1)-P(2)  2.1906(5)   P(1)-Fe(1)-P(2) 153.45(2) 
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organic frameworks) for gas uptake reactions. The work resulted in 1 publication in Crystal Growth & 

Design. 

 Department of Chemistry, University of Parma, Italy (March 2009- Jun 2011) 

Three-month internship in the laboratory of Inorganic and Coordination Chemistry conducted with Dr. 

Pelagatti Paolo. Investigated MOF ruthenium based complexes for gas uptake reactions. The work resulted 

in 1 publication in Crystal Growth & Design. 

Research Interests 

My research focuses on the activation of small molecules from an organometallic and bioinorganic 

perspective. In particular, I have been working in hydrogen activation reaction developing synthetic models 

for the active site of [Fe]-hydrogenase, and well-defined iron-based systems bearing tridentate PONOP 

ligands. Only few iron complexes are known to activate hydrogen and the iron-PONOP systems synthesized 

not only activate hydrogen, but also show a catalytic reactivity and great chemoselective in the reduction of 

aldehydes. Kinetic studies have been performed in order to investigate the mechanism of the reaction. 

Accurate analytical procedures have been used for product characterization (NMR, HPLC, GC-MS, FT-IR, UV-

Vis, ICP). 

Teaching experience 

 Teaching assistant  

During my Ph.D. I was enrolled as teaching assistant for bachelor students completing c.800 

teaching hours (c.150 students per semester over 5 semesters). My main duty was to assist them 

on laboratory practical work and to correct the related reports. 

 

 Master students’ supervisor  
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I supervised three master students in their master projects over the past 2 years. I directed their 

research and assisted them in both the practical work in the laboratory and during the writing 

process of the final thesis.    

Professional qualifications 

Sep 14- present PRESIDENT - Swiss Young Chemists’ Association (Switzerland) 

 Organized the 13th national 2-day “Swiss Snow Symposium” for 60+ people (all 

Swiss universities attended) and raised funds from leading chemical companies. 

 Presented activities of the SYCA for the main board division of Fundamental 

Research’s approval. 

Feb 14- present 

 

 

 

 

Sep 14- Dec 14 

SCHOLAR - PreScouter – Technology scouting R&D network 

 Collaborated with an international team proposing a set of potential technologies 

to improve the product quality, recycling process, and product durability on three 

R&D projects (each for a F500 company).  

Venture Challenge programme  

 Active participation to the “Venture challenge” course aiming at explaining how to 
launch a start-up and concluded with the writing of a business plan an oral 
examination - EPF Lausanne (Switzerland). 

Publications  

 Simona Mazza, Rosario Scopelliti and Xile Hu “Chemoselective hydrogenation and transfer 
hydrogenation of aldehydes catalysed by iron (II) PONOP pincer complexes” Organometallics 2015, 34, 
pp 1538-1545. 

 

 Alessia Bacchi, Susan Bourne, Giulia Cantoni, Silvia A. M. Cavallone, Simona Mazza, Gift Mehlana, Paolo 
Pelagatti, Lara Righi “Reversible Guest Removal and Selective Guest Exchange with a Covalent Dinuclear 
Wheel-and-Axle Metallorganic Host Constituted by Half-Sandwich Ru(II) Wheels Connected by a Linear 
Diphosphine Axle”  Cryst. Growth Des., 2015, 15 (4), pp 1876-1888. 

 

 Alessia Bacchi, Giulia Cantoni, Matteo Granelli, Simona Mazza, Paolo Pelagatti, Gabriele Rispoli 
“Hydrogen Bond Optimization via Molecular Design for the Fabrication of Crystalline Organometallic 
Wheel-and-Axle Compounds Based on Half-Sandwich Ru(II) Units” Cryst. Growth Des., 2011, 11, pp 5039-
5047. 

 

Conferences 

 3rd COST-CARISMA meeting “Catalytic Routines for Small Molecule Activation”, Tarragona, Spain, 18th-20th 
March 2015: Oral presentation 

 Swiss Chemical Society Fall Meeting, Zurich, Switzerland, Sept 2014: Oral presentation 

 13th Swiss Snow Symposium, Saas-Fee, Switzerland, Feb 2015: Poster presentation 

Key skills

Laboratory 
machinery  

Maintenance responsible of a Gas Chromatographer and Mass Spectrophotometer (daily 
used by c. 12 people) for a period of three year. Tasks include: installation, calibration, 
replacing spare parts and troubleshooting. 

I.T. Office: Word; Excel; Power Point; Research databases: SciFinder, Reaxys; 
Chemistry software: MestReNova; ChemDraw; Mercury; GCMSsolution, ChemStation. 
 

Language

    Fluent:  English, Italian (native), French    Basic: Spanish  
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