
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. C. Koch, président du jury
Prof. B. Falsafi, directeur de thèse
Prof. K. Sankaralingam, rapporteur

Dr P. Ranganathan, rapporteur
Prof. E. Bugnion, rapporteur

Accelerators for Data Processing

THÈSE NO 6710 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 25 SEPTEMBRE 2015

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE D'ARCHITECTURE DE SYSTÈMES PARALLÈLES

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2015

PAR

Yusuf Onur KOÇBERBER

Acknowledgements

First and foremost, I would like to thank my PhD advisor, Babak Falsafi, for giving me the

opportunity to do a PhD in his lab. I not only learned how to become a better person from

him but I also greatly benefited from the decent research and social environment he created

at EPFL. Babak has been a constant source of inspiration with his extremely high standards,

which brought out the best in me. At the same time, I always admired how he made hard

goals simple and achievable. Undoubtedly, doing a PhD with Babak was the best thing ever

happened to me.

Besides my advisor, I would like to thank the rest of my thesis committee, Edouard Bugnion,

Partha Ranganathan, and Karu Sankaralingam, for their encouragement, insightful comments,

and also the constructive criticism during my thesis proposal, which directly influenced the

ideas presented in my thesis. I would also like to thank Christoph Koch who accepted to be

my thesis jury president and provided valuable feedback during my defense.

A very special thanks goes to Boris Grot who truly made an impact on this thesis. Boris spent

countless hours on my work and he always managed to take it to the next level. Meanwhile he

was always positive, passionate and encouraging. I am not sure if I will ever find a mentor/ad-

visor/collaborator like Boris in the rest of my life!

I am also grateful to Partha Ranganathan and Kevin Lim for being excellent mentors and

teachers during the joint project we pursued and my internships at HP Labs. Partha had a

big influence on me with his vision, leadership and scientific skills. Kevin was a vast source

i

Acknowledgements

of technical and practical information. Both Partha and Kevin spent tremendous amount of

energy and time while helping me to reach my deadlines.

Stavros Volos, Javier Picorel and Djordje Jevdjic have been marvelous collaborators, great

friends, thirsty drinking buddies, and tireless travel companions. They were my go-to people

whenever I needed help with my research and they always provided top-quality feedback.

Outside of the lab, I enjoyed their company. Stavros made winters fun with his never-ending

passion for skiing. Javier made me laugh all the time with his good humor and impersonations.

Djordje made my coffee breaks interesting with his music and political knowledge.

During early years of my PhD, Mike Ferdman was my PhD survival guide as he thought me

countless things about speaking, writing and doing research. Alisa Yurovsky and Mike Fer-

dman also created a social lab culture by throwing parties and organizing outings, which

allowed me to make new friends in Lausanne.

If it was not for my undergrad and MS advisor, Oguz Ergin, I wouldn’t have gone to graduate

school. His guidance throughout my time at TOBB ETU has changed my life. When Cansu and

I wanted to start a PhD, Oguz made a big sacrifice by letting and helping us leave the Kasırga

lab at the same time. Thanks Oguz, the Kasırga spirit never dies!

I would like to thank all members of the PARSA team for their friendship, collaboration and

support. Specifically, Sotiria Fytraki provided delicious Greek food during deadlines and truly

helped me before the candidacy exam in my first year. Pejman Lotfi-Kamran was a great

office-mate who made my life easier with his deep knowledge of the simulation infrastructure.

Effi Georgala, the honorary member of PARSA, has been a great friend, always keeping me

updated with the most recent exercise trends and food recipes. I would also like to thank Effi

for being my personal pronunciation coach throughout the years. A warm thanks to Almutaz

Adileh, Evangelos Vlachos, Jennifer Sartor, Alexandros Daglis, Yorgos Psaropoulos, Nooshin

Mirzadeh, Mario Drumond, Dmitrii Ustiugov and Nancy Chong for their friendship and sup-

ii

Acknowledgements

port throughout my PhD journey. I highly appreciated the assistance of Stéphanie Baillargues,

Valérie Locca and Rodolphe Buret in making all the administrative and technical tasks as

painless as possible throughout the years. I also wish to acknowledge Damien Hilloulin for

translating my thesis abstract into French.

Several people and institutions outside of PARSA and/or EPFL have been instrumental in this

thesis. I would like to thank Pınar Tözun and Danica Porobic from the DIAS lab at EPFL for

tirelessly answering my questions about database systems and proofreading my papers. Tim

Harris of Oracle Labs kindly helped me to run experiments on their servers. Google Doctoral

Fellowship and HP Labs Innovation Research Program graciously funded my research.

The Turkish Gang (Duygu Ceylan, Kerem Kapucu, Barıs Can Kasıkçı, and Pınar Tözun) was

my laughing therapy and kept me sane in graduate school. I really enjoyed the nights we

spent together laughing, cooking and drinking. You are my life-long friends and I will miss you.

These acknowledgments cannot be possibly complete without expressing my gratitude to

my parents, Emine and Abdulkadir Koçberber, and my sister, Nur Kılıç Koçberber, for their

unconditional love and support. I will forever remain indebted to them.

Finally, words cannot describe my feelings, nor my gratitude to my better half, Cansu Kaynak,

for always being there for me, her patience, and undying love.

iii

Abstract

The explosive growth in digital data and its growing role in real-time analytics motivate the

design of high-performance database management systems (DBMSs). Meanwhile, slowdown

in supply voltage scaling has stymied improvements in core performance and ushered an era

of power-limited chips. These developments motivate the design of software and hardware

DBMS accelerators that (1) maximize utility by accelerating the dominant operations, and (2)

provide flexibility in the choice of DBMS, data layout, and data types.

In this thesis, we identify pointer-intensive data structure operations as a key performance

and efficiency bottleneck in data analytics workloads. We observe that data analytics tasks

include a large number of independent data structure lookups, each of which is characterized

by dependent long-latency memory accesses due to pointer chasing. Unfortunately, exploiting

such inter-lookup parallelism to overlap memory accesses from different lookups is not possi-

ble within the limited instruction window of modern out-of-order cores. Similarly, software

prefetching techniques attempt to exploit inter-lookup parallelism by statically staging inde-

pendent lookups, and hence break down in the face of irregularity across lookup stages. Based

on these observations, we provide a dynamic software acceleration scheme for exploiting inter-

lookup parallelism to hide the memory access latency despite the irregularities across lookups.

Furthermore, we propose a programmable hardware accelerator to maximize the efficiency of

the data structure lookups. As a result, through flexible hardware and software techniques we

eliminate a key efficiency and performance bottleneck in data analytics operations.

Key words: Performance, energy efficiency, database systems, analytics, hash tables, trees,

indexes, accelerators, prefetching

v

Résumé

L’augmentation massive du volume de données numériques et son importance croissante

dans l’analyse de données rend crucial la conception de systèmes de gestion de bases de don-

nées (SGBD) haute-performance. En parallèle, le ralentissement des améliorations apportées

aux tensions d’alimentation a contrecarré les plans d’améliorations des performances des

cœurs de processeurs, et ouvert l’ère des puces limitées en puissance. Ces développements

motivent la conception d’accélérateurs logiciels et matériels de SGBD qui (1) maximisent

l’utilité en accélérant les opérations dominantes, et (2) fournissent une plus grande flexibilité

dans le choix du SGBD ainsi que le format et le type des données.

Dans cette thèse, nous identifions les structures de données utilisant de manière intensive

les pointeurs comme déterminant et limitant les performances dans les tâches d’analyse de

données. Nous observons que les tâches d’analyse des données comprennent un nombre

important d’accès indépendants à des structures de données, chacun étant caractérisé par des

accès mémoires dépendants et à fortes latences induits par le suivi des différents pointeurs.

Malheureusement, exploiter le parallélisme inhérent à ces différents accès indépendants pour

faire se chevaucher les accès mémoires n’est pas possible de par le set d’instructions limité

des coeurs non ordonnées actuels. De même, les techniques logicielles de préchargement

des données ("prefetching") essaient d’exploiter le parallélisme des accès indépendants en

les ordonnant par étape de manière statique, et peinent face à l’irrégularité des accès entre

les différentes étapes. En se basant sur ces observations, nous fournissons une méthode

d’accélération logicielle dynamique pour exploiter le parallélisme entre les accès indépendants

pour cacher la latence d’accès à la mémoire malgré les irrégularités entre les différentes étapes

d’accès. Nous proposons de plus un accélérateur matériel qui maximise l’efficacité de ces

vii

Acknowledgements

accès à travers les structures de données. En résumé, nous éliminons un élément clé limitant

l’efficacité et les performances dans les opérations d’analyse des données.

Mots clefs : Performance, efficacité énergétique, systèmes de base de données, analytique,

tables de hachage, arbres, indices, accélérateurs, préchargement des données (prefetching)

viii

Contents

Acknowledgements i

Abstract (English/Français) v

List of figures xiii

List of tables xv

1 Introduction 1

1.1 High-Throughput and Efficient Data Lookups . 4

1.1.1 Hiding Memory Access Latency . 4

1.1.2 Specialized Hardware . 6

1.2 Thesis and Dissertation Goals . 7

1.3 Asynchronous Memory Access Chaining . 7

1.4 On-chip Accelerator for Index Traversals . 8

1.5 Memory Subsystem Bottlenecks . 9

1.6 Contributions . 9

2 Background 13

2.1 DBMS Basics . 13

2.2 Pointer-Intensive Data Structures in Database Systems 14

2.2.1 Hash Tables . 14

2.2.2 Tree Search . 16

ix

Contents

3 AMAC: Asynchronous Memory Access Chaining 19

3.1 Hiding Memory Access Latency . 20

3.1.1 Software Prefetching Techniques for Pointer-Chasing Database Operations 20

3.1.2 Performance Analysis of Software Prefetching 23

3.2 Asynchronous Memory Access Chaining . 25

3.2.1 Design Overview . 26

3.2.2 Handling Read/Write Dependencies . 30

3.3 Methodology . 31

3.4 Evaluation . 33

3.4.1 Hash Join . 33

3.4.2 Scalability Analysis . 37

3.4.3 Group-By . 39

3.4.4 Tree Search . 41

3.5 Discussion . 42

3.6 AMAC Summary . 43

4 Widx: On-chip Accelerator for Index Traversals 45

4.1 Profiling Analysis of a Modern DBMS . 46

4.2 Database Index Traversal Acceleration . 48

4.2.1 Overview . 48

4.2.2 First-Order Performance Model . 50

4.3 Widx . 55

4.3.1 Architecture Overview . 55

4.3.2 Programming API . 56

4.3.3 Additional Details . 57

4.4 Methodology . 59

4.5 Evaluation . 61

4.5.1 Performance on Hash Join Kernel . 62

4.5.2 Case study on MonetDB . 64

x

Contents

4.5.3 Area and Energy Efficiency . 66

4.6 Discussion . 68

4.7 Widx Summary . 69

5 Quantifying the Impact of Memory Subsystem on Acceleration 71

5.1 Quantifying the Overhead . 72

5.1.1 Experimental Setup . 73

5.2 Data Structure Padding . 74

5.3 Virtual Memory Page Size . 74

5.4 Miss Status Handling Registers . 75

5.5 Throughput Scalability and Bottleneck Analysis 76

5.6 Putting It All Together . 78

5.7 Combining Hardware and Software Acceleration 81

5.8 Discussion . 83

6 Related Work 85

6.1 Software and Hardware Prefetching . 85

6.2 Hardware-Conscious Algorithms . 86

6.3 Decoupled Architectures . 86

6.4 Specialized Hardware and Accelerators . 87

7 Concluding Remarks 89

7.1 Future Directions . 90

Bibliography 93

Curriculum Vitae 103

xi

List of Figures

2.1 Join via hash index. 14

3.1 Hash Join . 20

3.2 Execution patterns of Group Prefetching (GP), Software-Pipelined Prefetching

(SPP) and Asynchronous Memory Access Chaining (AMAC) in the case of traver-

sal divergence. 21

3.3 Cycles per lookup tuple normalized to uniform lookups on baseline. Measure-

ment on Xeon x5670. 24

3.4 AMAC execution. 26

3.5 Hash Join cycles breakdown over baseline hash join under different data distri-

butions. Measurement on Xeon x5670. 34

3.6 Hash Join speedup over baseline hash join under different data distributions.

Measurement on Xeon x5670. 35

3.7 Probe performance sensitivity to the tuning parameters of GP, SPP and AMAC

(2GB ./ 2GB). 38

3.8 Scalability of the hash table probes with uniform and Zipf-skewed keys (2GB ./

2GB). Measurement on Xeon x5670. 39

3.9 Scalability of the hash table probes with uniform and Zipf-skewed keys (2GB ./

2GB). Measurement on Oracle T4. 40

3.10 Performance comparison of group-by operator with an input relation keys fol-

lowing a uniform and Zipf-skewed keys. Measurement on Xeon x5670. 41

3.11 Unbalanced binary search tree lookup performance. Measurement on Xeon x5670. 41

xiii

List of Figures

4.1 TPC-H & TPC-DS query execution time breakdown on MonetDB. 47

4.2 Baseline and accelerated index traversal hardware. 49

4.3 Accelerator bottleneck analysis. 51

4.4 Number of walkers that can be fed by a dispatcher as a function of bucket size

and LLC miss ratio. 51

4.5 Widx overview. H: dispatcher, W: walker, P: output producer. 56

4.6 Schematic design of a single Widx unit. 57

4.7 Hash Join kernel analysis. 62

4.8 DSS on MonetDB. Note that Y-axis scales are different on the two subgraphs. . 63

4.9 Performance of Widx on DSS queries. 65

4.10 Index Runtime, Energy and Energy-Delay metric of Widx (lower is better). . . . 66

5.1 Virtual memory page size and cache block alignment sensitivity on AMAC hash

table traversal performance. Measurement on Xeon x5670. 75

5.2 Performance scalability of AMAC on Xeon x5670 and Oracle T4 with physical cores 77

5.3 Breakdown of memory reference hits per kilo-instruction on a two-socket Xeon

x5670. 79

5.4 Normalized execution time of AMAC with optimized memory subsystem com-

pared to Xeon x5670. 81

5.5 Energy benefits of AMAC and Widx with optimized memory subsystem. 83

xiv

List of Tables

3.1 Hash join (probe) code stages for AMAC. 27

3.2 Hash join (build) code stages for AMAC. 29

3.3 Group-by code stages for AMAC. 29

3.4 Binary tree code stages for AMAC. 30

3.5 Architectural parameters. 33

3.6 Execution profile of uniform ([0,0]) join with unequal table sizes (2MB ./ 2GB).

Measurement on Xeon x5670 with x86 binary. 36

4.1 Widx ISA. The columns show which Widx units use a given instruction type. . . 58

4.2 Evaluation parameters. 59

5.1 Instructions per cycle for the pointer-chasing workload with AMAC on a two-

socket Xeon x5670. 79

5.2 Memory subsystem parameters. 81

xv

1 Introduction

The information revolution of the last decades is being fueled by the explosive growth in digital

data. Enterprise server systems reportedly operated on over 9 zettabytes (1 zettabyte = 1021

bytes) of data in 2008 [69], with data volumes doubling every 12 to 18 months. As businesses

such as Amazon and Wal-Mart use the data to drive business intelligence and decision support

logic via databases with several petabytes of data, IDC estimates that almost 40% of global

server revenue ($22 billion out of $57 billion) goes to supporting database workloads [27].

Businesses have been leveraging analytics to improve decision making processes for more

than fifty years. However, since the information revolution data-driven business processes has

become a key differentiator among business competitors, a phenomena sometimes referred to

as competing on analytics [19]. Serious competition entails real-time and interactive analytic

query processing over copious data. As a result, to keep up with the business requirements,

database vendors and researchers started considering custom-tailored analytics systems [72,

73] by departing from the traditional all-purpose database system architectures.

In the era of rethinking the database system architectures, column-oriented databases gained

significant importance as they have been shown to deliver at least an order of magnitude better

performance than the traditional row-oriented databases for emerging analytics workloads.

The key enabler behind the significant performance improvements goes beyond the columnar

data layout; these systems introduced novel column-oriented execution engines for analytics,

1

Chapter 1. Introduction

which implement numerous techniques to minimize data accesses during query execution

such as late materialization, compression [2].

Furthermore, the advent of large main-memory capacity combined with the benefits of

column-oriented processing made vasts datasets accessible in the blink of an eye [54]. To

sustain the trend towards main-memory processing, database servers integrate as much

memory as possible within the limits of current DRAM technology. Because the cost of DRAM

constitues a significant fraction of the server operation and capitalization costs, it is imperative

that software and hardware is optimized to fully utilize the available memory bandwidth and

capacity. Given the abundant parallelism offered by analytics tasks, software optimizations

are centered around algorithms that can take advantage of the parallelism offered by general-

purpose multi-core processors to hide the memory access latency. Driven by the Moore’s law,

processor designers were able to keep increasing the number of cores on a chip to match the

needs of software.

Unfortunately, with the end of Dennard scaling, which has historically been the primary

mechanism for lowering the energy per transistor switching event, the ability to double the

processor performance at a constant power budget has greatly diminished [24, 34]. Increasing

the number of transistors on the semicondutor area directly leads to a higher energy consump-

tion at the chip level and higher server electricity and cooling costs at the server level. As a

result, electricity cost of operating servers constitute a significant fraction of the total cost of

ownership (TCO) for datacenters.

With rising server operation costs, energy efficiency in database management systems has

become a first-class optimization criteria. After two decades of its foundation, Transaction

Processing Council (TPC), an organization that sets the industry standard for database bench-

marks, introduced energy-related metrics to all database benchmark specifications besides

performance and price metrics [79]. Researchers from industry and academia have attempted

to improve energy efficiency of the database systems by proposing novel benchmarks and

optimization techniques on commodity hardware [30, 48, 49, 62, 80].

2

Similarly, constrained by power at the chip level in the post-Dennard era, computer architects

struggled to improve the performance and efficiency of general-purpose processors. Conse-

quently, system researchers advocate for improving general-purpose processor throughput

through hardware-conscious software and algorithms, which are tuned to the underlying hard-

ware via architecture-specific parameters and instructions [5, 10, 17, 46, 53, 92]. At the same

time, an increasing number of hardware proposals are calling for specialized server hardware

to increase performance and energy efficiency by tailoring the hardware to the specific needs

of the database operations [18, 37, 55, 85, 86, 90].

While these efforts represent a step towards the right direction in the post-Dennard era, meet-

ing the computation demand fueled by ever-growing data necessitates a holistic approach by

tailoring the hardware to the needs of the software and vice versa. Although software and hard-

ware specialization are not mutually exclusive, the two critical challenges are (1) identifying

the service that would benefit the most from specialization by delivering significant value for a

large number of users (i.e., maximize utility), and (2) specializing just the right functionality of

the targeted service to provide significant performance and/or energy efficiency gain without

limiting applicability (i.e., avoiding over-specialization).

We observe that emerging data analytics applications are tasked with finding critical pieces of

information in vast data sets – a "needle-in-the-haystack" problem, often with an additional

constraint of being real-time. Doing so rapidly mandates the use of in-memory pointer-

intensive data structures, which convert linear-time search operations into near-constant-

time lookups. As a result, performance and efficiency bottleneck for many database operations

is accessing main memory, as vast datasets overwhelm on-chip caches and dependent access

patterns frequently leave the contemporary CPUs waiting on a long-latency memory access [4].

This thesis identifies pointer-intensive data structure lookups as a critical performance and

efficiency bottleneck in data analytics tasks and proposes software and hardware mechanisms

to maximize the throughput and efficiency for a wide range of data structure operations

without limiting their applicability.

3

Chapter 1. Introduction

1.1 High-Throughput and Efficient Data Lookups

1.1.1 Hiding Memory Access Latency

A modern CPU employs multiple power-hungry out-of-order (OoO) cores, which are designed

to hide the memory access latency by identifying and issuing multiple independent memory

accesses. The number of in-flight memory accesses at a given point in time is called memory-

level parallelism. The amount of memory-level parallelism is dictated by the number of

independent memory operations within the instruction window of the processor core. A

lookup in a pointer-intensive data structure (e.g., a hash table) may require chasing pointers,

resulting in low memory-level parallelsim as the next pointer cannot be discovered until the

current access completes.

Fortunately, many analytics tasks that leverage pointer-intensive data structures (e.g., hash

join, indexed-join, and group-by) involve a large number of independent key lookups. For

example, a group-by operation involves grouping a large number of key-value tuples according

to tuple keys by inserting each tuple into a hash table one at a time. Similarly, an indexed-join,

involves probing an index tree or a hash index for every join attribute in the input database

table or column. Therefore, there is abundant inter-lookup parallelism that can be exploited to

increase the memory-level parallelsim of each core. Exploiting such inter-lookup parallelism

within an OoO core is difficult due to the limits on instruction window size imposed by

technology [3]. Nevertheless, hardware multi-threading and prefetching are two important

techniques that can possibly exploit such parallelism and hide the memory access latency

within a core.

Simultaneous multi-threading (SMT) enables multiple hardware contexts to share single core

resources to exploit memory-level parallelism. Major processor vendors, provide general-

purpose OoO cores with various degrees of SMT [1, 43]. Although these processors can overlap

multiple long-latency cache misses that belong to different threads, they fall short of an ideal

multi-core processor due to imperfect interleaving of memory and computation phases of

4

1.1. High-Throughput and Efficient Data Lookups

different threads leading to pipeline resource contention. More specifically, recent research

showed that although hash table lookups in database operations are memory-bound, SMT

provides marginal throughput benefits for hash join [10, 13]. Furthermore, SMT deteriorates

the overall throughput for hardware-conscious hash join algorithms, which are relatively more

compute intensive [11].

Prefetching is another effective technique to hide the memory access latency by demanding

data blocks ahead of their consumption. Hardware data prefetching techniques for pointer-

intensive data structures [23, 64, 88] can identify dependent access patterns and predict future

prefetch requests ahead of the core. Although, these techniques can eliminate memory stalls

that will be encountered in the future, they suffer from several fundamental limitations, which

hinder their applicability. First, the pointer address calculation mechanisms are limited to

regular and simple data structure layouts to generate prefetch requests, while database systems

can have arbitrarily complex data structures (i.e., unclustered indexes, variable-length keys).

Second, these prefetching techniques require distributive changes in the cache hierarchy,

otherwise require address translation mechanisms as they are placed far from the core and

rely on virtual addresses to generate prefetch requests.

Software prefetching techniques for pointer-intensive data structures have several advan-

tages over hardware prefetching techniques. First, in modern architectures software prefetch

instructions complete as long as a TLB miss does not cause a fault [43, 71], which is rare

with in-memory database algorithms. Second, generating prefetch requests for complex data

structure layouts is trivial given the layout is exposed to the programmer or compiler.

Unfortunately, the main drawback of the software prefetching is that it is not possible to issue

prefetch requests within the traversal of single pointer chain due to dependent address calcu-

lations. To solve this problem, prior work has proposed data-linearization prefetching [52] to

calculate the addresses without needing pointers so that the prefetches can be issued ahead of

time. Similarly, history-based prefetching techniques [15] maintain an array of jump pointers

containing the pointers from recent traversals. However, these techniques either assume that

5

Chapter 1. Introduction

the data structure is traversed in a similar order more than once or incur both space and time

overhead to increase the prefetch accuracy.

To exploit inter-lookup parallelism, researchers proposed loop transformations augmented

with software prefetching instructions. State-of-the-art software prefetching approaches

for database systems work by arranging a set of independent lookups into a group (Group

Prefetching [14]) or pipeline (Software Pipelining [14, 46]), in effect synchronizing their mem-

ory accesses into a highly structured sequences.

These approaches work well whenever the number of pointer dereferences is known ahead of

time and is constant across lookups, in which case the group size or the number of pipeline

stages can be provisioned to perfectly accommodate the memory access pattern. Whenever

such perfect knowledge or regularity are not present, some lookups may exhibit irregularity

with respect to the expected or average case. Examples of irregularity include variable number

of nodes per bucket in a hash table, early exit (e.g., on a match of a unique key), and read/write

dependencies that require serialization of subsequent accesses via a latch. When such irreg-

ularities occur, existing software prefetch techniques must execute expensive and complex

cleanup or bailout code sequences that greatly diminish the techniques’ effectiveness.

1.1.2 Specialized Hardware

The idea of specialized database hardware (i.e., database machines) was explored in 1980s but

long design turnarounds and high cost of specialized hardware made these systems unattrac-

tive in the face of cheap commodity hardware [22]. Today, the data deluge and efficiency

constraints are reviving similar approaches via field-programmable gate arrays (FPGAs) in

commercial analytic appliances (e.g., Netezza [37], Teradata [75]). Ideally, the reconfigurable

and parallel hardware offered by the FPGAs can be leveraged as a high-utility and -performance

acceleration substrate by synthesizing specialized circuits for every incoming analytics query.

In practice, due to the impractical synthesis time of complex operations (e.g., joins) on FP-

GAs [57, 76], they can only accelerate the basic data processing operations (e.g., select) and

6

1.2. Thesis and Dissertation Goals

delegate the rest of the query to the general-purpose CPUs. Regardless of the specialization

substrate (FPGAs or on-chip accelerators), practical specialized hardware requires fast pro-

grammability to achieve high utility given that reconfigurability is not practical for complex

data processing operations, database queries, and data-centric workloads [50, 60].

General-purpose processors also include specialized on-chip units to improve the perfor-

mance and efficiency of the database operations. SPARC64 X+ [90] architecture employs a

customized execution unit to accelerate bit vector and byte compare operations. Similarly,

recent x86 architectures employ wider SIMD units [40, 68], which are beneficial for increas-

ing data sort and aggregation throughput [17, 92]. Overall the specialized data processing

hardware comes in the form of an execution unit in the processor pipeline, offering extremely

low utility for memory-intensive database operations, while carrying the inefficiencies of the

general-purpose hardware.

1.2 Thesis and Dissertation Goals

Pointer-intensive data structure lookups are a key performance and efficiency bottleneck

in analytics. Therefore, the goal of this dissertation is to first maximize the memory-level

parallelism via specialized software techniques for higher throughput and achieve higher

efficiency via hardware specialization. The statement of this thesis is as follows:

High-throughput and energy-efficient data processing requires exploiting existing inter-lookup

parallelism to maximize memory-level parallelism through software and hardware specializa-

tion.

1.3 Asynchronous Memory Access Chaining

We observe that many real-world execution scenarios involving pointer chasing entail irregu-

larity across lookups. Achieving high memory-level parallelsim in these circumstances requires

a degree of dynamism that is beyond the capability of today’s software prefetching techniques.

7

Chapter 1. Introduction

To overcome the existing capability gap, this thesis introduces a new software prefetching

scheme that avoids the need for rigidly arranging independent lookups into a group or a

pipeline. By preserving and exploiting the lack of inter-dependencies across lookups, we are

able to attain high memory-level parallelism even for highly irregular access patterns.

Our proposed software prefetching technique achieves its dynamism by maintaining the state

of each in-flight lookup separately from that of other lookups. State maintenance operations

are explicit, meaning that once a prefetch is launched, the state associated with that lookup is

saved into a dedicated slot in a software-managed buffer, at which point a different lookup

can be handled by loading its respective state. By decoupling the state of all in-flight lookups

from each other, we are able to achieve unprecedented flexibility in initiating, completing,

and waiting on lookups. Such flexibility directly translates into high memory-level parallelism,

as potential memory access opportunities are not wasted due to common issues such as

variable-length pointer chains.

1.4 On-chip Accelerator for Index Traversals

The explosive growth in digital data and its growing role in real-time analytics support motivate

the design of high-performance database management systems. Meanwhile, slowdown in

supply voltage scaling has stymied improvements in core performance and ushered an era of

power-limited chips. These developments motivate the design of database system accelerators

that (1) maximize utility by accelerating the dominant operations, and (2) provide flexibility in

the choice of database system, data layout, and data types.

In this thesis, we study data analytics workloads on contemporary in-memory databases and

find hash index lookups to be the largest single contributor to the overall execution time. The

critical path in hash index lookups consists of ALU-intensive key hashing followed by pointer

chasing through hash table nodes. Based on these observations, we propose a specialized

on-chip accelerator for database hash index lookups, which achieves both high performance

and flexibility by (1) decoupling key hashing from the list traversal, and (2) processing multiple

8

1.5. Memory Subsystem Bottlenecks

keys in parallel on a set of programmable walker units. By tightly integrating our mechanism

with a conventional core, we are able to reduce design cost and complexity thus eliminate the

need for a dedicated TLB and cache.

1.5 Memory Subsystem Bottlenecks

Software and hardware acceleration techniques work in tandem with the memory hierar-

chy and virtual memory subsystem. Although, these techniques are effective at improving

overall throughput, a sub-optimal memory hierarchy design can become a significant per-

formance bottleneck because it is on the critical path of each data structure lookup. For

effective implementations of software acceleration, the bottlenecks in the memory subsystem

should be minimized or completely eliminated. This is especially important for specialized

cores and accelerators that rely on the existing memory hierarchy, because a mismatch be-

tween the memory subsystem and the accelerator design can offset the efficiency benefits of

specialization and waste on-chip resources.

In this thesis, we analyze the impact of memory subsystem on software acceleration with the

goal of eliminating possible memory hierarchy and address translation overheads. We observe

that three important features of the memory hierarchy play a crucial role in achieving high

throughput data lookups, (1) virtual memory page size, (2) number of miss status handling

registers that keep track of outstanding cache misses, and (3) data structure padding. Once we

eliminate these bottlenecks for our software acceleration scheme, we take a next logical step

and explore the options to leverage a specialized hardware accelerator for improving a broad

class of data structure lookup throughput and efficiency.

1.6 Contributions

In this thesis, we explore specialized software and hardware mechanisms as a means to

improve memory-level parallelsim and hide memory access latency in analytics workloads.

We begin by analyzing the irregularity in pointer-intensive data structures in analytics and

9

Chapter 1. Introduction

describe a robust software prefetching method to hide the memory access latency during

regular and irregular data structure operations. We then study data analytics workloads

on a contemporary database system to quantify the impact of data structure operations to

overall analytics query execution. Based on our findings we propose a specialized hardware

mechanism, which achieves high-throughput and efficiency hash index lookups. We conclude

by exploring the limits of software and hardware specialization designs specifically focusing

on the memory subsystem design.

Through a combination of real-hardware measurements, cycle-accurate modeling of CMP

systems running data analytics workloads, and RTL modeling, we demonstrate:

• Robust software prefetching technique for pointer-intensive data structures. We demon-

strate and evaluate a prefetching technique implementation on x86 and SPARC processors

for various data structures used in data analytics systems. Our technique achieves 4.3x

speed-up over the no-prefetching hash join baseline for uniform lookups while maintaining

its performance advantage in the presence of irregular accesses. In the skewed hash join

workloads with irregular accesses, our technique improves the performance by 3x over

the no-prefetch baseline and by 1.8x over the state-of-the-art techniques. In doing so, our

prefetching technique relies on a simple circular buffer occupying less than one KB in

software regardless of the actual data structure size.

• Characterization of modern data analytics workloads on contemporary database sys-

tems. We study modern in-memory databases running modern data analytics workloads

(TPC-H and TPC-DS) on real server hardware and show that hash index (i.e., hash table)

accesses are the most significant single source of runtime overhead, constituting 14-94% of

total query execution time.

• Programmable hardware accelerator for hash index accesses. We demonstrate a hard-

ware accelerator for performing hash index traversals on contemporary database systems.

The limited programmability afforded by the simple hardware accelerator allows our acceler-

ator to support a virtually limitless variety of schemas and hashing functions. An evaluation

10

1.6. Contributions

of the proposed accelerator on a set of modern data analytics workloads using full-system

simulation shows an average speedup of 3.1x over an aggressive OoO core on bulk hash

table operations, while reducing the OoO core energy by 83%.

• Effectiveness of memory subsystem optimizations. We quantify the mismatch between

the memory subsystem design and the requirements of prefetch-based software optimiza-

tion techniques. We show that properly optimized memory subsystem paves the way for a

purely compute-bound execution for pointer-intensive data structure traversals despite the

large datasets. In light of an effective memory subsystem, we holistically study the benefits

of hardware and software acceleration. Using a combination of real hardware measurements

and analytical modeling, we demonstrate the possibility of reducing the OoO core energy

by up to 50x and fully utilizing the available off-chip memory bandwidth while performing

pointer-chasing operations.

11

2 Background

2.1 DBMS Basics

Database management systems (DBMS) play a critical role in providing structured semantics

to access large amounts of stored data. Based on the relational model, data is organized in

tables, where each table contains some number of records. Queries, written in a specialized

query language (e.g., SQL) are submitted against the data and are converted to physical

operators by the DBMS. The most fundamental physical operators are scan, join, group-by

and sort. The scan operator reads through a table to select records that satisfy the selection

condition. The join operator iterates over a pair of tables to produce a single table with the

matching records that satisfy the join condition. The group-by operator classifies records

according to their key attributes and applies an aggregation function to summarize their

values. The sort operator outputs a table sorted based on a set of attributes of the input table.

As the tables grow, the lookup time for a single record increases linearly as the operator scans

the entire table to find the required record.

In order to accelerate accesses to the data, database management systems commonly employ

auxiliary data structures with sub-linear access times. These data structures can either be an

index generated by the database administrator or they can be built on the fly as a query plan

optimization. In the latter case, the data structure built during the execution of the query can

13

Chapter 2. Background

SQL : SELECT A.name FROM A,B WHERE A.age = B.age

!"#$%&'&()*&+,-./&&

!"
#"

$"
%"

$&"
!'"
(#"
#)"

!"#$$$%&'$

* "+,-./"

!"#$%&0&(122*&+,-./&

!"
#"

$"
%"
&"
'"
("
0"

!&"
%0"
#)"
##"
'$"
$#"
!'"
%#"

)" %!"

!"#$$$%&'$

()*(
+,-./

0

1 "23456
"

3".4&!"#$%&,5&!"#$%&'&

7 !'"

#)"

(#"

$&"8"

%"
9

 ":
6;
,.
<"

$

#

!

%

Figure 2.1 – Join via hash index.

be either be destroyed to save memory space after the query completes or it can materialized

so that future queries with the same input can use the same data structure to avoid the build

overhead (i.e., automatic indexing [38]). The most commonly used data structures are hash

tables and trees, which have complementary properties. Hash tables are commonly preferred

for their constant lookup time but they do not preserve any order across the keys. In contrast,

trees are beneficial when the order of the lookup matters (i.e., range queries) but require

traversing several pointers before locating an entry.

2.2 Pointer-Intensive Data Structures in Database Systems

2.2.1 Hash Tables

Hash tables are prevalent in modern databases for accelerating data-finding and grouping

operations. We consider the use of hash tables for two frequent database operators: hash join

and group-by.

Figure 2.1 shows a query resulting in a join of two tables, A and B, each containing several

million rows in a column-store database. The tables must be joined to determine the tuples

that match A.ag e = B.ag e. To find the matches by avoiding a sequential scan of all the tuples

in Table A for each tuple in Table B, a hash index is created on the smaller table (i.e., Table A).

14

2.2. Pointer-Intensive Data Structures in Database Systems

This index places all the tuples of Table A into a hash table, hashed on A.ag e (Step 1). The

index executor is initialized with the location of the hash table, the key field being used for

the probes, and the type of comparison (i.e., i s_equal) being performed. The index executor

then performs the query by using the tuples from Table B to probe the hash table to find the

matching tuples in Table A (Step 2). The necessary fields from the matching tuples are then

written to a separate output table (Step 3).

Listing 2.1 shows the pseudo-code for the core index probe functionality, corresponding to

Step 2 in Figure 2.1. The do_i ndex function takes as input table t , and for each key in the

table, probes the hash table ht . The canonical pr obe_hasht abl e function hashes the input

key and walks through the node list looking for a match.

Hash table lookup throughput is the main bottleneck of the join operation, and its performance

strictly depends on the number of dependent memory accesses (i.e., number of pointers

chased) required to locate an item. Balkesen et al. [10] argue that in certain hash join scenarios

(i.e., uniformly distributed unique keys), a hash table can be searched with only one memory

access. Meanwhile, Barber et al. claim that due to space efficiency and imperfect hash

functions, at least two independent memory accesses are required to probe a space-efficient

hash table [12]. Yet Blanas et al. leverage a hash table requiring three dependent accesses [13].

Moreover, when there is value skew in the build relation, the hash collisions are unavoidable

as the probe keys are identical but carry different payloads. Probing such buckets require as

many memory accesses as the number of hash table nodes present in that bucket.

Moreover, in real database systems, the hash join and the index code tends to differ from

the abstraction in Listing 2.1 in a few important ways. First, the hashing function is typically

more robust than what is shown above, employing a sequence of arithmetic operations with

multiple constants to ensure a balanced key distribution. Second, instead of storing the actual

key, nodes can instead contain pointers to the original table entries, thus trading space (in case

of large keys) for an extra memory access. The bottom line is that hash tables offer a tradeoff

between performance (i.e., number of chained memory accesses) and space efficiency, and it

15

Chapter 2. Background

1 /* Constants used by the hashing function */
2 #define HPRIME 0xABC
3 #define MASK 0xFFFF
4 /* Hashing function */
5 #define HASH(X) (((X) & MASK) ^ HPRIME)
6
7 /* Key iterator loop */
8 do_index(table_t *t, hashtable_t *ht) {
9 for (uint i = 0; i < t->keys.size; i++)

10 probe_hashtable(t->keys[i], ht);
11 }
12
13 /* Probe hash table with given key */
14 probe_hashtable(uint key , hashtable_t *ht) {
15 uint idx = HASH(key);
16 node_t *b = ht->buckets+idx;
17 while(b) {
18 if (key == b->key)
19 { /* Emit b->id */ }
20 b = b->next; /* next node */
21 }
22 }

Listing 2.1 – Pseudo-code for join via hash index

is neither possible to generalize a single type of hash table layout nor guarantee a constant

number of memory accesses for each probe.

Another use of hash tables in database systems is the group-by operator, which collects

payloads of an input relation and groups them according to relation keys. The group-by

operator is used in conjunction with an aggregation function (e.g., sum, min, max). Similar

to the hash-join build phase, each payload in the input relation is added into a hash table.

However, the difference is that in the case of non-unique keys, which is the common case for

group-by, first the matching hash table node is located and then the necessary aggregation

function is applied on the payload of the matching node. It is also possible that the aggregation

operation is postponed to the end of the hash table build and just the payloads are collected

in a separate list pointed to by the hash table node for each group (i.e., late aggregation). As a

result, depending on the group-by scenario, hash table layout, and relation cardinality, the

number of memory accesses per each tuple can differ significantly.

2.2.2 Tree Search

Tree index search is a fundamental operation in database systems to handle large datasets

with low-latency and high-throughput. Given a list of key-value tuples (as a database table or

16

2.2. Pointer-Intensive Data Structures in Database Systems

column), a tree is built with nodes that are arranged in a specific order and connected with

pointers. A tree index search involves continuous lookup to the tree nodes starting from root

until the desired key is found. At each tree node, the node key is compared against the search

key to determine the next child node to access.

The performance of a lookup in a search tree is directly related to the number of nodes

traversed before finding a match. A single tree lookup is an inherently serial operation as the

next tree node (i.e., child) to be traversed cannot be determined before the comparison in the

current (parent) node resolves. The combination of branching control flow and large datasets

leads to frequent memory stalls due to low cache and TLB locality. There are numerous

proposals to optimize the layout of the index trees to improve their locality characteristics [16,

46, 61], but crossing the cache and TLB boundary, which is unavoidable, still incurs significant

memory access penalties.

17

3 AMAC: Asynchronous Memory Access

Chaining

In-memory databases rely on pointer-intensive data structures to quickly locate data in

memory, often resulting in long-latency stalls due to pointer dereferences, which result in

random memory accesses. Hiding the memory latency by executing useful instructions for

other lookups – particularly, by launching other memory accesses – is an effective way of

improving performance of pointer-chasing code, such as hash table probes and tree traversals.

The ability to exploit such inter-lookup parallelism is beyond the reach of modern out-of-

order cores due to the limited size of their instruction window. Instead, recent work has

proposed software prefetching techniques that exploit inter-lookup parallelism by arranging a

set of independent lookups into a group or a pipeline, and navigate their respective pointer

chains in a synchronized fashion. While these techniques work well for highly regular access

patterns, they break down in the face of irregularity across lookups. Such irregularity includes

variable-length pointer chains, early exit, and read/write dependencies.

In this chapter, we describe Asynchronous Memory Access Chaining (AMAC), a new approach

for exploiting inter-lookup parallelism to hide the memory access latency. AMAC achieves

high dynamism in dealing with irregularity across lookups by maintaining the state of each

lookup separately from that of other lookups. This feature enables AMAC to accommodate

events such as early exit or variable-length pointer chains by generating new lookups as soon

as any of the in-flight lookups completes. In contrast, the static arrangement of lookups into

19

Chapter 3. AMAC: Asynchronous Memory Access Chaining

!"

!"

!"

!"

!"

!"

#$%&'()"*"

+(,$"-./0$12"

3&24"5&6%$"()"#$%&'()"#"

#$"

%&'()"

i
1

i
2

!"

!"

!"

!"

!"

!"

!"

!"

#$%&'()"#"

!"

!"

!"

!"

!"

!"

!" !" !"

#*$+,"

!"

!" !"

!"

i
2

i
1

Figure 3.1 – Hash Join

a group or pipeline in existing techniques precludes such adaptivitity. Our results show that

AMAC outperforms state-of-the-art prefetching techniques on regular access patterns, while

delivering up to 2.3x higher performance over the existing techniques while performing hash

joins of relations with skewed keys. AMAC fully utilizes the available micro-architectural

resources, generating the maximum number of memory accesses allowed by hardware in both

single- and multi-threaded execution modes.

3.1 Hiding Memory Access Latency

3.1.1 Software Prefetching Techniques for Pointer-Chasing Database Operations

Many database operations have abundant inter-lookup parallelism that can be be leveraged

to increase MLP [14, 46, 91]. However, one complete lookup sequence involves many dozens

of instructions to, for instance, hash a key, walk a chain of pointers, and produce a result. As

such, even a high-end processor core with an instruction window of around 100 is not able

to exploit inter-lookup parallelism. Instead, software prefetching can be used to initiate a

memory access in a "fire-and-forget" fashion, allowing the core to execute instructions for

other lookups and later return to complete the processing of the first one, with its memory

latency completely hidden by useful work.

The state-of-the-art pointer-chasing prefetching techniques – namely, Group Prefetching (GP)

and Software-Pipelined Prefetching (SPP) [14] – exploit inter-lookup parallelism in exactly this

20

3.1. Hiding Memory Access Latency

!"#

$%&'!()*#
+,,-./0#

!%#

1*23*#,4#

%*)#+,,-./#

567,38##

299600#

:%6#

9,;6##

0*2(6#

<,&#

,/632=,%#

>
!7

6
#

?6(6%;@#
!A# !B# !C#

!D#

!E# !F# !G# !"H#

!I#

(a) GP

!"#

!$#

%&'(!)*+#
,--./01#

!2#

!3#

!4#

!5#

!6#

!7#

!8#

!"9#

(b) SPP

!"#

$%&'!()*#
+,,-./0#

!1# !2# !3#

!4#

!5#

!6#

!7# !"8# !""#

!9#

!"4#

!"2# !"3# !"5#

!"1#

(c) AMAC

Figure 3.2 – Execution patterns of Group Prefetching (GP), Software-Pipelined Prefetching
(SPP) and Asynchronous Memory Access Chaining (AMAC) in the case of traversal divergence.

fashion to improve the performance of hash table operations. SPP has also been applied to

balanced search trees [46]. Both GP and SPP are loop transformations that break down a loop

with N dependent memory accesses into a loop that contains N +1 code stages where each

stage consumes the data from the previous stage and prefetches the data for the next stage.

To hide the memory access latency by doing useful work, Group Prefetching executes each

code stage for a group of M lookups,1 therefore performing a maximum of M independent

memory accesses at a time. Similarly, Software-Pipelined Prefetching forms a pipeline of

N +1 stages, each code stage in the pipeline belongs to a different lookup and a single lookup

completes after going through N +1 pipeline stages. In the cases where N is too small to

hide the memory access latency, the pipeline is initiated with a prefetch distance so that M

independent memory acesses (M ≥ N) are performed in-flight.2

1This parameter is referred to as G in the original work [14]
2This parameter is referred to as D in the original work [14]. Hence, M = N ∗D .

21

Chapter 3. AMAC: Asynchronous Memory Access Chaining

Obviously, neither of the techniques is parameter-free. Both techniques require the number

of stages, N , and the number of in-flight lookups M to be determined ahead of time. Setting

M is relatively easy, as it is a function of the underlying hardware’s memory-level parallelism

capabilities; specifically, the maximum number of outstanding L1 data misses that can be in

flight at once.3 In contrast, N is a data structure- and algorithm-specific parameter, which

makes both GP and SPP vulnerable to irregularities in the execution because N explicitly

structures the execution pattern of all the M lookups, which leads to three issues:

1. Lookups might require less than N stages, due to the irregular data structure layout

(e.g., as shown in Figure 3.1 for probes i1 vs i2). A similar situation could also occur on a

regular structure in cases when certain lookups terminate earlier than others (i.e., early

exit after finding a match). Regardless of the reason, when the actual number of stages

is less than N , the remaining code stages must be skipped (i.e., no-operation) for that

lookup.

2. Lookups might require more than N stages as the data structure is irregular (e.g., unbal-

anced trees or due to bucket collisions in a hash table). These cases require a bailout

mechanism to complete the lookup sequentially.

3. Lookups might have a read/write dependency on each other (e.g., hash table build or

update). When this occurs, the actual code stage and the subsequent ones should be

executed later when the dependency is resolved.

Whenever any one of the above cases occurs, the maximum M will not be reached, necessarily

lowering MLP. Over-provisioning M does not help, as it increases the number of no-operations

(as explained in #1 above) or the likelihood of an inter-dependency (as in #2 or #3).

Figure 3.2a illustrates the Group Prefetching execution of ten independent lookups (i1−10),

where the number of code stages required and the maximum number of in-flight lookups

3 In microarchitectural terms, it is the number of L1 Miss Status Handling Registers (MSHRs) that bounds a
core’s peak MLP.

22

3.1. Hiding Memory Access Latency

are five (N = 4, M = 5). Each white box indicates a code stage and lines connecting the boxes

indicate a memory access (prefetch) produced in the earlier code stage and consumed in the

later code stage. The boxes with thick lines show the code stage that initiates a new lookup.

The presence of gray boxes indicate a no-operation due to a lookup terminating earlier than

expected (e.g, because of an empty bucket or an early exist). The dashed box depicts all

the lookups within a group (i1 − i5) going through the same code stage. Once all the stages

complete for all the lookups in the group, a new group of lookups are initiated (i6 − i10).

Figure 3.2b depicts the same example for Software-Pipelined Prefetching , the main difference

being that one iteration (shown in a dashed box) contains different code stages for different

lookups. One difference compared to GP is that the pipelined approach avoids the need to

stop at a group boundary.

When we analyze the execution patterns of i1,3,4,8,9,10 for both GP and SPP in Figure 3.2, we see

that there are four memory accesses (five code stages), which perfectly matches parameter N

in the example. In contrast, lookups i2,5,6,7 turn out to be irregular as they terminate at different

stages of the execution. To handle such complexities, GP and SPP maintain status information

per lookup so that code stages can be skipped (necessary for correctness), resulting in a loss of

memory-level parallelism and a waste of CPU cycles checking and propagating the status of

completed lookups. The other irregularities, which include the case where the lookups turn

out to be requiring more than N accesses or have a read/write dependency (not shown in the

example), are more difficult to handle and require special "clean-up" passes and/or bailout

mechanisms.

3.1.2 Performance Analysis of Software Prefetching

In order to understand the performance impact of the irregularities, we implemented GP and

SPP for hash table probes. Our baseline implementation uses a chained hashed table with

linked lists, resembling the hash table layout used in recent hash join studies [10]. The first

hash table node is clustered with the bucket header to save one memory accesses as shown

23

Chapter 3. AMAC: Asynchronous Memory Access Chaining

!"

!#$"

!#%"

!#&"

!#'"

("

)*+,-./"0.123.415" 6-*7)*+,-./"0.123.415" 893:3;"0.123.415"

6
-
./

1
5+
<3
;
"=
>
?5
3
4"
@
3
."
0
A
@
53
"

"

BC" 8CC" 0D+4":-.9"

Figure 3.3 – Cycles per lookup tuple normalized to uniform lookups on baseline. Measurement
on Xeon x5670.

in Figure 3.1. We run the experiment on Xeon x5670 with uniformly distributed random 227

lookup tuples with 8B key and 8B payloads (2GB in total) and we report cycles spent per each

tuple key lookup normalized to baseline code with uniform lookups. In all experiments, we

pick the best configuration, which is M = 15 for GP and M = 12 SPP.

Figure 3.3 shows the results of the performance experiment. In the first part of the experiment

(the first set of bars), we populate the hash table with uniformly distributed 227 keys and we

size the number of hash table buckets to contain exactly four nodes. This highly idealized

setup may occur, for example, in hash joins when the join key is the primary key in the build

relation and forms a strictly contiguous sequence of integers, and the hash function used for

building is a simple modulo operation. We further assume uniform traversals, by allowing

each lookup to reach the end of the link list in each bucket. Under these assumptions, each

lookup visits all the nodes in its bucket, thus always requiring exactly four memory accesses

(N = 4, similar to i1 in Figure 3.1). We see that on uniform traversals, GP and SPP achieve

an impressive speedup of 3.1x and 3.7x, respectively, over the baseline thanks to their ability

to fully reach their memory-level parallelism potential. SPP performs 17% better than GP

because it injects a new lookup continuously into the pipeline, as opposed to GP, which has to

stall at the group boundary.

The second part of the experiment (the set of bars in the middle) is more realistic. We load

the hash table of the same size with the same input data, however this time we relax the

assumption that the build key has to be a contiguous sequence of integers in the build relation.

24

3.2. Asynchronous Memory Access Chaining

We also assume a non-trivial hash function that imperfectly distributes the sparse set of build

keys accross the hash table, creating some variance in the occupancy across hash buckets. We

also enable non-uniform traversals by allowing the lookups to terminate upon a key match.

The average number of node traversals per each lookup is still four. Compared to the uniform

lookups, the GP and SPP with irregular traversals are 1.6x and 1.8x worse than before in terms

of nodes per cycle due to the wasted code stages on lookups that terminated early. The

performance gap between SPP and GP decreases given that both techniques partially lost their

ability to extract MLP.

In our final experiment, we build a hash table with 227 build keys following a Zipf-skewed

distribution (Zipf factor = .75). Therefore, some hash table buckets contain more nodes than

the others, and the three most populous hash table buckets contains almost 3% of the total

input keys. This situation may arise, for example, in hash joins when the join key is a non-

unique attribute in the build relation. As a result, each lookup performs a skewed traversal

meaning that each bucket has to be traversed until the end node, but the number of nodes per

bucket varies. Similar to the two previous experiments, the average number of node traversals

per each lookup is almost four. We observe that with skewed traversals, GP and SPP get 2.6x

and 3.5x worse compared to the uniform lookup case, delivering virtually no improvement

over the baseline. We also observe that GP outperforms SPP by 20%. Meanwhile, in the

uniform traversal case, SPP was a better performer than GP. The inconsistent performance of

existing techniques thus underscores the need for a robust software prefetching solution.

3.2 Asynchronous Memory Access Chaining

The main drawback of Group Prefetching and Software-Pipelined Prefetching is the static

staging of all in-flight memory accesses. In effect, the set of lookups comprising these accesses

are coupled within a group or pipeline, resulting in artificial inter-dependencies across the

otherwise independent look-ups. This coupling is the reason for the lack of robustness in

existing prefetching techniques in the face of irregularity in the data structure (e.g., unbalanced

tree) or in the traversal path (e.g., early exit).

25

Chapter 3. AMAC: Asynchronous Memory Access Chaining

while (i < input.num_lookups){
 k = k%SIZE;
 s = load_state(k);
 switch(s.stage) {

 case 0:
 // execute stage 0
 break;
 case 1:

 // execute stage 1
if (!done)
 save_state(k);
else {

 // initiate new lookup
 i++;

 // execute new lookup
 save_state(k);

 }
 break;
 }
 k++;

}

!

!

!

!

!

!

!

!

rid (idx)

ptr

stage

 Circular Buffer

State [k]

"!

#$!

#%!

key

payload

Figure 3.4 – AMAC execution.

This work introduces Asynchronous Memory Access Chaining , a new prefetching scheme

whose distinguishing feature is the ability to deal with irregular and divergent memory access

patterns. AMAC accomplishes this by preserving the independence across look-ups, thus

avoiding the coupling behavior that plagues existing techniques. Figure 3.2 shows a cartoon

comparison of AMAC to the existing prefetching techniques.

3.2.1 Design Overview

The core idea of AMAC is to keep the full state of each in-flight memory access separate from

that of other in-flight accesses. Whenever an access completes, a new one can be initiated

in its place without any knowledge of the state of other accesses. If the completed memory

access was the last one for a given lookup (e.g., in the case of a key match), a new look-up

sequence can be started with similar ease and, again, without any regard for the state of other

look-ups.

Figure 3.4 shows the key components of the proposed scheme in the context of a hash table

probe in a hash-join operation. All in-flight requests are kept in a software-managed circular

buffer, whose total number of entries is sufficient to cover the memory access latency. Once

a lookup has been initiated, its state is saved in one entry of the circular buffer. This state,

26

3.2. Asynchronous Memory Access Chaining

Stage Hash Join Probe
Next

Stage

0
Get new tuple

Compute bucket addr.

1

1

Compare keys?

 T: Output matches

 F: Next node?

 T: Move to next node

 F: No match

0

1

0

Table 3.1 – Hash join (probe) code stages for AMAC.

comprised of the five fields shown in Figure 3.4 contains all the information necessary to

continue and terminate the lookup. The ke y field is used for node comparisons. Upon a

key match, the r i d(i d x) and payload fields are used for output materialization. The st ag e

field indicates the appropriate code stage to execute. Finally, ptr points to the node being

prefetched but not yet visited. Using the combination of st ag e and ptr fields, the exact status

of each in-flight lookup is preserved.

To execute a code stage of a lookup, the first step is to dequeue a single in-flight request from

the circular buffer. As a single in-flight request is dequeued from the circular buffer, the state

of the lookup is loaded into the local variables of the software thread (step 1 in Figure 3.4).

Once the state is loaded, the execution starts by jumping to the necessary code stage directed

by the st ag e information in the state entry. The execution stage retrieves the lookup key and

the key is compared against the ptr− > ke y to determine the outcome of the stage. If the

lookup is not completed (step 2a in Figure 3.4), a new memory prefetch is issued to the next

data structure node and the state is updated with the address of the node that will be visited in

the next stage. If the lookup is completed (step 2b in Figure 3.4), a new lookup is initiated by

incrementing the index of the input array and the state is saved into the circular buffer entry

after executing the necessary code to initiate a lookup. Then, the next entry is popped unless

all the entries in the input array are consumed.

The pseudo-code of AMAC , shown in Listing 3.1, depicts a more realistic implementation

of the scheme described above. The differences between our example in Figure 3.4 and

Listing 3.1 are minor. One difference is, the modulo operation to access the circular buffer is

27

Chapter 3. AMAC: Asynchronous Memory Access Chaining

1 struct state_t {
2 int64_t idx;
3 int64_t key;
4 int64_t pload;
5 node_t * ptr;
6 int32_t stage;
7 };
8 /* Hash table probe loop */
9 void probe

10 (table_t *input , hashtable_t *ht, table_t *out) {
11 state_t s[SIZE];
12 node_t * n;
13 int32_t k;
14 int32_t i;
15 /* Prologue */
16 //...
17 /* Main loop */
18 while (i < input ->num_keys){
19 k = (k == (SIZE -1)) ? 0 : k;
20 if (s[k].stage == 1){
21 n = s[k].ptr;
22 /* Code 1: Output matches
23 /* or visit next node */
24 if (n->key == s[k].key){
25 out[s[k].idx] = n->pload;
26 s[k]. stage = 0;
27 } else if (n->next){
28 prefetch(n->next);
29 s[k].ptr = n->next;
30 } else {
31 /* initiate new lookup (Code 0) */
32 }
33 } else if (s[k]. stage == 0){
34 /* Code 0: Hash input key , calculate bucket addr. */
35 int64_t hashed = HASH(input ->tuple.key[i]);
36 bucket_t * ptr = ht ->buckets + hashed;
37 /* Prefetch for next stage */
38 prefetch(ptr);
39 /* Update the state */
40 s[k].idx = ++i;
41 s[k].key = input ->tuple.key[i];
42 s[k].ptr = ptr;
43 s[k]. stage = 1;
44 /* Optionally fetch payload for emitting results */
45 s[k]. pload = input ->tuple.pload[i];
46 }
47 k++;
48 }
49 /* Epilogue */
50 //...
51 }

Listing 3.1 – AMAC hash table probe pseudo-code.

costly when the number of in-flight accesses is not a power of two, as a division instruction

is required. Therefore, we implement a rolling counter that is reset to zero when it reaches

the size of the buffer, which allows us to increment AMAC ’s in-flight operations one by one.

We also use the i f /el se statements instead of a swi tch/case statement and put the most

commonly executed state upfront, which is stage 1 in our example. This optimization possibly

28

3.2. Asynchronous Memory Access Chaining

Stage Hash Join Build
Next

Stage

0
Get new tuple

Compute bucket addr.

1

1

Latch?

 T: Retry

 F: Node empty?

 T: Insert tuple

 F: Next node?

 T: Move to next node

 F: Get new node

1

0

2

3

2

Node empty?

 T: Insert tuple

 F: Get new node

0

3

3 Insert tuple 0

Table 3.2 – Hash join (build) code stages for AMAC.

Stage Group-by
Next

Stage

0
Get new tuple

Compute bucket addr.

1

1

Latch?

 T: Retry

 F: Compare keys?

 T: Update tuple

 F: Next node?

 T: Move to next node

 F: Get new node

1

3

1

2

 2 Insert new tuple 3

 3 Update the aggr. field 0

Table 3.3 – Group-by code stages for AMAC.

allows for executing fewer instructions in the cases where there are many stages. We also use

additional state entries wherever is needed, which simplifies the code and in certain cases

avoids re-execution of the same functionality.

Code Stages: The simplified code stages for hash join probe, hash join build, group-by, and

binary search tree are depicted in Table 3.1, Table 3.2, Table 3.3, and Table 3.4 respectively.

To identify the code stages, we analyze the baseline implementations and create the stages

based on the pointer accesses. The entries in the table define the state transitions throughout

the execution of the algorithm. The Next Stage field indicates which of the stages should be

executed next based on the outcome(s) of the present stage. For example, the hash table

probe stages depicted in Table 3.1 show that stage 0 initiates a new lookup and access to data

structure and key comparison happens in the next stage, which is stage 1. For simplicity, we

29

Chapter 3. AMAC: Asynchronous Memory Access Chaining

Stage Binary Search Tree
Next

Stage

0
Get new tuple

Access root node

1

1

Compare keys?

 T: Output result

 F: Move to next node

0

1

Table 3.4 – Binary tree code stages for AMAC.

depict the hash join probe stages for unique keys, therefore upon a match in stage 1, a new

lookup is initiated by transiting to stage 0. Other algorithms have similar stages and actions,

one difference is the latch? action, which returns a true value when the latch is acquired by

another lookup.

While accurate, the states we show in the table are simplified; for instance, an optimization

not captured in the table is the following: in order to not lose an opportunity to initiate a new

memory accesses, we merge the terminating stages of each lookup with the initial stage (for

the next lookup) wherever it is applicable. Thus, when one lookup completes, a new lookup

starts immediately (similar to our example in Figure 3.4), hence guaranteed a constant number

of memory accesses in flight at all times. Similarly, in the data structures with latches, we might

employ extra intermediate stages to avoid deadlocks during the lookups. An example of such

implementation is the stage 1 of group-by (not shown in Table 3.3), which is implemented as

two different stages depending on whether the latch was already acquired for a given lookup

or not.

Output order: Even though the lookup sequence does not follow the sequential order of row

ids, the original order is preserved through the r i d(i d x) field of the state. This ensures that

results are materialized in the input order.

3.2.2 Handling Read/Write Dependencies

The baseline implementation of the hash join build and group-by contains a latch per bucket

for updating the contents of the bucket. When the latch is not acquired, the thread spins on

30

3.3. Methodology

the latch until it gets it. Obviously, a spinlock will diminish the benefits of AMAC given that if

one lookup cannot acquire the latch, there are still in-flight lookups pending.

When an AMAC thread executes a code stage, which requires acquiring a lock (e.g., stage 1

of group-by and hash join build), we try to acquire the latch. If the attempt fails, we move

on to the next lookup and retry when the same lookup is performed. As a result, we are still

spinning on the latch but at a coarser-granularity. In the cases where, there is a probability of

acquiring a lock but failing to complete the state (i.e., group-by insert), we employ an extra

intermediate state to avoid any deadlocks (not shown in Table 3.3) as described in the previous

subsection. Therefore, if one wants to run AMAC in a multi-threaded fashion, the spinlock

should be replaced with an atomic swap instruction only. Moreover, in the highly contented

cases, we spin on the dirty cache line as opposed to atomic instruction analogous to a Test

and Test-and-set lock implementation. In the single-threaded runs, the same ideas apply but

there is no need for an atomic instruction to acquire the latch.

3.3 Methodology

Workloads: For the all workloads evaluated in this work, we use 16-byte tuples containing an

8-byte key and an 8-byte payload, representative of an in-memory columnar database storage

representation. In all the cases, the data structure nodes are aligned to 64-byte cache block

boundary with the aligned attribute.

For the hash join workload, we adopt the highly optimized chained hash table implementation

of Balkesen et al. [10, 11]. Each hash table bucket contains a 1-byte latch for synchronization,

two 16-byte tuples and an 8-byte pointer to the next hash table node to be used in the case

of collisions. For the uniform hash join scenario, we again use the no-partitioning hash join

workload of Balkesen et al. [10, 11] with uniformly distributed random R and S relation keys

following a foreign key relationship. In the uniform workload, the key value ranges are dense

and when the sizes of R and S are equal both relations contain unique values given the foreign

key relationship. In the case where the relation sizes are not equal, the S relation key range

31

Chapter 3. AMAC: Asynchronous Memory Access Chaining

is restricted to the keys in R relation. As our study stresses the robustness of algorithms, we

also relax the foreign key relationship and evaluate the case where R and S keys follow various

Zipfian distributions, similar to prior studies [47, 5].

For the group-by workload, we extend the hash table used in hash join with an additional

aggregation field in the hash table. The input relation contains uniformly distributed random

keys, where each key appears three times. We also evaluate the Zipf-skewed key distributions

of 0.5 and 1 [89]. The values (payloads) in the input relation always contains uniformly dis-

tributed random unique values. The values are aggregated with M I N and COU N T functions,

which are applied immediately upon a match in the hash table.

We use a canonical implementation of a binary search tree. We build the tree by using a

uniformly distributed input relation with 8-byte integer keys. Each binary tree node contains

an 8-byte key, an 8-byte payload and two 8-byte child pointers (i.e., left and right) and one

8-byte parent pointer. The probe relation contains uniformly distributed random unique keys.

The probe relation size is always equal to the number of tree nodes, each of which finds a

single match in the tree, resembling an indexed join scenario in data analytics workloads.

Experimental Setup: The server machines used in our experiments are shown in Table 3.5.

The Intel Xeon x5670 server features a two-socket CPU with 6 cores per socket. We use just

one socket in our experiments. The server runs Red Hat Linux (kernel version 2.6.32). On x86,

we compile our code with gcc 4.7.2 using -O3 flag. On Oracle T4, we use a single 8-core

CMP. The server runs Sun OS 5.11 and we compile our code with the C compiler 5.13 found

in Oracle Solaris Studio 12.4. In addition to the Oracle Solaris Studio compiler flags

recommended by prior work [11], we use -xprefetch=no%auto option to disable the auto-

matic generation of prefetch instructions by the compiler, which leads to overall performance

improvements for all the evaluated techniques including the baseline code.

In all measurements, we use large VM pages, 2 MB on x86 and and 4 MB on SPARC. For all

the prefetch-based techniques (GP, SPP, and AMAC), we parametrize the code and perform

a sensitivity analysis to pick the best performing parameters for each experiment. For the

32

3.4. Evaluation

Table 3.5 – Architectural parameters.

Processor Intel Xeon 5670 Oracle SPARC T4

Technology 32nm @ 2.93GHz 40nm @ 3GHz

ISA x86 SPARC v9

CMP Features 6 cores / 12 Threads 8 cores / 64 Threads

Core Types 4-wide OoO 2-wide OoO

L1-I/D Caches (per core) 32KB 16KB

L2 Caches (per core) 256KB 128KB

L3 Cache 12MB 4MB

TLB entries (L1/L2) 64/512 128/-

Main Memory 24GB, DDR3 1TB, DDR3

prefetch operations on x86, we use the PREFETCHNTA instruction via the built-in gcc functions.

On SPARC, we use the strong prefetch variant [71]. In both platforms, prefetch instructions

complete as long as a TLB miss does not cause a fault, which is rare with in-memory execution.

3.4 Evaluation

3.4.1 Hash Join

In order to analyze the performance implications of hash join with various dataset sizes, we

keep the size of the probe relation constant (|S| = 227) and evaluate two different build relation

sizes, small (|R| = 217) and large (|R| = 227), to study the behavior of the relative relation size

difference and effect of on-chip locality. In addition, we evaluate skewed datasets, where the

keys of R and S follow a Zipfian data distribution. The Zipf factor of each relation is denoted

by [ZR , ZS]. We run the experiments on a single core and pick the best tuning parameter for all

the techniques for each experiment.

Figure 3.5 depicts the cycles per output tuple for build and probe in hash join. We observe

that for the join of the differently sized columns (2MB ./ 2GB), shown in Figure 3.5a, the

build time is negligible and all the cycles are spent on probing the hash table, which fits in the

33

Chapter 3. AMAC: Asynchronous Memory Access Chaining

!"

#!"

$!!"

$#!"

%!&"!'" %(#&"!'" %$&"!'" %(#&"(#'" %$&"$'"

)
*
+,
-
."
/
-
0"
1
2
3/
2
3"
4
2
/
,-
"

56/7"89+3:0"%5;&"5<'"

=9.-,6>-" ?@" <@@" ABA)" C=26,DE"

(a) Small build relation 2MB ./ 2GB

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!*"!+"),'*"!+")#*"!+"),'*",'+")#*"#+"

-
.
/0
1
2"
3
1
4"
5
6
73
6
7"
8
6
3
01
"

9:3;"<=/7>4")9?*"9@+"

A=210:B1" CD" @DD" EFE-" GA6:0HI"

(b) Large build relation 2GB ./ 2GB

Figure 3.5 – Hash Join cycles breakdown over baseline hash join under different data distribu-
tions. Measurement on Xeon x5670.

last-level cache (LLC) of the Xeon processor. For the same reason, the skew in the build and

probe relation keys does not have a significant impact on the execution cycles.

In contrast, in the hash join with equally sized relations (2GB ./ 2GB), shown in Figure 3.5b,

the build cycles constitute half of the join cycles as the size of the build relation is beyond

the LLC capacity. Similarly, analyzing the experiments with different Zipf-skewed R relation

keys shows that the average number of probe cycles for GP and SPP increase by 1.8x and 2.4x

respectively. In contrast, the probe cycles for the Zipf-skewed experiments of AMAC only

shows an increase of 10% on average underscoring the robustness of AMAC under irregular

data structure accesses. However, this is not the case for the build phase as the build operation

inserts the build keys into the head of the bucket link list, which is a uniform operation

regardless of the data distribution.

34

3.4. Evaluation

!"

!#$"

%"

%#$"

&!'"!(" &#$'"!(" &%'"!(" &#$'"#$(" &%'"%("

)
*
+,
"-
.
/0
"1
2
3
3
4
5
2
"

6/27"8*9:.;"&6<'"61("

=*+3>/03" ?@" 1@@" ABAC"

(a) Small build relation 2MB ./ 2GB

!"

#$%"

&"

'$%"

(!)"!*" ($%)"!*" (#)"!*" ($%)"$%*" (#)"#*"

+
,
-.
"/
0
12
"3
4
5
5
6
7
4
"

8149":,;<0="(8>)"83*"

?,-5@125" AB" 3BB" CDCE"

(b) Large build relation 2GB ./ 2GB

Figure 3.6 – Hash Join speedup over baseline hash join under different data distributions.
Measurement on Xeon x5670.

Figure 3.6 shows the performance of the evaluated techniques normalized to the baseline.

Figure 3.6a shows the performance of the small relation join (2MB ./ 2GB). We observe that

the baseline code is faster than both GP and SPP by 32% on average, while AMAC outperforms

the baseline by 22% .The root cause of this behavior is that the hash table fits in the last-level

cache (LLC) of Xeon, therefore the core partially hides the LLC latency in the baseline case.

Unfortunately, GP and SPP hurt the performance compared to the baseline. To investigate

the cause of the GP and SPP slowdown, we perform a profiling analysis. Table 3.6 shows the

number of instructions executed per output tuple and the performance obtained. We find that

GP and SPP have a 2.5x and 1.9x overhead in the number of instructions per output tuple over

the baseline code, therefore offset the benefits of prefetching. In contrast, AMAC has only a

1.6x overhead in the number of instructions, which explains the relatively better performance.

35

Chapter 3. AMAC: Asynchronous Memory Access Chaining

Table 3.6 – Execution profile of uniform ([0,0]) join with unequal table sizes (2MB ./ 2GB).
Measurement on Xeon x5670 with x86 binary.

Baseline GP SPP AMAC

Instructions per Tuple 35 90 66 55

Cycles per Tuple 26 37 28 22

Figure 3.6b shows that, with equally sized relations (2GB ./ 2GB), all three techniques, GP,

SPP and AMAC achieve significant speedups (2.8x, 3.9x, and 4.3x respectively) under uniform

relations ([0,0]) as they all effectively hide the memory latency. It is important to note that

the 25% performance gap between AMAC and SPP in the previous unequally sized join is

bridged as both techniques simply hit the limit of the memory-level parallelism provided by

the hardware. However, for the skewed R ([.5,0], [1,0]), GP and SPP lose their effectiveness

at generating memory-level parallelism due to the irregular traversal paths in the hash table

and deliver average speedups ranging from 1.3x to 2.0x and 1.2x to 2.2x respectively. As

expected, AMAC gracefully handles the divergence in the hash table walk and achieves a

robust performance of 3.2x on average for all the cases. Moreover, adding skew to the relation

S ([.5, .5], [1,1]), which can help with the locality of the hash table buckets and nodes, has a

minor impact on the performance as the hash table working set size is too big to be captured

in the LLC even when both relations are skewed.

Figure 3.7 depicts the execution cycle sensitivity to the tuning parameters of GP, SPP, and

AMAC . For all the techniques, we vary the parameters that increase the number of parallel

lookups performed within a thread. For the uniform probes ([0,0]), we observe that increasing

the number of parallel lookups lowers the cycles-per-tuple due to the increase in memory-level

parallelism and, in general, ten in-flight lookups deliver the best performance except for GP.

Further increasing the number of in-flight requests does not improve the performance of SPP

and AMAC as the limit of L1-D outstanding misses (i.e., 10 L1-D MSHRs) is reached on the

Xeon core [43]. For GP, (Figure 3.7a), the best performance is achieved with a group size of 15

due to the fact that GP is limited by the instruction-count overhead, instead of the number of

MSHRs, and larger group sizes yield fewer outer-loop iterations helping slightly with reducing

the instruction-count overhead.

36

3.4. Evaluation

For the skewed data distributions, we observe that GP (Figure 3.7a) and SPP (Figure 3.7b)

have limited benefits from multiple parallel lookups as the skewed key distribution leads to

buckets with long pointer chains, which cannot be handled by GP and SPP. Especially in the

cases where ZR = 1, the performance difference of the single in-flight vs. the best case is only

22%. In contrast, AMAC (Figure 3.7c) is robust to various data distributions and handles the

non-uniform cases without incurring any additional performance overhead.

3.4.2 Scalability Analysis

In this section, we study the scalability of AMAC , which delivers impressive speedups, but

also stresses the memory subsystem of the machines. To mitigate any algorithm-related

scalability issues, we only focus on the read-only probe phase of hash join. We report the

probe throughput, which is calculated as |S|/pr obeE xecuti onT i me on the Xeon and T4

machines. On both platforms, we perform the experiment by assigning software threads first

to physical cores (six on Xeon and eight on T4) and once we run out of physical cores, we start

using the SMT threads.

The results on Xeon with non-skewed data, shown in Figure 3.8a, indicate that GP, SPP, and

AMAC throughputs scale well up to four threads. However, the throughputs start leveling

off after four cores and increasing the number of contexts does not result in any significant

improvement. Meanwhile, the baseline algorithm achieves better scalability and brings the

initial 2.5x throughput gap down to 80% by taking advantage of all the hardware contexts on

Xeon. In contrast, the same experiment on T4, shown in Figure 3.9a, shows that GP, SPP, and

AMAC scale well with the available physical cores (eight) and even benefit from SMT threads

moderately.

For the skewed experiments on Xeon (Figure 3.8b and Figure 3.8c), we see a similar trend

for AMAC but for the others the performance drops. As a result, the scalability gets better

as the pressure on the hardware resources decreases. On T4 (Figure 3.9b and Figure 3.9c),

we see that increasing the skew severely hurts the performance of GP and SPP. Up to eight

37

Chapter 3. AMAC: Asynchronous Memory Access Chaining

!"

#!!"

$!!"

%!!"

&!!"

'!!"

#" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'" #("

,
-
./
0
1"
2
0
3"
4
35
6
0
"7
8
2
/0
"

9"5:";<=>;?@A"/55B821"

C!D!E" CF'D!E" C#D!E" CF'DF'E" C#D#E"

(a) GP

!"

#!!"

$!!"

%!!"

&!!"

'!!"

#" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'" #("

,
-
./
0
1"
2
0
3"
4
35
6
0
"7
8
2
/0
"

9"5:";<=>;?@A"/55B821"

C!D!E" CF'D!E" C#D!E" CF'DF'E" C#D#E"

(b) SPP

!"

#!!"

$!!"

%!!"

&!!"

'!!"

#" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'" #("

,
-
./
0
1"
2
0
3"
4
35
6
0
"7
8
2
/0
"

9"5:";<=>;?@A"/55B821"

C!D!E" CF'D!E" C#D!E" CF'DF'E" C#D#E"

(c) AMAC

Figure 3.7 – Probe performance sensitivity to the tuning parameters of GP, SPP and AMAC
(2GB ./ 2GB).

cores, the performance of SP and GPP are almost comparable to the baseline. However,

beyond eight threads (i.e., SMT threads) GP and SPP yield an inferior performance to the

baseline. An important trend in all of these T4 experiments is the fact that AMAC achieves

better performance than the other techniques while the performance scales almost linearly

with physical cores.

38

3.4. Evaluation

!"

#!"

$%!"

$&!"

%'!"

$" %" (" '")" #" *" &" +" $!" $$" $%"

,
-.
/
0
"1
2
-.
3
4
2
5
3
6"
"

78
9:
:9
.
;
"6
3
5
:0
<"
="
<0
>.
;
?
@"

A".B"2C-?DC-0"62-0C?<"

EC<0:9;0" F," G,," H8HI"

(a) [0,0]

!"

#!"

$%!"

$&!"

%'!"

$" %" (" '")" #" *" &" +" $!" $$" $%"

,
-.
/
0
"1
2
-.
3
4
2
5
3
6"
"

78
9:
:9
.
;
"6
3
5
:0
<"
="
<0
>.
;
?
@"

A".B"2C-?DC-0"62-0C?<"

EC<0:9;0" F," G,," H8HI"

(b) [.5, .5]

!"

#!"

$%!"

$&!"

%'!"

$" %" (" '")" #" *" &" +" $!" $$" $%"

,
-.
/
0
"1
2
-.
3
4
2
5
3
6"
"

78
9:
:9
.
;
"6
3
5
:0
<"
="
<0
>.
;
?
@"

A".B"2C-?DC-0"62-0C?<"

EC<0:9;0" F," G,," H8HI"

(c) [1,1]

Figure 3.8 – Scalability of the hash table probes with uniform and Zipf-skewed keys (2GB ./

2GB). Measurement on Xeon x5670.

3.4.3 Group-By

Figure 3.10 shows the group-by speedup for different input relation sizes. We observe that, for

the small relation (217), the GP performance and SPP performance can be equal to or worse

than the baseline but deliver 14% and 15% better performance on average respectively. In

contrast, AMAC improves provides speedups ranging from 1.3x to 2x. In the big relation (227),

39

Chapter 3. AMAC: Asynchronous Memory Access Chaining

!"

#!!"

$!!"

%!!"

&!!"

#" ##" $#" %#" &#" '#" (#"

)
*+
,
-
".
/
*+
0
1
/
2
0
3"
"

45
67
76
+
8
"3
0
2
7-
9"
:"
9-
;+
8
<
="

>"+?"/@*<A@*-"3/*-@<9"

B@9-768-" C)" D))" E5EF"

(a) [0,0]

!"

#!!"

$!!"

%!!"

&!!"

#" ##" $#" %#" &#" '#" (#"

)
*+
,
-
".
/
*+
0
1
/
2
0
3"
"

45
67
76
+
8
"3
0
2
7-
9"
:"
9-
;+
8
<
="

>"+?"/@*<A@*-"3/*-@<9"

B@9-768-" C)"" D))" E5EF"

(b) [.5, .5]

!"

#!!"

$!!"

%!!"

&!!"

#" ##" $#" %#" &#" '#" (#"

)
*+
,
-
".
/
*+
0
1
/
2
0
3"
"

45
67
76
+
8
"3
0
2
7-
9"
:"
9-
;+
8
<
="

>"+?"/@*<A@*-"3/*-@<9"

B@9-768-" C)"" D))" E5EF"

(c) [1,1]

Figure 3.9 – Scalability of the hash table probes with uniform and Zipf-skewed keys (2GB ./

2GB). Measurement on Oracle T4.

GP and SPP deliver 2.5x and 2.75x speedup respectively and AMAC yields 3.2x speedup on

average. It is important to note that, in the uniform case, SPP’s performance is 7% lower than

AMAC and higher than GP by 8%. Under the skewed input, SPP maintains an average of 10%

higher performance than GP but achieves 20% lower performance compared to AMAC as

40

3.4. Evaluation

!"

#"

$"

%"

&"

$'(" $)(" $'(" $)(" $'(" $)("

*+,-./0" 1,2-"3456"789"!:;<" 1,2-"3456""789"#<"

=
/.
>
2
?@
A"
3
2
5
5
B
>
2
"

CDE5F,+5" =G" 3GG" HIHJ"

Figure 3.10 – Performance comparison of group-by operator with an input relation keys
following a uniform and Zipf-skewed keys. Measurement on Xeon x5670.

!"

#"

$"

%"

&"

'"

#(" #)" $#" $%" $'" $("

*
+,
,
"-
.
.
/
0
1
"2
1
,
,
3
0
1
"

*+,,"4.3,5"67.8$9"

:;5,7<=," >?" 2??" @A@B"

Figure 3.11 – Unbalanced binary search tree lookup performance. Measurement on Xeon
x5670.

the skew causes read/write dependencies within the pipeline, therefore extra code should be

executed to serialize the conflicting accesses.

3.4.4 Tree Search

Figure 3.11 depicts our results for unbalanced binary search tree. In general, the benefit of

all prefetching techniques compared to the baseline increases with the height of the tree, as

the baseline fails to generate MLP on long pointer chains. We observe that AMAC achieves an

average speedup of 2.8x (geomean) over the baseline implementation, compared to 2.1x and

1.8x for GP and SPP, respectively.

We also note that in contrast to the group-by case, where SPP outperforms GP by up to 11%,

in the unbalanced tree search GP performs 18% better than SPP on average. The reason for

41

Chapter 3. AMAC: Asynchronous Memory Access Chaining

the poor performance of SPP in tree search is the loss of MLP in case of bailouts, which occur

for the longest traversals. While SPP’s pipeline can be stretched to match the height of the

tree, in certain cases we found that the average performance attained in this configuration

is inferior to that with a slightly shorter pipeline that favors the common-case (i.e., average)

traversal length but incurs an occasional bailout. GP, however, never bails out because a group

is considered done when all the lookups within that group terminates. As a result, although

GP also loses the opportunity to achieve maximum MLP in the case of an irregularity, it can

still overlap the remaining lookups in a group to extract the limited available parallelism.

3.5 Discussion

Other workloads and data structures: We evaluated AMAC in the context of analytical database

systems with abundant inter-lookup parallelism and optimized data structures [38]. However,

bulk accesses to data structures is also a common operation in other parts of the computing

stack such as network layer. Similarly, in certain cases data structure lookups can contain

complex and/or recursive function calls. Even in the cases where the bulk lookups are exe-

cuted in small batches (i.e., 32, 64 lookups at a time) and contain function calls, AMAC can be

beneficial as long as the available lookups suffer from long-latency memory misses.

AMAC automation: In this work, we manually created AMAC stages and implemented state

save and restore functionality. Ideally this process should be automated and hidden from the

software developer. We believe that event-driven programming language concepts such as

coroutines that allow for cooperative multitasking (e.g., escape-and-reenter loops) within a

single-thread can help creating a generalized software model and framework for hiding long-

latency memory accesses. The benefit of such framework includes minimal modifications to

baseline code, easier programmability, and portability across platforms. The disadvantages

can be the user-land threads’ state maintenance and space overhead, which is an overkill

as the thread state carries a lot of redundancy across the threads of the same data structure

lookup.

42

3.6. AMAC Summary

3.6 AMAC Summary

This chapter introduced Asynchronous Memory Access Chaining, a new approach for achiev-

ing high MLP on pointer-intensive operations with irregular behavior across lookups. AMAC

is effective in managing irregularity by maintaining the state of each lookup separately from

other in-flight requests. This separation allows AMAC to react to the needs of each individual

lookup, such as executing more or fewer memory accesses than the common case, without

affecting the execution of other lookups.

AMAC achieves a competitive 4.3x speed-up over the no-prefetching hash join baseline for

uniform lookups. Moreover, AMAC is robust and maintains its performance advantage in the

presence of irregular accesses. In the hash join workloads with irregular accesses and AMAC

improves the performance by 3x over the no-prefetch baseline and by 1.8x over the existing

techniques.

43

4 Widx: On-chip Accelerator for Index

Traversals

The rapid growth in data volumes necessitates a corresponding increase in compute resources

to extract and serve the information from the raw data. Meanwhile, technology trends show a

major slowdown in supply voltage scaling, which has historically been the primary mechanism

for lowering the energy per transistor switching event. Constrained by energy at the chip

level, architects have found it difficult to leverage the growing on-chip transistor budgets to

improve the performance of conventional processor architectures. As a result, an increasing

number of proposals are calling for specialized on-chip hardware to increase performance

and energy efficiency in the face of dark silicon [24, 34]. Two critical challenges in the design of

such dark silicon accelerators are: (1) identifying the codes that would benefit the most from

acceleration by delivering significant value for a large number of users (i.e., maximizing utility),

and (2) moving just the right functionality into hardware to provide significant performance

and/or energy efficiency gain without limiting applicability (i.e., avoiding over-specialization).

This chapter proposes Widx, an on-chip accelerator for database hash index lookups. Hash

indexes are fundamental to modern database management systems (DBMSs) and are widely

used to convert linear-time search operations into near-constant-time ones. In practice,

however, the sequential nature of an individual hash index lookup, composed of key hashing

followed by pointer chasing through a list of nodes, results in significant time constants even

in highly tuned in-memory DBMSs. Consequently, a recent study of data analytics on a state-

45

Chapter 4. Widx: On-chip Accelerator for Index Traversals

of-the-art commercial DBMS found that 41% of the total execution time for a set of TPC-H

queries goes to hash index lookups used in hash-join operations [35].

By accelerating hash index lookups, a functionality that is essential in modern DBMSs, Widx

ensures high utility. Widx maximizes applicability by supporting a variety of schemas (i.e., data

layouts) through limited programmability. Finally, Widx improves performance and offers

high energy efficiency through simple parallel hardware.

The rest of this chapter is organized as follows. Section 4.1 motivates our focus on database

index traversals as a candidate for acceleration. Section 4.2 presents an analytical model for

finding practical limits to acceleration in index traversals. Section 4.3 describes the Widx

architecture. Sections 4.4 and 4.5 present the evaluation methodology and results, respectively.

Sections 4.6 and 4.7 discuss additional issues and concludes the chapter.

4.1 Profiling Analysis of a Modern DBMS

In order to understand the chief contributors to the execution time in database workloads,

we study MonetDB [38], a popular in-memory DBMS designed to take advantage of modern

processor and server architectures through the use of column-oriented storage and cache-

optimized operators. We evaluate Decision Support System (DSS) workloads on a server-grade

Xeon processor with TPC-H [78] and TPC-DS [59] benchmarks. Both DSS workloads were set

up with a 100GB dataset. Experimental details are described in Section 4.4.

Figure 4.1a shows the total execution time for a set of TPC-H and TPC-DS queries. The TPC-H

queries spend up to 94% (35% on average) and TPC-DS queries spend up to 77% (45% on

average) of their execution time on indexing. Indexing is the single dominant functionality in

these workloads, followed by scan and coupled sort&join operations. The rest of the query

execution time is fragmented among a variety of tasks, including aggregation operators (e.g.,

sum, max), library code, and system calls.

46

4.1. Profiling Analysis of a Modern DBMS

!"

#$"

$!"

%$"

&!!"

#" '" $" %" (")" &&" &'" &*" &$" &%" &(" &)" #!" #&" ##" $" '%" *!" *'" *+" $#" +*" (&" (#"

,-./0" ,-./12"

3
"4
5"
6
7
8
9
:
;
4
<
",
=>

8
"

?<@87"" 29A<"" 24BC"D"E4=<" FCG8B"

(a) Total execution time breakdown

!"

!#$%"

!#%"

!#&%"

'"

$" ''" '&" '(" $!" $$" %")&" *!" %$" +*" ,$"

-./01" -./023"

4
5
6
7
8
9:
;
<
=
">
?
=
<
@
"-
:7

<
"

A89B" 18CD"

(b) Index execution time breakdown

Figure 4.1 – TPC-H & TPC-DS query execution time breakdown on MonetDB.

To gain insight into where the time goes in the indexing phase, we profile the index-dominant

queries on a full-system cycle-accurate simulator (details in Section 4.4). We find that hash

table lookups account for nearly all of the indexing time, corroborating earlier research [35].

Figure 4.1b shows the normalized hash table lookup time, broken down into its primitive

operations: key hashing (Hash) and node list traversal (Walk). In general, node list traversals

dominate the lookup time (70% on average, 97% max) due to their long-latency memory

accesses. Key hashing contributes an average of 30% to the lookup latency; however, in cases

when the index table exhibits high L1 locality (e.g., queries 5, 37, and 82), over 50% (68% max)

of the lookup time is spent on key hashing.

Summary: Indexes are an essential database management system functionality that speeds

up accesses to data through hash table lookups and is responsible for up to 94% of the query

execution time. While the bulk of the index time is spent on memory-intensive node list

traversals, key hashing contributes 30% on average, and up to 68%, to each index operation.

47

Chapter 4. Widx: On-chip Accelerator for Index Traversals

Due to its significant contribution to the query execution time, index traversals presents

an attractive target for acceleration; however, maximizing the benefit of an index traversal

accelerator requires accommodating both key hashing and node list traversal functionalities.

4.2 Database Index Traversal Acceleration

4.2.1 Overview

Figure 4.2 highlights the key aspects of our approach to index traversal acceleration. These

can be summarized as (1) walk multiple hash buckets concurrently with dedicated walker

units, (2) speed up bucket accesses by decoupling key hashing from the walk, and (3) share

the hashing hardware among multiple walkers to reduce hardware cost. We next detail each of

these optimizations by evolving the baseline design (Figure 4.2a) featuring a single hardware

context that sequentially executes the code in Listing 2.1 with no special-purpose hardware.

The first step, shown in Figure 4.2b, is to accelerate the node list traversals that tend to

dominate the index traversal time. While each traversal is fundamentally a set of serial node

accesses, we observe that there is an abundance of inter-key parallelism, as each individual

key lookup can proceed independently of other keys. Consequently, multiple hash buckets

can be walked concurrently. Assuming a set of parallel walker units, the expected reduction in

index traversal time is proportional to the number of concurrent traversals.

The next acceleration target is key hashing, which stands on the critical path of accessing

the node list. We make a critical observation that because index operations involve multiple

independent input keys, key hashing can be decoupled from bucket accesses. By overlapping

the node walk for one input key with hashing of another key, the hashing operation can be

removed from the critical path, as depicted in Figure 4.2c.

Finally, we observe that because the hashing operation has a lower latency than the list

traversal, the hashing functionality can be shared across multiple walker units as a way of

reducing cost. We refer to a decoupled hashing unit shared by multiple cores as a dispatcher

and show this design point in Figure 4.2d.

48

4.2. Database Index Traversal Acceleration

H

Next key

W
(a) Baseline design

H

Next key

W

H

Next key

W

(b) Parallel walkers

H

Next key gen. Next key fetch

W

H

Next key gen. Next key fetch

W

(c) Parallel walkers each with a decoupled hash-
ing unit

H

Next key fetch

Next key fetch

Next key gen. W

W

(d) Parallel walkers with a shared decoupled
hashing unit

Figure 4.2 – Baseline and accelerated index traversal hardware.

49

Chapter 4. Widx: On-chip Accelerator for Index Traversals

4.2.2 First-Order Performance Model

An index operation may touch millions of keys, offering enormous inter-key parallelism. In

practice; however, parallelism is constrained by hardware and physical limitations. We thus

need to understand the practical bottlenecks that may limit the performance of the index

traversal accelerator outlined in Section 4.2.1. We consider an accelerator design that is

tightly coupled to the core and offers full offload capability of the index traversal functionality,

meaning that the accelerator uses the core’s TLB and L1-D, but the core is otherwise idle

whenever the accelerator is running.

We study three potential obstacles to performance scalability of a multi-walker design: (1)

L1-D bandwidth, (2) L1-D MSHRs, and (3) off-chip memory bandwidth. The performance-

limiting factor of the three elements is determined by the rate at which memory operations are

generated at the individual walkers. This rate is a function of the average memory access time

(AMAT), memory-level parallelism (MLP, i.e., the number of outstanding L1-D misses), and the

computation operations standing on the critical path of each memory access. While the MLP

and the number of computation operations are a function of the code, AMAT is affected by

the miss ratios in the cache hierarchy. For a given cache organization, the miss ratio strongly

depends on the size of the hash table being probed.

Our bottleneck analysis uses a simple analytical model following the observations above. We

base our model on the accelerator design with parallel walkers and decoupled hashing units

(Figure 4.2c) connected via an infinite queue. The index lookup code, MLP analysis, and

required computation cycles are based on Listing 2.1. We assume 64-bit keys, with eight keys

per cache block. The first key to a given cache block always misses in the L1-D and LLC and

goes to main memory. We focus on hash tables that significantly exceed the L1 capacity; thus,

node pointer accesses always miss in the L1-D, but they might hit in the LLC. The LLC miss

ratio is a parameter in our analysis.

L1-D bandwidth: The L1-D pressure is determined by the rate at which key and node accesses

are generated. First, we calculate the total number of cycles required to perform a fully

50

4.2. Database Index Traversal Acceleration

!"

!#$"

%"

%#$"

&"

!" !#&" !#'" !#(" !#)" %"

*
+
,
"-
.
/0
12
13
+
"

445"*6//"789:"

%" &" '"

)" %!"

(a) Constraint: L1-D bandwidth

!"

#"

$!"

$#"

%!"

$" %" &" '" #" (")" *" +"$!"

,
-
./
.0
1
2
31
4
"

"5
$
"6

3/
/7
/"

8-9:7;"<=">0?@7;/"

(b) Constraint: L1-D MSHRs

!"

#"

$"

%"

&"

'"

("

)"

*"

!+#" !+&" !+)" #"

,
-
./
0
12
"3
0
1"
4
5
"

665"4722"8-9:"

(c) Constraint: memory bandwidth

Figure 4.3 – Accelerator bottleneck analysis.

!"

#"

!
"

!
$#
"

!
$%
"

!
$&
"

!
$'
"

!
$(
"

!
$)
"

!
$*
"

!
$+
"

!
$,
"

#
"

-
.
/0
1
2
"3
4
/5
6
.
4
7
8
"

99:";5<<"=.47"

+" '" %" #"

(a) 1 node per bucket

!"

#"

!
"

!
$#
"

!
$%
"

!
$&
"

!
$'
"

!
$(
"

!
$)
"

!
$*
"

!
$+
"

!
$,
"

#
"

-
.
/0
1
2
"3
4
/5
6
.
4
7
8
"

99:";5<<"=.47"

+" '" %" #"

(b) 2 nodes per bucket

!"

#"

!
"

!
$#
"

!
$%
"

!
$&
"

!
$'
"

!
$(
"

!
$)
"

!
$*
"

!
$+
"

!
$,
"

#
"

-
.
/0
1
2
"3
4
/5
6
.
4
7
8
"

99:";5<<"=.47"

+" '" %" #"

(c) 3 nodes per bucket

Figure 4.4 – Number of walkers that can be fed by a dispatcher as a function of bucket size and
LLC miss ratio.

51

Chapter 4. Widx: On-chip Accelerator for Index Traversals

pipelined probe operation for each step (i.e., hashing one key or walking one node in a bucket).

Equation 4.1 shows the cycles required to perform each step as the sum of memory and

computation cycles. As hashing and walking are different operations, we calculate the same

metric for each of them (subscripted as H and W).

Equation 4.2 shows how the L1-D pressure is calculated in our model. In the equation, N

defines the number of parallel walkers each with a decoupled hashing unit. MemOps defines

the L1-D accesses for each component (i.e., hashing one key and walking one node) per

operation. As hashing and walking are performed concurrently, the total L1-D pressure is

calculated by the addition of each component. We use a subscripted notation to represent the

addition; for example: (X)H ,W = (X)H + (X)W .

C ycles = AM AT ∗MemOps +CompC ycl es (4.1)

MemOps/c ycle = (
MemOps

C ycles
)H ,W ∗N ≤ L1por t s (4.2)

Figure 4.3a shows the L1-D bandwidth requirement as a function of the LLC miss ratio for a

varying number of walkers. The number of L1-D ports (typically 1 or 2) limits the L1 accesses

per cycle. When the LLC miss ratio is low, a single-ported L1-D becomes the bottleneck for

more than six walkers. However, a two-ported L1-D can comfortably support 10 walkers even

at low LLC miss ratios.

MSHRs: Memory accesses that miss in the L1-D reserve an MSHR for the duration of the miss.

Multiple misses to the same cache block (a common occurrence for key fetches) are combined

and share an MSHR. A typical number of MSHRs in the L1-D is 8-10; once these are exhausted,

the cache stops accepting new memory requests. Equation 4.3 shows the relationship between

the number of outstanding L1-D misses and the maximum MLP the hashing unit and walker

can together achieve during a decoupled hash and walk.

L1Mi sses = max(MLP H +MLPW)∗N ≤ MSHRs (4.3)

52

4.2. Database Index Traversal Acceleration

Based on the equation, Figure 4.3b plots the pressure on the L1-D MSHRs as a function

of the number of walkers. As the graph shows, the number of outstanding misses (and

correspondingly, the MSHR requirements) grows linearly with the walker count. Assuming 8

to 10 MSHRs in the L1-D, corresponding to today’s cache designs, the number of concurrent

walkers is limited to four or five, respectively.

Off-chip bandwidth: Today’s server processors tend to feature a memory controller (MC) for

every 2-4 cores. The memory controllers serve LLC misses and are constrained by the available

off-chip bandwidth, which is around 12.8GB/s with today’s DDR3 interfaces. A unit of transfer

is a 64B cache block, resulting in nearly 200 million cache block transfers per second. We

express the maximum off-chip bandwidth per memory controller in terms of the maximum

number of 64-byte blocks that could be transferred per cycle. Equation 4.4 calculates the

number of blocks demanded from the off-chip per operation (i.e., hashing one key or walking

one node in a bucket) as a function of L1-D and LLC miss ratio (L1MR , LLCMR) and memory

operations. Equation 4.5 shows the model for computing memory bandwidth pressure, which

is expressed as the ratio of the expected MC bandwidth in terms of blocks per cycle (BWMC)

and the number of demanded cache blocks from the off-chip memory per cycle. The latter is

calculated for each component (i.e., hashing unit and walker).

O f f C hi pDemand s = L1MR ∗LLCMR ∗MemOps (4.4)

W alker sPer MC ≤ BWMC

(O f f C hi pDemand s
C ycles)H ,W

(4.5)

Figure 4.3c shows the number of walkers that can be served by a single DDR3 memory con-

troller providing 9GB/s of effective bandwidth (70% of the 12.8GB/s peak bandwidth [20]).

When LLC misses are rare, one memory controller can serve almost eight walkers, whereas

at high LLC miss ratios, the number of walkers per MC drops to four. However, our model

assumes an infinite buffer between the hashing unit and the walker, which allows the hashing

unit to increase the bandwidth pressure. In practical designs, the bandwidth demands from

53

Chapter 4. Widx: On-chip Accelerator for Index Traversals

the hashing unit will be throttled by the finite-capacity buffer, potentially affording more

walkers within a given memory bandwidth budget.

Dispatcher: In addition to studying the bottlenecks to scalability in the number of walkers, we

also consider the potential of sharing the key hashing logic in a dispatcher-based configuration

shown in Figure 4.2d. The main observation behind this design point is that the hashing

functionality is dominated by ALU operations and enjoys a regular memory access pattern

with high spatial locality, as multiple keys fit in each cache line in column-oriented databases.

Meanwhile, node accesses launched by the walkers have poor spatial locality but also have

minimal ALU demands. As a result, the ability of a single dispatcher to keep up with multiple

walkers is largely a function of (1) the hash table size, and (2) hash table bucket depth (i.e.,

the number of nodes per bucket). The larger the table, the more frequent the misses at lower

levels of the cache hierarchy, and the longer the stall times at each walker. Similarly, the deeper

the bucket, the more nodes are traversed and the longer the walk time. As walkers stall, the

dispatcher can run ahead with key hashing, allowing it to keep up with multiple walkers. This

intuition is captured in Equation 4.6. Total cycles for dispatcher and walkers is a function of

AMAT (Equation 4.1). We multiply the number of cycles needed to walk a node by the number

of nodes per bucket to compute the total walking cycles required to locate one hashed key.

W alkerU ti l i zati on = C yclesnode ∗Nodes/bucket

C ycleshash ∗N
(4.6)

Based on Equation 4.6, Figure 4.4 plots the effective walker utilization given one dispatcher

and a varying number of walkers (N). Whenever a dispatcher cannot keep up with the walkers,

the walkers stall, lowering their effective utilization. The number of nodes per bucket affects

the walkers’ rate of consumption of the keys generated by the dispatcher; buckets with more

nodes take longer to traverse, lowering the pressure on the dispatcher. The three subfigures

show the walker utilization given 1, 2, and 3 nodes per bucket for varying LLC miss ratios. As

the figure shows, one dispatcher is able to feed up to four walkers, except for very shallow

buckets (1 node/bucket) with low LLC miss ratios.

54

4.3. Widx

4.3 Widx

4.3.1 Architecture Overview

Figure 4.5 shows the high-level organization of our proposed index traversal acceleration

widget, Widx, which extends the decoupled accelerator in Figure 4.2d. The Widx design is

based on three types of units that logically form a pipeline:

(1) a dispatcher unit that hashes the input keys,

(2) a set of walker units for traversing the node lists, and

(3) an output producer unit that writes out the matching keys and other data as specified by

the index function.

To maximize concurrency, the units operate in a decoupled fashion and communicate via

queues. Data flows from the dispatcher toward the output producer. All units share an

interface to the host core’s MMU and operate within the active application’s virtual address

space. A single output producer generally suffices as store latency can be hidden and is not on

the critical path of hash table probes.

A key requirement for Widx is the ability to support a variety of hashing functions, database

schemas, and data types. As a result, Widx takes the programmable (instead of fixed-function)

accelerator route. In designing the individual Widx units (dispatcher, walker, and output

producer), we observe significant commonality in the set of operations that each must support.

These include the ability to do simple arithmetic (e.g., address calculation), control flow, and

to access memory via the MMU.

Based on these observations, each Widx unit employs a custom RISC core featuring a min-

imalistic ISA shown in Table 4.1. In addition to the essential RISC instructions, the ISA also

includes a few unit-specific operations to accelerate hash functions with fused instructions

(e.g., xor-shift) and an instruction to reduce memory time (i.e., touch) by demanding data

blocks in advance of their use. This core serves as a common building block for each Widx

55

Chapter 4. Widx: On-chip Accelerator for Index Traversals

H P

Key,

Hashed key

W

W

W

W

Key′

To MMU

Figure 4.5 – Widx overview. H: dispatcher, W: walker, P: output producer.

unit shown in Figure 4.5. The compact ISA minimizes the implementation complexity and

area cost while affording design reuse across the different units.

Figure 4.6 shows the internals of a Widx unit. We adopted a design featuring a 64-bit datapath,

2-stage pipeline, and 32 software-exposed registers. The relatively large number of registers is

necessary for storing the constants used in key hashing. The three-operand ALU allows for

efficient shift operations that are commonly used in hashing. The critical path of our design is

the branch address calculation with relative addressing.

4.3.2 Programming API

To leverage Widx, a database system developer must specify three functions: one for key

hashing, another for the node walk, and the last one for emitting the results. Either implicitly

or explicitly, these functions specify the data layout (e.g., relative offset of the node pointer

within a node data structure) and data types (e.g., key size) used for the index operations.

Inputs to the functions include the hash table pointer and size, input keys’ table pointer and

size, and the destination pointer for emitting results.

56

4.3. Widx

PC F/D RF

ALU

<<

+
4

+
-

To Memory

To Buffer

From Buffer/Memory

In
s
tr

u
c
ti

o
n

C
o

n
fi

g

To Memory

To Buffer

B
ra

n
c
h

W
ri

te
b

a
c
k

Figure 4.6 – Schematic design of a single Widx unit.

The functions are written in a limited subset of C, although other programming languages

(with restrictions) could also be used. Chief limitations imposed by the Widx programming

model include the following: no dynamic memory allocation, no stack, and no writes except

by the output producer. One implication of these restrictions is that functions that exceed a

Widx unit’s register budget cannot be mapped, as the current architecture does not support

push/pop operations. However, our analysis with several contemporary DBMSs shows that, in

practice, this restriction is not a concern.

4.3.3 Additional Details

Configuration interface: In order to benefit from the Widx acceleration, the application

binary must contain a Widx control block, composed of constants and instructions for each

of the Widx dispatcher, walker, and output producer units. To configure Widx, the processor

initializes memory-mapped registers inside Widx with the starting address (in the application’s

virtual address space) and length of the Widx control block. Widx then issues a series of loads

to consecutive virtual addresses from the specified starting address to load the instructions

and internal registers for each of its units.

57

Chapter 4. Widx: On-chip Accelerator for Index Traversals

Table 4.1 – Widx ISA. The columns show which Widx units use a given instruction type.

Instruction H W P

ADD X X X
AND X X X
BA X X X
BLE X X X
CMP X X X
CMP-LE X X X
LD X X X
SHL X X X
SHR X X X
ST X
TOUCH X X X
XOR X X X
ADD-SHF X X
AND-SHF X
XOR-SHF X

To offload an index operation, the core (directed by the application) writes the following

entries to Widx’s configuration registers: base address and length of the input table, base

address of the hash table, starting address of the results region, and a NULL value identifier.

Once these are initialized, the core signals Widx to begin execution and enters an idle loop.

The latency cost of configuring Widx is amortized over the millions of hash table probes that

Widx executes.

Handling faults and exceptions: TLB misses are the most common faults encountered by

Widx and are handled by the host core’s MMU in its usual fashion. In architectures with

software-walked page tables, the walk will happen on the core and not on Widx. Once the

missing translation is available, the MMU will signal Widx to retry the memory access. In the

case of the retry signal, Widx redirects PC to the previous PC and flushes the pipeline. The

retry mechanism does not require any architectural checkpoint as nothing is modified in the

first stage of the pipeline until an instruction completes in the second stage.

Other types of faults and exceptions trigger handler execution on the host core. Because

Widx provides an atomic all-or-nothing execution model, the index operation is completely

re-executed on the host core in case the accelerator execution is aborted.

58

4.4. Methodology

Table 4.2 – Evaluation parameters.

Parameter Value

Technology 40nm, 2GHz

CMP Features 4 cores

Core Types
In-order (Cortex A8-like): 2-wide

OoO (Xeon-like): 4-wide, 128-entry ROB

L1-I/D Caches
32KB, split, 2 ports, 64B blocks, 10 MSHRs,

2-cycle load-to-use latency

LLC 4MB, 6-cycle hit latency

TLB 2 in-flight translations

Interconnect Crossbar, 4-cycle latency

Main Memory
32GB, 2 MCs, BW: 12.8GB/s

45ns access latency

4.4 Methodology

Workloads: We evaluate three different benchmarks, namely the hash join kernel, TPC-H, and

TPC-DS.

We use a highly optimized and publicly available hash join kernel code [10], which optimizes

the “no partitioning” hash join algorithm [13]. We configure the kernel to run with four threads

that probe a hash table with up to two nodes per bucket. Each node contains a tuple with 4B

key and 4B payload [46]. We evaluate three index sizes, Small, Medium and Large. The Large

benchmark contains 128M tuples (corresponding to 1GB dataset) [46]. The Medium and Small

benchmarks contain 512K (4MB raw data) and 4K (32KB raw data) tuples respectively. In all

configurations the outer relation contains 128M uniformly distributed 4B keys.

We run DSS queries from the TPC-H [78] and TPC-DS [59] benchmarks on MonetDB 11.5.9 [38]

with a 100GB dataset (a scale factor of 100) both for hardware profiling and evaluation in the

simulator. Our hardware profiling experiments are carried out on a six-core Xeon 5670 with

96GB of RAM and we used Vtune [42] to analyze the performance counters. Vtune allows us to

break down the execution time into functions. To make sure that we correctly account for the

59

Chapter 4. Widx: On-chip Accelerator for Index Traversals

time spent executing each database operator (e.g., scan, index), we examine the source code of

those functions and group them according to their functionality. We warm up the DBMS and

memory by executing all the queries once and then we execute the queries in succession and

report the average of three runs. For each run, we randomly generate new inputs for queries

with the dbgen tool [78].

For the TPC-H benchmark, we run all the queries and report the ones with the index execution

time greater than 5% of the total query runtime (16 queries out of 22). Since there are a total of

99 queries in the TPC-DS benchmark, we select a subset of queries based on a classification

found in previous work [59], considering the two most important query classes in TPC-DS,

Reporting and Ad Hoc. Reporting queries are well-known, pre-defined business questions

(queries 37, 40 & 81). Ad Hoc captures the dynamic nature of a DSS system with the queries

constructed on the fly to answer immediate business questions (queries 43, 46, 52 & 82). We

also choose queries that fall into both categories (queries 5 & 64). In our runs on the cycle-

accurate simulator, we pick a representative subset of the queries based on the average time

spent in index lookups.

Processor parameters: The evaluated designs are summarized in Table 4.2. Our baseline

processor features aggressive out-of-order cores with a dual-ported MMU. We evaluate the

Widx designs featuring one, two, and four walkers. Based on the results of the model of

Section 4.2.2, we do not consider designs with more than four walkers. All Widx designs

feature one shared dispatcher and one result producer. As described in Section 4.3, Widx offers

full offload capability, meaning that the core stays idle (except for the MMU) while Widx is in

use. For comparison, we also evaluate an in-order core modeled after ARM Cortex A8.

Simulation: We evaluate various processor and Widx designs using the Flexus full-system

simulator [84]. Flexus extends the Virtutech Simics functional simulator with timing models

of cores, caches, on-chip protocol controllers, and interconnect. Flexus models the SPARC v9

ISA and is able to run unmodified operating systems and applications.

60

4.5. Evaluation

We use the SimFlex multiprocessor sampling methodology [84], which extends the SMARTS

statistical sampling framework [87]. Our samples are drawn over the entire index execution

until the completion. For each measurement, we launch simulations from checkpoints with

warmed caches and branch predictors, and run 100K cycles to achieve a steady state of detailed

cycle-accurate simulation before collecting measurements for the subsequent 50K cycles. We

measure the index traversal throughput by aggregating the tuples processed per cycle both for

the baseline and Widx. To measure the index traversal throughput of the baseline, we mark

the beginning and end of the index code region and track the progress of each tuple until its

completion. Performance measurements are computed at 95% confidence with an average

error of less than 5%.

Power and Area: To estimate Widx’s area and power, we synthesize our Verilog implementation

with the Synopsys Design Compiler [74]. We use the TSMC 45nm technology (Core library:

TCBN45GSBWP, Vdd : 0.9V), which is perfectly shrinkable to the 40nm half node. We target

a 2GHz clock rate. We set the compiler to the high area optimization target. We report the

area and power for six Widx units: four walkers, one dispatcher, and one result producer, with

2-entry queues at the input and output of each walker unit.

We use published power estimates for OoO Xeon-like core and in-order A8-like core at

2GHz [51]. We assume the power consumption of the baseline OoO core to be equal to Xeon’s

nominal operating power [66]. Idle power is estimated to be 30% of the nominal power [43].

As the Widx-enabled design relies on the core’s data caches, we estimate the core’s private

cache power using CACTI 6.5 [56].

4.5 Evaluation

We first analyze the performance of Widx on an optimized hash join kernel code. We then

present a case study on MonetDB with DSS workloads, followed by an area and energy analysis.

61

Chapter 4. Widx: On-chip Accelerator for Index Traversals

!"

#"

$"

%"

&"

'"

("

#" $" &" #" $" &" #" $" &"

)*+,," -./01*" 2+34."

5
6
3*

+
,0
7.
/
""

8
9
:,
.
;"
<
.
3"
=
1
<
,.
"

86*<" -.*" =2>" ?/,."

(a) Widx walkers cycle breakdown for the Hash Join kernel (normalized to Small running on Widx with one walker)

!"

#"

$"

%"

&"

'()**" +,-./(" 0)12,"

34
-
,
5
"'
6
,
,
-
/
6
"

787" #"9)*:,1" $"9)*:,1;" &"9)*:,1;"

(b) Speedup for the Hash Join kernel

Figure 4.7 – Hash Join kernel analysis.

4.5.1 Performance on Hash Join Kernel

In order to analyze the performance implications of index walks with various dataset sizes, we

evaluate three different index sizes; namely, Small, Medium, and Large, on a highly optimized

hash join kernel as explained in Section 4.4.

To show where the Widx cycles are spent we divide the aggregate critical path cycles into four

groups. Comp cycles go to computing effective addresses and comparing keys at each walker,

Mem cycles count the time spent in the memory hierarchy, TLB quantifies the Widx stall cycles

due to address translation misses, and Idle cycles account for the walker stall time waiting for

a new key from the dispatcher. Presence of Idle cycles indicates that the dispatcher is unable

to keep up with the walkers.

62

4.5. Evaluation

!"

#$!"

%!!"

&$!"

#" '" &" #" '" &" #" '" &" #" '" &" #" '" &" #" '" &"

()*'" ()*##" ()*#+" ()*#," ()*'!" ()*''"

-./01"

/
*
23
4
5"
6
4
)"
-
7
6
34
" /896" :49" -;<" =>34"

(a) Widx walkers cycle breakdown for TPC-H queries

!"

#!!"

$!!"

#" $" %" #" $" %" #" $" %" #" $" %" #" $" %" #" $" %"

&'()" &'(*+" &'(%!" &'()$" &'(,%" &'(-$"

./0123"

0
(
45
6
7"
8
6
'"
.
9
8
56
" 0:;8" <6;" .=>" ?@56"

(b) Widx walkers cycle breakdown for TPC-DS queries

Figure 4.8 – DSS on MonetDB. Note that Y-axis scales are different on the two subgraphs.

Figure 4.7a depicts the Widx walkers’ execution cycles per tuple (normalized to Small running

on Widx with one walker) as we increase the number of walkers from one to four. The dominant

fraction of cycles is spent in memory and as the index size grows, the memory cycles increase

commensurately. Not surprisingly, increasing the number of walkers reduces the memory

time linearly due to the MLP exposed by multiple walkers. One exception is the Small index

with four walkers; in this scenario, node accesses from the walkers tend to hit in the LLC,

resulting in low AMAT. As a result, the dispatcher struggles to keep up with the walkers, causing

the walkers to stall (shown as Idle in the graph). This behavior matches our model’s results in

Section 4.2.

The rest of the Widx cycles are spent on computation and TLB misses. Computation cycles

constitute a small fraction of the total Widx cycles because the Hash Join kernel implements a

simple memory layout, and hence requires trivial address calculation. We also observe that the

63

Chapter 4. Widx: On-chip Accelerator for Index Traversals

fraction of TLB cycles per walker does not increase as we enable more walkers. Our baseline

core’s TLB supports two in-flight translations, and it is unlikely to encounter more than two

TLB misses at the same time, given that the TLB miss ratio is 3% for our worst case (Large

index).

Figure 4.7b illustrates the index traversal speedup of Widx normalized to the OoO baseline.

The one-walker Widx design improves performance by 4% (geometric mean) over the base-

line. The one-walker improvements are marginal because the hash kernel implements an

oversimplified hash function, which does not benefit from Widx’s decoupled hash and walk

mechanisms, which overlap the hashing and walking time. However, the performance im-

provement increases with the number of Widx walkers, which traverse buckets in parallel.

Widx achieves a speedup of 4x at best for the Large index table, which performs poorly on the

baseline cores due to the high LLC miss ratio and limited MLP.

4.5.2 Case study on MonetDB

In order to quantify the benefits of Widx on a complex system, we run Widx with the well-

known TPC-H benchmark and with the successor benchmark TPC-DS on a state-of-the-art

database management system, MonetDB.

Figure 4.8a breaks down the Widx cycles while running TPC-H queries. We observe that the

fraction of the computation cycles in the breakdown increases compared to the hash join

kernel due to MonetDB’s complex hash table layout. MonetDB stores keys indirectly (i.e.,

pointers) in the index resulting in more computation for address calculation. However, the

rest of the cycle breakdown follows the trends explained in the Hash Join kernel evaluation

(Section 4.5.1). The queries enjoy a linear reduction in cycles per tuple with the increasing

number of walkers. The queries with relatively small index sizes (query 2, 11 & 17) do

not experience any TLB misses, while the memory-intensive queries (query 19, 20 & 22)

experience TLB miss cycles up to 8% of the walker execution time.

64

4.5. Evaluation

!"

#"

$"

%"

&"

'"

("

)*+$")*+##")*+#,")*+#-")*+$!")*+$$")*+'")*+%,")*+&!")*+'$")*+(&")*+.$"

/0123" /01245"

67
8
9
:
"5
;
9
9
8
<
;
"

=>=" #"?@AB9*" $"?@AB9*C" &"?@AB9*C"

Figure 4.9 – Performance of Widx on DSS queries.

Figure 4.8b presents the cycles per tuple breakdown for TPC-DS. Compared to TPC-H, a

distinguishing aspect of the TPC-DS benchmark is the small-sized index tables. 1 Our results

verify this fact as we observe consistently lower memory time compared to that of TPC-H

(mind the y-axis scale change). As a consequence, some queries (query 5, 37, 64 & 82) go over

indexes that can easily be accommodated in the L1-D cache. Widx walkers are partially idle

given that they can run at equal or higher speed compared to the dispatcher due to the tiny

index, a behavior explained by our model in Section 4.2.

Figure 4.9 illustrates the performance of Widx on both TPC-H and TPC-DS queries. Compared

to OoO, four walkers improve the performance by 1.5x-5.5x (geometric mean of 3.1x). The

maximum speedup (5.5x) is registered on TPC-H query 20, which works on a large index with

double integers that require computationally intensive hashing. As a result, this query greatly

benefits from Widx’s features, namely, the decoupled hash and multiple walker units with

custom ISA. The minimum speedup (1.5x) is observed on TPC-DS query 37 due to L1-resident

index (L1-D miss ratio <1%). We believe that this is the lower limit for our design because

there are only a handful of unique index entries.

We estimate the benefits of index traversal acceleration at the level of the entire query by

projecting the speedups attained in the Widx-accelerated design onto the index traversal

portions of the TPC-H and TPC-DS queries presented in Figure 4.1a. By accelerating just the

index portion of the query, Widx speeds up the query execution by a geometric mean of 1.5x

1There are 429 columns in TPC-DS, while there are only 61 in TPC-H. Therefore, for a given dataset size, the
index sizes are smaller per column because the same size of dataset is divided over a large number of columns.

65

Chapter 4. Widx: On-chip Accelerator for Index Traversals

!"

!#$"

%#&"

%#'"

&#("

)*+,-"./*01," 2*,345" 2*,34567,895"

:
,
;3
<=
">
?"
)*
;,
3,
@;
"

"A
B
>
31

9
8<
C,
+
";
>
"D
>
D
E"

D>D")*6>3+,3" F<+-"AGH"D>DE"

Figure 4.10 – Index Runtime, Energy and Energy-Delay metric of Widx (lower is better).

and up to 3.1x (query 17). Our query speedups are limited by the fraction of the time spent in

index traversals throughout the overall execution. In query 17, the achieved overall speedup

is close to the index-only speedup with the four-walker design as 94% of the execution time

is spent in index lookups. The lowest overall speedup (10%) is obtained in query 37 because

only 29% of the query execution is offloaded to Widx and as explained above, the query works

on an L1-resident index.

4.5.3 Area and Energy Efficiency

To model the area overhead and power consumption of Widx, we synthesized our RTL design

in the TSMC 40nm technology. Our analysis shows that a single Widx unit (including the two-

entry input/output buffers) occupies 0.039mm2 with a peak power consumption of 53mW at

2GHz. Our power and area estimates are extremely conservative due to the lack of publicly

available SRAM compilers in this technology. Therefore, the register file and instruction buffer

constitute the main source of area and power consumption of Widx. The Widx design with

six units (dispatcher, four walkers, and an output producer) occupies 0.24mm2 and draws

320mW . To put these numbers into perspective, an in-order ARM Cortex A8 core in the same

process technology occupies 1.3mm2, while drawing 480mW including the L1 caches [51].

Widx’s area overhead is only 18% of Cortex A8 with comparable power consumption, despite

our conservative estimates for Widx’s area and power. As another point of comparison, an

ARM M4 microcontroller [8] with full ARM Thumb ISA support and a floating-point unit

66

4.5. Evaluation

occupies roughly the same area as the single Widx unit. We thus conclude that Widx hardware

is extremely cost-effective even if paired with very simple cores.

Figure 4.10 summarizes the trade-offs of this study by comparing the average runtime, energy

consumption, and energy-delay product of the index portion of DSS workloads. In addi-

tion to the out-of-order baseline, we also include an in-order core as an important point of

comparison for understanding the performance/energy implications of the different design

choices.

An important conclusion of the study is that the in-order core performs significantly worse

(by 2.2x on average) than the baseline OoO design. Part of the performance difference can be

attributed to the wide issue width and reordering capability of the OoO core, which benefits

the hashing function. The reorder logic and large instruction window in the OoO core also

help in exposing the inter-key parallelism between two consecutive hash table lookups. For

queries that have cache-resident index data, the loads can be issued from the imminent key

probe early enough to partially hide the cache access latency.

In terms of energy efficiency, we find that the in-order core reduces energy consumption by

86% over the OoO core. When coupled with Widx, the OoO core offers almost the same energy

efficiency (83% reduction) as the in-order design. Despite the full offload capability offered by

Widx and its high energy efficiency, the total energy savings are limited by the high idle power

of the OoO core.

In addition to energy efficiency, QoS is a major concern for many database workloads. We

thus study the efficiency of various designs on both performance and energy together via the

energy-delay product metric. Due to its performance and energy-efficiency benefits, Widx

improves the energy-delay product by 5.5x over the in-order core and by 17.5x over the OoO

baseline.

67

Chapter 4. Widx: On-chip Accelerator for Index Traversals

4.6 Discussion

Other join algorithms and software optimality: In this study, we focused on hardware-

oblivious hash join algorithms that run on the state-of-the-art software. In order to exploit

on-chip cache locality, researchers have proposed hardware-conscious approaches that have

a table-partitioning phase prior to the main join operation [53]. In this phase, a hash table

is built on each small partition of the table, thus making the individual hash tables cache-

resident. The optimal partition size changes across hardware platforms based on the cache

size, TLB size, etc.

Widx’s functionality does not require any form of data locality, and thus is independent of

any form of data partitioning. Widx is, therefore, equally applicable to hash join algorithms

that employ data partitioning prior to the main join operation [53]. Due to the significant

computational overhead involved in table partitioning, specialized hardware accelerators that

target partitioning [85] can go hand in hand with Widx.

Another approach to optimize join algorithms is the use of SIMD instructions. While the

SIMD instructions aid hash-joins marginally [35, 46], another popular algorithm, sort-merge

join, greatly benefits from SIMD optimizations during the sorting phase. However, prior

work [9] has shown that hash join clearly outperforms the sort-merge join. In general, software

optimizations target only performance, whereas Widx both improves performance and greatly

reduces energy.

Broader applicability: Our study focused on MonetDB as a representative contemporary

database management system; however, we believe that Widx is equally applicable to other

DBMSs. Our profiling of HP Vertica and SAP HANA indicate that these systems rely on index

strategies, akin to those discussed in this work, and consequently, can benefit from our design.

Moreover, Widx can easily be extended to accelerate other index structures, such as balanced

trees, which are also common in DBMSs.

68

4.7. Widx Summary

LLC-side Widx: While our study focused on a Widx design tightly coupled with a host core,

Widx could potentially be located close to the LLC instead. The advantages of LLC-side

placement include lower LLC access latencies and reduced MSHR pressure. The disadvantages

include the need for a dedicated address translation logic, a dedicated low-latency storage

next to Widx to exploit data locality, and a mechanism for handling exception events. We

believe the balance is in favor of a core-coupled design; however, the key insights of this work

are equally applicable to an LLC-side Widx.

Widx unit candidates: In this work, we focused on designing our own hardware unit to

fully demonstrate the energy efficiency benefits of specialized hardware. However, Widx-

style execution is applicable to energy-efficient hardware units such as embedded cores and

microcontrollers. A prime example of such simple core is ARC HS38 by Synopsis [21], which

is a high-performance embedded core consuming almost the same power as a single Widx

unit while operating at 1.6GHz. HS38 instructions are customizable and the design employs a

dedicated MMU, which can avoid the need for a dedicated host core.

4.7 Widx Summary

We introduced Widx, a programmable widget for accelerating hash index accesses. Widx

features multiple walkers for traversing the node lists and a single dispatcher that maintains a

list of hashed keys for the walkers. Both the walkers and a dispatcher share a common building

block consisting of a custom 2-stage RISC core with a simple ISA. The limited programmability

afforded by the simple core allows Widx to support a virtually limitless variety of schemas

and hashing functions. Widx minimizes cost and complexity through its tight coupling with a

conventional core, which eliminates the need for dedicated address translation and caching

hardware. Compared to an aggressive out-of-order core, the proposed Widx design improves

index traversal performance by 3.1x on average, while saving 83% of the energy by allowing

the host core to be idle while Widx runs.

69

5 Quantifying the Impact of Memory

Subsystem on Acceleration

In this chapter, we study the impact of memory subsystem on software and hardware accel-

eration mechanisms. We identify and quantify the features of the memory subsystem that

would improve the accelerator throughput and energy efficiency. We first look at the benefits

of using large memory pages to minimize the overhead of TLB miss penalties. We then study

the performance sensitivity of software acceleration to the features of L1-D cache, namely

cache block alignment and the number miss status handling registers, which improve the

effectiveness of the prefetched cache blocks and maximize memory-level parallelism respec-

tively. Furthermore, to understand the significance of shared on-chip resources, we perform a

throughput scalability analysis with multiple hardware threads to reveal possible bottlenecks

on the shared on-chip resources. After quantifying the performance degradation imposed by

the bottlenecks of the on-chip cache hierarchy and memory subsystem, we finally conclude

by demonstrating a simple analysis of leveraging our software acceleration scheme on an

optimized memory subsystem and also on our specialized hardware accelerator to maximize

throughput by fully utilizing the off-chip bandwidth while achieving high energy efficiency.

71

Chapter 5. Quantifying the Impact of Memory Subsystem on Acceleration

5.1 Quantifying the Overhead

In Chapter 3 we demonstrated a software accelerator (AMAC) that greatly enhances data

structure traversal throughput for a wide variety of pointer-intensive data structures. In this

chapter, we study the limits of the AMAC execution, by providing an in-depth analysis of

AMAC critical path and scalability. We identify and analyze three bottlenecks in the memory

subsystem, which are (i) virtual memory page size, (ii) data structure alignment, and (iii) the

number of miss status handling registers for on-chip caches.

Using large virtual memory pages is an important optimization for applications that deal with

large amounts of data. Given that TLB capacity is limited because it is on the critical path

of the L1-D cache accesses, large pages allow for reducing (i) the number of TLB misses by

increasing the amount of memory space covered, and (ii) the cycles spent to translate a page in

case of a TLB miss by reducing the page table size drastically. The latter is especially important

as the total size of the page table entries can reach beyond the capacity of on-chip caches and

result in severe TLB miss penalties.

In addition to perfect TLB coverage, completely hiding the memory latency necessitates

demanding the required data block or blocks in advance. Given that prefetch instructions

typically work at cache-line granularity (e.g., 64-byte on Intel Xeon), when the required data

blocks are larger than the cache line size, the number of prefetch demands has to be adjusted

accordingly. However, even if the required data blocks are smaller than a single cache line,

there is a possibility that the target block of data can span two cache lines (i.e., unaligned)

due to the memory layout of the data structure. Although, it is possible to prefetch two

consecutive cache blocks with two prefetch instructions, unaligned accesses still result in

sub-optimal performance because more than one cache line has to be accessed during the

execution. Therefore, data structure padding is an effective solution by adding extra fields in

data structure nodes at compile time to ensure that consecutive data structure nodes start at

the boundary of a new cache line whenever it is possible.

72

5.1. Quantifying the Overhead

Lastly, the number of outstanding memory accesses that can be supported by the cache

hierarchy is another possible limitation for AMAC . Each level of the cache hierarchy contains

miss status handling registers (MSHRs) to handle outstanding misses. When the MSHRs are

fully occupied, the prefetch instructions are dropped [43] and lose the opportunity to hide

memory access latency for that traversal. In AMAC execution, the number of MSHRs required

is a function of the number of in-flight lookups (i.e., memory-level parallelism) that targets

hiding the memory access latency completely. Moreover, the shared caches (e.g., last-level

cache) should be able to accommodate the aggregate number of outstanding misses from

all cores. When the number of MSHRs is not enough in private and/or in shared caches, the

memory latency is exposed to the core as the desired memory-level parallelism cannot be

achieved.

5.1.1 Experimental Setup

The experimental parameters in this chapter is almost identical to the setup used in Chapter 3

and except with a few modifications as described below:

To mitigate any algorithm-related scalability issues, we only focus on the read-only probe

phase of hash join. We run our experiments on a Xeon x5670 machine except the scalability

analysis where we include Oracle T4 experiments (more details in Table 3.5).

To stress different levels of the memory hierarchy with random pointer accesses, we leverage a

uniform hash table with eight nodes per bucket while varying the size of the hash table from

0.5 MB to 2048 MB. In all configurations, the probe relation contains 512 MB of key/value

tuples with uniformly distributed unique values. Each lookup uniformly traverses eight hash

table nodes and we report the average number of cycles required to traverse a single hash

table node as this is the critical path of the lookups. The AMAC code always assumes padded

data structure nodes, therefore one prefetch instruction (i.e., one cache block) is issued only

for a hash table node traversal. As a result, we keep the number of critical path operations the

same throughout the experiments.

73

Chapter 5. Quantifying the Impact of Memory Subsystem on Acceleration

To estimate the energy consumption of Xeon x5670 and Widx, we leverage the methodology

described in Section 4.4. As we report real hardware performance numbers for Xeon x5670 run-

ning at 2.93 GHz (as opposed to 2 GHz), we take the increase in OoO core energy consumption

into account for our energy estimations.

5.2 Data Structure Padding

Figure 5.1a shows our sensitivity analysis of the critical path of the hash table lookups (i.e.,

cycles per hash table node traversal) with unaligned hash table nodes for 4KB and 2MB virtual

memory pages. We observe that for 0.5MB hash table, both 4KB and 2MB pages achieve 15

cycles per hash table node traversal. In other words, to traverse a single cache- and TLB-

resident hash table node, the Xeon processor has to do 15 cycles of work.

As we increase the size of the hash table from 0.5MB to 16MB, the number of cycles per

node traversal increases by 40% on average. The datasets beyond 16MB of dataset cannot be

captured by the 12 MB last-level cache of Xeon x5670, and hence both configurations perform

up to 3.4x worse compared to the LLC-resident configurations. Although AMAC should be

able to hide the memory access latency when running out of the cache, the hash table nodes

(without cache block alignment) are 48-bytes while demanded cache blocks are 64-bytes. As

a result, the opportunity to hide the off-chip memory accesses is lost as the traversal of an

unaligned hash table node may require two cache line accesses, while AMAC prefetches only

one. As we mentioned in the previous section, although AMAC can be configured to prefetch

two consecutive cache lines, we do not evaluate that configuration to keep the AMAC code the

same across experiments.

5.3 Virtual Memory Page Size

Figure 5.1b shows our sensitivity results with the padded hash table nodes. In contrast to

the experiments without padding, for 4KB page experiments, we observe a constant critical

path between 0.5MB and 2MB, which is 15 cycles similar to the previous experiment that

74

5.4. Miss Status Handling Registers

!"

#!"

$!"

%!"

&!"

'!!"

!
()
"

'
"

#
"

$
"

&
"

'
%
"

*
#
"

%
$
"

'
#
&
"

#
)
%
"

)
'
#
"

'
!
#
$
"

#
!
$
&
"

+
,
-.
/
0"
1
/
2"
3
4
05
"6
4
7
./
""

8
9
:
/
""
6
24
;
/
20
4
."

3405"647./"<=>/"?@AB"

$CA"D4E/"

#@A"D4E/"

(a) Without cache block alignment

!"

#!"

$!"

%!"

&!"

'!!"

!
()
"

'
"

#
"

$
"

&
"

'
%
"

*
#
"

%
$
"

'
#
&
"

#
)
%
"

)
'
#
"

'
!
#
$
"

#
!
$
&
"

+
,
-.
/
0"
1
/
2"
3
4
05
"6
4
7
./
""

8
9
:
/
""
6
24
;
/
20
4
."

3405"647./"<=>/"?@AB"

$CA"D4E/"F"G.=EH/:"

#@A"D4E/"F"G.=EH/:"

(b) With cache block alignment

Figure 5.1 – Virtual memory page size and cache block alignment sensitivity on AMAC hash
table traversal performance. Measurement on Xeon x5670.

leverages the same code base. These results are not surprising given that the data is LLC-

resident for 4KB pages, and the TLB can cover just a little more than 2MB virtual memory

space (64-entry L1 TLB and 512-entry L2 TLB). As a result, when using 4KB pages we start

observing address translation penalties increasing the critical path of the lookups beyond the

2MB dataset. When we turn on the support for large (2MB) pages, we observe that critical path

latency (15 cycles) stays constant up to the 32 MB dataset, meaning that address translation

overheads are mitigated completely as the TLB can cover up to 64MB of address space with

large pages (32-entry TLB for large pages).

5.4 Miss Status Handling Registers

To understand the limitations imposed by the size of the L1-D miss status handling registers

(MSHRs), we again analyze our results with large pages (2MB) with padded data structures

(depicted in Figure 5.1b) by focusing on the dataset sizes beyond the capacity of the LLC (32

MB - 2048 MB). At the 2048 MB dataset point, we observe that the cycles per node traversal

(i.e., critical path latency) increases by 2.5x compared to the 32 MB case. We find that the root

cause of this increase is the combination of address translation misses and the lack of MSHR

capacity in the L1-D cache. To avoid any TLB-related penalties, we also analyze the critical

path latency with the 64MB dataset, which can be captured by the TLB but not by the LLC,

75

Chapter 5. Quantifying the Impact of Memory Subsystem on Acceleration

and we still observe a 33% increase in the critical path cycles, which can be attributed to the

limited MSHR capacity in the L1-D cache.

To further analyze the limitations of MSHR capacity at the L1-D cache, we measure the average

memory access time (AMAT) of our Xeon machine as 202 cycles by using the Intel Memory

Checker tool [41]. Given the 10 MSHRs at the L1-D cache, which dictates the maximum

number of parallel accesses to the lower levels of the cache hierarchy, the workload can only

generate a maximum MLP of 10. Therefore, in the best case, the cycles per one traversal is

202/10 ' 20 despite the 15 cycles of work (i.e., computation) found in the previous analysis.

As a result, the execution will be bounded by the memory access latency as opposed to the

computation latency due to the lack of sufficient L1-D MSHR entries.

In summary, for data structure traversals that are properly aligned and require little compu-

tation with a near-perfect TLB, the number of L1-D MSHRs entries is not sufficient to cover

the memory access latency. It is important to note that recent Intel CPU micro-architectures

still employ 10 MSHRs at the L1-D [39, 44], therefore new architectures with aggressive OoO

cores and a higher number of MSHRs will benefit AMAC-style execution. In addition, re-

searchers proposed associative miss handling structures that are practical and scalable [81].

Nonetheless, AMAC does not require associative miss handling structures and can operate

with a simple hardware FIFO to track outstanding misses given that in-flight operations are

consumed sequentially.

5.5 Throughput Scalability and Bottleneck Analysis

In this section, we perform a throughput scalability experiment by running AMAC in a multi-

threaded fashion to take advantage of the multiple cores on Xeon and Oracle T4. To do so, we

equally divide the work among software threads and assign them only to physical cores (six on

Xeon and eight on T4). In these experiments, we do not use SMT threads as we studied the

effect of SMT in Chapter 3.

76

5.5. Throughput Scalability and Bottleneck Analysis

!"

#"

$"

%"

&"

'" #" (" $")" %" *" &"

+
,
-
-
.
/
,
"0
1
-
2"
+
34
5
6-
"7
0
2-
"

702-8"

92:;6-"<$" =-04">)%*!"

Figure 5.2 – Performance scalability of AMAC on Xeon x5670 and Oracle T4 with physical cores

Figure 5.2 depicts the AMAC throughput normalized to single-threaded hash table lookup

throughput. The T4 machine offers a 7.1x speedup with eight physical cores, which is almost

linear scalability with the number of physical cores. Therefore, the results on Oracle T4

clearly indicate that the AMAC approach does not affect the inherently scalable nature of the

algorithm. In contrast, the Xeon processor delivers 2.7x speedup with six physical cores, which

is almost half of the throughput we were expecting to observe. Such results signal a significant

hardware bottleneck as the scalable algorithm does not scale with the number of physical

cores (i.e., six cores). Moreover, recent work by Balkesen et al. [11] also reports relatively low

benefits for prefetch-based hash joins on a fully loaded Xeon processor corroborating our

results.

We further investigate the source of the bottleneck on Xeon by using performance counters.

Table 5.1 depicts the instructions per cycle (IPC) of the CPU while increasing the number of

threads for the probe phase of the large join. We observe that the average IPC of six threads

is 2.5x worse than the single-threaded execution, which corroborates with the drop in the

speedups explained above.

To identify the root cause of the drop in the IPC, we further investigate the behavior of memory

accesses throughout the memory hierarchy. Figure 5.3 breaks down the L1-D cache misses

into four categories depending on where they hit in the memory hierarchy. L1-D MSHR

hits are the memory references that miss in the L1-D but hit in the L1-D MSHRs, meaning

that the memory access was already issued by the core but the data has not arrived yet (i.e.,

77

Chapter 5. Quantifying the Impact of Memory Subsystem on Acceleration

outstanding miss). L2 and LLC hits count the references that hit in the on-chip cache hierarchy.

Off-chip hits count the memory references that were not filtered by the on-chip caches.

We observe an almost 2.3x increase in the L1-D MSHR of a single-thread vs. six threads as the

prefetches do not arrive in a timely manner in the six-thread experiment. While the cause of

this problem can be off-chip accesses, the data shows that increasing the thread count has a

marginal impact on the number of off-chip accesses. Therefore, our last hypothesis is that

there is a resource contention in the LLC. To verify our hypothesis, we re-run the experiments

with four threads, but this time we distribute the four threads to two sockets (i.e., two physical

CPUs) two by two (Figure 5.3 and Table 5.1 rightmost bar and field) and see that the memory

behavior and IPC with four threads on two sockets is identical to two threads on a single

socket.

As a result, we find that the root cause of this problem is the number of LLC MSHRs provisioned

for off-chip load requests (referred to as Global Queue). While this structure is limited to 32

entries (for loads) in a Nehalem processor [58], the aggregate number of outstanding load

misses generated by six cores can reach up to sixty (i.e., 10 L1-D MSHRs per core). As a result,

in the Nehalem architecture, the number of LLC MSHRs limits the scalability of read-only

workloads with high MLP and low LLC locality.

We conclude that utilizing the upper levels of the hierarchy causes severe contention in the

LLC when all the threads issue irregular accesses. Therefore, the throughput on Xeon saturates

with four threads, explaining why prefetch-based techniques do not deliver the expected

performance on fully loaded multi-core Xeon processors.

5.6 Putting It All Together

Having identified and quantified the impact of possible bottlenecks in the memory subsystem,

we will describe necessary modifications to the memory subsystem to achieve a fully compute-

bound execution via a simple analytical model. The parameters for our model are derived

78

5.6. Putting It All Together

!"

#!"

$!"

%!"

&!"

'"()*+,-" #"()*+,-." $"()*+,-." %"()*+,-." $"()*+,-."/#0#1"

23456+"2789+:" (;7"2789+:."

<
,
:,
")
3:
."
=
+
*"
9
>3
4
.:
*?
8@
7
4
."

A'><"B2CD." A#" AAE"" FG>8)3="

Figure 5.3 – Breakdown of memory reference hits per kilo-instruction on a two-socket Xeon
x5670.

Table 5.1 – Instructions per cycle for the pointer-chasing workload with AMAC on a two-socket
Xeon x5670.

Threads 1 2 4 6 2+2

IPC 1.0 1.0 0.6 0.4 0.9

from the hash table traversal workload with a 2048 MB dataset used in this chapter, which is

sometimes referred to as the pointer-chasing workload.

Based on the analysis presented in Section 5.3 and Section 5.4, Equation 5.1 calculates the

number of cycles per node traversal, which can be either computation-bound (CompC ycl es)

or memory-bound (AM AT
MLP +T LBMi ssPenal t y) depending on which term is larger. CompC ycl es

defines the number of cycles required to process one hash table node including the address

calculations, comparisons and AMAC state management operations. The average memory

access latency per traversal is calculated by the AM AT
MLP term, where MLP defines the number

of in-flight lookups. T LBMi ssPenal t y is the average number of non-overlapping cycles spent in

TLB miss handling for each hash table node. It is important to note that, although TLB miss

cycles can be overlapped with memory accesses, in the cases where there is a high number

simultaneous TLB misses, the hardware page walker can act as a serialization point, therefore

a separate term is used for indicating non-overlapping cycles (i.e., exposed) cycles.

79

Chapter 5. Quantifying the Impact of Memory Subsystem on Acceleration

C yclesNodeTr aver sal = max(CompC ycl es, (
AM AT

MLP
+T LBMi ssPenal t y)) (5.1)

Based on the analysis in Section 5.3 and Section 5.4, we find that CompC ycl es is equal to 15

cycles for the pointer-chasing workload. Ideally, AMAC execution should be compute-bound

with a perfect TLB and a sufficiently high number of in-flight lookups (MLP) to reduce the

AM AT
MLP term. Given that AM AT is equal to 202 cycles (from Section 5.4), the number of L1-D

MSHRs required (i.e., MLP) is 202/15 ' 14 for the pointer-chasing phase of the execution.

Moreover, the MSHRs are also required by the sequentially accessed lookup keys, which are

used for initiating the lookups and possibly by the hardware prefetchers and page walkers. In

order not to create any MSHR contention between our workload and the rest of the hardware

components, we assume that in total 16 MSHRs are required for effective execution of pointer-

based lookups. Obviously, this number is specific to our pointer-chasing micro-benchmark

and for the workloads that require fewer compute ops or the hardware platforms that have

relatively higher memory access latencies, the required number of MSHRs can be calculated

by using our methodology.

Table 5.2 summarizes the desired modifications to the existing memory hierarchy of the Xeon

processor. We find that our pointer-chasing workload allocates a little less than 4GBs in total

(including the probe table), therefore we require 4x1GB VM pages to achieve a 100% hit ratio

in the TLB. To fully cover the memory access latency, we need to have 16 L1-D MSHRs, and

also we need an LLC design, which does not suffer from the scalability problem described in

Section 5.5. Finally, after all these optimizations, the execution is expected to be compute-

bound. Therefore, we need to increase the number of memory channels to be able to fulfill

the maximum bandwidth requirements of six OoO cores of Xeon x5670.

Figure 5.4 depicts the normalized execution time of our pointer-chasing workload with a

2048 MB dataset on OoO (Xeon x5670) including the AMAC execution with and without an

optimized memory subsystem. The first two bars (OoO and OoO + AMAC) are real hard-

ware measurements on Xeon x5670 and we observe that OoO + AMAC achieves almost 7x

80

5.7. Combining Hardware and Software Acceleration

Table 5.2 – Memory subsystem parameters.

Threads Baseline Optimized Memory Subsystem

VM Page Size 2MB 1GB

L1-D MSHRs 10-entry 16-entry

Max. Memory B/W 32GB/s (3 DDR3-1333Mhz channels) 76.8GB/s (6 DDR3-1600MHz channels)

!"

!#"

!##"

$%$" $%$"&"'(')" $%$"&"'(')""&"

$*+,"(-.,"

/
%
0.

1
23
4-
5
"6
7
8
9
.
-
"

Figure 5.4 – Normalized execution time of AMAC with optimized memory subsystem compared
to Xeon x5670.

improvement over the baseline OoO thanks to high-MLP execution enabled by AMAC . By

using Equation 5.1 with parameters in Table 5.2, we estimate the performance benefits of

AMAC with the optimized memory system parameters and find that the optimized mem-

ory subsystem delivers 2.5x improvement over OoO + AMAC and 18x over baseline OoO by

achieving purely compute-bound execution, while maximizing the MLP extracted during the

execution. Furthermore, we also estimate that the optimized design with a single core will

sature one DDR3-1600 MHz memory channel, therefore maximizing the utilization of entire

memory hierarchy.

5.7 Combining Hardware and Software Acceleration

The results presented so far indicate that optimizing memory hierarchy can enable dramatic

improvements in pointer-chasing throughput while utilizing the available off-chip memory

bandwidth. Therefore, a next logical step is to target improving the energy efficiency of

81

Chapter 5. Quantifying the Impact of Memory Subsystem on Acceleration

the system by mitigating the inefficiencies of the general-purpose OoO cores. To do so, we

will leverage specialized Widx units described in Chapter 4 and program them to run the

AMAC code to improve the energy efficiency of the system, while achieving the same off-chip

bandwidth utilization with the general-purpose OoO running the AMAC code.

The key aspect of AMAC is that the MLP generated during the pointer-chasing operations is a

function of how fast the computation instructions are executed to issue non-blocking load

(i.e., prefetch) operations as opposed to the baseline execution, which solely relies on the OoO

instruction window capacity to generate MLP. Therefore, AMAC on Widx can also generate MLP

as long as blocking load operations are converted to prefetch instructions. Luckily, the Widx

ISA already supports prefetch instructions (i.e., touch instruction) and uses the L1-D cache of

the OoO, which supports multiple outstanding misses through its MSHRs. Therefore a single

Widx unit coupled with OoO can generate MLP without requiring the complex instruction

window.

The main challenge, however, is that each Widx unit is inferior to an OoO core (e.g., Xeon x5670)

in terms of computation capabilities such as the ability to extract instruction-level parallelism,

the ability to hide L1-D cache access latency, and the operating frequency. To estimate the

performance degradation of these aspects, we leverage our first-order performance model

described in Section 4.2 and find that a single Widx unit is 5.8x slower than an OoO for every

hash table node traversal. At the same time, each Widx unit is expected to generate an MLP

of 2.5 on average. Although possible enhancements to the Widx unit design can improve

the single Widx unit performance, such as managing the lookup state in hardware buffers to

avoid L1-D cache accesses or shrinking the size of L1-D cache, we do not investigate such

options as we can increase the number of Widx units to keep the design simple. As a result, we

estimate that six Widx units running the AMAC code will reach the same performance as the

OoO running AMAC code.

Figure 5.5 shows the energy consumption of all the designs presented normalized to the energy

consumed by the baseline OoO. As expected, given the speedups achieved by OoO + AMAC

82

5.8. Discussion

!"

!#"

!##"

$%$" $%$"&"

'(')"

$%$"&"

'(')"&"""

$*+,"(-.,"

/012"&"

'(')"&""

$*+,"(-.,""

3
%
4.

5
60
7-
1
"8
9
-
4:
;
""
"

Figure 5.5 – Energy benefits of AMAC and Widx with optimized memory subsystem.

and OoO + AMAC + optimized memory subsystem , these designs deliver 7x and 18.5x energy

reduction over the OoO respectively. Overall, offloading the execution to the Widx units with

AMAC execution improves the energy efficiency over the best performing general-purpose

design (OoO + AMAC + Opt. Mem.) by 2.5x, which translates to almost 50x energy efficiency

improvement over the baseline OoO. It is important to note that, in Widx execution, most of

the energy consumption comes from the idle energy of OoO execution.

To conclude, software and hardware acceleration schemes are individually effective in im-

proving the performance and efficiency of the system, however, our results show that there is

an interplay between the acceleration schemes and the memory subsystem. Therefore, we

believe that our approach underscores the importance of holistic designs for future specialized

data-centric systems.

5.8 Discussion

Heterogeneous Architectures: The ideas presented in this chapter can be applied to het-

erogeneous architectures for improving performance and efficiency. The prime examples

of heterogeneous designs include ARM big.LITTLE [7] and AMD Fusion Architectures [6].

These heterogeneous architectures either offer efficient in-order cores similar to the Widx

units or highly threaded GPU cores that target increasing memory-level parallelism akin to

AMAC execution. The main advantage of these architectures is the unified coherent memory

83

Chapter 5. Quantifying the Impact of Memory Subsystem on Acceleration

enabling fast communication across different computation units for seamless execution. The

benefit of Widx over these architectures is the tightly coupled design, which avoids the need

for dedicated L1-D caches and MMUs for every core present in heterogeneous CMPs. Similarly,

the software-managed buffer in AMAC mitigates the need for per-thread hardware register file

in GPUs, therefore achieving an area-efficient design, while extracting high MLP within a single

compute unit. Overall, the presence of such heterogeneous hardware in the system offers a

different area-performance-energy tradeoff, given the degree of specialization of our approach

is not the same. Nonetheless, heterogeneous CMPs are promising and create an important

opportunity for improving the throughput and efficiency of data structure traversals.

Compute-intensive operations: In this chapter, we leveraged a pointer-chasing workload

with minimal computation requirements to reveal the bottlenecks in the memory subsystem.

However, some data structure traversals such as shallow hash tables and group-by operations

with several aggregation functions can be computationally intensive during hashing functions

and mathematical calculations (e.g., min, max, avg). In the presence of compute-intensive data

structure traversals, we expect that the importance of the memory optimizations presented in

this chapter will gracefully degrade depending on the intensity of the required computation.

In such cases, the AMAC code should take advantage of the SIMD instructions to reduce

the ops executed per memory access wherever it is applicabile. For Widx acceleration, the

compute-intensive operations can be staged by taking advantage of the Widx topology like we

demonstrated for hash index traversals in Chapter 4.

84

6 Related Work

6.1 Software and Hardware Prefetching

Software prefetching instructions are effective in hiding the memory access latency when the

required cache blocks can be demanded early enough. Unfortunately, prefetching within the

traversal of single pointer chain is not possible due to dependent address calculations. To

solve this problem, prior work has proposed data-linearization prefetching [52] to calculate

the addresses without needing pointers so that the prefetches can be issued ahead of time.

Similarly, history-based prefetching techniques in software [15] or in hardware [65] maintain

an array of jump pointers containing the pointers from recent traversals. However, these

techniques either assume that the data structure is traversed in a similar order more than once

or incur both space and time overhead to increase the prefetch accuracy.

Hardware data prefetching techniques for pointer-intensive data structures [23, 64, 88] elimi-

nate memory stalls by predicting the pointer accesses ahead of the core. These techniques

analyze the data structure traversal instructions in a separate hardware context to produce

future pointer accesses. However, they can be either applied to simple data structure lay-

outs, which can only be accessed by address offsets or they require specialized computation

hardware, which is similar in spirit to our approach.

85

Chapter 6. Related Work

6.2 Hardware-Conscious Algorithms

Hardware conscious algorithms and data structures have gained importance in the last

decade [13, 45, 53, 54, 89, 93]. The data structure layout tuned to the underlying hardware is a

promising approach for reducing the number of cache and TLB misses. In addition, SIMD in-

structions can be used to minimize the number of individual memory accesses [46]. Our work

is orthogonal and can be used in conjunction with these techniques. Moreover, our approach

is a step towards robust performance and tuning [31] for hardware conscious algorithms.

6.3 Decoupled Architectures

There have been several proposals that targeted to decouple and overlap pointer production

latency with the pointer consumption latency through a hardware or software queue akin to

Decoupled Access/Execute architectures [26, 63, 70]. To take advantage of the extra hardware

contexts on the processor cores, Zhou et al. [91] divide a single software thread into producer

and consumer threads, which communicate through shared memory via software queues.

Ideally, the two contexts can work cooperatively to overlap long-latency memory misses

with useful work. However, the synchronization overhead in the software queue negates the

benefits of overlapping, as the producer and consumer threads have read/write dependencies

on the software queue. To mitigate such synchronization overheads, speculative decoupled

software pipelining [82] splits the recursive data structure traversal into two hardware contexts

and performs synchronization via specialized hardware arrays with support for dealing with

data dependencies. While such approach is beneficial for extracting parallelism out of a single-

threaded program, we observe that in the case of inter-lookup parallelism (i.e., thread-level

parallelism) almost all the complexity of the specialized hardware queue can be eliminated by

managing the lookup state in software.

86

6.4. Specialized Hardware and Accelerators

6.4 Specialized Hardware and Accelerators

Recent work has proposed on-chip accelerators for energy efficiency (dark silicon) in the

context of general-purpose (i.e., desktop and mobile) workloads [25, 29, 32, 33, 36, 67, 83].

While some of these proposals target improving the efficiency of the memory access operations,

the applicability of the proposed techniques to database workloads is limited due to the deep

software stacks and vast datasets in today’s server applications. Also, existing dark silicon

accelerators are unable to extract memory-level parallelism, which is essential to boost the

efficiency of data structure operations.

1980s witnessed proliferation of database machines, which sought to exploit the limited disk

I/O bandwidth by coupling each disk directly with specialized processors [22]. However, high

cost and long design turnaround time made custom designs unattractive in the face of cheap

commodity hardware. Today, efficiency constraints are rekindling an interest in specialized

hardware for DBMSs [18, 28, 37, 55, 85]. Some researchers proposed offloading hash-joins to

network processors [28] or to FPGAs [18] for leveraging the highly parallel hardware. However,

these solutions incur invocation overheads as they communicate through PCI or through

high-latency buses, which affect the composition of multiple operators. Moreover, offloading

the joins to network processors or FPGAs requires expensive dedicated hardware, while Widx

utilizes the on-chip dark silicon.

Support for specialized vector instruction extensions for hash table probes [35] aims to exploit

inter-lookup parallelism in similar spirit to our approach. Although promising, the work has

several important limitations. One major limitation is the DBMS-specific solution, which is

limited to the Vectorwise DBMS. Another drawback is the vector-based approach, which limits

performance due to the lock-stepped execution in the vector unit. Finally, the vector-based

approach keeps the core fully engaged, limiting the opportunity to save energy.

87

7 Concluding Remarks

Businesses, governments and societies are increasingly relying on collecting, analyzing and

exchanging data to improve their products, services and ultimately to enhance our lives. The

fundamental operation of data processing is to locate and extract the vital pieces of knowledge

from a dataset. Given the copious data, a linear search through the entire dataset leads to a

prohibitively large response time. Therefore, modern data processing systems rely on pointer-

intensive data structures, which convert linear search time to sub-linear search time. While

pointer-intensive data structures are essential for all data processing systems, vast datasets and

dependent access behavior of the operations compromise performance and energy efficiency

on contemporary processors.

In this thesis, we made the observation that pointer-intensive data structure lookups have

abundant inter-lookup parallelism in data analytics workloads. Exploiting such inter-lookup

parallelism requires dynamism in dealing with irregularity across lookups. We proposed

Asynchronous Memory Access Chaining (AMAC) , a new software acceleration approach to

hide memory access latency in the presence of regular and/or irregular lookups. We showed

that dealing with irregular lookups require maintaining the state of each lookup separately

from other lookups’ state. As a result, AMAC achieves high flexibility in exploiting inter-lookup

parallelsim even in the presence of irregularity in the data structure traversal path or data

structure layout.

89

Chapter 7. Concluding Remarks

We further analyzed a modern in-memory database system (MonetDB), on a set of commercial

data analytics workloads showed that hash index operations are the largest single contrib-

utor to the overall execution time. Nearly all of the index execution time is split between

ALU-intensive key hashing operations and memory-intensive node list traversals. These ob-

servations, combined with a need for energy-efficient silicon mandated by the slowdown in

supply voltage scaling, led to Widx, an on-chip accelerator for index operations. As a build-

ing block, we leveraged a set of programmable and simple hardware units to achieve high

performance, efficiency, and flexibility.

While both software and hardware acceleration schemes are extremely effective at improving

the performance efficiency, acceleration benefits go hand in hand with the memory subsystem.

We presented the most important aspects of the memory subsystem design and studied their

impact on the accelerated mechanisms. We quantified the impact of the virtual memory

page size, number of miss status handling registers and data structure padding. We further

performed a throughput scalability analysis and revealed bottlenecks on the shared on-chip

resources. In light of these optimizations, we showed that holistically designed accelerators

will enable dramatic improvements in throughput and efficiency of the future data-centric

systems.

7.1 Future Directions

There are several important challenges in customizing the processor micro-architecture for

higher efficiency and performance. First, reducing the number of computation instructions

during data structure lookups is essential for accelerators. Therefore, a natural next step

is to leverage customized instructions to reduce the number of computation operations

in AMAC-style execution. Second, our results identified important bottlenecks in modern

server processors, which limit the amount of MLP that is extracted by software. Given the

growing importance of analytics in today’s business and society, and the futility of caching

the ever-growing datasets on-chip, it is imperative that processor designs evolve not to limit

90

7.1. Future Directions

software’s ability to exploit MLP. Therefore, we plan to study practical miss handling structures

for general-purpose processors as well as the emerging near-memory processing techniques,

which do not rely on traditional cache structures.

While our evaluation focused on pointer-intensive operations in the context of relational

databases, we believe that applicability of AMAC and Widx goes beyond that. Our future

work will examine the efficacy of our approaches on graph workloads and operations over

unstructured data, which have high degrees of irregularity in data structure lookups. Moreover,

recent in-memory database systems explore the use of additional index structures besides the

hash tables and trees, such as skip lists [77]. Therefore, our accelerators will likely to maintain

their effectiveness in improving the performance and efficiency of the emerging in-memory

systems.

91

Bibliography

[1] Oracle’s SPARC T4-1, SPARC T4-2, SPARC T4-4, and SPARC T4-1B server architec-

ture. http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/

documentation/o11-090-sparc-t4-arch-496245.pdf.

[2] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs. row-stores: How different

are they really? In Proceedings of the 2008 ACM SIGMOD International Conference on

Management of Data, 2008.

[3] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate versus IPC: The

end of the road for conventional microarchitectures. In Proceedings of the 27th Annual

International Symposium on Computer Architecture, 2000.

[4] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a modern processor:

Where does time go? In Proceedings of the 25th International Conference on Very Large

Data Bases, 1999.

[5] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively parallel sort-merge joins in main

memory multi-core database systems. VLDB Endowment, 5(10), 2012.

[6] AMD Compute Cores. http://www.amd.com/en-us/innovations/software-technologies/

processors-for-business/compute-cores.

[7] ARM big.LITTLE Technology. http://www.arm.com/products/processors/technologies/

biglittleprocessing.php.

93

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o11-090-sparc-t4-arch-496245.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o11-090-sparc-t4-arch-496245.pdf
http://www.amd.com/en-us/innovations/software-technologies/processors-for-business/compute-cores
http://www.amd.com/en-us/innovations/software-technologies/processors-for-business/compute-cores
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php

Bibliography

[8] ARM M4 Embedded Microcontroller. http://www.arm.com/products/processors/cortex-

m/cortex-m4-processor.php.

[9] C. Balkesen, G. Alonso, and M. Ozsu. Multi-core, main-memory joins: Sort vs. hash

revisited. VLDB Endowment, 7(1), 2013.

[10] C. Balkesen, J. Teubner, G. Alonso, and M. Ozsu. Main-memory hash joins on multi-

core CPUs: Tuning to the underlying hardware. In Proceedings of the 29th International

Conference on Data Engineering, 2013.

[11] C. Balkesen, J. Teubner, G. Alonso, and M. Ozsu. Main-memory hash joins on modern

processor architectures. In IEEE Transactions on Knowledge and Data Engineering,

volume PP, 2014.

[12] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri, N. Chainani, S. Lightstone,

and D. Sharpe. Memory-efficient hash joins. 8(4), 2014.

[13] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main memory hash join

algorithms for multi-core CPUs. In Proceedings of the 2011 ACM SIGMOD International

Conference on Management of Data, 2011.

[14] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Improving hash join performance

through prefetching. ACM Transactions on Database Systems, 32(3), 2007.

[15] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving index performance through prefetch-

ing. In Proceedings of the 2001 ACM SIGMOD International Conference on Management

of Data, 2001.

[16] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin. Fractal prefetching B+-trees: Op-

timizing both cache and disk performance. In Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data, 2002.

[17] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen, A. Baransi, S. Kumar,

and P. Dubey. Efficient implementation of sorting on multi-core SIMD CPU architecture.

VLDB Endowment, 1(2), 2008.

94

Bibliography

[18] E. S. Chung, J. D. Davis, and J. Lee. LINQits: Big data on little clients. In Proceedings of the

40th Annual International Symposium on Computer Architecture, 2013.

[19] H. T. Davenport. Competing on analytics. Harvard Business Review, Jan. 2006.

[20] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu. Memory power manage-

ment via dynamic voltage/frequency scaling. In Proceedings of the 8th ACM International

Conference on Autonomic Computing, 2011.

[21] DesignWare ARC HS38 Processor. http://www.synopsys.com/dw/ipdir.php?ds=

arc-hs38-processor.

[22] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I. Hsiao, and R. Ras-

mussen. The GAMMA database machine project. IEEE Transactions on Knowledge and

Data Engineering, 2(1), 1990.

[23] E. Ebrahimi, O. Mutlu, and Y. Patt. Techniques for bandwidth-efficient prefetching of

linked data structures in hybrid prefetching systems. In Proceedings of the 15th Annual

Symposium on High Performance Computer Architecture, 2009.

[24] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark silicon and

the end of multicore scaling. In Proceedings of the 38th Annual International Symposium

on Computer Architecture, 2011.

[25] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration for general-

purpose approximate programs. In Proceedings of the 45th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, 2012.

[26] A. Garg and M. Huang. A performance-correctness explicitly-decoupled architecture. In

Proceedings of the 41st IEEE/ACM International Symposium on Microarchitecture, 2008.

[27] Global Server Hardware Market 2010-2014. http://www.technavio.com/content/global-

server-hardware-market-2010-2014.

95

http://www.synopsys.com/dw/ipdir.php?ds=arc-hs38-processor
http://www.synopsys.com/dw/ipdir.php?ds=arc-hs38-processor

Bibliography

[28] B. Gold, A. Ailamaki, L. Huston, and B. Falsafi. Accelerating database operators using a

network processor. In Proceedings of the 1st International Workshop on Data Management

on New Hardware, 2005.

[29] V. Govindaraju, C.-H. Ho, and K. Sankaralingam. Dynamically specialized datapaths for

energy efficient computing. In Proceedings of the 17th Annual International Symposium

on High Performance Computer Architecture, 2011.

[30] G. Graefe. Database servers tailored to improve energy efficiency. In Proceedings of the

2008 EDBT Workshop on Software Engineering for Tailor-made Data Management, 2008.

[31] G. Graefe. Robust query processing. In Proceedings of the 27th International Conference

on Data Engineering, 2011.

[32] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August. Bundled execution of recurring

traces for energy-efficient general purpose processing. In Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture, 2011.

[33] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson,

C. Kozyrakis, and M. Horowitz. Understanding sources of inefficiency in general-purpose

chips. In Proceedings of the 37th Annual International Symposium on Computer Architec-

ture, 2010.

[34] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark silicon in servers.

IEEE Micro, 31(4), 2011.

[35] T. Hayes, O. Palomar, O. Unsal, A. Cristal, and M. Valero. Vector extensions for decision

support DBMS acceleration. In Proceedings of the 45th Annual IEEE/ACM International

Symposium on Microarchitecture, 2012.

[36] C.-H. Ho, S. J. Kim, and K. Sankaralingam. Efficient execution of memory access phases

using dataflow specialization. In Proceedings of the 42nd International Symposium on

Computer Architecture, 2015.

96

Bibliography

[37] IBM Netezza Data Warehouse Appliances. http://www-01.ibm.com/software/data/

netezza/.

[38] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L. Kersten. Mon-

etDB: Two decades of research in column-oriented database architectures. IEEE Data

Engineering Bulletin, 35(1), 2012.

[39] Intel 64 and IA-32 Architectures Optimization Reference Manual.

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-

32-architectures-optimization-manual.pdf.

[40] Intel Advanced Vector Extensions Programming Reference Programming Reference.

https://software.intel.com/sites/default/files/4f/5b/36945.

[41] Intel Memory Latency Checker v2.0. http://software. intel .com/en-us/articles/

intelr-memory-latency-checker.

[42] Intel Vtune. http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/.

[43] Intel Xeon Processor 5600 Series Datasheet, Vol 2. http://www.intel.com/content/www/

us/en/processors/xeon/xeon-5600-vol-2-datasheet.html.

[44] Intel’s Haswell CPU Microarchitecture. http://www.realworldtech.com/haswell-cpu/5/.

[45] S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh. Improving main memory hash joins on

Intel Xeon Phi processors: An experimental approach. 8(6), 2015.

[46] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt,

and P. Dubey. FAST: Fast architecture sensitive tree search on modern CPUs and GPUs.

In Proceedings of the 2010 ACM SIGMOD International Conference on Management of

Data, 2010.

[47] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani, A. Di Blas,

and P. Dubey. Sort vs. hash revisited: Fast join implementation on modern multi-core

CPUs. In Proceedings of the 35th International Conference on Very Large Data Bases, 2009.

97

http://www-01.ibm.com/software/data/netezza/
http://www-01.ibm.com/software/data/netezza/
http://software.intel.com/en-us/articles/intelr-memory-latency-checker
http://software.intel.com/en-us/articles/intelr-memory-latency-checker
http://www.intel.com/content/www/us/en/processors/xeon/xeon-5600-vol-2-datasheet.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-5600-vol-2-datasheet.html
http://www.realworldtech.com/haswell-cpu/5/

Bibliography

[48] W. Lang, R. Kandhan, and J. M. Patel. Rethinking query processing for energy efficiency:

Slowing down to win the race. IEEE Data Eng. Bull., 34(1), 2011.

[49] W. Lang and J. M. Patel. Towards eco-friendly database management systems. In Pro-

ceedings of the 4th Biennial Conference on Innovative Data Systems Research, 2009.

[50] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch. Thin servers with smart

pipes: Designing SoC accelerators for memcached. In Proceedings of the 40th Annual

International Symposium on Computer Architecture, 2013.

[51] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel, A. Adileh, D. Jevd-

jic, S. Idgunji, E. Ozer, and B. Falsafi. Scale-out processors. In Proceedings of the 39th

Annual International Symposium on Computer Architecture, 2012.

[52] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive data structures. In

Proceedings of the 7th International Conference on Architectural Support for Programming

Languages and Operating Systems, 1996.

[53] S. Manegold, P. Boncz, and M. Kersten. Optimizing main-memory join on modern

hardware. IEEE Transactions on Knowledge and Data Engineering, 14(4), 2002.

[54] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing database architecture for the

new bottleneck: Memory access. The VLDB Journal, 9(3), Dec. 2000.

[55] R. Mueller, J. Teubner, and G. Alonso. Glacier: A query-to-hardware compiler. In Pro-

ceedings of the 2010 ACM SIGMOD International Conference on Management of Data,

2010.

[56] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA organizations

and wiring alternatives for large caches with CACTI 6.0. In Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, 2007.

[57] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig, V. Pavlov, A. Zhai,

M. Gambhir, A. Jaleel, R. Allmon, R. Rayess, S. Maresh, and J. Emer. Triggered instructions:

98

Bibliography

A control paradigm for spatially-programmed architectures. In Proceedings of the 40th

Annual International Symposium on Computer Architecture, 2013.

[58] Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon 5500 Proces-

sors. https://software.intel.com/sites/products/collateral/hpc/vtune/performance_

analysis_guide.pdf.

[59] M. Poess, R. O. Nambiar, and D. Walrath. Why you should run TPC-DS: A workload

analysis. In Proceedings of the 33rd International Conference on Very Large Data Bases,

2007.

[60] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-

maeilzadeh, J. Fowers, G. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y.

Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Xiao, and D. Burger. A

reconfigurable fabric for accelerating large-scale datacenter services. In Proceedings of

the 41st International Symposium on Computer Architecture, 2014.

[61] J. Rao and K. A. Ross. Making B+- trees cache conscious in main memory. In Proceedings

of the 2000 ACM SIGMOD International Conference on Management of Data, 2000.

[62] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. Joulesort: A balanced energy-

efficiency benchmark. In Proceedings of the 2007 ACM SIGMOD International Conference

on Management of Data, 2007.

[63] W. W. Ro, S. P. Crago, A. M. Despain, and J.-L. Gaudiot. Design and evaluation of a

hierarchical decoupled architecture. The Journal of Supercomputing, 38(3), 2006.

[64] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetching for linked data

structures. In Proceedings of the 8th International Conference on Architectural Support

for Programming Languages and Operating Systems, 1998.

[65] A. Roth and G. Sohi. Effective jump-pointer prefetching for linked data structures. In

Proceedings of the 26th International Symposium on Computer Architecture, 1999.

99

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Bibliography

[66] S. Rusu, S. Tam, H. Muljono, D. Ayers, and J. Chang. A dual-core multi-threaded Xeon

processor with 16MB L3 cache. In Solid-State Circuits Conference, 2006.

[67] J. Sampson, G. Venkatesh, N. Goulding-Hotta, S. Garcia, S. Swanson, and M. Taylor.

Efficient complex operators for irregular codes. In Proceedings of the 17th Annual Inter-

national Symposium on High Performance Computer Architecture, 2011.

[68] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, P. Dubey, S. Junkins, A. Lake, R. Cavin,

R. Espasa, E. Grochowski, T. Juan, M. Abrash, J. Sugerman, and P. Hanrahan. Larrabee: A

many-core x86 architecture for visual computing. Micro, IEEE, 29(1), 2009.

[69] J. E. Short, R. E. Bohn, and C. Baru. How Much Information? 2010 Report on Enterprise

Server Information, 2011.

[70] J. E. Smith. Decoupled access/execute computer architectures. ACM Transactions on

Computer Systems, 2(4), Nov. 1984.

[71] SPARC Strong Prefetch. https://blogs.oracle.com/d/entry/strong_prefetch.

[72] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin,

S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik. C-store: A column-

oriented DBMS. In Proceedings of the 31st International Conference on Very Large Data

Bases, 2005.

[73] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. The

end of an architectural era: (it’s time for a complete rewrite). In Proceedings of the 33rd

International Conference on Very Large Data Bases, 2007.

[74] Synopsys Design Compiler. http://www.synopsys.com/.

[75] Teradata Data Warehouse Appliance. http://www.teradata.com/data-appliance/.

[76] J. Teubner, L. Woods, and C. Nie. Skeleton automata for FPGAs: Reconfiguring without

reconstructing. In Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data, 2012.

100

https://blogs.oracle.com/d/entry/strong_prefetch

Bibliography

[77] The Story Behind MemSQL’s Skiplist Indexes. http : / / blog . memsql . com /

the-story-behind-memsqls-skiplist-indexes/.

[78] The TPC-H Benchmark. http://www.tpc.org/tpch/.

[79] Transaction Processing Performance Council (TPC) Launches Energy Performance Speci-

fication. http://www.tpc.org/information/press/tpcpress20100202.asp.

[80] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the energy efficiency of a

database server. In Proceedings of the 2010 ACM SIGMOD International Conference on

Management of Data, 2010.

[81] J. Tuck, L. Ceze, and J. Torrellas. Scalable cache miss handling for high memory-level

parallelism. In Proceedings of the 39th Annual IEEE/ACM International Symposium on

Microarchitecture, 2006.

[82] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I. August. Specula-

tive decoupled software pipelining. In Proceedings of the 16th International Conference

on Parallel Architecture and Compilation Techniques, 2007.

[83] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata, M. B. Taylor, and S. Swanson.

QsCores: Trading dark silicon for scalable energy efficiency with quasi-specific cores. In

Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,

2011.

[84] T. Wenisch, R. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. Hoe. SimFlex:

Statistical sampling of computer system simulation. IEEE Micro, 26(4), 2006.

[85] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross. Navigating big data with high-throughput,

energy-efficient data partitioning. In Proceedings of the 40th Annual International Sym-

posium on Computer Architecture, 2013.

[86] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross. Q100: The architecture and

design of a database processing unit. In Proceedings of the 19th International Conference

on Architectural Support for Programming Languages and Operating Systems, 2014.

101

http://blog.memsql.com/the-story-behind-memsqls-skiplist-indexes/
http://blog.memsql.com/the-story-behind-memsqls-skiplist-indexes/
http://www.tpc.org/information/press/tpcpress20100202.asp

Bibliography

[87] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: Accelerating microar-

chitecture simulation via rigorous statistical sampling. In Proceedings of the 30th Annual

International Symposium on Computer Architecture, 2003.

[88] C.-L. Yang and A. R. Lebeck. Push vs. pull: Data movement for linked data structures. In

Proceedings of the 14th International Conference on Supercomputing, 2000.

[89] Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable aggregation on multicore processors. In

Proceedings of the 7th International Workshop on Data Management on New Hardware,

2011.

[90] T. Yoshida. SPARC64 X+: Fujitsu’s Next Generation Processor for UNIX Servers . HotChips:

A Symposium on High Performance Chips, 2013.

[91] J. Zhou, J. Cieslewicz, K. A. Ross, and M. Shah. Improving database performance on simul-

taneous multithreading processors. In Proceedings of the 31st International Conference

on Very Large Data Bases, 2005.

[92] J. Zhou and K. A. Ross. Implementing database operations using SIMD instructions. In

Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data,

2002.

[93] J. Zhou and K. A. Ross. Buffering accesses to memory-resident index structures. In

Proceedings of the 29th International Conference on Very Large Data Bases, 2003.

102

Yusuf Onur KOÇBERBER
EPFL IC ISIM PARSA INJ 215 (Bâtiment INJ)
Station 14, CH-1015, Lausanne, Switzerland

e-mail: onur.kocberber@epfl.ch
url: http://parsa.epfl.ch/~kocberbe

RESEARCH INTERESTS

• Design for Dark Silicon
• Efficient server architectures for large-scale datacenters
• Hardware acceleration for software debugging and security

 EDUCATION

• Doctor of Philosophy (PhD), Parallel Systems Architecture Lab, 10/2009 – 9/2015
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Advisor: Prof. Babak Falsafi
Thesis title: Accelerators for Data Processing

• Master of Science (MS), Computer Engineering, 09/2008 – 09/2009
 TOBB University of Economics and Technology, Ankara, Turkey
 Advisor: Asst. Prof. Oğuz Ergin

Thesis title: Reducing Static Energy Dissipation of Data-Holding Components of Modern
Microprocessors

• Bachelor of Science (BS), Electrical and Electronics Engineering, 09/2005 – 08/2008

TOBB University of Economics and Technology, Ankara, Turkey
 Senior Design Project Title: FPGA Implementation of a 16-bit Microprocessor

 HONORS and AWARDS

• Google Europe Doctoral Fellowship in Computer Systems, 2014

• IEEE Micro Top Picks from Computer Architecture Conferences for
“Clearing the Clouds: A Study of Emerging Scale-out Workloads on Modern Hardware”,
01/2014

• Best Paper Runner-up Award at the 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO'13) for “Meet the Walkers: Accelerating Index Traversals for In-
Memory Databases”, 12/2013

• ACM Turing Centenary Celebration Student Scholarship ($1K prize), 04/2012

• Best Paper Award at the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) for “Clearing the Clouds: A Study of
Emerging Scale-out Workloads on Modern Hardware”, 03/2012

• TOBB University of Economics and Technology fellowship for graduate study covering full
tuition and stipend, 09/2008 – 09/2009

• Awarded second prize at CPU-Turkey competition by designing a microprocessor architecture
for FPGA (www.cpu-turkey.com), 09/2008 103

 PUBLICATIONS

Refereed Conference Publications

1. FADE: A Programmable Filtering Accelerator for Instruction-Grain Monitoring
S. Fytraki, E. Vlachos, O. Kocberber, B. Falsafi and B. Grot. In 20th International Symposium on
High Performance Computer Architecture (HPCA'14), Orlando, FL, USA, 2015.

2. Meet the Walkers: Accelerating Index Traversals for In-Memory Databases
O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim and P. Ranganathan. In 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Davis, CA, USA, 2013.
(recognized as Best Paper Runner-up by the program committee).

3. Scale-Out Processors
P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel, A. Adileh, D. Jevdjic, S.
Idgunji, E. Ozer and B. Falsafi. In 39th International Symposium on Computer Architecture (ISCA),
Portland, OR, USA, 2012.

4. Clearing the Clouds: A Study of Emerging Scale-out Workloads on Modern Hardware
M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A.D. Popescu,
A. Ailamaki and B. Falsafi, 17th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), London, UK, 2012.
(recognized as Best Paper by the program committee).

5. Dynamic Register File Partitioning in Superscalar Microprocessors for Energy Efficiency
M. Ozsoy, Y. O. Koçberber, M. Kayaalp, O. Ergin, In 28th International Conference on Computer
Design (ICCD), Amsterdam, Netherlands, 2010.

6. Reducing Parity Generation Latency through Input Value Aware Circuits

Y. Osmanlioglu, Y. O. Koçberber, O. Ergin, In 19th ACM Great Lakes Symposium on VLSI (GLSVLSI),
Boston, MA, USA, 2009.

Journal Publications

7. Quantifying the Mismatch between Emerging Scale-Out Applications and Modern Processors
M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A.D. Popescu,
A. Ailamaki and B. Falsafi, In ACM Trans. Comput. Syst., ACM, vol 30, 2012.

8. Reducing the energy dissipation of the issue queue by exploiting narrow immediate operands
I. C. Kaynak, Y. O. Kocberber, O. Ergin, In Journal of Circuits, Systems, and Computers, vol. 19, No.8,
2010.

9. Exploiting Narrow Values for Faster Parity Generation
Y.O. Kocberber, Y. Osmanlioglu, O. Ergin, In Microelectronics International, Vol 26, No.3, 2009.

Refereed Workshop Publications

10. Sort vs. Hash Join Revisited for Near-Data Execution.

N. S. Mirzadeh, O.Kocberber, B. Falsafi and B. Grot. 5th Workshop on Architectures and Systems for
Big Data (ASBD). Portland, OR, USA 2015 (co-located with ISCA).

11. Dark Silicon Accelerators for Database Indexing

O. Kocberber, B. Falsafi, K. Lim and P. Ranganathan, 1st Dark Silicon Workshop (DaSi), Portland, OR,
USA, 2012 (co-located with ISCA)

104

 TEACHING ASSINTANSHIPS

• Topics on Approximate Computing Systems, Spring 2015.
• Advanced Multiprocessor Architecture, Fall 2013.
• Topics on Datacenter Design, Spring 2013, 2014.
• Introduction to Multiprocessor Architecture (undergraduate), Spring 2010-2012.

 EXPERIENCE

• HP Labs, Palo Alto, CA
Research Intern at Intelligent Infrastructure Lab,
07-08/2011 and 03-08/2012.

 Mentor: Parthasarathy Ranganathan

• TOBB University of Economics and Technology,

Department of Computer Engineering, Ankara, Turkey
Research assistant, 09/2008 – 09/2009
“Detecting and exploiting narrow value phases for energy efficiency by analyzing the workloads
of high performance superscalar microprocessors that employs out-of-order execution” project
funded by The Scientific and Technological Research Council of Turkey

• Vivante Corporation CA, Ankara, Turkey

Remote Engineering Intern, 04/2008 - 08/2008
 GPU implementation on FPGA for embedded systems

• Turkish Aerospace Industry (TAI), Ankara, Turkey

Engineering intern at the Avionics department, 01/2006 - 04/2006 and 04/2007 - 08/2007

 PROFESSIONAL ACTIVITIES

• Primary architect of CloudSuite a benchmark suite for scale-out applications.

• Co-developer of Flexus, an open-source, scalable, full-system, cycle-accurate multi-processor and
multi-core simulation framework.

• Tutorial Organizer & Presenter: Rigorous and Practical Server Evaluation.
ISPASS - 2014, Monterey CA, USA.
EPFL - 2015, Lausanne, Switzerland.

 PATENTS

• Method of Using a Buffer Within an Indexing Accelerator During Periods of Inactivity
O. Kocberber, K. Lim and P. Ranganathan, USPTO #8,984,230. Granted Mar. 2015.

• Indexing Accelerator for Memory-Level Parallelism Support
O. Kocberber, K. Lim and P. Ranganathan, PCT/US13/53040. Filed July 2013.

• Executing Requests from Processing Elements with Stacked Memory Devices
O. Kocberber, K. Lim and P. Ranganathan, USPTO #13/755,661. Filed Jan. 2013.

 105

	Title page
	Acknowledgements
	Abstract (English/Français)
	Contents
	List of figures
	List of tables
	Introduction
	High-Throughput and Efficient Data Lookups
	Hiding Memory Access Latency
	Specialized Hardware

	Thesis and Dissertation Goals
	Asynchronous Memory Access Chaining
	On-chip Accelerator for Index Traversals
	Memory Subsystem Bottlenecks
	Contributions

	Background
	DBMS Basics
	Pointer-Intensive Data Structures in Database Systems
	Hash Tables
	Tree Search

	AMAC: Asynchronous Memory Access Chaining
	Hiding Memory Access Latency
	Software Prefetching Techniques for Pointer-Chasing Database Operations
	Performance Analysis of Software Prefetching

	Asynchronous Memory Access Chaining
	Design Overview
	Handling Read/Write Dependencies

	Methodology
	Evaluation
	Hash Join
	Scalability Analysis
	Group-By
	Tree Search

	Discussion
	AMAC Summary

	Widx: On-chip Accelerator for Index Traversals
	Profiling Analysis of a Modern DBMS
	Database Index Traversal Acceleration
	Overview
	First-Order Performance Model

	Widx
	Architecture Overview
	Programming API
	Additional Details

	Methodology
	Evaluation
	Performance on Hash Join Kernel
	Case study on MonetDB
	Area and Energy Efficiency

	Discussion
	Widx Summary

	Quantifying the Impact of Memory Subsystem on Acceleration
	Quantifying the Overhead
	Experimental Setup

	Data Structure Padding
	Virtual Memory Page Size
	Miss Status Handling Registers
	Throughput Scalability and Bottleneck Analysis
	Putting It All Together
	Combining Hardware and Software Acceleration
	Discussion

	Related Work
	Software and Hardware Prefetching
	Hardware-Conscious Algorithms
	Decoupled Architectures
	Specialized Hardware and Accelerators

	Concluding Remarks
	Future Directions

	Bibliography
	Curriculum Vitae

