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Résumé / Abstract

Résumé

Soient K un corps algébriquement clos de caractéristique p > 0 et Y un groupe classique
sur K. Aussi, soit X C Y un sous-groupe fermé connexe, maximal parmi les sous-groupes
fermés connexes de Y, et considérons un K'Y -module rationnel et irréductible V. Dans cette
thése, nous nous intéressons aux triplets (Y, X, V) tels que la restriction V|y de V au sous-
groupe X ait exactement deux facteurs de composition pour X, observant qu’il s’agit d’une
généralisation d’un probléme introduit par Dynkin dans les années 1950, depuis étudié par de
nombreux mathématiciens. En particulier, nous étudions le plongement naturel du groupe
Spin,, (K) & l'intérieur de Spin,, ;(K) ainsi que celui de SOs,(K) dans SLoy,(K) et en
déduisons des informations sur certains modules de Weyl.

Mots-clefs: Groupes algébriques, groupes classiques, théorie des représentations, multiplic-
ités de poids, modules irréductibles, facteurs de composition, régles de restrictions.

Abstract

Fix an algebraically closed field K having characteristic p > 0 and let Y be a simple algebraic
group of classical type over K. Also let X be maximal among closed connected subgroups of
Y and consider a p-restricted irreducible rational K'Y-module V. In this thesis, we investigate
the triples (Y, X, V) such that X acts with exactly two composition factors on V and see
how it generalizes a question initially investigated by Dynkin in the 1950s and then further
studied by numerous mathematicians. In particular, we study the natural embeddings of
Spin,,, (K') in Spiny,,,; (K') as well as SOs,, (K') in SLy, (/) and obtain results on the structure
of certain Weyl modules.

Key words: Algebraic groups, classical groups, representation theory, weight multiplicities,
irreducible modules, composition factors, restriction rules.
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CHAPTER 1

Introduction

In the 1950s, Dynkin [Dyn52| determined the maximal closed connected subgroups of the
classical algebraic groups over C. The difficult part of the investigation concerned irreducible
closed simple subgroups X of SL(V'). Indeed, in the course of his analysis, Dynkin observed
that if X is a simple algebraic group over C and if ¢ : X — SL(V') is an irreducible rational
representation, then with specified exceptions the image of X is maximal among closed
connected subgroups in one of the classical groups SL(V'), Sp(V) or SO(V). Here Dynkin
determined the triples (Y, X, V) where Y is a closed connected subgroup of SL(V'), V' is an
irreducible K'Y-module different from the natural module for Y or its dual, and X is a closed
connected subgroup of Y such that the restriction of V' to X, written V|, is also irreducible.
Such triples shall be referred to as irreducible triples in the remainder of the thesis.

In the 1980s, Seitz [Sei87| extended the problem to the situation of fields of arbitrary
characteristic. By introducing new techniques, he determined all irreducible triples (Y, X, V)
where Y is a simply connected simple algebraic group of classical type over an algebraically
closed field K having characteristic p > 0, X is a closed connected proper subgroup of Y
and V is an irreducible, tensor indecomposable K'Y -module. His investigation was then
extended by Testerman [Tes88| to exceptional algebraic groups Y, again for X a closed
connected subgroup.

The work of Dynkin, Seitz and Testerman provides a complete classification of irreducible
triples (Y, X, V) where Y is a simple algebraic group, X is a closed connected proper sub-
group of Y and V' is an irreducible, tensor indecomposable K'Y -module. In the 1990s, Ford
[For96],[For99] investigated irreducible triples (Y, X, V') in the special case where Y is of
classical type, the connected component X° C X of X is simple and the restriction V|xo
has p-restricted composition factors.



More recently, Ghandour |[GhalO] gave a complete classification of irreducible triples
(Y, X, V) in the case where Y is a simple algebraic group of exceptional type, X is a closed
disconnected positive-dimensional subgroup of Y and V' is an irreducible p-restricted rational
KY-module. Finally, in [BGT15|, [BGMT15| and [BMT], Burness, Marion, Ghandour and
Testerman treat the case of triples (Y, X, V) where Y is of classical type, X is a closed
positive-dimensional subgroups of ¥ and V is an irreducible tensor indecomposable KY'-
module, removing the previously mentioned assumption of Ford.

Now notice that if (Y, X, V) is an irreducible triple with X° simple such that [X : X°] = 2
and V|x. is reducible, then V|xo has exactly two direct summands. Knowing such direct
sum decompositions can yield information about the structure of V' and V|x, e.g. their
dimension or composition factors. In [For95|, Ford even applied his work (more precisely,
the methods used in the proof of [For96, Proposition 3.1|) to study representations of the
symmetric group. It thus seems worthwhile to relax the hypothesis, when considering the
action of simple subgroups.

In this thesis, we investigate triples (Y, X, V') where Y is a simply connected (so that the
weight lattice of the underlying root system for Y coincides with the character group of a
maximal torus of V) simple algebraic group of classical type over an algebraically closed field
K of characteristic p > 0, X is a closed connected subgroup of Y and V' is an irreducible,
tensor indecomposable, p-restricted KY-module such that X has exactly two composition
factors on V. Now if GG is a closed subgroup of Y such that X C G C Y, then X has exactly
two composition factors on V' if and only if one of the following holds.

1. The restriction V|q is irreducible and X has exactly two composition factors on the
KG-module V|g.

2. The subgroup G acts with exactly two composition factors on V, say Vi, V5, and both
Vilx, Va|x are irreducible.

Therefore it is only natural to start the investigation by assuming X is maximal among
closed connected subgroups of Y. Also, let F' : G — G be a standard Frobenius morphism
on G and denote by U the Frobenius twist of a given KY-module U. If V is an irreducible
KY-module, then the Steinberg Tensor Product Theorem (see Theorem 2.3.2) yields the
existence of irreducible p-restricted K'Y-modules Vi, ..., V} such that

vg‘/lFrl ®®VkF’k

Hence if X has exactly two composition factors on V, then there exists a unique j € Z+
such that 1 < j < k and V}|x has exactly two composition factors. Consequently, we shall
consider the situation in which X is maximal among connected subgroups of ¥ and V' is an
irreducible p-restricted K'Y -module. Finally, in the case where K has characteristic zero, we
refer the reader to [KT87, Proposition 2.5.1], in which the embeddings Sp,,, (K) C SLa,(K),
SOy, (K) C SLy,(K), and SOs,41(K) C SLg,41(K) are investigated.
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Statements of results

In this section, we record the main results of this thesis and comment briefly on the methods.
For starters, we fix an algebraically closed field K having characteristic p > 0 and refer the
reader to Chapter [2 for some background material, such as the construction and classification
of the irreducible p-restricted KG-modules for a semisimple algebraic group G over K, as
well as ways of computing weight multiplicities in these irreducibles. For such a group G,
we fix a maximal torus Tz and write Lg(\) to denote the irreducible KG-module having
highest weight A € X (Ty), where X (T) denotes the character group of Tg. Also, we
adopt Bourbaki notation [Bou68, Chapter VI, Section 4| concerning the labelling of the
corresponding Dynkin diagram of G. Finally, if V' is a KG-module on which G acts with
exactly two composition factors having highest weights p,v € X (Tg), we write V = p/v
for simplicity. We refer the reader to page [191] for a complete list of notations.

In Chapter Bl we let Y be a simple algebraic group of classical type over K having rank
n and let X be a maximal proper parabolic subgroup of Y. Here we may and will assume
that X = P, is the parabolic subgroup of Y obtained by removing the 7** node in the
corresponding Dynkin diagram of Y, for some 1 < r < n. We then consider a non-trivial
irreducible p-restricted K'Y-module V' and observe that in this situation, V|x is reducible
(see Lemma B.1]). Writing X = QL, where L is a Levi subgroup of X and @ the unipotent
radical of X, we consider the well-known filtration of K L’-submodules of V'

VOV,QI 2V, 12...2[V.Q" 2 [V.Q"'] =0, (1.1)

called the Q-commutator series of V' (see Section for more details). As @ < X, the
filtration (I.TJ) is a series of K X-submodules of V" and hence if we suppose that X acts with
exactly two composition factors on the latter, we immediately get £ = 1. A result of Seitz
[Sei87, Proposition 2.3] on the structure of the successive quotients of (ILI) then leads to
structural information on V|x and allows us to narrow down the possible candidates for V.
Finally, arguing by dimension on each of the aforementioned candidates leads to a complete
classification of triples (Y, X, V') satisfying the desired condition (see Theorem [3.2).

Next let P be an arbitrary proper parabolic subgroup of Y and suppose that V is an
irreducible p-restricted K'Y-module such that P has exactly two composition factors on V.
Then P is contained in a maximal proper parabolic subgroup X = ()L acting with exactly
two composition factors on V' as well, say Vi, Vs, such that Vi|p and Vs|p are irreducible.
By Lemma [3.T] again, one deduces that either X is maximal among parabolic subgroups of
Y, or L must be semisimple, which can only happen in one specific situation by Theorem
B2l An argument on the Q-commutator series of V' then shows the necessity for P to be
maximal, yielding the following result. (Here Ty and 77, are such that T, C Ty and we
let {\,..., ), {w1,...,w,_1} respectively denote the corresponding sets of fundamental

weights.)
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Theorem 1

Let Y be a simple algebraic group of classical type over K and let X be a proper parabolic
subgroup of Y. Also consider an irreducible KY -module V- = Ly (\) having p-restricted highest
weight A € Xt (Ty). Then X has ezactly two composition factors on V' if and only if X = P,
is maximal among parabolic subgroups of Y and Y, X, X are as in Table[1.1, where we give
A up to graph automorphisms.

Y X A V0L Dimensions
A, By A 0/0 L1
An(nz 2) P1 )\1 0/&)1 1,71,
P.(1<r<n) A wip/wer  rn—r+1
Pn )\1 wl/() n, 1
P Ni(l<i<d)  wiii/w; (1), (%)
Bn(n Z 2) P1 )\n wn_l/wn_l 271—1’ 2n—1
Cp(n>3) P, A w1 /wn_1 n,n
D,(n > 4) P, A\ wy /W1 n,n
Pl )\n wn—l/wn—2 2n—2’ 2n—2

Table 1.1: Triples (Y, X, V') where X is a maximal parabolic subgroup of Y. Here L’ denotes

the derived subgroup of a Levi subgroup of X and d = [”T“} the integer part of "TH

Remarks

In the fifth column of Table [Tl we record the dimension of each composition factor of V|
for completeness. Also, observe that Ay = B; = C; = Dy, By = Cy, Dy = A; X A; and
D3 = As, thus justifying the conditions on n in the first column of Table [[LIl Finally, notice
that the results in Theorem [l are independent of p.

We next focus our attention on the embedding of X = Spin,,(K) in Y = Spin,, ,,(K),
where we view X as the derived subgroup of the stabilizer of a non-singular one-dimensional
subspace of the natural module for Y. Fix Ty a maximal torus of ¥ and Tx a maximal
torus of X such that T'x C Ty and consider an irreducible K'Y-module V' having p-restricted
highest weight A € Xt (Ty). If p # 2, then it is easy to show (see Section [£3.] for example)
that X has at least two composition factors on V. while on the other hand if p = 2, then
V|x is almost always irreducible by [Sei87, Theorem 1, Table 1 (MR4)]. In other words,
V|x is reducible in general and we aim at determining whether or not X has exactly two
composition factors on V. It turns out that this question is related to the aforementioned
work of Ford [For96].

12



More precisely, Ford [For96, Section 3| considers an irreducible K'Y-module V having
p-restricted highest weight A = """, a,\, € XT(Ty), where {\1,...,\,} denotes a set of
fundamental weights for Ty. Assuming that the standard graph automorphism 6 of order 2
of X does not act trivially on V, he immediately gets a,, # 0. Furthermore, since interested
in pairs (A, p) such that X (#) acts irreducibly on V, Ford easily deduces that we may as well
assume a,, = 1, in which case X acts with exactly two composition factors on V, interchanged
by 6. Working with the Lie algebras associated to Y and X, he then argues on the possible
elements generating certain weight spaces in V' and finally concludes relying on the fact that
X can be seen as the subgroup of Y generated by the root subgroups corresponding to the
long roots for Ty.

Surprisingly, the argument of Ford can be generalized to fit the situation in which 6 acts
trivially on V| that is, V = Ly (\) for some p-restricted Ty-weight \ = 2:;1 a, A\, such that
a, = 0. In Chapter [, we determine every pair (\,p) such that X acts with exactly two
composition factors on V' = Ly (\), thus extending [For96, Theorem 3.3|. For more details,
we refer the reader to the preamble of Chapter [ in which a brief outline of the proof is
given. Here {wy,...,w,} denotes the set of fundamental weights for T'y.

Theorem 2

Let Y be a simply connected simple algebraic group of type B, over K and let X be the
subgroup of type D,, embedded in Y in the usual way. Also consider an irreducible non-
trivial KY -module V' = Ly (\) having p-restricted highest weight A\ = 3_"_ a,\, € XT(Ty),
and if X # apA,, let 1 < k < n be maximal such that ap # 0. Then X has exactly two
composition factors on V if and only if a, <1 and one of the following holds.

1. X=X, and p # 2.
2. A=\,
3. X is neither as in[dl nor(2, p # 2 and the following divisibility conditions are satisfied.
(a) p|a;,+a;+j—1i foreveryl <i < j < n such that a;a; # 0 and a, = 0 for
1< r<].
(b) p|2(a,+ar+n—Fk)—1.

Furthermore, if (A, p) is as in[d, [ or[3, then Ly (\)|x is completely reducible.

Remark

Let (A\,p) be as in 2 or Bl with a, = 1 in the latter case. Then the K X-composition
factors of V' have respective highest weights w = Z::_ll a,wy + (ap_1 + Dw, and o' = &’
If on the other hand (A, p) is as in [l or Bl with a, = 0 in the latter case, then the K X-

composition factors of V' have respective highest weights w = Zle (ply + O 1wy, and
k—
w' = Zr:f ayWy + (ak—l + 1)wk_1.

13



In the last three chapters of the thesis, we let n > 3 and consider the natural embedding
of X =850,(K) in Y = SLy,(K). Also, let {\1,...,Ao,_1} be a set of fundamental weights
for Ty and fixing a maximal torus T'x of X such that Tx C Ty, we get a set of fundamental
Tx-weights {wq,...,w,}. Finally, let V' = Ly (\) be an irreducible K'Y-module having p-
restricted highest weight A € X (Ty ).

In Chapter B, we consider the case where n = 3 and start by observing that the restriction
of A to T'x, say w, always affords the highest weight of a composition factor of V' for X. In
order to show the existence of a second K X-composition factor of V| it thus suffices to find
a dominant T'x-weight p € X (T') such that dim(V|x), > dim Ly (w),. Also, as soon as the
highest weight, say w’, of a second K X-composition factor of V' is known, then finding a
dominant Tx-weight v € X (7Tx) such that dim(V|x), > dim Lx(w), + dim Lx(w’), yields
the existence of a third composition factor of V' for X. Applying this method, we thus get
a smaller list of candidates for (A, p). We then conclude by comparing dimensions (using
[Liib01]), thus getting a complete classification of pairs (A, p) satisfying the desired property
(see Theorem [B.T]).

In Chapter [0l we assume n = 4 and consider a Dsz-parabolic subgroup Px = Qx Lx of X.
Following the idea of Seitz [Sei87, Proposition 2.8|, we first construct a canonical parabolic
P = QL of Y as the stabilizer of the filtration

W W.Qx] D [W,Q%] > ... 2 [W,Q%] D0

of the natural K'Y-module W. It turns out that L’ is simple of type A5 and if X has exactly
two composition factors on V) then L' acts with at most two composition factors on V/[V, Q]
(see Lemma [2.3.10). Consequently, a small list of candidates for (\,p) can be deduced
inductively thanks to the list obtained in the case where n = 3 and [Sei87, Theorem 1].

Again, arguing on weight multiplicities and dimensions then yields the desired result (see
Theorem [6.1)).

Finally, let n > 4 and assume a complete classification is known for every N < n. By
considering a D,,_;-parabolic subgroup of Pxy = QxLx of X and constructing a suitable
parabolic P = QL of Y as above, a shorter list of possible candidates can be obtained. How-
ever, the method described above to show the existence of a third K X-composition factor
of V requires a very good knowledge of certain weight multiplicities in V' and in the general
case, even the use of the Jantzen p-sum formula fails to give us enough information to proceed
further. Therefore, a complete classification was not obtained in this situation. Neverthe-
less, following the ideas of McNinch [McN98, Lemma 4.9.1], we were able to determine the
structure of certain Weyl modules for X (see Theorem [B below, for example), by embedding
them in suitable tensor products. This led to a partial answer to the question, recorded in
Theorem [8l Furthermore, we record a conjecture on what a complete classification should

look like, based on various examples. Notice that the conjecture holds in the cases where
n=34.

14



Theorem 3

Let' Y be a simply connected simple algebraic group of type Asn_1 over K, with n > 3, and
let X be the subgroup of type D,,, embedded in'Y in the usual way. Also let A and p be as in
Table I3, with p {1 n+ 1 in the case where X\ = 2\ + \; for some j # n — 1. Then X has
exactly two composition factors on the irreducible K'Y -module V- = Ly (X). Furthermore, if
n <4 and X has exactly two composition factors on an irreducible KY -module V' = Ly (\)
having p-restricted highest weight A € Xt (Ty), then X\ and p are as in Table[L.2.

A Conditions V0x

2\ pin 2w /0

3\ pin+1 3wy /wy

A2 (n odd) p=2 wo /0

A3 (n even) p=2 w3/ wy

A\, pF#2 2wy, 1 /2wy,

AL+ A pi2n—j+1 w1 + wj/wj—1
l<jyj<n—1

AL+ Aot pin+2 w1 + Wp—1 + Wy /Wn—2

AL+ Ao pin—1 W1+ Wp—o/Wn_1 + wp

A+ A pi2n—j+1 w1 + Wap—j/Wan—j+1
n+2<j<2n

20 + ) pli+2 pin+2 2w +wj/w +wj
l<j<n—-1

21 + A1 pln+1 2wy + wWpo1 4 wn /w1 + wWp_o
20 + Ao pln+4 2w1 + wp_a /w1 + wWp_1 + Wy,
201 + A pli+2, pin+2 2w+ woj/wi + Wop—ji1

n+1<j<2n

Table 1.2: The case SOq,(K) C SLs,(K).

Conjecture 4

Let'Y be a simply connected simple algebraic group of type As,_1 over K and let X be the
subgroup of type D,, embedded in'Y in the usual way. Also consider an irreducible KY -
module V' = Ly (\) having p-restricted highest weight X\ € X (Ty). Then X has exactly two
composition factors on V if and only if X and p are as in Table [1.2.

15



Consequences and additional results

Applying the method introduced in Chapter 2 Section 2.3 to efficiently use Freudenthal’s
formula together with the Jantzen p-sum formula and other techniques, the investigation of
the aforementioned embeddings lead to various results on weight multiplicities. If interested
in such multiplicities in the case where G is of type A3 over K, we refer the reader to Section
6.1l References to results on other weight multiplicities are recorded in Table [L.3]

G A Conditions L Reference

A, (n>3) aly + Ap_1 a>1 A—2...21 Lemma [6.1.3]
al] + A2 a> 2 A—3...321 Lemma

aA; + by + e\, abc > 0 A—1...1 Proposition [6.1.101

aXa + A1 a>1 A—12...21 Proposition [7.5.5]

B, (n > 2) a\ a A—2...2 Proposition [4.2.4]
ali + Ao a>1 A—12...2 Proposition [£.2.12

aX; + A\; a>1,2<j<n A—1...12...2 Proposition [£.2.18

D,, (n > 3) aX a>1 A—2...211 Lemma [[.2.2)
29 A—12...211 Lemma [T.4.T7

A2 + A 2<j<n-—1 A—12...211 Lemma [7.5.T2

Table 1.3: Some weight multiplicities.

In the course of the investigation of the embedding X C Y, where X = SO,,(K) and
Y = SL,,(K) are as above, we were able to generalize the idea of [McN98, Lemma 4.8.2] in
order to determine the structure of the Weyl module Vy (wy +w; + §;,—1w,) having highest
weight wy + w; + 0 ,—1wy, for p # 2 and 1 < j < n. The result, which was already known
for j = 2 (see [McN98, Lemma 4.9.2]) is recorded in the following theorem, whose proof
can be found in Section [T.3] We also record a direct consequence on the dimension of the
corresponding irreducible K X-modules.

16



Theorem 5
Let X be a simple algebraic group of type D,, over K and assume p # 2. Also fit 1 < j <mn
and consider the dominant Tx-weight w = wy + w; + 0j n—1wy,. Then the following assertions

hold.

1. If 1 < j <n—2, we have Vx(w) = w/wjifﬂ/ ;p(fn_jﬂ). Furthermore, if p divides
both 7 + 1 and 2n — J + 1, then VX( ) D) LX((A)JJ,_l) D Lx(Wj_l) D) LX(wj+1) D01 a

composition series of Vx(w).

2. If j = n— 2, we have Vx(w) = w/(wWy_1 + wy,)»™™Y /we” ") Moreover, if p divides
(n—1)(n+3), then Vx(w) D Lx(wn_3)*" ™S Lx (wp_1+w, )EP(”_U D 0 is a composition
series of Vx(w).

3. Ifw = w + wp_1 + wp, we have Vx(w) = w/2we”(" /QWEP(" Jw,! Ep("+2) Moreover, if p

divides n, then Vy(w) D Lx(2w,—1) ® Lx(2w,) O Lx(2w,_1) D 0 is a composition
series of Vx(w).

Corollary 6

Let X be a simple algebraic group of type D,, over K and assume p # 2. Also it 1 < j <mn
and consider the dominant Tx-weight w = wy + w; + 0; p—1wy,. Then

dim L (w) = (2;1:12) %—%(Hl) <j2+nl) —&(2n—j+1) <j2_nl)‘
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CHAPTER 2

Preliminaries

2.1 Notation

We first fix some notation that will be used throughout the thesis. Let G be a semisimple
algebraic group of classical type defined over an algebraically closed field K of characteristic
p > 0. Also fix a Borel subgroup Bg = UgTq of G, where Tg; is a maximal torus of G and Ug
denotes the unipotent radical of Bg. Let n = rank G = dim 7 and let II(G) = {aq,...,a,}
be a corresponding base of the root system ®(G) = &1 (G) U P (G) of G, where T (G) and
®~ (@) denote the set of positive and negative roots of G, respectively. Let

X(Tg) = HOm(Tg, K*)

denote the character group of Tz and write (—, —) for the usual inner product on the vector
space X (Tg)r = X(Tg) ®zR. Also let {Aq,..., A\, } be the set of fundamental weights for T
corresponding to our choice of base II(G), that is (\;, ;) = d;; for every 1 <i,j < n, where

2(\, @)

(@, a)

(A a) =

)

for every A\, € X (7). Set
XH(Tg) ={) € X(Tg) : (\,a) >0 for every a € I1(G)}

and call a character A € X (T) a dominant character. Every such character can be written
in the form A\ = >"  a,\,, where ay,...,a, € Zso. Finally, for a € ®(G), define the
reflection s, : X(Tg)r — X(Tg)r relative to a by s,(A) = A — (A a)a, this for every
A € X(T¢)r, and denote by # = #¢ the finite group (s,, : 1 < i < n), called the Weyl
group of G.
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2.2 Bourbaki’s construction of irreducible root systems

Let IT = {ay,...,a,} be a base of an irreducible root system of classical type ®. In this
section, we give a description of IT and the corresponding fundamental weights A\q,..., A\, in
terms of an orthonormal basis of a Euclidean space (E, (—, —)), as well as the description of
the action of the corresponding Weyl group # on ®. We also record the value of p = >~ A,
in terms of the aforementioned basis, as it is needed in Chapters [Bl, [l and [l We refer the
reader to [Bou68, Chapter VI| for more details.

221 =4, (n>2)

Let ® = A, (n > 2) and let {e1,...,e,41} be an orthonormal basis of the Euclidean space
E = R""! with standard inner product (—, —). We choose the labelling of the associated
Dynkin diagram as follows

oO—O0 -=--=-=-=-=-- -o0——0
1 2 n—1 n
and denote by I = {ay, ..., a,} a corresponding base of ®. Here the set ®* of positive roots

in ® corresponding to II is given by &+ = {a; + --- 4+ a;}1<i<j<n and ® can be realized
in F by setting o; = &; — €;41, for 1 < ¢ < n. One then easily checks that this yields
a;+ - +aj=¢ —¢cjy forevery 1 <i < j <n. Also using [Hum78| Table 1, p.69] gives

7 . n+1
M= e
=) & — £
(] T ’)’L—I—l T
r=1 r=1

n

from which one deduces that p = $>°"_ (n — 2r)e,41. For 1 <i < j < n, the element s.,_.,
exchanges ¢; and ¢;, leaving ¢, (k # 4, j) unchanged. Thus the Weyl group # = &,,;; acts
by permuting the indices of the ¢;, 1 < i < n+ 1. (Throughout this thesis, &; denotes the
symmetric group on {1,...,1}.)

2.2.2 =18, (n>2)
Let ® = B, and let {¢1,...,&,} be an orthonormal basis of the Euclidean space F = R", with

standard inner product (—, —). We choose the labelling of the associated Dynkin diagram as
follows

oO—O0 ——————— - -—>—0o

1 2 n—1 n
and denote by I = {ay, ..., a,} a corresponding base of ®. Here the set ®* of positive roots

in @ is given by & ={a; + -+ aj hi<icj<n U{i + -+ + 2aj01 + - -+ 20 Fi<i<j<n—1-
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2.2 Bourbaki’s construction of irreducible root systems

Also ® can be realized in E by setting a; = ¢; — ;41 for 1 < i < n—1, and o, = €.
Adopting the convention ¢,,.1 = 0, one checks that this yields

€ —E&jr1 = + -+,
5,-—|—€j:ai—l—---—l—aj_1+2aj—|—---+2an,

for 1 <1 < j < n. Also using [Hum78| Table 1, p.69| gives \; = g1+ -+¢;, for 1 <i<n-—1,
and X, = 1(e1+---+¢,), from which one deduces that p = ; S (2(n— 1) — 1)gpyy. Here
for 1 <i < j < n, the element s.,_., exchanges ¢; and ¢;, leaving &, (k # 4, j) invariant,
while for 1 < i < n, the element s., sends ¢; to —¢;, leaving ¢ (k # i) unchanged. Thus the
Weyl group # = S5, 6,, = (63)" - &,, acts by all permutations and sign changes of the ¢;,
1< <n.

2.2.3 &=C, (n>3)

Let ® = C,, and let {1, ...,&,} be an orthonormal basis of the Euclidean space E' = R", with

standard inner product (—, —). We choose the labelling of the associated Dynkin diagram as
follows

o—O0 ——————— - -——=—0o

1 2 n—1 n
and denote by IT = {ay, ..., a,} a corresponding base of ®. Here the set ®* of positive roots

in @ corresponding to II is given by

" ={ai + -+ ajhcigen U{ai+ o+ 2050 4 - 4+ 2000 + anhicigj<n—
U {20&1 + -+ QOén_l + an}lgign—l
and ® can be realized in E by setting o; = ¢; —¢;41 for 1 <i<n-—1, and «,, = 2¢,,. Again
one checks that this gives \; = &1+ --- 4+ ¢;, for 1 < i < n, from which one deduces that

p= Z::é (n — r)e,41. Here the Weyl group # = 65,16, = (6,)" - &, acts on the basis of
E exactly as in the case & = B,,.

224 ®=D, (n>4)

Finally, let ® = D,, and let {e1,...,e,} be an orthonormal basis of the Euclidean space
E = R", with standard inner product (—,—). We choose the labelling of the associated
Dynkin diagram as follows
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and denote by IT = {ay, ..., a,} a corresponding base of ®. Here the set ®* of positive roots
in ® corresponding to II is given by

O ={ai+ -+ anhicicn2U{ai + -+ ano + o hi<icno U {as + - + oy hi<icj<nt
Ufoi+ -+ + 20541 + -+ 2050+ 01 + @ Fi<i<j<n—3

and ® can be realized in E by setting a; = ¢; — g, for 1 <i<n—1, and o, = g,,_1 + €.
One checks that this gives

€ —¢&j=0a;+ -+ o,

Ertes =0+ F a1+ 205+ -+ 2009 + Qo +
st En1 = Qg+ -+ Qp,

EsteEn =05+ F+ Qpo+ Qp,

forevery 1 <i < j<mnand 1 <r<s<n-—2. Also using [Hum78, Table 1, p.69]| yields
Ai = et e for 1 <i<n—2 while A\,_y = 3(e1++ - ~Fen_1—65), and A, = L(e1+- - +e5),
from which one deduces that p = 3"" | (n —r)e,. Here for 1 <1i < j < n, the element s.,_.,
exchanges ¢; and ¢;, leaving ¢ (k # i,7) unchanged. Similarly, for 1 < ¢ < j < n, the
element s.,_. 5. 4., sends €; to —¢;, €; to —¢;, and leaves ¢, (k # 4, j) unchanged. Thus the
Weyl group # = (G,)"! - &, acts as the group of all permutations and even number of

sign changes of the ¢;, 1 < i < n.

2.3 Weights and multiplicities

Let G be a semisimple algebraic group defined over an algebraically closed field K of char-
acteristic p > 0, B = Bg = UT a Borel subgroup of GG, where T' = T is a maximal torus
of G and U = Uy is the unipotent radical of B, and let V' denote a finite-dimensional ratio-
nal K G-module. (Throughout this thesis, we shall only consider finite-dimensional, rational
modules.) Unless specified otherwise, the results recorded in this section can be found in
[Hum75l, Chapter XI, Section 31|. Recall first that V' can be decomposed into a direct sum

of KT-modules
V= V.
neX(T)

where for every p € X (T,
V,={veV:t-v=pu(t) for every t € T'}.

A character p € X(T) with V, # 0 is called a T-weight of V, and V), is said to be its
corresponding weight space. The dimension of V), is called the multiplicity of p in V and
is denoted by my (u). Write A(V') to denote the set of T-weights of V, and define a partial
order on the latter by saying that € A(V) is under A € A(V') (written p < A) if and only
if there exist non-negative integers ¢, (o € II) such that = X — %" co. We also write
i < A to indicate that p is strictly under A and set AT(V) = A(V) N XH(T). Any weight in
AT(V) is called dominant.
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2.3 Weights and multiplicities

The natural action of the Weyl group # of G on X(7') induces an action on A(V') and
we say that A\, u € X(T') are conjugate under the action of # (or # -conjugate) if there
exists w € # such that w\ = p. It is well-known (see [Hum78|, Section 13.2, Lemma A], for
example) that each weight in X (T') is #'-conjugate to a unique dominant weight. Also, if
A€ XH(T), then wA < A for every w € #. Finally, A(V) is a union of # -orbits and all
weights in a # -orbit have the same multiplicity.

Definition 2.3.1
Let G, B = UT and V be as above. A dominant T-weight A € AT(V) is called a highest
weight of V if {pe AT(V): A< u}=0.

Now by the Lie-Kolchin Theorem ([Hum75, Theorem 17.6]), there exists 0 # vt € V
such that (v%)g is invariant under the action of B. We call such a vector v* a maximal
vector in 'V for B. Note that since (v)g is stabilized by any maximal torus of B, there
exists A € X(T') such that vt € V). In fact, one can show that A € A*T(V).

2.3.1 Irreducible modules

In general, an arbitrary finite-dimensional K G-module V' can have many distinct highest
weights. However if V' is irreducible and v* € V) is a maximal vector in V' for B, then
V = GuvT, my(\) = 1, and every weight u € A(V) can be obtained from A by subtracting
positive roots, so that A is the unique highest weight of V. Reciprocally, given a dominant
weight A € XT(T), one can construct a finite-dimensional irreducible KG-module with
highest weight A. This correspondence defines a bijection

X*(T) +— {isomorphism classes of irreducible K G-modules}.

From now on, for A € X" (T"), we let Ls(X) denote the irreducible K G-module having
highest weight A. In addition, we say that A is p-restricted if p = 0 or 0 < (A, a) < p,
for every a € II. Tt is only natural to wonder whether a given irreducible KG-module
is tensor indecomposable or not (in characeristic zero, all irreducible modules are tensor
indecomposable) and a partial answer to this question is given by the following well-known
result, due to Steinberg (see [Ste63, Theorem 1] for a proof). Here F': G — G is a standard
Frobenius morphism and for V a KG-module, V" is the KG-module on which G acts via
g-v=Fg) v, forevery ge G,veV.

Theorem 2.3.2 (The Steinberg Tensor Product Theorem)

Assume p > 0 and G is simply connected. Let A € XT(T') be a dominant T-weight. Then
there exist k € Zso and p-restricted dominant T-weights o, pt1, ..., p. € X (1) such that
A=po+pmp+ -+ prpt and

Le(A) 2 La(po) ® La(pn)f @ -+ @ Lg(,uk)Fk.
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In view of Theorem [2.3.2] in positive characteristic, the investigation of all irreducible
KG-modules is reduced to the study of the finitely many ones having p-restricted highest
weights, on which we focus our attention in the remainder of this section. Let then A € X+(T")
be such a weight and denote by V. (g)(A) the Zc(G)-module over C having highest weight
A. (Here Z:(G) denotes the Lie algebra over C having same type as GG.) Choosing a minimal
admissible lattice in Vg, g)(A) allows one to “reduce modulo p”, providing the latter with
a structure of K'G-module, denoted Vi(A). We refer to [Hun78, 26.4] for a proof of the
existence of such a lattice. In the literature, Vi (\) is referred to as the Weyl module of
G with highest weight A\ and we recall that V() is generated by a maximal vector for B
of weight \. It is indecomposable and has a unique maximal submodule rad()\) (called the
radical of V(X)) such that Lg(A) = V() /rad(N).

Definition 2.3.3
A pair (G, p) is called special if G is simple and (®(G), p) € {(Bn,2), (Cy,2), (F4,2),(G2,3)}.

It is well-known (see [Hum78|, 21.3|) that the set of weights of Viz(A), written A(N), is
saturated (i.e. p —ia € A(N) for every p € A(N), @ € & and 0 < i < (u,«)), containing
all dominant weights under A (such weights are said to be subdominant to \) together with
all their % '-conjugates. Obviously A(Lg(N\)) € A(X) and it turns out that the converse also
holds if (G, p) is not special.

Theorem 2.3.4 (Premet, [Pre87])
Let X € XT(T) be a p-restricted dominant weight for T, and assume (G, p) is simple but not
special. Then A(Lg(N\)) = A(N).

2.3.2 Parabolic embeddings

For a € @, set U, = {uq(c) : ¢ € K}, where u, : K — G is an injective morphism of
algebraic groups such that tu,(c)t™! = u,(a(t)c) for every t € T and ¢ € K. Also for J C 11,
denote by ®@% the subset of ®* generated by the simple roots in J and define the opposite
of the standard parabolic subgroup of G corresponding to J to be Py = Q) ;L ;, where

Ly=(T\Usq:a€J), Q;=(U_p:p5€d —F)

respectively, denote a Levi factor of P; with root system ®;, respectively the unipotent
radical of Pj;. Finally, let V' = Lg(A) be an irreducible KG-module having p-restricted
highest weight A € X+(T).

Definition 2.3.5
Let p be a T-weight of V) so yp =\ — Zaen cav, With ¢, € Z>( for every a € II. Then the

Qu-level of pis Y cr_j Ca-
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2.3 Weights and multiplicities

Following the ideas of [Sei87, Section 2|, we define a series of KL j-modules by setting
[V,Q5% =V and [V, QY] = (qv —v : v € [V, Q5 "],q € Q,), for every i € Z¢. The flag

VOIV,Q, D [V,Q3]D...00 (2.1)

is called the @ j-commutator series of V. Observe that for every i € Z>(, the KL j;-module

[V, QY] is Qj-stable as well, making (2.I)) a series of K P;-modules. We now record a few

results on this filtration, starting with a description of its first quotient V/[V,@,]. In the
remainder of this section, we let Ty, = TN L.

Lemma 2.3.6
The K L;-module V/[V, Q] is irreducible with highest Ty, -weight )\|TL,J.

Proof. See [Smi82| or [Sei87, Proposition 2.1]. O

The following consequence of Lemma makes it easier to compute weight multiplic-
ities in certain situations. We leave the easy proof to the reader.

Lemma 2.3.7
Let J and V' be as above, and consider p =\ — >
where 1/ = ’u|Tsz and V' = VL&()\|TL&).

cija; € A(V). Then my (u) = my (1),

jedJ

From Lemma 2.3.6] we know that the first quotient of (2.I)) is irreducible as a KL'-
module. The next result gives a description of the remaining terms and successive quotients

of the Q) ;-commutator series of V' using the notion of @) ;-levels introduced above. We recall
that the pair (G, p) is special if ((G), p) € {(Bu, 2), (Cuy 2), (1, 2), (Ga,3)}.

Proposition 2.3.8
Let i € Zso be a non-negative integer and suppose that (G,p) is not special. Then the
following assertions hold.

1. [V,Q4] = @V, the sum ranging over the weights i € X (T) having Q -level at least i.

2. [V,Q5/ IV, Q" =2 @V, the sum ranging over the weights p € X(T) having Q s-level
exactly 1.

Proof. See [Sei87, Proposition 2.3]. O

Now let Y be a simply connected simple algebraic group of classical type over K and
let X be a closed semisimple subgroup of Y acting irreducibly on W = Vi (\;). Assume
(Y, p) non-special and let Py = Qx Lx be a parabolic subgroup of X. One can use the Q x-
commutator series of the natural KY-module W to construct a parabolic subgroup of Y
with some nice properties. This construction was initially introduced by Seitz.
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Lemma 2.3.9
The stabilizer in'Y of the Q) x-commutator series of W is a parabolic subgroup Py = Qy Ly
of Y which satisfies the following properties.

1. Px <Py and Qx < Qy.
2. Ly = Cy(Z) is a Levi factor of Py containing Lx, where Z = Z(Lx)°.

3. If Ty is a maximal torus of Y containing Ty, then Ty < Ly.

Proof. See [Sei8T, Proposition 2.8| or[For96, 2.7]. O

Finally, let Y, X and Px be as above, with P~ = )y Ly the parabolic subgroup of Y
given by Lemma [23.9] and let V' be an irreducible K'Y-module having p-restricted highest
weight. Recall that by Lemma 2:3.6, the K Ly-module V/[V, Qy] is irreducible.

Lemma 2.3.10
If X has exactly two composition factors on V, then either Lx acts irreducibly on V/[V, Qy]
or has exactly two composition factors on it.

Proof. By assumption, there exists an irreducible maximal K X-submodule M of V. We have
[V /M ,Qx] = ([V.Qx] + M)/M, which gives the isomorphism

~V
Y wvaxran =M / [V/M.Qx] - (22)

The latter being irreducible for Ly by Lemma 230 we get that [V, Qx|+ M is a maximal
K Lx-submodule of V. Hence considering the series V- O [V, Qy]| + M D [V,Qx]+M D0

gives either

V.Qy]+ M=V or[V,Qy] C[V,Qx]+ M.

In the former case, observe that M ¢ [V, Qy] (since M C V), so that we immediately
get [M,Qx] C MN[V,Qx] CMN[V,Qy| € M, and as M is irreducible as a K X-module,
Lemma applies, yielding [M, Qx| = M N[V, Qy]. Therefore since [V, Qy| + M =V, we
have

Viv.Qel = M/(n(v.Qv)) = M/IM,Qx]
hence the irreducibility of V/[V, Qy] for Lx.

In the case where [V,Qy] C [V,Qx] + M, first observe that if M C [V,Qy] (so that
V,Qy] = [V,Qx]+ M), then [V, Qy] is a maximal K Lx-module of V' by (22), so the result
holds in this situation. If on the other hand M ¢ [V,Qy], then consider the filtration of
K L x-modules

V/v.Qvl > (V.@xI+ M)/ [v.Qv) 20.
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2.3 Weights and multiplicities

Using (2.2) shows that ([V,Qx] + ]\4)/[1/’7 Qy] isa maximal K Ly-submodule of V/[V, Qy],
thus in order to complete the proof, we only need to show that ([V,Q@x]+ M)/ [V,Qy] is
irreducible as a K Lx-module. As above [M,Qx] = M N[V, Qy], so that

An application of Lemma then yields the desired result. O

2.3.3 Weight multiplicities

Since knowing the multiplicity of a given T-weight in V() is a first step in computing its
multiplicity in Lg (M), we introduce a way of calculating my,, () for a weight ; subdominant
to a given A € XT(T'), using the well-known Freudenthal’s formula. Set

d(A, ) = 2N+ p, A = p) = (A =, A — p), (2.3)
where p denotes the half-sum of all positive roots in ®, or equivalently, the sum of all
fundamental weights, as defined in Section The following formula gives a recursive way
to compute the multiplicity of p in Vg(A). We refer the reader to [Hum78, Theorem 22.3]
for more details.

Theorem 2.3.11 (Freudenthal’s Formula)
Let X be as above and let p € X(T') be such that < A. Then the multiplicity of u in Vg(\)
1s given recursively by

my(y) (1) = d(/\2, 0 DO myeon(p+ i) (i + ia, a).

>0 a>0

Assume rank G = n and consider A =Y "_, a, A\, € XT(T). Write AT(X) = AN)NXT(T)
and let p € X(T) be such that p = A — >, ¢, € AT(N) for some ¢4,...,¢, € Zso.
Adopting the notation A\g = \,41 = 0, we then define

i—1 n+1 n
Hix = E ar)\r + I)\z + E aT’)\T’ - E CrQy,
r=0 r=i+1 r=1

for every 1 <i <n and x € Z-. (Observe that \; ,, = A and p; o, = p for every 1 < i < n.)
Finally, for 1 < i < n, write S; = {z € Z : x > a;}. Using Theorem 2.3.11], we study the
value of my(x, ) (tiz) for 1 <i <n and z € S; satisfying a certain condition.

Proposition 2.3.12
Let K, G be as above and let X\ = >""_ a,\, € XT(T). Also let j1 < X be a dominant T -weight
and assume the existence of 1 < i < n such that

mVG(Ai,z)(Mi,w + ]O‘) = mVG(M,ﬁ(MLy + ]O‘) (2'4)
for every oo € ®*, 2,y € S;, and j € Zwo. Then my,n, ,)([ie) = My, (1) for every xz € S;.
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Proof. Write p=XA—=3""_, ¢, If ¢; = 0, then set J = IT — {«;} and adopting the notation
introduced in Section 2.3.2] consider the parabolic subgroup P; = Q) ;L; of G. Denote by

H=L)=Us, : 1 <r<n,r#i

the derived subgroup of the Levi subgroup of P;, so H is semisimple and J is a base of the
root system of H. Hence (\; )7, = Az, and (wiz)|r,= |z, for every x € Zs, so that an
application of Lemma 2.3.7 yields

My, ) (Hie) = My (g, (1)

for every x € Z>(. Therefore mVG(Ai’Z)(pi,x) is independent of z if ¢; = 0 and the result holds
in this situation.

Assume ¢; # 0 for the remainder of the proof and denote by Z[X], (respectively, Z[X]<,)
the set of all polynomials in the indeterminate X with coefficients in Z and having degree r
(respectively, at most r). Writing v = \; ; — f1; ., we get

d()\i,xa ,uz,:c) = 2()\175(; + p, 1/) — (I/, l/)

i—1 n
= 2¢;( N\, ) + 2 Z (arAr,v) + Z (a A, v) — (v, V)
r=1 r=i+1

for every « € Z~, and since v = 3", ¢, is independent of x, there exists f € Z[X]; such
that d(\; 4, i) = f(z) for every x € Z~( (and hence for every x € S; as well). Also, one
easily checks that by (2.4]), there exists g € Z[X]<; such that

()

g
mVG(Ai,z)(Mi,x) = m

for every z € S;. Now by Theorem 2.3.TT] % € Z for every z € S;, showing the existence

of h € Z[X] such that g = hf. Therefore deg(f) = deg(g) and we get that h € Z, from which
the result follows. O

We next use Theorem 2.3.11] together with Proposition 2.3.12 in order to determine

weight multiplicities in various Weyl modules for a simple algebraic group of type A, over
K, starting with the following well-known result.

Lemma 2.3.13
Let G be a simple algebraic group of type A, over K and fix a,b € Z~q. Also consider the
T-weight X = a\; + b\, and let p =X — (a; + -+ ). Then

my o (1) = n.
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2.3 Weights and multiplicities

Proof. Since (o, a) = 1 for every a € @ (as all roots in ® are long in this situation), we have
(a, B) = 3(a, B) for every a, 3 € ®. Here T = {o, + -+, : 1 <7 < s < n} and one
easily shows that

My, (n,) (M1 + Jo) = 651 (2.5)
for every x,j € Z+y and o € ®*. On the other hand, a straightforward computation yields
the existence of k € Z such that d(A\y ,, p1..) = x + k for every © € Z~o. Now using (2.5]), we

successively get

Z Z mVG(Al,x)(/’LLIE +ja) (e + jos ) = Z (12 + a, @)

7>0 a>0 a>0
n

= (p1a0n) +1
r=1

= §n$+l,

where | = [®F[+>" 3" (14,00 + -+ ) € Z is independent of z. Therefore an
application of Theorem [2.3.11] yields

mVG()‘l,r)(lU“lvl’) = n;c:—]fl’ (26)

for every x € Z~¢. Finally, notice that (2.1) holds for any z € S; (as S; C Z~o) and hence
Proposition 2.3.12 applies, so that (2.6) translates to my, (@) = %ﬂfl for every x € S;. As
my,, ) (1) is independent of x, the result follows. O

Lemma 2.3.14
Let G be a simple algebraic group of type A, over K and fit a € Z~1. Also consider the
T-weight A = al1 + N1 € XT(T) and let p =X — (200 + -+ + 20,1 + ). Then

1

my, () (1) = 5(" — Dn.

Proof. Proceed exactly as in the proof of Lemma [2.3.13] first observing that thanks to the
latter, we have
1 if a = ap;

m x+ ) =
VG(ALx)(,Ul, J ) {5j,1(n_ 1) otherwise

for every x > 1, j € Z-q and a € @, so that Proposition 2.3.12 applies (with S; = Z+,),
yielding my,n) (1) = myy(a,,)(H1,2) for every @ € S;. Again, one easily shows the existence
of k,1 € Z such that d(Ay 4, p1 ) = 22 + k for every z € S; and

. . 1
DY Ty (e + 50) (e + jo ) = S(n=Dnz+1.

7>0 a0
Therefore an application of Theorem 2.3.11] yields my, (1) = %ﬁ% for every x € Sy,
and arguing exactly as in the proof of Lemma 2.3.13] completes the proof. O
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Finally, assume G is of type A, and let A\ = >_"_ a,\,, where aja, # 0. Also let
Iy ={r1,...,rn,} be maximal in {1,...,n} such that r, <... <ry, and HTE[A a, # 0.

Proposition 2.3.15
Let G be a simple algebraic group of type A, over K and consider the dominant T-weight
A= > ax\, where aja, # 0. Also let Iy = {ri,...,rn,} be as above and consider
w=A— (g +---+ay,). Then

Ny

my, ) (1) = H (rs —ric1 +1).
i=2

Proof. First assume Ny = 2, that is, [y = {1,n} and A = a1 A\; + a,\, for some ay, a,, € Z~o.
Using Lemma [2.3.13] one gets my, (1) = n and hence the result holds in this situa-
tion. Moreover, since my (¢ + oq + -+ + o) = 1 for every 1 < r < n one gets
Yo my (gt o+ -+ o) = n = my,n(n). Proceeding by induction on Ny, we will
show that

n N
My () = Y mygoy(p+on 4+ o) = [[ (i —rics +1). (2.7)
r=1 =2

Assume the existence of Ny € Zo such that ([27) holds for every N = >"_, al\, with
ajal, # 0 and 2 < Ny < Ny, and let A € X+ (T') be such that Ny = Ny. An appropriate use
of Lemma 2.3.7and our induction hypothesis shows that my, (¢ + ) = my, ) (1,0 + @)

for every x € Z~q and a € . Therefore

My, (1) = Myg ) (,2) (2.8)

for every x € Z-o by Proposition 2.3.121 Now a straightforward computation yields the
existence of k € Z such that d(\y ., u1.) = « + k for every x € Z~, as well as [ € Z such
that

Z My, (a ) (H1e + ) (e + o, a) = % Z my, o) +oq + -+ ap)r+ L
acdt r=1
Arguing as in the proof of Lemma 2.3.13 (using Theorem 2.3.11] and (2.8])), one shows
that my, () = Y on; My (e + a1 + - - 4+ a,). Moreover, since Nty +ta, < Ny and
w+ag+---+a, is # -conjugate to u+ag +- - -+ a,,—1 forevery 1 < r < ry—1, our induction
assumption applies and we have my, (1) = romy o (1 +oy +- - -+ y,—1). Finally, another
application of the induction hypotheses yields

N
My (e + o1+ - 4 o) = [[ (i = rica +1)
i=3
and thus my, ) (@) = ro vaig (ri—risi+1) = HZN;Q (r;y —ri—1+ 1) as desired, completing
the proof. O
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2.3 Weights and multiplicities

Assuming G simple, we now record some preliminary results on weight multiplicities
in irreducible K G-modules. Let then V' = Lg(A) be an irreducible K G-module having p-
restricted highest weight A = Y""_, a,\.. We refer the reader to [Tes88, Proposition 1.30] for
a proof of the next result, used implicitly in the remainder of the thesis.

Lemma 2.3.16
Let A and V' = Lg(X\) be as above, with a; > 0. Then pn = X\ — da; € A(V) for every
1 <d < a;. Moreover my(u) = 1.

We saw above (see Theorem 2:34) that if (G, p) is not special, then the set of weights
A(V) is saturated, yielding the following result. Again, we shall apply it without explicit
reference.

Lemma 2.3.17
Suppose that (G, p) is not special and let € A(V'). Then p—ra € A(V) for every a € &
and 0 <1 < {(u, ).

Suppose that G is a simple algebraic group of classical type over K. In [Sei87, Section 6],
Seitz proved that if my (u) < 1 for every u € X(T'), then G, X and p are as in Table 211

G P A

Ap(n>1) any Ai (1<i<n)
aii,aX, (a>1)
pla+b+1 al+b\iy (1<i<n-—1)

B,(n >2) any ALy A

Cy(n >3) any A1, A
pl2a+1 a\,
pl2a+3 A1+ a),

Dn(n Z 4) any )\1, )\n—la )\n

Table 2.1: Modules with 1-dimensional weight spaces.

Now it turns out that weight spaces of K G-modules as in Table 2.1] are indeed 1-
dimensional. We refer the reader to [ZS87], [2S90], and [BOS14] for a proof of this result.

Theorem 2.3.18
Let G, A\, and p be as in Table[2Z1. Then my (u) < 1 for every p € X(7T).
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To conclude this section, we assume G is simple of type A,, (n > 2) over K and consider
the T-weight A = a); +b\;, with ab # 0, and 1 < ¢ < j < n. By Lemma 2317, the character

M:)\—(COAi+Oéi+1+"'+OKj)

is a T-weight of V' = Lg(A) for every 1 < ¢ < a+ 1. Furthermore, its multiplicity is given by
the following lemma. We refer the reader to [Sei87, Proposition 8.6] or Proposition .1.3] for
a proof in the case ¢ = 1. The proof for the general case is entirely similar, hence the details
are left to the reader.

Lemma 2.3.19
Let G, X\ and p be as above, with 2¢ < a + 1. Then the T-weight pu is dominant and its
multiplicity in V = Lg(\) is given by

my (1) = j—1 ifpla+b+j—1i;
j—1t+1 otherwise.

2.4 Some dimension calculations

In this section, G' denotes a simply connected simple algebraic group of rank n over K and
V = Lg(A) an irreducible K G-module having p-restricted highest weight A € X (7). In
general, the dimension of V' is unknown, or at least there is no known formula holding for A
arbitrary. Nevertheless, the dimension of V() is given by the well-known Weyl’s dimension
formula (or Weyl’s degree formula), whose proof can be found in [HumT78, Section 24.3|.

Theorem 2.4.1 (Weyl’s Degree Formula)
The dimension of the Weyl module Vg(\) corresponding to X € X (T is given by

dimVe(n) = [ X2

a€q>+ <p? a>

Let G = CL,(K) € {A,, By, Cy, D,,} be a classical algebraic group over K having rank n,
and for 0 < i < 2, set & = {a = aja1+- - +a,0, € P : a; = i}. Clearly @7 = &f LD LIPS
thanks to the description of ®* given in Section 2.2l and using Theorem 241l one easily
sees that

dimVe() = [ ] % dim V(3), (2.9)

+ et
acd Ud,

where G is a simple algebraic group of type CL,_1(K) over K and A = Z?:_ll (A, Q1) N1
In [Hum78, Section 24.3|, explicit formulas are given for dim Vz(\) for G of type As, B,
Go, and A arbitrary, and using (2.9), one checks that the following result holds. (Note that
similar expressions can be found for every type of irreducible root system.)
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2.4 Some dimension calculations

Proposition 2.4.2
Assume G has type A, over K and let X = Y_"_ a,\, be a dominant T-weight. Then the
dimension of Vg () is given by

n

dimVG(A):(Hl—ll) 11 (i(ak+1)).

=1 '/ 1<i<j<n Nk=i

The following result gives a way to efficiently compute the dimension of a given irreducible
KG-module V, provided that the multiplicity of every weight in AT (V') is known. Its proof
directly follows from [Sei87, Theorem 1.10].

Proposition 2.4.3
Let V' be as above and for a dominant weight p € X+(T), consider the subgroup W, of W
defined by W, = (sq : o € Il with (p, ) = 0). Then

dimV = )" [#: ¥ my(p).

HEXT(T)

We now record some information on the dimension of various irreducible K G-modules,
starting with the following result on the symmetric powers of the natural KG-module for G
of type A, over K. We refer the reader to [Sei87, Lemma 1.14] for a proof.

Lemma 2.4.4

Let G be a simple algebraic group of type A, over K and consider an irreducible KG-module
V' = Lg(\) having p-restricted highest weight X = a\y, where a € Zsg. Then V = Sym® W,
where Sym® W denotes the a'® symmetric power of the natural K G-module W. In particular,

we have
dim V = (“ + ”) .
a

The dimension of the exterior powers of the natural KG-module for G of type A, can
easily be determined as well, using Proposition 2.4.3] and the fact that AT (Vi (N\;)) = {\i},
this for every 1 < i <n. The details are left to the reader.

Lemma 2.4.5

Let G be a simple algebraic group of type A,, over K and consider an irreducible KG-module
V = Lg(\) having highest weight A = \;, where 1 <i < n. Then V = Vg(\) = \'W, where
/\i W denotes the i" exterior power of the natural KG-module W. In particular, we have

dimV = (”jl)
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Assume p # 2, fix 1 <i < n —1 and let G be a simple algebraic group of type D,, over
K. Then by [Sei87, Theorem 1, Table 1 (14, I5)|, we get that Lg(A; + 6;,—1\,) is isomorphic
to the restriction to G of the i*" exterior power of the natural module for G’ of type As,_;
over K. Using this observation together with Lemma [2.4.5] one shows the following result.

Lemma 2.4.6
Assume p # 2, let G be a simple algebraic group of type D,, over K and consider an irreducible
KG-module V = Lg(\) having p-restricted highest weight X = X\;+0; n—1An, where 1 <1i < n.

Then V = Vg(\) and
dimV = (i”) .

A proof of the next Lemma, concerning the dimension of the irreducible KG-module
Lg(2M\,—1) for G of type D, can be found in [BGT15, Lemma 2.3.6].

Lemma 2.4.7
Let G be a simple algebraic group of type D,, over K and consider an irreducible KG-module
V' = Lg(\) having highest weight A\ = 2\, _1. Then

: 7t afp=2
dim Lg(\) = {l (2n

5 (%) otherwise.

Using Lemma 2.3.19] together with Proposition 2.4.3] we now determine the dimension
of La(A + Aj), where 2 < j < n. We introduce the following notation: for [ € Z>( a prime,
let € : Z>o — {0, 1} be the map defined by

1 if 1]z
el(z) :{ |

0 otherwise.

Lemma 2.4.8
Let G be a simple algebraic group of type A, over K, fir 1 < j < n and consider an irreducible
KG-module V= Lg(X) having highest weight X = Ay + X\;. Then

. . (n+2 . n+1
dlmV—j(j+1)—€p(J+1) (j—l—l)’

Proof. First observe that AT(X) = {\, A\;j11}, where we adopt the notation A,+; = 0. An
application of Proposition [Z4.3] and Lemma 2319 thus yields

dimV = [6n+1 . 6j_1 X Gn_j+1] + [6n+1 . 6j+1 X Gn—j] Il’lv(>\j+1),

where my (A\j11) =7 — €,(j + 1). An elementary computation then completes the proof. O
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2.5 Lie algebras

Finally, let G be a simple algebraic group of type A, over K and consider the dominant
T-weight A = 2)\;+\,,. Again, one easily checks that AT(\) = {\, Ao+, A1}, and proceeding
exactly as in the proof of Lemma [2.4.§ yields the following result. We leave the details to
the reader.

Lemma 2.4.9
Assume p # 2, let G be a simple algebraic group of type A,, over K and consider an irreducible
KG-module V- = Lg(\) having highest weight X\ = 2)\; + \,,. Then

dim V = %(n +1)(n(n +3) — 26, (n +2).

2.5 Lie algebras

In this section, we recall some elementary facts on Lie algebras, their representations, as well
as their relation with algebraic groups. Most of the results presented here can be found in
[Hum78, Chapter VII| or [Car89, Chapter 4].

2.5.1 Structure constants and Chevalley basis

Let K be an algebraically closed field having characteristic zero and let .Z be a finite-
dimensional simple Lie algebra over K. Fix a Borel subalgebra b = by of £ containing a
Cartan subalgebra hh = ho of £, and let 1T = {ay,...,«,} denote a corresponding base of
the root system ® of .Z. Recall the existence of a standard Chevalley basis

B ={en, fa=C€_a,ha a€d1<i<n}
of £, whose elements satisfy the usual relations (see [Car89, Theorem 4.2.1]). Forall o, 5 € ®
such that a + § € @, we have
[eas €5] = Nia,pyeats = £(q + L)eats, (2.10)

where ¢ is the greatest integer for which a@ — g8 € ®. The N(, ) are called the structure
constants. Now one can easily check that for any pair of roots («, ), we have

Nega) = —Na,p) = N—a,-8); (2.11)

and using the Jacobi identity of ., one can prove that for every «, 3,7 € ® satisfying

a+ B8 +v=0, we have

Nwp) _ Nen _ Noo
()~ (awe) ~ (B.B) (212)

Finally, one can show (see the proof of [Car89, Theorem 4.1.2]) that for every «, 3,7, € ®
such that o + 8 4+ v 4+ 0 = 0 and no pair are opposites, we have

Na,8)N(y.6) N(y,0)N(s,6) Nig.y)Na,s)
(a+p,a+p5) (v+av+a) (B+7,6+7)
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Following the ideas in [Car89, Section 2.1|, we fix an ordering on ®* by saying that o < 3
if eithera =f or f —a = Z?:l c;a; with the last non-zero coefficient ¢; positive. We shall
also write a < f if a < 8 but a # .

Definition 2.5.1
An ordered pair of roots («, 8) is special if a + 5 € ® and 0 < a < . Also, such a pair is
extraspecial if for all special pairs (v, ) satisfying v+ 6 = o + 3, we have a < 7.

Remark 2.5.2
In view of Definition 25.1], one immediately notices that if v € ®*, then either v € II or
there exist unique «, f € & such that a + = v and («, ) is extraspecial.

Now by [Car89, Proposition 4.2.2|, the structure constants of a simple Lie algebra &
are uniquely determined by their values on the set of extraspecial pairs, for which we can
arbitrarily choose the sign in (2I0). Throughout this thesis, we shall always assume that
Nia,p) > 0 for any extraspecial pair («, 3).

Lemma 2.5.3
Let £ be a simple Lie algebra of type A, over K, ® the corresponding root system and
II = {ay,...,a,} a base of ®. Then the extraspecial pairs are (o, a1 + -+ + o), where

1 <1< j <n. Moreover Nt taparsrtta;) = L forevery 1 <1 <r < j<n.

Proof. We first show that the extraspecial pairs are as mentioned, starting by considering
v € & such that v ¢ TI. By the description of ®* recorded in Section 2.2.1] there exist
unique 1 <14 < j < n such that v = o; + - - - + a; and one easily sees that the special pairs
(a, ) satistying oo + 3 = v are (a; + -+, 0441 + -+ + @), where i < r < j — 1. The
assertion on extraspecial pairs then immediately follows from remark and hence in the
remaining of the proof, we shall assume N(q, a;,+-+a;) = 1 for every 1 <4 < j <n thanks
to (2.10) and our assumption on the positivity of structure constants.

We next suppose that 1 <1 < r < 7, in which case applying (2.I3)) to the roots a = ay;,
f=—(;+ +a),7v=—(p1+ - +a;) and § = a;11 + -+ - + ¢ yields

0 = Na,p)Niv.6) T NgyNias)-

Now by ZII), Nt tararpitta;) = —N@n)- Also, by the r = i case, we know that
Nia,sy = 1. Finally, by (2.I1I), (2.I2) and the r = ¢ case again, we get N, g = —1 and
Ny = Nearsi+-tajaipr+-+ay), 0 that

N(ai+"'+ar7ar+1+“‘+aj) = N(ai+1+“‘+ar'7ar+1+"'+aj)'

The result then follows by induction. O
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2.5 Lie algebras

We next deal with the case of a simple Lie algebra of type B,, over K. Here we leave to
the reader to check that the extraspecial pairs (a, 3) are as in Table 2.2

« 6] Conditions
1e% Qiy1+ -+ 1<i1<3<n
o 1+ g+ 2001 + 0+ 200, i<k<n
iyl ; + Qg + 20549 - -+ 20y, i<k<n

Table 2.2: Extraspecial pairs (o, 3) for ® of type B,, over K.

Lemma 2.5.4

Let £ be a simple Lie algebra of type B, over K, ® the corresponding root system and
II={a,...,an} a base of . Then

L Nttamarmtta) =L 1 <i<r<j<n.

Niaj ot taj 201 4+2a0) = 1, 1 <7< J < n.
N(ait-tamarirtotag+2a14-+20,) = 1, 1 <0 <r < j <n.
N(aj+---+an,ar+---+an) =2,1<r<j<n.

N(as—i----—i-aj,ar+---+aj+2ocj+1+“'+2an) = 17 1 S r<s S] <n.

S A o e

N(ai+"'+aj706r+1+‘“+aj+205j+1+“‘+2an) = _1> I<i<r< J <n.

Proof. Proceed exactly as in the proof of Lemma[2.5.3l The details are left to the reader. [

Finally, we consider the case of a simple Lie algebra of type D,, (n > 4) over K. Again,
we leave to the reader to check that the extraspecial pairs («, §) are as in Table 23

« I5; Conditions

Q; Oéi+1—|—"'—|—04j 1§i<n—1,i<j§n—1
Op—2 7%

Q; Qi1+ Qp_o+ 1<i<n—2

1e% Qi1+ -+ oy 1<i<n—2

Qp—1 Q2 + Qy

o Qi+t o+ 20500+ 2000 + 0 1<i<yj<n—2
Qi Oéi—i‘Oéi_H+20&i+2+"'+204n_2+04n_1+04n 1<i<n-3

Op—2 an—1+an—3+an—2+an—1+an

Table 2.3: Extraspecial pairs for ® of type D,, over K.
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Lemma 2.5.5
Let £ be a simple Lie algebra of type D, over K, ® the corresponding root system and
II=A{ay,...,an} abase of ®. Also let 1 <i<r<s<j<n. Then

L N ttararsrttay) = L, for every 1 <i <r <j<n-—1
Nyt taj,ajiittanotan) = 1 for every 1 <1< j <n—3.

N ttajajiittan) = 1 for every 1 <i < j <n-—3.

Nasttan_1,an) = —1 for every 1 <1 <n — 2.
ctan_1,an_24an) = —1 for every 1 <4 <mn — 3.
N(ai“l‘""‘l‘anfhan) = _1

N4 tan_1 00+ +an_stan) = L forevery 1 <1< j<n—1.

N+ tan_saittan) = 1 for every 1 <i < j<n-—3.

I I T T R ST
A
_l’_

N(Olj+"'+06k,Olz‘+"'+0lk+205k+1+"'+205n72+06n—1+0ln) = 1, 1 S 7 < j S k S n — 3.

2.5.2 Relations with algebraic groups

Let K be an algebraically closed field having characteristic p > 0 and let G’ be a simple
algebraic group of classical type over K. Following the ideas in [Hum?75, II1.9], one sees
that the space of left-invariant derivations of K[G] is a Lie algebra over K (having same
type as G), which we denote by .Z(G), and that .Z(G) is isomorphic to the tangent space
T (G)1,. Given a morphism of algebraic groups f : G — G, we obtain a morphism of Lie
algebras df : Z(G) — Z(G) by differentiating at 1. Finally, if ¢ : G — GL(V) is a rational
representation of G, then d¢,, : Z(G) — gl(V) is a representation of .Z'(G). We recall the
following well-known result, recorded here without proof.

Lemma 2.5.6

Let ¢ : G — GL(V) be as above, and suppose that U C V' is invariant under the action of
G. Then U is L (Q)-invariant as well.

Let Vg(A) be the Weyl module corresponding to a p-restricted weight A € X+(T) and
consider p = XA —=>"_  ca, < A\ If BB = {eqn, fa, ha, : @ € OT,1 < i < n} is a standard
Chevalley basis of .Z(G), then it is well-known (see [BCCT70), Lemma 6.2]) that

fo Ik

VG()\)M:<I{;—1'”.FUA:51—<“.-<ﬁreq)+’ M+Zkzﬂl:)\> 5 (214)
’ r i=1 K

where v* € Vg()) denotes a maximal vector for B and < is the ordering on ®* introduced
before Definition 2.5.1]
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2.5 Lie algebras

Lemma 2.5.7
Let A, v be as above and let By < By < ... < B, € ®F be such that X — 1 ¢ A(N\). Then

.fgl.fﬁz ‘.‘fBT'UA € <.f’y1f’yz "'f’ysUA : ﬁl <M < Y2 ... Vs € (I)+>K> fO’f’ every ke Z>O-

Proof. We first show the result for £ = 1, proceeding by induction on r. Starting with the
case where r = 2, we have [z, f5,0 = —Ng, 5, 51480 + [5.f5,0", where Ng, 5,y = 0 if

Bi+ By ¢ ®. Also, since A— 3y ¢ A(N), we get fs, f5,v” = 0 and hence f3, 5,0 € (fa,48,0") K
as desired. Next let o > 2 be such that the Lemma holds for every 2 < r < ry and consider

fr<Pa=...=% B € PT, where A — 51 ¢ A(N). Then

fﬁl o« e fBT'O,U)\ = _N(ﬁ1752)f51+62f63 R fBrO,U)\ + fﬁQfBlfB;g LRI + fﬁrov)\7

where again Ng, 3,) = 0 if 81 + 2 ¢ ®T, and the result for & = 1 then easily follows from
our inductive hypothesis. Now in the case of k € Z-( arbitrary, proceeding by induction
again completes the proof. O

Thanks to Lemma[2.5.7] we are now able to determine a smaller set of generating elements
for Viz(A\), in certain situations. We shall even see that in some cases, the newly obtained
set consists of a basis of Viz(\), (see Proposition ATl for example).

Proposition 2.5.8
Let \, u be as above and set F = {8 € T : A\ — € A(\)}. Then

fkll fkr T
VG(A)u:<ki1!---%v%ﬁl<...<5req>;, P> kiBi=X) .
T K

1=1

Proof. We proceed by induction on s = |®F|—|®{|. If s = 0, then there is nothing to do,
while by Lemma 2.5.7] the result holds in the case where s = 1. Hence let sq > 1 be such

that the proposition holds for every 0 < s < sy and assume & — &} = {~,..., 7, }, where
Y=< Y2 < ... < Vs Also let §; < ... < € P be such that

f o

m s ‘mv € VG()\)M
and assume the existence of 1 < ¢} < ... < t,, <t with ¢, = ; for every 1 < i < 5.
Without any loss of generality, we can suppose t; = 1, in which case an inductive argument
(considering the weight 1 + [11) completes the proof. O

Clearly, if v* denotes the image of v* in Vz(\)/rad()), then replacing v* by v™ in ([2.14)
gives a generating set for L;(\),. Concretely, we get

Le(\), = <f61...fﬁrv+;51 <...xB, €0, M+Zﬁi:)‘> . (2.15)
=1 K

39



We conclude this section with a result showing that irreducible KG-modules with p-
restricted highest weights behave well with respect to the differential. We refer the reader
to [Cur60, Theorem 1] for a proof of the following.

Theorem 2.5.9 (Curtis)
Let G, Z(QG) be as above and consider an irreducible KG-module Lg(\) having p-restricted
highest weight A € X*(T). Then Lg(X) is irreducible as a module for £ (G) as well.

2.6 Filtrations and extensions of modules

Let G be a simple algebraic group over an algebraically closed field K having characteristic
p > 0. In this section, we introduce some notation and recall a few basic results concerning
filtrations and extensions of K G-modules.

2.6.1 Filtrations of modules

Let V be a KG-module and recall that a filtration of V is a sequence of K(G-submodules
V=V'2oVio.. . DV D> V™ =0, with r € Zs. Such a filtration is called a composition
series of V if for every 0 < i < r, the quotient S* = V¢/V**! is irreducible. Let then
{1, ..., ps} € XH(T) be of minimal cardinality such that for every 0 < ¢ < r, there exists
1 <j; < s with S* = Lg(py,). The irreducibles Lg(p1), - - ., L (ps) are the KG-composition
factors of V and we say that an irreducible K G-module L¢(p) occurs with multiplicity m,,
in Vif {1 <i<r:S = Lg(p)}=m,, in which case we write [V, Lg(p)] = m,. We then
adopt the notation

Vi=m" us/ (2.16)

to indicate that V' is a KG-module with composition factors Lg(p1), ..., La(ps), La(p:)
occurring with multiplicity m;, 1 < i < s. The following well-known result guarantees that
the notion of composition factors of V' is independent of the choice of a composition series
for V.

Theorem 2.6.1 (The Jordan-Holder Theorem)

Consider two distinct composition series V.= U° D U' D ... D U" D U™ = 0 and
V=VlOVID. .2V DV =0 of V. Thenr = s and the list {U"JUT}_, is a
rearrangement of the list {V/VY_ . up to isomorphisms.

Fix B = UT a Borel subgroup of G containing a maximal torus 7" and let A € X(T).
Clearly A determines a 1-dimensional K'T-module K, on which ¢t € T acts as multiplication
by A(t) and one observes that we get a K B-module structure on K, given by (ut)x = A\(t)z,
for every ut € B and = € K.
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2.6 Filtrations and extensions of modules

For r > 0, we let H"(—) = H"(G/B, —) denote the r'" derived functor of the left exact
functor ind§(—) and write H"(\) = H"(K)). It turns out (see [Jan03, II, 2.13]) that if
A € XT(T), then HY(\) = Vg(—wo)*, where wy denotes the longest element in the Weyl
group # of G. Consequently Lg(A) = Lg(—wp)* is the unique irreducible submodule of
H°(\) and hence is the socle of H°(\), written soc()). Since we only work with H°()) in
this thesis, we omit the details here and refer the reader to |[Jan03l Section 2.1].

Definition 2.6.2
A filtration V = VO D VI D ... D V" D V™ = 0 of V is called a Weyl filtration if for
every 0 <i < r, there exists a weight p; € X(T) with V*/VT! = V(u;). Similarly, such a
filtration is called a good filtration if for every 0 < i < r, there exists a weight p; € X (T
with V?/V = HO(y,). Finally, we call a KG-module tilting if it admits both a good and
a Weyl filtration.

It turns out that modules with filtrations as above behave nicely with respect to tensor
products and exterior (respectively, symmetric) powers, as recorded in the following.

Proposition 2.6.3

If U, V are two KG-modules admitting a good (respectively, Weyl) filtration then U ®V also
admits a good (respectively, Weyl) filtration. In addition, W is a KG-module affording a good
(respectively, Weyl) filtration, then each of Sym" W and N\"W admits a good (respectively,
Weyl) filtration as well, for r € Zy.

Proof. The first general proof of the result on the tensor product was given in [Mat90], but
it had already been proven in most cases in [Don85|. We refer to [HM13| Proposition 2.2.5]
for a proof of the second assertion. O

Let p,v € X*(T) be two dominant weights. By Proposition Z6.3] the tensor product
Ve (1)@ Ve (v) admits a Weyl filtration and the following result gives further useful properties.

Proposition 2.6.4
Let p,v be as above, set X = p + v, and consider V.= Vg(u) ® Vg(v). Then the following
assertions hold.

1. Any dominant weight o € AT (V) satisfies 0 < A, and my (\) = 1. In other words, X is
the unique highest weight of V.

2. There is an injective morphism of KG-modules v : Vg(\) — V.

3. If in addition V() and Vi (v) are irreducible, then V' is tilting and there is a surjective
morphism of KG-modules ¢ : V — H°(X), with t(rad()\)) C ker(¢).
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Proof. We refer the reader to [McN98|, Proposition 4.6.2| for a proof of [Il, Pland the existence
of a surjective morphism of KG-modules V' — H°(\) under the hypotheses of Bl Now
let ¢ € Homg(V, H(\)) and identify V(M) with ¢(Vg(A)), where ¢ is as in 2l Also write
N = ker(¢) N Vz()), and denote by ¢ : Vg(A)/N — HY()\) the injective morphism of KG-
modules induced by ¢ o ¢. As rad(A) is the unique maximal submodule of V(\), we have
N C rad()), and if N & rad()\), we get 0 & ¢(rad(\)/N) C Im(¢) € H°(N), a contradiction
with soc(H°(\)) = Lg()), as A ¢ A(rad(\)). Therefore N = rad()\) and so [3 holds. O

2.6.2 Extensions of modules

Following [Jan03| II, 2.12-2.14|, we now record some information on extensions of KG-
modules. Let Vi, V3 be two K G-modules and identify Extf,(Va, V1) with the set of equivalence
classes of all short exact sequences 0 — V; — V — V5, — 0 of KG-modules. One can then
show that for any dominant T-weight A € X*(T'), we have

Extg(La(X), La(X)) = 0.

In other words, any short exact sequence 0 — Lg(\) — V' — Lg(A) — 0 splits. Also, one
can prove that

EXté(Lg()\), L(;(,U)) = EXté‘(LG(U% LG()‘))>

this for any dominant T-weights A, u € X (7). Finally, the following result shall prove useful
later on.

Proposition 2.6.5
Let A\, € XT(T), with u < X\, and suppose that [Va(\), La(p)] = 0. Then

Exte(La(XN), La(p) = 0.

Proof. This follows from [Jan03| II, 2.14]. O

2.7 On the structure of Weyl modules

Let G be a simple algebraic group over K, with B = UT a Borel subgroup of G, II a
corresponding base of the root system ® = &+ U ®~ of GG, and # the Weyl group of G,
as usual. In this section, we introduce a few tools which shall be of use in order to better
understand the composition factors of a given Weyl module for G. So far we know that
[Va(A), Lg(A)] = 1 for any A € X*(T) and that if 4 € XT(T), then [Vg(N), La(p)] # 0
implies 1 < A. Most of the results presented here can be found in |[Jan03] II, Sections 4,5,8|,
to which we refer the reader for more details.
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2.7 On the structure of Weyl modules

2.7.1 The dot action and linkage principle

Let p denote the half-sum of all positive roots in ®, or equivalently, the sum of all fundamental
weights, as in Section The dot action of # on X (T') is given by the formula

w-A=wA+p)—p, forwe# and X\ € X(T).

Also define the support of an element z € Z® to be the subset I C II consisting of those
simple roots « such that ¢, # 0 in the decomposition z = > ¢, . We refer the reader to
[IMcN98, Lemma 4.5.6] for a proof of the following technical result, originally due to Jantzen.

Lemma 2.7.1
Let o be a T-weight subdominant to X\ € X (T). If o« € ®* is such that A\ —ra € # - u for
some 1 <r < (A4 p,«), then a and X\ — p have the same support.

For r € Z and a € ®, we denote by s,, : X(T) — X(T) the affine reflection on X (7')
defined by
Sar(A) = 8a(A) + 1, A e X(T).

Also for | a prime, set # equal to the subgroup of Aff(X(7")) generated by all s, ,;, with
a € ®, n € Z, and call # the affine Weyl group associated to G and l. The dot action
introduced above can be extended to an action of #; on X(7T') and X (T)g in the obvious
way, setting w - A = w(A+ p) — p, w € #, A € X(T). The following result gives us some
information on possible non-trivial extensions between two irreducible K G-modules.

Proposition 2.7.2 (The Linkage Principle)
Let G be as above and suppose that \,p € X+(T) are such that Exty(La(N), La(p)) # 0.
Then X € #,, - .

Proof. See [And80]. O

Finally, let A\, u € X+ (T') be such that < X and let d(A, i) = 2(A+p, A—p1) —(A—p1, A—p)
be as in (23)). The following corollary to Proposition gives a necessary condition for p
to afford the highest weight of a K G-composition factor of Vi (\), in the case where G is of
classical type and p > 2. We refer the reader to [Sei87, Proposition 6.2] for a proof.

Corollary 2.7.3

Let G, X and p be as above, with G classical and p > 2. Also assume the inner product on Z®
is normalized so that long roots have length 1 and let d(\, p) be as above. If p < X\ affords
the highest weight of a composition factor of Vg(X), then

2d(\, p) € pZ.
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2.7.2 The Jantzen p-sum formula

Let V be a KG-module and let {e”},cx(r) denote the standard basis of the group ring
Z[X(T)] over Z. The Weyl group # of G acts on Z[ X (T)] by we* = e**, w e #, n e X(T),
and we write Z[X (T)]” to denote the set of fixed points. The formal character of V is the
linear polynomial ch V' € Z[X(T)]” defined by

chV = Z my (p)e.

neX(T)

Following the ideas in [Jan03] II, 5.5], we also associate to every T-weight A € X (T') the

linear polynomial
X(\) =D (1) ch H"(N).
r>0

If A € X*(T), Kempf’s vanishing Theorem [Jan03, II, 4.5] shows that H"(A) =0 for r > 0
and hence x(A\) = ch H°()) in this situation. Recall from [Jan03| II, 2.13] that if A € X (7)),
then x(A) = chVi(A) as well. One shows (see [Jan03| II, 5.8]) that each of {x(A\)}rex+m)
and {ch Lg(A) }rex+r) forms a Z-basis of Z[X (T')]”. In addition for p € X (T'), we denote
by x*(A) the truncated sum

XN =Y Ve, La(v)] ch La(v). (2.17)

JIESZ0N

Finally, for [ a prime number and n € Z, we write v;(n) to denote the greatest integer r
such that " divides n (adopting the notation vy(n) = 0 for every n € Z as well). The following
result, known as the Jantzen p-sum formula, provides a powerful tool for understanding Weyl
modules.

Proposition 2.7.4 (The Jantzen p-sum Formula)
Let K, G be as above and let A € XT(T) be a dominant weight. Then there ezists a filtration
of KG-modules Vg(\) =V D VI D ... DV 20 of Vg()) such that VO/V! = Lg(\) and

Ap,a)—

k (o)1
ZChVi:Z Y )X (sar - A). (2.18)

acedt r=2

Proof. See [Jan03| II, 8.19]. O

We adopt the notation of [Jan03| II, 8.14|, writing v.(7)) to denote the expression (2.I8]).
Since v.(T)) is the character of the KG-module V! & --- & V* and {ch Lg(A) brex+ ) forms
a Z-basis of Z[X(T)]”, there exist unique a, € Zso (v < A) such that

ve(Ty) =Y a,ch La(v). (2.19)

V<A
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2.7 On the structure of Weyl modules

Proposition 2.7.5
Let A € XH(T) and consider a dominant T-weight 1 < X\. Then v affords the highest weight

of a composition factor of Va(X) if and only if a, # 0 in ([2.19).

Proof. Let 1 < A be such that a, # 0 in (ZI9). Then there exists 1 < ¢ < k such that
(Vi La(p)] # 0, hence [V (), La(u)] # 0 as well. Reciprocally, if 4 < A affords the highest
weight of a composition factor of Vg()), there exists 1 < i < k such that [V, Lg(p)] # 0,
since Vg(A)/V! = Lg (). The result then follows. O

Although (2.I8) can be evaluated (for fixed and small ranks) using a computer imple-
mentation of an algorithm (see [McN98| Remark 4.5.8] for a description of the latter), it is
not convenient for large ranks. Hence we aim at finding an alternative expression to (2.I8]).

First let

P ={Ne X(T): (\+p,a) >0 for every a € ®*}.

Then one easily sees that Z is a fundamental domain for the dot action of # on X(7'), that
is, for every u € X (T'), there exist w € # and a unique A\ € & such that w - u = A. This
observation, together with the next result, provide the necessary tools to compute x(A) for
any given A € X (7). For w € #', we write det(w) for the determinant of w as an invertible
linear transformation of X (7')g.

Lemma 2.7.6
Let X € X(T) and w € #'. Then x(w - \) = det(w)x(N). Moreover, if X € Z is not in
X*(T), then x(\) = 0.

Proof. The first assertion immediately follows from [Jan03, II, 5.9 (1)] and we refer the
reader to [Jan03, II, 5.5] for a proof of the second. O

We now give another formulation for (2.I8) in Proposition 2.7.4] using Lemma 2.7.6] and
the fact that Z is a fundamental domain for the dot action.

Corollary 2.7.7
Let A € XH(T) and let Vg(\) = VO D VI D ... D V* D0 be the filtration of Vg()\) given by
Proposition [2.74. Then

<)\+p706> -1

() == > vp(r)det(was)xX(ttas), (2.20)

acdt r=2

where for a € @ and 1 <1 < (A +p, @), fia,r denotes the unique weight in # - (A —ra)ND
and W, an element in W satisfying Wa, - floar = A — 1.
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Proof. For any o € @t and r € Z, we have (by definition of the dot action)

Sar A= Sar(A+p)—p
= sa(A+p)+ra—p
=sa(A—ra+p)—p
= So - (A —ra),

and thus x(sa, - A) = —x(A — ra) by Lemma The Jantzen p-sum formula (2I8]) can

then be rewritten as
Ap,a)—1

(
ve(D) ==Y Y p)xA-ra).
acdt r=2
Now by the previous remark, for every r € Z, a € &7, there exist w,, € # and a unique
Hor € P such that wg, - fta, = A — ra. An application of Lemma [2.7.6] then completes the
proof. O

To conclude this section, we give a “truncated version” of Proposition and an imme-
diate consequence. Let A € X+(T') and consider the series Vg(A\) =V D> VI>...DVF 20
of V() given by Proposition .74l Also let 4 € X+(T') be a dominant T-weight and write
vH(Ty) to designate the truncated sum

vi(Ty) = — Z vp(r) det(war ) X" (Haur), (2.21)

(O!J)EIM
where
IH = {(Oé,?") < (I)+ X [27 <)‘ +p, Oé) - 1] * Hayr S X+(T)7,u < Har = )\}

(Here [i,j] = {i,i+1,...,7} for i < j € Z>¢.) Since {ch Lg(A) }xex+(r) forms a Z-basis of
Z[X(T))”, there exist b, € Z (u < v < A) such that

vi(Ty) = Y bychLg(v), (2.22)

and one easily sees (using the fact that [V (1), La(v)] = 0 if vy, 15 € XT(T') are such that
vy A vp) that b, = a, for every u < v < A, with {a,},<x as in (219). Therefore b, € Z>
and the following Proposition holds.

Proposition 2.7.8
Let X\, i be as above, and let p < v < X\ be a dominant T'-weight. Then v affords the highest
weight of a composition factor of Va(X\) if and only if b, # 0 in (222).

Since not all the coefficients in v#(7T)) need be non-negative, there can exist v € X+ (7))
such that x*(v) appears in v#(Ty), but [Vz(N), Le(v)] = 0. However, this cannot happen if
v is “maximal”; as recorded in the following result. The details are left to the reader.
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2.7 On the structure of Weyl modules

Corollary 2.7.9

Let A\, pw and v be as in Proposition[2.7.8, with v mazximal (with respect to the partial order on
X(T) introduced in Section[2.3) such that x*(v) appears as a summand of v¥*(Ty) in ([2.20).
Then v affords the highest weight of a composition factor of V(). In particular if (G, p) is
not special and v < X is such that my, o (v) = 1, then x*(v) cannot appear in ve(T)).

2.7.3 Weight multiplicities using Corollary 2.7.7]

Let G be a classical algebraic group of rank n defined over K, B = UT a Borel subgroup of
G, with T" a maximal torus of G and U the unipotent radical of B. Also set

dG:{n+1 if G = A,

n otherwise.

and for | € Zsq and A = (a;)}_, € Q', we write |A|= (|a;])}—, and consider the usual action
of &; on Q' given by (0 - A) = (ao(;))’—;-

Definition 2.7.10

Let A = (aj)?gl,B = (bj)?gl € Qd¢. We say that A and B are G-conjugate (and write

A ~¢ B) if one of the following holds.
1. G = A, and there exists 0 € G,,,1 such that 0 - A = B.

2. G = B, or C,, and there exists o € &,, such that ¢ - |A|= |B|.
3. G = D,, there exists 0 € &,, such that o - |A|= |B| and
H1<j<n:a; <0}+H{1<j<n:b <0} e 2Z

In other words, A ~¢ B if and only if there exists 0 € &,, such that o - |[A|= |B| and
the minimal number of necessary sign changes to get {b;}"_; from {a;}"_, is even.

Let A € X(T) be a dominant T-weight and recall from Section [2.2] the description of the
simple roots and fundamental weights for 7" in terms of a basis {e1,. .., &4, } for a Euclidean
space E. Following the ideas of [McN98, Lemma 4.5.7] , for « € ®T and r € Z>( such that
1<r<{(A+p,a), wewrite A\ +p—ra=aje+ -+ aq 4, and set A, , = (aj)?gl € Qde.
Also for pp € X*(T), write p+p = bier +- - -+ by, a., and set B, = (bj)?il € Q. The proof
of the next result directly follows from the description of the action of # on ® in terms of
the ¢; given in Section 2.2] together with Lemma 2.7.1]

Lemma 2.7.11

Let X be as above and let p € X (T'), a € ®(G), and r € Zso be such that 1 < r < (A p, a).
Then € W - (A —ra) if and only if Ay, ~a By, in which case o and X\ — j1 have equal
support.
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Proof. We show the result in the case where G is of type D, over K and leave the other
cases to the reader, as they can be dealt with in a similar fashion. First assume the existence
of w € W such that w- (A —ra) = p and let A, , and B, be as above. As seen in Section
223 the Weyl group # of GG acts as the group of all permutations and even number of
sign changes of the ¢; for 1 < i < n + 1, which by Definition Z7.10 (Part B]) translates to
Auor ~q B, as desired. Conversely, if A, , ~¢ B, then using the description of the action of
# in terms of the €; again, one easily finds w € # such that w-(A—ra) = u. Finally, observe
that the assertion on the support immediately follows from Lemma 2. 7.1 thus completing
the proof. O

Let Vo(\) = VP > VI D ... D> V¥ 2 0 be the filtration of Vg()\) given by Proposition
274 and let p € XT(T) be a dominant T-weight. We can now describe an algorithm for
finding an upper bound for my ) (p), provided that the decomposition ([2.I7) of x*(v) is
known for every pu v < A.

1. Forevery u < v < A, we first find every o € &+ and 1 < r < (A+ p, a) for which there
exists w,, € # such that v = pa, = wa, - (A — ra), using Lemma 277TI We then
determine such w,, and an application of Lemma yields the coefficients in the
truncated sum (2.21]).

2. Substituting x*(v) by its decomposition in terms of characters of irreducibles (known
by assumption) for every p < v < A then gives {b, },<v<x C Z>¢ as in (2.22).

3. By Proposition 2Z7.8 every p < v < A such that b, # 0 in (2.22)) affords the highest
weight of a composition factor of Vi (A). Therefore since Lg(A\) = V(M) /rad()N), we
have

my ooy (i) = mypn () = Y Ve(N), Le()] mpge) (1)

JIES 2PN

<myon() = D mpge)(p).
HSU=<A
by #0

To conclude this chapter, we refer the reader to Lemmas [5.1.2] and [7.2.6] for detailed
applications of the above algorithm.
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CHAPTER 3

Parabolic Subgroups

Let K be an algebraically closed field having characteristic p > 0 and let Y = CL,(K)
be a simple algebraic group of classical type over K having rank n. Fix a Borel subgroup
By = Uy Ty of Y, where Ty is a maximal torus of Y and Uy is the unipotent radical of By,
let TI(Y) = {ay,...,a,} denote a corresponding base of the root system ®(Y') of Y, and
let {A1,...,A.} be the set of fundamental dominant weights for 7y corresponding to our
choice of base II(Y). The following well-known result gives constitutes the key to the proof
of Theorem [I], to which this chapter is devoted.

Lemma 3.1

Let G be a simple algebraic group of classical type over K and consider a non-trivial irre-
ducible KG-module V' = Lg(\) having p-restricted highest weight X € X (Tg). If P is a
proper parabolic subgroup of G, then V|p is reducible.

Proof. Write P = QQL, where L is a Levi subgroup of P and () # 1 is the unipotent radical
of P. Then the fixed point space V¢ C V of @ is a proper non-zero K P-submodule of V,
from which the result follows. ]

Keeping the notation introduced in Section 2.3.2 set P, = Pry)—{a,} for 1 < r < n.
In other words, P, is the opposite of the standard parabolic subgroup of Y obtained by
removing the r* node in the corresponding Dynkin diagram of Y. Write X to denote the
derived subgroup of L, = (Ty,Uy,, : 1 < i < n,i # r) and fix By = TxUx, where
Tx = Ty N X is a maximal torus of X and Uy = Uy N X the unipotent radical of By.
Clearly X is semisimple (unless Y = SLy(K)) and before going further, we describe the
restriction to T'x of the fundamental weights for 7y . Three situations may occur.
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If r = 1, then X is simple of type CL,,_1(K) and II(X) = {1, ..., Bu_1}, Where 5; = 11,
for every 1 < i < mn — 1. Here if {wy,...,w,_1} denotes the set of fundamental weights for
T'x corresponding to our choice of base, then one easily checks that

A= 0, Ai|ry= wi_1, for every 1 < i < n. (3.1)

If 1 <r < n (without loss of generality, we may and will assume Y # D, if r =n — 1,
thanks to the graph automorphism of D, ), then X is a semisimple subgroup of Y of type
A1 X CL,_(K) and TI(X) = {B1,...,Br—1} U {7, Yn_r}, where 5; = «; for every
1 <4<, and v; = aj4,y, for every 1 < j < n — r. Here again, if

{wii:1<i<r—1}U{wy;:1<j<n-r}

denotes the set of fundamental weights for Tx corresponding to our choice of base IT1(X),
one easily sees that for every 1 <i < r and r < j < n, we have

)‘i|TX: LULZ', AT‘TX: O, and AJ‘TX: LUQJ'_T. (32)

Finally if » = n, then X is simple of type A,_; and II(X) = {f,...,0n_1}, where
Bi = ay, for every 1 < i < n. As above, if wy,...,w,_1 are the fundamental weights for T'x
corresponding to our choice of base, then we leave to the reader to check that

AilTy = wi, An|ry=0, for every 1 <i < n. (3.3)

In Section Bl we let X be as above (that is, X = L/, where P, = @, L, for some

1 <r < n), and consider an irreducible K'Y-module V' = Ly (\) having p-restricted highest
weight A € X+ (Ty). By studying the @,-commutator series of V/

VOV,Q]D[V,Q]>...0V,Q)]20

introduced in Section 2.3.2] we then show that in general, L, acts with more than two
composition factors on V, unless A = \; for some 1 < ¢ < n. We then determine every triple
(Y, X, V) such that the Q,-commutator series of V' is of the form

VoIV,Q,] 0.

Since V/[V, Q] is irreducible as a K X-module (see Lemma [2.3.0]), it remains to determine
whether the K X-module [V, Q,] is irreducible or not, which can be done by a dimension
argument, yielding the following result. Notice that since L, normalizes @),, each triple
(Y, X, \) recorded in Table Bl is such that P, acts with exactly two composition factors
on V = Ly()\) as well. Also observe that in general, By is not maximal among parabolic
subgroups of Y, except if Y = SLy(K), in which case By acts with exactly two composition
factors on V if and only if dim V' = 2.
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3.1 A first reduction

Theorem 3.2
Let X, Y be as above and consider an irreducible K'Y -module V' = Ly (\) having p-restricted
highest weight A € X+ (Ty). Then X has exactly two composition factors on V' if and only if

Y, X, and X\ are as in Table[31, where we give \ up to graph automorphisms. Furthermore,
if (Y, X, ) is recorded in Table[31, then V|x is completely reducible.

Y X A V0x Dimensions
A,(n>2) L} A1 0/w; 1,n

L; (1<r<n) A1 Wl,l/u)g’l T,n—r+1
L, A1 wy /0 n,1

L/l )\Z(1<Z<d) wi_l/wi (zﬁl)a(?)

Bn(n Z 2) Lll )\n wn_l/wn_l 271—1’ 2n—1
Cp(n >3) L A W/ wy, n,n
D,(n > 4) L, A\ wy /W1 n,n

Lll )\n wn—l/wn—2 2n—2’ 2n—2

Table 3.1: The parabolic case. Here d = [“#!] denotes the integer part of (n+1)/2.

Finally, we establish as well the following Proposition, which together with Theorem [3.2]
constitute a proof of Theorem [Il

Proposition 3.3

Let Y be as above and consider an irreducible KY -module V- = Ly (\) having p-restricted
highest weight A € Xt (Ty). If P is a proper parabolic of Y acting with exactly two composi-
tion factors on'Y, then P is mazimal among all proper parabolic subgroups of Y.

3.1 A first reduction

Let K,Y, X be as in the statement of Theorem and consider an irreducible K'Y-module
V = Ly(\) having p-restricted highest weight A € X*(Ty). Also for 1 < r < n, denote by
(@, the unipotent radical of P, and recall the existence of the @),-commutator series of V'

Vo V,Q > [V,Q]15...0[V,Q7] 20, (3.4)

where k € Z>. (Properties of this series were discussed in Section [2:3.21) Notice that in such
a situation X has at least k+ 1 composition factors on V' (including multiplicities) and using
this observation, we first tackle the case where (Y, p) is not special (see Definition [2.3.3]).
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Lemma 3.1.1

Assume (Y, p) is not special and consider an irreducible KY -module V' = Ly (\) having p-
restricted highest weight X € X (Ty). If X has exactly two composition factors on V, then
A=\ for somel <1 <n.

Proof. The remark made above forces k = 1 in (84]), that is, the @,-commutator series of
V is of the form V' O [V, @,] D 0, which by Proposition 2.3.8 means that every Ty-weight
i € A(V) has @,-level at most 1. We first claim that a; < 1 for every 1 < i < n, since
otherwise A — 2(a; + ... + «,) is a Ty-weight having @Q,-level 2 for every 1 < r < n, a
contradiction. Also, if a;a; # 0 for some 1 <i < j < n, then again A —2(ay + ...+ ) is a
Ty-weight having ),-level 2 for every 1 < r < n, thus completing the proof. O

In the next result, we extend Lemma B.1.1] to the case where (Y, p) is special, which in
our situation forces Y to be of type B,, or (), and p = 2. The existence of isogenies between
B,, and C,, allows us to only consider the case where Y is of type C,, over K.

Lemma 3.1.2

Assume p = 2 and Y s of type C,. Also consider an irreducible KY -module V' = Ly ()\)
having 2-restricted highest weight A € X+ (Ty). If X has exactly two composition factors on
V, then A = X\; for some 1 <1 <n.

Proof. Here again, the strategy is to argue on the existence of Ty-weights in V' having certain
Q,-levels. Indeed for every ¢ € Z, the subspace V' = @V, (the sum ranging over those
weights p € X (Ty) having @,-level at least i) is a K X-module. However, Proposition 2.3.8
cannot by applied in this situation (as p = 2) and hence showing the existence of a Ty-weight
having @),-level 2 is not enough, since it does not imply the existence of a Ty-weight having
Q,-level 1.

First consider the case where (\, ;) = 0 and assume the existence of 1 <1 < j < n such
that a;,a; # 0. Here A—(a;+- - -+a,,) € A(V), since it is #4y-conjugate to A—(a;+- - -+¢;) and
the latter is obviously a Ty-weight in V. (In fact, we even have A — (o +- - -+ 5) € AT(V).)
Similarly A —2(ag + -+ - 4+ ;) € A(V), contradicting our initial assumption.

Finally, consider the case where (A, a;,) = 1 and suppose that there exists 1 <14 < n such
that a; # 0. By [Sei87), Proposition 1.6], we have

V = La(Ni) @ La(An),

from which one easily sees that Vy_(q,4..4a,) # 0. Therefore both A\ — (a; + -+ + ;) and
A—2(a; + -+ + ) (the latter being #4-conjugate to the former) are Ty-weights of V, a
contradiction. The proof is thus complete. O

52



3.2 Conclusion

3.2 Conclusion

Let K, Y, X be as in the statement of Theorem and consider an irreducible K'Y-module
V' = Ly(\) having p-restricted highest weight A € X*(7y). In this section, we give a
complete proof of Theorem B.2] starting with the case where Y is of type A, over K.

Lemma 3.2.1
Let Y be a simple algebraic group of type A, over K and suppose that X has exactly two
composition factors on' V. Then'Y, X and X appear in Table[3 1], up to graph automorphisms.

Proof. By Lemma B.1.1], we can assume A = \; for some 1 < i < n. If i = 1, observe that
all Ty-weights of V have @),-levels smaller or equal to 1, this for every 1 < r < n. The same
holds in the case where i = n, while if 1 <i < n, then A — (a + 22 + - - - + 20,1 + @) 18
a Ty-weight having @Q,-level 2, for every 1 < r < n, so that X = L) or L/ as desired. O

We now prove that the candidates for Y, X and A obtained in Lemma [B:2.T] indeed satisfy
the desired property.

Lemma 3.2.2
Let Y be a simple algebraic group of type A,, over K and suppose that X and V = Ly ()\) are
such that (Y, X, \) appears in Table[31. Then X has exactly two composition factors on V.

Proof. First consider the case where A = A\; and X = L. By Lemma [2.3.6] the restriction of
A to Ty affords the highest weight of a first composition factor of V, isomorphic to V/[V, Q4].
Also, every Tx-weight of V having ():-level equal to 1 is under the restriction of A — aq,

which thus affords the highest weight of a second K X-composition factor of V. Applying
(BJ)) then yields V/[V, Q1] = K as well as (A — a1)|7,= w;. Since

dimK +dimLx(w;) =14+n—1=n=dimV,

the result holds in this situation. The case where A = A\; and X = L/, can be dealt with in
a similar fashion and hence is left to the reader.

Next consider the situation where A = A\ and X = L/ for some 1 < r < n. Arguing as
above, one gets that each of M|, and (A — (a; + -+ - + a;)) |1, affords the highest weight of
a composition factor of V' for X. An application of (8:2) then yields A|r,= w1 as well as
(A= (a1 + -+ )|y = wa1. Again, since dim Lx (w1,1) + dim Lx (wq 1) = dim V; the result
follows.

Finally, assume A = \; for some 1 < ¢ < d (where d denotes the integer part of (n+1)/2)
and X = L. Arguing as in the previous cases shows that each of w = A|r, and W' =
(A—(a1+- -+ a;))|r, affords the highest weight of a composition factor of V for X. Lemma
yields dim V' = dim V/[V, Q] + dim Lx (w'), thus completing the proof. O]
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Let Y be a simple algebraic group of type A, over K and let X denote the derived
subgroup of a Levi subgroup of a maximal proper parabolic subgroup of Y. Also consider
an irreducible K'Y-module V' = Ly ()\) having p-restricted highest weight A € X (Ty) and
assume X acts with exactly two composition factors on V. Then X and A are as in Table B.1]
by Lemma B.2.Tl Conversely, if X and A are recorded in Table B} then X has exactly two
composition factors on V' by Lemma In other words, both lemmas provide a proof of
Theorem in the case where Y is of type A,, over K.

Next assume p # 2 and suppose that Y is of type B, over K. We proceed as in the
previous case, starting by showing a first direction of Theorem

Lemma 3.2.3
Assume p # 2 and let Y be a simple algebraic group of type B, over K. Also suppose that
X acts with at most two composition factors on V. Then Y, X and X appear in Table (3.1

Proof. By Lemma B.I.1] again, we can assume A = \; for some 1 <i <n. Now if 1 <i < mn,
then A — (2aq + - - - + 2, ) is a Ty-weight having @,-level 2, this for every 1 < r < n, forcing
A = A,. Therefore A — (ag + 2a9 + - -+ + 2ay,) is a Ty-weight of V) yielding X = L as
desired. O

It remains to show that X = L} has exactly two composition factors on V' = Ly (\,),
which can be done exactly as in the first part of Lemma (replacing Lemma by
[BGTT15, Lemma 2.3.2], for example). Notice that here both A and A — (a; +- - -+, restrict

to w,—1 by (B1)).

Lemma 3.2.4
Let'Y be a simple algebraic group of type C,, over K and suppose that X acts with at most
two composition factors on V. Then Y, X and X appear in Table 3.1

Proof. First assume p # 2, in which case Lemma BT Tlyields A = \; for some 1 < i < n. Now
if i = n, then A —2(a; + -+ - + ) is a Ty-weight of V' having Q,-level 2, for any 1 <r < n.
Similarly, if 1 < i <mn, then A — (2a; + - - - 4+ 201 + 3c; + 2001 + - - + 20v,,) is a Ty-weight
of V, forcing A = A, in which case A — (2a; + -+ + 20,1 + ) is a Ty-weight and thus
X = L as desired. Now if p = 2, Lemma also yields A = \; for some 1 < i < n. In
addition, observe that if i # n, then A— (a1 4+ -+ ), A= (201 4+ - - + 20,1+ ) € A(V),
since both are #4-conjugate to A, forcing i = 1 and X = L, as desired. O

Proceeding as in the proof of Lemma shows that X = L/ acts with exactly two
composition factors on Ly (A1). Here \; restricts to wy, while A\; — (o + - -+ + «,) restricts
to w,—1 by (B3). Again the details are left to the reader. Finally, suppose that Y has type
D,, over K (n > 4), in which case we shall assume r # n — 1.

54



3.2 Conclusion

Lemma 3.2.5
LetY be a simple algebraic group of type D,, over K and suppose that X acts with at most two
composition factors on' V. Then'Y, X and X appear in Table[3 1], up to graph automorphisms.

Proof. By Lemma BTl we have A = \; for some 1 <i < n.If i = 1, observe that A\ — (2a; +
s 20,9 + a1 + ) 18 a Ty-weight having @),-level greater than or equal to 2 for every
1 <r<n-—2 forcing X = L, , or L, as desired. If on the other hand 1 < i < n — 1,
then A — (2aq + 3 + -+ + 32 + 20,1 + 2, is a Ty-weight having @, level greater
than or equal to 2 for every 1 < r < n, a contradiction. Finally, assume i = n (or n — 1)
and X # L. Then the Ty-weight A — (o + 2 + - - - + 20,3 + 3,2 + 2,1 + 2av,) has
Q,-level greater than or equal to 2, from which the result follows. O

In order to complete the proof of Theorem B.2] it remains to first show that X = L/
A=\ and X = L}, A = )\, are indeed examples, which can be done exactly as in the proof
of Lemma Using (31) and (B.3]), one also checks that we have the desired restrictions,
and then concludes using the fact that in each case, the K X-composition factors are K P,-
modules as well by construction. Finally, we give a proof of Proposition B.3, which together
with Theorem yield Theorem [Il

Proof of Proposition[3.3: Let P = Q;L;, Y and V = Ly (\) be as in the statement of
the proposition. Also let 1 < r < n such that P C P, = (), L, and observe that P, must act
with at most two composition factors on V. By Lemma B.I] P, has exactly two composition
factors on V' and hence an application of Theorem shows that (Y, \) appears in Table
B Consequently, we may assume p # 2, in which case one easily concludes that P has to
be maximal using Proposition 2.3.8
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CHAPTER 4

The case Spiny,(K) C Sping,.;(K)

Let Y = Spin,,, ., (K) be a simply connected simple algebraic group of type B,, (n > 3) over
K and consider the subgroup X of type D,,, embedded in Y in the usual way, as the derived
subgroup of the stabilizer of a non-singular one-dimensional subspace of the natural module
for Y. Fix a Borel subgroup By = Uy Ty of Y, where Ty is a maximal torus of Y and Uy the
unipotent radical of By, let II(Y) = {ay ..., a,} denote a corresponding base of the root
system ®(Y') of Y, and let {\1,..., A\, } be the set of fundamental dominant weights for Ty
corresponding to our choice of base II(Y). Here we have

X = (U, : a € ®(Y) is a long root).

Let Bx = UxTx be a Borel subgroup of X, where Tx = Ty N X is a maximal torus of
X and Uy = Uy N X the unipotent radical of By, and denote by II(X) = {f,..., 5.}
the corresponding base of the root system ®(X) of X. Here 5; = «; for every 1 < i < n,
Bn = an_1 + 2ay,, while the corresponding fundamental dominant Tx-weights wq, ..., w,
satisfy the restrictions

Ailry=wi, for 1 <i<n—1, A\y_i|ry= wWp_1 + Wy, and A\, |7, = wy. (4.1)

Finally, let 6 denote the graph automorphism of X and consider an irreducible K'Y-module
V' = Ly()\) having p-restricted highest weight A € X (Ty). In [For96, Section 3|, Ford
determined the pairs (A, p) such that V|xy is irreducible and V|x is reducible. He observed
that in this situation, X acts with exactly two composition factors on V| interchanged by
0. He proceeded by first finding two maximal vectors in V for By, say v*, w*, and then
determined under which conditions V' could be decomposed as a direct sum of V; = Z(X)v*
and V5 = Z(X)w™. (Here £ (X) denotes the Lie algebra of X.) Finally, he showed that
both Vi, V5 are irreducible as K X-modules and that V5 = Vle. The aim of this chapter is to
extend [For96, Theorem 3.3] to the following more general result.
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Theorem 4.1

Let K, Y and X be as above, and consider an irreducible non-trivial K'Y -module V- = Ly ()
having p-restricted highest weight A =" a,\. € XT(Ty). Also if X # a\,, let 1 <k <n
be maximal such that (A, ag) # 0. Then X has exactly two composition factors on 'V if and
only if (A, a,) < 1 and one of the following holds.

1. A= Mg and p # 2.
2. A=\,
3. X is neither as in[dl nor(2, p # 2 and the following divisibility conditions are satisfied.

(a) p|ai+a;+j—i for everyl <i < j < n such that a;a; # 0 and a, = 0 for
r<r <.
(b) p|2(an+ar+n—Fk)—1.

Furthermore, if (A, p) is as in[d, [ or[3, then Ly (\)|x is completely reducible.

In Sections M.1] and 4.2] we investigate various weight spaces that shall play a role in
the proof of Theorem LIl Both sections being very technical, we advise the reader to skip
them in the first place and then come back to them when needed. Even though we are
only interested in a Lie algebra of type B, over K, we start by investigating certain weight
multiplicities for a Lie algebra of type A,. Indeed, this helps us in determining bases for
weight spaces for .Z(Y') by considering a suitable Levi subalgebra of the latter.

Let v+ denote a maximal vector in V' for By and observe that since By C By, then
vT is a maximal vector for Bx as well. As in the proof of [For96, Theorem 3.3|, we find
another maximal vector w* in V for By and first aim at showing (see Section .3.2]) that
if X has exactly two composition factors on V, then (A, a,,) < 1 and one of [I 2 or [
is satisfied. We start by observing that both (Xv™) and (Xw™) are irreducible p-restricted
K X-modules and hence are irreducible as modules for the Lie algebra .Z (X)) of X. Therefore
V=(Xv") & (Xw') =2Z(X)vt & Z(X)w' and thus we obviously get

far+“‘+a7lv+7 far+“‘+anw+ € "g(X)fU—i_ @ "g(X)w—i_ (42)

for every 1 < r < n. Finally, a generalization of [For96, Proposition 3.1] (namely, Proposition
M3 leads us to carefully investigate certain weight spaces of V.

Reciprocally, in Section [£.3.3] we suppose that one of [l 2l or 3] holds and aim at showing
that V = Z(X)vt @ Z(X)wt. Now we know that V' can be written as a direct sum of
Ty-weight spaces, which by (2.15]) are spanned by vectors of the form f,, --- f, v*, where
My € PT(Y) are such that v < 72 < ... < 7. Therefore, it suffices to show that
any such element belongs to Z(X)v" @ Z(X)w™, or equivalently (thanks to an analogue of
[For96, Lemma 3.4], namely Proposition [A.3.2)), that (£.2) holds. Again, a study of certain
weight spaces of V' then allows us to conclude.

58



4.1 Weight spaces for G of type A,

4.1 Weight spaces for G of type A,

Let G be a simple algebraic group of type A, (n > 2) over K, fix a Borel subgroup B = UT
of G as usual, and let IT = {71,...,7,} be a corresponding base of the root system ® of G.
Let {o1,...,0,} be the set of fundamental weights corresponding to our choice of base II
and denote by .Z the Lie algebra of G. Also let h be the Lie algebra of 7" and let b be the
Borel subalgebra of .Z corresponding to II, so that

L =2L(T)® (@ .;S,”(U,Y)) .

vedD

Consider a standard Chevalley basis
B ={ey [y, h, y€PT,1<r<n}

of £, as in Section Z5.1] and for 0 € X (T'), simply write V(o) (respectively, L(o)) to
denote the Weyl module for G corresponding to o (respectively, the irreducible K G-module
having highest weight o). In this section, we consider the p-restricted dominant T-weight
o = aoq + bo,, where a,b € Z~, and set

p=0— M+ 4.
Also for 1 < r < s <n, we adopt the notation

fr,s = f7r+"'+75’

By (2.14)) and our choice of ordering < on ®*, the weight space V (o), is spanned by f; ,0v7
and elements of the form fi,, fri41rs - frm+1.007, Where v7 € V(0), denotes a maximal
vector in V(o) for B, 1 < m <mand 1 < r < ry < ...r, < n. Now observe that
0 — .+ -+ a5 is a T-weight of V(o) if and only if either 7 = 1 or s = n. Therefore the
list

{fl,r.fr-i—l,nva}lSTSn_l U {fl,n’UU} (43)
forms a generating set for V(o) by Proposition 258 Furthermore, an application of Lemma
yields dim V' (o), = n, forcing the generating elements of ([A3)) to be linearly indepen-
dent, so that the following holds.

Proposition 4.1.1
Let 0 = aoy + boy,, where a,b € Z~q, and set p = 0 — (71 + -+ + Yn). Then p is dominant
and the set ([A3)) forms a basis of the weight space V (o),

We now study the relation between the quadruple (a, b, n,p) and the existence of a max-
imal vector in V' (o), for b. For A = (4,)1<,<n, € K", we set

n—1

u(A) = A frefrinat” + A frav” € V(o). (4.4)

r=1
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Lemma 4.1.2
Let o, i be as above, and adopt the notation of (44). Then the following assertions are
equivalent.

1. There exists 0 # A € K" such that e;u(A) =0 for every v € IL.
2. There exists A € K™™' x K* such that e;u(A) = 0 for every v € I1.

3. The divisibility condition p | a +b+n — 1 is satisfied.

Proof. Let A= (A;)1<r<n € K™ and set u = u(A). Then applying Lemma successively
yields

n—1

§ o o
€y U = Are'yl fl,rfr—i—l,nv + Ane'yl fl,nv

r=1

n—1
= (a+ DA fonv” = Avforfrirnt” — Apfont”
r=2

n—1
= ((a + 1)A1 + Z AT’ - An) .f2,n'UU>

r=2

€y, U = (Ar - Ar—l)fl,r—lfr-‘rl,nvaa
€y, U = (An + bAn—l)fl,n—lea

where 1 <7 <n. Now e, | €y, f2,v7 = £f, v7 # 0, showing that f;,v” # 0. Similarly,
one checks that each of the vectors f,, f3,07, ..., fon—2/y,07, f2,,v? is non-zero, so that
e,u(A) = 0 for every v € II if and only if A is a solution to the system of equations

Ay =(a+1)A+ Y0, A
Ay =A foreveryl<r<n (4.5)
A, = —bA,_;.

Now one easily sees that (A5]) admits a non-trivial solution A if and only if p | a+b+n—1
(showing that [[l and [ are equivalent), in which case A € ((1,...,1,—b))k (so that [Il and
are equivalent), completing the proof. O

Let o, 1 be as above and consider an irreducible K G-module V' = L(¢) having highest
weight . Take V' = V(o) /rad(c) and write v™ to denote the image of v” in V| that is, v is
a maximal vector in V' for B. By Proposition [A.1.1], the weight space V), is spanned by

{fl,rfr+1,nv+}1grgn_1 U {fl,nv+} . (46)

We write Vi, to denote the span of all the generators in (£.6) except for fi,v*. The
following result gives a precise description of the weight space V), as well as a characterization
for [V (o), L(p)] to be non-zero.
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4.2 Weight spaces for G of type B,

Proposition 4.1.3

Let G be a simple algebraic group of type A, and fix a,b € Z~q. Also consider an irreducible
KG-module V- = L(o) having p-restricted highest weight o = aoy + bo, € XT(T) and let
p=0—(y1+-+7) € AT(0). Then the following assertions are equivalent.

1. The weight p affords the highest weight of a composition factor of V(o).
2. The generators in ([L0) are linearly dependent.
3. The element fi,v" lies inside Vi ,.

4. The divisibility condition p | a4+ b+ n — 1 is satisfied.

Proof. Clearly bothIland Blimply 2l Also if 2 holds, then rad(c)NV (o), # 0, so L(v) occurs
as a composition factor of V(o) for some v € AT (o) such that u < v < 0. Now one easily sees
that my ) (v) = 1 for every u < v < o, hence [[] holds by Theorem 234l Still assuming 2]
this also shows that there exists 0 # A € K" such that u(A) € rad(c) NV (0), is a maximal
vector in V(o) for ., where we adopt the notation of ([@.4]). Therefore [2implies [ as well by
Lemma Finally, suppose that @ holds. By Lemma B.1.2), there exists A € K"! x K*
such that e,u(A) = 0 for every v € II. Consequently, we also get e,(u(A) +rad(c)) = 0 for
every v € II, that is, u(A) +rad(o) € (v")x NV, = 0 and so B holds. O

To conclude this section, let o, u be as above and assume p | a+b+n— 1. By Proposition
EI3 p affords the highest weight of a composition factor of V(o), and fi1,0" € Vi,.
Moreover, the proof of Lemma [£.1.2] showed that

n—1
’LL+ = fl,n'UU - b_l Z fl,rfr—l—l,nvg (47)
r=1

is a maximal vector in V' (o), for b, leading to a precise description of f;,v" in terms of a
basis of Vi .

4.2 Weight spaces for G of type B,

Let G be a simple algebraic group of type B,, (n > 2) over K, fix a Borel subgroup B = UT
of G as usual, and let IT = {a, ..., a,} be a corresponding base of the root system ® of G.
Let {A1,..., A} be the set of fundamental weights corresponding to our choice of base II
and denote by .Z the Lie algebra of G. Also let h be the Lie algebra of 7" and let b be the

Borel subalgebra of .Z corresponding to II, so that

L=2(T)® (@ g(m)) .

aced
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Consider a standard Chevalley basis
B = e, farha, € PT 1 <r<n}

of £, as in Section Z5.1] and for o € X (T'), simply write V(o) (respectively, L(o)) to
denote the Weyl module for G corresponding to o (respectively, the irreducible K G-module
having highest weight o). Although most of the results presented here hold for K having
arbitrary characteristic, we shall assume p # 2 throughout this section for simplicity. Indeed,
Theorem 1] is an immediate consequence of [Sei87, Theorem 1, Table 1 (MR,)] together
with [For96, Theorem 3.3] in the case where p = 2, hence there is no harm in ruling out this
possibility here. Finally, adopt the notation

Jij = Jfoittay

for every 1 <1 < j <n, as well as

Fr,s = far-i----+asf1+2a5+---+2an>

forevery 1 <r < s <n.

4.2.1 Study of L(a)1) (a € Z~y)

Let a € Zs and consider the p-restricted dominant weight A = a\; € X7 (T'). Also write
p=A—2(a;+ -+ a,). By Proposition 2.5.8 and our choice of ordering < on ®*, one sees
that

V(o) = (3(fin)*0?, friFrjmet 1< j <n),,
where v* € V() denotes a maximal vector in V() for B. Since we are assuming p # 2, we

get that $(f1,,)?0* € V(X), if and only if (f1,,)?0* € V(A),, so that the weight space V(A),,
is spanned by

A A
{fiiFmv }1§j<n U {(fin)*0*}, (4.8)
Now if a = 1, then p is # -conjugate to A, which has multiplicity 1 in V(). Furthermore,
successively applying €, ..., €q, to the element f, F} o0 shows that it is non-zero, hence

V(A), = (fa, F120*) k. Finally, we leave to the reader to check (using Lemma 254 together
with the fact that V(A)x—(2a;+as+-+an) = 0) that the following result holds.

Proposition 4.2.1
Let A = A\; and consider . = X\ — 2(a; + -+ + ay,) € A(X). Then V(N), = (for F120") k and
the following assertions hold.

1. fi1;F 10 = fo, Fiov? for every 1 < j < n.

2. (.fl,n)zU)\ = 2fa1F1,2U>\~
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4.2 Weight spaces for G of type B,

For the remainder of this section, we assume a > 1, in which case the weight u is
dominant. An application of Theorem 2.3.11] gives dim V' (\),, = n, so that the generating
elements of (48)) are linearly independent, leading to the following result.

Proposition 4.2.2
Let a € Zsq, set X = a)y, and consider j1 = X —2(ay + -+ -+ ) € AT(N). Then the set (L)
forms a basis of the weight space V/(\),.

We now study the relation between the triple (a,n,p) and the existence of a maximal
vector in V'(A), for b. For A = (A, )1<,<, € K", we set

n—1

’UJ(A) = Z Ajfl,jFl,j+1U>\ + An(fl,n)2v>\- (49)

Jj=1

Lemma 4.2.3
Let \, pu be as above and adopt the notation of (A9). Then the following assertions are
equivalent.

1. There exists 0 # A € K" such that eqw(A) =0 for every a € 11.
2. There exists A € K" ' x K* such that eqw(A) = 0 for every a € 1.
3. The divisibility condition p | 2(a +n) — 3 is satisfied.

Proof. Let A = (A,)1<r<n € K™ and set w = w(A). Then Lemma 254 yields
n—1

A A A
€a1w:aA1F1,2U - E Ajfz,jFl,j+1U —Anfz,nfl,nU

j=2
n—1
= <aA1 + Z Aj + 2An) FLQ’U)\,
j=2

as well as e, w = (A, — A,1) firr_1Fi 10", for every 1 < r < n. Finally, one checks that
€a, W = (44, — An_l)f17n_1f17nv’\. As in the proof of Lemma [4.1.2] one checks that each of

the vectors I ov*, fo, Fi3v?, ..., fin—2F1 0", fin_1finv? is non-zero, so that e w(A) =0
for every a € II if and only if A € K" is a solution to the system of equations
24, +ad, =" A,
A, =A, forevery 1 <r<n (4.10)
An—l = 4An

Now one easily sees that (4I0) admits a non-trivial solution A € K" if and only if
p | 2(a+n) — 3 (showing that [[l and [ are equivalent), in which case A € ((4,...,4,1))k (so
that [Il and 2] are equivalent), completing the proof. O
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Let A, pu be as above and consider an irreducible KG-module V' = L(\) having highest
weight \. Assume V = L()\)/rad(\) and write v to denote the image of v* in V = L()\),
that is, v™ is a maximal vector in V' for B. By (48]) and our choice of ordering < on ®*, the
weight space V), is spanned by

{fl,jF1,j+1U+}1Sj<n ) {(f1,n)2v+} . (4.11)

We write V2, to denote the span of all the generators in (ZII)) except for (fi,)*v". The

following result gives a precise description of the weight space V,,, as well as a characterization
for [V(X), L(1)] to be non-zero.

Proposition 4.2.4

Let G be a simple algebraic group of type B, over K and fit a € Z~y. Also consider an
irreducible KG-module V- = L(\) having p-restricted highest weight A\ = aX; € X (T') and
let u=X—=2(ay + -+ a,) € AT(N). Then the following assertions are equivalent.

1. The weight u affords the highest weight of a composition factor of V().

2. The generators in (LI1)) are linearly dependent.

3. The element (f1,)*v" lies inside V7,

4. The divisibility condition p | 2(a + n) — 3 is satisfied.
Proof. First observe that the weights v € AT()\) such that p < v < X are A—ag, A—2a;7 —
(ifa>2), \—(ag+---+a,) and A — (204 + g + - -+ + «,) (if @ > 2), which all satisfy

my(y)(v) = 1. Proceeding exactly as in the proof of Proposition A.1.3] using Lemma 4.2.3]
instead of Lemma [4.1.2] then yields the desired result. We leave the details to the reader. [

4.2.2 Study of L(\;) (1 <i<n)

Next let A = A\ and write p = A — (o +2as+- - - +2a,,). (Observe that p is the zero weight.)
By (Z.I4)), our choice of ordering < on ®*, and Proposition EE2.T], one checks that the weight
space V' (\), is spanned by
{F1,2U)‘} U {fa1fa2F2,3U)\}
U {flij27j+lv>\}2Sj<TL
U {f2,jF1,j+1U>\}2Sj<n
U {f2,nfl,nv>\} .
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4.2 Weight spaces for G of type B,

Proposition 4.2.5
Let X = Xy and set 1 = X\ — (oq + 209+ - - + 20,) € AT (X). Then my(y) (1) = n and a basis
of V() is given by

{F1,2U’\} U {falfaze,zW)‘}
U {fz’jFl’j+1U)\}2§j<n . (412)

Proof. By Theorem 2.3.11] the assertion on the dimension holds, so it remains to show that
fl,ng,ij)‘ (2<j<n)and f27nf17n'U)\ can be expressed as linear combinations of elements
of (A12). Let then 2 < j < n be fixed. By Lemma 2.5.4] and Proposition A.2.1] (part [)
applied to the B, _j-Levi subalgebra corresponding to the simple roots as, ..., a, (noticing
that the constant structures have were chosen in a compatible way in Section 2.5.7]), we have

ijF2,j+1UA = fz,jfalF2,j+1UA — Ja f2,jF2,j+1U/\

= —fo; F1j410" = foy fas Fo30™,

that is, fi;Fs 10 € <f2,jF1,j+1v)‘, falfa2F2730A>K. On the other hand, Lemma 2.5.4] and
Proposition [1.2.1] (part [2)) applied to the B,_;-Levi subalgebra corresponding to the simple
roots aa, ..., a, yield

fonfianv® = =2F1 00 + fi, font?
= —2F1,2U)‘ - fal(f2,n)2v>\ + f2,nfa1 f2,nUA
= —2F1,2U)‘ - 2fa1 fa2F2,3U)\ - f2,nf1,nv)\7

s0 that fo, f1.,0 = —F1 20 — fa, fay Fo30*. Therefore f,, f1.,0 lies in the subspace of V/()),
generated by F172v’\ and fq, fa2F273U)\, as desired. ]

Let A\, pu be as above and consider an irreducible KG-module V' = L(\) having highest
weight \. As usual, take V = V(\)/rad(\) and write v™ to denote the image of v* in V, that
is, v" is a maximal vector in V' for B. By Proposition £.2.5] the weight space V), is spanned
by

{F1,2U+} U {falfa2F2,3U+}
U {f2,jF17j+1,U+}2§j<n . (4]‘3)

Now by [Liib01, Theorems 4.4, 5.1|, the KG-module V() is irreducible (since p # 2), which
in particular yields the following result.

Proposition 4.2.6
Consider an irreducible KG-module V= L(\) having highest weight A = \y. Then V=V ()
and the T-weight p = X — (aq + 2an + - - - + 2a,) is dominant. Also my(u) = n and the set

[EI3) forms a basis of V.
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Finally, consider an irreducible KG-module V' = L()\) having highest weight A = \;,
where 1 <i <mn. Alsoset =X — (g + -+ ;_1 + 205 + - - - + 20v,,). Proceeding as in the
proof of Proposition [4.2.5], one easily deduces that the weight space V), is spanned by

{Fl,iv—l—} U {fl,i—lfaiFi7i+1U+}
U {fz',jFLj+1U+}zgj<n’ (4.14)

Hence applying Lemma 2.3.7] to the B, _;io-Levi subgroup of G corresponding to the
simple roots «;_1,...,q, together with Proposition d.2.6] yields the following result. The
details are left to the reader.

Proposition 4.2.7

Consider an irreducible KG-module V' = L(\) having highest weight A = \;, where 1 < i < n.
Then the T-weight p = A — (a1 +- -+ a1+ 20;+ - - -+ 2ay,) is dominant, my () = n—i+2
and the set ([A14)) forms a basis of V,.

4.2.3 Study of L(al1 + o) (a € Z~y)

Assume p # 2 and consider the p-restricted dominant weight A = aA; + A\, where a € Z,.
Also write 12 = A — a3 —ag and gt = XA — (g + 29 + - - - + 2c,). By Proposition 2.5.8] our
choice of ordering < on ®* and Proposition .2.T] one sees that the weight space V()),, is
spanned by

{F1,2U/\} U {falfangsU)‘}
U {fl’sz’j+1U)\}1<j<n
U foiFrjmv e,
U {fonfinv}, (4.15)
where v* € V()\)y denotes a maximal vector in V()\) for B. As usual, an application of

Theorem 2317 gives dim V(\), = 2n — 1, so that the generating elements of (4I5]) are
linearly independent. The following assertion then holds.

Proposition 4.2.8
Let X = a1 + Ag, where a € Zwg, and set jp = X\ — (ag +2as + -+ -+ 2a,) € AT(N). Then the
set ([LI5)) forms a basis of the weight space V (\),,.

Suppose for the remainder of this section that p | a 4+ 2, so that p; o affords the highest
weight of a composition factor of V(\) for B by Proposition 1.3 Also denote by u™ the

corresponding maximal vector in V(A),, , for B given by (1), and set V' (A) = V(X)/(Gu™) k.
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4.2 Weight spaces for G of type B,

Lemma 4.2.9
Let A\, u, u*, and V(X) be as above, with p | a + 2. Then [(Gu™) g, L(u)] = 0. In particular
, L

VA, L)l = [V(A), L(p)]-

Proof. The result follows from the fact that (Gu™)x is an image of V' (p12), in which L(pu)
cannot occur as a composition factor by Proposition 4.2.6] O

In view of Lemma 2.9, we are led to investigate the structure of the quotient V().

Write 9 for the image of v* in V()\). By Lemma 2.5.4 and (47]), we successively get
fl,r@/\ = fs,rfl,ﬂ)‘ = fs,rfalfaﬂ/\ = falf?,,rfaz@/\ = fa1f2,r17\, (4.16)

for every 2 < r < n. Also, since (Gu™) is an image of V'(j;2) and my,, ,)(n) =n — 1 by

Proposition .26, we have dim V() , = n. Those observations can be used to determine a

basis of the weight space V() 4> @8 the following result shows.

Proposition 4.2.10
Let a € Z¢ be such thatp | a+2 and let X\ = aX;+Xqo. Also write g = A— (o1 +2as+- - -+2a,)
and let ut be the mazimal vector in V(X),,, for B given by @T). Finally, write v* for the

image of v* in V(A\) = V(A\)/(GuT) k. Then a basis of the weight space V(X),, is given by

{F120"} U foF1g0™ ) U fonfind™} - (4.17)

Proof. We start by showing that each of fa, fa, Fo 307, f1;Fs 419" (1 < j < n) can be written
as a linear combination of elements of (LI7). Fix 1 < j < n. By Lemmas 254 L2.T] (part
), and (AI6]), we successively get
friFo @ = Fiot™ + Fyjii fay fa,0°
= F150" + Fij41fo 0 + fay f2F2 10"
= 2P 50" + fo ;P ji1 0 + foq far P20,
so that fl,jF2,j+177)\ S <F1,27_))\7falfa2F2,3r(—])\7f2,jF1,j+1r(_])\>K- It then remains to show that

for fan Fo307 is a linear combination of elements of (LIT). By Lemmas 254, B2 (part ),
and (4I0), we have

fa1fa2F2,377>\ = %fa1(f2,n)277>\
= %(f2,nfa1f2,n@>\ - fl,nf2,n@>\)
= %(fQ,nfl,nT))\ - fl,nf2,n@)\)

Y
= —F1,2U )

hence fo, fa, Fo30* € (F120%) k, showing that V()), is spanned by the set of vectors in (&IT).

Therefore the assertion on dim V() ., given above allows us to conclude. O
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We now study the relation between the pair (n,p) and the existence of a maximal vector

in V(A), for b. For A = (A, )1<,<n € K", we set
n—1

W(A) = A1F1 o0 + > Aj fo i Fr i + Ay fon fra. (4.18)

j=2
Lemma 4.2.11

Let \, u be as above, with p | a + 2, and adopt the notation of ([AIK)). Then the following
assertions are equivalent.

1. There exists 0 # A € K" such that eqw(A) =0 for every a € 11.
2. There exist A € K" ' x K* such that e,w(A) =0 for every « € II.

3. The divisibility condition p | 2n — 3 is satisfied.

Proof. Let A = (A, )1<r<n € K" and set w = w(A). Starting by using Lemmas 2.5.4] and
A2.Tl (parts M and 2)), we get

n—1
Coy W = — Z Aifo,iFaipa 0 — Ap(fon)*0?
i—2

n—1
= — (Z Az + 2An> fa2F2,31_])\7
=2

while Lemma 254 yields

n—1
Cap® = — AL Fy 307 + Aghg, Fy 307 — Z Aif3iF1 i1 — Anfanfrn®
i—3
n—1
- (—A1 +245+ > A+ 2An> Fy 507,
r=3

Similarly, one easily checks that e, w = (A, — Ar—l)f2,r—1F1,r+1@)\> for every 2 < r < n, and
finally, we have

Ca, W = 2An(f2,n—1f1,n?7)‘ + f2,nf1,n—1?7)‘) - An—lf2,n—1f1,n17)‘
- (4An - An—l)f2,n—1f1,n@)\>

where the last equality comes from the fact that V(A)i—(2as+t2an 140, = 0 and (@.I6)
apphed to f2,nfl,n—1@>\~
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4.2 Weight spaces for G of type B,

As usual, one checks that each of the vectors f,, F2,3@)‘, F173@)\, fa2F1,417\, cee f27n_2F17nT))\,
and fo,,_1f1,,0" is non-zero. Consequently, e,w(A) = 0 for every o € Il if and only if A € K"
is a solution to the system of equations

24, =-305 4

Ay = 2(A2 + An) + Z;:?} Aj (4.19)
A,_1 =A, forevery 2<r<n-—1

An—l = 414”

Now one easily sees that (£I9) admits a non-trivial solution A if and only if p | 2n — 3
(showing that [Il and [B] are equivalent), in which case A € ((4,...,4,1))x (so that [ and
are equivalent), completing the proof. O

Let A and p be as above, with p | a+ 2, and consider an irreducible .Z-module V' = L(\)
having highest weight A. As usual, take V' = V() /rad()), so that

Ve / rad(\)

where rad(\) = rad(\)/(Gu™) k. Also write v+ to denote the image of v in V, that is, v™ is
a maximal vector in V' for B. By Proposition [4.2.10] the weight space V), is spanned by

{F1,2U+} U {f2,jFLj+1U+}1<j<n
U { fonfrav™}
We write V15, to denote the span of all the generators in (£20) except for fo,f1,v7.

As usual, the following result consists of a precise description of the weight space V,,, as well
as a characterization for [V (\), L()] to be non-zero.

v

I

(4.20)

Proposition 4.2.12

Let G be a simple algebraic group of type B,, over K and consider an irreducible KG-module
V' = L(\) having p-restricted highest weight X = a\; + A2, where a € Z~q is such that
pla+2. Also write p =X — (aq +2a9 + - -+ + 2a,) € AT(AN). Then the following assertions
are equivalent.

1. The weight u affords the highest weight of a composition factor of V/(X).
The generators in ([L20) are linearly dependent.

The element fo,f1,vT lies inside Vi op.

The divisibility condition p | 2n — 3 is satisfied.
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Proof. Clearly B] implies 2, while if [l holds, then Lemma yields [V(A), L(p)] # 0, so
that 2 holds. Now if @ is satisfied, then L(r) occurs as a composition factor of V() for
some v € AT(XA) such that u < v < X\ by Proposition L2.T0l Since only p can afford the
highest weight of such a composition factor, [l holds by Lemma again. This also shows
the existence of 0 # A € K" such that w(A) is a maximal vector in V(X\) for b, where
we adopt the notation of (AIS). Therefore 2] implies 4 by Lemma 4211l Finally suppose
that [ holds. By Lemma 211 there exists A € K" ! x K* such that e,w(A) = 0 for
every a € II. Consequently, we also get e,(w(A) + rad(A)) = 0 for every a € II, that is,
w(A) +rad(A) € (vH)xk NV(A), = 0 by Theorem Therefore B holds and the proof is
complete. O

4.2.4 Study of L(al; + ;) (2 < k <n and p # 2)

Let A = a); + A, where a € Z~, and 2 < k < n. Also write py, = A — (oq + -+ -+ ;) and
w=A—(ag 4+ +ag1+ 20+ -+ 2q,). By Proposition 2.5.8] our choice of ordering <
on ®*, and Proposition L2.0], one checks that the weight space V' (), is spanned by

{Fieo*} U{ frimt fop Frpriv’}
A
UL LB} s
A
U { f1;Fr 110 }k§j<n
U {fl,ifi—',—l,k—lfakFk,k+1v)\}1§i§k_2
A
U { frifrjFis1j41v }1§i§k—27kﬁj<n
A
U { frF1 v }k§j<n
U {fk,nfl,nv)\} P (421)
where v* € V()), is a maximal vector in V()) for B. As usual, an application of Theorem

2.3.11 yields my () (p) = k(n — k + 2) — 1, forcing the generating elements of (4.2I]) to be
linearly independent. The following result thus holds.

Proposition 4.2.13

Fiz a € Zso and 2 < k < n. Also let A\ = a\; + N\, € XT(T) and consider the dominant
T-weight = X — (a1 + -+ agp_1 + 2ap + - - - + 2a,) € AT(X). Then the set (£21) forms a
basis of V(A),.

Suppose for the remainder of this section that p | a + k, so that p ; affords the highest
weight of a composition factor of V(\) for B by Proposition I3l Also denote by u™ the

corresponding maximal vector in V/(X),, , for b given by 7)), and set V/(X) = V(A)/(Gu*) k.
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4.2 Weight spaces for G of type B,

Lemma 4.2.14

Let A\, u, u™, and V() be as above, with p | a + k. Then [(Gu™)k, L()] = 0. In particular
VA, L)l = [V(A), L(p)]-

Proof. The result follows from the fact that (Gu™) is an image of V(11 ), in which L(pu)
cannot occur as a composition factor by Proposition [4.2.6] O

In view of Lemma [£.2.T4] it is only natural to investigate the structure of the quotient
V()\). Write ©* for the class of v* in V()\). By Lemma 254l and (&.7T]), we successively get

k—1 k—1
Fro® = frprnfra® =D frvrafraforr s =Y frofaprn 0, (4.22)
s=1 s=1

for every k < r <n. Also, since (Gu™) is an image of V(1) and mp,, (1) =n—k+1

by Proposition 2.7, we have dim V(X), = (k — 1)(n — k + 2). Those observations can be

used to determine a basis of the weight space V() o @8 the following result shows.

Proposition 4.2.15

Let a € Zo and 2 < k < n be such that p | a + k and consider the dominant T -weight
A=al + . Also set p=X— (g + -+ a1 + 204 + - + 2a,) € AT(N) and let u™ be
the maximal vector in V(A),,, for B given by ([&1). Finally, set V(A\) = V(A)/(Gu™)k, and

write 1 for the class of v* in V()\). Then a basis of the weight space (A), is given by

{Fi U {fl,iﬂﬂ,k@/\}lgigk_z
U {fl,ifi+1,k—1faka,k+17_])\}lgigk_2
U {flvifkiji""lvj"‘lﬂ)\}1§i§k—27k§j<n
U {fk,jFl,j+1@)\}k§j<n
U{ fonfr,0"} . (4.23)

Proof. We first show that fi,_1fa, Fk,k+117\ lies inside the subspace of V' (\) generated by
the elements Fy 0%, f1:F511,60%, frificto—1fop Frpra0™, and fi;fijFiy1 410", where 1 <4 <
k —2 and k < j < n. By Lemma 2.5.4] and Proposition 2.1 (part 2]), we have

fl,k—lfaka,kH@/\ = %fl,k—l(fk,n)zﬂ)\
= 2(fronfip—1frn® — finfend)
= 2(fomSrp—1fin® — 2F1 10" = frnfia0),

and by (m)a we get fk,nfl,k—lfk,n@)\ = fk,nfl,n@)\ - Zf;f .fl,rfk,nfr—i—l,n@)\- An apphcation of
Proposition [4.2.7 then yields the desired result in this case.
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Finally, let & < j < n, and first observe that by Lemma 2.5.4 and ([4.22]), we have

A A A
f1E%, 410" = F1 0" 4 Fy jp1 1,50
f—2
A A A
= [ ,0" + E fioFrji1fre1,0° + Frjrifip—1fie 07

r=1

pplying Proposition shows that fi,F} it1fr41.,0" lies inside the subspace o
Applying Proposition EZ0 shows that fi, Fys1fre1,0" lies inside the sub £ Vn
generated by the elements of (£23)) as desired, while an application of Proposition E2.1]
(part [ yields

Fk,j+1f1,k—1fk,j77/\ = Fl,j+1fk,j77)\ + f1,k-1Fk,j+1fk,ﬂ_’)\

Y Y Y
= Fi 0" 4 fi;j F1410" + fip—1fo, Pl

Therefore V/()), is spanned by the elements of ([.23) and the assertion on dimV(A),
given above allows us to conclude. O

In order to investigate the existence of a maximal vector in V() ,, for b as in Lemma
[4.2.T7], we require the following technical result.

Lemma 4.2.16
Let X\, and p be as above, with p | a + k. Then the following assertions hold.

L frnfon® = —Fo 0 — fop—1fap Frpp10™.
_ k—2 _ —_
2. fk,n—lfl,nv)\ = - Zrzl fl,rfr—i—l,n—lfk,nv)\ + fl,n—lfk,nv)\-

3. fk,n_lfr+1,nz7)‘ = —fr+17n_1fk7n17’\, foreveryl <r <k —1.

Proof. By Lemma [2.5.4] and Proposition [1.2.1] (part [2), we get
fk,nf2,nz_])\ = _f2,nfk,nz_])\ - f2,k—1(fk,n)2r(—])\
= 28510 — femfon® — for-1(fon)?0"
= —2F5 10" — frnfon® — 2fo k-1 fap Frps10,
from which [l immediately follows. Finally, by Lemma 254 and (£22), we have

k—2

fk,n—lfl,nq_))\ = Z fl,rfk,n—lfr-l—l,nz_])\ + fk,n—lfl,k—lfk,nr(—])\

r=1

k—2
= Z fl,rfk,n—lfr-‘rl,n@)\ + fl,n—lfk,n@)\-
r=1

Noticing that frn—1fri120" = —fem1frrth1frn® = —friin1frad for 1 <r < k-1
then yields 2] and Bl completing the proof. O
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4.2 Weight spaces for G of type B,

We now study the relation between the triple (n, k,p) and the existence of a maximal
vector in V()‘)u for b, assuming p | a + k. For X = (A, B;,Cy, Dyj, Ej, F) € K*=Dn=k+2)
(1<i<k—2and k<j<n-—1), weset

k—2 k—2

W(X) = AF) 0" + Z Bif1iFi 60" + Z Cifrifirt bt fop Frpir0

i=1 =1

k—2 n—1 R n—1 N (4.24)
+ Z Z Dij frifejFiv1j+0” + Z Ej frjF1j410

i=1 j=k ji=k
+ F.fk,nfl,nf))\'

Lemma 4.2.17
Let \, p be as above, with p | a + k, and adopt the notation of (£24]). Then the following
assertions are equivalent.

1. There exists 0 # X = (A, B;,Cy, Dij, E;, F) € K¢ Dn=k+2) (1 < § < k' — 2 and
k<j<n-—1) such that eq(X) = 0 for every o € Il.

2. There exists X = (A, B;, Ci, Dyj, E;, F) € K*=D=h+2=1 5 & (1 < § < k —2 and
k<j<n-—1) such that eq(X) = 0 for every o € Il.

3. The divisibility condition p | 2(n — k) + 1 is satisfied.
Proof. We start by assuming k = 3, respectively write B,C and D; for B;,C; and D,

(3<j<n-1),and let X = (A,B,C,D;,E;,F) € K*"1. With these simplifications,
w = w(X) can be rewritten as

w = AFl,?’T)A + Bfa1F273@)\ + Cfa1fa2fa3F3,4T)>\
n—1 n—1
+ Z Djfoq f3,jF2,j+1’l_J)\ + Z Ejf37jF17j+117>\
J=3 j=3

+ Ffs,nfl,nﬂ)‘-
Lemma [2.5.7] then yields

ey = (—A+ (a +1)B)Fy30™ + (a4 1)C fo, fo, F3.40™

[y

+> ((a+1)D; — E;j) f3;Fo j110" — F f3.5 fo.n0

~A+ (a+1)B+ F)Fy30" + ((a + 1)C + F) fu, fas F3.47"

+ ) ((a+1)D; = Ej) fs jF5 107,

w

|
S —~ <.

—_

<.
Il
w
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where the last equality follows from Lemma [£.2.T6] (part [[]). Similarly, Lemma 2.5.4] yields

n—1

€ar® = (2C = D) foy fas F3 a0 =Y D for f5,;F5 110"

7=4
n—1

= (20 - Z D]) fa1fa3F3,4@)\a
j=3

where the last equality follows from Proposition [£.2.] (part[1l). Again, applying Lemma 2.5.4]
gives

n—1
Cag® = (2B5 = A) P40 = Y D fa, f1,;Fo 5410
j=4
n—1
+(2D5 = B = C) foy Fou0* — Z E; f1;F1ja0
j=4
.Y
- Ff4,nf1,nv
n—1
- <2E3 +Y E;j—A+ QF) Fy 40
j=4
n—1
+ <2D3 +Y D;-B- C) Fon Fos®,
j=4

while for every 4 < r < mn — 1 one checks that

€aTU_) = (Dr - Dr—l)fal f3,r—1F2,r+11_])\ + (Er - Er—l)f&r—lFl,r—l—l@)\-

Finally, we leave to the reader to check (using Lemma (part 2) and ([A22)) that

fou f3,n—1f2,n77>\ = f3,n—1f1,n77\ - f3,n—1f1,2f3,n77>\
= fS,n—lfl,n@)\ - fl,n—lf?»,n@)\

= _-fOCI f2,n—1f3,n@)\

and hence

eanw - _Dn—lfoq f3,n—1f2,n@)\ + (2F - En—l)f?»,n—lfl,n@)\ + 2Ff1,n—1f3,n@)\
= (2F — Dy — Epa) fa f2,n—1f3,n77>\ + (4F — En—l)fl,n—lfg,nﬂ)‘-
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4.2 Weight spaces for G of type B,

As usual, one then checks that the vector fo, fa, F374T)’\ is non-zero. Also by Lemma [£.2.7,
the list {Fo30%, fay fas F3.40%, f3,F2 ;110 : 3 < j < n} is linearly independent. Similarly,
one sees that each of the lists {F) 40%, fo, F2.u0}, {foy f3.1F2 4207, f3.F1 120} (for every
3<7<n=2), {forfon-1[3.20", fin_1fs,0"} is linearly independent as well. Consequently,
eqw(X) = 0 for every « € 11 if and only if X is a solution to the system of equations

(A =(a+1)B+F
F =—(a+1)C
E; = (a+1)D; for every 3<j <n
20 =317, D;

2F; =A— Z" \E; —2F
2D; =B+C — z" ' D;

D,y =D, forevery3<r<n
E,_, =EFE,forevery3<r<n
D, =2F—-FE,_,;

E, 1 =A4F.

(4.25)

\

Now one easily sees that (4.25]) admits a non-trivial solution X if and only if p | 2n — 5
(showing that [Il and B are equivalent), in which case

Xe(d1-n3—n—2,...,-2,4,....4, 1)),
-3 -3

(so that [l and [2 are equivalent). The result follows in this situation and assume 3 < k <n
for the remainder of the proof. Let then X = (A, B;, C;, Dyj, E;, F) € Kk~D=k+2) where
1<i<k—-2and k<j<n-—1. By LemmaMamd Lemmam we have

k—2
€ D = ((a +1)Bi+»_ Bi— A) By 0

=2

k—2
+ ((a +1)Cy + Z Ci) o1 fo Fe e

1=2

n—1 k—2
+ Z ((a +1)Dy; + Z D;; — Ej) friFajn v
ik i=2

- ka,nflnq_))\
k—2

= ((a+ 1)31 _'_ZBZ — A"—F)szz_])\
=2

k-2
+ ((a +1)Cy + Z C; + F) Foke1foy Fi i1

1=2

n—1 k—2
+ ((a +1)Dy; + Z D;; — Ej) FriFo 10,
—x i—2

J

)



where the last equality can be deduced from Lemma 2,16 (part [I) Also, for 1 <r <k —1,
we get

earw = (Br - Br—l)fl,r—lFr—l—l,k@)\ + (Cr - Cr—l).fl,r—lfr-i—l,k—lfakFk,k—}—l@)\

n—1
+ Z (Drj = Dr15) fro—1fejFrinjn®,

=k

while Proposition A.2.1] (part [I) yields
n—1
a0 = (2Ck_2 — Di_op) frp—ofon Frps10" — Z Di—ajfrk—afrjFrjn0
Jj=k+1
n—1
= <2Ck—2 - Z Dk—2,j) Fiheo foy Fi g1

J=k

Also

n—1
60%121 = ( —A + 2Ek + Z Ej + 2F> F17k+1@)\

j=k+1

k—2 n—1
- Z (Bi +C; —2D; ), — Z Di,j) friFi1 e,

i=1 j=k+1

while for k < s < n, we have
Ca, W = (Dys — Di,s—l)fl,z‘fk,s—lFi+1,s+177\ + (Es — Es—l)fk,s—lFl,sHT_/\-

Finally, thanks to Lemma [£.2.16 (part [3)), we see that

k—2
eanw - Z Di,n—lfl,i.fi-l—l,n—lfk,n@)\ + (2F - En—l)fk,n—lfl,n@)\

=1

+ 2Ff1,n—1fk,n@)\
k—2

= Z (Din-1+ Eny —2F) frifirtn1frn®
i=1

+ (4F - En—l).fl,n—lfk,nf))\>
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4.2 Weight spaces for G of type B,

where the last equality follows from Lemmad.2.T6] (part2]). One checks that fi j_o fa, F) k7k+1@)‘
is non-zero and that each of the lists {sz@/\, fo—1for Frkt1, fk,ng,jHT)’\ k<j<n-1},
{froo1Frpr i, fro—tfrotn—1 fap Frps10%, fro—1fejFran 10} (for every 1 < r < k — 1),
{frifrs1Fi1s01, frs1F1 s} (for kb < s < n), {Fip0, friFiyip0 ) as well as
{frifisin1frn®, fin_1fen0} is linearly independent. Consequently, e,w(X) = 0 for every
a € 1T if and only if X is a solution to the system of equations

(F =A—(a+1)B - Y} B;
F = —(a+1)C =215 C
E; = (a+1)Dy; + Zf:_; D;; for every k< j<mn-—1
B,_; =B, forevery 1 <r<k-—1
Cr_1 =C,forevery 1 <r<k-—1
D,_1; =Dy foreveryl<r<k—-—1k<j<n-1
2052 = Z;:zi Dy—2 (4.26)
2K = A-2E,— Y Ej
Bi+C; =2Dy + Z;L:_,iﬂ D;j for every 1 <i <k —2
D,y =Djforevery 1<i<k—-2k<r<n
E,._, =F, forevery k <r <mn
E,_1 =4F

{ Din-1 =2F—FE, jforevery 1 <i<k—2.

Now one easily sees that (4.26]) admits a non-trivial solution if and only if p | 2(n — k) +1
(showing that [Il and B are equivalent), in which case

Xeldn—k—1,...m—k—Lk—n,....k—n,—2,...,—2,4,....4,1))x,
k—2 k—2 (n—k)(k—2) n—k

thus completing the proof. O

Let A\, and p be as above, with p | a+k, and consider an irreducible KG-module V' = L(\)
having highest weight A. As in the case where k = 2, set V' = V(\)/rad(\), so that

v / rad(\)

where rad(\) = rad(\)/(GuT) k. Also write v+ to denote the image of #* in V, that is, v* is
a maximal vector in V' for B. By Proposition A.2.15] the weight space V), is spanned by

{Fipt}U {fl7iﬂ+1vkv+}1§i§k—2
U {fl,z’fi+l,k—1faka,k+1v+}1§i§k—2
U {fl,z’fk,jﬂ+1,j+lv+}1§i§k_27k§j<n (4.27)
U {fkij17j+1v+}k§j<n
U { frnfrnv"} .
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We write V) ;. to denote the span of all the generators in (.27 except for fi,fi,vt. As
usual, the following result consists of a precise description of the weight space V,,, as well as
a characterization for [V ()A), L(u)] to be non-zero.

Proposition 4.2.18

Let G be a simple algebraic group of type B,, over K and consider an irreducible KG-module
V = L(\) having p-restricted highest weight A = a\; + A, where a € Z~g, and 2 < k < n.
Also let p =X — (a1 + -+ ag_1+ 204+ -+ 2a,) € AT(N) and assume p | a+ k. Then the
following assertions are equivalent.

1. The weight p affords the highest weight of a composition factor of V(\).
2. The generators in ([L27) are linearly dependent.
3. The element fi,fi,vT lies inside Vi j .

4. The divisibility condition p | 2(n — k) + 1 is satisfied.

Proof. Proceed exactly as in the proof of Proposition .2.12], replacing jt1 2 by pt1 %, Lemma
429 by Lemma 214, and Lemma E2.11] by Lemma 217 O

4.3 Proof of Theorem 4.7

Let K be an algebraically closed field of characteristic p > 0, Y a simply connected simple
algebraic group of type B,, (n > 2) over K, and X the subgroup of Y of type D,, generated by
the root subgroups of Y corresponding to long roots, as in the introduction of this chapter.
Also consider an irreducible KY-module V' = Ly () having p-restricted highest weight
A € Xt (Ty). In this section, we finally give a proof of Theorem ] starting by a reduction
to the case where (A, a,,) = 0 (relying on a result of Ford [For96, Theorem 3.3]), as well as
a few technical results.

4.3.1 Preliminary considerations

Let V = Ly(A) be as above and suppose first that (A, a;,) # 0. Write w = A|r, and let
vt € V) denote a maximal vector in V for By. Since Bx C By, the latter is a maximal
vector for By as well, showing that w affords the highest weight of a K X-composition factor
of V. Also observe that the element f,, v is non-zero and satisfies ug(c) fo, v = fa,v" for
every f € II(X), ¢ € K, that is, f,,v" is a maximal vector in V for Bx. Therefore the
Tx-weight w' = (A — ay,)|1, affords the highest weight of a second K X-composition factor
of V, and one easily sees that w and w' are p-restricted T'x-weights interchanged by a graph
automorphism of the Dynkin diagram corresponding to X, and that

Aw) NAW) = 0. (4.28)
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4.3 Proof of Theorem A1

Theorem 4.3.1 (The case (A, a,) # 0)
Let X\, V' be as above, with (\, ) # 0 and let 1 < k < n be mazimal such that (A, a) # 0.
Then X has exactly two composition factors on V' if and only if one of the following holds

1. A=\,

2. (May)=1,p|2(ar+n—k)+1andp|a;+a;+j—i foreveryl <i < j<n such
that a;a; # 0, but a, = 0 for every i <r < j.

Moreover, if X has exactly two composition factors on V, then V|x is completely reducible.

Proof. First suppose that X has exactly two composition factors on V' and assume a,, > 1.
Here (A — 2ay,)|r€ A(V]x) is neither in A(w) nor A(w'), giving the existence of a third
K X-composition factor of V, a contradiction. Therefore a,, = 1, in which case Lx(w) and
Lx(w') are interchanged by 6 and [For96, Theorem 3.3| applies, yielding the first assertion.
Finally, the complete reducibility of V|x immediately follows from (£.28]). O

From now on, assume (\, a,,) = 0 and p # 2, since otherwise X acts irreducibly on V' by
[Sei87, Theorem 1, Table 1 (MRy)]. As above, write w = A|r, and let v denote a maximal
vector in V' for By. Since Bx C By, the latter is a maximal vector for By as well, showing
that w affords the highest weight of a K X-composition factor of V. Also define

k=max{l <r <n:(\a.)#0}.

Since p # 2, the element fi ,v" is non-zero and one easily sees that ug(c) fr,v" = frnv™
for every g € II(X), ¢ € K, that is, f; ,v" is a maximal vector in V' for Bx. Therefore the T'x-
weight w' = (A — (g + - -+ )|y affords the highest weight of a second K X-composition
factor of V' and as above, we observe that

Aw) N AW) = 0. (4.29)

Now by Theorem 259, the K'Y-module V is irreducible as an .Z(Y)-module as well,
where Z(Y) denotes the Lie algebra of Y. Let then

B ={ew, faha, :a € ®H(Y), 1 <r <n}
be a Chevalley basis of Z(Y") as in Section [Z5.]] and for 1 < r < s < n, adopt the notation
frs = A — (g + -+ + ay).

The key to the proof of Theorem [Tl lies in the following result, whose proof is similar to
that of [For99, Lemma 3.4]. Here Z(X) denotes the Lie algebra of X.
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Proposition 4.3.2
Let £(X), V and v™ be as above. Then V = L(X)fi,vT & ZL(X)vT if and only if
finvT € L(X) frnvT and finfenvt € L(X)vT for every 1 <i < k.

Proof. Assume first that V = Z(X) fy,v" @ Z(X)v". Also fix 1 < i < k and denote by
u € L(X)fenvt and w € Z(X)v" the unique elements in V such that f; 0" = u + w.
Moreover, as f;,v" lies in the weight space V), ., so do u and w. Observe however that
LX)t NV, =0by [@29), forcing w = 0 and thus f;,v" =u € Z(X)fr,v". A similar
argument shows that f;, fr,01 € Z(X)v™, thus the desired result.

Conversely, suppose that f;,v" € Z(X)finv™ and finfra,0™ € Z(X)vT™ for every
1 <i <k, and write U = Z(X) frnv™ & Z(X)vT C V. We first show that

f“{l e f“{s (fk,n)ev+ S U7

for every € € {0,1}, v1 € ®T(Y) short and ~,,...,7, € ®T(Y) long. Ab absurdo, suppose
that it is not the case and let 2 < m be the smallest integer for which there exist v1,...,vm

as above such that f,, --- f,, v" ¢ U (the case where e = 1 can be dealt with in an identical
fashion). Then

S fva+ = fofntrs - 'fvaJr + N('Yl,’Y2)f’Yl+’Y2f'YB o 'fVmUJr’

and by minimality of m, both f,, fo, - - fy,. 0" and fy, 1, frs - - - fo,, 0" lie inside U. However,
since 7, is long, we get f,, --- f,,.v* € U, contradicting our initial assumption.

Finally, let ry,...,7, € ®T(Y) be such that f, ---f. v" ¢ U, with m minimal with
respect to this property. By minimality, we can rewrite f,, - f. vt as

where each sum ranges over n-tuples (n € Z~q) of long roots in ®(Y’). Two situations can
occur: either ry is long or short. If the former holds, then f,, --- f,, v™ € U, a contradiction.
Therefore 7 is short, which by above also yields f,, --- f. vT € U. Consequently U =V as
desired. O

For 1 <i<j<m,set P(i,j) ={(m.)i_; :s>0,i <m <...<mg < j} and for
(m) = (my);—1 € P(i, ), write

f(m) = fi,m1 fm1+1,m2 ce fms+1,j'

By (2I5) and our choice of ordering < on ®*(Y), we get that the weight space V,,, . is
spanned by
{famv™ : (m) € P(i,j)}. (4.30)
We let V;; denote the span of all the above terms except for f; ;v*. In order to apply
Proposition [£3.2] it is convenient to relate the subspace Z(X) fr,,vT to the family of sub-
spaces {V,.,}1<r<k. The following result provides us with an alternative to [For96, Lemma
3.5], slightly modified to fit our situation.
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4.3 Proof of Theorem A1

Lemma 4.3.3
Let X\, V' be as above, and let 1 < i < k <n. Then f,,v" € V., for everyi <r <k if and
only if frovt € L(X) frnvt for everyi <r < k.

Proof. First observe that £ (X)fr,ot NV, . C V., for every i < r < k. Therefore, if
frnvT € L(X) frnvt for some i < r < k, then clearly f.,vo* € V,,. Conversely, assume
frnvT € V., for every i < r < k. We shall proceed by induction on k —i. If k —i = 1,
then r = k — 1 and Vj_1, is at most 1-dimensional, thus the result is immediate. Let then
1 <4y < k—1 be such that f, vt € V., for every ip < r < k and suppose that the assertion
holds for every iy < i < k. By assumption f;, ,v* € Vj, ,, so there exist 9, ..., -1 € K

such that
k-1

fio,nv+ - Zns.fio,sfs+l,nv+~
S=10
By the inductive hypothesis, fs11,07 € L(X)frnv™ for every ig < s < k — 1 (obviously
fenvt € L(X) frnvt as well) and since oy, + - - - + a5 is long for every ip < s < k, we get
the desired result. O

Next assume (A, i) > 1 and let p = A — 2(ag + -+ + a,,) € AT(N). Using (LII)
together with Lemma [2.3.7 (applied to the B,_.i-parabolic corresponding to the simple
roots ay, . .., a,,) shows that the weight space V), is spanned by

{(fk,n)2v+} U {fkijkvj+1v+}k§j<n' (431)

As in Section 4.2 we write szn to designate the span of all the generators in (.31
except for (frn)*v". Clearly, we have V2, C Z(X)v™, since the elements of V;?, are of the
form f,, f,,v", with both 7, and 7, long roots in ®*(Y"). Conversely, one easily sees that
Z(X)vt NV, C V7, leading to the following result.

Lemma 4.3.4
Let X and V be as above and assume (A, o) > 1. Then (frn)*vt € Vlfn if and only if
(frn)?0F € Z(X)o™.

Finally, assume (A, o) = 1 and the existence of 1 < [ < k such that (A, «;) # 0,
but (A, «a,) = 0 for every [ < r < k. Also suppose that p | @ + k — [ + 1 and write
w=A—(a;+-+ar1+2ar+---+2a,). Using Proposition L2170 together with Lemma
2.3.7 (applied to the B,_;ii-parabolic corresponding to the simple roots ay, ..., ) shows
that the weight space V), is spanned by

{Ft}u {fl,iﬂ+1,kv+}l§i§k_2 U {fl,z’fi+17k—lfaka7k+lv+}lgigk_2
U {fl,ifk7jFi+l,j+1U+}lgigk_27k§j<n U {fk,jF’l,j+1U+}k§j<n (4.32)
U {fk,n.fl,nv+} .
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As in Section .2l we write Vi, to designate the span of all the generators in (£.32)
except for fi,finvt. Clearly, we have Vi, C Z(X)v™, since the elements of V,, are of
the form f,, --- f, v, with v,...,7, long roots in ®*(Y). Conversely, one easily sees that
Z(X)vt NV, CVn, leading to the following result.

Lemma 4.3.5
Let X and V' be as above and assume (N, ap) = 1. Then finfi,vT € Vign if and only if
fk,nfl,anr c g(X)U+

4.3.2 Tackling a first direction

Assume p # 2 and let Y and X be as in the statement of Theorem A1l Also consider an
irreducible KY-module V' = Ly (\) having p-restricted highest weight A € X*(Ty ) such that
(A, a,) = 0. In this section we show that if X acts with exactly two composition factors on
V, then one of [I], 2 or Bl in Theorem [4.1] holds.

Suppose then that X has exactly two composition factors on V, write vt to denote a
maximal vector in V' for By and let 1 < k& < n be maximal such that (A, ay) # 0. Recall
then that both vt and fi ,v™ are maximal vectors in V' for Bx, so that each of w = Az,
and w' = (A — (o + - - - + )|y affords the highest weight of a K X-composition factor of
V. Since we are assuming that X has exactly two composition factors on V., one immediately
deduces that the K X-submodules (Xv*) and (X fi,v%) of V' are isomorphic to Lx(w) and
Lx (') respectively, and (£29) yields

V= (Xv") @& (X frnv") 2 Ly(w)® Lx(W). (4.33)

Now w is p-restricted by (4.1]), and in order to be able to apply Theorem [2.5.9] we need
w' to be p-restricted as well, which in fact follows from our assumption that X has exactly
two composition factors on V, as the next result shows.

Lemma 4.3.6
Let X be as above and suppose that X has exactly two composition factors on V. = Ly ()\),
having highest weights w and W' respectively. Then w and W' are p-restricted and

V= 2(X)wt e LX) fravt.

Proof. Ab absurdo, assume w’ is not p-restricted. Then (4] yields p | ax_1 + 1, so that
Mi—1n]Ty & Aw) UA(w') by Theorem Consequently fix_1 |7, occurs in a third K X-
composition factor of V, a contradiction. We then get that Lx(w) and Lx(w') are irreducible
as Z(X)-modules by Theorem and so (433]) completes the proof. O

Before being able to apply Proposition [4.3.2] to its full potential, we need the following
technical result, inspired by [For96, Proposition 3.1].

82



4.3 Proof of Theorem A1

Proposition 4.3.7

Let X be as above and let 1 < i < m < k be such that a;a,, # 0. If fr 0" € V. for all
i < r < m, then f;jut € Vi, where i < j < m is minimal such that a; # 0. Also, if
frnvT € Vi for some 1 <r <k, then f, vt € V, k.

Proof. We refer the reader to [For96, Proposition 3.1| for a proof of the first assertion and
then consider 1 < r < k be such that f,,0* € V,,. By (2I3), for every r < s < k, there
exists {a(m) }(m)ep@,s) C K such that

k-1
fr,nv+:Z Z A(m) fim) fs1,n07

s=r (m)eP(r,s)

Now applying successively eq,,,€a,_;;---;€a,,, gives a non-zero multiple of f.,v* on the
left-hand side and elements lying inside V,., on the right-hand side, yielding the desired
result. O

As a consequence of Lemma [£.3.6] and Proposition E£.3.7, we now show that if X has
exactly two composition factors on V, then the divisibility conditions [Balin Theorem [£.1] are
satisfied.

Corollary 4.3.8

Let V- = Ly (\) be an irreducible K'Y -module having p-restricted highest weight A € X (Ty ),
with (A, a,) = 0. Assume in addition that X has exactly two composition factors on V. Then
pla;+a;+j—1 for every 1 <i < j <n such that a;a; #0, and a, =0 for i <r < j.

Proof. Let 1 < k < n be maximal such that (X, ax) # 0, 1 < i < j < n be such that a;a; # 0
and a, = 0 for every ¢ < r < j. By Lemma E3.6] we have V = Z(X)vt & Z(X) fi.v™,
where vt denotes a maximal vector in V for By, and so we may apply Proposition [£3.2]
from which we get that f, 0" € Z(X)fr,vT for every i < r < k. Therefore f, vt € V,,
for every ¢« <r < k by Lemma [£.3.3, and thus Proposition A.3.7 gives f; ;o™ € V; ;. Applying
Proposition then yields p | a; + a; + j — ¢, completing the proof. O

Finally, assume that A\ # \;, and suppose that X has exactly two composition factors
on V. By Corollary [£.3.8] the divisibility conditions Balin Theorem [A.1] are satisfied, and the
following result shows that the remaining divisibility condition [3b] in Theorem [4.1] holds as
well.

Corollary 4.3.9

Let A = Zf:l ar A + apAg, with a; # 0 if ap = 1, and consider an irreducible K'Y -module
V' = Ly (\) having p-restricted highest weight \. Assume in addition that X has exactly two
composition factors on V. Then p | 2(ar, +n — k) — 1.
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Proof. First assume a; > 1. Then (fy,)*v" € Z(X)v" by Proposition [£3.2) which by
Lemma B34 translates to (frn)vt € V2. Therefore p | 2(ar +n — k) — 1 by Proposition
4.2.4] yielding the result in this situation. Finally, assume (A, ax) =1 (i.e. ax = 1) and let
1 <1 < k be as above. By Corollary 3.8 the divisibility condition p | a;+1—k+1 is satisfied,
hence Proposition yields frnfinvt € Z(X)v", which by Lemma translates to
Jenfinvt € Vign. Therefore p | 2(n — k) 4+ 1 by Propositions (ifl=k—1), or 218
(if | < k — 1), completing the proof. O

4.3.3 Other direction and conclusion

Assume p # 2 and let Y and X be as in the statement of Theorem Il Also adopt the
notation introduced in the previous section and let V' = Ly () be an irreducible K'Y-module
having p-restricted highest weight A, with (A, p) as in [Il or 3] of Theorem A1l By Theorem
2.5.9, the K'Y-module V is irreducible when viewed as an .Z(Y)-module as well, where Z(Y')
denotes the Lie algebra of Y. We first aim at showing that V = Z(X)vT & Z(X) frnv™,
using Proposition B.3.2] starting by investigating whether or not f,. vt € Z(X) fy,v", for
1<r<k.

Lemma 4.3.10
Let (A, p) be as in[dl or[3 in Theorem[{1 Then f; vt € Vi, for every 1 <i < j <k such
that a;a; # 0.

Proof. For every 1 < i < j < k such that a;a; # 0, set N(i,5) = [{i <r < j:a, #0}|. We
proceed by induction on N(i,j), observing that the case N(i,j) = 2 directly follows from
Proposition 4.1.3l Suppose the result proven for every 1 <7 < j < k such that a;a; # 0 and
2 < N(i,j) < Np, and let 1 < iy < jo < k be such that a;,a;, # 0 and N (i, jo) = No. If
ip < s < jo is maximal such that as # 0, then Lemma 2.5.4] yields

fio7jov+ = f8+1,jofio,sv+ - fio,sf8+1,jov+7

and thus f;, vt € Vi, if and only if foiqfi.s0T € Vigjo- Now fi, ;o™ € Vi, s by our
inductive assumption and thus is a sum of terms of type (A30) with more than one f,. It is
clear that fs1; j, commutes with all but the last f,, from which the result follows. O

We can now show that under the divisibility conditions [Bal of Theorem (4.1, we have
frnvT € ZL(X) fenvt for every 1 <r <k.

Proposition 4.3.11

Assume p # 2 and consider a non-trivial irreducible K'Y -module V- = Ly (\) having p-
restricted highest weight A\, with (A, a,) = 0. Also let 1 < k < n be mazimal such that
(A, ag) # 0, and assume either A = A, or the divisibility conditions[3d of Theorem[{.1] hold.
Then fi,vt € L(X) frnv™ for every 1 <i <k.
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4.3 Proof of Theorem A1

Proof. The result obviously holds for ¢« = k, so we may assume 1 < ¢ < k, in which case
it suffices to show that f;,v* € V;,, for every 1 < i < k by Lemma £33l Observe that if
a; = 0, then f; ot € V;, if and only if fi11, € Vit1n, since fi 0t = —f,, fiz1.,0" (which in
particular yields the result in the case where A = \j for some 1 < k < n). If on the other
hand a; # 0, observe that f; yv* € V;; by Lemma E3.10] so that

fi,nU+ = fk-i—l,nfi,kv Z Z Cl(m fk+1 nfs+1 kU

s=i (m)€EP(i,s)

for some {a(m)}myeris)y C K (i < 5 < k—1). As fepinfsp1e0" = fopinv® for every
1 < s <k —1, the result follows by induction on s. O

In order to apply Proposition [4.3.2) we still need to show that fi ,f.,vt € Z(X)v" for
every 1 <r < k. For the remainder of this chapter, we define

[=max{l <r<k:(\a)#0}

and start by proving that fi,f.,v" € Z(X)vt for every | < r < k, in which case no
fundamental distinction needs to be made between the situations a; > 1 and a;, = 1.

Lemma 4.3.12
Let A be as above and assume p | 2(ap +n—k) —1 if ap > 1. Then fynfrnv™ € ZL(X)vT for
every | <r < k.

Proof. We first show that the assertion holds in the case where r = k. If a; = 1, then this is
immediate by Proposition [£.2.T], while if a;, > 1, then (f;,)*v" € Vlfn by Proposition [4£.2.4]
and the result then follows from Proposition 4.3.4l Now consider | < r < k. By Lemma

2.5.4 we have

fk,nfr,nv+ = _fk,nfr,k—lfk,nv+
_fr,n.fk,nv+ - fr,k—l(fk,n)2v+
= _2Fr,kv+ - fk,nfr,nv+ - fr,k—l(fk,n)2v+a

so that

1
.fk,nfr,nv+ = - r,kv+ - ifr,k—l(fk,n)zv—i_
Clearly F, o™ € Z(X)v™ for every | < r < k and the same holds for (f;,)?v" by what we

saw above, completing the proof. O

Now if ar = 1, then fi,fi,v" € Vign, by Proposition 212 or E.2.18 (depending on
whether [ = k — 1 or not), which by Proposition 3.5 implies that fy,fi,v" € Z(X)v"
This assertion also holds in the case where a; > 1, but is not that immediate.
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Lemma 4.3.13
Let X be as above and assume p | 2(ar, +n — k) — 1 if ap > 1. Then frnfi,ot € L(X)vT.

Proof. We refer to the remark above in the case where ay = 1 and assume a; > 1 for the
remainder of the proof. By Lemma 2.5.4] and (4.22), one easily shows that

k—2

a fonfinv® = Z frifenfic1in™ + frnfie—1 env™

1=l
k—2

= Z frifenFisrn0™ + finfomv™ + fram1(fen) 0™
i=l

=2
= Z frifemfirinvT + 2F07 + fonfinvt + fiei(frn)?oT,
i

and since a; > 1, we finally obtain

f—2
femfrnvt = (ar, — 1)1 ( Z frifenfivinvt + 2F ot + fz,k—1(fk,n)2v+)-
i

Now by Lemma 312, we have fi_1(fin)*0T € L(X)vT, as well as f1; frnfiziavT, for
every | <i <k —2,so that fy,fi,vT € Z(X)vT as desired. O

We are finally ready to show that under the divisibility conditions of Theorem (.1l the
element fy , fr,v1 lies in Z(X)vT for every 1 <r < k.

Proposition 4.3.14

Assume p # 2 and let V- = Ly () be an irreducible KY -module having p-restricted highest
weight A = Zizl ar A + apAg, where 1 <1 < k < n, and a, # 0. Assume either A = X\, or
the divisibility conditions [3d and [38 of Theorem [[1] hold. Then fi,frnvt € Z(X)vT for
every 1 <r < k.

Proof. We proceed by induction on k — r, the cases | < r < k following from Lemmas [4.3.12]
and £3T3l Let then 1 < r < [. By Proposition 3.1 and Lemma £3.3] we immediatget
that f,,v" € V..., hence the existence of {agm)}myep@,s) C K for every r < s <k —1 such
that

k—1
fk,nfr,n = Z Z a(m)f(m)fk,nfs—l—l,nv—l—-

s=r (m)eP(r,s)

The result then easily follows by induction, so we leave the details to the reader. O
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4.3 Proof of Theorem A1

Corollary 4.3.15

Assume p # 2 and let V- = Ly () be an irreducible KY -module having p-restricted highest
weight A € Xt (Ty), where 1 < k < n is maximal such that (A, ag) # 0. Assume either
A = M\ or the divisibility conditions [3d and [38 of Theorem [{-1] hold. Then

V=2LXWw" e LX)t
Proof. By Propositions 3.11] and 314, we immediately get that f, 0" € Z(X)fev"

and f,,frnvT € Z(X)vt, for every 1 < r < k. An application of Proposition €.3.2] then
completes the proof. O

Proof of Theorem[{.1: Adopt the notation of Theorem . Tl and start by supposing that X
has exactly two composition factors on V' = Ly (). If (A, a,) # 0, then Theorem 3T yields
the result, so we may assume (), a,,) = 0 for the remainder of the proof. Also if p = 2, then
V' is irreducible as a K X-module by [Sei87, Theorem 1, Table 1 (MRy)], a contradiction.
We may thus assume p # 2 as well, in which case Corollaries [4.3.8 and [4.3.9] then yield the
desired divisibility conditions.

Conversely, assume (A, p) as in [0l or B of Theorem 1] in which case an application of
Corollary 318 yields V = Z(X)v" & Z(X) fy,nv™. Therefore V' has a quotient isomorphic
to Lx(w) and since V = V* as a KY-module (and thus as a K X-module as well), we can
assume the existence of a submodule U of V, isomorphic to Lx(w). Since V) = (v1) k, we get
vt € U and thus Z(X)vt C (XvT)x C U, so that Z(X)v" = Lx(w). A similar argument
shows that Z(X) frnv" = Lx(w'), hence V = Lx(w) ® Lx(w’) as K X-modules, completing
the proof.
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CHAPTER 5

The case SO4(K) C SLg(K)

Let Y be a simply connected simple algebraic group of type As; over K and consider the
subgroup X of type D3, embedded in Y in the usual way, as the stabilizer of a non-degenerate
quadratic form on the natural module for Y. Fix a Borel subgroup By = Uy Ty of Y, where Ty
is a maximal torus of Y and Uy is the unipotent radical of By, let II(Y) = {a1, as, a3, aq, as}
denote a corresponding base of the root system ®(Y') of Y, and let {\1, A2, A3, \s, A5} be the
set of fundamental dominant Ty-weights corresponding to II(Y). Also let By = UxTYx,
where Uy = Uy NX, Tx = Ty N X, let II(X) = {1, B2, B3} be a corresponding set of simple
T'x-roots and let {wy, ws, w3} be the corresponding set of fundamental dominant 7'x-weights.
2

3

The As-parabolic subgroup of X corresponding to the simple roots {31, 52} embeds in
an Ay x As-parabolic subgroup of Y, and up to conjugacy, we may assume that this gives
a1 |ry= as|ry= B1, and as|r,= 4|7y = [2. By considering the action of the Levi factors of
these parabolics on the natural KY-module Ly ();), we can deduce that as|r,= B3 — fa.
Finally, using [Hum?78| Table 1, p.69] and the fact that A\i|pr,= w; yields

As|ry= w1, Aol = M|ry= wa + w3, Ag|ry= 2ws. (5.1)

In [Sei87|, Seitz showed that if V' = is an irreducible K'Y-module having p-restricted
highest weight, then V|x is reducible except when V' = Ly ();) for some 1 < i < 2n —1 such
that i # n (see [Sei87, Theorem 1, Table 1 (I4,I5)]). In this chapter, we determine the pairs
(V,p) such that X has exactly two composition factors on V. In other words, we give a proof
that Conjecture [ (recorded here as Theorem [5.1]) holds in the case where n = 3.
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Theorem 5.1

Let K, Y, X be as above and consider an irreducible KY -module V- = Ly ()\) having p-
restricted highest weight A\ € Xt (Ty). Then X has exactly two composition factors on V
if and only if X\ and p are as in Table [11], where we give A up to graph automorphisms.
Moreover, if (A, p) is recorded in Table[51], then V|x is completely reducible if and only if

(A p) # (A2, 2).

A p Vix Dimensions

)\1 + )\2 7é 5) wy + wo + w3/w1 64 — 20517,3, 6

)\1 + )\5 # 2 2(4)1/(,02 + ws 20 — 5p’3, 15
2\ 42,3 2w /0 20, 1

2)\1 + >\5 =7 3(4)1/&]1 + wo + ws 50, 64

3)\1 7é 2,3 3w1/w1 50,6

)\2 =2 w2+w;),/0 15,1

)\3 7é 2 QWQ/QW3 10, 10

Table 5.1: The case SOg(K) C SLg(K).

Here we say a few words about the method of the proof. Let V' = Ly () be an irreducible
KY-module having p-restricted highest weight A and let v* € V) denote a maximal vector
in V for By. Since By C By, v" is a maximal vector in V for Bx as well and the Tx-
weight w = A|r, affords the highest weight of a K X-composition factor of V. Furthermore,
it turns out (see Lemma B.I.T]) that in general, every Tx-weight v € A(V|x) satisfies v 5 w
and thus if w’ € A(w) is maximal such that my | (W) > mp () (w’), then ' affords the
highest weight of a second K X-composition factor of V. Finally, finding w” € A(w) such
that my |, (w”) > mp (@) (W") +mp @) (w”) translates to the existence of a third composition
factor of V' for X. Therefore determining the pairs (A, p) such that X acts with exactly two
composition factors on V' requires a good knowledge of weight multiplicities in V| Ly (w) and
Lx(W).

In section 5.}, we investigate such weight multiplicities in certain irreducible modules for
a simple group of type D3 over K. To do so, we proceed as explained in Section 2.7.3] using
the Jantzen p-sum formula to obtain information on the K X-composition factors of carefully
chosen Weyl modules for X.

In Section 5.2 we first assume that X has exactly two composition factors on V' = Ly ()
and proceeding by a case-by-case analysis, we apply the method introduced above and use
the previously calculated weight multiplicities to obtain a small list of possible candidates for
(A, p). Finally, arguing on dimensions allows us to show that the aforementioned candidates
satisfy the desired property.
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5.1 Preliminary considerations

5.1 Preliminary considerations

Let K be an algebraically closed field of characteristic p > 0 and G a simple algebraic group
of type D3 over K. Fix a Borel subgroup B = UT of G, where T is a maximal torus of G
and U is the unipotent radical of B, let IT = {7, 72,73} denote a corresponding base of the
root system ® of G and let {0y, 09,03} be the set of fundamental dominant weights for T
corresponding to our choice of base II. Also let V' = Lg(o) be an irreducible K G-module
having p-restricted highest weight 0 = aoy +bos+cos, where a, b, ¢ € Z>(. In this section, we
record some useful results on certain T-weights of V' and their multiplicities, starting with
the case where a # b = ¢ = 0. Here for ¢y, ¢y, c3 € Z, we adopt the notation o — cicac3 to
designate o — c;y; — o2 — €373.

Lemma 5.1.1
Let V' be as above, with a > 1, b = ¢ = 0, and consider p = o — 211 € X(T'). Then p is
dominant and its multiplicity in V' is given by

(1) 1 ifpla+1,;
m =
vid 2 otherwise.

Proof. An application of Theorem Z3.11] gives my, () (1) = 2, while every weight v € A* (o)
such that 4 < v < ¢ has multiplicity 1 in Vi (o), thus cannot afford the highest weight of
a composition factor of V(o) by Theorem 234l Finally, an application of Corollary 2.7.3]
shows that if p affors the highest weight of a composition factor of Vi (o), then p | a + 1, in
which case Theorem [2.3.18 yields the desired result. O

We next apply the method introduced in Section 2.7]in order to determine the multiplicity
of the T-weight 0 —422 € X(T') in an irreducible K G-module V' = Lg(0) having p-restricted
highest weight o = ao;, where a > 3.

Lemma 5.1.2
Let V' be as above, with a > 3, b = ¢ = 0, and consider p = 0 — 422 € X(T'). Then p is
dominant, and its multiplicity in V' is given by

() 1 ifpla+1,;
m =
vis 3  otherwise.

Proof. We assume a > 5 and refer the reader to |[Liib15] for the cases where a = 4 or 5.
Let then V(o) = VO D VI D ... D VF 2 0 be the filtration of V(o) given by Proposition
274 As explained in Section 27, we start by finding the expression of v#(7,) in terms of
x(v) (v € XT(T)). By Corollary 27.9] we only need to consider those weights p < v < o
appearing in Table [5.2]
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v my,)(v) Contribution to v#(T,)
o—211 2 —1,(2) +vp(a+1)
o— 311 2 —1,(3) + vp(a)
o—411 2 —v,(4) + vp(a—1)
o —412 2 none
o —421 2 none

7 3 none

Table 5.2: Dominant T-weights ;1 < v < o with my, ) (v) > 1.

For such a weight v, applying Lemma [2Z7.11] requires us to find every root v € ®* and
every integer 1 < r < (o + p,7) such that A, ~c B,. Also notice that ¢ — v has support
I1, so v = 71 + 72 + 73 and we only need to look for those 1 < r < (¢ + p, ) such that

B, ~¢(a+2—r1-r10).

First consider the T-weight v = ¢ — 211. Here B, = (a,1,0) and one easily checks that
B, ~q A,, if and only if » = 2 or a + 1. In the former case, we have A,, = (a,—1,0),
so that v = (s,,8,) - (0 — 2v), while in the latter case, we have A, .41 = (1, —a,0), thus
V = (84,57,5y;) - (6 — (a4 1)7). Corollary 2. 7.7 then yields the contribution to v#(T5,) stated
in Table and we leave the reader to check the remaining contributions, as they can be
dealt with in a similar fashion. In the end, since o is p-restricted (and so p > 5 and a < p),
we get

V(T,) = vy(a+ 1)x"(o — 211). (5.2)

Therefore my (1) = my, ) (1) if p{a + 1 by Proposition 2.7.8 and one easily sees (using
Theorem 2.3.11)) that my, ) (1) = 3, so that the assertion holds in this situation. Assume
p | a+ 1 for the remainder of the proof and write 7 = ¢ — 211 = (a — 2)oy, so that
u = 7 — 211. An application of Lemma [B.I.1] then yields x*(7) = ch Lg(7), in which case
(52) can be rewritten as

v (T,) = vp(a+ 1) ch Le(T).

Consequently x*(c) = ch Lg(o)+ch Lg(7) by Proposition 2.7.8 and Lemma [5.1.1], so that
my (f1) = My (o) () =ML, (). As seen above, we have my,, ) (1) = 3, while my (- (1) = 2
by Lemma 5.1 and thus the proof is complete. a

For the next two lemmas, we consider an irreducible KG-module V' = Lg(o) having

p-restricted highest weight 0 = aoy + boy, where a,b > 0. In order to show the first result,
we again apply the method introduced in Section 2.7

Lemma 5.1.3
Let V' be as above, with a > 1, b > 0, ¢ =0, and consider u = o — 211 € X(T'). Then p is
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5.1 Preliminary considerations

dominant and its multiplicity in V' is given by

my (1) = 1 ifpla+b+1;
Vi) = 3 otherwise.

Proof. If p | a+b+1, then the result follows from Theorem 2:3.18] so for the remainder of the
proof, we may assume p { a+b+ 1 and consider the series Vg(o) =V 2> VI ... DV D0
given by Proposition 2.7.4l Here the T-weight 0 — 110 does not afford the highest weight of a
composition factor of V(o) by Lemma Proceeding exactly as in the proof of Lemma
B.12] one first checks that the only dominant T-weights v € AT (¢) such that p < v < o
and my, ) (v) > 1 are 0 — 110, 0 — 210 (if @ > 2) and p itself, and that neither o — 210 nor
p contributes to v*(75). Therefore my (1) = myg () (1) by Proposition 2.7.8 and the result
then follows from Theorem 2.3.11] O

Lemma 5.1.4
Let V' be as above, with a =1,b > 1, ¢ =0, and consider u = o — 221 € X(T'). Then p is
dominant, x*(0) = ch Lg(0) + €,(b+ 2) ch Lg(o — 110) and

my (1) = {1 ifp|b+2;

3  otherwise.

Proof. First observe that the weights v € A* (o) such that p < v < 0 and my, ) (v) > 1 are
T=0—-110= (b—1)og + 03, 0 — 120 = 7 — 010 (if b > 2) and p. Now if p 1 b+ 2, then
Va(o), La(T)] = [Va(o), La(t — 010)] = 0 by Lemma 2.3.19, while Corollary 2.7.3] yields
[Va(o), Lg(u)] = 0 as well. The assertion then holds in this situation and we may assume
p | b+ 2 for the remainder of the proof, in which case [Viz(0), Lg(7)] = 1 by Lemma 2319
One finally checks (using Lemma again) that mz,)(¢) = 2 and an application of
Theorem 2.3.11] yields my,, (1) = 3, allowing us to conclude. O

In the following lemma, we study the multiplicity of the T-weight © = o — 222 in a given
irreducible K G-module V' = Lg(0) having p-restricted highest weight o = bos + bog for some
b>1.

Lemma 5.1.5
Let V' be as above, with a = 0, b = ¢ > 1, and consider p = 0 — 222 € X(T'). Then p is
dominant and its multiplicity in V' satisfies

3 ifplb+1;
my(p) <95 ifp|2b+1;
6 otherwise.
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Proof. We shall assume b > 2 and refer the reader to |[Liib15] for the other cases. Write
7 = 0 — 111 and consider the filtration V(o) = VO D2 VI O ... D VF 2 0 of V(o) given
by Proposition 2774l One first checks that the T-weights v € A™(o) such that p v < o
and myy () (v) > 1 together with their contribution to v#(7,) are as in Table 53], so that
ve(To) = vp(20 + 2)x"(7) + 1p(2b + 1)x* ().

v my, () (v) Contribution to v*(T)
o—111 3 vp(20 + 2)
o—121 3 none
o—112 3 none
o— 212 3 none
o — 222 6 vp(20 + 1)

Table 5.3: Dominant T-weights ;1 < v < o with my, ) (v) > 1.

Now if p 1 (b+1)(2b41), then x*(o) = ch Lg(o) by Proposition[2Z.7.8] while an application
of Theorem 2311 yields my, () (1) = 6, thus showing the assertion in this case. If on the
other hand p | b+ 1, then v*(7,) = 1,(2b + 2)x*(7), while x*(7) = ch Lg(7) by Lemma
2319 Therefore x*(o) = ch Lg(0)+ch Lg(7) by Lemma2.3.T9 and Proposition 2Z.7.8 Now
mp(-) (@) = 3 by Lemma 2.3.19] from which the result follows in this situation. Finally, if
p | 2b+1, then v#(T,) = v,(2b+1) ch Le (1), and one deduces that p affords the highest weight
of a composition factor of V(o) using Proposition 78 Hence my (1) < my, (@) — 1,
completing the proof. O

The result given by Lemma [5.1.5 could easily be improved. Indeed, the proof of the latter
showed that if p t 2b+ 1, then my (1) = 6 —3¢,(b+1). We next investigate the multiplicity of
various T-weights in a given irreducible K G-module V' = Lg(0) having p-restricted highest
weight o = aoy + boy + cos3, where abe # 0.

Lemma 5.1.6

Let V' be as above, with abc # 0 such that p divides both a + b+ 1 and a + ¢ + 3. Also let
=0 —111 € X(T) as well as puy =0 — 121 € X(T) and ps = o0 — 112 € X(T'). Then for
1 <1 <3, we have x* (o) = ch Lg(0) + ch Lg(o — 110), my, o) (1) = 4 and my (p;) = 3.

Proof. First observe that the weights v € X*(T) such that 1 < v < 0 and my, ) (v) > 1
are 0 — 110, o0 — 101 and p;. By Corollary R.7.3] neither ¢ — 101 nor p; can afford the
highest weight of a composition factor of Vi (o), while by Lemma 2319, we know that
[Va(0), Lg(o —110)] = 1. Now Theorem L3 TTl gives my,, ) (1) = 4, while my 5_110)(pt1) = 1
by Lemma 2.3.T6 hence the assertion on my (u1). Proceeding in a similar fashion (notice
that [Va(o), La(p2)] = [Va(o), La(ps)] = 0 by Corollary [277.3]) then yields the assertions on
pe and ps. The details are left to the reader. O
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5.1 Preliminary considerations

Lemma 5.1.7

Let V' be as above, with abc # 0 such that p divides both a + b+ 1 and a + ¢+ 1. Also let
= o0 —111 € X(T) and py = 0 — 122 € X(T'). Then py is dominant, my, (1) = 4
and my (p1) = 2. If in addition b,c > 2, then s is also dominant, my, o) (p2) = 4 and
my (p2) < 2.

Proof. By Corollary Z.7.3] the T-weight 11 cannot afford the highest weight of a composition
factor of Vg(o), while by Lemma 2.3.19] we know that each of o — 110 and ¢ — 101 does.
Now Proposition gives my, () (p1) = 4, while my(y—110)(t1) = My (g—101)(pt1) = 1 by
Lemma 2316 hence the assertion on my (u1). Assume b,¢ > 2 for the remainder of the
proof. An application of Proposition yields my,, () (tt2) = 4 and thus the assertion on
my (p9) easily follows. O

Lemma 5.1.8
Let V' be as above, with a > 1 and bc # 0 such that p divides both a +b+ 1 and a + ¢+ 1.
Also let p =0 —211 € X(T). Then p is dominant, my, ) (@) =5 and my (p) < 2.

Proof. Write 1y = 0 —110 € X(T') as well as 73 = 0 — 101 € X(7T') and consider the filtration
Va(o) =VO 2o Vi ... D V¥ D0 of Vg(o) given by Proposition B7.4 As usual, we leave
to the reader to check that

v (T,) = vy(a+ b+ 1)x" (1) + vp(a + c+ 1)x" (),

and since x*(7;) = ch Lg(1;) + ch Lg(p) for ¢ = 1,2 by Lemma 23319 an application of
Proposition 2.7.8 shows that each of 71, 75, and u affords the highest weight of a composition
factor of V(o). Now my,, ) (1) = 5 by Theorem Z3.1T], while applying Lemma yields
My () (1) = ML m) (1) = 1, thus completing the proof. O

Lemma 5.1.9

Let V' be as above, with a > 1 and b = ¢ =1 such that p | a+2. Also let uy = 0 —322 € X(7T)
and piy = 0 —311 € X(T). Then p; is dominant, My, (p1) = 8 and my (p1) < 3. Similarly,
if a > 3, then o is dominant, my, ) (p2) = 5 and my (us) < 2.

Proof. We shall assume a > 3 throughout the proof and refer the reader to |[Lubl5| for
the case where a = 3. Write 4 = 0 — 110, 3 = 0 — 101, 7 = ¢ — 211, and consider the
filtration Vg(o) = VO > VI D ... D V¥ 2 0 of V(o) given by Proposition B7.4 Again
we proceed as in the proof of Lemma (starting with the T-weight ps) and leave to the
reader to check that we have v**(T,,) = v,(a + 2)(x*2(11) + x*2(72)). Now Lemma
yields x*?(1;) = ch Lg(7;) + ch Lg(7) for i = 1,2, so that

v (T,) = vp(a+ 2)(ch Lg(m1) + ch Lg () + 2ch Lg(7)).
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Therefore each of 71, 75 and 7 affords the highest weight of a composition factor of V(o)
by Proposition 7.8 and my (p2) < myg(o)(H2) — Mpgr)(H2) — Mogm)(H2) — Mg (p2).
An application of Theorem 2.3.11] then yields my, ) (12) = 5, from which the assertion on
my (p9) easily follows. Next we consider the T-weight i1 and again leave to the reader to
check that v#(T},) = v,(a + 2)(x** (1) + x*(12) + x**(111)). Now [Via(7), La(T)] = 1 for
i = 1,2 by Lemma 2319 so that each of 7, 7, 7 and u; affords the highest weight of a
composition factor of V(o) and hence

my (f11) < Myg (o) (K1) = MLgr) (1) = Mrg(r) (B1) = MEgr) (1) — Mpg ) (k1)

Finally, Theorem 2.3.11] yields my ) (p1) = 8, while my¢-,y(p1) = 1 for i = 1,2 by
Theorem 2.3.18 and my,)(¢t1) > 2 by Theorem [2.3.18], completing the proof. O]

Lemma 5.1.10
Let V' be as above, with a > 0 and b,c > 1 such that p divides both a +b+ 1 and a 4+ c+ 1.
Also let 1 = 0 — 222 € X(T). Then p is dominant, my (@) = 10 — dq1 and my () < 3.

Proof. Write 11 = 0 — 110, 73 = 0 — 101 and first assume a = 1. By Lemma 2.3.19] each
of the weights 77 and 7 affords the highest weight of a composition factor of Vg (o). Also
Mp () () = 3 for ¢ = 1,2 by Lemma again and since my, ) (1) = 9 by Theorem
2311, the assertion holds in the case where a = 1. For the remainder of the proof, assume
a > 1, write 7 = 0 — 211 and consider the filtration V(o) = VO D V> ... D VF 20 of
V(o) given by Proposition 274l We leave to the reader to check that

vi(T,) = vp(a+ b+ 1)x"(11) + vp(a+ c+ 1)x"(72)

and as x*(1;) = ch Lg(7;) + ch Lg(7) for i = 1,2 by Lemma [B.1.6] we get that each of 7,
T, and 7 affords the highest weight of a composition factor of V(o) by Proposition 2.7.8
Finally, my,)(©) = 10 by Theorem Z3TT] while mz, (1) = mp () () = 3 by Lemma
E.1.6, completing the proof. O

Finally, suppose that G is a simple algebraic group of type A, over K, and consider an
irreducible KG-module V' = L(0) having highest weight o = a0y +bos+coz+doy, € XT(T),
where a,b, ¢, d € Z>(. Here for ¢, 9, c3, ¢4 € Z, we adopt the notation o —c;cacseq to designate
the T—Welght 0 — C1(X] — Co0ig — C3(xz — C404.

Remark 5.1.11

In the proof of the following result, it is more convenient to view G as an Ay-Levi subgroup
of a simple algebraic group of type D; over K, the reason being the complexity of the
description of fundamental weights in terms of an orthonormal basis of a Euclidean space F
for G of type A, over K (see Section 2.2). Indeed, in general it is convenient to work in a

simple algebraic group of type D,, .3 instead of A,, when applying the method introduced in
Section 2.7] .
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5.2 Proof of Theorem [B.1]

Lemma 5.1.12
Let V' be as above, with a = ¢ =d =0,b > 2, and let p = 0 — 1321 € X(T'). Then p is
dominant and its multiplicity in 'V is given by

() = {1 ifp|b+1;

3  otherwise.

Proof. Consider the filtration Vg(o) = VO D VI D ... 2 V¥ 2 0 of V(o) given by Propo-
sition 2774l The only T-weights v € A*(0) such that ¢ < v < ¢ and my, () > 1
are 7 = o — 1210, 0 — 1310 (if b > 3) and p itself, and one then easily checks that
vM(T,) = v,(b+ 1)x*(7). Therefore x*(0) = chLg(o) if p b+ 1 by Proposition 2.7.8
and thus Theorem 2.3.11] yields the assertion in this situation. Finally, an application of
Theorem 2.3.18 completes the proof in the case where p | b+ 1. O

5.2 Proof of Theorem 5.1

Let Y be a simply connected simple algebraic group of type As over K and let X be a simple
algebraic group of type D3, embedded in Y in the usual way. Also let V' = Ly () be an
irreducible K'Y-module having p-restricted highest weight

A =al; + by + cA3+dN\y +eXs € X+(Ty),
and denote by w the restriction of the Ty-weight A to T'x, so that by (5.I]), we have
w=(a+e)w; + (b+ d)ws + (b+ 2¢ + d)ws.

Notice that if v™ € V) is a maximal vector in V for By, then v™ is a maximal vector
for Bx as well, since By C By, showing that the T'x-weight w affords the highest weight of
a K X-composition factor of V. Every Ty-weight of V is of the form A\ — Z?:l c;a;, where
c1,Ca, €3, Cy, C5 € Z>o. Throughout this section, such a weight shall be written A\ — cjcacscacs
and simply called a Ty-weight. On the other hand, a T'xy-weight of V'|x does not necessarily
have to be under w : for example, if (A, az) # 0, then A\ — ag|r,= w + P2 — B3 A w.

Lemma 5.2.1
Let N\, w be as above, and suppose that (\,a3) = 0. Then every Ty -weight i of V.= Ly ()\)
satisfies piry < w.

Proof. Assume for a contradiction the existence of a Ty-weight 1 = A — ¢1cacscqcs € A(V)
such that u|r, A w. Recalling the restriction to T'x of the simple roots for Ty stated in the
beginning of the chapter, we have p|r,= w — (¢1 + ¢5) 81 — (2 — ¢3 + ¢4) P2 — ¢33 and hence
c3 > o + ¢4. In particular, we get (u, as) < —cs, showing that s,,(u) € A(V) is not under
A, a contradiction. O
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5.2.1 The case (\, az) >0

Keep the notation introduced above and suppose that ¢ > 0. Here the Ty-weight A — 00100
restricts to w’ = w + [ — (3, which is neither under nor above w. In fact, one easily checks
that w’ is a highest weight of V' for Ty and hence affords the highest weight of a second
K X-composition factor of V', namely

Lx(w)=Lx((a+e)w; + (b+d+2)ws + (b+ 2¢c+ d — 2)ws.

Lemma 5.2.2
Let \, w, W' be as above and suppose that X acts with exactly two composition factors on
V =Ly(\). Thenc=1 and w € X (Tx) is p-restricted.

Proof. First suppose that ¢ > 1 and observe that in this case the Ty-weight A — 00200
restricts to w + 23, — 23, which is neither under nor above w, w’, giving the existence of a
third K X-composition factor of V, a contradiction. Consequently ¢ = 1, in which case we
have

w=(a+ew + (b+dws+ (b+d+2)ws

and w’' = w?, where  denotes the graph automorphism of X. If (w, 3;) > p > 0, then ae # 0,
so that both A — a7 and A — a5 are Ty-weights restricting to u = w — 51 £ w'. Therefore
my|, () > 2, while my (,)(¢t) = 1, so that p occurs in a third K X-composition factor of V,
contradicting our inital assumption. A similar argument shows that 0 < (w, f5) < pif p > 0.
Finally, suppose that (w, 83) > p > 0. If bd # 0, the Ty-weights A — 01000, A — 00010 both
restrict to w — By £ w’, whose multiplicity in Ly (w) equals 1. Without loss of generality, we
may thus assume d = 0, so that p | b+ 2 or b+ 1. Here the Ty-weights A — 01100, A — 00110
both restrict to v = w — 3 and Lemma yields

o [2 el
m V) =
vix 3 ifp|b+1,

while on the other hand my () (v) = 1 — €,(b + 2) by Theorem 2.3.2 and my, (. (v) < 1,
yielding the existence of a third K X- composition factor of V' as desired. O

We are now able to prove a first direction of Theorem [5.1]in the case where V' = Ly ()
is an irreducible KG-module having p-restricted weight A € X *(Ty) satisfying (), ag) # 0.

Proposition 5.2.3

Let a,b,c,d, e € Z>q, with ¢ > 0, and consider an irreducible K'Y -module V' = Ly (\) having
p-restricted highest weight A = al; + bAgy 4+ cA3 + dAy + eXs. Suppose in addition that X has
exactly two composition factors on V. Then (A, p) is as in Table [Z]l
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5.2 Proof of Theorem [B.1]

Proof. Let w, w' be as above and first observe that Lemma implies ¢ = 1. Also if
bd # 0, then the Ty-weights A — 01000, A — 00010 restrict to w — B2 A w’, whose multiplicity
in Lx(w) equals 1, a contradiction. Without loss of generality, we shall then assume d = 0,
that is, A = a\; + bAs + A3 + eAy. Now the Ty-weights A — 00110 and A — 01100 restrict to
w— P35 € At (w), so that

2 ifb=0orp|b+2;
m w — >
Vix( Bs) 2 {3 otherwise.
As mp () (w — B3) = mp@wy(w — B3) = 1, either b = 0 or p | b+ 2, and since the latter
cannot occur by Lemma [5.2.2] we get b = 0. Also, arguing as above shows that either a = 0
or e = 0 and without any loss of generality, we may assume e = 0 for the remainder of the

proof, so that A\ = a\; + A3. Finally, if a # 0, then the Ty-weights A — 11100 A — 10110 and
A — 00111 restrict to w” = w — B; — B3, so that Lemma yields

4 ifpla+3;

5 otherwise

| (w//> > {

as well as mp () (W") = mr ) (W") = 2 — €(a + 3). Consequently w” occurs in a third
K X-composition factor of V, forcing A = A3 and an application of Lemma [5.2.2] then yields
p # 2, thus completing the proof. O

5.2.2 The case (\, as) # (A, a3) =0

Keep the notation introduced above and suppose that b > ¢ = 0,i.e. A = a\;+bla+dNs+eXs
and w = (a + e)w; + (b+ d)(w2 + w3). We start by considering the situation where bd # 0,
in which case the Ty-weights A — 01000, A\ — 00010 both restrict to w’ = w — 5. Therefore
my |, (w') > 2, while m;  (,)(w’) = 1 and since the only T'x-weight v € A(V|x) such that
W' K v < wisw itself, we get that w’ affords the highest weight of a second K X-composition
factor of V' by Lemma [5.2.1 namely

Lx(W)=(a+e+ 1w+ (b+d—2)ws + (b+ d)ws.

Lemma 5.2.4
Let N\, w, w' be as above, with b # ¢ = 0, and suppose that X has exactly two composition
factors on V= Ly (\). Then d = 0.

Proof. Seeking a contradiction, assume d > 0. Here the Ty-weights A — 01100, A — 00110
both restrict to w” = w — B3 A W', so that my |, (w”) > 2, while m, (,)(w”) = 1. Therefore
w” occurs in a third K X-composition factor of V' and the result follows. O
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We now consider the case where A = a\; + bAs + eAs, with b > 1 (so that p # 2). Here
the Ty-weights A — 02100, A — 01110 both restrict to w’ = w — B, — B3, so that my| (W) > 2,
while my, .y (w') = 1 and thus w’ occurs in a second K X-composition factor of V. As above,
an application of Lemma [5.2.T] then shows that w’ affords the highest weight of a second
K X-composition factor of V, namely

LX(M/) = Lx((a +e+ 2)&]1 + (b — 2)&]2 + (b — 2)&)3).

Lemma 5.2.5
Let \, w, ' be as above, with b > 1 and ¢ =d = 0. Then X has more than two composition
factors on V = Ly (M),

Proof. First observe that if ae # 0, then the Ty-weights A — 10000, A\ — 00001 restrict to
W' = w— P £ & whose multiplicity in Lx(w) equals 1. Therefore w” occurs in a third
K X-composition factor of V' and thus we may and will assume ae = 0 for the remainder of

the proof.

1. We start by considering the case where a # ¢ = 0. Here A = a\; + by, w = aw; + bwy +
bws and w' = (a + 2)w; + (b — 2)ws + (b — 2)ws. One then checks that the Ty-weights
A — 12100, A — 11110, and A — 01111 restrict to u = w — 1 — B2 — P3. By Lemmas
and B.1.3] we have

(1) > 3 ifplat+b+1;
m
Vix W = 6 otherwise,

while mp () (1) < 4 and mp () (1) < 1 by Theorem Z3TI We may thus assume
p | a+ b+ 1 (forcing w to be p-restricted). If b > 2, the Ty-weights A — 14200,
A — 13210, A — 12220, A — 03211 and A — 02221 restrict to w” = w — B — 2By — 233,
so that my, (w"”) > 5, while my () (w”) < 2 and my (. (w”) = 2 by Lemma [5.1.7
Therefore w” occurs in a third K X-composition factor of V' in this case; we deduce
that b = 2, so that

A =a\ + 2\, w=aw; + 2wy + 2wz, and W' = (a + 2)wy,

with p | a+3 (in particular a > 1). Here the Ty-weights A —24200, A—23210, A—22220,
A—13211, and A —12221 all restrict to w” = w—28; —20; — 205, while my  (y(W") =1
and mp, () (w”) < 3 by Lemmas 5.T.1 and E.I.I0 respectively. Consequently in the
case where a # e = 0, X has more than two composition factors on V' as desired.

2. Next assume a = 0 # e, so that A = by + eX5, w = ew; + bwy + bws and also
W = (e + 2)wy + (b — 2)ws + (b — 2)ws. Here the Ty-weights A — 11000, A — 01001
and A — 00011 restrict to w” = w — 1 — 2 A W', whose multiplicity in Ly (w) is
smaller than or equal to 2 by Theorem 2311l Hence w” gives the existence of a third
K X-composition factor of V' and the assertion holds in this situation as well.
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5.2 Proof of Theorem [B.1]

3. Finally, we suppose that « = e = 0, b > 4 and leave to the reader to check that
dimV > dim Lyx(w) + dim Lx(w’) using |[Lib01, Appendices A.7, A.9] in the cases
where b = 2,3 or 4. Here A\ = by, w = bws + bws, w' = 2wy + (b — 2)wsy + (b — 2)ws and
the Ty-weights A — 24200, A — 23210, A — 22220, A — 13211, A — 12221 and A — 02222
restrict to w” = w — 261 — 2P — 265. Now Lemmas [5.1.1] and yield

6 ifp|b+1;

13 otherwise,

My (w”) > {

while on the other hand my, () (w”) + mp (@ (w”) < 11 — 6¢€,(b + 1) by Lemmas
and [B.1.8] completing the proof.

O

We now assume b = laswellasc =d = 0,i.e. A =al\+\+eds, w = (a+e)w; +ws+ws,
and first consider the situation where ae # 0. Here the Ty-weights A — 10000 and A — 00001
both restrict to w’ = w — (1, whose multiplicity inside Ly (w) is smaller than or equal to 1.
Therefore w’ occurs in a second K X-composition factor of V' and since there is no weight
v € A(V|x) such that ' < v < w, we get that w’ affords the highest weight of a second
K X-composition factor of V' by Lemma [£.2.T] namely

Lx (W) = Lx((a+e—2)w; + 2wy + 2ws).

Lemma 5.2.6
Let N\, w, W' be as above, with ae # 0. Then X has more than two composition factors on
V =Ly (N).

Proof. First observe that the Ty-weights A\ — 11000, A — 01001, A — 00011 all restrict to
1 =w — P — B2 € AT(w), so that Lemma 2.3.T9 yields

3 ifpla+2;

4 otherwise,

my|x (/~L1> > {

while an application of Theorem 2.3.11gives my, () (1) +mr () (111) < 3. Hence we may and
will assume p | a4+ 2 for the remainder of the proof. Also if e > 1, the Ty-weights A — 21000,
A—11001, A—10011, A—01002, and A—00012 all restrict to w—28; — B2, whose multiplicity in
both Lx(w) and Ly (w’) is smaller than or equal to 2 by Theorem 2.3.11] giving the existence
of a third K X-composition factor of V. Consequently, we may assume e = 1 from now on, so
that A = aA; + A2+ A5, w = (a+ 1wy +wo+ws, and w' = (a—1)w; + 2wy + 2ws. (Observe that
in this situation both w and w’ are p-restricted.) Here the Ty-weights A — 12100, A — 11110,
and A — 01111 restrict to the T'x-weight ps = w — B; — By — P3, and by Lemma 2.3.19 we
have

5 ifp=25;

6 otherwise,

My (/J’2> > {
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while on the other hand Theorem 2.3.11] yields mz,, () (p2) < 4, mp () (p12) < 1. Therefore
it remains to consider the case where a = 3 and p = 5. By |Liib01, Appendices A.7, A.9]|, we
have dim V' = 1224 and dim Ly (w’") = 299, while an application of Proposition yields
dim Ly (w) < 735, thus completing the proof. a

We now tackle the case where ae = ¢ = d = 0 and b = 1, starting with the situation
in which a = 0 # e. Here A = \y + e)5, w = ew; + ws + w3, and one easily sees that the
Ty-weights A—11000, A—01001, and A—00011 restrict to w’ = w— f; — [, whose multiplicity
in Lx(w) is smaller than or equal to 2, while my|, (v) = my, () (v) for every v € A(V|x)
such that w’ < v < w. Therefore w’" affords the highest weight of a second composition factor
of V' by Lemma [5.2.1] namely

Lx(w/) = Lx((e - 1)0}1 + 2@3).

Lemma 5.2.7
Let N\, w, W' be as above, witha =c=d =0,b=1 and e # 0. Then X has more than two
composition factors on V= Ly ()).

Proof. Notice that the Ty-weights A — 11100, A — 01101, and A — 00111 restrict to the T'x-
weight w” = w — 1 — B3 £ W', whose multiplicity in Lx(w) is smaller than or equal to 2 by
Theorem 2311l Consequently w” occurs in a third composition factor of V, thus yielding
the desired result. 0

Next we suppose that a > 0 and ¢ = d = e = 0, that is, A = a1+ and w = aw; +ws+ws.
Here the Ty-weights A — 12100, A — 11110, A — 01111 restrict to w’ = w — f; — B2 — (3 and
Lemma [2.3.19 yields

3 ifpla+2;
mV\X(w/) > { |

5 otherwise,

while my  ()(w') < 4 — 2¢,(a + 2) by Lemma [5.1.7, showing that w’ occurs in a second
K X-composition factor of V. One then easily checks that my|, (v) = my () (v) for every
v € AT(V]x) such that v’ < v < w, so that w' affords the highest weight of a KX-
composition factor of V' by Lemma [5.2.1] namely

LX((A)/) = LX(awl).

Lemma 5.2.8
Let \, w, w' be as above, with a >b =1 and c =d = e = 0. Then X has more than two
composition factors on V- = Ly ()).
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5.2 Proof of Theorem [B.1]

Proof. First observe that the Ty-weights A — 22100, A — 21110, A — 11111 restrict to the
Tx-weight u = w — 26, — P2 — (3. By Lemmas 2.3.19 and [5.1.4] we then have

3 ifpla+2;
m >
vix(n) 2 {7 otherwise,

while Theorem Z3.1T] yields my,, (,)(¢) < 5 as well as my, (1) = 1. We hence assume
p | a+2 for the remainder of the proof (in which case a > 2). Now the Ty-weights A — 34200,
A—33210, A—32220, A—23211, A—22221, and A\—12222 all restrict to w” = w—30;—202—25.
Hence my, (w”) > 6, while Lemmas [5.T.Tland 5. 1.9 yield my () (w") +mp @y (w”) < 5, thus
completing the proof. O

Thanks to Lemmas [(.2.4] 5.2.5] (5.2.6] (5.2.7 and 5.2.8] we are now able to prove a first
direction of Theorem [B.I]in the case where V = Ly (\) is an irreducible K'Y-module having
p-restricted weight A € X+ (Ty) satisfying (A, aa) # (A, a3) = 0.

Proposition 5.2.9

Let a,b,c,d,e € Z>o, with b # ¢ = 0, and consider an irreducible K'Y -module V- = Ly ())
having p-restricted highest weight X = aX; + bAs + cA3 + d\y + eAs. In addition, suppose that
X has exactly two composition factors on V. Then A and p are as in Table [51

Proof. First observe that d = 0 by Lemma [5.2.4. Also, an application of Lemma yields
b =1 as well. Moreover, by Lemmas [5.2.6) 5.2.7 and (.2.8] we get that either A = Ay or
A = A1 + Ao. Assume the former case and observe that if p # 2, then X acts irreducibly on
V' by [Sei87, Theorem 1, Table 1 (I4, I5)|, a contradiction. If on the other hand A = A; + Ay
and p = 5, then one can check (using [Liib01, Appendix A.7| and [Lib01, Appendix A.9|,
for example) that dim V' > dim Lx(w) + dim Lx (w’), showing the existence of a third K X-
composition factor of V. O

5.2.3 Remaining cases and conclusion

We first consider the situation where A = a\; +es for some ae # 0. Here w = (a+ e)w; and
one easily checks that w’ = w — f; affords the highest weight of a second K X-composition
factor of V, namely

Lx (W)= Lx((a+e—2)w; + ws + w3).

Proposition 5.2.10

Let a,e € Z~o and consider an irreducible KY -module V- = Ly ()\) having p-restricted highest
weight X = al; + ey € AT(Ty). In addition, suppose that X has exactly two composition
factors on V. Then X and p are as in Table[5 1.
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Proof. Let w, w’ be as above and first observe that if a,e > 1, then the Ty-weights A — 20000,
A — 10001, A — 00002 restrict to w — 2/, whose multiplicity in both Lx(w) and Lx(w') is
smaller than or equal to 1. Without any loss of generality, we thus assume e = 1, that is
A=a\+ A5, w=(a+ 1wy, w = (a—1)w; +wy+ws. Now if @ > 2, the Ty-weights A — 32100,
A — 31110, A — 22101, A — 21111, A — 11112 restrict to w” = w — 3p; — B — B3. By Lemma
2319 my|, (w") > 8, while Theorem 2.3.11] yields my ()(w”) < 2, mp @w)(w”) < 5, a
contradiction. Consequently, either A = A\; + A5 or A = 2)\; + X5, and we leave to the
reader to complete the proof using [Lib01, Appendix A.7| and [LiibO1, Appendix A.9|, for
example. O

Finally, assume a > 1 and e = 0, so that A = a)\;, w = aw;. Here the Ty-weights
A—22100, A —21110, A — 11111 restrict to w’ = w— 2 — B2 — 3. Hence my | (w’) > 3, while
by Theorem 23T, we have my, (,) < 2. Also, since there is no weight v € A*(V|x) such
that W' < v < w and mp () (v) > 1, we get that ' affords the highest weight of a second
K X-composition factor of V' by Lemma [(5.2.T] namely

Lx (") = Lx((a—2)w).

Proposition 5.2.11

Let a € Z~1 and consider an irreducible KY -module V' = Ly (\) having p-restricted highest
weight A = aX\; € AT (Ty). In addition, suppose that X has exactly two composition factors
on V. Then X\ and p are as in Table[51.

Proof. Let w, w' be as above and observe that if a > 3, then the Ty-weights A — 44200,
A—43210, A—42220, A—33211, A—32221, and A\—22222 all restrict to w” = w—40;—20,—203,
while Theorem 2.3.11] yields my ) (w”) < 3 as well as my () (w”) < 2. Hence a < 3 and
using |[Lib01, Appendices A.7, A.9| , one checks that dim V' > dim Ly (w) + dim Ly (w’) if
a = 2 and p = 3, thus completing the proof. O

Thanks to Propositions [£.2.3] 5.2.9, 5.2.70l and B.2.T1], we are now able to give a proof of
the main result of this chapter.

Proof of Theorem [5.1: Let K,Y, X be as in the statement of Theorem [G.I] and first
suppose that X acts with exactly two composition factors on the irreducible K'Y-module
V' = Ly (\) having p-restricted highest weight

A= a)\l + b)\g + C)\g + d)\4 + 6)\5.

If ¢ > 0, then Proposition yields the desired result, so we may assume ¢ = 0. Now if
b > 0, an application of Proposition shows that the assertion holds in this case as well,
thus allowing us to assume b = 0. Finally Propositions £.2.10] and 5.2.T1] together with the
fact that X acts irreducibly on Ly ()A;) allow us to conclude.

104



5.2 Proof of Theorem G.1]

In order to complete the proof, it remains to show that for every pair (\, p) appearing in
Table 5.1l X has exactly two composition factors on V' = Ly () and that V|x is completely
reducible if and only if (A, p) # (A2, 2).

The first assertion can easily be proved using [Liib01, Appendices A.7, A.9]| together with
Proposition (in the case where (A, p) # (A2,2)). Finally, consider the irreducible K'Y-
module V = Ly (\y) and observe that Ly (As) = A* Vi (A1), so that Ly (As)|x = A® Vi (wi).
By Proposition [2.6.3] the latter admits a Weyl filtration, yielding

Ly (X)|x = Vx(ws).

The latter being indecomposable, the proof is complete.
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CHAPTER O

The case SOg(K) C SLg(K)

Let Y be a simply connected simple algebraic group of type A; over K and consider a
subgroup X of type D,. Fix a Borel subgroup By = Uy Ty of Y, where Ty is a maximal torus
of Y and Uy is the unipotent radical of By, let II(Y) = {ay, ..., a7} denote a corresponding
base of the root system ®(Y') of Y, and let {Ay, ..., A7} be the fundamental dominant weights
for Ty corresponding to our choice of base II(Y). Also let II(X) = {51, ..., B4} be a set of
simple roots for X and let {wq,...,ws} be the corresponding set of fundamental dominant
weights for X. The As-parabolic subgroup of X corresponding to the simple roots {1, B2, 53}
embeds in an Az x Asz-parabolic subgroup of Y, and up to conjugacy, we may assume that
this gives ai|ry= ar|ry= 01, aalry= ag|lry= P2, and as|ry= as|ry= F3. By considering
the action of the Levi factors of these parabolics on the natural K'Y-module Ly (A;), we
can deduce that ay|r,= f4 — fs. Finally, using [Hum78, Table 1, p.69] and the fact that
)\1|TX: w1 y1€ldS

Mlry= w1, A2|lry= X¢|ry = wa, As|lry= As|ry= w3 + w4, M|y = 2wy. (6.1)

As in the previous chapter, our goal here is to give a proof of Conjecture Ml in the case
where n = 4. In order to do so, we first consider a suitable parabolic subgroup of X and
use an inductive argument, based on Lemma [2.3.10] and Theorem G.1], to reduce the num-
ber of possibilities for A and p to be such that X has exactly two composition factors on
the irreducible V' = Ly (A). We then proceed by a careful study of certain weight multi-
plicities in various irreducibles and assuming X has exactly two composition factors on an
irreducible K'Y-module V, we get a relatively short list of possible candidates for V' and p.
Finally, we conclude by comparing dimensions as usual. For completeness, we record here
the aforementioned conjecture for n = 4, restated as a Theorem.
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Theorem 6.1

Let K,Y, X be as above, and consider an irreducible KY -module V. = Ly(\) having p-
restricted highest weight X\ € Xt (Ty). Then X has exactly two composition factors on V
if and only if A and p appear in Table [6.1, where we give X up to graph automorphisms.
Moreover, if (A, p) is recorded in Table[6 1], then V|x is completely reducible if and only if

(A p) # (As,2).

A P Vix Dimensions

)\1 + )\2 7& 7 w1 + w2/w1 160 — 56517,3, 8
)\1 —l—)\g 7& 2,3 W1 +W3+W4/w2 350,28

)\1 + >\6 7A 2, 3 w1 + w2/w3 —+ Wy 160 — 8(5;,,77, 56
)\1 + )\7 7A 2 2&)1/&]2 35, 28

21 #9 2wy /0 35,1

2)\1 + )\3 = 2w1 + w3 + W4/W1 + Wy 904, 160

3)\1 7& 2,3,5 30)1/&)1 112,8

)\3 = ws + (.U4/C<J1 48, 8

)\4 §£ 2 2&)3/2(4)4 35, 35

Table 6.1: The case SOg(K') C SLg(K).

6.1 Preliminary considerations

Let G be a simple algebraic group over K with B, T', @, I as usual, and consider an irreducible
KG-module V' = Lg(\) having p-restricted highest weight A € X* (7). In this section we
record some information on weight multiplicities in V' for G of type A, (n > 3) or D, over
K, necessary to prove Theorem We start by introducing a method of determining lower
bounds for such multiplicities in the case where G is an arbitrary simple algebraic group over

K.

Lemma 6.1.1

Let G be a simple algebraic group over K with B, T, ® = ®T U®~, 1T as usual, and consider
an irreducible KG-module V = Lg(\) having p-restricted highest weight X\ € X (T). Also let
J={m,...,7} C ®* be such that H = (Uy,, : 1 <r < i) is a semisimple subgroup of G.
Finally, let p € AT(V) and write X' = N, as well as ' = plr,,. Then my (@) > mp o) (1)

Proof. Let vt denote a maximal vector in V for B and set U = (Hv™). Clearly U is stable
under the action of 7" and hence my (x) > my(p). Since U is a homomorphic image of Vi (\)
by [Jan03], IT, 2.13 b)|, the result follows. O
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6.1 Preliminary considerations

6.1.1 Weight multiplicities for G of type A, over K

Let K be an algebraically closed field of characteristic p > 0 and G a simple algebraic group
of type A, (n > 3) over K. Fix a Borel subgroup B = UT of G, where T is a maximal
torus of G and U is the unipotent radical of B, let IT = {~,...,7,} denote a corresponding
base of the root system ® of G and let {oy,...,0,} be the set of fundamental dominant
weights for 7' corresponding to our choice of base II. Since our primary goal is to give a
proof of Theorem [6.1], we could focus our attention on the cases where 2 < n < 7. However,
most of the results can easily be generalized and prove useful in the next chapter, hence we
shall assume n > 3 arbitrary for the remainder of the section, unless specified otherwise.
We start by considering an irreducible K G-module V' = Lg(0) having p-restricted highest
weight 0 = aoy + bo,, where n > 3, a,b € Z~, and record a result similar to Lemma 2.3.19]
We advise the reader to use the embedding A,, C D, 3 as stated in Remark 5.1.11] in order
to simplify the computations.

Lemma 6.1.2
Let V' be as above, with a > 3, and let p = 0 — (371 +272+73++ - - +9n). Then u is dominant,
X*(o) =chV +¢(a+b+n—1)ch Lg(r), where r =0 — (y1+ -+ - +7), and

() n—1 ifplatb+n—1;
m =
Vs n otherwise.

Proof. Let Vg(o) =V > VI > ... > V* 20 be the filtration of Vg(o) given by Proposition
274 and write 7 =0 — (71 + - - - + 7). We leave to the reader to check that

v (Ts) = vpla+b+n—1)x"(7),
so that my (p) = my, ) (1) if pfa+b+n —1 by Proposition [Z78 and an application of
Theorem 2.3.11] shows that the assertion holds in this situation. For the remainder of the
proof, we assume p | a+b+n — 1. By Theorems [23.4] and 2.3.18 we have x*(7) = ch Lg ()
and thus v*(7T,) = v,(a+b+n—1) ch Lg(7). Therefore x*(0) = ch V +ch Lg(7) by Lemma
and Proposition 2.7.8 and applying Theorem 2Z.3.11] completes the proof. O

We next consider an irreducible K G-module V' = Lg(o) having p-restricted highest
weight ¢ = aoy + 0, where a € Z~;, 2 < j < n, and prove the following generalization of

Lemma B.1.4.

Lemma 6.1.3

Let V' be as above and let 1y = 0 — (2v1 + -+ + 29 + vj41), p2 = 1 — 7. Then iy
(respectively, ps if a > 3) is dominant, x** (o) = x**(0) = chV +¢,(a + j) ch Lg(T), where
T=0—(n+---+7), and

my (p1) = my (p2) = { G=1/2 ifplatj;

J
Jj(7+1)/2 otherwise.
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Proof. Fix i =1 or 2 and let Vg(o) = VO D VI > ... D V¥ 2 0 be the filtration of V(o)
given by Proposition .74l Also write 7= A — (y1 + -+ ;) = (a — 1)oy + 0511 € X (T,
and first check that

v (To) = vpla+ 5) (X" (1) = X" ().
Therefore my (11;) = my,,(») (1) if p a+j by Proposition Z7.8 and an application of Theorem

2.3.11] shows that the assertion holds in this situation. We thus assume p | a + j for the
remainder of the proof, in which case Lemma [2.3.19] yields

X" (1) = ch Lg(T) + ch Lg (1),

so that v#(T,) = v,(a + j)ch Lg(7). Consequently x*i (o) = chV + ch Lg(7) by Lemma
and Proposition 7.8, so my (1;) = my, o) () — Mpg (). Finally mp (1) = J
by Lemma and the result then follows from Theorem 23111 O

In the following statement, we assume n > 4 and consider an irreducible K G-module
V' = L¢(0) having p-restricted highest weight 0 = ao1+0;, where a € Z-o and 2 < j < n—1.

Lemma 6.1.4
Let V' be as above and let p = 0 — (31 + - -+ + 3vj + 2941 + Vj+2). Then p is dominant,
x*(0) =chV +¢€,(a+j)ch Lg(m), where m =0 — (1 +---+7;), and

my (1) = {j(j_l)(]+1)/6 ifp|a+J;
' JjG+1)(j+2)/6 otherwise.

Proof. Let Vg(o) = VO > VI D ... > VF D0 be the series given by Proposition 2.7.4] and
write ™ = A— (’71—|—' . '+”)/j) = (a—1)01 —|—(7j+1, T — T1 — (’71+' : '—|—’7j+1) = (CL—2)O’1 —|—(7j+2.
One first checks that v*(T,) = vp(a+7)(x* (1) — x*(72) +x* (1)), so that my (1) = my, ) (1)
if p 1 a+ j by Proposition [Z7.8] in which case Theorem 2:3.T1] yields the desired assertion.
For the remainder of the proof, we thus assume p | a + j and first observe that Lemmas
2.3.19 and [6.1.3] respectively yield

X" (m9) = ch Lg(me) + ch La(p), x*(m1) = ch Lg(7m1) + ch Lg(72).

Therefore v#(T,) = vp(a+j) ch Lg(m) and x* (o) = ch V4ch Lg(m1) by Lemma2:3 19 and
Proposition2.7.8l An application of Theorem 2.3.1T]then yields my, ) (1) = % JjG+1)(1+2),
while my -y (1t) = £j(j + 1) by Lemma 61,3, completing the proof. O

In the remainder of this section, we focus our attention on an irreducible K G-module

V' = L¢g(0) having p-restricted highest weight o = aoy + boj + co, € XT(T) where n > 3,
a,b,c € Z~p and 2 < 5 < n.
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6.1 Preliminary considerations

Lemma 6.1.5

Let V' be as above and assume p divides both a +b+ j — 1 and b+ ¢+ n — j. Also let
p=o0—(n+---+v) and write 7, = c—(y1+---+7;) as well as 7o = o —(vy;+- - -+7n). Then
x"(0) = chV+ch Lg(m)+ch La(m), my, ) (1) = j(n—7+1) and my (n) = (n—j)(j—1)+1.

Proof. Let Vg(o) =V° D> V!> ... D Vk D0 be the filtration of V(o) given by Proposition
274 and let 7y = (a—1)oy + (b—1)oj 4+ 041 + cop, 2 = a0y + 0,1+ (b—1)o; + (¢ — 1)o,
be as above. One then checks that v#(T},) = v,(a+b+j — 1)x* (1) + vp(b+c+n—j)x*(m2),
while Lemma yields x*(71) = ch Lg(m) and x*(72) = ch Lg(72), so that

v (T,) =vy(a+b+j—1)chLg(m) +vp(b+ c+n —j)ch Lg(m).

Therefore x*(o) = ch V + ch Lg(71) + ch Lg(72) by Lemma and Proposition 2.7.8]
and thus my () = my,e) (1) — Mpgr)(#) — Migm) (1) An application of Theorem 2311l
then yields Myg (o) (:U’) = j(n - .] + 1)7 while ng(ﬁ)(:U’) =n _.j and ng(Tg)(:U’) = j -1 by
Lemma [2.3.19, from which the result follows. O

Let K, G and V be as above and assume j = 2, that is, V' = Lg(0) is an irreducible
KG-module with p-restricted weight o = aoy + boy + co,,, where a,b, ¢ € Z~. In the next
results, we investigate the multiplicity of the dominant T-weight = o — (1 + -+ + V)
in V without the congruence conditions of the previous Lemma, using information on the
structure of Vi(o) as an Z-module, where . = Z(G) denotes the Lie algebra of G. Let
then # = {e,, f, hy, : v € 7,1 <i < n} be a standard Chevalley basis of .2 as in Section
251l By (2.14)) and our choice of ordering on ®*, the weight space Vi (0), is spanned by

{fl,nvg} U {f’n f2,rfr+1,nUU}2§r§n_1
U{frsfs+1.n07 Fi<s<n—1, (6.2)
where v7 € Viz(0), is a maximal vector in Vi (o) for B (and thus for the corresponding Borel
subalgebra b of .2 as well). Applying Theorem Z3.T1] then yields my, (1) = 2(n — 1),

forcing the generating elements of (6.2) to be linearly independent, so that the following
holds.

Proposition 6.1.6

Let G be a simple algebraic group of type A, over K and consider the dominant T-weight
o = aoy +boy + co,, where a,b, ¢ € Zwg. Also let p =0 — (1 +-+-+7,). Then u is dominant
and the set (62)) forms a basis of the weight space Vi (o),

We now study the relation between the quintuple (a,b,c,n,p) and the existence of a
maximal vector in Vg(o), for b. For A = (A, )1<;<om-1) € K2=1) | we set

n—1 n—1
U)(A) = AlanUU + Z AT‘f’*{l f2,rfr+1,nvg + Z An—l—s—lfl,sfs—l—l,nvo- (63)
r=2 s=1
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Lemma 6.1.7
Let G, o, i1 be as in the statement of Proposition[6.1.6 and adopt the notation of (6.3)). Then
the following assertions are equivalent.

1. There exists 0 # A € K2V such that eqw(A) = 0 for every v € II.
2. There exists A € K3 x K* such that e;w(A) = 0 for every v € II.
3. The divisibility condition p | a +b+ c+n — 1 is satisfied.

Furthermore, if 0 # A € K>V is such that e;w(A) = 0 for every simple root vy € 11, then
Ae((—(a+1)e,1,...,1,—c,a+1,...,a+1))g. In particular, the subspace of V(o) spanned
by all mazimal vectors in Vg(o),, for b is at most 1-dimensional.

Proof. Let A = (A;)1<r<a(n-1) € K21 and set w = w(A). Then applying Lemma [2.5.3]
yields

n—1
eﬁﬂw — (_Al + (CL + 1)An) fg,nUU —+ Z ((a —+ 1)147« - An-‘,—'r‘—l) f2,7‘f7‘+1,nvo7
r=2
n—1
6«/211) = ((b + 1)142 + ZAT - An + An—l—l) f’*/1f3,nvo—7
r=3

while for every 3 <r <mn — 1, we get

e'yr-w - (_Ar—l + Ar)f'yl f2,r—1fr+l,nva + (_An+7’—2 + An—i—r—l)fl,r—lfr—i—l,nvaa
as well as

ey W = (A1 + cAs—1)) frn-107 + (cAn_1 + An) fry fon—10.

One checks that f,, f3,v7 # 0 and that each of the lists {f2,07, fo, fri1,07 : 2 <1 < n},
{.f’y1f2,r—1fr+1,nvg>.fl,r—lfr-i—l,nvo} (2 S r S n — 1) and {fl,n—lvoaf’yl.on—l'Uo} 1s hneaﬂy
independent. Therefore e;w(A) = 0 for every v € II if and only if A is a solution to the
system of equations

( A = (a+1)A4,
Apiro1 = (a+ 1A, forevery 2 <r <n-—1
b+ 1Ay = =215 A+ Ay — Ana
{ A1 =A, forevery 3<r<n-—1 (6.4)
A,y = A foreveryn+2<s<2(n-1)
A1 = —CAQ(n_l)
\ An = _CAn—l-
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6.1 Preliminary considerations

Now one easily sees that (6.4) admits a non-trivial solution A € K2V if and only if
pla+b+c+n—1 (showing that [I] and B are equivalent), in which case

AE<(_(a+1)ca17--->1,_0,a+1,...,@+1)>K

N 7 A - ~~ -
n—2 n—2
(so that [l and 2] are equivalent), completing the proof. O

Let 7 =0 —9 —7 € XT(T) and assume p | a + b+ 1. Then by (A7), the element
u” = f1o07 — b f,, f1,0° is a maximal vector in Vg (o), for B (hence for b as well).

Lemma 6.1.8
Set U = (Gu™) C rad(o), where o and u™ are as above, and let p =0 — (y1+ - +7,). Then
my(p) =n—2.

Proof. Write v = f1,07, vy = fy, forfre1,07 for 2 <r <n —1, and vpq5-1 = fisfs41,00°
for every 1 < s < n — 1. Using Lemma [2.5.3] one easily checks that we have

T —1 -1
fanum =01 —b U9 — b U, + Upg,

f3,rfr+1,nuT = b_lv2 - b_lvr — Up+1 + Un+r—1, (65)

for every 3 < r < n—1. Those elements are clearly independent by Proposition[6.1.6land thus
m( g,y () = n — 2. Since U is an image of V;(7) containing (Zu”) and my, (@) = n — 2
by Theorem [2.3.11], the proof is complete. O

Let U be as in the statement of Lemma [6.1.8] write Vz(0) = Viz(0) /U and for v € Viz(0),
denote by ¥ the class of v in V(o). Using (6.5)), one easily checks that ¥, ,_1 = —0; +b" 0, +
b~'v, for every 2 < r < n — 1 and thus Va(o), = (U1,..., 0p) k. For A= (4,)]_, € K", we
write

n—1

W(A) = A1 f1,07 + > Arfoy forfrarn® + Anfo, frn?”.

r=2

Lemma 6.1.9

Let 0 = ao1+bos+-co, be such that abc # 0, p | a+b+c+n—1, but p t b+c+n—2. Also consider
an irreducible KG-module V' = L¢ (o) having highest weight o and let iy = o— (14 +7),
po = pt1 —y1. Then x*(0) =ch V+e,(a+b+1)ch Lg(T)+ch La(n), where 7 = 0 —v1 — 2.
Moreover my, ) (11) = My, o) (12) = 2(n — 2) and

n ifpla+b+1;
2n — 3  otherwise.

mv(,ul) = mV(Mz) = {
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Proof. Fixi=1or 2, let V(o) =V D V! > ... > V¥ 20 be the filtration of V(o) given
by Proposition 2.7.4] and write 7 = 0 — 7, — 72. We leave to the reader to check that

W (T,) = vplat b+ DY (r) + vpla+ b+ e +n — 1)x¥ () (6.6)

and that by Lemma 2.3.19 we have x*(7) = ch Lg(7) + €,(c + n — 2) ch Lg(pq). Now if
p1a+b+1, then Proposition 2.7.8 shows that i affords the highest weight of a composition
factor of Vi (o), while [Vg(0), La(v)] = 0 for every puy # v € X(T') such that ps < v < 0.
Consequently, there exists a maximal vector in V(0),, for B and an application of Lemma
617 yields [V (o), La(p)] = 1, so that my (p;) = my, o) (1) — 1. (Indeed, my () (p2) = 1.)
Proposition then yields the result in this situation and we may assume p | a + b+ 1
for the remainder of the proof. Here (6.6) can be rewritten as

vii(T,) =v(a+b+1)chLe(r) + vp(a+b+c+n—1)ch Lg(p),

in which case each of 7 and p; affords the highest weight of a composition factor of Vz(o) by
Proposition 278, while [V (o), Le(v)] = 0 (and hence [V (o), La(v)] = 0 as well) for every
T-weight 7, u; # v € XH(T) such that ps < v < 0. Now if u; affords the highest weight
of a composition factor of Vg(c), then there exists A = (A,)"_; € K™ such that w(A) is a

maximal vector in Vg(o) for Bg. Now applying Lemma 253 yields

n—1
ey W(A) = (A1 + (a+ 1) A,) for®” + (a+1) Y A for froand”
r=2

and as pt (a+1)(b+ ¢+ n — 2), one gets that the elements f5,,07, fo,fr41,97 (2 <r <n)
are linearly independent, so that A, = 0 for every 2 < r < n as well as A; = (a + 1)A,.
Finally, one checks that e,,w(A) = —A, f,, 3,07 and hence A; = A, = 0. Consequently

[Va(o), La(p1)] = 0 and thus

Va(o), La(p)] = [U, La(p)]- (6.7)

Finally, notice that mz ;) (1) = n—3 by Lemma 2319 and an application of Lemma
yields [U, Lg(p1)] = 1. The result then follows from (6.7). O

Proposition 6.1.10

Let G be a simple algebraic group of type A,, (n > 3) over K and consider an irreducible K G-
module V' = Lg(0) having highest weight ¢ = aoy + bog + co, € X (T'), where a,b, ¢ € Zy.
Also set m =0 —71 —Y2, o =0 — (a4 +v,) and write z; = a+b+1, 2o =b+c+n—2,
23 =a+b+c+n—1. Finally, consider uy =0 —(y1+---+v,) € X(T'). Then u is dominant,
(1) = 200 — 1) — ey(21) (1 — 2) — (22) — &(25) + ep(21)ep (25) and

X”(O’) =chV + €p(21) ch L(;(Tl) + EP(ZQ) ch Lg(’Tg) + Ep(Zg) ch L(;(,u)
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6.1 Preliminary considerations

Proof. Let Vg(o) =V° > V!> ... D VF D0 be the filtration of V(o) given by Proposition
274 One first checks that

ve(To) = vp(z0)X" (1) + vp(22) X" (72) + vp(23)X" (1)

and observes that if p { 212923, then x*(0) = ch V' by Proposition 2.7.8 For the remainder
of the proof, we may and will assume the existence of 1 <14 < 3 such that p | z;.

1. We first consider the case where p | z;. If p{ 2925, then we have v#(T,) = v,(2z1)x*(m1)
and applying Lemma 2.3 19 yields x*(71) = ch Lg(71), so that x*(o) = ch V+ch Lg()
by Lemma and Proposition 2.7.81 If on the other hand p | 22 (and so p 1 z3),
then the assertion on x*(o) immediately follows from Lemma Finally, if p | z3
(and so p 1 z3), then x*(0) =chV +ch Lg(m) + ch Lg(pe) by Lemma

2. Next assume p t z; and first suppose that p | z; (in which case one easily sees that
p 1t z3). Then v*(T,) = v,(22)x*(72) and Lemma yields x*(12) = ch Lg(m2), so
that x*(0) = chV + ch Lg(7) in this case by Lemma and Proposition 2.7.8 If
on the other hand p { 25 and p | z3, then the assertion on x*(o) follows from Lemma
0. 1.9

The result on my(u) is a direct consequence of the assertion on the decomposition of
X*(o) in terms of characters of irreducibles. We leave the details to the reader. O

We next consider an irreducible K G-module V' = Lg(o) having p-restricted highest
weight o = ao1+205+bo, € XT(T), where n > 3, a,b € Z~, and investigate the multiplicity
of the dominant T-weight p =0 — (1 + 2%+ v+ -+ ).

Lemma 6.1.11

Let V' be as above, with n > 3, and suppose that p divides both a + 3 and b+ n + 1. Also let
p=0—(71+2v%+v+v) and set T = 0 —y; — vo. Then x*(o) = ch'V + ch Lg(7),
My, (o) (1) = 3n — 4 and my (u) = n.

Proof. Let Vg(o) =V° > V!> ... D Vk D0 be the filtration of V(o) given by Proposition
274l We leave to the reader to check that v*(T,) = v,(a + 3)x*(7) and x*(7) = ch Lg(7).
(Use Lemma together with Corollary [Z7.3] to prove the latter assertion.) Therefore
v(T,) = vpy(a+3)ch Lg(7) and x*(o) = ch V + ch Lg(7) by Lemma and Proposition
2.7.8 Consequently my (1) = my, ) (@) — mz, ) (@) and an application of Theorem [2.3.11]
yields my,, ) (1) = 3n — 4, while my,)(1) = 2(n — 2) by Proposition B.I.10, completing the
proof. O

Using Lemma [B.1.1] together with Lemma [BE.T.11] we now give a lower bound for the
multiplicity of o — (v1 + 272 + 3 + - - - + 7,) in a given irreducible K G-module V' = Lg(0)
having p-restricted highest weight 0 = aoy + 205 + bo,, where a,b € Z~(, under certain
divisibility conditions.
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Lemma 6.1.12
Let V' as above, with n > 3 and assume p divides both a + 3 and b+ n. Also consider the
T-weight u =0 — (71 + 2% +v3+ -+ V). Thenmy(u) >n—1.

Proof. Let J = {ny,...,nn_1}, where n, =, forevery 1 <r <n—1, n,-1 = Yn_1 + Y, SO
that H = (U, : 1 <r <n—1) is simple of type A,,_; over K, and denote by {o7,...,0,_}
the set of fundamental weights corresponding to our choice of base. Adopting the latter
notation, we get 0’ = o|r,= ao] + 205 +bo,,_,, 1 = plry=0"— (M +2n2+n3+ -+ Mn-1),
and as p | b+ (n — 1) + 1, Lemma applies, yielding my (1) = n — 1. The result
then follows from Lemma G111 O

We are now able to determine the exact multiplicity of = o — (714272 +7v3+- - +7,) in
an irreducible KG-module V' = Lg(0) having p-restricted highest weight o = ao1+209+bo,,,
where a,b € Z-q, under the divisibility conditions of Lemma [6.1.12]

Proposition 6.1.13

Let G be a simple algebraic group of type A,, (n > 3) over K and consider an irreducible K G-
module V' = Lg(0) having highest weight o = aoy + 209 + bo, € X (1), where a,b € Z~y.
Also assume p divides both a+3 and b+n and let p =0 — (71 + 2y +v3+ -+ +va). Then
w is dominant and my (pu) =n — 1.

Proof. Let Vg(o) = VO 2 VI D ... D V¥ D 0 be the series given by Proposition 2.7.4]
and write 1 = 0 — (71 +72) = as well as 5, = 0 — (92 + - -+ + 7). One first checks that
v (T,) = vp(a+ 3)x*(11) + vp(b + n)x*(72) and that Lemmas and respectively
yield

x"(12) = ch Lg(7s) + ch Lg(p), x"(11) = ch Lg(m) + ch La(p),

so that [Vi(0), La(w)] # 0 by Proposition 2.7.8  Applying Theorem 2.3.11] one then gets
My, (o) (1) = 3n—4, while my,-)(¢) = 2n—>5 by LemmaB.1.9and my (-, (x) = 1 by Lemma
2319 Therefore my, () (1) < n—1 and an application of Lemma 6. T.12 then completes the
proof. O

We now aim at proving a result similar to Proposition [6.1.13] in the situation where
= 0— (271427 +v3+- - -+7,). We start our investigation by the following two preliminary
results.

Lemma 6.1.14

Assumen > 4 and consider an irreducible KG-module V = Lg (o) having p-restricted highest
weight 0 = aoy + 09 + 03 + bo,, where a,b € Z~q. Also assume p # 2,3 divides both a + 4
and b+n+1, and let p = 0 — (1 + -+ + ). Then x*(0) = chV + ch Lg(7), where
T=0—7 —"% — 73 My (1) = 4(n—2) and my(pu) = 3n — 5.
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6.1 Preliminary considerations

Proof. Let Vg(o) =V° > V!> ... D VF D0 be the filtration of V(o) given by Proposition
274l The reader first checks that v#(7},) = v,(a + 4)x*(7), while an application of Lemma
yields x*(7) = ch Lg(7), hence

vi(T,) = vy(a+4) ch Lg(T).

Therefore x*(c) = chV + ch Lg(7) by Lemma and Proposition 277.8, so that
my (1) = Myge) (1) — Mrg(r (). Applying Theorem 31T gives my, ) (1) = 4(n — 2),
while my - (1) = n — 3 by Lemma [2.3.19, completing the proof. O

Lemma 6.1.15

Assumen > 3 and consider an irreducible KG-module V = L (o) having p-restricted highest
weight 0 = aoy + 209 + bo,, where a € Z~1, b € Z~q. Also assume p divides both a + 3 and
b+n+1, and let 1 = 0 — (271 +27y2+y3+ - -+V). Then my, ) (1) = 4n—5 and my (1) = n.

Proof. Let Vg(o) =V° > V!> ... D Vk D0 be the filtration of V(o) given by Proposition
274 and write 77 = 0 — 9 — Y2, T2 = T1 — 71 — Y2 — 3. One starts by checking that
v (T,) = vp(a+ 3)(x*(11) — x*(72)) while Lemmas [2.3.19 and [6.1.14] respectively yield

X*(12) = ch Lg(12), x*(11) = ch Lg(71) + ch Lg(m),

so that v#(1,) = v,(a + 3) ch Lg(71). Therefore x*(0) = chV + ch Lg(7) by Lemma
and Proposition 278 Finally, an application of Theorem 2311l gives my,, () (1) = 4n — 5,
while mp(-)(¢) = 3n — 5 by Lemma [6.1.14, completing the proof. O

Using Lemma together with Lemma [6.1.15] we now give a lower bound for the
multiplicity of o — (271 + 272+ v3 + - - - + 7») in a given irreducible K G-module V' = Lg(0)
having p-restricted highest weight ¢ = aoy + 205 + bo,, where a > 1, b > 0, under the
assumption that p divides both a + 3 and b + n.

Proposition 6.1.16

Let G be a simple algebraic group of type A, (n > 4) over K and consider an irreducible K G-
module V' = Lg(o) having highest weight o = aoy + 209 + bo, € XT(T), where a,b € Zy.
Also assume p divides both a+3 and b+n and let p =0 — (271 + 27 +y3+ -+ +Yn). Then
W is dominant and my (pu) > n — 1.

Proof. Let J ={m,...,n,—1}, where n, =, forevery 1 <r <n —1, 7,1 = Yu_1 + Vn, SO
that H = (U, : 1 <r <n—1) is simple of type A,,_; over K, and denote by {o7,...,0,,_,}
the set of fundamental weights corresponding to our choice of base. Adopting the latter
notation, we get o’ = o|p,= ac} +205+bo,_1, ' = plry=0"—m+2m+n3+- - +n_1),
and as p | b+ (n — 1) + 1, Lemma applies, yielding my ) (¢) = n — 1. The result
then follows from Lemma [6.1.11 O
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Finally, fix n = 4 and consider an irreducible KG-module V' = Lg(0) having highest
weight 0 = a0y + 09 + 03, where a € Z~q. In the next result, we investigate the multiplicity
of p =0 —7 — 27 — 293 — 4 in V, under the divisibility condition p | a + 2 (p # 3).

Lemma 6.1.17
Let V' be as above and set jp = 0 — 1 — 2v9 — 2773 — Y4. Also assume p # 3 and p | a + 2.
Then my, ) (1) = 8 and my (p) = 6.

Proof. Let Vg(o) =V° > V!> ... D Vk D0 be the filtration of V(o) given by Proposition
2.7 4and write 7 = 0 —7; —72. Then one easily checks that v*(7T,) = v,(a+2)x*(7), and since
p # 3, we have x*(7) = ch Lg(7) by Lemma[5.1.1] so that x*(o) = ch V+ch Lg(7) by Lemma
and Proposition 277.8 Finally my, ) = 8 by Theorem 23.11], while my (1) = 2 by
Lemma 5.1.T], completing the proof. a

6.1.2 Weight multiplicities for G of type D4 over K

Let K be an algebraically closed field of characteristic p > 0 and G a simple algebraic group
of type D, over K. Fix a Borel subgroup B = UT of GG, where T' is a maximal torus of G and
U is the unipotent radical of B, let II = {~1,72,73,74} denote a corresponding base of the
root system ® of G and let {04, 09, 03,04} be the set of fundamental dominant weights for T
corresponding to our choice of base II. In this section, we record some useful information on
weight multiplicities and for ¢, o, 3, ¢4 € Z, we adopt the notation w — c¢cac3c4 to designate
0 — 171 — CoYo — €373 — C47Y4. We start by the following three very specific situations, in which
K has characteristic p = 7.

Lemma 6.1.18

Assume p = 7 and consider an irreducible KG-module V- = Lg(o) having highest weight
o =401+ 20, € XT(T). Also let p = o — 1211. Then p is dominant, my, (1) = 7 and
my (p) < 3.

Proof. By Lemma[2.3.19 the T-weight 7 = 0 —~v; —75 = 301402+ 03+ 04 affords the highest
weight of a composition factor of Vg(o), so that my (p) < my, o) (1) — mp,e)(p). Now an
application of 2311l yields my, ) (1) = 7, while my,-)(¢) = 4 by [Liib15|, completing the
proof. O

Lemma 6.1.19

Assume p = 7 and consider an irreducible KG-module V- = Lg(o) having highest weight
o =401 + 30, € XT(T). Also let p = 0 —2311. Then p is dominant, My, (1) = 14 and
my (p) < 9.
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6.1 Preliminary considerations

Proof. Let Vg(o) =V° > V!> ... D VF D0 be the filtration of V(o) given by Proposition
2.7.4 and write 7y = 0 — 2200 = 207 + 09 + 203 + 204 as well as 75 = 0 — 1211 = 407 + 205.
One first checks that v#(T,) = x*(m1) + x*(72), while Lemma and Proposition
respectively yield

X"(m2) = ch Lg(m) + ch La(p), x* (1) = ch Lg(m1) + ch La(p).

Therefore v#(T,) = ch Lg(m1) + ch Lg(m) + 2ch Lg(p) and each of 7, 7 and p affords
the highest weight of a composition factor of V(o) by Proposition 2778 yielding

my (1) < Myge) (1) — Mg ) (1) — Mpg(m) (1) — Mg (1)

Using Proposition [6.1.10, one checks that my(-)(x) = 3, while my,)(¢) = 1 by Lemma
2.3.19 and obviously mp (1) = 1. Finally, applying Theorem 2.3 Il yields my, ) (1) = 14,
completing the proof. O

Lemma 6.1.20
Assume p = 7 and consider an irreducible KG-module V. = Lg(o) having highest weight
o0 =5014+02+035+0, € XT(T). Also let p = o —2211. Then p is dominant, my, (@) = 19
and my (p) < 12.

Proof. By Lemma 2319 the T-weight 7 = o — 1100 = 407 + 203 + 20, affords the highest
weight of a composition factor of Vi(o), and one easily checks using Lemma and
Corollary 2773 that [Vg(7), Lg(v)] = 0 for every v € X (T) such that p < v < 7. Therefore
mp (- (@) = my, - (@) and Theorem 3.1 yields my, -y (1) = 7, as well as my, ) (1) = 19,
from which the result follows. O

We next drop the assumption p = 7 and consider an irreducible KG-module V' = Lg(0)
having p-restricted highest weight o = aoy + bos + cos + doy, where a,b, ¢, d € Z>,. We start
by the case where ab # ¢ = d = 0.

Lemma 6.1.21
Let V' be as above, withb =1,¢c=d =0 and a € Z~q such thatp | a+2. Also let p = c—1211.
Then p is dominant, my, ) (1) = 6 and my (u) < 3.

Proof. By Lemma [2.3.T9] the T-weight 7 = 0 — 1100 = (a — 1)y + 03 + 04 affords the highest
weight of a composition factor of Vi (o), so that my (1) < my, ) (@) —mr (). Also, since
p | a+2 and o is p-restricted, we get that p # 2 and Lemma 2.3.19 yields m-)(¢) = 3. An
application of Theorem 3.1 shows that my, (1) = 6 and thus allows us to conclude. O

Lemma 6.1.22
Let V' be as above, with b = 3, ¢ = d = 0, and a € Zso such that p | a + 4. Also let
p=A—1422. Then p is dominant, My, ) (1) = 12 and my () < 5.
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Proof. By Lemma [2.3.19] the T-weight 7 = 0 — 1100 = (a — 1)01 + 209 + 03 + 04 affords the
highest weight of a composition factor of Vig(o), so that my (u) < my, ) (@) — mpg ().
Also, one checks (using [Liib15]) that my)(©) = 7, while an application of Theorem 2.3.11]
yields my, ) (@) = 12, completing the proof. O

Lemma 6.1.23
Let V' be as above, with b = 2, ¢ = d = 0, and a € Z-y such that p | a + 2. Also let
p =0 —2211. Then p is dominant, my, ) () =9 and my (u) < 8.

Proof. Let Vg(o) =V° D> V!> ... D VF D0 be the filtration of V(o) given by Proposition
274 and write 7 = 0 — 2200 = (a — 2)o; + 203 + 204. Then one easily checks that v#(T,) =
vp(a+2)x*(7) and since my (- (1) = 1, we immediately get my (p) < my, () (1) — 1. Finally,
an application of Theorem 2.3.11] yields my, ) (1) = 9, completing the proof. O

Lemma 6.1.24
Assume p # 3 and let V' be as above, withb =c =d =1 and a € Z~; such that p | a + 2.
Also let p = o —1211. Then i is dominant, my, (1) = 14 and my (u) < 11.

Proof. By Lemma 2319, the T-weight 7 = ¢ — 1100 = (a — 1)y + 203 + 204 € XT(T)
affords the highest weight of a composition factor of Vi (o), and mz, ) (1) = 3 by Lemma
2319 Finally, an application of Theorem 2.3.11] yields my, (@) = 14, from which the
result follows. O

Lemma 6.1.25
Let V' be as above, with b = 0, ¢ = d = 1, and a € Z~o such that p | a + 3. Also let
p =0 — 1111. Then p is dominant, my, (@) =7 and my (u) < 5.

Proof. By Lemma [2.3.19 each of the T-weights 71 = 0 — 1110 and 7 = ¢ — 1101 affords the
highest weight of a composition factor of Vi(0), and since my ) (1) = mpgm) (1) = 1, we
immediately get my (1) < my, ) (¢) — 2. An application of Theorem [Z.3.11] then yields the
desired result. O

Lemma 6.1.26
Let V' be as above, withb =c=d =1 and a € Z~y such thatp | a+4. Also let p = o —1111.
Then p is dominant, my, ) (1) = 8 and my () < 6.

Proof. Proceeding exactly as in the proof of Lemma 120 (setting m = o — 1110 and
Ty = 0 — 1101 and replacing Lemma 2.3.19 by Proposition [6.1.10]), one easily obtains the
desired result. We omit the details here. O
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6.1 Preliminary considerations

Lemma 6.1.27
Assume p # 3 and let V' be as above, with b =c =d =1 and a € Z~y such that p | a + 4.
Also let j = 0 — 1322. Then i is dominant, my, ) (1) = 24 and my (p) = 18.

Proof. Let Vg(o) =V° > V!> ... D Vk D0 be the filtration of V(o) given by Proposition
274 and write 77 = 0 — 1110 = (a — 1)oy + 09 + 204, T2 = 0 — 1101 = (a — 1)y + 09 + 203.
One then easily checks that

vi(To) = vp(a +4)x" (1) + vpla + 4)x" (1)

and using |[Libl5|, we get that x*(m) = ch Lg(m) as well as x#(my) = ch Lg(73). Therefore
x"(0) = chV + ch Lg(m1) + ch Lg(2) by Propositions and 2.7.80 Finally, Theorem
2311 yields my, ) (1) = 24, while mp () (p) = 3 for i = 1,2 by [Liib15|] again, completing
the proof. O

Proposition 6.1.28
Let V' be as above, withb =2, ¢ =d =0 and a € Z~, such thatp | a+3. Also let p = 0—2422.
Then p is dominant, my, ) (1) = 24 and my () < 6.

Proof. By Lemma 2319 the T-weight 7 = 0 — 1100 = (a — 1)oy + 09 + 03 + 04 affords
the highest weight of a composition factor, so that my (1) < myge)(1) — mpy)(r). Now
an application of Theorem 2.3.11] yields my,, (1) = 24, while mz ;) (¢) = 18 by Lemma
[6.1.27, so the result follows. O

Lemma 6.1.29
Let V' be as above, withb =1,c=d =0 and a € Z~q such thatp | a+6. Also let p = c—1211.
Then i is dominant, my, ) (1) = 6 and my (u) < 5.

Proof. Let Vg(o) =V > VI > ... D V* 20 be the filtration of Vg(a) given by Proposition
2.7.4] and observe that since p # 2, we have v*(T,) = v,(a + 6)x* (1) = vp(a + 6) ch Lg(p).
Therefore 1 affords the highest weight of a composition factor of V(o) by Proposition 2.7.§]
and since my,, () (1) = 6 by Theorem 2.3.TT] the desired result holds. O

Corollary 6.1.30
Let V' be as above, with b = 1, ¢ = d = 0, and a € Zso such that p | a + 6. Also let
p =0 —3311. Then p is dominant, my, ) (@) = 10 and my (u) < 9.

Proof. By Lemma[6.1.29] we know that the T-weight 7 = 0 — 1211 affords the highest weight
of a composition factor of Vi(0), so that my (1) < my, ) (@) — mr,) (1) An application of
Theorem 2.3.11] then yields my, ) (©) = 10, while mp ) (@) = 1, completing the proof. O
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We now consider an irreducible K G-module V' = Lg(0) having p-restricted highest weight
o = aoy + 03 + 04, for some a € Z-(, and investigate the multiplicity of the T-weight
p=oc—1111 € X*(T) in V, using information on the structure of V(o) as an Z-module,
where .Z denotes the Lie algebra of G. Let then & = {e,, f,, hy, : 7€ 7,1 <i <4} be a
standard Chevalley basis of . as in Section 251l By (2I4]) and our choice of ordering on
¢t the weight space V(o) is spanned by

{f1,4vav f“/l f274va} U {f“/sf’71+’72+“/4vav f’Yl f“/sf’m-l-’mva}
U {f1,3.f'y4vaa f'y1f2,3.f’y4vaa fl,2f'yg.f’\/4va}a (68)

where v7 € Viz(0), is a maximal vector in V(o) for the Borel subgroup B of G (and thus for
the corresponding Borel subalgebra b of .Z as well). An application of Theorem 2Z3.TT] then
yields my, ) (1) = 7, forcing the generating elements of (6.8)) to be linearly independent, so
that the following holds.

Proposition 6.1.31

Let G be a simple algebraic group of type Dy over K and consider the dominant T-weight
0 = a0y + 03 + 04, where a € Z~g. Also let p = o — 1111. Then p is dominant and the set
([C.8)) forms a basis of the weight space V(o).

As usual, we then study the relation between the pair (a, p) and the existence of a maximal
vector in Vi(0), for b. For X = (A;, Ay, By, By, C1,Cs,Cs) € K7, we set

U(A) = A1f1,4v0 + A2f’71 f2,4UU + Blfv3f71+72+74vo + B2f71 fv3f72+74vo
+ O f1,3f5,07 + Cofy, fo3f3,07 + Cs fr2f5 f1,07. (6.9)

Lemma 6.1.32
Let o, p be as in the statement of Proposition[6.1.31 and adopt the notation of ([©9). Then
the following assertions are equivalent.

1. There exists 0 # X = (A1, Aa, By, By, C1,Ca,C3) € K7 such that e,u(X) = 0 for every
v e Il

2. There exists X = (A;, A, By, Ba, C1,C5,C3) € Kb x K* such that e;u(X) = 0 for
every v € II.

3. The divisibility condition p | a + 5 is satisfied.
Furthermore, if 0 # A € K" is such that e;w(A) = 0 for every simple root v € II, then

A€ ((a+1,1,-2,1,-2,1,2)) k. In particular, the subspace of V(o) spanned by all mazximal
vectors in Vg(o), for b is at most 1-dimensional.
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6.1 Preliminary considerations

Proof. Let X = (Ay, Ay, By, By, C1,C5,C3) € K™ and set u = u(X). Then successively
applying Lemma [2.5.3] yields

et = (A1 + (a + 1)Az) foav” + (=B1 + (a + 1) By + C5) fo, froy,0°
+ (_Cl + (CL + 1)02 + 03) f2,3f'y4va’
eyt = (—By — Cy + C5) fo, fr f1u07,
€yt = (A1 4 2B1) 1490107,V + (—A2 + 2By — Co) f, frau”
+ (C1+ Cs) frafrav,
eyt = (A1 + B1 + C1) fi307 + (—As + Co) £, fo,307 + (B1 + C3) fr2f5,07.

As usual, one checks that f,, f, f-,07 # 0 and that the lists {f2407, fys frat7a07s f2,3f7,07},

{f“/1+“/2+“f4vavf“flf’m-l—’mvavfl,?fmva}v and {f1,3vauf’71f2,3vavf1,2f“/svg} are linearly indepen-
dent, so that e,u(X) = 0 for every v € II if and only if X is solution to the system of

equations

( Al = (a + 1)142
Bl = (CL + 1)32 + Cg
Cl = (CL + 1)02 + Cg
Cg = BQ + 02
Al = 2Bl
Ay =928, — Cy (6.10)
¢, =-Cs
Al = Bl + Cl
A2 - 02
Bl = —Cg.

\

Now one easily sees that (6.10) admits a non-trivial solution X € K7 if and only if p | a+5
(showing that [ and Bl are equivalent), in which case X € ((a +1,1,—-2,1,-2,1,2))x (so
that [Il and [2] are equivalent), completing the proof. O

Proposition 6.1.33

Let G be a simple algebraic group of type Dy over K and consider an irreducible KG-module
V' = Lg(0) having highest weight o = aoy + 03+ 04 € XH(T'), where a € Z~q. Also assume
p#2, p|la+bandlet p =0 —1111. Then p is dominant, x*(o) = ch'V + ch Lg(p),
My, (o) (1) = 7 and my (1) = 6.

Proof. One first easily checks (using Lemma together with the fact that p # 2 and
p | a+5) that [Vi(o), Lg(v)] = 0 for every v € X(T) such that p < v < 0. Therefore
[Va(o), La(p)] equals the dimension of the subspace of Vi; (o) spanned by all maximal vectors
in Vi (o), for B. An application of Lemma then completes the proof. O
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Lemma 6.1.34
Let V' be as above, withb = c=0,d =2 and a € Z~q such thatp | a+4. Also let p = 0—2212.
Then i is dominant, x*(o) = chV 4 ch Lg(o — 1101), my, ) (1) = 10 and my (1) = 4.

Proof. Let Vg(o) =V° D> VI > ... D Vk D0 be the filtration of V(o) given by Proposition
274 and write 7 = 0 — 1101. One easily checks that v/(T,) = v,(a + 4)(x*(7) — x* (1)),
and since x*(7) = ch Lg(7) + ch Lg(p) by Proposition 6.1.33] we get v*(1,) = v,(a +
4) ch Lg (7). Therefore x*(o) = c¢hV + ch Lg(7) by Lemma and Proposition 2.7.8]
thus yielding my (@) = my, ) (1) — mp ) (). Finally, my, (1) = 10 by Theorem 2.3.11]
and an application of Proposition then completes the proof. O

Using Proposition [6.1.33 and Lemma [6.1.34] we now determine an upper bound for
the multiplicity of o — 3322 € X™(T) in the irreducible KG-module V' = Lg(o) having
p-restricted highest weight o = aoy + 03 + 04.

Proposition 6.1.35
Let V' be as above, withb =0,c=d =1 and a € Z~3 such that p | a+3. Also let n = 0 —3322.
Then p is dominant, my, ) (1) = 29 and my (p) < 14.

Proof. Let Vg(o) =V > VI > ... D V* 20 be the filtration of V(o) given by Proposition
274 and write 77 = 0 — 1110, 7» = 0 — 1101, 73 = 0 — 2211. One first easily checks that
v (T,) = vp(a+ 3)(x*(m1) + x*(72) + x*(1)), and by Lemma [6.1.34], we get

x*(m1) = ch Lg(m) + ch La(73), x*(72) = ch La(72) 4 ch La(73),
so that v*(1,) = vp(a+3)(ch Lg(m1) +ch Lg(m2) +2 ch Le(73) + x* (1)) Therefore each of 7,

To, 73 and pu affords the highest weight of a composition factor of V(o) by Proposition 2.7.8

and hence my (1) < My (o) (1) — Mpgr) (1) — Mg () (1) — MLy ) (1) — 1. An application of
Theorem Z3TT yields myg (1) = 29, while my(-)(1) = mp(r) (1) = 4 by Lemma
and mp,,(-,)(1) = 6 by Proposition B.1.33] leading to the desired result. O]

We next consider an irreducible K G-module V' = Lg(o) having p-restricted highest
weight 0 = aoy + 03+ 04 € XT(T), where a € Z~q, and aim to determine the multiplicity of
p=o0—2211in V. As above, we let £ = Z(G) and let Z = {e,, f, hy, 17y € OT,1 <i <4}
be a standard Chevalley basis of .Z as in Section 251l By (2I4) and our choice of ordering
on ®F, the weight space Viz(0), is spanned by

o Fipv” U fraf1407, f1afyimtut UL fasfn e frafrs frito a0 )
U {f'y1f1,2f2,4'U0> .f’y1f1,3f’y2+’y4vo} U {f«i f273f'yz+'y4vg> .f'y1f1,2f'ygf’yz+’y4vo}
U {f1,2f1,3f'y4va} ) {fﬁ/1f1,2f2,3fﬁ/4vaa (f1,2)2f~/3f’y4va}v (611)

where v7 € Viz(0), is a maximal vector in Vi (o) for B (and thus for the corresponding Borel
subalgebra b of .# as well). An application of Theorem 2.3.11] then yields my, ) (1) = 12,
forcing the generating elements of (6.11) to be linearly independent.
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6.1 Preliminary considerations

Proposition 6.1.36
Let G be a simple algebraic group of type D, over K and consider the dominant T-weight
o = aoy + 03 + 04, where a € Z~,. Also let p = o — 2211. Then u is dominant and the set

G.II)) forms a basis of Vg(o),.

We now study the relation between the pair (a,p) and the existence of a maximal vector

in Vi (o), for b. In order to simplify the notation, we respectively designate the elements of
(6I00) by vy,...,vie, and for A = (A,)12, € K2, we set

w(d) =Y Auw,. (6.12)

Lemma 6.1.37
Let o, u be as in the statement of Proposition[6.1.30 and adopt the notation of (€I12). Then
the following assertions are equivalent.

1. There exists 0 # A € K'? such that e;w(A) = 0 for every v € IL.
2. There exists A € KM x K* such that e;w(A) =0 for every v € IL.
3. The divisibility condition p | a + 3 is satisfied.

Furthermore, if 0 # A € K" is such that e;w(A) = 0 for every v € II, then A €
((0,0,2,—-1,-1,0,—1,1,1,=1,1,1)) . In particular, the subspace of V(o) spanned by all
mazimal vectors in Vg (o), for b is at most 1-dimensional.

Proof. Let A = (A,)1<r<12 € K' and set w = w(A). Then successively applying Lemma
2.5.3 yields

eq W = (aAy + Ag) F1 907 + (—As + aAg) f1.2f2,407
+ (—As 4+ aAs + As) fo3fr14ypt7a 0
+ (—As 4+ aA7 + Aw) f1,3fr017u07
+ (—As — A7+ 2(a+ 1) Ag + Ag + Aur) fr, fosfrosmat”
+ (—As + aAg + 2A12) f1.2frs [ra 470
+ (=Aw + adi + 2A12) f12fo3f,07,

ey, W = (—Ay + A2) f1y f1407 + (= As + As) [y frs frn 470’
+ Ag f2 f2.407 + (—A7 + A1) fon fr3f7,07
+ (—Ag + Ag) %f“{gf’yz—l—’mvo + (—As + A11)f31f2,3f74vo
+ (—Ag — An + 2412) fy fr2fre fru07,
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Crs W = (_A2 + A3 + 2A5)f1,2f’¥1+’¥2+’74vo + (AIO + Alz)(f1’2>2f74vg
+ (—A@ + A7 + 2149 - All)f'\/1fl,2f'y2+74va’

ey W= (—As + Az + A5 + Ao) f12f1,307 + (As — A6 + A1) f, frafo,30°7
+ (As + A) (fr2)* fra0”.

As usual, one then checks that there exists 0 # A € K'? such that e ,w(A) = 0 for
every 7 € Il if and only if p | @ + 3 (showing that [Il and [3] are equivalent), in which case
A€ (0,0,2,-1,-1,0,—1,1,1,—1,1,1)) k¢ (so that [I] and 2] are equivalent), completing the
proof. O

Let 0 = aoy+03+04, with a > 1 such that p | a+3 and write 1, = 0 —y1—y2—7y3 € X (T)
as well as To = 0—Y1—Y2—"74 € X+(T) Then by m, both u™ = ](1173120—]071 f273UU—f172f-y3UU,
U™ = [y b0tV — fou frotra¥” — fr2f5,07 are maximal vectors in V(o) for B (hence for b
as well).

Lemma 6.1.38
Set U = (Gu™) + (Gu™) C rad(o), where o, u™ and u™ are as above, and let p = o — 2211.
Then my(p) = 5.

Proof. Let {v,}!2, be the basis of V(0), introduced above. Using Lemma 2.5.5] one easily
checks that we have

T1
f’Y1+’Yz+’Y4u = —U1 — V2 + U3 — U4 — Us,
-
ffylf«/2+«/4u = —20] — U4 — Vg + U7 — Vg — Vg,
T1 __
f172f«{4u = —2’02 — U5 + Vg + V19 — V11 — V12. (613)

These elements are linearly independent by Proposition 6.1.36] and thus mg,my (@) > 3.
Now since (Gu™) is an image of V(1) containing (Zu™) and my,-)(1) = 3, we get that

My (@) = 3 as well as (Gu™), = (4901 t™, fri fratrya ™, fr2fyu™) . Similarly, one
checks that

T __
f1,3u = V3 — U7 — V10,
T __
f71f2,3u = V4 — U7 — Vg — V11,

Jrafru™ = vs — vg — V19 — V12, (6.14)
and arguing as above yields mg,m) (1) = 3 and (Gu™), = (fi3u™, fy, fasu™, fi2fy,u™) k.

Also, an easy computation shows that dim(Gu™), N (Gu™), = 1, so that my(p) = 5 as
desired. O
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6.1 Preliminary considerations

Let U be as in the statement of Lemma and write Vg(o) = Vig(o)/U. Also, for
v € Vi (o), denote by v the class of v in V(o). We then leave to the reader to check (using
(613) and (6.14)) that we have vy = 203 — U3 + U4 + U5 + Ug + Us, V11 = Vg — U7 — Vs,
Vg = U3 — 1_)7, Vg = —2’(_]1 — Uy — Vg + U7 — 1_)8, and U5 = —Up — V2 + U3 — Uy and thus

Va(0), = (01, 0a, U3, U, Tg, U7, U) k. For X = (A, B,C, D, E,G, H) € K", we write

w(X) = Aty + By + Cvs + Dvy + Evg + Gor + Hus.

Proposition 6.1.39

Let V' be as above, with b = 0, ¢ = d = 1 and a € Z~y such that p | a + 3. Also set
7 = 0 — 1110, and 7o = 0 — 1101. Then the T-weight u = o — 2211 € X(T) is dominant,
x"(o) = chV 4 ch Lg(71) 4 ch Lg(72) + ch La (i), my, o) (1) = 12 and my (u) = 7.

Proof. Let Vg(o) =V 2 VI > ... D V* 20 be the filtration of Vg(o) given by Proposition
274 and write 3 = 0 — 1110 = (a — 1)oy + 204, 72 = 0 — 1101 = (a — 1)o1 + 203. One
then checks that v#(T,) = v,(a + 3)(x*(m1) + x*(72)), while applying Lemma yields
xX*(7;) = ch Lg(1;) 4+ ch Lg(p) for i = 1, 2. Therefore

v (T,) = vp(a+3)(ch Lg(mi) + ch Lg(m2) + 2 ch La(p)),

which by Proposition 2.7.8 shows that each of 71, 75 and u affords the highest weight of
a composition factor of V(o), while [V (o), Le(v)] = 0 (and hence [Vg (o), La(v)] = 0 as
well) for every other T-weight 71, 75 # v of V(o) such that 4 < v < 0. Now if p affords the
highest weight of a composition factor of Vg(c), then there exists X € K7 as above such
that w(X) is a maximal vector in V(o) for B. Arguing as in the proof of Lemma [6.T.9] then
yields X = 0 and hence [V (o), Lg(p)] = 0, so that

Va(o), La(w)] = [U, La(p)]- (6.15)

Finally, notice that mp(-y(¢t) = mp(r)(#) = 2 by Lemma and an application of
Lemma vields [U, Lg(p)] = 1. The result then follows from (G.I5]). 0O

To conclude this section, we study the multiplicity of o — 3422 € X (T) in a given
irreducible K G-module having p-restricted highest weight ¢ = aoy + 02, where a € Z-q,
starting by recording the following two preliminary results. The proof of the first one being
identical to that of Lemma we omit the details here.

Lemma 6.1.40

Let a € Zwq be such that p | a +4 and let 0 = aoy + 204. Also consider an irreducible KG-
module V- = Lg(0) having highest weight o and write p = o — 1212. Then u is dominant,
x*(0) = chV 4 ch Lg(o — 1101), my, ) (1) = 6 and my (u) = 3.
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Lemma 6.1.41
Let a € Z~1 be such that p | a + 3 and let 0 = aoy + o3 + 04. Also consider an irreducible
KG-module V = Lg(0) having highest weight o and write p = 0—2322. Then p is dominant,

my,, (o) (1) = 21 and my (p) = 12.

Proof. Let Vg(o) =V° D> V!> ... D Vk D0 be the filtration of V(o) given by Proposition
274 and write 7, = 0 — 1110 = (a — 1)oy + 204, » = 0 — 1101 = (a — 1)o; + 203,
T = 0—2211 = (a—2)oy + 03+ 04. One then checks that v#(1,) = v,(a+3)(x*(11) + x*(12)).
Also, applying Lemma yields x*(r;) = ch Lg(1;) + ch Lg(7) for i@ = 1,2, so that
v (T,) = vp(a+ 3)(ch Lg(m1) + ch Lg(m2) + 2ch Le(7)). Therefore

Xu(O') =chV +ch Lg(Tl) + ch Lg(Tg) + ch Lg(T)

by Lemma 2319 Proposition 7.8 and Proposition 6.1.39 Finally my, (1) = 21 by
Theorem 2.3.11], while an application of Lemma B.1.40 yields mp ) (1) = mp, ) (1) = 3
and mz, () (1) = 3 by Lemma 2319 from which the result follows.

O

Proposition 6.1.42

Let G be a simple algebraic group of type Dy over K and consider an irreducible KG-module
V = Lg(0) having highest weight o = acy+0y € XT(T), where a € Zy is such that p | a+2.
Also let 1 = 0 — 3422. Then i is dominant, my, ) (1) = 18 and my (1) < 6.

Proof. By Lemma 2319 the weight 7 = 0 — 1100 € X *(T") affords the highest weight of a
composition factor of Vi (o), so that my (1) < my, ey (1) — mpg ey (p). Now Theorem Z3TT]
yields my,, ) (@) = 18, while my ) (@) = 12 by Lemma [6.1.41], completing the proof. O

6.2 Proof of Theorem

Let Y, X be as in the statement of Theorem [6.1] and consider an irreducible KY-module
V = Ly(\) having p-restricted highest weight A = S27_ a;\; € XT(Ty). Also denote by w
the restriction of A to Tx, so that by (6.1I), we have

w= (a1 + a7)wy + (az + ag)ws + (az + as)ws + (az + 2a4 + as)wy.

Notice that if v™ € Vj is a maximal vector for By in V, then vt is a maximal vector
for By as well, since Bx C By, showing that the Tx-weight w affords the highest weight
of a K X-composition factor of V. Every Ty-weight of V' is of the form \ — ZZ=1 CrQlyy
where ¢, co, ¢3, ¢4, C5, C6, €7 € Z>o. Throughout this section, such a weight shall be written
A — creacgeqcscger and simply called a Ty-weight. On the other hand, a Tx-weight of V|
does not necessarily have to be under w: for example, if (A, ay) # 0, then the T-weight A —ay
restricts to w + 3 — B4 A w. The following generalization of Lemma [£.2.T] gives a condition
on A under which all T'x-weights occuring in V' are under w. Its proof being identical to that

of Lemma [(.2.1] we omit the details here.
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6.2 Proof of Theorem

Lemma 6.2.1
Let N\, w be as above, and suppose that (\, o) = 0. Then every Ty -weight i of V.= Ly ()\)
satisfies pi|ry < w.

Remark 6.2.2

Set J = {fa, B3, B4} C II(X) and adopting the notation introduced in Section 2:3:2] consider
the Ds-parabolic subgroup P; = @Q;L; of X. Also denote by Py = Qy Ly the parabolic
subgroup of Y given by Lemma [2.3.9 and notice that L} has type As, where we thus have
II(L) = {a, o, o,y ab} = {g, s, ay, as, a}. Write X = 1/, Y = L), and \ = Ay ny-
An application of Lemma 2.3.170 and Theorem [5.1] shows that if X has exactly two compo-
sition factors on V, then either X acts irreducibly on LQ(S\) or (5\, p) appears in Table (.11
We thus investigate each situation separately, starting with the former.

6.2.1 The irreducible case

Keep the notation introduced in Remark and suppose that X’ acts irreducibly on
Ly/(X'). By [Sei87, Theorem 1, Table 1 (14, I5)] we thus get that A’ = 0, A} or A}, with p # 2
in the latter situation. We first consider the case where N = 0, that is, A = a\; + b\; for
some a,b € Zxo.

Proposition 6.2.3

Consider an irreducible KY -module V' = Ly (\) having p-restricted highest weight A\ = a1 +
bA7, where a,b € Z>q. Suppose in addition that X has exactly two composition factors on V.
Then (A, p) appears in Table 6]

Proof. First consider the case where b = 0, so that A\ = a)\;, w = aw;. Obviously a > 1,
in which case the Tx-weight W' = w — 281 — 26y — f3 — ;4 is dominant. The Ty -weights
A—2221000, A—2211100, A—2111110, and A—1111111 all restrict to w’, hence my|, (w') > 4,
while on the other hand, an application of Theorem 2.3.11] yields my () (w’) < 3, thus
showing that w’ occurs in a second K X-composition factor of V. Now one easily sees that
my|, (V) = mp () (v) for every w’ < v < w, so that w’ affords the highest weight of a second
K X-composition factor of V' by Lemma B.2.T] namely

Lx(w,) = Lx((a - 2)w1).

Now if a > 3, consider W’ = w — 48; — 45y — 283 — 2, € AT(Tx) and observe that the
Ty-weights A — 4442000, A — 4432100, A — 4422200, X\ — 4332110, A — 4322210, X\ — 4222220,
A—3332111, A —3322211, A — 3222221, and A — 2222222 restrict to w”, hence my, (w”) > 10.
On the other hand, Theorem 2311l gives my, (,)(w”) = 6 and my, () (w”) = 3, so that
my, () (W”) + mp @) (w”) < 9. Therefore w” occurs in a third K X-composition factor of V,
contradicting our initial assumption. Hence a = 2 or 3, in which case [Liib01, Appendices
A.11, A.41] allows us to conclude.
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Next consider the case where ab # 0, in which case w = (a + b)w;. Here the Ty-weights
A — 1000000 and A — 0000001 both restrict to w’' = w — f; € X T(Tx), whose multiplicity in
Lx(w) is equal to 1. Consequently w’ affords the highest weight of a second K X-composition
factor of V' by Lemma .21, namely

LX((A)/) = LX((CL +b— 2)(4)1 —|—(A)2).

If a,b > 1, then the Ty-weights A — 2000000, A — 1000001, and A — 0000002 restrict
to w — 201, whose multiplicity in both Lx(w) and Lx(w’) is smaller than or equal to 1,
giving the existence of a third K X-composition factor of V, a contradiction. Without any
loss of generality, we may then suppose that A\ = aA\; + A7, so that w = (a + 1)w; and
w' = (a —1)w; +ws. The cases where a = 1 or 2 can be dealt with using [Lib01, Appendices
A.11, A.41], so we may assume a > 3 as well. In this situation, notice that the Ty-weights
A—3221000, A—3211100, A—3111110, A—2221001, A—2211101, A—2111111, A—1111112 all
restrict to w” = w—361 —2062—PB3— P4 € X (Tx). An application of Lemma 23T then yields
my|, (w”) > 12, while by Theorem 2.3.11] we have my () (w”) < 3 and mz (o (W") < 8,
giving the existence of a third K X-composition factor of V. This completes the proof of the
Proposition. O

Next we tackle the situation where X = \|, so that A = a1 +X3+bA7 for some a,b € Z>o,
and first consider the case where ab # 0. Observe that in this situation, the Ty-weights
A — 1000000, A — 0000001 both restrict to w’ = w — 1, whose multiplicity in Lx(w) equals
1, so that w’ affords the highest weight of a second K X-composition factor of V' by Lemma
6.2.1, namely

Lx(w/) = Lx((a +b— 2)(,4)1 + 2&12).

Lemma 6.2.4
Let A\, w and W' be as above. Then X has more than two composition factors on V = Ly ().

Proof. First consider the Tx-weight 1 = w — f; — B2 € XT(Tx) and notice that the Ty-
weights A — 1100000, A — 0100001, A — 0000011 all restrict to p;. Applying Lemma
then yields

3 ifpla+2;

4 otherwise,

my| (lul) > {

while mp, @) (f1) + mp @)y (p1) < 3 by Theorem 2.3.11] so we may suppose that p | a + 2 for
the remainder of the proof. Also if b > 1, then the Ty-weights A — 2100000, A — 1100001,
A—1000011, A—0100002, and A —0000012 restrict to the T'x-weight py = w—25; — B, hence
my/|, (p2) > 5. On the other hand, Theorem 2311l gives my, () (12) = My, () (f2) = 2, so
that mp, () (p2) +mp @) (p2) < 4, showing that p5 occurs in a third K X-composition factor
of V. So assume b = 1 and observe that the Ty-weights A—1221000, A—1211100, A—1111110,
A — 0111111 restrict to p3 = w — B1 — 20 — B3 — B4. Applying Lemma then gives
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6.2 Proof of Theorem

8§ ifp=T;

9 otherwise,

My (:u?») > {

while my, ) (¢3) = 6 and my, ()(13) = 2 by Theorem Z3TTl Hence we may assume p = 7
(and so a = 5) and consider the Tx-weight w” = w—25; —25y— 83— 54 € XT(Tx). One then
checks that the Ty-weights A — 2221000, A —2211100, A—2111110, A—1221001, A —1211101,
A — 1111111, A — 0111112 all restrict to w”. Lemma [6.1.5] then yields my|, (w”) > 12, while
my, @) (W”) < 8 and my, () (w”) < 3 by Theorem 2311l and Lemma, respectively,
hence showing the existence of a third K X-composition factor of V' as desired. O

We are now able to complete the study of the case where X = A, that is, A = aA;+Xa+bA7
for some a,b € Z>y.

Proposition 6.2.5

Let X = aX;+ Ay +bA7, where a,b € Zsq, and consider an irreducible K'Y -module V- = Ly ()
having p-restricted highest weight A. Suppose in addition that X has exactly two composition
factors on V. Then (X, p) appears in Table[61l, where we give N up to graph automorphisms.

Proof. First consider the case where a = b = 0, that is A = Ay and w = wy. If p = 2,
then X acts irreducibly on V' = Ly (\) by [Sei87, Theorem 1, Table 1 (I4, I5)|, so we may
suppose that p # 2. An application of [Lub01, Appendix A.41] then yields dim Lx (w) = 26,
while dim V' = 28 by Lemma 2.4.5 Therefore V|x= w/0?%, that is, X has three composition
factors on V. Also Lemma shows that X has more than two composition factors on
Ly (X) if ab # 0, so for the remainder of the proof, we may suppose that either a # 0 = b
or a = 0 # b. In the former case, observe that the Ty-weights A — 1221000, A — 1211100,
A—1111110, A— 0111111 restrict to w’ = w— 1 —285 — P35 — B4 € X (Tx). Applying Lemma
then yields

4 ifp|a+2;

7 otherwise,

my|, (W) > {

while Theorem Z3.1T] together with Lemma B.T.2T] show that my . (w') < 6 — 3ep(a + 2).
Hence w' occurs in a second K X-composition factor of V' and since my, (v) = mp () (v)
for every v € X (T) such that w’ < v < w (easy verification), we get that w’ affords the
highest weight of a second K X-composition factor of V' by Lemma [6.2.T] namely

Lx(w/) = LX(awl).

Seeking a contradiction, suppose that a > 1. The T'x-weight u = w — 208, — 285 — B3 — 54
is dominant in this situation and one checks that the Ty-weights A — 2221000, A — 2211100,
A — 2111110, A — 1111111 restrict to p. Lemmas and [6.1.3] then yield

4 ifpla+2;
m >
vix(1) 2 {10 otherwise,
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while on the other hand my, () (1) < 8 and myz,(y(1t) = 1 by Theorem 2.3.11l We may thus
assume p | a + 2, which forces a > 2. Let then w” = w — 30, — 402 — 235 — 23, and observe
that the Ty-weights A — 3442000, A\ — 3432100, A — 3422200, A — 3332110, A — 3322210,
A — 3222220, A — 2332111, A — 2322211, A — 2222221, A — 1222222 all restrict to w”, so
that my, (w”) > 10, while by Proposition and Theorem Z3.11] we respectively have
my, ) (w”) < 6 and my, () (w”) < 3. Consequently w” occurs in a third K X-composition
factor of V, a contradiction, so A\ = A\; + A\y. Looking at [Lib01, Appendices A.11, A.41]
yields dim V' > dim Lx (w)+dim Lx (w') if p = 7, so that the desired result holds in this case.

Finally, consider the situation where A = Ay + bA;, for some b € Z~( and observe that up
to graph automorphisms, we may assume A = a\;+ \g for some a € Z-. Here the Ty-weights
A —1100000, A —1000010, and A — 0000011 restrict to w’ = w — 31 — B2, hence my|, (W) > 3,
while on the other hand, an application of Lemma[2.3.19yields my, (. (w') < 2. As usual, one
easily checks that my|, (v) = mp () (v) for every v € X*(Tx) such that w’ < v < w, showing
that w’ affords the highest weight of a second K X-composition factor of V' by Lemma [6.2.1]
namely

LX(M/) = Lx((a — 1)&]1 + ws —|—(A)4).

Now suppose for a contradiction that @ > 1 and let u = w —20; — 285 — B3 — B4. Here the
Ty-weights A — 2221000, A — 2211100, A — 2111110, A — 1111111, A — 1011121, A — 1001221
restrict to p, and Lemma yields

14 ifp|a+6;
m >
vix (1) 2 {16 otherwise,

while my, ) (1) < 8 and my, () (1) < 7 by Theorem 2.3.11l Hence we may assume p | a+6
for the rest of the proof, which in particular forces a > 2. Let then w” = w—381—38,— 53— 4
and observe that the Ty-weights A — 3321000, A — 3311100, A — 3221010, A — 3211110,
A — 3111120, A — 2221011, A — 2211111, A — 2111121, A — 2101221, A — 1111122 all restrict
to w”. By Lemmas 2.3.19 and 6.1.2, we have my |, (w”) > 22, while Theorem 2.3.11] and
Corollary 6. .30 respectively yield mp, ) (w”) < 12 and my , () (w") <9, yielding the desired
contradiction. Therefore A = A; + A\¢ and one easily concludes using [Liib01l, Appendices
A.11, A.41] in the case where p = 3. O

Finally, it remains to treat the case where p # 2 and A = a); + A3 + b\; for some
a,b € Z>o, 50 w = (a+ b)w; + ws +wy. First suppose that ab # 0, in which case A — 1000000,
A — 0000001 restrict to w’ = w — B;. As usual, an application of Lemma shows that w’
affords the highest weight of a second K X-composition factor of V, namely

Lx(w/) = Lx((a, + b— 2)w1 + wo + ws + (.U4).

Lemma 6.2.6
Let X\, w and W' be as above. Then X has more than two composition factors on V- = Ly ().
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6.2 Proof of Theorem

Proof. First observe that the Ty-weights A — 1110000, A —0110001, A— 0010011, A —0000111
restrict to puy = w — B1 — B2 — B3, and a simple application of Lemma [2.3.19] yields

5 ifpla+3;
6 otherwise,

My |y (:U’1) > {

while on the other hand mp, () (11) < 3 and mz () (p1) < 2 by Theorem 2.3.111 We shall
thus assume p | a + 3 for the remainder of the proof (in particular p # 3). Also if b > 1,
then a > 1 as well since A is p-restricted, and the Ty-weights A — 2000000, A — 1000001,
A — 0000002 restrict to py = w — 26 € X" (Tx), so that my|,(12) > 3. On the other
hand, mp, ) (p2) = mp @y (p2) = 1, hence the existence of a third K X-composition factor
in V. Finally, assume b = 1 and observe that the Ty-weights A — 1121000, A — 1111100,
A—1011110, A—0121001, A—0111101, and A—0111111 restrict to w” = w— B — Ba — B3 — Pa.
Hence my/, (w"”) > 12 by Lemma 2.3.19, while on the other hand Theorem 2.3.11] gives
my ) (W”) <7 as well as my, ) (w”) < 4, thus completing the proof. O

We are now able to deal with the case where A = a\; + A3 4+ bA; in its entirety and thus
with the situation in which X’ acts irreducibly on Ly ().

Proposition 6.2.7

Let A = aX\y + A3+ b7, where a,b € Z>q, and consider an irreducible K'Y -module V- = Ly (\)
having p-restricted highest weight . Suppose in addition that X has exactly two composition
factors on V. Then (A, p) appears in Table[6dl, where we give X\ up to graph automorphisms.

Proof. Suppose that X has exactly two composition factors on V, and observe that by Lemma
[6.2.6, we have ab = 0. Also, if A = A3, so p # 2, then X acts irreducibly on V' by [Sei87,
Theorem 1, Table 1 (I, I5)], contradicting our initial assumption. Assume then a # b =0
and consider the Tx-weight W’ = w — #; — B2 — B3 — f4. Then the Ty-weights A — 1121000,
A— 1111100, A — 1011110 and A — 0011111 restrict to w’, so that Lemma 2.3.19 yields

my|, (W) > {

while mp, () (W) < 7 — 2¢,(a + 3) thanks to Lemma 6125 One then easily checks that
my |, (v) = mp (@ (v) for every v € X (Tx) such that w' < v < w, so that w’ affords the
highest weight of a K X-composition factor of V' by Lemma [6.2.T namely

LX(M/) = Lx((a — 1)&]1 -+ w2).

6 ifp|la+3;

8 otherwise,

Next assume a > 1, consider y = w — 208, — 2835 — B3 — B4 and observe that the Ty-weights
A —2221000, A — 2211100, A — 2111110, and A — 1111111 all restrict to . Applying Lemmas
and yields

9 ifpla+3;
15 otherwise,

My | (M) > {
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while on the other hand my () (1) < 12 and my () (@) < 2 by Theorem 2.3.11 forcing
p | a+3. Alsoif a > 2, then the Ty-weights A—3342000, A—3332100, A—3322200, A—3232110,
A — 3222210, A — 3122220, A — 2232111, A — 2222211, A — 2122221 and A — 1122222 restrict
to w' = w — 3wy — 3wy — 2ws — 2wy € AT (Tx). Therefore my|, (w”) > 24 by Lemmas 2.3.19,
612 B13 and 614, while mp () (w”) < 14 and mp (,)(w”) < 8, by Lemma and
Theorem 2.3.T1] respectively, giving the existence of a third K X-composition factor of V| a
contradiction. Consequently either A = A; + A3 or 2A\; + A3 (p = 5), and [Liib01, Appendices
A.11, A.41] allows us to conclude in each case.

Finally, suppose that A\ = A3 4+ bA; for some b € Z-y and consider the Tx-weights
W =w-—01—By— 03, W =w—p1 — P — P4. One checks that A — 1110000, A — 0110001,
A—0010011, A — 0000111 restrict to w’, whose multiplicity in Lx (w) is smaller than or equal
to 3, showing the existence of a second K X-composition factor of V. A similar argument
yields [V|x, Lx(w")] # 0, so that X has more than two composition factors on V. O

6.2.2 The reducible case and conclusion

Keeping the notation introduced above, we now suppose that X’ has exactly two composition
factors on Ly+()\). By Theorem [5.1] we thus get that A’ and p are as in Table 5.1l where
we give A up to graph automorphisms. We start by investigating the case where A = 2X]
and p # 3, that is, A = a\; + 23 + bA; for some a,b € Z>(. In the paragraph preceding the
statement of Proposition .21, we showed that mp_, ), (V') = mLX(,\|TX,)(V’) for every
V' € X*(Tx) such that X|r ,—28] — By — B3 < V' < N|r,, while on the other hand

mpy, () (Nlry, =281 = By = B3) = mpy ) (N1, =281 = By — B3) + 1.

Writing w = A7, and w’ = w — 205 — 3 — [4, an application of Lemma 2.3.7] then yields
my|, (V) = mp () (v) for every v € X*(Tx) such that W' < v < w as well as
my |y (W) = mpy @) + 1.
Therefore each of w and w’ affords the highest weight of a second K X-composition factor of

V by Lemma [6.2.1] namely

Lx(w) = Lx((a+ b)w; + 2wy) and Ly (w') = Lx((a+ b+ 2)w).

Lemma 6.2.8
Let A\, w and ' be as above. Then X has more than two composition factors on V= Ly ().

Proof. We first leave to the reader to check (using |[Lib01, Appendices A.11, A.41]) that if
a=0b=0, then dimV > dim Lx(w)+dim Lx(w’), so that X has more than two composition
factors on V. Also, if ab # 0, then one easily sees that the T'x-weight w— (5, affords the highest
weight of a third K X-composition factor of V. Similarly, if @ = 0 # b, then one checks that
the T'x-weight w — 51 — 33 occurs in a third K X-composition factor of V.
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6.2 Proof of Theorem

Hence for the remainder of the proof, we may assume A = a\; + 2y, with a € Z-q. Let
then = w — 1 — 205 — B3 — B4 € X1 (Tx) and observe that the Ty-weights A — 1221000,
A—1211100, A— 1111110, and A — 0111111 restrict to pu. Lemmas 2.3.19 and [5.1.3] then yield

4 ifpla+3;
myx () 2 {9 otherwise,
while my ) (p) < 7 and my (1) = 1 by Theorem 2.3.111 We thus assume p | a + 3 for
the remainder of the proof, so a > 1, and set w”’ = w — 20, — 4Py — 205 — 26, € X (Tx).
Here the Ty-weights A — 2442000, A\ — 2432100, A — 2422200, A — 2332110, A — 2322210,
A — 2222220, A — 1332111, A — 1322211, A — 1222221, and A — 0222222 restrict to w”, hence
my|, (w”) > 10, while on the other hand Proposition and Theorem 2.3. 11 respectively
yield my  ()(w”) < 6 and my, . (w”) = 3, giving the existence of a third K X-composition
factor of V' as desired. O

Next suppose that A = a\; + 3y + b7 for some a,b € Z>(. As in the previous case, one
shows that each of the T'x-weights w and W’ = w — 25, — f3 — [, affords the highest weight
of a second K X-composition factor of V, namely

Lx(w) = LX((CL + b)wl + 3&)2) and LX(M/) = LX((CL +b+ 2)&]1 + w2).

Lemma 6.2.9
Let A\, w and W' be as above. Then X has more than two composition factors on V = Ly ().

Proof. Proceeding exactly as in the proof of Lemma [6.2.8) yields the desired result in the
cases where a = 0 or ab # 0 and gives p | a + 4 if a # 0 = b. (The details are left to the
reader.) In the latter situation, one checks that the Ty-weights A — 1442000, A\ — 1432100,
A — 1422200, A — 1332110, A — 1322210, A — 1222220, A — 0332111, A — 0322211, A — 0222221
all restrict to w” = w — 1 — 40, — 23 — 2[4, so that my|, (w”) > 9. By Lemmas and
on the other hand, we get my () (w”) + mp (@) (w”) < 8, showing that w” occurs in
a third K X-composition factor of V' as desired. O

We next assume p = 7 and consider the situation where X\ = aA; + 2\ + Ag + bA; for
some a,b € Zsp, so w = (a + b)w; + 3wse. Arguing as in the paragraph preceding Lemma

6.2.8 (replacing Proposition 5.2.11] by Proposition [5.2.10]), one checks that the Ty-weight
w' = w — [y affords the highest weight of a second K X-composition factor of V| namely

Lx(w,) = Lx((a + b+ 1)&)1 + Wy + ws +W4).

Lemma 6.2.10
Let X\, w and W' be as above. Then X has more than two composition factors on V- = Ly ().
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Proof. As usual, if ab # 0, one easily checks that the Tx-weight w — 1 occurs in a third
K X-composition factor of V, so we may assume ab = 0 for the remainder of the proof.
If a =b =0, then the Ty-weights A — 1210000, A — 1110010, A — 1100110, A — 0110011,
A — 0100111, and A — 0000121 all restrict to w” = w — 1 — 202 — B3 € X1 (Tx). By Lemma
BT we get my |, (w”) > 7, while on the other hand Theorem 2317 gives

My w) (W) +mp @y (") <6,

giving the existence of a third K X-composition factor of V. Next if a = 0 # b, then the
Ty-weights A — 1200000, A — 1100010, A — 0200001, A — 0100011, and A — 0000021 restrict
to w” =w — B1 — 2/, so that my, (w”) > 5, while by Lemma [2.3.19, we have

mLX(w) (w") + mLX(w/)(w") S 4,

which again shows that w” occurs in a third K X -composition factor of V. Finally if a # 0 = b,
the Ty-weights A — 1100000, A — 1000010, and A — 0000011 restrict to pu; = w — B1 — Pa.
Lemma thus yields

3 ifa=4;

4 otherwise,

my|x (N1> > {

while my ) (1) + Mpy ) (1) < 3 by Lemma 2319 We thus assume a = 4 and check
that the Ty-weights A — 2321000, A — 2311100, A — 2221010, A — 2211110, A — 2111120,
A — 1221011, and A — 1211111, A — 1111121, A — 21012210, and A — 0111122 all restrict to
W = w—20;—38y—P3— 4. By Theorem 2.3.18 Lemma [6.T.5and Propositions 6.1.13] [6.1.16,
we have my |, (w”) > 22, while Lemmas[6.1.19and [6.1.20 yield my, () (w”)+mp @y (W) < 21,
thus completing the proof. O

We now consider the case where p # 2 and A = a)\; + Ay + A\g + bA; for some a,b € Z>y,
so w = (a + b)wy + 2w,. Here again, one sees that the Tx-weight ' = w — 5y € X (Ty)
affords the highest weight of a second K X-composition factor of V, namely

LX(M/) = Lx((a +b+ 1)&]1 + ws —|—(A)4).

Lemma 6.2.11
Let A\, w and ' be as above. Then X has more than two composition factors on V= Ly ().

Proof. As usual, if ab # 0, one easily checks that the T'x-weight w — ; occurs in a third
K X-composition factor of V, so we may assume ab = 0 for the remainder of the proof. Also,
if both a = 0 and b = 0, then dim V' > dim Ly (w)+dim Ly (w’) by |[Lib01, Appendices A.11,
A .41], so that a third K X-composition factor occurs in V. Finally, suppose that a # 0 = b,
and let u=w — B — B2 € AT(w). Then one shows using Lemma that

{3 if p|a+2;

m >
vix (1) 2 4  otherwise,
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6.2 Proof of Theorem

while Theorem 2.3.11] yields mp, ) (1) + mz @) (i) < 3, so we may assume p | a + 2 and
p # 3 for the remainder of the proof. (We refer the reader to |[Lib01, Appendices A.11,
A.41] for the case a = 1, p = 3.) Let then w” = w — By — 20y — 3 — P4, and observe
that the Ty-weights A — 1221000, A — 1211100, A — 1111110, A — 0111111, A — 0011121,
and A — 0001221 restrict to w”, so that my, (w”) > 15 by Theorem and Lemmas
2.3.19, 6.1.9, while on the other hand Theorem 2.3.11] yields my () (w”), mz @) (w"”) < 7,
completing the proof. O

We next assume p # 5 and A = a)\; + A2 + A3 + b7 for some a,b € Z>, so that
w = (a+b)w; + ws + w3 + wy. Arguing as in the paragraph preceding Lemma [6.2.8 (replacing
Proposition (2111 by Lemma (28], one shows that the Tx-weight w' = w — 55 — 83 — 54
affords the highest weight of a second K X-composition factor of V, namely

Lx(w,) = Lx((a + b+ l)wl + CUQ).

Lemma 6.2.12
Let A\, w and ' be as above. Then X has more than two composition factors on V= Ly ().

Proof. We leave to the reader to check that if b # 0, then X has more than two composition
factors on V' (consider the weight w — 1 — ) and thus assume b = 0 for the remainder
of the proof. Also, if a = 0 as well, one checks using |[Liib01, Appendices A.11, A.41] that
dim Ly (A) > dim Lx(w) + dim Lx (w'), so that X has more than two composition factors on
V.

Finally, suppose that A\ = aA; + A3 + A3 for some a € Z-( and consider the Ty-weight
p=w—L01—Ps—P3—PFs If a=1and p = 3, then |[LiibO1, Appendices A.11, A.41] yields
dimV > dim Lx(w) 4+ dim Lx(w'), so that X has more than two composition factors on V.
Also, if a = 2 and p = 3, then w’ is not p-restricted and p does not occur in Lx (w'). One then
easily sees that p occurs in a third composition factor of V' in this situation as well. From
now on, we thus assume p # 3 and observe that the Ty-weights A\ — 1121000, A — 1111100,
A — 1011110, A — 0011111 restrict to u. Applying Proposition then yields

8 ifpla+2ora+4;

myy (1) 2 {10 otherwise,

while on the other hand, an application of Lemma (recall that p # 5, so a > 1) and
Theorem 2.3.11] gives mp, )(1) < 8 — 2¢,(a + 4), my, ()(1) = 1. For the remainder of
the proof, we may thus assume p | a + 2. Here the Ty-weights A — 1221000, A — 1211100,
A — 1111110, A — 0111111 restrict to w” = w — B — 202 — B3 — By € X (Tx), so that
my|, (w”) > 14 by Lemmas 2319 BEI.I7 and Proposition EILI0. On the other hand,
my, @) (w”) < 11 by Lemma [6.1.24] while my (. (w”) = 2 by Lemma 2.3.19, giving the
existence of a third K X-composition factor of V' as desired. O
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Finally, consider the situation where A = a\; + Ay + bA; for some a,b € Z>(, in which
case w = (a+ b)w; + w3 +wy. Arguing as in the paragraph preceding Lemma (replacing
Proposition [5.2.11] by Proposition (.2.3)), one shows that the Tx-weight w’ = w + (3 — 4
affords the highest weight of a second K X-composition factor of V, namely

LX(M/) = Lx((a + b)w1 + 2&)3).

Proposition 6.2.13

Assume p # 2 and consider an irreducible KY -module V- = Ly () having p-restricted highest
weight X = aly + Ay +bA7, where a,b € Zsq. Also suppose that X has exactly two composition
factors on V. Then (X, p) appears in Table[61], where we give X up to graph automorphisms.

Proof. If ab # 0, then one easily sees that the T'x-weight w — f; occurs in a third KX-
composition factor of V. Without loss of generality, we thus assume A = a\; + A4 for the
remainder of the proof. Here the Ty-weights A — 1111000 A — 1101100, A — 1001110 and
A — 0001111 restrict to w” = w — 1 — B2 — B4, so that Lemma yields

6 ifpla+4;
m (.U// > )
vix (W) 2 7 otherwise
as well as mp () (W") = mp ) (W”) = 3 — €(a + 4). Consequently w” occurs in a third
K X-composition factor of V, forcing A = A4 as desired. O

Proof of Theorem [6.1: Let K, Y, X be as in the statement of Theorem and first
suppose that X acts with exactly two composition factors on V. By Remark [6.2.2] either X’
acts irreducibly on Ly (\') or (X, p) appears in Table 5.l In the former case, Propositions
623 and force A\ and p to be as in Table [61] while if (X, p) appears in Table
6.1, Lemmas [6.2.12, 6.2.11] [6.2.101 [6.2.8] [6.2.9] together with Propositions [6.2.7] yield
(N, p) = (Ny,2) or (A, # 2). Using [Liib01, Appendices A.11, A.41], one can easily check that
if (\,p) € {(AM1+X3,2), A3+ A7,2), (A1 + A3+ A7, 2)}, then X has more than two composition
factors on V.

In order to complete the proof, it remains to show that for every pair (A, p) appearing in
Table 6.1l X has exactly two composition factors on V' = Ly () and that V|x is completely
reducible if and only if (A, p) # (A3,2). This can be done using |[Lub01, Appendices A.11,
A.41] and Proposition (in the case where (A, p) # (A3,2)). Finally, proceeding exactly
as in the proof of Theorem G.J] completes the proof. The details are left to the reader.
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CHAPTER [/

The case SOy, (K) C SLy,(K)

Let Y be a simply connected simple algebraic group of type Az, 1 (n > 5) over an alge-
braically closed field K and consider the subgroup X of type D,, embedded in Y in the
usual way. Fix a Borel subgroup By = Uy Ty of Y, where Ty is a maximal torus of ¥ and
Uy is the unipotent radical of By, let II(Y) = {ay, ..., a9,_1} denote a corresponding base
of the root system ®(Y') of Y, and let {\q,...,A\2,_1} be the set of fundamental dominant
weights for Ty corresponding to our choice of base I1(Y'). Also let II(X) = {f4,..., 5.} be
a set of simple roots for X and let {wy,...,w,} be the corresponding set of fundamental
dominant T'x-weights. The A,_;-parabolic subgroup of X corresponding to the simple roots
{B1,...,PBn_1} embeds in an A,,_; x A,_;-parabolic subgroup of Y, and up to conjugacy, we
may assume that this gives a;|r,= agn—1-i|7y= i, this for every 1 <1i < n — 1. By consid-
ering the action of the Levi factors of these parabolics on the natural KY-module Ly (A1),
we can deduce that ay,|ry= £, — fn—1. Finally, using [Hum?78, Table 1, p.69] and the fact
that A\j|7,= wy yields

il = Aon—ilry = Wi, Ac1|ry = At1| 1= W1 + W, An|ry= 2wy, (7.1)

this for every 1 <i <n — 2.

Let V' = Ly()\) be an irreducible K'Y-module having p-restricted highest weight A. As
stated in Chapter[Il a complete classification of the pairs (A, p) such that X acts with exactly
two composition factors on V' was not obtained for a general n. However, by restricting the
possibilities for A\, we were able to show the following result, where we consider the case
A = a); for some a € Z>p, 1 < i < 2n — 1. The methods used in the proof are similar to
those introduced in Chapter [6l
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Theorem 7.1

Let K, Y, X be as above and consider an irreducible KY -module V' = Ly (\) having p-
restricted highest weight X\ = a\; € X1 (Ty), where a € Zwg and 1 < i < 2n—1. Then X has
exactly two composition factors on V if and only if X\ and p are as in Table [7 1], where we
give X up to graph automorphisms. Moreover, if (X, p) is recorded in Table[T1, then V|x is
completely reducible if and only if (\,p) # (A, 2).

A P Vix Dimensions
2\ pin 2w1 /0 (n+1)2n—1),1
3\ ptn+1  Bwi/w  Zn(n+2)(2n—1),2n
Ao (nodd) p=2 w0 n(2n—1),1
A3 (neven) p=2 w3 /wy 2(n—2)n(2n+1),2n

A, PA2 2wy/2w, 3 (), 5 (30

Table 7.1: The case A = a)\;, where a € Z~(, 1 <i <2n — 1.

Fix 1 <¢ < j <2n—1 and consider the Ty-weight A = \; 4+ ;. In order to prove a result
similar to Theorem [.I]in this particular situation, we start by studying the structure of the
Weyl module Vx(A|z,) for i = 1 and 1 < j < n. The investigation of such K X-modules
came to their full description in the case where p # 2, thus is recorded here for completeness.

Theorem 7.2
Assume p # 2 and let X be as above. Also fir 1 < j < n and consider the dominant
Tx-weight w = wy + wj + 0 n—1wy,. Then the following assertions hold.

1. If1 < j <n—2 we have Vx(w) = w/wjifﬂ/ ;p(fn_jﬂ). Furthermore, if p divides
both j +1 and 2n — j + 1, then Vx(w) D Lx(wjt1) ® Lx(wj—1) D Lx(wjs1) D0 is a

composition series of Vx(w).

2. If j = n — 2, we have Vx(w) = w/(wp_1 + w,)»®V w:ff?rg). Moreover, if p divides
(n—1)(n+3),then Vx(w) D Lx (wp_3)"" )@ Lx (wy_14+w,)*™ Y D0 is a composition
series of Vx(w).

3. Ifw = w + wp_1 + Wy, we have Vx(w) = w/2w€”(n /2w€"(n w;”_(g”). Moreover, if p
divides n, then Vx(w) D Lx(2wn—1) ® Lx(2w,) D Lx(2w,—1) D 0 is a composition
series of Vx(w).

Next we focus our attention on w = wy +wj, where 2 < j < n — 1. In this case, our study
does not lead to a full description of the structure of Vx(w), as in Theorem [[.2] but still
concludes with a complete knowledge of its composition factors.
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Theorem 7.3
Assume p # 2 and let X be as above. Also fir 2 < j < n — 2 and consider the dominant
Tx-weight w = wy + wj. If 7 <n —2, then

V(w) = w/ (@i + i)/ (wr i) 78 (@10 + Gygon) P9 @ T,
while if 3 = n — 2, then

Vi (w) = w/(w1 + Wn1 +wn)? /(w1 + wy_g) @@+ f207 7Yy e j,a ) j a3,

n—

We next give a list of pairs (A, p) such that X acts with exactly two composition factors
on Ly (A) in the case where p # 2 and A = \; + A, for some 1 <1i < j <2n — 1.

Theorem 7.4

Assume p # 2 and let Y, X be as above. Also fir 1 < i < j < 2n and consider an irreducible
KY -module V- = Ly (\) having highest weight A = X\; + \; € XT(Ty). Then X has ezactly
two composition factors on V' if only if X\ and p are as in Table[72. Furthermore, if (A, p)
is recorded in Table[73, then V|x is completely reducible.

A b V|X

>\1+)‘j (1<j<n—1) p)(2n—j+1 wl—i—wj/wj_l

A+ A1 pin+2 w1 + Wp1 + Wy /Wi
AL+ Ango pfn—1 W1 + Wp—2/Wn—1 + Wy

M+ (n+2<j<2n) pi2n—j+1 wi+ wop_j/Won—jt1

Table 7.2: The case A = \; + \;, where 1 <1i < j <2n — 1.

Theorem 7.5

Let K,Y, X be as above, with ptn+ 1 and let (\,p) be as in Table[Z.3. Then X has exactly
two composition factors on V- = Ly (X). Moreover, if (A, p) is recorded in Table[7.3, then V'|x
15 completely reducible.

A p Vix

2+ (I<j<n—1) plj+2,pftn+2 2w +wj/w +wjy

2A1 + A pln+1 2wy + wp—1 + wy/wy + wy_o
201 + Ao pln+4 2w + wp_a/wi + wWp_1 + Wy,

2+ (n+1<ji<2n) pli+2,pin+2 2w+ woyj/wi + wWan—jt1

Table 7.3: The case A = 2\ + ;.
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Finally, we record the following conjecture, based on computations and examples from
ILib01], [Liib15]. In particular, Theorems [5.1] and [6.1] show that the conjecture holds in the
case where n = 3 or 4.

Conjecture 7.6

Let K,Y, X be as above, and consider an irreducible KY -module V' = Ly(\) having p-
restricted highest weight A € X+ (Ty). Then X has exactly two composition factors on V' if
and only if (A, p) is recorded in Table[71, Table[Z2 or Table[Z.3.

Remark
Let (A, p) be as in Table [T Table [[.2 or 3l Then Ly (A)|x is completely reducible if and

only if (A, p) € {(X2,2), (A3,2)}.

7.1 Preliminaries

Let K, Y X be as above and write Z(Y), Z(X) to denote the Lie algebras of Y and X
respectively. As in Section 2511 let By = {ea, fa,ha, : @ € ®(Y)T,1 < i < 2n — 1} and
Bx = {es, fa.hg, : b € ®T(X),1 < i < n} be standard Chevalley bases of .Z(Y) and
Z(X) respectively. For 1 < i < j < 2n — 1, write €;; = €q,4..4q;- One can check (see
[Sei87., Section 8]) that we may assume eg, = €4, — €q,, , for every 1 < r < n, as well as
€8, = €n—1n — €nn+1. Using the latter observation, the reader easily deduces that if V is a
rational KY-module and eg.v = 0 for some 1 < r < n, then €5, 0, 140,V = Cannr+6rnaniiV
for every v € V. In particular, the following result holds.

Lemma 7.1.1
Let V' be a rational K'Y -module and suppose that v* is a mazximal vector in V' for Bx. Then
o, VT = €q,, v for every 1 <r <n and e,_1,07 = e, ni1vT.

The following consequence of Lemma [7.1.1] shall provide us with a way of proceeding by
induction in the proof of Proposition [T.1.3]

Lemma 7.1.2

Let V' be a KY -module, fit 1 <1 < 7 < 2n —1 such that j — i < 2n — 3 and suppose that
vt €V is a mazimal vector in' V' for Bx. If 0 # e; juT is not a mazimal vector in V' for Bx,
then either e, ;ut # 0 for some 1 <1 <i ore; vt # 0 for some j < s <2n—1.

Proof. Assume i ¢ {n+1,n+2} and j ¢ {n—2,n—1}. (Observe that in this situation, we have
neither 2n—i+1 =¢—1nor 2n—j—1 = j+1.) One first notices that [es,, €; ;] = 0 and hence
e, €ijvT = 0. On the other hand, writing N, = N, _1,ai4-+a;) and No = Nia, 1 a;4tay);
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7.1 Preliminaries

one gets

+ _ +
eﬁreiJ’U - (ear - €a2n77'>€i,jv

_ + +
e A

_ - + + +
- [6057" ezvj]v - [6a2n77‘7 67/7]]?'} _I_ 67’7] (6aT'U - ea2n7rv )

_ + +
=N (5m'—1 - 5r,2n—i+1)€i—1,jv + N2(5r,j+1 - 5r,2n—j—1)€i,j+1v

for every 1 < r < n, where the last equality follows from Lemma [ZT.], thus proving the
assertion in this situation. We leave the remaining cases to the reader, as they can be dealt
with in a similar fashion. O

The following result (inspired by [Sei87, Proposition 8.5] and [BGTI5, Lemma 4.3.6])
shows that in an irreducible K'Y-module V, there is always a maximal vector of weight v for
By “not too far” from a given maximal vector of weight u for By, in the sense that ht(u—v)
is “small”. We recall that for any v = >""_, ¢,a, € ZII, the height ht(y) of 7 is defined by

ht(7) = e

Also, we denote by bx = hx + Zae<1>+(y) Ke, the Borel subalgebra of X, where hx is the
Lie algebra of Ty and write V., = {v" € V : v is a maximal vector for bx}.

Proposition 7.1.3

Consider an irreducible KY -module V' = Ly (\) having p-restricted highest weight \. Also
write w = A, and let w # p € XT(Tx) be such that V,, N Viax # 0. Then there exist
veXT(Tx) and 0 # vt €V, such that p < v X p+ 261+ -+ 2Bn_2+ Bu_1 + B and
es, v =0 for every 1 <r <n (that is, vt is a mazimal vector in V for bx).

Proof. Let u™ € V,, N Vipax and assume for a contradiction that
V, N Viax = 0 (7.2)

for every v € X (Tx) such that u < v < u+201+---+28,_2+ Bn_1+ Bn. We first claim that
e; jut =0 for every 1 <i < j < 2n—1, proceeding by induction on ! = 2n+i—j—2.If [ = 0,
theni =1, j = 2n—1, and since [eq, €12,-1] = 0 for every a € ®7(Y"), one immediately gets
eg,e1on—1ut = 0 for every 1 <r < n. Hence ey 9,—1u™ = 0 by (.2)). Assume then the claim
true for 0 <1 < ly < 2n—1 (where 1 <[y < 2n — 1 is fixed) and let 1 < iy < jo < 2n —1
be such that 2n — jo +ig — 2 = Iy and e;, j,u™ # 0. If there exists 1 < r < n such that
es,€iyout # 0, then an application of Lemma shows the existence of 1 < s < ¢y or
Jo < t < n such that e, ;u™ # 0 or e;,,u™ # 0, contradicting our induction hypothesis.
Therefore eg.e; jut =0 for every 1 <r <mnand 1 <i < j <2n—1, forcing e; jut = 0 for
every 1 <i < j < 2n—1 by our initial assumption. In particular, we get that e, u™ = 0 for
every 1 <r <2n —1 and since ut ¢ V), we have u™ = 0, giving our final contradiction and
thus completing the proof. O
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Remark 7.1.4

A result similar to Proposition [.1.3] can be proven in the case where X is of type B, or
(respectively, C),) over K and embedded in Y = SLs, 1 (K) (respectively, Y = SLy,(K)) in
the usual way.

We next give two consequences of [Sei87, Theorem 1, Table 1 (I4, I5)] on certain weight
multiplicities.

Lemma 7.1.5
Assume p # 2 and fix 1 < j <n. Also let w = w; + 6 ,—1w,, and adopt the notation wy = 0.
Then my, () (wj—2) =n — j + 2. Similarly, if 3 < j < n then

1 ) ‘
mLX(w)(wj_4) = i(n — ] + 3)(n — ] ‘|‘4)

Proof. We shall prove the first assertion and leave the second to the reader, as it can be
dealt with in a similar fashion. By considering a suitable Levi subgroup of X, it is enough to
prove the assertion in the case where w = wy. Write A = Ay and observe that the Ty-weights
in Ly () restricting to 0 € X7 (Tx) are A — (ag +2a9 + -+ + 20 + py; + -+ + Q1)
2<r<n—1),A—(as+ -+ ag_2) and A — (g + -+ - + o, 1), all having multiplicity 1
in Ly (). Therefore mpz, (), = n and since Ly (\)|x = Lx(w) by [Sei87, Theorem 1, Table
1 (Iy, I5)], the result follows. O

Finally, consider an irreducible K'Y-module V' = Ly () having p-restricted highest weight
A € XT(Ty) and let vt denote a maximal vector in V' for By. Since Bx C By, we get that
vT is a maximal vector for By as well, so that w = A|r, affords the highest weight of a K X-
composition factor of V. We conclude this section by recording a generalization of Lemma
(.21l Tts proof being very similar to that of the latter, we omit the details here.

Lemma 7.1.6
Let w be as above, and suppose that (X, a,,) = 0. Then every Ty -weight of V- = Ly () satisfies

IU|TX< w.

7.2 Proof of Theorem [7.1]

In this section, we give a complete proof of Theorem [T.1] starting by recording some general
information on weight multiplicities and the structure of certain Weyl modules for a simple
algebraic group of type D,, over K.
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7.2 Proof of Theorem [T.1]

7.2.1 Preliminary considerations

Let G be a simple algebraic group of type D, (n > 5) over K and as usual, fix a Borel
subgroup B = UT of GG, where T is a maximal torus of G and U the unipotent radical of
B. Also let IT = {71,...,7,} denote a corresponding base of the root system & of G and
{o1,...,0,} be the set of fundamental dominant weights for 7' corresponding to our choice
of base II. We start by investigating the multiplicity of p = o — (2v1+- -+ 29,24+ Vn-1+7n)
in a given irreducible KG-module V' = Lg(0) having p-restricted highest weight o = aoy,
where a € Z-4, using information on the structure of V(o) as an Z-module, where .Z
denotes the Lie algebra of G. As usual, let & = {e,, fy,h,, : v € &7, 1 < i < n} be a
standard Chevalley basis of . as in Section 2.5.1l By (2.I4]) and our choice of ordering on
¢+, one checks that the weight space Vi (0), is spanned by

{friF1is1v7 h<icn—s U{fin—2fin0"}
U {an—lf'Yl+"'+'Y7L72+'Yn/UO-}7 (7-3)

where v7 € Viz(0), denotes a maximal vector in Vi (o) for G (and thus for the corresponding
Borel subalgebra b of . as well). An application of Theorem 2.3.I1lyields my, ) (1) = n—1,
forcing the generating elements of (7.3]) to be linearly independent, so that the following
holds.

Proposition 7.2.1

Let G be a simple algebraic group of type D,, over K and let 0 = aoy, where a € Z~1. Also
consider p =0 — 21+ -+ 2% —2+Yn-1+7). Then p is dominant and the set (3] forms
a basis of V(o).

Lemma 7.2.2
Let V' be as above and write p = o — (271 4+ -+ + 29—2 + Va1 + Yn). Then p is dominant,
x*(0) =ch Lg(o) + ep(a+n —2)ch Lg(p) and

() n—2 dfpla+n-—2;
m =
Vs n—1 otherwise.

Proof. Let Vg(o) =V° > V!> ... D Vk D0 be the filtration of V(o) given by Proposition
274 One easily checks that v#(T,) = v,(a +n — 2)x*(p) and since x*(p) = ch Lg(p), an
application of Proposition 2.7.8 shows that my (u) = my, ) (1) if p{ @ +n — 2, so that the
result follows from Proposition [[.2.Il We thus assume p | a + n — 2 for the remainder of
the proof, in which case p affords the highest weight of a composition factor of Vg (o) by
Proposition 2.7.8 Since [Vg(0), La(v)] = 0 for every v € X (T) such that u < v < o, we get
that [V (o), La(p)] equals the dimension of the subspace of Vi (o) spanned by all maximal
vectors in Vi(0), for B. Therefore, it only remains to show that the latter is 1-dimensional.
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For (A;)i<r<n_1 € K™, set

n—3

u(A) = Z ArfroF1r20” + Ana fin-2f1n0” + Anrfrn-1 frityn ot 07

r=1

Clearly u(A) € Vg(0), for every A = (A,)1<r<p—1 € K" ! and by Lemma 255 we get

n—1
671’UJ(A) = (aA1 -+ Z Al) FLQ’UU,

=2

while
e%u(A) = (A, — Ar—l).fl,r—lFl,r-i-l'UU
for every 2 < r < n — 3, as well as

677L72U(A> = (An—2 - An—3)f1,n—3fl,nvgv
e'ynflu(A) = (An—l - An_Q)f17n_2f71+,,,+%72+%UJ,

6’Ynu(A) = (An—l - An—?)fl,n—2fl,n—lva-

One checks that each of the vectors Fy 207, fi,_1F1,+1v7 (2 <7r <n—3), fin-sfi.07,
fin—2fyit+drmotrm 0’ and fi,_ofi,—1v7 is non-zero, so that e,u(A) = 0 for every v € II if
and only if A € K™"! is a solution to the system of equations

{QAI e (7.4)

A, =A, forevery 2 <r<n-—1.

Now one easily sees that (T.4) admits a non-trivial solution A € K™ ! if and only if
p divides @ +n — 2, in which case A € ((1,...,1))x. Therefore any two maximal vectors
u, v € Vg(o), in V(o) for b satisty (u)x = (v') g, thus completing the proof. O

We next consider an irreducible K G-module V' = Lg(o) having p-restricted highest
weight o = 207. Here AT (o) = {0,09,0} and proceeding as in the proof of Lemma 2.4.§
(replacing Lemma by Lemma [T.2.2]), one easily shows the following result. The details
are left to the reader.

Corollary 7.2.3
Let G be a simple algebraic group of type D,, over K and consider an irreducible KG-module
V = Lg(0) having p-restricted highest weight o = 20. Then V(o) = o /0%™ and

dimV = (n+1)(2n — 1) — ¢,(n).
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7.2 Proof of Theorem [7.1]

A similar result holds in the case where V' = Lg(0) is an irreducible KG-module having
p-restricted highest weight ¢ = 307. Again, one proceeds as in the proof of Lemma 2.4.8]
observing that

A+(U) = {Ua 01 + 0-2a0-3901}

in this situation and myg ) (0) = My, ) (01 + 02) = My, () (03) = 1. We leave the proof to
the reader.

Corollary 7.2.4
Let G be a simple algebraic group of type D,, over K and consider an irreducible KG-module
V = Lg(0) having p-restricted highest weight o = 30y. Then Vg (o) = 0/0?’("“) and

dim V' — %n((n +2)(2n— 1) = 36,(n + 1)),

In order to give a proof of Theorem [[.1] we need a better understanding of the structure
of the Weyl module Vg(0;) for 2 <i < n—1, as well as Vg(0,_1 + 0,,). Now the composition
factors of Vg(oy) are well-known (see |Liib01, Table 2|, for example). Also observe that
AT (03) = {03,01} and thus applying Lemma 237 to the D,,_;-parabolic of G corresponding
to the simple roots 7s, ..., 7, shows that the structure of Vi (o3) is entirely determined by
the structure of Vi;(02). Those observations are recorded in the following Lemma.

Lemma 7.2.5
Assume n > 5 and consider the dominant T-weight 0 = o;, where i = 2 or 3. Then the
KG-composition factors of V(o) are as in Tables[7.) and [7.3, respectively.

P Composition factors Dimensions
p#2 o9 n(2n —1)
p =2, nodd 02/0 n(2n—1)—1,1
p =2, neven 02/0? n(2n—1)—2,1,1

Table 7.4: Composition factors of Viz(02) for G of type D,, (n > 5).

P Composition factors Dimensions
p#2 o 2(n—1)n(2n —1)
p =2, neven o3/01 2(n—2)n(2n+1),2n
p=2, nodd 03/0% 2n(n+1)(2n —5),2n,2n

Table 7.5: Composition factors of Vi;(03) for G of type D,, (n > 5).
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Now if 0 = 0; 4+ 0; 10, for some 3 < i < n, then not much is known about Vi (o) when
p = 2. Fortunately, the following Lemma provides us with enough information to prove
Theorem [Tl Since it is referred to in Section 2.7 as an example of an application of the
Jantzen p-sum formula, a detailed proof is recorded here.

Lemma 7.2.6
Assume p = 2 and consider the weight 0 = o4 + 0,505 € XT(T). Then each of o2 and 0
affords the highest weight of a composition factor of Vg (o).

Proof. We assume n > 6 and refer to |[Liib01, Appendix A.42 | and |Liib15] for the cases
where n = 5,6. Let then V(o) = V° D VI D> ... D V¥ 20 be the filtration of Vg(o) given
by Proposition Z7.41 We proceed as indicated in Section 2.7 starting by determining the
coefficients in the truncated sum v2(7,) in ([Z2I)). (Observe that since AT (o) = {0, 09,0},
we have 12(T,) = v.(T,).) According to Lemma 2711l we must find every v € ®* and
1 <r < {0+ p,y) for which A, , ~¢ B,, or By. (We refer the reader to Section 2.7.3 for a
definition of A, , and B,.)

First consider the T-weight 11 = g5. Here
B, =(n,n—1,n-3,...,1,0)

and since o — 11 has support {vs,...,7,}, we can focus our attention on roots belonging to
the subset I = {e3 + &, }3<1<n of ®T. For such y =e3+¢, € [ and 1 <7 < (0 +p,7), we get

Ap=mn—1n—-2-rn—=3n->5..,1,0)— (rd)j_,
and one easily checks that A, , ~¢ B,, if and only if v and r appear in Table For such

pairs (v, 7), we also record the contribution to v.(7,) obtained by applying Corollary 2.7.7]
for completeness.

Y r Contribution to v.(T)
est+e4  2(n—3) vp(2(n — 3))
€3+ En—1 2 l/p(2)
€3+é€p1 Nn—3 —vp(n — 3)

Table 7.6: Contribution of v to v.(T).

Next consider v = 0 € A (¢), in which case B,, = (n — 1,...,1,0). Here ¢ — 1, has
support II, so that we only need to consider roots belonging to the subset J = {1+ &} 1<1<n
of *. For suchy =1+ € Jand 1 <r < (o + p,7), we have

A’Y,r = (n_r’n_1’n_2,n—3,’n—5,...,1,0)_(T(Sjl)?zl

and again one checks that A, , ~¢ B,, if and only if v and r appear in Table [7.7l
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7.2 Proof of Theorem [T.1]

Y r Contribution to v.(T)
€1+ €3 2 —1,(2)
e1+e3 2(n—2) vp(2(n —2))
€1+ En—2 4 vp(4)
€1 +Epna n—2 —vp(n — 2)

Table 7.7: Contribution of vy to v.(T,).

Therefore as we assumed p = 2, we get v.(T,) = 2x(02) + 2x(0) and an application of
Lemma yields v.(T,) = 2ch Lg(0g) + 2(2 + €3(n)) ch Ls(0). We then conclude thanks
to Proposition O

7.2.2 Conclusion

Let K, Y, X be as in the statement of Theorem [T1], fix a € Z+g, 1 < ¢ < 2n — 1, and
consider the Ty-weight A = a\; € X1 (Ty). Proceeding by induction on n (using Lemma
2.3.10 together with Theorems [B.1] and [6.1]), we first give a small list of candidates (A, p)
with X acting with exactly two composition factors on Ly ().

Lemma 7.2.7

Consider an irreducible KY -module V' = Ly (\) having p-restricted highest weight A = a);
for some a € Z~g and 1 < i < 2n — 1. Also suppose that X has exactly two composition
factors on' V. Then A and p are as in Table[7.8, where we give X\ up to graph automorphisms.

A p

al; (a € Zss)  any
Ao =2

2)\2 J(n —1
3)\2 J[7’L
A3 (n even) =2
A4 (n odd) =2
An # 2

Table 7.8: Candidates for (A, p) to occur in Table [T.I]

Proof. Assume Theorem [[1] is true for Y =Y}, of type As,_1 over K and every 3 < k <n
(by Theorems 5.1l and [6.11 the result holds for k = 3,4), and let Y =Y, be of type As,_1
over K. Set J = {f,...,0,} C II(X) and adopting the notation introduced in Section 2.3.2]
consider the D,,_;-parabolic subgroup P; = QQ;L; of X.
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Denote by Py = Qy Ly the parabolic subgroup of Y given by Lemma [2.3.9 and notice
that Ly has type Ag,_3 over K, with II(Ly) = {ag,..., a2, 2} Write Y = Ly, X = L}

and finally A = Alr_. An application of Lemma 2.3.10] then shows that X acts with at

most two composition factors on L)}(S\). If the latter is irreducible for X, then up to graph
automorphisms, either A\ = a\; for some a € Z> or A = )\, for some 1 < r < n thanks to
[Sei87, Theorem 1, Table 1 (I, I5)]. If on the other hand X acts with exactly two composition
factors on L};(Y:A), then one easily concludes thanks to our induction hypothesis. O

We now study all candidates (A, p) given by Lemma [[.2.7] starting with the case where
A = \; for some 1 < i < n. As usual, we write w to denote the restriction of A € X (Ty)
to Tx. Observe that Ly (\) = A’ Vi (A1) and hence Ly (\)|x = A’ Vx(wi). By Proposition
2.6.3] the latter admits a Weyl filtration, yielding

Ly()\)|X = VX(CL)). (75)

Proposition 7.2.8

Consider an irreducible KY -module V' = Ly (\) having p-restricted highest weight X = \;,
where 1 < i < n. Then X has exactly two composition factors on V if and only if (\,p)
appears in Table [71.

Proof. First assume p # 2 and suppose that X has exactly two composition factors on V.
Applying Lemma [[.2.7] then forces A = \,, in which case w = 2w,, by (Z1]). Also the Ty-
weight A — «, restricts to w’ = 2w,,_1, which is neither above nor under w. One then checks
that there is no weight v € AT (V]y) such that w’ < v, showing that w’ is a highest weight
of V|x. Lemmas and 2.4.7 then yield dim V' = dim Lx(w) + dim Lx(w'), showing that
X has exactly two composition factors on V' as desired.

Next assume p = 2 and suppose that X has exactly two composition factors on V. As
above, an application of Lemma [7.2.7 yields 1 < i < 4. Also observe that by Lemma [.T.6]
we have AT(V) = At (w), and by (Z.3)), the number of composition factors of V|x equals the
number of composition factors of Vx(w). Lemma then rules out the possibility A = A4,
while the two remaining cases can be dealt with using Lemma [7.2.5l We leave the details to
the reader. 0

Next we tackle the case A\ = a\y, where 1 < a < 4 and p f a+n—3. Considering the D,,_;-
parabolic subgroup of X corresponding to the roots fs, . .., 3, as in the proof of Lemmal[7.2.7]
one easily sees (using induction) that the Tx-weight w’' = w— (2824 -+ 28,2+ Bn_1+ 5n)
affords the highest weight of a second K X-composition factor of Ly (), namely

LX(M/) = LX(QWl + (CL — 2)w2).
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7.2 Proof of Theorem [7.1]

Lemma 7.2.9
Consider an irreducible KY -module V' = Ly (\) having p-restricted highest weight A\ = als,
where 1 < a < 4. Then X has more than two composition factors on V.

Proof. Let w, ' be as above. Applying ([2.9) (and Proposition 242 if desired), one first
checks that dim Vy (\) > dim Vx(w) 4+ dim Vx (w'), which shows that in particular the result
holds in characteristic zero. On the other hand, in the case where a = 3, one checks that

AT(V) = {0 A+ Ao+ A3, 201 + Ay, 223, Ao + Aay A+ As, A

and using [Lib01, Appendix A.10]| together with Lemma 2.3.7 (applied to the As-Levi sub-
group of Y corresponding to the simple roots ay, ..., as) yields V4 (A) = Ly (A). Therefore
the assertion holds in this situation as well and we may assume a = 2 for the remainder of
the proof. Here AT(\) = {\, \; + A3, A4} and by Lemma [B.1.T] applied to the Levi subgroup

of Y corresponding to the simple roots aq, ag, ag, we get Vi (\) = )\/)\Zp(s). If p # 3, then the
result follows from the characteristic zero case, while if on the other hand p = 3, we have
[Vx(w), Lx(w4)] = 1 (by Lemma B.1T] again) and thus

dimV = dim V3 (A) — dim Ly (A4
> dim Vy (w) 4 dim Vy (o'
= dim Vx (w) + dim Vy (&'
> dim Ly (w) 4+ dim Ly (w'),

)
) — dim Ly (\y)
) — dim LX (W4)

where the last equality follows from [Sei87, Theorem 1, Table 1 (I4, I5)]. Consequently X has
more than two composition factors on V in this situation as well, completing the proof. [

We now deal with the case where A = a); for some a € Zs(, by showing the following
generalization of Proposition [6.2.3]

Proposition 7.2.10

Let a,b € Z>q and consider an irreducible K'Y -module V' = Ly (\) having p-restricted highest
weight A = aA; + bAo,_1. Then X has exactly two composition factors on V' if and only if A
and p appear in Table[7.9, where we give X\ up to graph automorphisms.

A p Vix

2\ pin 2w, /0

3)\1 pj(n+1 30)1/&)1
>\1 + )\2n—1 P # 2 2&)1/&)2

20 + A1 pl2n+1,p#3 3Bwi/wi +ws

Table 7.9: The case A = a)\; + bAg,—1, where a,b € Zx.

151



Proof. We proceed exactly as in the proof of Proposition [6.2.3] first considering the case
where b = 0, so that A\ = a)\;, w = aw;, and suppose that X has exactly two composition
factors on V. We may assume a > 1,80 w' =w— (201 +- -+ 2812+ Bn1+ 5n) € AT (w). As
in the proof of Proposition [6.2.3] one easily checks that exactly n weights for Ty restrict to
w', each having multiplicity 1 in V, hence my|, (w') = n. Applying Lemmas 6.2 and
shows that w’ affords the highest weight of a second K X-composition factor of V' and that
pta+n—2 Nowif a > 3, consider w”’ = w — (401 + -+ + 48,2 + 28,-1 + 28,). Using
Theorem 2.3.17] (we refer to the proof of Proposition [6.2.3] once more), we get

n(n —1)
2

giving the existence of a third composition factor of V'|x. Therefore a = 2 or 3, in which case
every Tx-weight but w’ has multiplicity 1 in Ly (w). Applying Lemmas .44 together with
Corollary [[.2.3] (respectively, [[.2.4) then yields dim V' > dim Lx(w) + dim Lx(w’) unless p
divides a+n —2. Under the latter condition on p, we have dim V' = dim Lx (w)+dim Lx ('),
so that X has exactly two composition factors on V' as desired.

Now consider the case where ab # 0 and again first assume that X has exactly two
composition factors on V. Here w = (a + b)w; and the Ty-weights restricting to w’ = w — 3
are A —aq and A — agn—1. As my () (w') = 1, Lemma shows that w’ affords the highest
weight of a second composition factor of V|x. Also, if a,b > 1, then the Ty-weights A — 2ay,
A —aq — agy_1, and A — 2aw, 1 restrict to w — 21, whose multiplicity in both Lyx(w) and
Lx(w') equals 1, giving the existence of a third composition factor of V|y, a contradiction.
Without loss of generality, we may then suppose that A = aX\; + Ag,_1, so that w = (a+1)w,
and w’ = (a — 1)w; + wy. Three situations may occur.

n(n+1)

my, (") > , My ) (@) = ; and myy (W) =n—1,

1. If a =1 and p = 2, then w’ ¢ Lx(w) by Theorem 232 so that [V|x, Lx(w)] = 2
and X has more than two composition factors on V. If on the other hand p # 2,
then one easily checks (using Lemma 2.4.8, Corollary [[.2.3] and Lemma 2.4.6]) that
dim Ly (\) = dim Lx(w) + dim Lx(w’), hence the result.

2. If a = 2 and p = 3, then proceeding exactly as in the previous case shows that
X has more than two composition factors on V. If on the other hand p # 3, then
one checks (using Lemma [24.9] Corollary [[.2.4] and [McN98, Remark 4.9.3 (a)]) that
dim Ly (\) = dim Lx(w)+dim Lx(w’) if and only if p | 2n+ 1, thus yielding the desired
assertion.

3. Finally if a > 2, let w”’ = w — (361 + 202 + -+ - + 26,2 + Bn_1 + Bn) and observe (as
in the proof of Proposition [6.2.3) that at least 2n — 1 weights of V' restrict to w”. As
one of those (A — (2a1 + g + -+ + ag,_1)) has multiplicity greater than or equal to
2(n — 1) in V3 (X), we get that my| (w”) > 4(n — 1), while by Theorem Z3.TT] we
have my, ) (w”) = n — 1, and my, () (w") = 3n — 4, giving the existence of a third
K X-composition factor of V.

O
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7.3 Proof of Theorem

Using Lemmas [.2.7 [7.2.9] and Propositions [[.2.8 and [[.2.10] we are finally able to give

a proof of the main result of this Section.

Proof of Theorem[71: Let K, Y, X be as in Theorem [Z.1] and first suppose that X acts
with exactly two composition factors on V' = Ly (), where A = a); for some a € Z-, and
1 <i < 2n—1. By Lemma [.2Z7 we get that A\ and p are as in Table [[.8 and applying
Lemma shows that X has more than two composition factors on Ly (aXy) if a > 1.
The result then follows from Propositions [[.2.8 and [[.2.10L Finally, we leave to the reader
to check the assertion on the structure of V|x, using Proposition together with ([.5]).

7.3 Proof of Theorem

Let X be as in the statement of Theorem and assume throughout this section that
p # 2. Here we determine the structure of Vx(w), for w = wy + w; + §;,_1wn_1, Where
1 < j < n—1. We start by considering the embedding of X in Y, where Y is as in the
preamble of the chapter, and find a decomposition of Vy- (A1 + A;)|x (1 < j < 2n) in terms
of irreducibles, assuming K has characteristic zero. As we shall see, doing so leads to a
nice expression for the formal character of Vy(w;) ® Vx(w;). We then study Vx(w) via the
embedding ¢ : Vx(w) = Vx(wy) ® Vx(w,) given by Proposition 2.6.4

7.3.1 Restriction of Weyl modules

Fix 1 < j < nandset A = A\;+\;, which by (1)) restricts to wi4w;+6;,—1w, € X (Tx). We
first find a description of c¢h Vi (A)|x in terms of the Z-basis {x (1)} ,ex+(ry) of Z[X (Tx)]"*.
In order to avoid the use of Theorem 2.3.11] we shall apply Proposition [.T.3l

Proposition 7.3.1
Fiz 1 < j <n, write \ = X\ + \; and denote by w € X*(Tx) the restriction of X to Tx, that
1S W = w1 + wj + 5j7n_1wn. Then

ch Vi (V) |x= x(w) + x(wj-1)-

Proof. Write V' = V4-(\) and first observe that ch V|x is independent of p, so we may and
will assume K has characteristic zero for the remainder of the proof. We start by treating
the situation where j = 2, in which case w = w; +wy is the highest weight of V'|yx by Lemma
and

AT (Vx) = {w,ws, w1},

One then shows that the only Ty-weight restricting to ws is A3, and my/|, (ws) = My, (@) (wWs).
An application of Theorem 2.4.3] then yields dim V' = dim Vx (w) + dim Vx (w; ), from which
the assertion follows.

153



Next assume 2 < j < n — 2, in which case AT (V|x) = AT (w) by Lemma [T.T.6] and write
w' = w;_1. An elementary computation (using Theorem [2.4.7]) yields dim V3 () > dim Vx (w),
showing the existence of W’ € X1 (Tx) such that [Vi-(\)|x, Lx(w’)] # 0. Since we assumed
K has characteristic zero, this translates to the existence of a maximal vector in V, for By.
By Proposition [[.T.3], we have w — (261 + -+ + 28,2+ Bu1 + ) < W' < w and we leave to
the reader to check that this forces

/
w € {w1 + w2, W11, wj_l}.

Now applying Lemma [2.3.7] to the D,,_;;;-parabolic subgroup of X corresponding to the
simple roots 5;_1, . .., B, followed by [Sei87, Theorem 1, Table 1 (14, I5)]) shows that wy+w;_o
cannot afford the highest weight of a K X-composition factor of V. Also the only Ty-weight
in V restricting to w;1 is Aj+1, from which one easily sees that my|, (wjt1) = my, @) (Wjt1)
and hence [V|x, Lx(wj+1)] = 0. Consequently «w' = w;_; and an elementary computation
(using Theorem 2.4.1] again, for example) yields dim Vy (A) = dim Vy (w) 4+ dim Vx (w;_1), so
the result holds in this case as well. The situations where j = n — 2 or n — 1 can be dealt
with in a similar fashion and hence the details are left to the reader. O

Corollary 7.3.2
Fiz 1 < j <n and consider w = awy + wj + 0; 1wy, where a € Zo. Then the Tx-weight
p=w— (B 4+ B +28;+ - 4+ 2Bh—2 + Bu1 + By) satisfies

Myy @) (1) = j(n —j+2) — 2.

Proof. First assume a = 1 as well as 1 < j < n—1 and consider the Weyl module V' = V()
having highest weight A = A; + A;, so that A|r, = w. The Ty-weights in V' restricting to p are
A—(oa+ - Faj 20+ 20+t ot agn—ro1) (<7 <n—1), A= (a4 - -+ aga-),
A—(a1+-+as+oj++ays1) (1 <s<j—2),and A\—(a;+- -+ ag,—1). Therefore
Theorem 2.3 1T yields my |, (1) = j(n — j +2) — 1, while on the other hand, an application
of Proposition [Z.3.T yields my, ) (1) = mys (x)) (1) — 1, yielding the desired assertion in this
situation. We leave to the reader to deal with the case where w = aw; + w,,—1 + w,, and then
conclude using Proposition O

We now investigate the case where A = A\; + A,,, writing w = A|,. Here contrary to what
we had in Proposition [[.3], the T'x-weight w is not the unique highest weight of V|x. (For
example A\ — a, restricts to wy + 2w,_1, which is neither under nor above w.) The following
result provides an alternative to Lemma in this specific situation.

Lemma 7.3.3

Consider the Ty -weight X = A\ + N, € XT(Ty). Then each of w = N7, and W' = w — ay |71y
affords the highest weight of a KX -composition factor of V. Furthermore, every Tx-weight
v e AN (V|x) either satisfies v < w or v 5 Ww'.
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7.3 Proof of Theorem

Proof. The fact that w affords the highest weight of a K X-composition factor of V follows
from the fact that any maximal vector in V' for By is a maximal vector for Bx as well. Now
let p = A — 32" " coa, € A(V) be such that w' < p|r,. Recalling the restrictions to T
of the simple roots for Ty, we immediately get ¢, = 0 for every 1 < r < 2n — 1 different
from n — 1,n,n + 1. One then easily shows that ¢, = 1 and hence ¢, 1 = ¢,41 = 0, forcing
p|ry= w' as desired. In order to prove the second assertion, assume for a contradiction the
existence of =\ — Zil{l crap € A(V) such that neither p|r, < w nor plr, < w'. Recalling
the restrictions to T'x of the simple roots for Ty, one checks that

n—2

IU"TX: W — Z (CT + C2n—7‘)ﬁr - (Cn—l —Cy + Cn—l—l)ﬁn—l - Cnﬁn-

r=1

Since we assumed p|r, A w, we have ¢,_1 — ¢, + ¢,1 < —1. In particular (i, o) < —c,,
showing that s,, (1) € A(V) is not under A, a contradiction. O

Thanks to Lemma [[.3.3] we are now able to prove a result similar to Proposition [.3.1]
in the case where A = A\ + \,,.

Proposition 7.3.4
Consider A = A1 + A\, and denote by w (respectively, w') the restriction of A (respectively,
A —ay) to T, that is w = w1 + 2w,, and W' = wy + 2w, 1. Then

ch Vy (A)]x=x(w) + x(&) + X (wn-1 + wn).

Proof. Write V' = V4 (\) and notice that ch V|y is independent of p, so we may assume K
has characteristic zero for the remainder of the proof. Also observe that the Ty-weights
restricting to w” = w,_ 1 +wy, are A— (g +- -+, +a,+ -t ag,_rq) (for 1 <r<n-1)
and A — (o, + -+ - + ag,-1). An application of Lemma then yields my, (w”) = 2n — 1
as well as my, (,)(W") = My, (@) (w”) = n — 1, thus showing that w” occurs in a third K X-
composition factor of V. Now one easily checks that every Tx-weight v € AT (V|x) such that
W' < v <worw < v <w satisfies

mV\X(V) = mVX(W)(V) + mVX(w’)(V)>

showing that w” affords the highest weight of a third K X-composition factor of V' by Lemma
[7.3.3l As in the proof of Proposition [T.3.1], an application of Theorem [2.4.1] then yields the
desired result. O

Finally we give a result similar to Propositions[.3.Tland [[.3.4lin the case where A = A\j+;
for some n < j < 2n — 1, even though it shall not be used in the proof of Theorem [[2l As
a matter of fact, Proposition provides us with an alternative proof of Corollary [7.3.2]
which does not rely on Proposition [7.1.3
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Proposition 7.3.5
Fizn < j <2n—1, write A\ = \; + \; and denote by w € XT(Tx) the restriction of the
Ty -weight X to T'x, s0 w = wy + wWap—j + 0jnr1wn. Then

X(w) + x(2wn—1) + x(2wn) ifj=n+1;
X (W) + X (won—j+1 + djntown)  otherwise.

ch Vy()\)‘X: {

Proof. As in the proofs of Propositions [7.3.1] and [7.3.4], we may assume K has characteristic
zero throughout the proof. Start by supposing j = n + 1 and consider the dominant 7T'x-
weight W = w — (1 + -+ + fn_1) = 2w, € XT(Tx). Then the Ty-weights restricting to
Wware A\— (g 4+t ap), A=+ Ha ot tag ) (1< r<n-—1),
and A — (a1 + - -+ + agy—1). Therefore my |, (w') = n, while my, (,)(w’) = n — 1 by Lemma
2319, showing that w’ occurs in a second K X-composition factor of V. Since there is no
dominant weight v € X (w) such that ' < v < w, an application of Lemma yields
[V|x, Lx(w')] =1 as desired. We leave to the reader to show that [V|x, Lx(2w,_1)] =1 as
well, from which one easily concludes thanks to Theorem 2.4.1] for example.

Next assume n+1 < j <2n—1landlet w' =w— (81 +-- -+ fan_j) = wan—jr1 € X (Tx).
Then one easily checks that the Ty-weights restricting to w’ are A — (o + - -+ + ag,-1),
A—(oq+- - Fa,+oj+- - +ag—r—1) (1 <r <2n—j—1),and A—(ag+- - -+ag,—;). Therefore
my|, (W) = 2n — j + 1, while an application of Lemma 2.3.19 yields my, () (w’) = 2n — j,
showing that w’ occurs in a second K X-composition factor of V. As above, there is no
dominant weight v € X (w) such that w’ < v < w and thus [V|x, Lx(w’)] = 1 by Lemma
Again, applying Theorem 2.4.1] completes the proof. O

7.3.2 Weyl filtrations and tensor products

Let G be a simple algebraic group of type A, over K, fix a Borel subgroup B = UT of G,
where T is a maximal torus of G and U the unipotent radical of B. Also let IT = {~1,..., 7.}
be a corresponding base of the root system ® of G and {0y, ..., 0,} be the set of fundamental
weights for T corresponding to our choice of base II. An expression for the formal character
of the tensor product of exterior powers of the natural KG-module can be given by the
following well-known result, whose proof is recorded here for completeness.

Lemma 7.3.6
Fiz 1 < j <n, write 0 = 01 + 0; and consider T(o1,0;) = Vg(o1) @ V(o). Then T(o1,0;)
is tilting (see Definition[2.6.3) and

chT(o1,05) = x(0) + x(0j+1)-
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7.3 Proof of Theorem

Proof. The first assertion directly follows from Proposition 2.6.41 Also chT'(oy,0;) is in-
dependent of p and thus we shall assume K has characteristic zero for the remainder of
the proof. By Proposition 2.6.4] (part [I), o is the highest weight of T'(oy,0;), so that
AT (T(01,05)) = {0,041}, and using Lemma 2Z.3.T9, one gets mr(q, ;)(0j41) = j + 1, while
My, (0)(0j+1) = J. Therefore o, affords the highest weight of a second KG-composition
factor of T'(oy, ), allowing us to conclude. O

In the remainder of this section, we assume p # 2 and let Y, X be as usual. Also for
1<j7<n—1, we set

T'(wr,wj) = Vx(w1) ® Vx(w;)

and recall that the Ty-weight A = A\; + \; restricts to wy +w;. We now use Proposition [[.3.1]
together with Lemma [7.3.6] to determine the formal character of T'(wy, w;).

Lemma 7.3.7
Assume p # 2 and for 1 < j < n —1, write w = wy +w;. Then T(wy,w;) is tilting and its
formal character is given by

ch T'(wy, Wj) = x(w) + X(Wj+1 + 5j,n—2wn) + X(Wj—l)-

Proof. The fact that T'(wy, w;) is tilting follows from Lemma together with Proposition
264 (part B). Also chT(wy,w;) is independent of p by Lemma 247 and hence it is enough
to find a decomposition of T'(wy,w;) into a direct sum of irreducibles in characteristic zero.
Now by [Sei87, Theorem 1, Table 1 (I4, I5)|, the K X-module Vi (\;)|x is isomorphic to
Vx (w; + 6; pn—1wy) for every 1 < i < n and thus Lemma yields

T(wi,w;) = Vy(N)|x @ Vx (Wit + 0jn—own),

where A = A\; + \; as above. Finally Vy(\)|x = Vx(w) @ Vx(w;—1) by Proposition [7.3.1]
yielding the desired result. O

Finally set T'(w1,wp—1 + wn) = Vx(wi) ® Vx(w,—1 + w,) and again, observe that the
Ty-weight A = A\ + A\, _1 restricts to wy +w,_1 +w,. Arguing as in the proof of Lemma [7.3.7],
observing that by Theorem [T, we have ch V(\,)|x= x(2wn—1) + x(2wy), one obtains the
following result. The details are left to the reader.

Lemma 7.3.8
Assume p # 2 and write w = wy + wy,_1 +wy. Then T(wy, w,—1 +wy) is tilting and its formal
character is given by

ch T' (w1, wn—1 + wn) = x(w) + x(Wn—2) + x(2wn_1) + x(2w,).
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7.3.3 Conclusion

Fix 1 < j < n and consider the Tx-weight w = w; + w; + 0, ,—1w,. In order to completely
describe the structure of Vx (w), we start by determining an upper bound for [Vx(w) : Lx ()]
(u € XT(Tx)), following the ideas of [McN9§|. The next assertion, being a consequence of
Proposition 2.6.4 and Lemmas [7.3.7] [7.3.8] is referred to as a corollary.

Corollary 7.3.9

Assumep # 2, fir 1 < j <n and let w = wy +w; + 0j n_1wy. Also suppose that w # v affords
the highest weight of a composition factor of Vx(w). Then [Vx(w), Lx(p)] = 1 and one of
the following holds.

1. If j <n—1, then pt = wjt1 + 0jp_owy, 0T W;_1.

2. If j =n—1, then p = 2w,_1, 2w, or w,_s.

Proof. First assume 1 < j < n — 2, write T'(wy,w;) = Vx(w1) ® Vx(w,), and identify rad(w)
with ¢(rad(w)), where ¢ : Vy(w) < T'(wq,w;) is the injection given by Proposition 2.6.4] (part
2). By Lemmas 2.4.6 and [.3.7] we have

ch (T(W17Wj>/rad(w)) =ch Lx(W) + ch LX(WJ'+1) + ch Lx(Wj_l),

and Proposition 2.6.4] (part B]) applies, yielding a surjective morphism of K X-modules ¢ :
T (wy,w;) — Hw) with rad(w) C ker(¢). As ch H°(w) = x(w), the result follows. The cases
where j =n — 2 or n — 1 can be dealt with in a similar fashion (replacing Lemma [T.3.7 by
Lemma [.3.8 in the latter situation), so the details are left to the reader. O

For w as in Theorem [7.2] we determine every p € AT (w) such that [Vx(w), Lx(u)] # 0,
using the method introduced in Section 2.71 We start by the case where w = w; + w, for
some 1 <7 <n—1.

Proposition 7.3.10

Assume p # 2, fix 1 < j < n — 1 and consider the Tx-weight w = w, + w;. Also set
f1 = Wjt1 + 0jpn_own, fo = wj—1. Then py affords the highest weight of a composition factor
of Vx(w) if and only if p | j + 1. Similarly, us affords the highest weight of a composition
factor of Vx(w) if and only if p | 2n — j + 1.

Proof. Let Vx(w) =V° > V!> ... D> Vk D0 be the filtration of Vx(w) given by Proposition
274 Proceeding as usual, we get v#*(T,) = v,(5 + D)x(p1) + vp(2n — j + 1)x(p2) and
Lemma then yields v#2(1},) = v,(j + 1) ch Lx (p1) + vp(2n — j + 1) ch Lx (p2). Finally,
an application of Proposition 2.7.8 completes the proof. O

158



7.4 Proof of Theorem [T3 the case j =3

Finally, we consider the dominant Tx-weight w = w; + w,_1 + w,. Again the proof of
the following result is omitted, being similar to the proof of Proposition [7.3.10l (Recall that
Vx(2wn-1) = Lx(2wy—1) if p # 2 by Lemma 2.4.7)

Proposition 7.3.11

Assume p # 2 and consider the Tx-weight w = w1 +w,_1+w,. Also set 1 = 2w, fe = 2w, _1
and ji3 = wp_o. Then each of py and ps affords the highest weight of a composition factor of
Vx(w) if and only if p | n. Similarly, ps affords the highest weight of a composition factor of
Vx(w) if and only if p | n + 2.

Proof of Theorem[7.2: First assume 1 < 7 < n — 1 and let w = wy + w;. Then applying
Corollary together with Proposition [.3.10] yields the result on the composition factors
of Vx(w) in this case. If on the other hand w = wy 4+ w,,_1 + wy,, replacing Proposition [7.3.10]
by Proposition [.3. 1Tl allows us to conclude as well. Therefore in order to complete the proof,
it only remains to show the assertions on the composition series of Vx(w), which directly
follow from Lemma 2.6.5

7.4 Proof of Theorem [7.3: the case j =3

Let X be as in the statement of Theorem [7.3] and assume throughout this section that p # 2
and n > 5 (we refer the reader to |Liib01, Appendix A.42] for the case where n = 5). Here
we determine the composition factors of Vy(w), for w = ws + w3. Again, we let Y be as in
the preamble of this chapter and setting A = \y + A3, we proceed as in Section [.3] starting
by finding a decomposition of Vi (A)|x in terms of irreducibles in characteristic zero.

7.4.1 Restriction of Weyl modules

Set A = Ay + A3, which by () restricts to w = wy + w3 € X7 (Tx). We first find a
description of ch Vi-(A)|x in terms of the Z-basis {x(1t)}.ex+(y) of Z[X(Tx)]”. As in the
proof of Proposition [.3.1] (the case where w = wy + ws), we take advantage of the fact that

AT (w) = {w, w1 + wy, w1 + wa, w5 + O 6w, W3, W1 - (7.6)

Proposition 7.4.1
Consider A\ = \y+ X3 € X1 (Ty) and denote by w € X (Tx) the restriction of X to Tx. Then

ch Vy (M) x= x(w) + x(w1 +ws) + x(w1).
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Proof. As in the proof of Proposition [7.3.1] first observe that ch Vi (\)|x is independent of
p and thus we may assume K has characteristic zero for the remainder of the proof. Also if
€ X (Tx) affords the highest weight of a K X-composition factor of V3 (A), then p € AT (w)
by Lemma [.T.6l One then easily sees (by applying Proposition [.31] to the D,,_;-Levi
subgroup of X corresponding to the simple roots fs, ..., 3, € II(X)) that w; +ws € X (T)
affords the highest weight of a second K X-composition factor of V4-(A). Now an elementary
computation (using Theorem 2.4.1]) yields dim Vy-(A) = dim Vx (w) + dim Vi (w1 + w2) + 2n,
while dim V(w5 + 5, 6ws), dim Vx (w3) > 2n. Hence neither ws + d,, gws nor ws can afford the
highest weight of a third composition factor of Vy-(\)|x and the result follows from (7.6). O

Corollary 7.4.2
Setw=wy+ws and let p=w— (f1+202+ 4280+ o1+ Pn) € X(Tx). Then p = ws
is dominant and satisfies my, () (@) = 5n — 11.

Proof. Write A = Ay + A3 and let V' = V4 ()\). One checks that Ty-weights restricting to
are A — (g + 200+ -+ 20, + 1+ Fagy 1) (1 <7 <n), A= (a1 + -+ qop_2)
and A(ag + - -+ + agp—1). Therefore Theorem Z3.TTl yields my/, (1) = 5n — 9, while on the
other hand, an application of Proposition [Z4.T] yields my, () (1) = my, ), () — 2, thus
completing the proof. O

A result similar to Proposition [[.4.1] holds in the situation where A = Ay + Ag,_3, as the
following Proposition shows. Its proof, being very similar to the proof of Proposition [7.3.5]
is omitted here.

Proposition 7.4.3
Consider A = Ay + Aoz € XT(Ty) and denote by w € X1 (Tx) the restriction of X to Tx.
Then

ch Vyr(A)[x= x(w) + x(w1 + wa) + x(ws + 6p,6w6)-

7.4.2 Weyl filtrations and tensor products

Let G be a simple algebraic group of type A, over K, fix a Borel subgroup B = UT of G,
where 7' is a maximal torus of G and U the unipotent radical of B. Also let IT = {~1,..., 7.}
be a corresponding base of the root system ® of G and {074, ...,0,} be the set of fundamental
weights for 1" corresponding to our choice of base II. We first determine the formal character
of the tensor product Vi (oq) ® Vi(o3).

Lemma 7.4.4
Let 0 = 09+ 03 and consider the tensor product T'(04,03) = Vig(02) @ Vg (o3). Then T'(09, 03)
is tilting and its formal character is given by

chT(03,03) = x(0) + x(01 + 04) + X(05).
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7.4 Proof of Theorem [T3 the case j =3

Proof. Proceed exactly as in the proof of Lemma [[.3.6] working in characteristic zero and
observing that AT (T (09, 03)) = {0, 01 + 04,05 }. We leave the details to the reader. O

Adopting the notation ,,.1 = 0, we next focus our attention on the multiplicity of u = o5
in the irreducible K G-module having highest weight 0 = 05 + 03 € X1 (Tx).

Proposition 7.4.5
Consider an irreducible KG-module V' = Lg(0) having p-restricted highest weight o = oy+03
and let p = o5. Then Vg(o) = o /(o1 + 04)%3 /u®»2 and

1 ifp=3;
my(u) =<4 ifp=2;
5  otherwise.

Proof. First observe that A™(0) = {0,071 + 04,05} and considering the A4-Levi subgroup
of G corresponding to the simple roots 71,72, 73, 74 together with [Liib15] completes the
proof. O

In the remainder of this section, we assume p # 2 and let Y, X be as usual. Also, we
set T'(w2,w3) = Vx(wz) ® Vx(ws) and recall that the Ty-weight A = Ay 4+ A3 restricts to
wo +ws. As in Section [T.3], we use Proposition [[.4.1] together with Lemma [.4.4] to determine
the formal character of T'(ws, ws).

Lemma 7.4.6
Assume p # 2 and set w = wy + wz. Then T(ws,ws) is tilting and its formal character is
given by

ch T'(we,ws) = x(w) + x (w1 +ws) + x (w1 + w2)
+ X (w5 + dnews) + x(ws) + Xx(w1).

Proof. The fact that T'(ws,ws) is tilting follows from Proposition 2.6.4] (part B]) and Lemma
Also, since ch T'(wq,ws) is independent of p, it is enough to find a decomposition of
T'(wy,ws) into a direct sum of irreducibles in characteristic zero, so we assume char K = 0
for the remainder of the proof. Now Vy(As)|x is isomorphic to V(w5 + 0, 6ws) by (5) and
thus Lemma [7.4.4] yields

T(WQ, (,Ug) = Vy()\)|x D Vy()\l + )\4)|X D Vx(W5 + 5n76w6),

where A = Xy + A3 as above. Finally, applying Propositions [7.3.1] and [Z.4.1] completes the
proof. O
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Using Lemma together with Proposition 2.6.4] will enable us to determine the com-
position factors of Vx(ws 4+ ws). The situation in which d,3¢,(n) = 0 can be dealt with in
a pretty straightforward fashion, while in the case where J,3€,(n) = 1, some more work
is required in order to prove that [Vx(ws + ws), Lx(ws)] < 1. We thus treat the two cases
separately.

7.4.3 Conclusion: the case 6,3¢,(n) =0

Assume p # 2, d,3€6,(n) = 0 and consider the Tx-weight w = ws + w3. We are ready
to determine the composition factors of Vy(w), starting by finding an upper bound for
[Vx(w) @ Lx(u)], for every pp € X (Tx), and then conclude using Proposition 7.8 The
first assertion is a consequence of Proposition 2.6.4 and Lemma [7.4.6] so is referred to as a
corollary:.

Corollary 7.4.7

Assume p # 2 as well as 6, 3¢,(n) = 0. Also let w = wa+ws and suppose that w # € X+ (Tx)
affords the highest weight of a composition factor of Vx(w). Then [Vx(w), Lx(u)] = 1 and
n e {wl + Wy, W1 + Wo, Ws + 5n,6w6, w3, wl}.

Proof. Write T'(wq, ws3) = Vx(w2) ® Vx(w3) and identify rad(w) with its image under ¢, where
t: Vy(w) = T(wq,ws) is the injection given by Proposition 2.6.4] (part ). Now by Lemmas
[[Z6 Lemma and Theorem [T.2] we have

ch (T(wz, ws)/md(w)) = ch Lx(w) + ch Ly (w; + wy)
+ ch Ly (w; + ws)
+ (14 6,5) ch Lx(ws + 65, 6ws)
+ (1 +6p3+€,(2n —3)) ch Ly (ws)
+ (1+¢(2n—1))ch Lx(wy)

and Proposition [2.6.4] (part B]) applies, yielding the existence of a surjective morphism of
K X-modules ¢ : T(wq,ws) - H°(w) with rad(w) C ker(¢). As ch H%(w) = x(w), we get

p € {wr + wy, w1 + wa, w5 + 9y, 6w, W3, W1}

as desired as well as [Vx(w), Lx (w1 + wy)][Vx (w), Lx (w1 + we)] < 1. Also, if p = w5 + d,,6ws;
then one can use Proposition to see that [Vx(w), Lx(u)] = 1, while Corollary 2.7.3]
forces p | n if ;1 = w3, so that p # 3 by our initial assumption and hence [Vx(w), Lx(u)] =1
as desired. Finally, if 4 = wy, then an application of Corollary 273 forces p | n — 1, from
which one deduces that [Vx(w), Lx(u)] = 1, completing the proof. O

By determining every p € A*(w) such that [Vx(w), Lx ()] # 0 (using the method intro-
duced in Section [2.7]), we are now able to give the set of composition factors of Vy (ws + ws)
in the case where p # 2 and 0, 3€,(n) = 0.
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7.4 Proof of Theorem [T3 the case j =3

Theorem 7.4.8
Assume p # 2 as well as §, 3¢,(n) = 0. Also consider the Tx-weight w = wy + w3 € X T (Tx).
Then
wf (wr +wp) =) fo ™ if p g 3n;
Vi(w) = w/wr +wy/wi" ifp=3;
w/ws. otherwise.

Proof. Let Vx(w) =V° D> V!> ... D Vk D0 be the filtration of Vx(w) given by Proposition
274 and write 71 = w1 +wy, T2 = w1 +Wwe, T3 = w3, u = wi. We first assume p { 3n and leave
to the reader to check that in this case v#(T,) = v,(2n — 3)x*(72) + v,(2n — 2)x* (1), while
an application of Theorem yields x*(7m2) = ch Lx(m2) + €,(2n — 1) ch Lx(u). Therefore
since p # 2, we have

v (T,) = vp(2n — 3) ch Lx (1) + v,(2n — 2) ch Lx (),

which by Proposition 2.7.8] shows that 7, (respectively, ) affords the highest weight of a
composition factor of Vy(w) if and only if p divides 2n — 3 (respectively, 2n — 2), while
[Vx(w), Lx(v)] = 0 for every T'x-weight v € X (Tx) such that v # 7 and p < v < w. One
then concludes in this situation thanks to Corollary [7.4.7]

Next assume p = 3 (so that p t n) and as above, we leave the reader to check that
v (T,) = vp(3)x*(11)+1vp(2n—2) x* (1), while applying Theorem [T.2 yields x*(71) = ch Lx(71)
since p {1 n. Therefore

vi(T,) = 1,(3) ch Lx (1) + vp(2n — 2) ch Lx ()

and again one concludes using Proposition [2.7.8] together with Corollary [7.4.7]

Finally assume p | n (so p # 3), in which case one can check (using Lemma 2.4.6]) that
we have v*(T,,) = v,(2n) ch Lx(73) + 1,(2n — 2) ch Lx (p1). Applying Proposition 2.7.§ and
Corollary [[.4.7] then completes the proof. O

7.4.4 Conclusion: the case d,3¢,(n) =1

We conclude this section by determining the composition factors of Vy(ws 4+ ws), together
with their multiplicity, under the assumption that d,3¢,(n) = 1. In order to do so, we first
study the decomposition of V3 (2\2)|x in terms of irreducibles in characteristic zero and then
deduce the multiplicity of ws in Vy (2ws).

Lemma 7.4.9
Consider the Ty -weight X\ = 2Xy € X (Ty) and let w = A|1,. Then

ch Vy (A)[x= x(w) + x(2w1) + x(0)
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Proof. Write V' = V4 () and first observe (see the discussion before Lemma [7.2.9) that
(V¥ (AN)|x, Lx(2wy)] = 1. On the other hand one easily checks (using Theorem 2.4.1] and
(2.9), for example) that dim V' = dim Vx(w) + dim Vx (2w;) + 1. Therefore [V |x, Lx(0)] =1
and thus the assertion follows. O

Corollary 7.4.10
Setw =2w; € X(Tx) and let p=w — (B1 + 282+ -+ 282+ Bu1 + Bn). Then p = wy is
dominant and my, (1) = 2n — 3.

Proof. Proceeding exactly as in the proofs of Corollaries [[.3.2] and [[.4.2] (replacing Propo-
sitions [T.3.1], 4Tl by Lemma [T.Z9) yields the desired result. The details are left to the
reader. O

Lemma 7.4.11
Assume 6, 3€,(n + 1) = 1 and consider an irreducible KX -module V = Lx(w) having p-
restricted highest weight w = 2wq. Then i = we satisfies x*(w) = ch'V + ch Lx(wy) and
my(p) =n— 1.

Proof. Here the Tx-weights v € X*(Tx) such that 4 < v < w and my,(,)(v) > 1 are
wy and g itself. An application of Lemma B.IT] then yields [Vx(w), Lx(ws)] = 1, while
[Vx(w), Lx ()] = 0 by Corollary 273l Therefore the assertion on x*(w) holds and hence
my (1) = My, () (1) — MLy () (1) One then checks (using Lemma [Z.T.5] for example) that
My, (wy) (1) = n — 2, while an application of Corollary [.4.10 completes the proof. O

Using Lemma [6.1.7] together with Lemma [[.4.T1], we now give an upper bound for the
multiplicity of ws in Lx(ws + ws) in the case where d, 3¢,(n) = 1.

Proposition 7.4.12
Assume 0p3€,(n) = 1 and consider the Tx-weight w = wy + w3z € XT(Tx). Also write
p=w—(P1+2B2+ - +2Bp_2+ Bu_1+ Bn). Then = ws is dominant and my () > n — 2.

Proof. Let J = {v,...,Yn_1}, where v; = B1, 72 = Bo+ 03, 7 = Bry1 forevery 3 <r < n-—1,
so that H = (U, : 1 < r < n — 1) is simple of type D,,_; over K, and denote by
{wi,...,w!_,} the set of fundamental weights corresponding to our choice of base. Adopting
the latter notation, we get w’' = w|r, = 2w}, 1/ = plr,= W' — (N1 +272+ -+ 2Vn—2+Ya—1+Vn),
and as 0, 3€p(n) = 1, Lemma [4TT] applies, yielding my,, . (1') = n — 2. The result then
follows from Lemma G111 O

By determining every p € At (w) such that [Vx(w), Lx(p)] # 0 (using the method intro-
duced in Section [2.7]), we are now able to give the structure of Vx(ws+ws) in the case where
dpa€p(n) = 1.
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7.5 Proof of Theorem [7.3} the general case

Theorem 7.4.13
Assume 0, 3€,(n) =1 and consider w = wy + ws € X7 (Tx). Then

Vy(w) = w/wi + wy/wi + wa/ws.

Proof. First observe that an application of Corollary 2.7.3] yields [Vx(w), Lx(w1)] = 0 and
let Vx(w) =V 2> V!> ... 2> V* 20 be the filtration of Vx(w) given by Proposition 274
Also write 71 = wy + wy, T» = wy + wo and pu = ws. As usual, we leave to the reader to
check that v#(T,,) = x*(11) + v3(2n — 3)x*(72) + v3(2n)x*(1). Also by Theorem [[.2], we get
X*(11) = ch Lx(m) + ch Lx(p) as well as x*(72) = ch Lx(7) + ch Lx (i), from which one
deduces (using Lemma 2.3.T9] Proposition 27.8 and Theorem [7.2)) that

M () (1) = My () (1) = MLy (ry) (1) = My () (1) — [V (w), Lx ()],

where [Vx(w), Lx(p)] # 0. An application of Corollary [[.4.2]then yields my, (. (p) = 5n—11,
while my  (-)(¢t) = 2(2n—5) —1 by Theorem [Z.2land Corollary [Z.3.2l The result thus follows
from Proposition O

7.5 Proof of Theorem [7.3: the general case

Let X be as in the statement of Theorem and assume throughout this section that p # 2.
Here we determine the composition factors of Vy(w), for w € {ws +w;}s<jcn—1. Let Y be as
usual and setting A = Ay + \; for 3 < j < n — 1, we proceed as in Section [7.4] starting by
finding a decomposition of Vy (A)|x in terms of irreducibles, assuming K has characteristic
Zero.

7.5.1 Restriction of Weyl modules

Fix 3 < j < nand set A = A\y+A\;, which by (1)) restricts to wo+w;+0;,—1w, € X (Tx). We
first find a description of c¢h Vi-(A)|x in terms of the Z-basis {x (1)} ex+y) of Z[X (Tx)]”.

Proposition 7.5.1
Fiz 3 < j <n and write A\ = Ao+ \;. Also denote by w € X (Tx) the restriction of A to Tx.
Then

ch Vy (A)[x= x(w) + x(w1 + wj-1) + x(wj-2).

Proof. Write w’ = w; + wj_1. Proceeding as in the proof of Proposition [7.3.1] shows that
[Vx(w), Vx(w')] = 1 and that if w” affords the highest weight of a third K X-composition
factor of V3 (A), then w;_» < w” < w'. One then easily checks (using Theorem [2ZZ41] for
example) that dim Vi (\) = dim Vx(w) + dim Vx (w') + dim Vx (w;_2) and arguing as in the
proof of Proposition [7.4.1] then completes the proof. We leave the details to the reader. [
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A similar result holds in the situation where A = Ay + A; for some n+1 < j < 2n — 2,
as the following Proposition shows. Its proof, being very similar to the proof of Proposition

[7.3.5] is omitted here.

Proposition 7.5.2
Fizn+1<j <2n—2 and consider A = Ay + \;. Also denote by w € X (Tx) the restriction
of A to T'x. Then

X(w) + X(wl + Wp—1 + Wn) + x(an_l) -+ X(2wn> ij =n-+ 2’

X(w) + x(w1 + W2n_j+1) —+ X(u]Qn_j+2 + 5j,n+3wn) otherwise.

ch Vy()\)‘X: {

7.5.2 Weyl filtrations and tensor products

Let G be a simple algebraic group of type A, over K, fix a Borel subgroup B = UT of G,
where T is a maximal torus of G and U the unipotent radical of B. Also let IT = {~y,..., 7.}
be a corresponding base of the root system ® of G and {07y, ..., 0,} be the set of fundamental
weights for 7" corresponding to our choice of base II. We first determine the formal character
of the tensor product Vi (oq) ® V(o) for 2 < j < n.

Lemma 7.5.3
Fiz2 < j < n, write 0 = 09+0; and consider the tensor product T'(cq, 0;) = Ve (02) @ Ve (0;).
Then T'(09,0;) is tilting and

chT(oy,05) = x(0) + x(01 + 0j41) + X(0j42).

Proof. The first assertion directly follows from Proposition 2.6.4] (part B]). Also observe that
ch T'(09,0;) is independent of p and thus we may as well assume K has characteristic zero.
By Proposition 2.6.4] (part [0l), o is the highest weight of T'(o, 0;), so that

AT(T(03,05)) = {0, 01+ 0j41,0542}
and as in the proof of Lemma [7.3.6] one easily sees that mT(Ulﬁj)(al +0,41) =7+ 1, while
My, (o) (01 + 0;41) = J, showing that [T'(02,0;), Lg(01 + 0j11)] = 1. Finally, we leave to the
reader to check that dim 7T'(oy, 0;) = dim V(o) + dim Vx (01 + 0;41) + dim Vg (0j42), so that

0;+2 also affords the highest weight of a third composition factor of T'(o, 0;), completing
the proof. O

Proceeding exactly as in the proof of Corollary [[.3.2] (using Lemma [7.5.3] and replacing
Proposition [.31] by Proposition [.5.1]), one gets the following result. We leave the details
to the reader.

Corollary 7.5.4
Fiz2 <j<n-—1, write 0 = 02+ 0; and let = 0j45. Then my (1) = 3G — 1)(j + 2).
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7.5 Proof of Theorem [7.3} the general case

Adopting the notation o,,; = 0, we next find a lower bound for the multiplicity of
p = 042 in the irreducible KG-module having highest weight o = 09+ 0; € XT(Tx), where
2< 7 <n.

Corollary 7.5.5

Let 2 < j < n—1 and consider the T-weight 0 = o9+0; € XT(T). Also suppose the existence
of 0 # p € Xt(T) such that p affords the highest weight of a composition factor of Vg(o).
Then p € {01 + 041, 0512} and [Va (o), La(p)] = 1.

Proof. Let 0 # p € X*(T) be such that [Viz(0), La(p)] # 0 and observe that since
At(0) ={0,014+ 041,042}, we immediately get 4 € {01+ 0j11,0;42} as desired. Also write
T(0q,05) = Va(o2) ® Va(o;) and identify rad(o) with «(rad (o)), where ¢ : V(o) <= T'(02, 0;)
is the injection given by Proposition 2.6.4] (part ). Applying Lemma together with
Lemma, then yields

ch (T(Uz, Uj)/rad(g)) = ch Lg(0) 4+ ch Lg(o1 + 0j41)
+ (1 +€,(j +2)) ch Lg(0j42),

and Proposition 2.6.4] (part B]) applies, yielding the existence of a surjective morphism
of KG-modules ¢ : T — H%o) with rad(c) C ker(¢). As ch H%(o) = x(o), we then
get [Vg(o),Lg(or + 0j11)] < 1 as desired and an application of Corollary 2.7.3] yields
[Va(o), La(oj12)] <1 as well, thus completing the proof. O

Let 2 < j < n and as above, adopt the notation o,,; = 0. We next determine the
composition factors of V(o + ;) as well as the multiplicity of i = 0,45 in the irreducible
KG-module Lg (02 + o) in the case where p # 2.

Proposition 7.5.6
Assume p # 2 and consider an irreducible KG-module V- = Lg(0) having p-restricted highest

weight 0 = 09 + 0, where 2 < j < n. Then Vg(o) = o /(o1 + Uj+1)gp(j)/a;’fg+l) and

(G=2)G+1) =2 ifplj;
my(j12) = 5 QG -DG+2) =2 ifplj+1
-1 +2) otherwise.

Proof. Let Vg(o) =V > VI > ... D V* 20 be the filtration of Vg(o) given by Proposition
274 and write 7 =0 — (2 + -+ ), p =7 — (71 + -+ + 7j1+1). One then checks that
v (T,) = vp(J)x*(7) + (7 + 1)x* (1) and hence an application of Lemma yields

v (T5) = vp(j) ch La(T) + (5 + 1) 4+ vp()€p (4 + 2)) ch La ().
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Therefore x*(0) = ch Lg(o) if p1j(j+ 1) by Proposition 2.7.8 and Corollary [7.5.4] yields
the assertion in this case. If on the other hand p | j or j + 1, then one concludes using
Lemma 2.3.19] Proposition 2.7.8 and Corollary [[.5.5l We leave the details to the reader. [

In the remainder of this section, we assume p # 2 and let Y, X be as in the statement of
Theorem [7.3l In order to prove a result similar to Corollary concerning the multiplicity
of wj € XT(Tx) in Vx (w2 +wj), one proceeds exactly as in the proof of Corollary [7.4.2] (using
Lemma and replacing Proposition [[41] by Proposition [[.5.1]). We leave the details to
the reader.

Corollary 7.5.7
Fiz2<j<n—1,letw=uws+wj and write p = w — (B4 + 20+ -+ 2Bp—2 + Bn_1 + Bn)-
Then the Tx-weight p = w; s dominant and

() = G~ 1) (36 + =) +5 - 1)

For 2 < j < n—1, set T(ws,w;) = Vx(w2) ® Vx(w;) and recall that the Ty-weight
A = Ay + A; restricts to wy + w;. We now use Lemma together with Proposition [[5.1]
to determine the formal character of T'(wq,w;) in terms of x(u) (u € XH(T)).

Lemma 7.5.8
Assume p # 2 and for 2 < j < n — 2, write w = wy + w;. Then T(we,w;) is tilting and its
formal character is given by

ch (w2, wj) = x(w) 4+ x(wWi + wjs1) + x(w1 +wjm1) + X(Wjt2 + Gjm—swn) + X(w;) + X(wj-2)-
Similarly, if w = wo + wy_2, then T'(wy, wp_2) is tilting and its formal character is given by

ch T (wa, wp—2) = x(w) + x(w1 + Wn1 + wy) + X(wW1 + Wn—3) + X(2wn—1) + X (2w,)
+ X(Wn-2) + X(Wn—4).

Proof. The fact that T(w,w;) is tilting follows from Lemma and Proposition 2.6.4]
(part [3). Also, since ch T (w9, w;) is independent of p, it is enough to find a decomposition of
T'(wy,wj) into a direct sum of irreducibles in characteristic zero, so we may and will assume
char K = 0 for the remainder of the proof. First assume 2 < j < n — 2. By (3), the
K X-module Vi (Aj42)|x is isomorphic to Vx (wjt2 + ;,—3wy), thus Lemma [7.5.3] yields

T(wa,wj) = Vy(N)]x @ V(M + Njsa)[x © Vx(wjrz + jn3wn),

where A = Ay + A;. Propositions [7.3.1] and [7.5.]] then allow us to conclude in this situation.

The case where j = n — 2 can be dealt with in a similar fashion (using the fact that
WV (An)]x = Vx(2wn—1) ® Vx(2w,,) by Theorem [7.1]), so the details are left to the reader. O
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7.5 Proof of Theorem [7.3} the general case

7.5.3 Conclusion: the case €,(j)e,(n) =0

Assume €,(j)ey(n) = 0 and consider the Tx-weight w = wy + w;. We proceed as in Section
[[4 starting with the following consequence of Proposition [[.5.6] and Lemma [7.5.8

Corollary 7.5.9

Assume 2 # p divides both j and n and for 2 < j <n — 1, write w = wy + w;. Also suppose
that w # p € X (Tx) affords the highest weight of a composition factor of Vx(w). Then
n e {w1 + Wj41, W1 + Wj—1,Wj42 + 5j,n_3wn, wy, wj_2} and [Vx(w), Lx(,u,)] =1.

Proof. First assume 2 < j < n — 2, write T'(w2, w;) = Vx(ws2) ® Vx(w;) and identify rad(w)
with ¢(rad(w)), where ¢ : Vx(w) < T'(w2,w;) is the injection given by Proposition 2.6.4] (part
2). Now by Lemmas [[[5.8] and Theorem [7.2] we have

ch (T(w2,wj) /rad(w)) = ch Lx(w) + ch Lx (w1 + wjs1)
+ch Lx (w1 +wj_1)
+ (146 +2)) ch Lx(wji2 + 0jn-3wn)
+ (1 +¢,(j) + €(2n — 7)) ch Lx(w;)
+(1+¢6(2n—j+2))chLx(wj_2)

and Proposition 2.6.4] (part B)) applies, yielding the existence of a surjective morphism of
KX-modules ¢ : T'(w,w;) - H°w) with rad(w) C ker(¢). As ch H(w) = x(w), the first
assertion holds and [Vx(w), Lx (w1 + wjt1)][Vx(w), Lx (w1 + w;—1)] < 1 as desired. Now if
U= Wit + 0;n_swy,, then Corollary yields p | j + 1 and hence [Vx(w), Lx(pn)] = 1
by Proposition (applied to a suitable Aj;o-Levi subgroup of X). Also Corollary 2.7.3]
forces p | n if = wj, so that p 1 j and finally, if ;1 = w;_o, then an application of Corollary
27 3lforces p | 2n—j+1, from which one deduces that [Vx(w), Lx(u)] = 1. The case j = n—2
can be dealt with in a similar fashion. We leave the details to the reader. O

Finally, we determine the composition factors of Vx(ws + w;) for 2 < j < n — 3, using
the method introduced in Section 2.7] together with Corollary [7.5.9

Theorem 7.5.10

Assume p # 2 and let X be as in the statement of Theorem [7.3. Also let w = wy + w; for
some 2 < j <n—2 and consider an irreducible KX -module V' = Lx(w) having p-restricted
highest weight w. Assume in addition €,(j)e,(n) = 0. Then

w/(wl + w]'_l)ep(zn_j)/(wj-i-? + 5j7n_3wn)ﬁp(j+1)/w;p_(gn_j-i_l) if p J[ an;
Vx(w) = w/wl + (A)j+1/w]€-i(22n+1) ifp | j?
ep(i—1)

w/(wj+2 + 5j,n—3wn)6p(j+l)/wj/wj—2 ifpln
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Proof. Let Vx(w) =V° > V!> ... D VFk D0 be the filtration of Vx(w) given by Proposition
.74 write 7y = wy + wjs1, To = w1 +Wj_1, T3 = Wjta + 0jn_sWn, T4 = Wj, L = w;_o and first
assume p 1 jn. As usual, one checks that

vE(T,) = vp(2n — J)x"(m2) + v (7 + 1)x*(73) + vp(2n — j + 1)x" (),

while x*(72) = ch Lx(72) + €,(2n — j + 2) ch Lx(u) by Theorem [.2] and x*(73) = ch Lx(73)
by Lemma Hence we have

v (T,) =v,(2n — j)ch Lx (1) + v,(j + 1) ch Lx(73) + v,(2n — j + 1) ch Lx ().

Therefore by Proposition [Z7.8] each of 7, 73 and p affords the highest weight of a
composition factor of Vx(w) and every other Tx-weight v € X (Tyx) such that p x v < w
satisfies [Vx(w), Lx(v)] = 0. One then concludes in this situation thanks to Corollary [[.5.9]

Next assume p | j and as above, we leave to the reader to check (using Lemma [2.4.6] and
Theorem [7.2)) that

v (T,) = vp(j) ch Lx(m1) + 1,(2n — j + 1) ch Lx(p).

Applying Proposition 7.8 together with Corollary [[.5.9 yields the desired result in this
situation as well. Finally assume p | n, in which case one can check (using Lemma [2.4.6]
again) that we have

v (T,) = vp(j + 1) ch Lx(13) + v,(2n) ch Lx (74) + vp(2n — j + 1) ch Lx ().
Proposition 2.7.8 and Corollary then complete the proof. O]

Proceeding as in the proof of Theorem [(.5.10] yields the following result. We leave the
details to the reader.

Theorem 7.5.11
Assume p # 2 and consider an irreducible KX -module V = Lx(w) having p-restricted highest
weight w = we + wy_o. Then

W/ (w1 4 wWneg) e 200D f20 Y [ UES)ig p k o (n — 2);

n

V(W) = { w/wr + woy + wy /™) ifpln—2
W wp— ) ifp|n.

7.5.4 Conclusion: the case €,(j)e,(n) =1

We now investigate the structure of Vx(w) in the case where 2 # p divides both j and n (in
which case 2 < j < n — 2), starting by the following generalization of Lemma [7.4.1T]
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7.5 Proof of Theorem [7.3} the general case

Lemma 7.5.12
Assume p # 2, let 2 < j < n — 2 be such that €,(j + 1) = €,(n+ 1) = 1 and consider an
irreducible KX -module V = Lx(w) having highest weight w = wy + w;. Then

my (wj) = 50/ = 2)( + D(n—j) + (G — D(n—1).

Proof. First assume 2 < j < n — 3 and observe that an application of Corollary 2.7.3]
yields [Vx(w), Lx(v)] = 0 for v = w; + wjt1, w1 + w;—; and w;, while on the other hand
[Vx(w), Lx(wjt2)] = 1 by Proposition [.5.6l Therefore x*/(w) = ch Lx(w) + ch Lx(w;42)
and hence my (w;) = Myy(w)(Wj) — MLy (w,,)(wj). Now an application of Corollary [.5.7]
yields my, o) (w;) = (j — 1)(3(j +2)(n — j) +j — 1), while m/, (o, ,,)(w;) = n— j by Lemma
[Z.15] from which the result follows. O

Using Lemma [6.1.1] together with Lemma [.5.12] we now give a lower bound for the
multiplicity of w; in Lx(ws + w;) in the case where p # 2 and €,(j)e,(n) = 1.

Proposition 7.5.13
Assume p # 2, let 2 < j < n — 2 be such that €,(j) = €,(n) = 1 and consider an irreducible
KX -module V = Lx(w) having highest weight w = wy + w;. Then

my (wj) > 53(7 = 3)(n —j) + (7 — 2)(n — 2).

Proof. Let J = {v,..., Y1}, where 73 = [1, 72 = P2 + B3, 7 = Pra1 for every 3 <
r <n-—1,sothat H = (Uy, : 1 <r < n-—1)is simple of type D,_; over K. Also
denote by {w],...,w/_;} the set of fundamental weights corresponding to our choice of
base for the root system of H. Adopting the latter notation, we get w’' = w|p,= wa + wj_1,
W= plry=w'—(114+2%+ A+ 2Y—3+Yn—2+Vn-1), and as €, ((j—1)+1) = ¢,((n—1)+1) = 1,
Lemma applies and the result then follows from Lemma [6.1.1] O

Using the method introduced in Section .71 we determine the composition factors of
Ve(w) in the case where w = wy + w; for some 2 < j < n — 2 such that p # 2 and

ep(J)ep(n) = 1.
Theorem 7.5.14
Assume p # 2, let 2 < j < n — 2 be such that €, e,(n) = 1 and consider the dominant

Tx-weight w = wy +w; € X (Tx). Then

Vx(w) = w/wi +wjt1/wi + wj-1/w;.

Proof. First observe that [Vx(w), Lx(wj—2)] = [Vx(w), Lx(w;+2)] = 0 by Corollary 2.7.3 and
let Vx(w) =V 2> VI ... D> V* 20 be the filtration of Vy(w) given by Proposition 2.7.4.
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Also write 71 = w1 + wjt1, T2 = w1 +wj_; and p = w;. As usual, we leave to the reader
to check that v#(T,,) = v,(5)x*(11) + v,(2n — j)x*(72) + v,(2n)x*(1). By Theorem [.2] we
get x*(m1) = ch Lx (7)) +ch Lx(u) as well as x*(73) = ch Lx(72) +ch Lx(u), from which one
deduces (using Lemma 2319 Proposition 2.7.8 and Theorem [7.2)) that

mLx(w)(:u) = Myy (w) (:u) - mLx(n)(:u) - mLx(Tz)(:u) - [VX(w)> LX(,U)]’

where [Vx(w), Lx(p)] # 0. One easily checks using Corollary [.3.2] Theorem [T.2] and Lemma
that mp, ) (@) < 25(j —3)(n — j) + (j — 2)(n — 2). An application of Proposition
then yields [Vx(w), Lx(p)] = 1, thus completing the proof. O

Proof of Theorem [7.3: In the case where w = wy + w3, the result immediately follows
from Theorems [T4.8 and [ 4T3 while if w = wy + w; for some 3 < j < n — 1, applying
Theorems [[.5.10, [[.5.17T] and [7.5.14] yields the desired assertion.

7.6 Proof of Theorem [7.4]

In this section, we assume p # 2, let Y, X be as in the statement of Theorem [7.4] and give a
proof of the latter. We first consider an irreducible K'Y-module V' = Ly () having highest
weight A = A\ + \; for some 1 < j < 2n.

7.6.1 The case A=\ +)\; (1 <j<2n)
We start by giving a result similar to Lemma [7.3.7in the case where w = w; + 2w,,. As usual,

write T'(wr, 2w,—1) = Vx(w1) ® Vx(2w,—1) and T'(wq, 2w,) = Vx(w1) @ Vx(2w,).

Lemma 7.6.1
Assume p # 2 and write w = wy + 2w,. Then T(wq,2w,) is tilting and its formal character
15 given by

chT'(w1, 2wy,) = x(w) + X (W1 + wy).

Proof. The fact that T(ws, 2w,) is tilting follows from Lemma 247 and Proposition 2.6.4]
(part [3). Also, since ch T'(wy, 2w,,) is independent of p, it is enough to find a decomposition
of T'(wq,2w,) in terms of irreducibles in characteristic zero. Now by Theorem [{.1] we have

T(>\17 >\n>|X = T(wlu 2wn—1) © T(wlu 2wn>7

where T'(A1, Ay) = V(A1) @Vy (\,), while T(Aq, Ay) = Vo (A1 + M) @ Vy (Ay1) by Proposition
Now by [Sei87, Theorem 1, Table 1 (I4, I5)] and Proposition [7.3.1] we have

T(wl, 2wn_1) ) T((A)l, 2wn) = Vy()\l + >\n>|X D VX(wn_l + wn),

and an application of Proposition [[.3.4] then completes the proof. a
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7.6 Proof of Theorem [T.4]

Proposition 7.6.2
Assume p # 2 and write w = wy + 2w,. Then Vy(w) = w/(wp_1 + wy )Y,

Proof. As above, write T'(wy, 2w,) = Vx(w1) ® Vx(2w,) and identify rad(w) with ¢(rad(w)),
where ¢ : Vy(w) < T(wy,2w,) is the injection given by Proposition Z6.4] (part 2). Now by
Lemmas [7.6.1] and 2.4.6] we have

ch (T(Wla 2wn)/rad(w)) =ch Lx(w) + ch Lx(wp_1 + wy)

and Proposition [2.6.4] (part B]) applies, yielding the existence of a surjective morphism of
K X-modules ¢ : T'(wy, 2w,) — H°(w) with rad(w) C ker(¢). As ch H(w) = x(w), the only
T'x-weight that could possibly afford the highest weight of a composition factor of Vy(w) is
wWn—1 + w, and thus an application of Lemma completes the proof. O

Theorem 7.6.3
Assume p # 2 and consider an irreducible KY -module V- = Ly ()\) having p-restricted highest
weight A = Ay + A, where 1 < j < 2n. Then

Jeoj TPy ifl<j<mn
V= w/wy + 2wWp_1/Wn_1 + witer(ntl) if j =n;
T ) w2t 2wyt ifj=n+1;

W/ (Wan—j41 + O nyowy) TeE=I+t)  otherwise.

In particular, X acts with exactly two composition factors on V if and only if j # n,n + 1,
and p12n—j+ 1.

Proof. First assume 1 < j < n — 1 and write w’ = w;_y. As in the proof of Corollary [.3.2]
one sees (using Lemma 2:3.19 instead of Theorem 223.TT]) that

i~ )(n—j+2) ifp|j+1;
iy () = G=Dr-j+2) pIJ‘
jn—7+2)—1  otherwise.

Notice that W' =w — (81 + -+ Bj_1 + 26, + - - - + 282 + Bn_1 + Bn). On the other hand,
applying Theorem yields

M7 5 (w) (w/) = Myy (w) (w/) - Ep(.j + 1) mLx(wj+1)(w/> - Ep(2n -7+ 1)

Now Mz (w;,1)(W) = Myy,,,) (@) = n —j+1 by Lemma [Z.T.5, while an application of
Corollary [[3.2] gives my, () (w') = j(n — j + 2) — 2, thus showing that

my| (W) = mry @) (@) + (1 +6(2n —j +1)).
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Consequently w’ occurs in a second K X-composition factor of V. One then checks that
my|, (V) = mp () (v) for every v € A(V|x) such that w’ < v < w and hence by Lemma [7.1.6],
we get [V]x, Lx(w')] =1+ €,(2n — j+1). Finally, an application of Proposition [7.3.1] yields
dim Vy (A) = dim Vx (w) + dim Vx (w’), while dim V' = dim Vy-(A\) — €,(j + 1) dim Ly (A;1+1) by
Lemma and

dim Ly (w) = dim Vx(w) — €,(j + 1) dim Lx (w; + 1 4 6 ,—2wy,)
—6(2n—j+1)dim Ly(wj_1)

by Theorem [T.2], so that the result follows from (75]). We leave the remaining cases to the
reader, since they can be dealt with in a similar fashion. O

In the remainder of this chapter, we shall write A\ — (c,)¥_, to denote the Ty-weight
A — Zi"ll croy, where ¢, € Zsg for 1 <r <2n—1and 1 <k < 2n—1 is maximal such that
¢ # 0. The following consequence of Theorem [7.6.3] shall be of use later in this chapter.

Corollary 7.6.4

Assume p # 2 and fir 3 < j < n such that p | 7+ 1 but p ¥ n+ 1. Also consider an
irreducible KX -module Lx(w) having p-restricted highest weight w = wy + wj + d; ,—1wWy, and
set pt = wj_3. Then

1 ‘ . ‘ .
mpy () = 50 =5 +3)(jn = j* +5j —n —10).

Proof. Consider an irreducible K'Y-module V' = Ly (\) having highest weight A = A\;+); and
observe that the Ty-weights recorded in Table [Z.10 are the only Ty-weights of V' restricting

topp=w— (B4 + B3 +28j2+3Bj1 + 485+ + 480 + 2801 + 25,).

Conditions
1773,2,3,4779%1 gs—r 220n=9)=1 {s77) s <p<p -2 r+1<s<n—1
1] 3 2 3= j+2 22(n r)— 1’ 17— J+1) ] S r S n—1
19— 3 22 3r— ]—1—1 22(n r)— 1’ 17"—j+2) ] <r<n- 1’ A — (1]‘—3’ 22(n—j)+3’ 1)
1] 2 2 3= j+1 22(n r)— 1’ 1r—j+3) ] S r S n—1

1]122n J+1) 1)
1r0]r31238]+122(” s)— 1715_74) OSTS]—Zl,jSSSn_l
17, 04r=3, 1, 22n—i+1) 1i-r-1) 0<r<j—4

0i—=3 12, 22(n—j+1) 1j—7“—2) 0<r<j;—-4
1r0]r2122(n])+31]7’3) 0<r<j;j—-4

>/>/>/>/>/>/>/>/>/>/ <

—
—
—
—
(1] 2 22n j+1) 12)
—
—
—
— (1",
—

Table 7.10: Ty-weights v € A(V) such that v|r, = p.
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7.6 Proof of Theorem [T.4]

Furthermore, one sees that each Ty-weight appearing in Table [[.10] is #4-conjugate to
either A or \;;; and one calculates (using Lemma 2.3.19)) that

) = (0= 343) (50 - D00 =7 +2) 45 -3).

Finally, an application of Theorem [Z.6.3]yields mp () (1) = my|, (1) =MLy (w,_,) (1) and one
then concludes thanks to Lemma [T.T.5 O

7.6.2 The case A= X+ \; (2<j < 2n—1) and conclusion

Assume p # 2 and let Y, X be as in the statement of Theorem [.4l We now aim at showing
that X has more than two composition factors on V' = Ly (A) if A = X + A, for some
2 < j < 2n — 1. We start by treating the case where 2 < j < n, in which case each of
w = A|ry= ws + w; + 0, ,_1wy. Clearly w affords the highest weight of a K X-composition
factor of V, while arguing as in the proof of Theorem [(.6.3 shows that w’ = w; 4+ w;_; affords
the highest weight of a second K X-composition factor of V.

Proposition 7.6.5
Let 2 < j <mn—2 be such that p{2n—j and consider an irreducible K'Y -module V' = Ly (\)
having highest weight A = Xy + A\;. Then X has more than two composition factors on V.

Proof. Ifp1j(j+1), then V' = V4 (\) by Proposition [T.5.6land the result directly follows from
Proposition [T.5.1l If on the other hand p | j, then dim V' = dim V3 (A) — dim Ly (A1 + Aj41)
by Proposition and an application of Theorem yields (pt2n — j and so ptn)

dimV = dim Vy (A\) — dim Ly (wy + wjt1) — dim Ly (w;).

Now [Vx(w), Lx(w1 + wjt1)] = [Vx(w'), Lx(w;)] = 1 by Lemma and hence one
gets dim V' > dim Ly (w) +dim Lx(w’) thanks to Proposition [[.5.1] thus showing that X has
more than two composition factors on V' in this situation. Finally, assume p | 7+ 1, in which
case

dimV = dim V3 (A) — dim Ly (Aj42)
by Proposition [7.5.6] while the same result applied to the A; o-Levi subgroup of X corre-
sponding to the simple roots 31, ..., 812 yields

dim Lx(w) S dim Vx(W) — dim Lx(w]'+2 + 5]'7”_3(,0”).

As Ly (AN jt2)|x = Lx(wjto+ 6jn—swy) by [Sei87, Theorem 1, Table 1 (14, I5)], an application
of Proposition [[.5.1l yields dim V' > dim L x (w) +dim Lx (w’), thus completing the proof. O

Proposition 7.6.6
Assume p # 2 and consider an irreducible KY -module V' = Ly (\) having highest weight
A= X+ \,_o. Then X has more than two composition factors on V.
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Proof. If pt (n — 1), then one can proceed exactly as in the proof of Proposition (we
leave the details to the reader) and hence we assume p | n — 1 for the remainder of the proof.
Here dim V' = dim V4 (\) — dim Ly (\,) by Proposition [[.5.6, while on the other hand, we
also get (as in the proof of Proposition [[.6.0]) that

dim Lx (w) < dim Vy(w) — dim Lx (2w,,—1) — dim Lx (2w,,).

Since Ly (\n)|x & Lx(2w,—1) @ Lx (2w,) by Theorem [Z1] an application of Proposition [7.5.1]
yields dim V' > dim Ly (w) + dim Lx (w’), from which the result follows. O

Lemma 7.6.7
Assume 2 # p | n and consider the Tx-weight w = wy + w,_1 + w, € XT(Tx). Then
W= Wn_1+ wy, affords the highest weight of a composition factor of Vx(w).

Proof. Let Vx(w) =V? > V!> ... D> VF D0 be the filtration of Vx(w) given by Proposition
274 As usual, we leave to the reader to check that v#(T,) = v,(n)x*(u) and hence the
assertion follows from Proposition 7.8 O

Proposition 7.6.8
Assume 2 # p t n+ 1 and consider an irreducible KY -module V- = Ly (\) having highest
weight A = Ay + A\,_1. Then X has more than two composition factors on V.

Proof. If pt (n — 1)n, then again the assertion directly follows from Propositions [Z.5.1] and
If on the other hand p | n—1, then dim V' = dim Vi (A\)—dim Ly (A1 +A,,) by Proposition
[7.5.6l and an application of Theorem yields (recall that p{n + 1 by assumption)

dimV = dim Vy-(A) — dim Ly (w1 + 2w, 1)
— dim Lx(wl + 2wn)
—dim Lx (wp—1 + wy).

Now [Vx(w), Lx (w1 + 2w;)] = [Vx ('), Lx(wp-1 + wy)] = 1 for i = n — 1,n by Lemma
and hence dim V' > dim Lx(w) + dim Lx (w’) by Proposition [[.5.], thus showing that
X has more than two composition factors on V' in this situation. Finally, assume p | n,
in which case dim V' = dim V4 (\) — dim Ly (\,41) by Proposition [[.5.6] while on the other
hand dim Ly (w) < dim Vy(w) — dim Ly(w,—1 + w,) by Lemma [[.6.7. Since Ly (A11)|x
is isomorphic to Lx(w,—1 + wy) by [Sei87, Theorem 1, Table 1 (I, I5)], an application of
Proposition [[.5.1] yields dim V' > dim Ly (w) + dim Lx ('), thus completing the proof. O

We now assume n+ 1 < j < 2n — 1, in which case the Tx-weight w = A7, = wa + wap_;
obviously affords the highest weight of a K X-composition factor of V. Again, arguing as in
the proof of Theorem shows that W' = w; + wap—j11 + §jntow,—1 affords the highest
weight of a second K X-composition factor of V.
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7.6 Proof of Theorem [T.4]

Proposition 7.6.9
Assume 2 # p t n — 2 and consider an irreducible KY -module V- = Ly (\) having highest
weight A = Ay + A\pao. Then X has more than two composition factors on V.

Proof. If pt (n+2)(n+3), then V= V4 () by Proposition [[.5.6] and thus the result directly
follows from Proposition .52l Next if p | n+2, then dim V' = dim Vi (A) —dim Ly (A1 + A, 13)
by Proposition and an application of Theorem [.6.3] yields (recall that p ¥ n — 2 by
assumption)

dimV = dim Vy()\) — dim LX (w1 + wn_3) — dim Lx(wn_g).

Now [Vx(w),Lx(w1 + wyp-3)] = [Vx(W'), Lx(wn—2)] = 1 by Theorem and hence
dimV > dim Lx(w) 4+ dim Lx(w") by Proposition [7.5.2] thus showing that X has more
than two composition factors on V' in this situation. Finally, assume p | n+ 3, in which case

dim V = dim Vy-(\) — dim Ly (Ansa)

by Proposition [.5.6, while on the other hand dim Lx(w) < dim Vx(w) — dim Lx (wy,—4) by
Theorem [73] Since Ly (Aia)|x = Lx(wn—4) by [Sei87, Theorem 1, Table 1 (I4, I5)|, an
application of Proposition yields dim V' > dim Lx(w) 4+ dim Lx(w’), thus completing
the proof. O

Proposition 7.6.10

Assume p # 2, fixn+2 < j < 2n — 2 such that p 1 2n — j and consider an irreducible
KY -module V= Ly(X\) having highest weight A = Ay + \j. Then X has more than two
composition factors on V.

Proof. If p 1 j(j + 1), then V' = V4(\) by Proposition and thus the result directly
follows from Proposition Next if p | 7, then dim V' = dim Vy-(A) —dim Ly (A + A 41) by
Proposition and an application of Theorem yields (recall that p f n by assumption)

dimV = dim Vy()\) — dim Lx(wl + w2n—j—1) — dim LX(w2n—j)-

Now [Vx(w), Lx(wi + wan—j—1)] = 1 by Theorem [[.3] while similarly, applying Theorem
gives [Vx(w'), Lx(wan—;)] = 1. Consequently an application of Proposition yields
dimV > dim Lx(w) + dim Lx (w’), thus showing that X has more than two composition
factors on V in this situation. Finally assume p | j + 1, in which case

dim V' = dim V4 (A) — dim Ly (Aj2)

by Proposition Also dim Lx (w) < dim Vy(w) — dim Ly (we,—;—2) thanks to Theorem
[[3l Since Ly (Aj2)|x = Lx(won—j—2) by [Sei87, Theorem 1, Table 1 (14, I5)], an application
of Proposition yields dim V' > dim Ly (w) + dim Lx(w’), thus completing the proof. O
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Finally, we study the situation where A = Ay + A9, _2, in which case each of w = 2wy and
w' = wy + w3 affords the highest weight of a K X-composition factor of V.

Proposition 7.6.11
Assume p # 2 and consider an irreducible KY -module V' = Ly ()\) having highest weight
A= Ao+ Aop_o. Then X has more than two composition factors on V.

Proof. Let w”" = w — f; — 2082 — 3 € X7 (Tx). Then one easily sees that the Ty-weights
A= =20 — 3, A= Q] —Qg — i3 — Qg —2, A— Q] — Qg — Qg3 — Qop 2, A— Qg — Q3 — 0y — oy 1,
A — Qg — Qg3 — Qoo — Qg1 and X\ — g3 — 29,9 — 9,1 all restrict to w”, so that
my|, (w”) > 6. On the other hand, one checks (using Theorem 231l for example) that
my, w)(w”) < 2 and my () (w”) = 3, showing the existence of a third K X-composition
factor of V. ]

Proof of Theorem [7.4: Assume the result true for ¥ = Y} of type Ag,_y over K and
every 3 < k < n and let Y =Y, be of type Ay,_1 over K. By Theorems [5.1] and [6.1] the
result holds for k = 3,4. Set J = {fs, ..., 5.} C II(X) and adopting the notation introduced
in Section 2.3.2] consider the D,,_;-parabolic subgroup P; = Q;L; of X. Also denote by
Py = @y Ly the parabolic subgroup of Y given by Lemma and notice that Ly has type
Ay,—z over K, with II(Ly) ={a}, ..., a5, 3} ={ag,..., a9, o} Writing X' = L)) Y' = L},
and X' = Ap.nys, an application of Lemma 2.3.10] together with our induction assumption
then shows that up to graph automorphisms, either A = A\; + A; for some 1 < j < 2n or
A=Ay + ) for some 2 < j < 2n — 1 such that j # n,n+1 and p{ 2n — j in the latter case.
Applying Theorem [7.6.3] for the weights A\ + A; and one of Propositions [7.6.5], [7.6.6] [7.6.8]
[7.6.9, [7.6.100 or [[.6.11] for the weights Ay + A; then completes the proof.

7.7 Proof of Theorem

In this section, we give a complete proof of Theorem [Z5l As in Section [[.3] we start by
investigating the restriction of various Weyl modules in characteristic zero.

7.7.1 Restriction of Weyl modules

Fix n+1 < j < 2n—1 and set A = 2A\; + \;, which by (1)) restricts to the dominant
Tx-weight 2wy + we,—; € X (Tx). We first find a description of ch Vi (\)|x in terms of the

Z-basis {x (1) uex+my) of Z[X (Tx)]”.

Proposition 7.7.1
Fixn+1<j<2n—1, consider A\ = 2\; + \; and denote by w € X (Tx) the restriction of
A toTx. Then

ch Vy(\)[x= x(w) + x(w1 + wWan—js1 + 0jnyown) + X(wan—j)-
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7.7 Proof of Theorem

Proof. Write V' = V4 () and first observe that chV|y is independent of p, so we may
assume K has characteristic zero for the remainder of the proof. Here AT (V|x) = AT (w)
by Lemma and proceeding as in the proof of Proposition [7.3.5 one easily shows that
W = w; +wjp € XT(Tx) affords the highest weight of a second K X-composition factor.
An elementary computation (using Theorem [ZZ.T], for example) yields

dim V' > dim Vyx (w) + dim(w; + wjt1),

showing the existence of w” € X*(Tx) such that [Vx(w), Lx(w”)] # 0. As K has charac-
teristic zero, this translates to the existence of a maximal vector in (V|x),~ for Bx. Now
Proposition [ T3 yields w' — (261 + -+ + 20,2 + Bu_1 + Bn) < w” < W' and we leave to the
reader to check that this forces w” € {w; + wj_1,w;}. Arguing as in the proof of Corollary
[[.3.2] one sees that my |, (w1 + wj—1) = My, (@) (w1 + wj—1) + My @) (wr + wj—1), so that
[V]x, Lx(wy +w;_1)] = 0. Therefore [V'|x, Lx(w,;)] # 0 and an application of Theorem [2.4.1]
completes the proof. O

Proceeding as in the proof of Proposition [[.7.1, one obtains the following result. The
details are left to the reader.

Proposition 7.7.2
Consider A = 21 + A\p,41 and denote by w € X+ (Tx) the restriction of X to Tx. Then

Ch VY()\)|X = X(W) + X(wl + 2wn—l) + X(wl + 2wn) + X(wn—l + wn)~

Fix n < j < 2n — 1 and consider an irreducible K'Y-module V' = Ly (\) having highest
weight A = 2X\; + A;. Also write w = A|p, and set p1 = wo,,—;. Then one easily checks that
v € A(V) restricts to p if and only if either v = A — (ag + -+ - + @9,—1) or v is recorded in
Table [Z.111

v Conditions

A — (27,1211 1<r<n-1

A — (27‘7 15—7"7 Ot—s—l7 12(n—t)—|—17 215—3—17 13—7") 1<r<2n _] —9
r+l<s<on—j—1
2n—73+1<t<n

A — (13’ Ot—s—I’ 12(n—t)+1’ 2t—s—1’ ]_s) 1<s<2n _] -1
M—j+1<t<n

Table 7.11: Ty-weights in Ly (2A\; + );) restricting to wa,—;.
One then sees that each Ty-weight appearing in Table [[.11lis #5-conjugate to either A or

A1+ Aj41 and applying Lemma [2.3.19 yields the following result on my|, () in this situation,
to which we shall refer later in this chapter.
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Lemma 7.7.3
Fizn < j <2n —1 and consider an irreducible KY -module V' = Ly (\) having p-restricted
highest weight A = 2X\1 + \;. Also write w = A|r, and set p = wa,—j. Then

) = (20 ) (50 =m0 = 1) 45— 60+2)) +i =

Corollary 7.7.4
Let w = 2wy + wj + 01w, € X (Tx) for some 1 < j < n and consider the Tx-weight
= wj+ 0jp_1wy,. Then

My (1) = j G(n )G =1 +n— 1) -

Proof. First assume 1 < j <n — 1 and write A = 2\; + Ag,,—; € X7 (Ty), so that A7, = w.
An application of Proposition [.71] then yields

My () (1) = My () x (1) = MV (w1 w5146, —2wn) (1) — 1

and one easily concludes using Corollary [[.3.2and Lemma[7.7.3 In the case where j = n—1,
proceeding in the exact same fashion (replacing Proposition [7.7.1] by Proposition [7.7.2] and
Corollary [[.3.2] by Lemma 2.3.19) yields the desired assertion. The details are left to the
reader. O

Proposition 7.7.5
Fiz 1 < j < n, consider A = 2\ + \;, and denote by w € X (Tx) the restriction of A to Tx.
Then

ch Vy()\)|X = X((A)) + x(w1 + wj_l) + X((A)j + 5]'7”_1(4)”).

Proof. Write V' = Vi () and first observe that ch V| x is independent of p, so we may assume
K has characteristic zero for the remainder of the proof. By Lemmal[l.T.6] AT (V]y) = AT (w)
and we leave to the reader to check (using Corollaries and [[.7. 4 respectively) that each
of wy +w;_; and wj + 0;,—1w, affords the highest weight of a K X-composition factor of V.
As usual, applying Theorem 2.4.1] completes the proof. a

Before going any further, we record the following consequence of Proposition [.7.5] which
explains the need for our assumption on p in Theorem

Corollary 7.7.6

Fix1 <j<2n—1 (with j # n,n+ 1) and consider an irreducible K'Y -module V = Ly (\)
having p-restricted highest weight X = 2\; + X\; € X (Ty). Also suppose that X has exactly
two composition factors on V. Then p | j + 2.
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7.7 Proof of Theorem

Proof. One first checks that AT(\) = {\, A+ X1, A\j+2} and hence an application of Lemma
yields V' = V4 () if p 1 j + 2. The result then follows from Propositions [[.7.1] and
(7.5 0

Corollary 7.7.7
Fiz 1 < j < n such that p | j + 2, consider an irreducible KY -module V' = Ly (\) having
p-restricted highest weight A = 2\ + \; and write p = w;_o. Then

1 . . . .
myy () (1) = mvc (i) = 5(n = j +2)(jn - 32+ 35 —4).

Proof. First observe that our assumption on p forces 2 < j < n. Also, one checks that the
Ty-weights v € A(X) such that v|p, = p and my, (n(v) > 1 are as in Table [Z.12]

P (2]’—27 3’ 4r—j+1’ 35—7” 22(71—5)—17 1s—r) ] <r<n-2
r+l1<s<n-1

A — (2]'—2’ 3r—j+2’ 22(n—r)—1’ 17’—j+1) ] <r<n-1
A — (2]'—1’ 3r—j+1’ 22(n—r)—1’ 1r—j+2) ] <r<mn-1

) — (27‘7 1j—7"—27 2’ 33—]’—1—1’ 22(11—3)—17 13—7“) 1<r< ] -3

1<s<n-—1
A — (27,1772 22(n=i)+2 1i-r=l) 1<r<j-3
A\ — (27«’ 1j—r—1’ 22(n—j)+2’ 1j—r—2) 1<r<j-—3
A — (1972,2,3r7F 92(n=r)=1 ) j<r<n-—1

Table 7.12: Ty-weights v € A(X) such that v|p, = wj_s and my;, (n)(v) > 1.

Now by Theorem 2.3.4 my (v) = my, ) (v) for every v € A()) such that my, ) (v) = 1.
Applying Lemmas and then completes the proof, since any Ty-weight appearing
in Table [[.12is #4-conjugate to either A\; + \j 11 or Aj4o. O

7.7.2 Weyl filtrations and tensor products

Let G be a simple algebraic group of type A, over K, fix a Borel subgroup B = UT of G,
where T is a maximal torus of G and U the unipotent radical of B. Also let IT = {~y,..., 7.}
be a corresponding base of the root system ® of G and {07y, ..., 0,} be the set of fundamental
weights for T' corresponding to our choice of base II.
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Lemma 7.7.8
Assume p # 2 and fixr 1 < j < n. Also consider o = 201 + 0; and denote by T'(20y,0;) the
tensor product Vg (201) ® Vig(o;). Then T'(201,05) is tilting and

chT(204y,0;) = x(0) + x(01 + 0j41).

Proof. The first assertion directly follows from Lemmas [2.4.4] and Proposition 2.6.4]
(part [B). Also observe that ch T'(204, 0;) is independent of p and thus we may assume K has
characteristic zero for the remainder of the proof. By Proposition 2.6.4] (part [Il), o is the
highest weight of T'(204, 0;), so that AT (T'(204,0;)) = {0,002+ 0,01+ 0;+1,0j12}, and using
Lemma 2.3.T9, one easily sees that mp(as, ;) (01 +0j11) = j+ 1, while my, o) (01 +0j41) = J.
Therefore 04, affords the highest weight of a second K G-composition factor of T'(20y, 0;)
and applying Theorem [2.4.T] then yields the desired result. O

Lemma 7.7.9
Assume p # 2 and fir 1 < j < n. Also assume p{ j+ 1, consider o = 20y + 0, and write
T(oy+0j,01) = Vg(o1 4+ 0j) ® Vg(o1). Then T'(o1 + 04, 01) is tilting and

chT(oy + 05,01) = x(0) + x(02 + 0;) + x(01 + 0j41).

Proof. As usual, the first assertion directly follows from Lemma together with Propo-
sition 2.6.4] (part B)) and ch T'(¢01 + 0}, 01, 01) is independent of p. We thus proceed as in the
proof of Lemma [T.7.8 first noticing that exactly two Tg-weights restrict to oo +0; € X (1¢),
whose multiplicity in V(o) equals 1. Therefore [V|q, Lg(o2 + 0)] = 1 as desired and one
easily shows that oy + 04, affords the highest weight of a third K G-composition factor of
T(oy + 0j,01,01) as well. An application of Theorem 2.4.T] then completes the proof. a

In the remainder of this section, we assume p # 2 and let Y, X be as in the statement of
Theorem [ and for 1 < j <n—1, we set T'(2wy,w;) = Vx(2w1) ® Vx(w;). (Recall that the
Ty-weight A = 2)\; + A; restricts to 2w; + w;.) We now use Proposition [7.3.1] together with
Lemma [T.7.8 to determine the formal character of T'(2wy,w;).

Lemma 7.7.10
Fiz1 <j<n—1 and write w = 2w, +wj. Then the formal character of T'(2wy,w;) is given

by
chT'(2wy, w;) = x(w) + x (w1 + wWjt1 + Ojn—own) + x (w1 +wj—1) + x(w)).

Proof. Observe that chT'(2w;,w;) is independent of p and hence it is enough to find a
decomposition of T'(2w;,w;) into a direct sum of irreducibles in characteristic zero. Now
Vy(2)\1)‘x = VX (2w1) D Vx(O) by Theorem IE:L so that

T2, Aj)|x = T(2w1, wy) & Vi (A))]x.
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7.7 Proof of Theorem

Also Vi (\;)|x is isomorphic to Vx(w; + 6;n—1wy) for every 1 < i < n by (.5) and thus
Proposition [7.3.1] and Lemma [T.7.8] yield

ch T(le, w]‘) =ch Vy()\)|X + X(wl + Wit1 + 5j,n_2wn),

where A = A\; 4+ \; as above. Finally, an application of Proposition [.7.5] yields the desired
result. O

Similarly, set T'(2wy, w,—1 + wy) = Vx(2w1) ® Vx(w,—1 + wy,) and again observe that the
Ty-weight A = 2)\; + \,,_; restricts to 2w; + w,_1 + w,. Arguing exactly as in the proof of
Proposition [7.7.10] (replacing Proposition [7.3.11by Proposition[7.3.4]) then yields the following
result. We leave the details to the reader.

Lemma 7.7.11
Write w = 2wy 4+ wy,—1 + wy,. Then the formal character of T'(2wy, w1 + wy) is given by

ch T'(2wy, wp—1 + wy) = x(w) + x(w1 + 2w,—1) + x (w1 + 2w,,)
+ X(wl + wn—2) + X(wn—l + wn)-

Next let 1 < j <n—2and set T'(wy +wj, w1) = Vx (w1 +w;) ® Vx(wq). Using Proposition
(.31l and Lemma [7.7.9] we determine the formal character of T'(w; + w;, ws).

Lemma 7.7.12
Fiz1 < j<n—2 and let w = 2w, +w;. Then the formal character of T' (w1 +w;,w) is given
by

ch T(wl + Wi, wl) = X(w) + X((A)g + wj) + x(w1 + Wji4+1 + 5]'7”_2(,0”)
+ X (w1 + wj—1) + x(wj).

Proof. Observe that chT'(w; + wj,w;) is independent of p, hence it is enough to find a
decomposition of T'(wy 4+ wj,w;) into a direct sum of irreducibles in characteristic zero. Now
V(A1 4+ A))|x = Vx(wi +w;) @ Vx(w;—1) by Proposition [7.3.1] so that

T()\l + )\j, >\1>|X = T(wl + wj,wl) () VX((A)j_l) X Vy(>\1)|X.

Now V4 (\;)|x is isomorphic to Vy(w; + 6; p—1wy) for every 1 < i < n by (ZH) and thus
Propositions [[.3.1] [[.5.1] and Lemma [[.7.9] yield

chT(w1 + wj,wl) =ch Vy()\)|X -+ ch Vy()\g + >\j)|X
+ x(wl + Wj+1 + 5]‘,”_200”),

where A = 2)\; + \; as above. Again, applying Proposition [7.7.5] completes the proof. O
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Set T(wy + wp—1 + wp,w1) = Vx(wi +wp_1 + wy) ® Vx(wy) and again observe that the
Ty-weight A = 2)\; + \,,_; restricts to 2wy + w,_1 + w,. Arguing exactly as in the proof of
Proposition (using Propositions [7.3.1] [7.3.4] [7.5.1] and Lemma [7.7.9)) then yields
the following result. We leave the details to the reader.

Lemma 7.7.13
Let w = 2wy + w1 + wy. Then the formal character of T' (w1 + wp—1 + Wn,w1) is given by

ch T (w1 4+ wp—1 + Wp,w1) = x(w) + x(ws + wp_1 + wp) + x (w1 + 2w,—1)
+ x(w1 + 2wy,) + (w1 + wy—2)
+ X(wn—l + wn)-

Finally, we leave to the reader to show the following result, to which we shall refer
throughout the remainder of this chapter.

Lemma 7.7.14

Assume 2 # pfn+1, fir1 <j<n-—2and let w = 2wy + w;. Also consider the filtration
Vx(w)=Vo2 V!> ... DV* 20 of Vx(w) given by Proposition[2.7.4) and set i = w;_5. If
1<j<n-—2, then

VI(T,) = vp(7 + 2)xM (w1 + wjg1) — vp(3 4+ 2)x* (Wit + 0jn—3wn)
—+ l/p(2’n, — j + Q)X”(wl + (A)j_1>
— (20 — j + 2)x"(wj-2),

while if 7 =n — 2, then

Vi (T,) = vp(J + 2)x" (w1 + wjr1) = vp(J + 2)x*"(Wjs2 + 6jn—3wn)
+ (20— j + 2)x* (w1 + wj-1)
—1p(2n — j + 2)x"(wj—2).

7.7.3 Conclusion: the case p{n(n+ 1)

Let K, Y, X be as in the statement of Theorem [[[5] fix 1 < j7 < n and assume p{n(n+ 1).
Considering the Tx-weight w = 2w; + w;, we proceed as in Section [T.4] starting with the
following consequence of Lemma [Z.7.10.

Corollary 7.7.15

Assume p f n(n + 1) and let 1 < j < n — 1 be such that p | (j + 2)(2n — j + 2). Also
write w = 2wy + w; and suppose that w # p € X (Tx) affords the highest weight of a
composition factor of Vx(w). Then p € {wi+wji1+0;n—own, w1 +wj_1, W2+ 0, n—3wWn, Wj_o}
and [Vx(w), Lx(un)] = 1.
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7.7 Proof of Theorem

Proof. Write T'(2wq,w;) = Vx(2w1) ® Vx(w;), which is tilting by Lemma [2.4.6] Proposition
2.6.4] (part B)) and Corollary [[.2.3] and identify rad(w) with «(rad(w)), where

L Vx(w) = T'(2wy, w;)

is the injection given by Proposition 2.6.4] (part 2]). First assume p | j+2 (so j < n—2) and
observe that by Lemmas [[.7.10, 2.4.6] and Theorem [7.2] we have

ch (T(2w1,w;) /rad(w)) = ch Lx (w) + ch Ly (w1 + wjs1)
+ch Lx (w1 +wj_1)
+ch Lx(wjta + 6jn—swn)
+ ch Lx(wj)
+€,(n+2)ch Lx(wj_2).

Now clearly Proposition 2.6.4] (part Bl) applies, yielding a surjective morphism of K X-
modules ¢ : T(2wy,w;) — H%w) with rad(w) C ker(¢). As ch H’(w) = x(w) and since
[Vx(w), Lx(wj)] = 0 by Corollary 73] the result follows in this case. A similar argument
in the situation where p | 2n — j 4+ 2 then completes the proof. The details are left to the
reader. O

Proposition 7.7.16
Assume pfn(n+1) and let 1 < j <n—1 be such that p | (j+2)(2n —j +2). Also consider
an irreducible KX -module V = Lx(w) having p-restricted highest weight w = 2wy +w;. Then

w/wi 4 Wi/ (w1 + wj_p)P+?) ifplj+2;
W/ (w1 + Wit + 6 own) ™ Juy +w;  ifp|2n—j+2.

Vx(W) = {

Proof. First assume p | j + 2 and let Vy(w) = V° > VI O ... D VF¥ 2 0 be the filtration
of Vx(w) given by Proposition 274l Observe that j < n — 2 and write 77 = wy + w1,
T =Wt Wi, 3= Wits + 03wy, and g = wj_o. Now x*(1y) = ch Lx(71) + ch Lx(73)
and x*(m2) = ch Lx(7) + €y(n + 2) ch Lx(p) by Theorem [[.2] while x*(73) = ch Lx(73) by
Lemma 2.4.6] Therefore an application of Lemma [T.7.14] yields
vI(T,) = vp(j +2) ch Lg(m) + v,(2n — j + 2) ch Ly (12).

If p 1+ n+ 2 then by Proposition 2.7.8 7, affords the highest weight of a composition
factor of Vx(w) and every other Tx-weight v € X (Tx) such that 1 < v < w satisfies
[Vx(w), Lx(v)] = 0. One then concludes in this situation thanks to Corollary We
leave to the reader to conclude in the case where p | 2n — j 4 2, as in it can be dealt with in
a similar fashion. O
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Proof of Theorem [7.3: the case p  n(n + 1). Let K, X, Y be as in the statement of
the Theorem, with p | j + 2 and p { n(n + 1). We start by considering the situation where
A = 2\ + ) for some 1 < j < n (in which case one notices that j < n —2). Asin
the proof of Theorem [[.6.3] one shows that w’ = w; 4+ w;_; affords the highest weight of a
K X-composition factor of V' and that [V|x, Lx(v)] = 0 for every v € X*(Tx) such that
w' < v < w. Lemma [6.1.3] Theorems [7.4] and Proposition then yield

dim V = dim Vy-(A\) — dim Ly (A + Aj41)
= dim Vy()\) — dim Lx(wl + (A)j_H) — dim Lx(Wj)
= dim Vy(w) — dim Lx (w1 + wjt1) + dim Vx (w; + w;—1).

Therefore dim V' = dim Ly (w)+(1+€,(n+2)) dim Lx (w’) by Proposition[7.7.16 and Theorem
72, so that the assertion holds in this situation. (In particular X has more than two
composition factors on V if p | n + 2.) Assume n+ 1 < j < 2n — 1 for the remainder of the
proof and let w = |7, = 2w; +wo,_j, W' = wy+w;41. Arguing as above (replacing Proposition
by Proposition [[.71]), one checks that each of w and w’ affords the highest weight of a
composition factor of V|x as well as dim V' = dim Vi (w) —dim Lx (w3 +wap—j—1)+dim Vx (w').
Again, applying Theorem and Proposition then completes the proof.

7.7.4 Conclusion: the case p #3, p|n

Let K, Y, X be as in the statement of Theorem [7.5] assume p # 3 and let 1 < j < n be such
that €,((j +2)(2n — j + 2))ep(n) = 1. Considering the Tx-weight w = 2wy + w;, we start by
investigating the structure of Vx(w) for w = 2wy + w;.

Proposition 7.7.17
Assume p # 3 and let 1 < j < n —1 be such that p divides both (j +2)(2n — j + 2) and
n. Also consider an irreducible KX-module V' = Lx(w) having p-restricted highest weight
w = 2w +w;. Then
Velw) = {w/wleﬂ Fpli+2
wlw +wi—1 ifp|2n—j+2.

Proof. Write T'(w; + wj,w1) = Vx(w1 + w;j) ® Vx(wy), which is tilting by Lemma [2.4.6]
Theorem and Proposition 2.6.4] (part ), and identify rad(w) with ¢(rad(w)), where ¢ :
Vx(w) < T(w; + wj,w;) is the injection given by Proposition 2:6.4] (part 2)). First assume
0 < j < n—1such that p | j + 2 and observe that by Lemmas [[.7.12] 2-4.6] Theorems
and Theorem [7.3] we have

ch (T(wl + wj,wl)/rad(w)) =ch Lx(w)+ ch Lx(ws + wj)ch Lx(wy +wji1)
+ chLX(w1 + wj_l) + ch Lx(Wj+2)
+2ch Ly (wj).
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7.7 Proof of Theorem

Proposition then clearly [2.6.4] (part [3]) applies, yielding a surjective morphism of K X-modules
¢ : T(wy + wj,wr) - Hw) with rad(w) C ker(¢). As ch H%(w) = x(w), we get that if p
affords the highest weight of a composition factor of V, then

p € {wr +wj, w1 + Wy, Wi+ Wj_1, W2, Wit

Now clearly ws + w; cannot afford the highest weight of a composition factor of Vx(w) and
an application of Corollary [2.7.3] shows that [Vx(w), Lx (w1 + w;—1)] = [Vx(w), Lx(w;)] = 0.
Considering the A;;o-Levi subgroup of X corresponding to the simple roots 3y, ..., 5,42, one
gets [Vx(w), Lx(wjt2)] = 0 as well by Lemma 6.3l An application of Lemma then
yields the desired result in this case. A similar argument in the case where p | 2n — j + 2
completes the proof. The details are left to the reader. O

Proof of Theorem [7.3: the case 3 # p | n. Let K, Y, X be as in the statement of the
Theorem, with p dividing both j + 2 and n. We start by considering the situation where
A =2\ + \; for some 1 < j < n—1. As in the case where p { n(n — 1), one shows that each
of w and W = w; + w;_; affords the highest weight of a K X-composition factor of V and
that [V|x, Lx(v)] = 0 for every v € X (Tx) such that w’ < v < w. Lemma [6.1.3], Theorem
and Proposition then yield

dimV = dim V3 (A\) — dim Ly (A + Aj41)
=dim V3 (A\) — dim Ly (w1 + wji1 + 5 p—owy,) — dim Lx (w;)
= dim Vyx (w) — dim Lx (w1 + wjt1 + 0;n—owy) + dim Vy (w1 + w;_1).
and the result follows from Proposition [Z.7.17] in this situation. Finally, a similar argument

allows us to conclude in the case where n +1 < j < 2n — 1. We leave the details to the
reader.

7.7.5 Conclusion: the case ,3e3(n) =1

In this section, we give a proof of Theorem under the assumption that p = 3 divides n.
First let 1 < j < n be such that j =1 (mod 3) and consider the Ty-weight

A =2\ + )\j S X+(Ty)

As usual, write w = A|r, as well as W’ = w; + w;_; and let v* € V) be a maximal vector
in V for By (hence also for Bx). As in the proof of Theorem [[.6.3] one easily sees that w’
affords the highest weight of a second K X-composition factor of V.

Lemma 7.7.18

Adopt the notation introduced above and suppose that Ext (Lx(w'), Lx(1)) = 0 for every
w € AN (Vlx). In addition, suppose that X has more than two composition factors on V.
Then replacing V' by V* if necessary, there exists a third mazimal vector in 'V for Bx.
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Proof. First observe that the result obviously holds if either (Xv™) or (Xw™) is reducible.
Therefore we shall assume (XvT) = Ly(w) as well as (Xw™) = Ly (w') for the remainder of
the proof. Now by assumption, we have V|x = Lx(w’') & M, where M = V|x/Lx(w'), and
if M contains a maximal vector not in (v™), then the result follows. Otherwise, let U be
any irreducible K X-submodule of M (hence vt € U) and observe that v~ = wovt € U as
well, where wq denotes the longest element in #x. Let f© € M* be defined by fT(v™) =1,
fH(M,) = 0 for every p € A(M) such that y # —w. Then for every ¢t € T and v € M,
we have (tf7)(v) = fT(¢t7'v), from which one easily deduces that f* € M?*. Also for every
a€ Xt (ITx),ce K,and v e M, (n < w), we have

(ta(0)fT) (W) = fT(ta(=c)v)

= f* <v + > vy) ,
P=V=w
where v, € M, for every v € X*(Tx) such that u < v < w. Therefore f* is a maximal
vector in M* for By having weight w and clearly f* ¢ Anny.«(U), as f*(v™) = 1, showing
that Anny,+(U) contains a maximal vector not in (f)k, say ¢*. Since Ly (w’) is self-dual,
we have V* = Lx(w') & M* and hence get the existence of 3 maximal vectors in V* for By,
thus completing the proof. O

Next let n +1 < j < 2n — 1 be such that j = 1 (mod 3) and consider the Ty-weight
A =2\ + ) € XT(Ty). Also write w = \|1, = 2wy + way,—; as well as w’ = wy + way,—j41 and
let vt € V) be a maximal vector in V' for By (hence for Bx as well). As above, one easily
checks that each of w and w’ affords the highest weight of a K X-composition factor of V.
Now Ext (Lx(w), Lx(w')) = 0 by Lemma2.6.5], so there exists a maximal vector in (V|x ).
for By, say w™. We leave to the reader to show the following result, whose proof is similar
to that of Lemma [T.7.I8

Lemma 7.7.19

Adopt the notation introduced above and suppose that Ext’ (Lx(w'), Lx(u)) = 0 for every
pw € AT (Vlx). In addition, suppose that X has more than two composition factors on V.
Then replacing V' by V* if necessary, there exists a third mazimal vector in 'V for Bx.

Using Lemma [Z7.14] we also study the expression x“7-2(2w; 4+ w;) in terms of characters
of irreducibles in the case where 3 < j < n.

Proposition 7.7.20
Assume 0,3€6,(n) =1 and let 3 < j < n —1 be such that €,((j +2)(2n — j +2) = 1. Also
consider the T'x-weight w = 2w +w; and set @ = w;_o. Then
) = chLx(w)+chLx(wi +wjr1) ifj=1 (mod 3);
X chLx(w)+chLy(w +wj—q1) ifj=2 (mod 3).
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7.7 Proof of Theorem

Proof. First assume j = 1 (mod 3) and let Vyx(w) = V® > VI D ... D V¥ 2 0 be the
filtration of Vx(w) given by Proposition 2.7.4l Using Lemma [2.4.6] Theorem [[.21and Lemma
[7.7.14], one checks that

I/éL(Tw) = Vg(j + 2) ch Lx(wl + Wj+t1 + 5]'7”_2(4)”).

Therefore the result follows from Lemma 2.3.19 together with Proposition 2.7.8 Arguing
in a similar fashion yields the result in the case where j = 2 (mod 3), thus completing the
proof. The details are left to the reader. O

Lemma 7.7.21

Assume §,36,(n) =1 and let 3 < j < n —1 be such that j =1 (mod 3). Also consider an
irreducible K'Y -module V' = Ly (\) having highest weight A = 2X\; + \; and write w = Ny,
W =wy +wj_1, as well as p = w;_s. Then

My, (1) = mpy ) (1) + mpy ey (@)

Proof. Write | = my, (), () — my|, (). Then applying Proposition [.7.5, Lemma 2.4.6]
Theorem and Proposition [Z.7.20) yields

my |, (@) = my; ) (1) =1
= My (w) (M) + mVX(W/)(IU’) + mVX(%‘)(M) —1
= MLy () (1) + MLy ) (1) + MLy 0 wy40) (1) + My ) (1) — 1

Finally, we leave to the reader to check (using Lemma [.T.5 together with Corollaries
L6.4 and [LTT) that mp (4w, ) (1) +Mpy ;) (@) = [, thus completing the proof. O

Lemma 7.7.22

Assume 0p3€,(n) = 1 and let n +2 < j < 2n — 1 be such that j = 1 (mod 3). Also
consider an irreducible K'Y -module V' = Ly (\) having highest weight A = 2X\; + \; and write
W= A|ry= 2w + woy_j, W = wy + wop_jt1, as well as p = wo,_;. Then

mV\X(M) = M7y (w) (M) + mL;g(UJ’)(M)‘

Proof. We proceed as in the proof of Lemma [Z.7.21] writing [ = muyy, (n) (1) — my ().
Then applying Proposition [[.7.1] Lemma [2.4.6] Theorem and Proposition [7.7.20Q] yields
my |y (1) = myy () (1) =
= My (o) (1) + My ) (1) + My (1) — 1
= M7 () (M) + mLX(w’)(/U + mLX(w1+w2n7j71)(lLl/> +1-1

Finally, we leave to the reader to check (using Lemmas 2.3.19 and [7.7.3] for example)
that mzy (w, ws,_; 1) (1) +1 =1, thus completing the proof. O
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Proof of Theorem[7.: the case 0, 3¢,(n) = 1. First assume 1 < j < n, in which case each
of w= A, and w' = wy + w;_; affords the highest weight of a K X-composition factor of
V' as seen above. By Lemma [[.7I8] either V |y = Lx(w) & Lx(w’) or there exists a third
maximal vector u™ in V for Byx. Now in the latter case, by Proposition [[.I1.3] there exists
w"” € XT(Tx) such that w;_» < w” g w and u™ € V,u. Therefore w” € {wy + wj_3, w;,w;_2}
and by Theorem 2.3.4] we get that m, () (w;j—2) > 0 in each case. An application of Lemma
[7.7.21] then allows us to conclude in this situation.

Finally, assume n < 7 < 2n —1 and first observe that if ) = n+ 1, then X has more than
two composition factors on V. Also, arguing as above (replacing Lemma [.7.18 by Lemma
[C719, wj_o by wa,—; and Lemma [['7.2T1 by Lemma [[.7.22]) completes the proof.
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