Restricting representations of classical algebraic groups to maximal subgroups

Fix an algebraically closed field $K$ having characteristic $p\geq 0$ and let $Y$ be a simple algebraic group of classical type over $K.$ Also let $X$ be maximal among closed connected subgroups of $Y$ and consider a non-trivial $p$-restricted irreducible rational $KY$-module $V.$ In this thesis, we investigate the triples $(Y,X,V)$ such that $X$ acts with exactly two composition factors on $V$ and see how it generalizes a question initially investigated by Dynkin in the $1950$s and then studied by numerous mathematicians. In particular, we study the natural embeddings of $\mbox{SO}_{2n}(K)$ in both $\mbox{Spin}_{2n+1}(K)$ and $\mbox{SL}_{2n}(K)$ and obtain results on the structure of certain Weyl modules.


Advisor(s):
Testerman, Donna
Year:
2015
Publisher:
Lausanne, EPFL
Keywords:
Other identifiers:
urn: urn:nbn:ch:bel-epfl-thesis6583-4
Laboratories:




 Record created 2015-09-14, last modified 2018-05-01

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)