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great moments I spent with them in their village, for all the healthy, fresh and delicious food

I ate with them. I thank my grandad Mijajlo for teaching me very early that being different

and thinking against the odds is something one should be proud of. I thank my uncles, Zoran
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Abstract
While DRAM latency has long been recognized as a major bottleneck in servers, DRAM band-

width is emerging as an important bottleneck as server processors shift to many-core architec-

tures to allow for sustainable throughput improvements. The rapid expansion of the digital

universe, increasingly stored in memory, rapidly pushes the need for higher DRAM density as

well.

Emerging die-stacked DRAM technology dramatically improves the three major DRAM proper-

ties: latency, bandwidth and density. Recent advancements in die-stacking technology made

it possible to integrate a sizeable amount of DRAM directly on top of the processor. While

the feasible on-chip DRAM capacities are insufficient to satisfy the memory needs of modern

servers, architecting on-chip DRAM as a high-capacity low-latency high-bandwidth cache has

the potential to provide significant reduction both in off-chip memory traffic and in average

memory access latency.

We make the observation that high-capacity on-chip DRAM caches expose abundant spatial

locality present in server applications and a modest amount of temporal data reuse. As a

consequence, DRAM caches that manage and fetch data at a coarser granularity, e.g., in 2KB

pages, exhibit overall superior properties compared to caches that do fine-grain management

using 64B blocks. These properties include substantially higher hit rates, smaller tag storage,

higher energy efficiency and set-associativity. Unfortunately, naïve employment of page-

based caches results in excessive data overfetch and capacity waste, as some of the fetched

and allocated blocks are never accessed prior to their eviction. We demonstrate that if the

cache is organized in pages, then page footprints — i.e., the set of blocks that are touched

while the page is in the cache — are highly predictable using well-established code-correlation

techniques. Accurately predicting access patterns within a page can eliminate most of the

bandwidth overhead and capacity waste that page-based caches suffer from.

Key words: die-stacked DRAM, 3D integration, caches, memory bandwidth, memory latency,

servers
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Résumé
Tandis que la latence des mémoires DRAM est depuis longtemps reconnue comme un goulet

d’étranglement pour les serveurs, la bande passante devient elle aussi limitante à mesure que

les processeurs intègrent de plus en plus de cœurs d’exécution dans l’objectif d’augmenter

les capacités de traitement. L’expansion rapide de l’univers digital, de plus en plus placé en

mémoire, fait apparaître la nécessité de mémoires DRAM à plus grandes densités.

La technologie émergente de mémoires DRAM à dies empilés améliore les trois caractéris-

tiques déterminantes de la DRAM : la latence, la bande passante et la densité. Les récents

progrès dans l’empilement des dies rend possible d’intégrer des capacités importantes de

DRAM directement sur le processeur. Tandis que la quantité de mémoire DRAM qu’il est

possible d’intégrer sur une puce est à l’heure actuelle insuffisante pour satisfaire les besoins

en mémoire des serveurs modernes, utiliser de la mémoire DRAM sur les puces comme un

cache de grande capacité, à faible latence et grande bande passante a le potentiel de permettre

une réduction significative du trafic mémoire externe et de réduire la latence mémoire en

moyenne.

Nous faisons l’observation que les structures de caches locales de grandes capacités exposent

la localité spatiale abondante des données présente dans les applications serveurs ainsi qu’un

modeste degré de réutilisation temporel des données. Par conséquent, les caches DRAM qui

gèrent et récupèrent les données à une granularité plus grossière, par exemple par pages de 2ko,

présentent de meilleures caractéristiques que des structures de caches utilisant une gestion

plus fine. Ces caractéristiques incluent de meilleurs taux d’utilisation, des étiquettes à stocker

plus petites, une meilleure efficacité énergétique ainsi que la set-associativity. Cependant,

l’utilisation naïve de tels caches reposant sur l’utilisation de pages amène à un préchargement

excessif de données et à une perte de capacité étant donné que certains des blocs chargés et

alloués ne sont pas utilisés avant leur éviction. Nous montrons que si le cache est organisé par

pages, les motifs d’accès — i.e., l’ensemble des blocs accédés quand la page est dans le cache —

sont hautement prévisibles en utilisant des techniques éprouvées de code-correlation. Prédire

de manière précise les motifs d’accès au sein d’une même page permet d’éliminer une grande

partie de l’augmentation du besoin en bande passante et aussi la perte en capacité dont les
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Résumé

caches reposant sur l’utilisation de pages souffrent.

Mots clefs : mémoires DRAM à dies empilés, l’integration 3D, cache, bande passante mémoire,

latence mémoire, serveurs
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1 Introduction

Computer systems are among the worst affected by the ongoing energy crisis. For many

decades the advancements in semiconductor technology have regularly provided exponential

increase in computing power within a constant power budget. The technology advancements

have recently started reaching the limits of physics, making it impossible to gain more in

computing without investing more energy. Unfortunately, the overall energy budget allocated

to computing is already prohibitively high, while the demand for computing is increasing

exponentially as a consequence of data explosion and the constant emergence of new IT-based

services. Most of those services are hosted in massive datacenters, whose space and energy

footprints are constantly increasing. Minimizing the energy footprint and maximizing the

compute and storage density are therefore the highest priority goals for datacenter operators,

with substantial global impact. Efforts toward these goals must not, however, sacrifice the

quality of these services, which is vital to their economic success.

Maximizing the compute density while minimizing the energy footprint mandates a dramatic

increase in throughput per server chip with each technology generation at a reduced energy

cost. With the slowdown both in Dennard Scaling and of Moore’s law, server chips are resorting

to larger numbers of increasingly less complex cores and specialized accelerators to support

big data processing, while maintaining a practical power envelope and transistor budget. The

resulting highly parallel processor organizations greatly benefit datacenter server workloads,

which exhibit abundant request-level parallelism. This growth in core count, however, ulti-

mately drives server processor designs into a memory bandwidth wall due to poor pin count

scalability. Emerging many-core server chips with hundreds of cores are already able to utilize

and even exceed their bandwidth budgets [21, 50], hitting the bandwidth wall before the power

wall [21], and making the memory bandwidth a scarce resource.
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Chapter 1. Introduction

The strict response latency requirements of IT-based services put enormous pressure on

storage systems in datacenters. The dramatic increase in the amount of data mandates the

use of high-density storage systems and devices. The high density and low access latency

requirements are in a direct conflict. To meet both requirements, datacenter operators must

keep massive amounts of frequently accessed data in main memory, which increasingly acts as

a DRAM-based data cache. It is thus common for a today’s server to accommodate hundreds

of gigabytes of main memory per processor chip. Unfortunately, the need for high memory

capacity puts further pressure on memory bandwidth. To be able to attach hundreds of

gigabytes of DRAM to a single chip, multiple DRAM modules must be connected to every

DRAM channel. Sharing a DRAM channel by multiple DRAM modules requires lowering the

frequency of the channel, directly reducing its bandwidth and creating a fast-track to the

bandwidth wall.

Die-stacked DRAM has been advocated as a promising technology to break the memory

bandwidth wall and improve memory latency and density. It delivers several times more

internal bandwidth compared to off-chip memory due to dense on-chip TSV buses, as well

as lower access latency due to the reduction in physical distances enabled by die stacking.

Recent advancements in die-stacking technologies have made it possible to tightly integrate a

sizeable amount of DRAM in the same package as the processor. Having die-stacked DRAM on

the chip or in the package could virtually eliminate the memory bandwidth wall by exposing

all of its internal bandwidth at lower access latency. The latency advantage that die-stacked

on-chip DRAM provides over conventional off-chip DRAM is particularly important in server

applications, which are known to be memory-bound and suffer from low memory-level

parallelism [1, 12].

Technological constraints, however, limit the on-chip stacked DRAM capacity to levels that are

orders of magnitude lower than what modern server applications demand. It is impossible to

fit all the main memory distributed across multiple multi-chip DRAM modules onto a single

processor chip. Such a constraint forces the architects to use the on-chip stacked DRAM

as a hardware-managed cache or as a software-managed cache or scratchpad. Managing

die-stacked DRAM in software is a preferable option in custom designs where hardware and

software evolve together, such as embedded systems. In contrast, deep, diverse and rapidly

changing software stacks in server systems rely on general-purpose processors and operating

systems, mandating non-intrusive hardware-based solutions.

This thesis investigates the use of on-chip die-stacked DRAM as a hardware-managed cache in

processor chips for datacenters with the purpose of reducing memory traffic on the processor
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side and improving memory latency. We provide a detailed characterization of real-world

server software stacks with respect to DRAM caches in order to gain the critical insights that

will lead us to appropriate cache designs. We demonstrate the potential of die-stacked DRAM

caches to reduce memory traffic and improve memory latency in server systems, and propose

effective, scalable and energy-efficient designs that realize that potential.

1.1 DRAM Caches and Server Applications

Our key observation is that server applications exhibit abundant spatial locality that becomes

visible in high-capacity caches, such as on-chip DRAM caches. The reason behind the abun-

dance of spatial locality is in the nature of server applications, which typically manipulate large

objects or streams of data. The reason why this locality becomes apparent in DRAM caches is

related to the long residency of objects at this level of the memory hierarchy: the longer an

object stays in the cache, the more of it eventually becomes accessed by the processor.

While spatial locality in DRAM caches is abundant, temporal locality is scarce. Most of the

temporal data reuse that happens within a short amount of time, e.g., within a single request,

is filtered by L1 caches and is rarely seen in lower levels of the cache hierarchy. Data reuse

seen in DRAM caches typically happens across independent requests and highly depends on

object popularity distributions, also known as data skew; the more skewed the application

data is, the more reuse takes place. As the cache size increases, the residency of objects in

the cache increases and so does the probability of their reuse. Practical on-chip DRAM sizes,

unfortunately, can capture only 1-2% of the hundreds of gigabytes stored in off-chip DRAM,

which is typically not enough to capture the working set comprising the most frequently

accessed data even under high skew.

The abundance of spatial locality and the paucity of temporal locality suggest that DRAM

caches may benefit from large cache lines. DRAM caches that organize and fetch data in spatial

regions of several kilobytes (e.g., 4KB pages) take advantage of the spatial locality and exhibit

an order of magnitude lower miss rate compared to caches that manage data in conventional

64B blocks [18, 29, 30, 41]. We refer to such designs as page-based caches. Managing data at

such coarse granularity also results in a commensurate reduction in tag space, which enables

the placement of tags in SRAM for moderately sized caches. Unfortunately, the excessive data

overfetch caused by accesses to sparse pages may substantially increase the off-chip traffic

and offset any bandwidth benefits provided by caching.

Cache designs that employ conventional 64B blocks [46, 47, 48, 55], and which we refer to as
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block-based caches, utilize the available off-chip bandwidth much more efficiently, but see an

order of magnitude more misses compared to their page-based counterparts. Although some

of the gap in miss rates between the designs could be bridged through prefetching, existing

implementation of block-based designs do not provide efficient support for it. Because block-

based caches do the bookkeeping at the level of individual blocks, they require prohibitively

large tag space that cannot be stored in SRAM even for the smallest DRAM cache sizes and

therefore store the tag array in the stacked DRAM. Storing tags in DRAM either significantly

increases the cache access latency [46, 47, 48] or completely disables cache associativity in

block-based designs [55], enforcing a direct-mapped organization. While the direct-mapped

organization per se does not harm block-based DRAM caches due to the large number of sets,

it does not support many standard cache optimization techniques that rely on associativity.

In contrast to page-based caches, block-based designs efficiently utilize the available cache

capacity, because they do not suffer from fragmentation. However, limited temporal locality

implies that on-chip DRAM caches are less sensitive to small capacity variations; techniques

that suboptimally use cache capacity will therefore not necessarily perform suboptimally.

1.2 Footprint Cache

Block-based and page-based designs show complementary properties. On one hand, block-

based designs are much more efficient in using cache capacity and off-chip bandwidth, but

suffer from low hit rates. Their tag array is huge and must be stored in DRAM at the cost of

either high latency or associativity. On the other hand, page-based caches provide high hit

rates and small and arbitrarily associative SRAM-based tag storage. However, they severely

misuse the precious off-chip bandwidth resources, and as such are not a feasible option.

Our goal is to preserve the properties of page-based designs, but without the unnecessary

traffic and with better capacity management. Toward that goal, we propose Footprint Cache,

which is a sectored cache organization that separates the cache allocation unit from the fetch

unit. Upon a cache miss, Footprint Cache allocates a page, but fetches only those 64-byte

blocks within the page that are predicted to be useful in future. In doing so, Footprint Cache

eliminates the unnecessary off-chip and on-chip traffic stemming from the movement of

unused data.

To mitigate the poor capacity management in page-based designs, Footprint Cache identifies

pages that have the fewest useful blocks and show neither spatial nor temporal reuse, and

does not allocate entries in the cache for such pages. It instead fetches 64-byte blocks from
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such pages, one by one and only on demand, and forwards them to the requestor, bypassing

the cache. Such pages account for a significant fraction of all pages that are fetched and make

the biggest contribution to the capacity waste.

Footprint Cache mitigates most of the bandwidth and capacity problems of page-based de-

signs and manages to get the best of the page-based and block-based designs. The key to

Footprint Cache’s success is its fooprint predictor, a simple hardware structure that estimates

the spatial footprint of each page — i.e., the exact set of blocks that will be demanded dur-

ing the page’s on-chip residency. To design an effective footprint predictor, we rely on the

observation that the majority of huge server datasets are accessed by a limited number of

code fragments that have repetitive and predictable behavior and result in recurring access

patterns. Our footprint predictor fully relies on the correlation between the code and spatial

locality [62] to predict access patterns within each page, which are then used to reduce both

the bandwidth and the capacity waste in page-based designs. Furthermore, by fetching and

evicting all useful data in a page at once, Footprint Cache significantly reduces the number of

row activations in off-chip DRAM and saves a substantial amount of its dynamic power.

1.3 Scalable DRAM Caches

What allows Footprint Cache to store its tags in SRAM is its page-based organization, which

minimizes the storage required for the tags. It is best suited for caches in the range of several

hundred megabytes. However, as the technology rapidly enables multi-gigabyte stacked DRAM

capacities, even page-based tags will quickly consume too much SRAM to be practical. To

illustrate, 8GB of stacked DRAM organized in 4KB pages would need 16MB of SRAM in the best

case, which is in the order of today’s last-level cache sizes. This storage drastically increases

if the cache uses sub-blocking to optimize for off-chip bandwidth, as Footprint Cache does.

Furthermore, while the stacked DRAM provides a huge increase in bandwidth compared to

conventional DDR channels, the latency of the die-stacked DRAM is not substantially better. If

a DRAM cache architecture requires accessing the stacked-DRAM or a multi-megabyte SRAM

table for tag lookups, then that could add several tens of cycles to the overall cache latency,

offsetting any latency advantage of the stacked DRAM technology.

To overcome Footprint Cache’s scalability limitation, we introduce a novel set-associative page-

based DRAM cache design, called Unison Cache, which carefully incorporates the tag metadata

directly into the stacked DRAM to enable scalability to arbitrary stacked-DRAM capacities.

Unison Cache stores each cache set in a DRAM row, placing page tags at the beginning of
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each DRAM row, followed by the corresponding data blocks. To support associativity without

serializing tag and data accesses, Unison Cache employs a simple address-based way predictor,

which is, thanks to the spatial locality and large page size, highly accurate. Upon a cache

request, provided that the way prediction is correct, the exact location of the requested block

can be correctly determined. Although every data block is physically separated from its tag

within the DRAM row, the positions of both the tag and the data block are known in advance,

so the tag and data accesses can be fully overlapped, removing the tag lookup latency from the

critical path.

1.4 Improving DRAM Cache Efficiency

The main motivation behind the research on DRAM caches is the reduction in traffic between

the processor and the memory. DRAM caches provide a traffic reduction on the processor

side solely through reuse of locally stored copies of data within high capacity on-chip DRAM.

What makes the reuse possible is data skew; certain types of data, such as metadata, are more

frequently accessed than others; certain objects also happen to be more popular than others.

Despite their high capacity, practical DRAM cache sizes are still two orders of magnitude

smaller than the off-chip main memory in the subsequent level of the hierarchy and as such

cannot accommodate the hot data structures for the majority of applications [28]. As a result,

the amount of temporal reuse in on-chip DRAM caches is fairly low [8, 29].

The underlying mechanism through which capacity-constrained caches exploit reuse is asso-

ciativity, which stands for the number of slots into which a new cache entry can be inserted.

Associativity enables control over the placement of data in the cache and over their promotion

through recency lists that aim to rank the possible victim options according to the likelihood

of their reuse. Unfortunately, practical DRAM cache implementations provide either no asso-

ciativity at all [8, 55] or very limited associativity [18, 28, 55], which severely limits the cache’s

ability to identify and keep reusable data in the cache.

The abundance of spatial locality and the lack of either temporal reuse or mechanisms to

exploit it may lead to cache thrashing. In page-based designs, pages with high spatial locality

typically show less temporal reuse and occupy space in the cache for a long time, but are often

not useful after they are completely scanned. In block-based designs, most of the data that

is inserted into the cache is dead upon arrival [8, 29]. It is therefore important to provide

DRAM caches with mechanisms that would on one hand minimize the cache space and cache

bandwidth resources allocated to data that is not reused, and on the other hand exploit the
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existing and encourage more reuse among data that are prone to it, and therefore improve the

overall cache efficiency.

In this thesis we revisit some of the traditional techniques for improving cache efficiency in

the context of DRAM caches. We demonstrate that they are either ineffective or not directly

applicable to DRAM caches. We recognize the problems associated with applying those

techniques to DRAM caches and propose new research directions that have the potential to

improve cache efficiency. The techniques we consider include:

• Increasing associativity, which is a trivial technique to reduce the number of conflict

misses and support reuse. Increasing associativity in SRAM caches is expensive from

the power perspective, but in DRAM caches has different benefits and cost implica-

tions. Increasing associativity in block-based DRAM caches provides minimal benefit

in terms of hit rates, but enables a variety of cache optimization techniques that rely

on associativity. Unfortunately, increasing associativity in block-based DRAM caches is

not practical as it implies a commensurate increase in die-stacked DRAM bandwidth.

On the contrary, we find that associativity is vital to performance of page-based DRAM

caches and for which we propose techniques to support arbitrarily high associativity.

• Cache bypassing, which aims to identify non-reusable cache blocks and avoid storing

them in the cache to prevent cache pollution. Cache bypassing avoids pollution in

block-based DRAM caches, but existing block-based DRAM solution lack support for

it, as they cannot identify non-reusable data in a practical way. Instead, bypassing

of randomly selected cache blocks could be used not to improve the hit ratio, but to

trade it for a reduction in cache activity [8]. We demonstrate that PC-based prediction

techniques have the potential to more accurately identify non-reusable blocks, and

we propose an efficient method for their integration into block-based DRAM caches.

Our method relies on sampling and incurs no cost related to storage, bandwidth or

latency. Unlike block-based caches, page-based DRAM caches can more easily identify

non-reusable data. However, we show that applying cache bypassing to page-based

DRAM caches may do more harm than good, as it reduces the number of cache hits and

severely undermines the opportunity for energy savings in off-chip DRAM.

• Improved policies for cache insertion, promotion and replacement. We demonstrate

that the fundamental cache replacement optimizations [56] are applicable neither to

block-based nor to page-based DRAM caches. Namely, such techniques fundamentally

rely on associativity, whereas state-of-the-art block-based DRAM caches are direct-
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mapped [8, 55]. Page-based caches confuse the optimization techniques by promoting a

whole page, i.e., by giving it a recently accessed status upon accesses to different blocks

within the same page. While such situations happen due to page reuse — i.e., due to

spatial locality — the effective temporal data reuse does not happen. The optimization

techniques will therefore confuse spatial locality for temporal and promote the page in

question, penalizing pages that do exhibit temporal reuse.

• Dead-block prediction. There has been a large body of research trying to mitigate the

cache pollution problem in SRAM caches through dead-block prediction [35, 23, 36,

40, 44]. We show that while dead-block prediction can be accurately performed in

block-based DRAM caches, the lack of cache associativity severely limits its usability. In

contrast, we show that PC-based dead-page prediction could almost double the effective

page-based cache capacity for certain applications, while leveraging existing Unison

Cache’s metadata structures to perform predictions.

• Prefetching. Page-based designs implicitly rely on spatial prefetching to boost their hit

ratio. Although prefetching could significantly benefit block-based designs as well, we

show that the lack of centralized information about the presence of neighboring blocks

in the cache severely limits the applicability of spatial prefetchers in block-based DRAM

caches. Further research on effective prefetchers for block-based DRAM caches is highly

encouraged.

1.5 Thesis Statement and Contributions

The thesis statement reads as follows:

Effective and efficient on-chip DRAM cache designs for servers must leverage the abundant

spatial locality in server applications and must do so in a bandwidth- and capacity-efficient

manner.

Using analytic models, trace-driven and cycle-accurate full-system simulation of modern,

real-world server workloads, this thesis demonstrates that:

• High capacity on-chip DRAM caches expose abundant spatial locality of server applica-

tions and their modest temporal locality. As a consequence, DRAM caches that manage

and fetch data at a coarser granularity exhibit overall superior properties compared

to caches that do fine-grain management. These properties include higher hit rates,
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smaller tag storage, and higher energy efficiency. However, their naïve employment

results in excessive data overfetch and capacity waste that can offsets any benefits of

DRAM caches.

• If the cache is organized as page-based, page footprints — i.e., the set of blocks that are

touched while the page is in the cache — are highly predictable using well-established

code-correlation techniques [62]. Predicting page footprints can eliminate most of the

bandwidth overhead and capacity waste that page-based caches suffer from.

• Fetching whole page footprints at once and writing them back together to the main

memory greatly improves the energy efficiency in off-chip DRAM by reducing the num-

ber of DRAM row activations by an order of magnitude as compared to fetching the

same set of blocks separately.

• Unlike block-based caches, page-based caches need a modest amount of associativity

to avoid frequent conflicts. Associativity can be efficiently implemented, even in caches

with DRAM-based tags through way prediction, which is highly accurate for and only

for page-based designs. We demonstrate an efficient implementation of arbitrarily high

associativity for page-based designs.

• It is possible to build a scalable, associative, low-latency page-based cache design with

DRAM-based tags that achieves high hit rates and high bandwidth efficiency.

• Although associativity is not crucial for the baseline cache performance in block-based

DRAM caches, its absence disables many standard cache optimization techniques that

block-based caches could otherwise greatly benefit from.

• There is a significant correlation between the code and temporal data reuse. In the

absence of associativity, block-based DRAM caches could leverage this correlation and

perform PC-based cache bypassing not only to reduce the cache activity but also to

increase the hit rate. We demonstrate an efficient implementation of cache bypassing

with only 16KB of SRAM storage and without bandwidth, latency or storage costs in the

die-stacked DRAM. Page-based caches can leverage the correlation between the code

and data reuse to employ dead-page prediction and increase cache efficiency.

This thesis covers the DRAM cache design space in single-socket setups. While our findings

are equally applicable to multi-socket setups, providing efficient support for cache coherence

between multiple sockets equipped with multi-gigabyte DRAM caches is out of the scope of

this thesis and is an important research topic for future work.
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Chapter 1. Introduction

While this thesis is focused on die-stacked DRAM, the major conclusions of the thesis are not

bound to any specific technology and may apply to other materials, such as PCM, STT-RAM or

other MRAM technologies, with different performance, energy and durability implications.

The rest of the thesis is organized as follows. In Chapter 2 we study the behavior of real-world

server applications in the context of DRAM caches and provide critial insights that will lead us

to effective designs. In Chapter 4.2 we look at highly associative DRAM cache designs that keep

the precise presence information about the cache content in SRAM, and propose Footprint

Cache, a design that leverages spatial locality in a bandwidth-efficient way. Chapter 4 proposes

a Unison Cache, an effective DRAM cache solution that scales to multi-gigabyte capacities

thanks to its DRAM-based tags. In Chapter 5 we study various techniques that aim to improve

cache efficiency and propose further research directions toward that goal. Chapter 6 presents

the relevant related work, and Chapter 7 concludes the thesis.
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2 DRAM Caches and Server Applica-

tions

Die-stacked DRAM has been advocated as a promising technology to break the memory

bandwidth wall and improve memory latency and density. It delivers several times more

internal bandwidth compared to off-chip memory due to dense on-chip TSV buses, as well as

lower access latency due to reduction in physical distances enabled by die stacking. Recent

advances in die-stacking technologies have made it possible to tightly integrate a sizeable

amount of DRAM in the same chip as the processor. Having die-stacked DRAM on the chip

could virtually eliminate the memory bandwidth wall by exposing all of its internal bandwidth

at lower access latency. The latency advantage that die-stacked on-chip DRAM provides over

conventional off-chip DRAM is particularly important in server applications, which are known

for being memory-bound [1, 12].

Technological constraints, however, limit the on-chip stacked DRAM capacity to levels that are

orders of magnitude lower than what modern server applications demand. It is impossible to

fit all the main memory distributed across multiple multi-chip DRAM modules onto a single

processor chip. Such a constraint forces the architects to use the on-chip stacked DRAM

as a hardware-managed cache or as a software-managed cache or scratchpad. Managing

die-stacked DRAM in software is a preferable option in custom designs where hardware and

software evolve together, such as embedded systems. In contrast, deep, diverse and rapidly

changing software stacks in server systems rely on general-purpose processors and operating

systems, mandating non-intrusive hardware-based solutions.

In this chapter we investigate the use of on-chip die-stacked DRAM as a hardware-managed

cache in processor chips for datacenters with the purpose of reducing memory traffic on the

processor side and improving memory latency. We demonstrate the potential of die-stacked

DRAM caches to reduce memory traffic and improve memory latency in server systems, and

11



Chapter 2. DRAM Caches and Server Applications

we look at different trade-offs in DRAM cache designs that are specific to server settings.

2.1 Background and Motivation

With the slowdown in Dennard Scaling server chips are resorting to larger numbers of lean

cores to maintain a practical power envelope. Scale-out server workloads benefit from such

many-core processor organizations, which enable high throughput thanks to the abundant

parallelism in these workloads. The growth in core count, however, ultimately drives designs

into a memory bandwidth wall due to poor pin count scalability. Emerging many-core chips

with hundreds of cores are already able to utilize and even exceed their bandwidth budgets [21,

34, 50], hitting the bandwidth wall before the power wall [50].

Recent research advocates using die-stacked DRAM to break the memory bandwidth wall and

improve memory latency [21, 25, 30, 34, 43, 45, 46, 48]. Figure 2.1 assesses the opportunity

of the technology to boost performance of scale-out server and multiprogrammed Desktop

workloads from two aspects: bandwidth and latency (details on the experimental methodology

are explained in Section 2.2.1). The first set of bars shows performance improvement for a

many-core server system [50] with the main memory fully integrated on the chip using

die stacking, providing 8x the bandwidth of the 2D baseline. The second set of bars shows

performance improvement of the same high-bandwidth system, but with halved DRAM

latency [48]. We see that both bandwidth and latency play a vital role in achieving high

performance, which implies that future designs must exploit both opportunities given by the

technology.

Technological constraints, however, limit the stacked DRAM capacity to levels that are far

lower than what modern server workloads demand [48]. While today’s servers need tens

to hundreds of gigabytes of DRAM each, the projections for die-stacked DRAM capacity

vary between hundreds of megabytes to several gigabytes. Thus, most proposals for die

stacking advocate using the stacked DRAM as a cache [30, 46, 48]. Unfortunately, the inherent

limitations of DRAM cache designs prevent them from achieving the full potential of the

technology, depicted in Figure 2.1. Firstly, DRAM caches, regardless of their organization,

require significant tag storage due to their large capacity, whose lookup necessarily adds

extra latency to the critical path. Secondly, the limited capacity of the stacked DRAM limits

the level of concurrency it can provide, despite the virtually unlimited TSV bandwidth. The

stacked DRAM is orders of magnitude smaller than the off-chip DRAM, and, thus, experiences

frequent bank conflicts and lower availability. In contrast to off-chip main memory systems
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Figure 2.1 – Opportunity for performance improvement with high-bandwidth and low-latency
die-stacked DRAM.

with hundreds of gigabytes of DRAM that provide more bandwidth than the memory channels

can sustain, the bandwidth to the DRAM cache is restricted by the parallelism in the stacked

DRAM itself, and not by the interface. Therefore, stacked DRAM caches fall short of fully

leveraging the abundant on-chip bandwidth enabled by dense TSV buses. Cache designs must

be aware of this limitation, and optimize for the stacked DRAM locality to allow for higher

concurrency and availability.

Despite their capacity, DRAM caches may exhibit high miss ratios, with each miss being

satisfied from the off-chip memory at full off-chip latency. This behavior is caused by the

low reuse of the data in lower-level caches [20], in contrast to L1 caches, where data are

frequently reused and where most of the temporal locality is exploited. This phenomenon

is further exacerbated by vast datasets of scale-out workloads [12], which do not form any

well-defined working sets within the cache sizes of interest. Besides their latency penalty,

misses inherently result in DRAM cache evictions. We find that, for scale-out workloads,

these are mostly dirty evictions, because data reside in the cache for long enough to become

modified by dirty evictions from the upper-level caches. Dirty evictions consume additional

off-chip and on-chip TSV bandwidth, affecting the stacked DRAM availability as well (the data

have to be read from the stacked DRAM and written back to the off-chip DRAM). The same

holds for cache fills that follow the misses. The bandwidth overhead caused by secondary

cache traffic — e.g., evictions, fills, probes — is sometimes referred to as bandwidth bloat [8].
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Chapter 2. DRAM Caches and Server Applications

2.1.1 DRAM Cache Design Objectives

DRAM cache designs fall short of leveraging the benefits that die stacking technology provides.

In this section we present a set of objectives and guidelines for designing effective DRAM

caches aiming to bridge the gap between die-stacked main memory and die-stacked caches:

• Fast tag lookup. Because tag lookups are on the critical path of all requests coming to the

cache, tag lookup latency must be minimized. While this statement holds for all cache

designs that serialize tag and data lookups, it gains more importance in the context of

DRAM caches, due to their tag array size.

• Small tag storage. The total storage dedicated to tags or other metadata should be

minimal, as it does not directly contribute to better system performance, but does incur

high storage cost.

• Low off-chip traffic. While cache misses are responsible for most of the off-chip band-

width overhead, various cache features can adversely impact off-chip bandwidth even

further. Examples include the use of large cache blocks that saturate off-chip bandwidth

and the use of predictors for miss speculation. Reduction in off-chip traffic is the main

driver for 3D-stacked DRAM adoption, and as such should be among the top priority

goals.

• The stacked DRAM bandwidth overhead caused by secondary cache traffic — i.e., evic-

tions, fills, probes, replacement policy metadata updates —should be minimized.

• High hit ratio is crucial to leveraging both the bandwidth and the latency advantages of

the die-stacking technology, demonstrated by Figure reffig:motivation.

• Low hit and miss latency. To achieve the benefits depicted in Figure 2.1, DRAM caches

must optimize for both hit and miss latency. Internal details of the cache organization

should neither penalize hit latency nor postpone miss serving.

• High DRAM access locality. Accesses to DRAM structures experience unpredictable

latency, highly dependent on the locality of references, availability, address-mapping

schemes, row-buffer management policy, and access scheduling. To minimize the

stacked DRAM and off-chip DRAM access latencies and energy per access, cache designs

must take of all these parameters into account.

• Efficient capacity management. Allocation of space for data that are never used should

be avoided. The problem is severe in page-based designs, which suffer from internal
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Figure 2.2 – A DRAM die stacked on top of the logic die architected as a block-based cache.
One tag entry corresponds to one data block.

fragmentation.

Unfortunately, many of the aforementioned requirements are mutually conflicting, which

makes the design process more challenging. To better understand such challenges, we focus

on two main DRAM cache design classes that achieve different goals.

2.1.2 Block-Based Caches

On-chip caches have traditionally been designed to primarily exploit temporal locality, and to

make the best use of their limited capacity. Trade-offs between the effective cache capacity,

temporal and spatial locality resulted in 16- to 128-byte cache blocks, 64- byte being the most

common block size employed today. Such a design is illustrated in Figure 2.2. For large DRAM

caches, 64-byte blocks would require huge tag storage, as illustrated in Figure 2.2, which is

infeasible to build in SRAM, thereby forcing the tags to be embedded in DRAM [30, 46, 48].

Embedding tags in DRAM, however, results either in multiple DRAM accesses per cache

request — and, consequently, in substantially higher hit and miss latencies [46] — or in the

absence of associativity.

Intelligent co-location of data with the corresponding tags in the same DRAM row [46] accom-

panied with optimized access scheduling, as done in Loh & Hill cache, [48], obviates the need

for multiple DRAM accesses per request. However, this optimization only partially reduces
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Chapter 2. DRAM Caches and Server Applications

the high hit latency, because of the need for several operations to be performed within the

DRAM row-buffer. Furthermore, the co-location of tags and data may in such a way mandates

particular data placement policies that diminish DRAM locality. It also requires a way to

determine the presence of a block in the cache prior to accessing the tags, as well as additional

multi-megabyte storage for that purpose (not shown in Figure 2.2), whose access latency is on

the critical path.

A more recent block-based cache design, called Alloy Cache [55], provides an architecture

that completely avoids any large SRAM-based tag arrays, and overall provides low latencies

on cache hits. Alloy Cache is organized as direct-mapped to avoid searching for the correct

way throughout the DRAM-based tags and co-locates each data block with its tags, reading it

together with the data block in a single access. However, these advantages come at the cost

of relatively low cache hit rates, which are further penalized by the cache’s direct-mapped

organization, and high miss penalty. To avoid DRAM cache lookups on cache misses, Alloy

Cache employs a miss predictor, sending cache requests to main memory speculatively, if a

miss is predicted. However, because the miss predictor is imperfect, it can be relied upon for

coherence or aggressive prefetching.

Regardless of their tag architecture, block-based designs fall short of exploiting abundant

spatial locality. Instead, they focus on limited temporal locality, experiencing high miss ratios,

thus frequently exposing full off-chip latency to incoming requests. However, due to the small

fetch unit and the efficient management of cache capacity, block-based designs minimize

off-chip traffic, making them a favorable option for high-throughput servers.

2.1.3 Page-Based Caches

Increasing the block size allows for a proportionate reduction in tag storage. The use of

larger allocation/fetch units (e.g., 1-8KB) makes the placement of tags in SRAM feasible at

an acceptable storage overhead [18, 29, 30]. We call such units pages and the corresponding

designs page-based designs.

The large fetch unit allows for maximum DRAM access efficiency, fully exploiting locality in

both off-chip and stacked DRAM. For instance, a single DRAM row opening is needed per off-

chip DRAM fetch, eviction, or stacked DRAM fill, for a whole page, assuming that the page size

does not exceed the DRAM row size. While large DRAM caches exhibit limited temporal locality,

they show significant spatial locality, which can be easily leveraged by large fetch units, as

illustrated in Figure 2.3, providing an order of magnitude more hits compared to a block-based
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Figure 2.3 – A DRAM die stacked on top of the logic die architected as a page-based cache. Only
the useful blocks (accessed by the cores) are shown in the figure. One tag entry corresponds to
one page.

Block-based – Loh & Hill Block-based – Alloy Page-based

Small and fast tag storage � � �

Low off-chip traffic � � �

High hit rate � � �

Low hit latency � � �

Associativity � � �

High DRAM locality � � �

Efficient capacity management � � �

Table 2.1 – Comparison of block-based and page-based designs.

cache of the same size [25, 30]. Cache hits are critical to exploiting the latency advantages

of die-stacked DRAM and page-based caches provide them at lower latency. Unfortunately,

many of the cached pages contain data that are not used prior to the page eviction, resulting

in excessive data overfetch [30] and capacity waste. As a result, page-based caches tend to

increase the off-chip traffic of the baseline system without a DRAM cache by up to an order of

magnitude in the worst case, which negates a key benefit of die-stacked DRAM caches.
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Chapter 2. DRAM Caches and Server Applications

2.1.4 Summary

Table 4.1 provides a comparison between the two designs with respect to the most impor-

tant features. The block-based and page-based designs show complementary, yet mutually

exclusive, characteristics.

2.2 Spatial and Temporal Characterization

In this section we characterize server applications by studying their behavior in large-scale

DRAM caches.

2.2.1 Methodology

To study the behavior of DRAM caches in server settings we use CloudSuite workloads [9],

including Data Analytics, Data Serving, Software Testing, Web Search, and Web Serving. For

comparison, we also include a mix of SPEC2006 Integer benchmarks as a representative of

desktop applications. Because the datasets of CloudSuite benchmarks are slightly scaled down

to allow for practical full-system simulation, we also include one unscaled server application,

which is a modern column-oriented database, MonetDB, running a set of TPC-H queries on a

server with 128GB of main memory. We evaluate the applications while running on one pod

of a scale-out server chip [50]. The simulation parameters are given in Table 2.2.

2.2.2 Temporal Behavior

To study the temporal behavior of DRAM caches, we look at the miss ratio of block-based

designs that use no prefetching. Because block-based designs do not leverage spatial locality,

any observed cache hits come solely from temporal data reuse. Figure 2.4 shows the miss

ratio of a block-based design for TPC-H queries running on a 16-core machine with 128GB

of memory. The cache capacity varied on the x-axis is shown as a ratio between the cache

capacity and the main memory size. We see that the working set size (WSS), which is between

10% and 15% of the dataset, is well beyond the reach of practical DRAM caches, which could

accommodate up to a few gigabytes in the best case. As a result, the temporal reuse seen in

DRAM caches is limited. Note that in server applications the temporal reuse observed in L1

caches typically comes from reuse within a single server request. This kind of reuse is typically

fully filtered by SRAM caches and is not visible at the DRAM cache level. In contrast, the

reuse in DRAM caches is likely to happen accross different server requests and is a result of
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2.2. Spatial and Temporal Characterization

Technology 20nm, 0.85V, 3GHz

CMP Organization 16-core Scale-Out Processor pod

Core ARM Cortex-A15-like, 3-way OoO @3GHz

L1-I/D caches 64KB, split, 64B blocks

2-cycle load-to-use latency

L2 cache per pod 4MB, unified, 16-way, 64B blocks,

4 banks, 13-cycle hit latency

Interconnect 16x4 crossbar

Off-chip DRAM 16-32GB, one DDR3-1600 (800MHz) channel

8 banks per rank, 8KB row buffer

Stacked DRAM DDR-like interface (1.6GHz)

4 channels, 8 banks/rank,

8KB row buffer, 128-bit bus width

tCAS-tRCD-tRP-tRAS 11-11-11-28

tRC-tWR-tWTR-tRTP 39-12-6-6

tRRD-tFAW 5-24

Table 2.2 – Architectural system parameters.

difference in popularity among objects.

To zoom into the area of interest, we plot the same graph in Figure 2.5, but this time on a

logarithmic scale. For a referrence, we show the miss ratio for a mix of 16 SPEC benchmarks. We

observe dramatically different behavior between real-world server applications and desktop

applications, whose working sets could fit in a small DRAM cache. The striking difference in

behavior between server and desktop applications consequently has a significant impact on

the DRAM cache design.

2.2.3 Spatial Behavior

Our key observation is that server applications exhibit abundant spatial locality that becomes

visible in high-capacity caches, such as on-chip DRAM caches. The reason behind the abun-

dance of spatial locality is in the nature of server applications, which typically manipulate large

objects or streams of data. The reason why this locality becomes apparent in DRAM caches is

related to the residency of objects at this level of the memory hierarchy: the longer an object

stays in the cache, the more of it eventually becomes accessed by the processor. Page-based

designs, whose allocation unit is in the order of a few kilobytes, expose on abundant spatial
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Figure 2.4 – Miss ratio of a block-based cache design for TPC-H database queries on a machine
with 128GB of main memory.

locality that can benefit many workloads. As a result, page-based designs enjoy a much higher

(up to 10x) hit ratio compared to block-based ones, allowing the application to experience the

lower latency of stacked DRAM.

To understand the spatial locality of the emerging applications in the context of large caches,

we examine the page density for each workload for a page size of 2KB while varying the cache

capacity (Figure 2.6 and Figure 2.7). We define page density as the number of demanded

64-byte blocks within the page. Not only do scale-out workloads exhibit high page density,

but they also show increase in page density as the cache capacity increases. This can be

contributed to the longer on-chip residency of pages, which at larger cache sizes reaches

hundreds of milliseconds, leaving more time for data to be accessed within a page. As the

cache grows in capacity, the number of high-density pages increases while the number of

low-density pages decreases, resulting in a bimodal distribution for some of the workloads.

The Multiprogrammed desktop workload and Software Testing, on the contrary, do not show

a regular trend. Our analysis reveals that, due to the small datasets of these applications,

a 512MB cache captures their entire working sets, at which point most of the dense pages

become cache-resident, while the few remaining pages that are constantly fetched and evicted

exhibit lower density.

The wide variations in spatial locality among the workloads shows that no single fetch unit size

can simultaneously exploit the available spatial locality while using bandwidth and storage

efficiently [62]. Among the workloads with lower page density, the highest fraction of the pages
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Figure 2.5 – Miss ratio of a block-based cache design for TPC-H database queries on a machine
with 128GB of main memory as compared to a mix of SPEC2006 INT applications).

are singleton pages, which only have a single block accessed. While possibly reused in L1

and L2 caches, these blocks are rarely reused in the DRAM cache (less than 5% of the time),

resulting in high bandwidth and capacity losses for page-based caches.

2.2.4 Block-Based vs. Page-Based

Figure 2.8 and Figure 2.9 compare block-based and page-based caches in terms of the miss

ratio and bandwidth demands, respectively. The bars are plotted in a stacked fashion. For

instance, the bar showing the miss ratio at 64MB for Data Serving (Figure 2.8) indicates that the

miss ratio for the page-based cache and block-based cache is 18% (white part), and 62% (white

and dark gray parts together), respectively. The same representation is used in Figure 2.9 to

represent the off-chip bandwidth demands of the three cache organizations.

For all workloads, the page-based cache achieves up to an order of magnitude lower miss

ratio, as expected, due to the high page access density. The exception is Data Analytics,

which at 64MB and 128MB shows very low page access density, giving the block-based cache

considerable capacity advantages. We observe the oposite trends on the bandwidth side, as

Figure 2.9 demonstrates. The block-based cache achieves lower off-chip traffic, while the

page-based increases the off-chip traffic by up to an order of magnitude compared to the

baseline system that has no DRAM cache.
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Figure 2.6 – Page density as a function of cache size for Data Analytics, Data Serving and the
Multiprogrammed workloads.
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Figure 2.7 – Page density as a function of cache size for Software Testing, Web Search, and Web
Serving.

In summary, block-based and page-based die-stacked DRAM cache designs trade off the

effective hit ratio, and consequently, the effective memory latency for off-chip bandwidth,

whereas server applications demand both low latency and efficient use of off-chip bandwidth.
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Figure 2.8 – Miss ratio in block-based and page-based DRAM cache designs.
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Figure 2.9 – Off-chip traffic in block-based and page-based DRAM cache designs normalized
to the baseline system without a DRAM cache.
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3 Footprint Cache

Block-based and page-based designs show complementary properties. On one hand, block-

based designs are much more efficient in using cache capacity and off-chip bandwidth, but

suffer from low hit rates. Their tag array is huge and must be stored in DRAM at the cost of

either high latency or associativity. On the other hand, page-based caches provide high hit

rates and small and arbitrarily associative SRAM-based tag storage. However, they severely

misuse the precious off-chip bandwidth resources, and as such are not a feasible option.

Our goal is to preserve the properties of page-based designs, but without the unnecessary

traffic and with better capacity management. Toward that goal, in this chapter we propose

Footprint Cache, which mitigates most of the bandwidth and capacity problems of page-based

designs and manages to get the best of the page-based and block-based designs.

3.1 Footprint Cache

While the block-based and page-based designs show complementary properties, never achiev-

ing the same goals, together they could meet all of the requirements of an ideal die-stacked

cache as summarized in Section 2.1.1. The page-based design demonstrates superior prop-

erties overall, but due to its excessive off-chip traffic overheads, it is not a feasible option.

Ideally, we would like to achieve the properties of the page-based design, but without the

unnecessary traffic and with better capacity management. Our proposal, Footprint Cache,

uses a page-based organization, but identifies the blocks that will be demanded by the cores

during a page’s on-chip residency. It then fetches only those blocks at the page allocation time,

eliminating the unnecessary off-chip and on-chip traffic. Footprint Cache further identifies

pages that have the fewest useful blocks and show no reuse, and neither allocates entries in the
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Chapter 3. Footprint Cache

cache for such pages nor fetches them. Footprint Cache instead fetches 64-byte blocks from

such pages, one by one and only on demand, and forwards them to the requestor, bypassing

the cache. Such pages account for a significant fraction of all pages that are fetched and are the

biggest contributor to the capacity waste. Thus, Footprint Cache mitigates both the bandwidth

and capacity problems of page-based designs and manages to get the best of the both designs.

Footprint Cache decouples the cache allocation unit from the fetch unit, similar to sub-blocked

(or sectored) caches, allocating large pages while fetching 64-byte blocks. The set of useful

blocks accessed during page’s on-chip residency constitute the page’s footprint. Upon a miss

in the cache, a new page is allocated and the whole page’s footprint is fetched at once from

the main memory. To detect the useful blocks, we leverage prior work on spatial correlation

[62] and design a simple and highly accurate predictor that identifies the page’s footprint.

As a result, Footprint Cache achieves high hit ratios, comparable to those of page-based

approaches, and low off-chip traffic as in conventional block-based caches. Because the whole

footprint is fetched and evicted at once, Footprint Cache enforces high DRAM access locality

both for the off-chip and stacked DRAM, thus allowing for lower DRAM access latency. Last,

but not least, Footprint Cache allows for a small and fast, SRAM-based tag array due to its

large allocation unit. In summary, Footprint Cache meets all of the requirements of an ideal

die-stacked cache as summarized in Section 2.1.1.

3.1.1 Footprint Prediction

To achieve the desired properties, Footprint Cache relies on the footprint predictor. The

accuracy of the footprint predictor is crucial for both performance and energy efficiency. The

predictor must have high coverage, ideally predicting all the blocks that will be later demanded.

Every unpredicted block that is demanded later would result in a cache miss and consequently,

in performance and energy loss. We call such an event underprediction. While it is important

to correctly predict as many blocks as possible, it is essential that the predictor has minimal

overprediction rate. Overpredictions represent blocks that are fetched but not used prior to

eviction, and their transfer to and from main memory merely wastes off-chip and on-chip

bandwidth and energy. An example of a system with no overpredictions is a sub-blocked

cache, which allocates pages but fetches every block on demand. However, such a system

would have the maximum number of underpredictions, as it would experience a miss for

each demanded block in a page. A system with no underpredictions would be a page-based

cache, that fetches all the data from the demanded page at once. Fetching all the blocks is,

however, an even worse solution, as it produces the maximum number of overpredictions,
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saturating the off-chip bandwidth. Minimizing both the underprediction and overprediction

rates at the same time is a challenging task for a predictor. To achieve the two conflicting goals,

Footprint Cache relies on the observation that there is a high correlation between data and the

code that accesses those data. For instance, server software exposes a well-defined interface

with only several functions for accessing their structured datasets — e.g., get and set methods

of a class or various data structure iterators. Traversals of data structures require repetitive

calls to these functions, resulting in recurring memory access patterns. The access pattern

observed from the first call to such a function can be used to predict the memory access

patterns of its subsequent calls. This fundamental property has been exploited in various

contexts [40], mostly for data prefetching [6, 38, 62] and speculating on data granularity

[37, 39, 70]. Footprint Cache achieves high prediction accuracy by monitoring the code that

accesses data residing in the cache. The first instruction that accesses a page provides valuable

information about the data that the page contains and is a good indicator of future accesses

within that page [62], due to regular and repetitive layouts of data structures. By observing

which blocks the code further accesses and by remembering that information, we can later

predict, with high accuracy, which blocks will be demanded when another page, possibly

previously unvisited, is accessed by the same piece of code [62]. Prediction based on the first

instruction that accesses a page is highly accurate provided that data structures always have

the same layout within a page. However, this is not necessarily the case for all the workloads

and page sizes. To account for various possible data structure alignments across different

pages, we base our prediction mechanism not only on the instruction that caused the page

miss, but also on the distance between the requested block and the beginning of the page,

which we call offset. The combination of PC and offset (noted as PC & offset) provides near-

perfect prediction accuracy at low overhead. Previous work has a detailed study of other

related prediction mechanisms and their trade-offs in the context of data prefetching [62].

3.1.2 Capacity Optimization

Our analysis shows that a significant fraction of pages (more than a quarter, on average)

contain only a single useful block. Such pages often account for the largest share of the

pages in workloads with low spatial locality. Moreover, we find that, on average, 95% of these

pages show no reuse in the DRAM cache, and therefore waste capacity. We call such pages

singleton pages. Footprint Cache is able to identify such pages with almost perfect accuracy,

thanks to the fact that these pages are accessed by a single instruction, and obviously, with a

single offset. Footprint Cache does not allocate entries for such pages. The requested block is

directly forwarded to the higher cache level and its subsequent eviction is not tracked. This
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Figure 3.1 – Footprint Cache tag array and Footprint History Table (FHT).

mechanism increases the effective cache capacity reusing the existing footprint prediction

mechanisms. It avoids eviction of useful pages, thus allowing for even higher hit ratios. The

optimization plays an important role at smaller cache sizes, for which efficient use of cache

capacity matters the most.

3.2 Footprint Cache Design

Footprint Cache tightly couples the footprint prediction mechanism with the tag array. The

footprint predictor uses the information from the tag array to learn page footprints, storing

the footprints into a history table upon page evictions and using the footprint information

upon page misses to fetch useful blocks. We next detail the predictor design and its integration

with the tag array, and we further explain the prediction history management.

3.2.1 Footprint Cache Tag Array

Similar to page-based and sub-blocked caches, Footprint Cache requires almost two orders

of magnitude smaller tag arrays, which can be kept within reasonably small SRAM storage.

The tag array is organized as a set-associative structure; set and way pairs directly determine

physical addresses of pages cached in DRAM. The size of a page is selected to match commonly

used DRAM row sizes (e.g., 1-4KB),1 keeping in mind the impact on the prediction accuracy

and tag overhead. Similarly to sub-blocked caches, Footprint Cache keeps two bit vectors to

1The exact matching of the page size and DRAM row size is not crucial for the proposed technique
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track valid and dirty blocks, and a page-level valid bit (Figure 3.1). In the multicore system we

evaluate, the tag array is distributed into four tiles organized in a page-interleaved fashion,

each tile being responsible for a partition of the DRAM cache. We use page-interleaved

placement in the Footprint Cache tag array for efficiency.2 Each tag tile is attached to an

on-chip memory controller that controls a 128-bit (16B) TSV channel associated with the

corresponding partition of the DRAM cache. The only additional overhead introduced in the

tag array is a pointer that links pages to the prediction history described in Section 3.2.2.

3.2.2 Prediction History

The prediction history, shared by all the tag tiles, is kept as a separate tiled structure, called

Footprint History Table (FHT). The FHT is a set-associative structure indexed by PC & offset

pairs, storing predicted footprints for PCs & offsets that trigger page misses. Each entry

keeps a tag identifying the PC & offset key, while the corresponding prediction information

is kept as a bit vector, determining the footprint associated with the key [62]. The FHT size

is independent of the workload’s dataset, as it holds only a small fraction of the workload’s

instruction footprint, measured in kilobytes. The FHT is updated upon every page eviction

with the most recent footprint generated during the page’s on-chip residency. The FHT is

accessed only in case the page containing a requested address is not found in the cache. Upon

a page miss, which we call a triggering miss, the table is queried by the PC of the instruction

that caused the miss and the offset bits of the request address, returning the predicted footprint.

The triggering miss is served by the off-chip memory and a page eviction takes place. If the PC

& offset pair exists in the FHT, which is the common case, the rest of the blocks, encoded in

the predicted footprint, are fetched from memory, and a pointer to the FHT entry is stored in

the tag entry. If the FHT does not contain the PC & offset pair, which mostly happens at the

beginning of the program execution, a new FHT entry is allocated, and a pointer to the new

FHT entry is stored in the tag entry.

Upon a cache eviction, a bit vector containing the blocks that were indeed demanded by the

cores, is sent to the FHT, using the pointer created during the allocation of the page. This

bit vector gives feedback to the prediction mechanism, correcting mispredictions if any, and

keeping the FHT in harmony with the workload’s execution phase. As we do not store the PC

in the tag entry, but only the pointer to the FHT entry, it is possible, although unlikely, that the

pointer becomes stale, as a result of an FHT eviction. While this may affect prediction accuracy,

2The placement policy in the upper-level caches, however, is not affected by this design decision and can use
either block- or pageinterleaving, with no observable performance difference for our workloads. In this work we
assume block-interleaving.
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Dirty-valid bits Semantics

00 the block is not in the cache

01 the block is valid, clean and not demanded yet

10 the block is valid, clean and has been demanded

11 the block is valid, dirty and demanded

Table 3.1 – Block state encoding

we could not see any observable impact. The reason is, unlike the cached data, the content

of the FHT is stable, therefore, such situations almost never happen. For practical reasons,

similar to the tag array, the FHT is designed as a tiled structure, and its entries are distributed

based on PC & offset keys of incoming requests, not necessarily matching the distribution

criterion for the tag tiles (physical addresses). The mismatch can result in frequent accesses

to neighboring FHT tiles. However, this does not have any timing impact due to the FHT’s

negligible access latency, which is not on the critical path of memory accesses.

3.2.3 Footprint Generation

Blocks that are placed in the cache must be set to the valid state regardless of whether they are

demanded by a core or predicted by the predictor. On the contrary, providing correct feedback

to the FHT requires a distinction between the blocks that are demanded and the ones that are

in the cache but were not demanded during the page’s on-chip residency (overpredictions).

Upon a core’s request, whether a hit or a miss, the corresponding block should be marked as

demanded. To make this distinction possible without additional storage, we reuse the existing

valid and dirty bits to create the block state encoding listed in Table 3.1. We are able to achieve

this encoding, because a block cannot be in a dirty state if it has not been used by a core. The

high order bits for all block states together represent the demanded bit vector (i.e., the page’s

footprint), used to update the FHT upon a page eviction. The exact matching of the page size

and DRAM row size is not crucial for the proposed technique.The placement policy in the

upper-level caches, however, is not affected by this design decision and can use either block-

or page interleaving, with no observable performance difference for our workloads. In this

work we assume block-interleaving.

3.2.4 Capacity Optimization

Footprint Cache increases the effective cache capacity by avoiding allocation of singleton pages

— i.e., pages with a single useful block. In our design, if the footprint bit vector corresponding
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to a missing PC & offset pair in the FHT has a single bit set, the corresponding cache entry is

allocated neither in the cache nor in the tag array. Not allocating entries for singleton pages

in the tag array implies that the FHT would never receive feedback regarding its single block

predictions. Once a page is classified as singleton, it would remain singleton until its FHT

entry is evicted, regardless of any mispredictions or changes in the application’s behavior. To

avoid this scenario, we add a small table, which is further partitioned and co-located with the

tag array tiles, called Singleton Table (ST). In case the FHT predicts a singleton block, the page

is not allocated in the cache, but an ST entry is allocated, containing the PC, offset, and the

page tag. The ST is indexed by a page tag, and only upon a page miss. Finding the tag in the ST,

but with a different offset, implies that there is a second access to a page that was originally

predicted to be a singleton page (underprediction). In this case, the new tag and FHT entry is

allocated with the PC & offset information found in the ST, and the corresponding ST entry

is invalidated. An entry stays in the ST until a second access to the page, or until its eviction.

The ST has negligible overhead (3KB, 512 entries), but allows for more accurate and adaptive

prediction of singleton pages. This is important for smaller caches, where pages could be

misclassified as singleton due to their short on-chip residency and capacity conflicts.

3.3 Methodology

We evaluate Footprint Cache in terms of performance, energy efficiency, and hardware over-

head in the context of high-throughput, bandwidth-demanding scale-out processors, which

can benefit from the die stacking technology [50]. We compare Footprint Cache to a state-of-

the-art implementation of conventional block-based DRAM caches as well as to page-based

DRAM caches.

3.3.1 Baseline System

We evaluate Footprint Cache using scale-out processors. The scale-out processor architecture

splits the available chip resources into multiple stand-alone servers, called pods [50], which

are multicore configurations designed to match the needs of scale-out workloads and deliver

the highest throughput for given silicon real-estate. A pod is a complete server that tightly

couples a number of cores to a modestly-sized last-level cache using a fast interconnect.

Replicating the pod to fill the die area yields processors that have optimal performance density.

Moreover, as each pod is a stand-alone server, scale-out processors avoid the expense of

global (i.e., inter-pod) interconnect and coherence. These features synergistically maximize

throughput, lower design complexity, and improve technology scalability. We model a chip in
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Technology 20nm, 0.85V, 3GHz

CMP Organization 16-core Scale-Out Processor pod

Core ARM Cortex-A15-like, 3-way OoO @3GHz

L1-I/D caches 64KB, split, 64B blocks

2-cycle load-to-use latency

L2 cache per pod 4MB, unified, 16-way, 64B blocks,

4 banks, 13-cycle hit latency

Interconnect 16x4 crossbar

Off-chip DRAM 16-32GB, one DDR3-1600 (800MHz) channel

8 banks per rank, 8KB row buffer

Stacked DRAM DDR-like interface (1.6GHz)

4 channels, 8 banks/rank,

8KB row buffer, 128-bit bus width

tCAS-tRCD-tRP-tRAS 11-11-11-28

tRC-tWR-tWTR-tRTP 39-12-6-6

tRRD-tFAW 5-24

Table 3.2 – Architectural system parameters.

20nm technology with on-chip supply voltage of 0.85V, assuming area and power budgets of

250mm2 and 105W, respectively. The chip features six 16-core pods and six single-channel

DDR3-1600 interfaces. Area and power estimates are measured by scaling down the published

data at 40/45nm process technology [26, 50], following ITRS projections. Table 3.2 summarizes

the parameters for the highest-performance baseline chip that can be designed under the

area, power, and bandwidth constraints described above [50].

3.3.2 DRAM Cache Organizations

Footprint Cache parameters are listed in Table 3.3. We use the open-page policy both for the

on-chip and off-chip DRAM, as our design exhibits near-optimal data locality for all off-chip

DRAM accesses, onchip DRAM fills and on-chip DRAM evictions, while data locality for on-

chip read/write requests(i.e., cache hits) is workload-dependent. We use 2KB pages and 2KB

address-interleaving for on-chip memory channels. The FHT has 16K entries (144KB) while

the ST has 512 entries (3KB).

Block-based caches are modelled after a state-of-the-art proposal that provides an elegant

solution to tag handling, by co-locating tags from one cache set with all the blocks in that
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Cache capacity (MB) 64 128 256 512

Tag SRAM storage (MB) 0.4 0.8 1.58 3.12

Tag latency (cycles) 4 6 9 11

Table 3.3 – Footprint Cache parameters.

Cache capacity (MB) 64 128 256 512

#MissMap entries 192K 192K 192K 288K

MissMap SRAM storage (MB) 1.95 1.95 1.95 2.92

MissMap associativity 24 24 24 36

MissMap latency (cycles) 9 9 9 11

Table 3.4 – Block-based cache parameters.

Cache capacity (MB) 64 128 256 512

Tag SRAM storage (MB) 0.22 0.44 0.86 1.69

Tag latency (cycles) 4 5 6 9

Table 3.5 – Page-based cache parameters.

set in the same DRAM row [48]. For 2KB DRAM rows, it is possible to fit 29 64- byte data

blocks in one row, using the three remaining blocks for the corresponding tags. A crucial

optimization to avoid two DRAM accesses per cache access includes intelligent memory

controller scheduling [48]. An access to a cache block involves a single row activation, and

one column activation signal (CAS) to read the tags, a one-cycle tag lookup to determine the

location of the data block, another CAS to retrieve/write to the data block, and a third CAS to

write back the updated tags. The last CAS is required as the tags must be updated, however, our

evaluation does not account for that latency, as we assume the algorithm can be reengineered

to take the tag updates off the critical path.

The exact location of the requested block is stored in DRAM tags and determined after the

row is activated and the tags blocks are read. However, the presence of the block in the cache

is tracked by a compact structure called MissMap, which keeps track of the cached data at

4KB granularity, storing bit vectors that determine only the presence of blocks within a page.

If the requested block is found in MissMap, the cache is accessed, otherwise the request is

serviced by memory. This optimization avoids unnecessary tag lookups in DRAM in case of

cache misses [48].

Table 3.4 lists the parameters we used for evaluation of the proposed block-based DRAM cache.

By dropping coherence bits from the tags, we were able to achieve higher storage density
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with 30 data blocks per DRAM row, and only two tag blocks, assuming ARM’s extended 40-bit

physical addressing. This also increased the cache associativity from 29 to 30, and reduced the

latency of tag retrieval, which is on the critical path. Within proposed 2MB of SRAM dedicated

to MissMap [48], we were also able to fit more MissMap entries. However, with larger cache

capacity, we observed performance degradation due to a high number of MissMap evictions,

which in return generate many dirty cache evictions. Although this operation is not on the

critical path, we found that MissMap evictions interfere with regular read/write cache requests

as well as with cache fills of other blocks, contending for the same DRAM bank. The reason is

that MissMap keeps and evicts spatially consecutive blocks, which are all in different cache

sets, and therefore, in different DRAM rows, causing an excessive number of row activations.

To avoid this situation, we increased the size of the MissMap structure by 50% to evaluate

512MB caches. We use close-page policy both for off-chip and on-chip DRAM, as we found that

it performs better due to the complete absence of data locality in the die-stacked DRAM, and

64-byte address interleaving between memory channels to increase DRAM-level parallelism.

Page-based cache parameters are listed in Table 3.5. We use the open-page policy both for the

die-stacked and off-chip DRAM, as page-based caches exhibit the optimal data locality in the

off-chip DRAM, as well as the optimal data locality in die-stacked DRAM for fills and evictions,

while data locality for on-chip read/write requests is workload-dependent. We use 2KB pages

and 2KB address-interleaving for on-chip memory channels.

Row-buffer management policies and address-mapping schemes are chosen for each evalu-

ated system separately to allow for optimal performance and DRAM-level parallelism.

3.3.3 Workloads

Our scale-out workloads, which include Data Serving, Data Analytics, Software Testing, Web

Serving, and Web Search, are taken from CloudSuite 1.0 [9, 12]. Their memory footprints

exceed the available memory, which is 16-32GB. As a reference, we also simulate a multipro-

grammed desktop workload that consists of SPEC INT2006 applications using the reference

input set. We run a mix of different applications and inputs to utilize all available cores. These

workloads, when running on the baseline chip we consider, require between 0.6-1.6GB/s of

off-chip bandwidth per core, or 60-150GB/s for the whole chip. While today’s dominant server

processors, which integrate a handful of fat cores, are not able to utilize the available band-

width when running these workloads [12], our design utilizes and even exceeds the bandwidth

budget [50].
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3.3.4 Simulation Infrastructure

We evaluate Footprint Cache using a combination of trace-driven and cycle-accurate full-

system simulations of a scale-out pod using Flexus [68]. Flexus extends the Simics functional

simulator with timing models of out-of-order cores, caches, on-chip protocol controllers,

interconnect, and DRAM. Flexus models the SPARC v9 ISA and is able to run unmodified

operating systems and applications. The details of the simulated architecture are listed in

Table 3.2. Our trace-based analyses use memory access traces collected from Flexus with in-

order execution, no memory system stalls, and a fixed IPC of 1.0. For each workload, we collect

a trace of 20-40 billion instructions per core and use one half to two thirds of the trace for cache

warm-up prior to collecting the experimental results. For cycle-accurate simulations, we use

the SMARTS sampling methodology [69]. Our samples are drawn over an interval of 10 seconds

of simulated time, with 400-800 equidistant measurements. For each measurement, we launch

simulations from checkpoints with warmed caches and branch predictors, and run 300K cycles

(2M cycles for Data Serving) to achieve a steady state of detailed cycle-accurate simulation

prior to collecting measurements for the subsequent 150K cycles (400K for Data Serving). To

measure the performance of scale-out workloads, we use the ratio of the aggregate number

of application instructions committed (i.e., summed over the 16 cores) to the total number

of cycles (including the cycles spent executing operating system code); this metric has been

shown to accurately reflect the overall system throughput [68]. For the multiprogrammed

workload, we calculate the IPC improvement for each core independently and report the

geometric mean. Performance measurements are computed at a 95% confidence level and

an average error below 3%. To model on-chip and off-chip DRAM performance and power,

we use two separately adapted and configured instances of DRAMSim2 [58], parametrized

with data borrowed from commercial DDR3 device specifications. We report all results for one

16-core pod.

3.4 Results

3.4.1 Spatial Characterization

In Chapter 2 we already examined the page density of the server workloads as a function

of cache size. The increase in page density with the cache capacity, demonstrated in Fig-

ure 2.6 and Figure 2.7, has an interesting implication on the footprint predictor effectiveness.

Compared to the prior work [62] that uses a similar predictor to prefetch into block-based

L1 caches, our predictor is more effective due to (1) the higher prediction opportunity at this

35



Chapter 3. Footprint Cache

0 

15 

30 

45 

60 

75 

64
M

B
 

12
8M

B
 

25
6M

B
 

51
2M

B
 

64
M

B
 

12
8M

B
 

25
6M

B
 

51
2M

B
 

64
M

B
 

12
8M

B
 

25
6M

B
 

51
2M

B
 

64
M

B
 

12
8M

B
 

25
6M

B
 

51
2M

B
 

64
M

B
 

12
8M

B
 

25
6M

B
 

51
2M

B
 

64
M

B
 

12
8M

B
 

25
6M

B
 

51
2M

B
 

Data Data Multipro- Software Web Web 

Serving Analytics grammed Testing Serving Search 

D
R

A
M

 C
ac

he
  M

is
s 

R
at

io
 (%

) 
Page Footprint Block 

Figure 3.2 – Miss ratio of Block-based, Footprint, and Page-based cache organizations, nor-
malized to a baseline system without a DRAM cache.

cache level (more blocks to predict per each obligatory page miss), and (2) a larger fraction of

fully-accessed pages that are easier to identify due to their simple access patterns (sequential

accesses). However, not all the workloads show high page density. In fact, Figure 2.6 and Fig-

ure 2.7 demonstrate wide variations in spatial locality among the workloads. Thus, no single

fetch unit size can simultaneously exploit the available spatial locality while using bandwidth

and storage efficiently [62]. Among the workloads with lower page density, the highest fraction

of the pages are singleton pages, which only have a single block accessed. While possibly

reused in L1 and L2 caches, these blocks are rarely reused in the DRAM cache (less than 5% of

the time), resulting in high bandwidth and capacity losses for page-based caches. Footprint

Cache successfully detects such pages and avoids their allocation in the cache. The high

degree of spatial locality observed in most of the scale-out workloads implies that page-based

caches achieve higher hit ratios compared to the block-based ones; due to their large fetch

unit, they always experience a single miss per page. Unfortunately, fetching whole pages is a

brute-force approach to achieving high hit ratios and it comes at an unacceptable bandwidth

cost, which is the most severe for low-density pages.

3.4.2 Coverage and Off-Chip Bandwidth

Footprint Cache learns and predicts the footprint of each page and hence it is able to achieve

high hit ratios and eliminate the fetch of blocks that will not be accessed during the residency

of the page in the cache. Figure 3.2 and Figure 3.3compare Footprint Cache with block-based
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Figure 3.3 – Off-chip bandwidth requirements of Block-based, Footprint, and Page-based
cache organizations, normalized to a baseline system without a DRAM cache.

and page-based caches with respect to the miss ratio and bandwidth demands, respectively.

The bars are plotted in a stacked fashion. For instance, the bar showing the miss ratio at

64MB for Data Serving (Figure 3.2) indicates that the miss ratio for the page-based cache,

Footprint Cache and block-based cache is 18% (white part), 27% (white and light gray parts

together) and 62% (white, light gray and dark gray parts together), respectively. The same

representation is used in Figure 3.3 to represent the off-chip bandwidth demands for the three

cache organizations.

For all workloads, the page-based designs achieves up to an order of magnitude lower miss

ratio, as expected due to the high page access density. The exception is Data Analytics,

which at 64MB and 128MB shows very low page access density, giving the block-based cache

considerable capacity advantages. As expected, Footprint Cache always achieves a miss

ratio close to the page-based cache. Only Software Testing, at smaller caches sizes, shows

significantly larger miss ratios compared to the page-based design, but still performing better

than the block-based design. The reason is that Software Testing performs symbolic execution

as part of software testing [9] and as such does not have a static, well-structured dataset. On

the contrary, it creates its dataset on-the-fly, throughout the whole program execution, which

interferes with the prediction mechanism.

As expected, we observe the opposite trend on the bandwidth side, as Figure 3.3 demonstrates.

The block-based cache achieves the lowest off-chip traffic, while the page-based increases the
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Figure 3.4 – Performance improvement of various designs over the baseline system for the
Data Analytics and Multiprogrammed workloads.

off-chip traffic by up to an order of magnitude compared to the baseline. Footprint Cache, on

the contrary, demands almost the same bandwidth as the block-based design by eliminating

most of the unnecessary traffic.

3.4.3 Performance

Figure 3.4 compares performance of the three cache designs at various cache sizes for all

workloads except Data Serving. We plot the results for Data Serving in Figure 3.5 due to the

large difference in scale, caused by the excessive bandwidth requirements of this workload.

The block-based design provides the greatest initial performance boost at 64MB, which is

mostly contributed to the significant cut in off-chip traffic. However, the design fails to

deliver considerable further improvements, due to its high and steady miss ratio, as shown in

Figure 3.2. The page-based design initially suffers from a considerable performance loss due

the excessive off-chip traffic it causes. As the cache capacity increases, it quickly recovers due

to fewer misses and decreased pressure on off-chip bandwidth. On the contrary, Footprint

Cache shows steady performance improvement across all cache sizes, outperforming the other
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Figure 3.5 – Performance improvement of various designs over the baseline system for Data
Serving.

two designs, consistently matching our findings from Figure 3.2 and Figure 3.3. For some of

the workloads, we observe a slight advantage of the block-based design over Footprint Cache

at smaller cache sizes, due to its superior capacity management.

As the stacked DRAM cache requires on-chip SRAM storage for the tags (under 2MB for

the 512MB stacked cache), we also consider a baseline system with additional L2 capacity

to compensate for the difference in total on-chip storage. This enhanced baseline provides

negligible benefit on scale-out workloads, as expected based on earlier research results [12, 50].

Across all workloads, Footprint Cache is able to deliver 82% of the system performance of

an Ideal cache — i.e., a cache that never misses and has no tag overheads (die-stacked main

memory).

3.4.4 Sensitivity to Page Size and History Size

Figure 3.6 compares the predictor accuracy assuming various page sizes, showing a fraction of

the blocks that are successfully predicted, the blocks that are not predicted (underpredictions),

and the blocks that are overpredicted. While for most of the workloads 1KB and 2KB pages are

the best options, larger pages might be desirable as they provide further tag storage reduction.

Larger pages, however, require larger footprint history, due to an increase in number of PC &

offset combinations per instruction. In this work, we find 2KB to be the sweet spot, considering

the trade-off between the accuracy and storage overheads.
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Figure 3.6 – Predictor accuracy sensitivity to the page size, for a 256MB cache with 16K FHT
entries.

Because the Footprint Cache prediction mechanism relies on the missing instruction, its

history storage requirements are independent of the dataset size. The prediction history,

captured by the FHT, contains only the fraction of the application’s instruction working set

that causes page misses in the DRAM cache. Thus, its size is small and its content is stable.

Figure 3.7 illustrates the Footprint Cache hit ratio sensitivity to the number of history entries.

In this work we assume 16K FHT entries, which require 144KB of SRAM storage, but other

trade-offs are possible with, as Figure 3.7 shows, minimal performance impacts.

3.4.5 Impact of Capacity Optimization

As we saw in Figure 2.6 and Figure 2.7, singleton pages account for a quarter of the pages in

the cache, on average. Their elimination allows for a proportionate increase in the effective

cache capacity, ultimately resulting in a 10% reduction in the miss rate, on average. The miss

rate reduction is in accordance with our observation that miss rates for scale-out workloads

follow a power low [21] (the miss rate vs. capacity relationship can be also estimated from

Figure 3.2).

3.4.6 Energy Implications

Figure 3.8 compares the three designs in terms of dynamic off-chip DRAM energy. All cache

designs use 256MB of DRAM cache. Because the systems differ in performance, and therefore,

in the rate at which they access off-chip memory, we present the energy per instruction

normalized to the baseline system without a cache. The dynamic energy is broken down into
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Figure 3.7 – Hit ratio sensitivity to the history size. The DRAM cache capacity is 256MB and
the page size is 2KB.

activate/precharge energy, burnt for DRAM row manipulations, and burst energy, spent on

reads and writes from an activated DRAM row.

All designs achieve significant energy reduction compared to the baseline system. As expected,

the page-based design burns the most burst energy due to its high off-chip traffic per instruc-

tion. However, the page-based design exhibits the best DRAM access locality and the highest

row-buffer hit ratio, significantly reducing the activate/precharge energy. On the contrary, the

block-based design consumes the lowest burst energy due to its low off-chip traffic. However,

as almost every read results in a row activation, they exhibit very high activate/precharge

energy, which dominates the total dynamic energy.

Footprint Cache delivers the lowest off-chip DRAM energy per instruction. In particular,

Footprint Cache is able to reduce both activate/precharge and burst energy thanks to its

page organization and its high prediction accuracy, which allows for reducing offchip traffic

significantly. Across all workloads, Footprint Cache reduces the total dynamic off-chip DRAM

energy of the baseline by 78%, whereas the block-based and page-based designs reduce the

energy by 71% and 69%, respectively.

We observe similar trends in stacked DRAM energy consumption. Figure 3.9 plots stacked

DRAM energy consumption for various die-stacked designs normalized to the block-based

design. Not surprisingly, the savings in activate/precharge energy for the page-based and
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Figure 3.8 – Off-chip DRAM dynamic energy per instruction normalized to the baseline system.

Footprint Cache designs are not as low as in off-chip DRAM, despite the excellent row-buffer

locality of cache fills and evictions. The reason is that regular read/write requests (cache hits)

experience much fewer row-buffer hits for majority of the workloads. Overall, Footprint Cache

reduces the total dynamic DRAM energy by 24% compared to the block-based design, whereas

the page-based achieves only a 17% reduction.

3.4.7 Other Page-Based Proposals

We evaluated a recently proposed page-based cache system [30] that tracks the topmost

accessed pages, called hot pages, that contribute to 80% of the total accesses. Only pages pre-

dicted to be hot are allocated in the cache and fetched at the page granularity. The prediction

is based on the previous history of each page’s behavior. The idea behind this approach is

that only a small fraction of pages contribute to the majority of cache accesses. However, we

could not make the same observation with scale-out workloads due to their vast data set, most

of which is randomly distributed across memory, without forming a particular working set.

Previous work also noted the same problem [48]. Figure 3.10 plots the amount of cache needed

to capture a desired fraction of total accesses, assuming a perfect predictor, an ideal cache

replacement policy and 4KB pages (4KB was found to be the optimal page size [30]). As we can

see, even in the idealized case, to capture 80% of the pages we need caches over 1GB. While the

proposed mechanism does not work well for our workloads, we find this work important and

believe the idea of page-level filtering has a lot of potential for many applications, if equipped
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Figure 3.9 – Stacked DRAM dynamic energy per instruction normalized to the block-based
design.

with a predictor that is dataset-independent, such as instruction-based ones. In fact, Footprint

Cache uses a similar approach to eliminate singleton pages.

3.5 Discussion

3.5.1 Footprint Cache and Coherence

To facilitate the shared memory programming model, contemporary server processors provide

hardware-enforced coherence at the chip level. Existing designs enforce coherence at the

SRAM LLC level. Given this organization, the addition of the Footprint Cache does not entail

any modifications to the underlying coherence protocol and implementation, as it sits below

the level at which coherence is enforced.

In systems with multiple sockets, Footprint Cache can easily provide page-level coherence

tracking [2, 5, 71] by extending tag entries with per-page coherence bits. Tracking coherence

at fine granularity across sockets is not necessary for server workloads as they share little or

no data [2, 12, 20].

3.5.2 Knowledge and Transfer of PC

Footprint Cache relies on the knowledge of instructions that cause page misses. Such infor-

mation is typically not available in the last-level cache. Therefore, our design must extract
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Figure 3.10 – Minimum size of an ideal cache needed to cover a given fraction of cache accesses.

the physical PC out of the pipeline and send it along with all memory requests.This requires

carrying the physical PC throughout the pipeline for all memory instructions until the stage

where the memory operands are known, and sending it to the memory hierarchy together with

memory requests. Because a growing number of reserach proposals rely on such mechanisms

and prove the superiority of PC-based speculation over the address-based, we expect future

architectures to support this feature.

The PC information needs to be further transfered, along with read/write requests, through the

on-chip network [67]. Because Footprint Cache does not track evictions from the higher-level

cache, it does not need to store PC information at any cache level. The transfer of PC informa-

tion via the on-chip network has no performance implications due to the underutilization

of the network [66]. Such transfers, however, do have energy implications. We find that PC

transfers increase the on-chip network power by 30mW per pod in the worst case, which is a

negligible overhead.

In this work we assumed the knowledge of the complete program counter, but in fact this is

not necessary. Because a small number of PCs (in the order of several thousands) is stored in

the history table, a 16-bit XOR hash of the PC would be enough. Besides reducing the amount

of data for transferring the PC information, Section 3.5.3 will show that using a 16-bit XOR

hash of the PC can also substantially reduce the amount of SRAM storage dedicated to the

Footprint History Table at a negligible accuracy loss.
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3.5.3 SRAM Area Overhead

All the designs we discussed, including Footprint Cache, impose a multimegabyte SRAM

overhead for tags and other metadata. We assume this area overhead will be compensated

by the reduction in the number of off-chip memory channels, for all designs except the page-

based, which exacerbates bandwidth demands. Still, as mentioned above, none of the designs

we evaluate will gracefully scale to multi-gigabyte capacities, precisely due to the SRAM area

overhead.

Regarding Footprint History Table, we saw in Section 3.4.4 that a 16K-entry FHT occupies

around 144KB of SRAM storage. Each FHT entry contains a (PC, offset) pair that acts as a tag

and a predicted pattern. This storage can be significantly reduced in a number of ways. Firstly,

as Figure 3.7 demonstrates, FHT can be shrunk significantly by reducing the number of entries

at a small cost in miss ratio. Secondly, we could keep a single pattern per PC along with the

offset that corresponds to that pattern. Upon a request with the same PC but different offset,

we could than rotate the pattern based on the relative difference between the two offsets [13].

FHT on average keeps two to three different (PC, offset) pairs per PC, and such an optimization

could reduce the history size by 2-3x at a small accuracy loss [13]. Thirdly, we could change the

fetch policy to all-or-nothing instead of fetching precise footprints [65], in which case there

would be no need to store the whole pattern, but only a few flags indicating whether the page

should be entirely fetched or not.

The first technique trivially reduces the number of entries in the history table. The second tech-

nique focuses on reducing the number of entries by keeping a single offset and approximating

the pattern for other offsets. The third technique reduces the amount of space dedicated to

patterns. However, the biggest contributor to the FHT storage overhead are FHT’s tags, i.e.,

the (PC, offset) pairs. To tackle the tag overhead, we look at a tagless history solution, in which

a (PC, offset) pair is XOR-hashed and the resulting hash is used to index an array of patterns.

In this case, a 16K-entry FHT would occupy only 64KB of SRAM for designs with 2KB pages,

and only 32KB for designs with 1KB pages. Figure 3.11 shows the effect of not storing the tags

in the history table on hit ratio and off-chip traffic, normalized to the baseline solution that

maintains full (PC, offset) pairs as tags. Both designs use a 16K-entry FHT, the cache size is

256MB and the page size is 1KB. We see that the relative change in both hit ratio and off-chip

traffic is negligible. The 14-bit hash value used to index the tagless history is computed by

appending the offset to non-zero bits of the PC3, and the last 42 bits of the result are XOR-ed

3In the SPARC architecture we simulate, instructions are aligned at a 32B boundary, and the last two bits of a
program counter are always zero
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Figure 3.11 – Relative change in hit ratio and off-chip traffic for a 256MB Footprint Cache with
1KB pages using a tagless history table, normalized to the design with complete tags.

into a 14-bit hash. Because XOR is an associative operation, it is possible to compute an XOR

hash of the PC in the pipeline and transfer only those 14 bits to the DRAM cache controller,

which further applies the XOR operation using the offset bits. As a result, both the history size

and the amount of PC information transferred to the DRAM cache controller are substantially

reduced.

3.5.4 Other Processor Architectures

We evaluated Footprint Cache in the context of scale-out processors [50, 49]. However, our

design is not limited to such an organization. In fact, any many-core chip design that stresses

off-chip bandwidth (e.g., Tilera TILE100) would yield similar results. In contrast, processor

designs with a handful of large cores (e.g., Intel Westmere) would see less benefit from die-

stacked caches as they cannot utilize the available memory bandwidth due to their low degree

of on-chip parallelism [12].

3.5.5 Cache Capacity

In this work we covered die-stacked DRAM caches ranging from 64-512MB per pod (up to

3GB per chip). However, the datasets of these workloads are scaled down from hundreds

of gigabytes to tens of gigabytes to allow for practical full-system simulation. Because miss

rates for server workloads follow a power law [21], which we verified for these workloads,
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the observed miss rate curve will shift to the right for larger datasets. This means that the

simulated cache sizes correspond to an order of magnitude larger caches in an industrial-

strength setup. The all caches we evaluate, however, do have a capacity limitation to 512MB

because of the SRAM storage required either for the tags or for various predictors. Scalable

DRAM cache solutions with DRAM-based tags are the subject of the next chapter.

3.5.6 Footprint Cache in Non-3D Systems

We evaluated Footprint Cache in the context of die-stacked DRAM. However, nothing in this

work is 3D-specific, and our design and conclusions remain valid for other forms of high-

bandwidth low-latency on-chip DRAM, such as eDRAM [59] or systems integrated via silicon

interposer [10].

3.6 Conclusion

In this chapter we presented Footprint Cache, a cache architecture that combines the best

aspects of current die-stacked DRAM cache designs, which fall short of achieving the potential

of the die-stacking technology. Footprint Cache fully exploits abundant spatial locality of

scale-out applications observed in large DRAM caches, without introducing unnecessary

off-chip and on-chip traffic. Footprint Cache is able to achieve the hit ratio of page-based

designs and stay within the bandwidth requirements of the block-based ones, while fully pre-

serving on-chip and off-chip DRAM locality. Furthermore, the small tag array overhead makes

Footprint Cache practical for implementation. Using full-system, cycle-accurate simulation of

scale-out server platforms, we demonstrated that Footprint Cache delivers 57% performance

improvement on average, outperforming existing designs, while reducing off-chip DRAM dy-

namic energy by 78% compared to the baseline system and reducing stacked DRAM dynamic

energy by 24% compared to state-of-the-art.
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What allows Footprint Cache to store its tags in SRAM is its page-based organization, which

minimizes the storage required for the tags. However, as the technology rapidly enables multi-

gigabyte stacked DRAM capacities, even page-based tags quickly consume too much SRAM

to be practical. To illustrate, 8GB of stacked DRAM would need 16MB of SRAM in the best

case, which is larger than today’s last-level caches. Moreover, this storage drastically increases

if the cache uses sub-blocking to optimize for off-chip bandwidth, as Footprint Cache does.

Furthermore, while the stacked DRAM provides a huge increase in bandwidth compared to

conventional DDR channels, the latency of the die-stacked DRAM is not substantially better. If

a DRAM cache architecture requires accessing the stacked-DRAM or a multi-megabyte SRAM

table for tag lookups, then that could add several tens of cycles to the overall cache latency,

offsetting any latency advantage of stacked DRAM.

The downside of Footprint Cache is that, as discussed above, the SRAM-based tag array will

not gracefully scale to larger stacked DRAM sizes and the tag array imposes additional latency

to service a request. In this chapter we examine the approaches to scaling the Footprint Cache

design (and page-based designs in general) to multiple gigabytes by efficiently storing its tags

in DRAM, while preserving all of its benefits, including high hit rates, low off-chip traffic, and

low cache-hit and cache-miss latencies. We build upon a recently proposed block-based Alloy

Cache (AC) design [55], which provides an architecture that completely avoids any large SRAM-

based tag arrays, and overall provides low latencies on cache hits. Alloy Cache is organized

as direct-mapped to avoid searching for the correct way throughout the DRAM-based tags

and co-locates each data block with its tags, reading it together with the data block in a single

access. However, these advantages come at the cost of relatively low cache hit rates, which are

further penalized by the cache’s direct-mapped organization, and high miss penalty. To avoid

49



Chapter 4. Scalable DRAM caches

DRAM cache lookups on cache misses, Alloy Cache employs a miss predictor, sending cache

requests to main memory speculatively, if a miss is predicted.

Unison Cache is carefully designed to combine the best traits of both Alloy Cache and Footprint

Cache, while avoiding their shortcomings. Tags are directly embedded in the stacked DRAM,

like Alloy Cache, to avoid SRAM-based tag arrays. At the same time, Footprint Cache-like

large allocation units are used to exploit spatial locality, with the added benefit of reducing

the fraction of the stacked DRAM’s capacity that must be set aside for the embedded tags. To

effectively realize such a design we leverage the following insights:

• In order reduce hit latency Alloy Cache merges (“alloys”) each data block and its tag into

a single unit and streams both in a single access. However, the primary latency benefit

comes from breaking the serialization between the tag and data accesses. Unison Cache

instead uses a single tag per page, but overlaps the tag read with the data block read. In

doing so, Unison Cache achieves the same hit latency, but also allows for an effective

page-based organization with DRAM-based tags.

• By leveraging spatial locality, Unison Cache achieves high hit ratios (often 90% or better).

With such a high hit ratio, the miss predictor used by Alloy Cache to reduce miss penalty

is not necessary, as a static “always-hit” prediction achieves similar accuracy.

• Direct-mapped organization hurts page-based designs, causing many more conflicts

compared to block-based designs. However, we find that direct-mapped organization

is not necessary to achieve low hit latency. To reduce the number of conflict misses

Unison Cache is organized as a set-associative cache. Instead of serializing tag and data

accesses or fetching all the ways in parallel, Unison Cache relies on simple and highly

accurate way prediction, increasing neither the cache hit latency nor the amount of

transferred data.

The end result is that by carefully leveraging the aforementioned insights, the proposed Unison

Cache is able to outperform both Alloy Cache and Footprint Cache designs, approaching the

performance of an ideal “latency-optimized” DRAM cache (100% hit rate, 0-cycle tag access).

At the same time, Unison Cache does not require SRAM-based tag arrays, which allows Unison

Cache to easily scale up to cache sizes of many gigabytes needed by server applications. A

summary of the key features of Unison Cache, as well as the prior art, is listed in Table 4.1.
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AC FC UC

No SRAM tag overhead � � �

Low hit latency � � �

High hit rate � � �

High effective capacity � � �

Scalability � � �

Table 4.1 – Comparison of Alloy Cache (AC), Footprint Cache (FC), and Unison Cache (UC).

4.1 Block-Based Caches with DRAM-Based Tags

Block-based DRAM caches require several tens or hundreds of MBs for tags. Such a large

volume of tag metadata rules out a conventional on-chip, SRAM-based tag array, and forces

the tags to be placed in the stacked DRAM along with the data blocks [46, 47, 55]. However,

storing tags directly in the DRAM cache can potentially require two DRAM accesses per cache

lookup (one for the tag and another for data), thereby doubling the effective DRAM cache

access latency in the worst case.

To improve the effective DRAM cache access latency, Loh and Hill proposed organizing each

DRAM row as a cache set and co-locating all the ways of a set and their corresponding tags in

the same DRAM row [47]. On a DRAM cache request, first, the tags in the beginning of a row

are accessed for tag comparison. Upon a tag match, the request for the corresponding data

block is issued separately, causing serialization of the tag lookup and data access. However,

the accesses to tags and data are scheduled in a way that ensures a row buffer hit for the data

block after the tag access, partially reducing the penalty for the second access.

Even though this scheduling optimization reduces the DRAM cache hit latency by exploiting

row buffer locality, cache hits suffer from tag lookup and data fetch serialization, while cache

misses suffer from high miss latencies due to the tag lookup in the DRAM cache prior to

issuing the request to the off-chip main memory. To reduce the DRAM cache miss latency, Loh

and Hill propose employing an on-chip SRAM “MissMap” to maintain cache block presence

information in a compact form. This way, DRAM cache misses can bypass the high-latency

lookups and an off-chip memory request can be issued directly. Unfortunately, this comes at

the cost of further increasing the DRAM cache hit latency by adding the MissMap access to

the cache lookup path, and the multi-MB MissMap itself will not scale up to support multi-GB

DRAM caches.

The state-of-the-art block-based approach, Alloy Cache [55], organizes the DRAM cache as
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Figure 4.1 – Overview of the (a) Alloy Cache and (b) Footprint Cache designs.

direct-mapped, further reducing the already low hit rate, but compensating for this by greatly

improving the cache access latency. AC merges (or “alloys”) each single data block with the

corresponding tag in unified tag-and-data units (TAD), as shown in Figure 4.1(a). The direct-

mapped organization eliminates the need to search for the correct way in the DRAM, allowing

AC to stream out a TAD in a single read, thereby breaking the tag-then-data serialization on

cache hits and thus significantly reducing the lookup latency compared to Loh and Hill’s

design.

To minimize the DRAM cache miss latency, AC employs a simple low-latency miss predictor,

moving the DRAM cache tag lookup off the critical path when the predictor correctly predicts

misses. However, when a cache hit is predicted to be a miss, AC creates extra off-chip traffic by

sending an unnecessary fetch request for a block that is already in the cache. When a cache

miss is predicted to be a hit, the actual off-chip memory request is delayed by the tag lookup

latency.

Alloy Cache is able to effectively mitigate tag-lookup latencies. However, it fails to provide

sufficiently high hit rates for server workloads due to its block-based nature, and the lack of
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associativity lowers the hit rates even further. The gap in hit rate between block-based and

page-based could be bridged through prefetching. However, as we will see in Section 4.2.1,

Alloy Cache’s distributed tag architecture makes the implementation of spatial prefetchers

impractical.

4.2 Unison Cache

The first key insight that leads to an effective design is that while Alloy Cache’s tag-and-data

(TAD) co-location provides the ability to stream both in a single DRAM access, the primary

latency benefit of such an approach comes from breaking the serialization between tag and

data accesses rather than from the tag-and-data co-location itself. Unison Cache physically

separates tags and data blocks within the DRAM row and uses a single tag per page, as shown

in Figure 4.2, but the read operations for both the tag and the individual data block can be

overlapped as they are not dependent on each other. While this may require two separate

back-to-back read commands to the same row, the reads are not serialized and therefore

the latency ends up being the same as for reading a TAD. Maintaining a single centralized

tag per page reduces the tag overhead and allows for an efficient implementation of spatial

prefetchers, because the presence information for all blocks within a spatial region is kept at

one place. For example, such a tag architecture makes the process of tracking page footprints

easily implementable and efficient. A data block and the corresponding page tag are always

read in parallel (i.e., the tags and data work “in unison”).

The second observation is that by leveraging spatial locality, Unison Cache (like Footprint

Cache) can achieve very high hit rates (often 90% or better). At this point, we can dispense

with Alloy Cache’s hit predictor, as a static “always-hit” prediction would achieve accuracy

similar to a dynamic hit prediction.

Finally, to avoid the price of the direct-mapped organization, which is particularly high for

page-based designs, Unison Cache is organized as set-associative, co-locating all the pages of a

set in the same DRAM row. However, instead of serializing tag and data accesses or fetching all

the ways at the same time, Unison Cache relies on highly accurate way prediction, increasing

neither the cache hit latency nor the amount of transferred data.

In the rest of this section, we describe the Unison Cache design and its operation in detail.
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Figure 4.2 – DRAM row content in Unison Cache (not drawn to scale).

Footprint Prediction

Unison Cache learns and fetches page footprints to avoid off-chip bandwidth waste. The

footprint of a page comprises all the blocks that are touched between the first access to the

page, which happens upon an access to a page that is not in the cache, and the eviction of the

page.

Our design leverages FC’s footprint predictor [29]. The predictor relies on the correlation

between the code and page footprints. This correlation stems from repeated calls to a limited

set of functions to access large amounts of data, especially in well-structured object-oriented

server software. Repetitive calls to these functions result in repetitive data access patterns (i.e.,

page footprints) that can be exploited to predict future data accesses upon subsequent calls to

the same function. The correlation between code and data access patterns has been heavily

exploited for data prefetching [6, 38, 62] and filtering of unused data [29, 37, 39, 70].

The instruction that accesses the first data block in a page has been shown to accurately

predict footprints of pages that are later accessed by the same instruction [29, 62]. To account

for different alignments of data structure instances in different memory pages, there is also a

need to combine the instruction information (i.e., PC) with the distance of the first accessed

block from the beginning of the page (i.e., offset) [29, 62]. Hence, the footprint predictor

predicts page footprints based on the (PC, offset) pair that initiates the first access to a page,

the trigger access. Each footprint prediction table entry consists of a (PC, offset) pair and a bit

vector to indicate the page footprint correlated with that pair.
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Learning Footprints

To facilitate footprint learning, each page in Unison Cache is augmented with a (PC, offset)

pair that corresponds to the first access to the page (triggering miss), as in Footprint Cache.

This information is inserted into a DRAM row along with the data when the page is allocated

(Figure 4.2). During the page’s residency in the cache, each access to a block within a page

updates the corresponding valid/dirty bits in the bit vector that belongs to the page’s tag to

indicate that the block had been demanded (in Section 4.6 we will show how this overhead

traffic can be virtually eliminated). To determine the footprint of a page it is necessary to make

a distinction between fetched blocks that are actually demanded by the CPU at some point

and those that are not (overfetched blocks). To enable such a distinction without extra storage,

we modify the semantics of the existing valid and dirty bits and use a different block state

encoding scheme, as in Footprint Cache. Upon eviction, the triggering (PC, offset) pair and

the footprint bit vector (constructed based on valid and dirty bits) of the evicted page are read

from the DRAM row and used to update the footprint prediction table, which associates a

footprint to each (PC, offset) pair.

Fetching Footprints

When the requested page is not found in the cache, the footprint prediction table, stored in

SRAM, is queried for the (PC, offset) pair that triggered the cache miss. If a match is found,

the corresponding footprint is used to determine what blocks will be fetched. In the case of a

miss to a block whose page is already allocated in the cache (i.e., footprint underprediction),

there is no need to initiate footprint prediction and new page fetch. Instead, only a single

fetch request for the missing block is sent to memory. However, when the page is evicted,

the footprint of the page will indicate that the block was touched during the page’s residency

and the footprint prediction table is updated accordingly to avoid future underpredictions

for the same (PC, offset) pair. Likewise, the footprint prediction might fetch blocks that are

not touched during a page’s residency in the DRAM cache (i.e., overpredictions). Similar to

underpredictions, overpredictions are also propagated to the footprint prediction table when

a page is evicted to avoid future overpredictions.

Singleton Prediction

In Chapter we showed that a significant fraction of page footprints consists of only a single

block. Singleton pages reduce the effective DRAM cache capacity because they allocating
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32B 

960B 

Figure 4.3 – DRAM row organization in the Unison Cache design.

space for an entire page, but accommodate only a single block. Hence, Unison Cache does

not allocate a page in the cache if the footprint prediction table predicts the page to be a

singleton. The missing block is fetched from memory and simply forwarded to the requestor.

However, as singleton pages are not allocated in the cache, it is not possible to correct footprint

mispredictions (corrections happen upon page evictions). To track the singleton pages that

might become non-singleton later, Unison Cache employs a small singleton table in SRAM as

in Footprint Cache [29].

Associativity

Alloy Cache uses direct-mapped organization to quickly locate the requested block in the

cache if it is present, without searching through the DRAM tags to find the correct way. Unison

Cache inherits the same mechanism to quickly locate the requested page. However, UC is

page-based and direct-mapped page-based caches are highly vulnerable to cache conflicts.

While zero associativity does not severely affect the hit ratio of block-based DRAM cache

designs due to the large number of sets [55], it has a huge impact on page-based designs. We

use a simple analytical model to explain this phenomenon.

Let n be the number of 64-byte blocks in a direct-mapped block-based cache, C b. At the same

56



4.2. Unison Cache

time, n represents the number of different sets in the cache. Let pb be the probability that two

randomly chosen cache blocks belonging to the same set are in conflict during a particular

window of time w . The conflict happens when both of the blocks are requested during the

window of time w . We further assume that a direct-mapped page-based cache of the same size,

C p, is organized into pages, each page containing k 64-byte blocks. Under these assumptions,

C p contains n/k entries — i.e., n/k sets. We are interested in computing the probability that

two randomly chosen blocks in cache C p are in conflict during the window of time w . The

important observation is that in block-based designs two randomly chosen blocks in C p will

be in conflict if and only if they belong to the same set and if they are both requested in during

the window of time w . In contrast, in page-based designs two blocks belonging to the same

set will be in conflict not only if the two blocks themselves are needed at the same time, but

also if any two blocks from the pages they belong to are needed during the window of time w .1

The probability of conflicts thus grows quadratically with the page size and creates a severe

problem despite the large cache size. More precisely, the probability we are looking for can be

expressed as:

pb · (k
2

)≈ 0.5 ·pb ·k2

In case of 2KB pages (k=32), this probability would be 500 times higher compared to the same

probability in the case of the block-based design C b. While the number of sets decreases

linearly with the page size, the probability of conflicts within each set grows quadratically. In

other words, the three orders of magnitude gap in the number of sets between an L1 cache

and a DRAM cache is easily bridged through the use of large allocation units, signaling that

associativity is as important in page-based DRAM caches as it is in block-based L1 caches. For

a 1GB cache and 2KB pages, the probability of conflicts increases by a factor of ∼500 in the

worst case compared to a block-based direct-mapped cache of the same size.

To reduce page conflicts and achieve higher hit rates, we organize Unison Cache as a set-

associative page-based cache. We do not, however, go back to tags-then-data serialization, as

it would be highly inefficient; nor do we fetch several ways in parallel, as it would create vast

data overfetch and eventually lead to serialization of the fetched ways on the bus, significantly

increasing the latency [55]. Instead, we use a simple way predictor that yields an accuracy of

over 95% and use this information to fetch the correct way from a DRAM row. We describe the

details below.

1This is analogous to the false sharing problem.
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DRAM Row Organization and Operations

So far we assumed, for simplicity, that the size of a cache page equals to the DRAM row size. In

reality, DRAM rows are typically larger than the desirable page size. For the sake of generality,

let’s assume that the cache is four-way associative, the page size is 1KB, and the DRAM row

size is 8KB. In this example, each set is 4KB, and one DRAM row accommodates two whole

sets, as shown in Figure 4.3. One of the two sets (half of a DRAM row) is shown in more detail

with its four pages. The metadata of each page (valid bit, page tag, valid and dirty bit vectors,

replacement policy bits, and (PC, offset) is maintained in the beginning of the row, such that

the metadata required to determine the presence of a block is stored first (page tags and bit

vectors), whereas (PC, offset) pairs and other metadata for all pages are stored after all the tag

information. This placement is chosen for efficiency reasons, so that all the tags from a set

can be read together in a single access. For the assumed configuration, the total size of the

tag metadata for the four pages is 32B, which can be transferred in two bursts over a 128-bit

TSV bus, corresponding to one bus cycle or two CPU cycles in the system we evaluate.2 The

metadata read command is immediately followed by the read command for the data block

whose position in the DRAM row is determined by the page offset and by the predicted way;

the two read operations are overlapped.

The two cycles that represent an overhead to read the tags leave enough room for way predic-

tion, which is done by the DRAM controller and is not on the critical path. We use a simple

tagless way predictor, which is a 2-bit array directly indexed by the 12-bit XOR hash of the

page address (16-bit XOR for caches above 4GB). Prior work on way prediction has found

that address-based way predictors are the most accurate way predictors for L1 caches [4, 54].

However, such predictors are not an option for L1 caches because the actual address is not

known at the time when the prediction has to be made for L1 blocks. We do not have such a

constraint here. While the accuracy of address-based way predictors is found to be around

85% for individual blocks [4, 54], our way predictor achieves much higher accuracy (∼95%),

because it operates at the page level. The abundant spatial locality leads to repeated accesses

to the same page; subsequent accesses to the same page result in correct predictions. The

predictor’s page-based operation also reduces its storage overhead to 1KB (16KB for caches

above 4GB). Because all the ways of a set reside in the same DRAM row, way mispredictions,

apart from being rare, are also relatively cheap. Due to the DRAM row organization shown

in Figure 4.3, the correct way in case of mispredictions is likely to be found in the row buffer,

thus the uncommon case is not severely penalized.

2For systems with more than 1TB of memory (more than 40 physical address bits), three bursts would be needed
to transfer ∼48B of tags.
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Tag (8B) Data (64B) 

TAD (72B) 

32B unused 

PC, offset  
(16B, padded) 16B unused Tag (8B) Data (64B) 

TAD (72B) 

(a) 

(b) 

Not cached 

Figure 4.4 – DRAM row organizations for (a) block-based cache with footprint prediction, and
(b) page-based cache with tagged blocks.

The (PC, offset) information is stored in the DRAM row upon the page’s allocation and it is

read only upon its evictions. This information is then used to update an SRAM-based footprint

prediction table with the actual footprint of the evicted page, constructed from the page’s bit

vectors.

In case of cache misses, it is easy to distinguish between triggering misses (the requested

page is not in the cache) or regular misses resulting from incorrect footprint prediction (i.e.,

underprediction), because the page tags for all the ways and the block presence bit vectors are

stored in one place. The (PC, offset) information is also stored in the DRAM row upon page

allocation and it is read only upon its evictions. This information is then used to update an

SRAM-based footprint prediction table along with the actual footprint of the evicted page.

Address mapping

Integrating any kind of metadata into DRAM causes alignment problems, because a fraction of

each DRAM row must be reserved for the metadata. In the case of Unison Cache, embedding

the tag array into DRAM results in the page size being a non-power-of-two number (e.g., the

pages sizes are 960B or 1984B, containing 15 or 31 64-byte blocks, respectively). Such page

sizes require specialized logic for address manipulation instead of simply relying on address

bits. Designing a general-purpose modulo-computing unit for such address manipulation
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would incur high area and latency overheads. However, here we compute modulo with respect

to a constant in a specific form (2n-1), which can be computed with several adders using

residue arithmetic [55]. We estimate the calculation to take two cycles and only a few hundred

gates, as in AC, and it can be overlapped with last-level SRAM cache accesses.

Non-power-of-two can page sizes, however, cause problems for applications that align data in

large power-of-two chunks. For certain applications misalignments can even double the miss

ratio. We investigate the consequences of such misalignments in more details and propose

an effective solution to integrate metadata into the stacked DRAM without misalignments in

section 4.7.2.

Alloy Cache Footprint Cache Unison Cache

Cache Miss Rate Medium-High Low Low

Hit Latency Predictor + DRAM TAD Read SRAM Tag + DRAM Data Read Overlapped DRAM Tag/Data Reads

Miss Latency Predictor Lookup SRAM Tag Lookup DRAM Tag Lookup

Associativity Direct-mapped 32-way 4-way (two pages)

64B Blocks per 8KB Row 112 128 120-124

SRAM Tag Array @ 8GB — ∼48MB —

In-DRAM Tag Size @ 8GB 1GB (12.5% of DRAM) — 256-512MB (3.1-6.2% of DRAM)

Miss-Predictor Size 96B per core, 1.5KB total — —

Way Predictor — — 1-16KB

Footprint History Table — 144KB 144KB

Singleton Table — 3KB 3KB

Table 4.2 – Comparison of key characteristics of different DRAM cache schemes.

4.2.1 Alternative Approaches

In this section we discuss alternative approaches to getting the best of block- and page-based

designs. Looking at the two ends of the spectrum, there are two seemingly obvious ways to

combine the two designs.

Block-based cache with footprint prediction

One naïve way of combining the two state-of-the-art block- and page-based designs is to

start with Alloy Cache’s direct-mapped, block-based organization with the tags co-located

with data blocks, and then apply footprint prediction as a prefetcher in attempt to exploit

spatial locality. Since the footprint prediction mechanism learns and predicts the blocks

within pages, such a design would require grouping a number of neighboring blocks into a

logical page and fetching and evicting them at the same time. Unlike existing page-based

DRAM cache proposals, such a design could theoretically allow multiple pages to co-exist in
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the same DRAM row as depicted in Figure 4.4(a). Unfortunately, multiple pages (shown as

different shades of gray in the figure) could only co-exist in the same row if their footprints

are completely disjoint; an overlap would cause a conflict and require the other page (i.e., its

current footprint) to be prematurely evicted, as allocations and evictions happen at the page

granularity.

Such a design would introduce major problems due to the mismatch between the cache

organization and the footprint prediction mechanism. First, there is no fast lookup mechanism

to indicate the presence of a page in the cache. In case of a miss, it is not possible to easily

determine whether other blocks of the same page are cached or not. Thus, to identify if a cache

miss is a triggering miss (the first miss to a page that initiates footprint prediction and fetching

the page’s footprint from off-chip memory), the entire DRAM row of the missing cache block

needs to be scanned to determine if any block from the same logical page is present in the

cache, because the block presence information is spread out over the entire DRAM row. Not

finding any block within the page would indicate that the current miss is a trigger access. Such

a scan is also needed to identify the footprint of the page that will be evicted as a result of the

miss, and update the footprint predictor state accordingly. Unfortunately, scanning all tags

in a DRAM row upon each cache miss and block eviction would significantly reduce DRAM

cache availability, waste energy, and increase miss latency. Also note that for each page in the

cache, we must keep its (PC, offset) pair that caused the initial miss, which are used to update

the footprint predictor state upon eviction as in FC [29]. It is not straightforward to augment

each DRAM row with the metadata corresponding to each of the variable number of logical

pages it contains.

Page-based cache with tagged blocks

Another naïve way of combining the two designs is to start with FC and preserve its page orga-

nization, but augment each block in DRAM with its tag in order to stream tag and data blocks

together in a single DRAM access, as in Alloy Cache. A DRAM row in such an organization is

shown in Figure 4.4(b). As each DRAM row now accommodates a single page, upon a DRAM

cache miss it is possible to determine whether or not the miss is the first access to the page

that initiates the missing page’s footprint fetch. However, this requires writing the correct page

tag and resetting the valid bit even for blocks that are not fetched upon page insertions, which

means an extra DRAM write for each block that does not belong to the footprint of a newly

fetched page. Furthermore, upon page evictions following a miss, there is no simple lookup

mechanism to identify the footprint of the evicted page; the entire DRAM row would need to
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be scanned to determine the valid blocks within the page. In contrast to the previous design

point, the (PC, offset) pair that triggered a page access could be stored at a predetermined

position in the corresponding DRAM row and later used to update the footprint prediction

table with the correct footprint.

In both naïve design points each data block is co-located with its corresponding tag to mini-

mize latency, leading to a vast amount of replication. The tag replication wastes around 1/8th

of the total cache capacity and further reduces the hit ratio. Furthermore, the footprint pre-

dictor is partially integrated into DRAM-based tags, which contain various metadata needed

for prediction, most importantly the block presence information. Spreading this information

throughout a DRAM row causes, as discussed, a variety of problems related to footprint track-

ing, detecting triggering misses, page evictions, and unnecessary DRAM row scans and writes.

Unison Cache avoids these problems by centralizing the tag information for all data blocks

within a page and accessing this information in parallel with data blocks to avoid any latency

penalty.

4.2.2 Summary and Comparisons

Unison Cache leverages insights and ideas from both the Alloy Cache and the Footprint Cache,

but synthesizes and extends them in unique ways to “get the best of both worlds” while side-

stepping their pitfalls. Given the many interacting and inter-dependent components, Table 4.2

provides a summary of the key characteristics of the different DRAM cache design approaches

to more easily distinguish the contributions and strengths of Unison Cache.

Unison Cache maintains the low miss rate of Footprint Cache (FC), the low hit latency of Alloy

Cache (AC), avoids the impractically large SRAM tag arrays of FC, has lower embedded DRAM

tag overheads than AC, and has no miss predictor like AC. Assuming an 8GB die-stacked DRAM

and 2KB pages, FC would require about 50MB for its SRAM tag array.

On a cache miss, AC has the best latency (assuming the hit-predictor was correct), but in

practice both FC and Unison Cache have sufficiently high hit rates that the additional tag-

lookup latency for misses has a much smaller impact. FC and Unison Cache often have hit

rates in excess of 90%, which is functionally equivalent to having a static hit-predictor with a

90% accuracy.

FC has by far the highest associativity. However, the additional associativity beyond four ways

provides rapidly diminishing returns, as discussed in Section 4.4. This is why Unison Cache’s

comparatively lower four-way set associativity is not a significant constraint.
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Like FC, Unison Cache requires some on-chip SRAM resources to implement the footprint

predictor structures, but these are fixed sizes and do not grow with increasing stacked DRAM

capacities.

4.3 Methodology

4.3.1 Simulation Infrastructure

We evaluate Unison Cache through a combination of trace-driven and cycle-level simulation

of a 16-core CMP running server workloads. We use the Flexus [68] full-system multiprocessor

simulator, which extends the Virtutech Simics functional simulator with OoO cores, on-chip

network, and memory hierarchy and models the SPARC v9 ISA. We use DRAMSim2 [58]

integrated into Flexus to model both the die-stacked DRAM and the off-chip DRAM, with the

parameters listed in Table 4.3.

The trace-driven experiments are based on the memory traces that consist of 30 billion

instructions per core, two thirds of which are used for cache warm-up. We evaluate perfor-

mance through a set of cycle-level experiments, leveraging the SimFlex [68, 69] multiprocessor

sampling methodology for server workloads. Our samples are collected over 15 seconds of

workload execution. For each measurement point, the cycle-level simulation starts from

checkpoints with warmed up architectural state (i.e., caches and branch predictors) and runs

for 800K cycles (2M for Data Serving) to warm up the queues and the interconnect state. Then,

we collect measurements for the subsequent 400K cycles of the cycle-level simulation. To

measure performance, we use the ratio of the number of user instructions to the total number

of cycles (including the cycles spent executing the operating system code), as this metric has

been shown to accurately reflect overall server throughput [68]. Performance measurements

are computed with an average error of less than 2% at a 95% confidence level.

4.3.2 Baseline System Configuration

Our baseline processor is a 16-core CMP design based on the Scale-Out Processor design

methodology [50], which seeks to maximize throughput per die area. The chip features a

modestly sized last-level cache to capture the instruction working set and shared OS data,

which are independent of the core count, and dedicates the rest of the die-area to the cores to

maximize throughput. The architectural features are listed in Table 4.3.
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CMP Organization 16-core Scale-Out Processor pod

Core ARM Cortex-A15-like, 3-way OoO @3GHz

L1-I/D caches 64KB, split, 64B blocks

2-cycle load-to-use latency

L2 cache per pod 4MB, unified, 16-way, 64B blocks,

4 banks, 13-cycle hit latency

Interconnect 16x4 crossbar

Off-chip DRAM 16-32GB, one DDR3-1600 (800MHz) channel

8 banks per rank, 8KB row buffer

Stacked DRAM DDR-like interface (1.6GHz)

4 channels, 8 banks/rank,

8KB row buffer, 128-bit bus width

tCAS-tRCD-tRP-tRAS 11-11-11-28

tRC-tWR-tWTR-tRTP 39-12-6-6

tRRD-tFAW 5-24

Table 4.3 – Architectural system parameters.

Cache size (B) 128M 256M 512M 1G 2G 4G 8G

Tags (MB) 0.8 1.58 3.12 6.2 12.5 25 50

Latency (cycles) 6 9 11 16 25 36 48

Table 4.4 – Footprint Cache parameters.

4.3.3 DRAM Cache Organizations

Unison Cache

The evaluated design is organized as a four-way set associative cache. Each DRAM row accom-

modates two sets, each of which contains four pages. Each page contains 15 blocks (960B),

and the whole DRAM row accommodates 120 data blocks. We also evaluate a direct-mapped

organization of Unison Cache as well as organizations with 1984B pages. The parameters for

footprint prediction are the same as in Chapter 4.2.

Footprint Cache

We evaluate the original design with 2KB pages, which we found to be the sweet spot between

the accuracy and tag storage overhead. The 8KB DRAM row can accommodate four pages

with 128 data blocks. While 1KB pages are a better match for Unison Cache, Footprint Cache
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cannot afford that page size as the already high SRAM-based tag storage would double. The

aggregate size of the tag storage for various cache sizes is listed in Table 4.4 along with the

conservatively estimated latencies. Note that for larger cache sizes Footprint Cache’s tag array

grows up to ∼50MB, which cannot even fit alone in the area of today’s chips, but we evaluate

these hypothetical designs as reference points.

Alloy Cache

The 8KB row buffer is able to accommodate 112 data blocks. Alloy Cache also employs a miss

predictor with a one-cycle latency to bypass the DRAM cache lookup in case of a DRAM cache

miss.

4.3.4 Workloads

As a representative set of emerging scale-out server applications that are highly data-intensive

and exhibit abundant request-level parallelism, we use the CloudSuite [9] workloads, including

Data Analytics, Data Serving, Software Testing, Web Search, and Web Serving [12]. To evaluate

multi-gigabyte cache designs, we use a set of analytic queries from the industrial TPC-H

benchmark (referred to as TPC-H), running on a modern column-store database engine,

MonetDB [33]. While the datasets of other workloads are scaled from hundreds of gigabytes

down to 5-20GB (depending on the workload) to allow for practical full-system simulation,

the TPC-H dataset is unchanged and exceeds 100GB.

4.4 Evaluation

4.4.1 Predictor Accuracy

The three designs we evaluate rely on various predictors to predict if an access is a hit or miss,

to predict page footprints, or to predict the correct way in a set-associative cache. Table 4.5

summarizes the effectiveness of these predictors as well as the extra off-chip traffic generated

by some of the predictors due to mispredictions, assuming a 1GB cache (8GB for TPC-H

queries). We observed similar trends for other cache sizes, for which we omit the results. For

Unison Cache (UC), we show two design points: with 960B and 1984B pages, both 4-way

associative. For Alloy Cache (AC), we show the accuracy of the miss predictor — the fraction of

misses correctly identified as such. Misses that are wrongly predicted as hits increase miss

latency. AC’s miss predictor is highly effective achieving over 90% accuracy on our server
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Data Data Software Web Web TPC-H Average

Analytics Serving Testing Search Serving Queries Value

AC
MP Accuracy (%) 96.4 90.0 93.2 97.2 91.8 89.0 92.3

MP Overfetch (%) 7.3 6.4 16.2 13.5 7.9 1.9 8.7

FC
FP Accuracy (%) 92.4 97.7 81.5 98.6 92.3 93.8 92.7

FP Overfetch (%) 9.2 4.0 24.7 1.6 9.0 6.18 9.1

UC 960B

FP Accuracy (%) 93.1 97.1 84.2 95.5 89.8 84.0 90.6

FP Overfetch (%) 9.0 3.7 20.6 3.2 12.8 10.7 10

WP Accuracy (%) 89.6 90.6 92.4 96.6 94.6 95.9 93.3

UC 1984B

FP Accuracy (%) 90.2 95.7 78.2 94.4 83.4 79.9 87.0

FP Overfetch (%) 11.5 5.4 26.8 4.4 18.9 15.4 13.0

WP Accuracy (%) 91.1 93.9 96.2 98.1 96.9 96.8 95.5

Table 4.5 – Accuracy of various predictors: Miss Predictor (MP) in Alloy Cache, and Footprint
Predictor (FP) in Footprint Cache and Unison Cache, and Way Predictor (WP) in Unison Cache
for a 1GB cache (8GB for TPC-H queries).

workloads. The hits that are wrongly identified as misses and thus cause unnecessary off-chip

traffic are also shown and are not significant.

For Footprint Cache (FC) and UC, we show the footprint predictor’s accuracy — the fraction of

a page’s footprint that is correctly predicted. We note that this metric is not comparable to

AC’s accuracy metric. The difference in accuracy for FC and UC stems from the differences in

associativity and page size. For most of the workloads, UC’s accuracy matches the accuracy

of FC. We also note that the UC organization with 960B pages on average provides better

prediction accuracy compared to the 1984B organization, which is what we also concluded in

the FC study in Chapter 4.2. While FC cannot afford this granularity because of its SRAM-based

tag array, UC keeps tags in DRAM and is not restricted to large page sizes.

We also show the overfetch ratios of the two predictors to determine the extra off-chip traffic

they generate. AC’s miss predictor causes overfetch when it incorrectly predicts a DRAM cache

hit to be a miss. Footprint predictor causes overfetch when it fetches blocks that are not

accessed prior to a page’s eviction. It is important to note that all three designs are highly

bandwidth-efficient with small overfetch rates (∼10% on average), which are offset by the

benefits their predictors provide.
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Figure 4.5 – Unison Cache’s miss ratio as a function of associativity.

4.4.2 Miss Ratio

As explained in Section 4.2, UC increases the associativity to four by adding only two CPU

cycles to the hit latency, which is negligible compared to the ∼60 cycles it takes to access DRAM,

and without causing data overfetch. Figure 4.5 shows the miss ratio for the UC organization

with 960B pages while varying the cache associativity, for both large and small cache sizes.

The miss ratios are plotted in a stacked fashion. For example, the dark gray bars show the miss

ratios for a 32-way cache, while the sum of dark and light grey bars shows the miss ratios for

the 4-way organization. The total height corresponds to the direct-mapped organization. We

see that the four-way organization provides a sizable reduction in miss ratio, sometimes by a

factor larger than two compared to the direct-mapped organization (the reduction is captured

by the white bar). We note that beyond four ways, there is no significant reduction in the hit

ratio to compensate for the increased tag lookup latency and reduced accuracy of the way

predictor.

Way prediction and associativity have orthogonal effect. While reasonably small associativity

halves the miss ratio (Figure 4.5), way prediction enables an effective implementation of

associativity by eliminating the latency and bandwidth overheads. In our case, for a 4-way

associative cache, way prediction reduces the latency by 12 cycles (needed to transfer extra
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Figure 4.6 – Miss ratio comparison of Alloy Cache, Footprint Cache, and Unison Cache.
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Figure 4.7 – Performance comparison of Alloy, Footprint, and Unison Caches. Note the
difference in scale for Data Serving.

ways, 20% of hit latency) and reduces the hit traffic by 4x, as all the ways would otherwise have

to be fetched in parallel.

We further compare the three designs with respect to their miss ratios in Figure 4.6 for a range

of DRAM cache sizes. As expected, AC has by far the highest miss ratio due to low temporal

locality. The exception is Data Analytics, a Map-Reduce workload that exhibits the lowest

spatial locality due to its pointer-intensive nature caused by frequent hash table lookups. For

this workload, the differences in miss ratio between the designs are less pronounced.

FC and UC, on the other hand, significantly reduce the cache miss ratio by exploiting spatial

locality and fetching whole page footprints. The small differences between the miss ratios of

FC and UC stem from different page sizes used in the two designs (2KB and 1KB, respectively),

the difference in associativity, and a slight difference in the effective cache capacity. Because of

the larger page size, FC provides slightly better miss ratios for applications with extremely high

spatial locality, such as Web Search. In the case of Data Analytics, UC achieves a better miss
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ratio due to the higher footprint prediction accuracy and low spatial locality of this workload,

which prefers smaller page sizes.

Because AC is a block-based design, all the cache hits come solely from the temporal reuse. In

other words, the hit ratio directly corresponds to the bandwidth savings provided by the cache.

It is interesting to note that AC’s miss ratio for TPC-H is consistently high, dropping down

only for very large cache sizes; caches smaller than 2-4GB hardly provide any hits. This is in

line with our intuition that multi-gigabyte caches are indeed required to provide a noticeable

reduction in the off-chip traffic for realistic server setups.

4.4.3 Performance

Figure 4.7 compares the performance of the three designs for a range of DRAM cache sizes for

all workloads except TPC-H. We also compare the three designs against an ideal DRAM cache

that never misses and has no tag overheads, an equivalent to die-stacked main memory.

For small cache sizes, FC performs the best. Compared to AC, it enjoys a much higher hit

ratio. The exception is Data Analytics (Map-Reduce), which for the smallest cache size prefers

block-based designs due to the lack of spatial locality. As we increase the cache size, the pages

stay longer in the cache and their footprints become denser [29], increasing the spatial locality.

However, FC’s tag array access latency increases with the cache size, increasing both the hit

and miss latency and ultimately resulting in diminishing performance returns despite higher

hit ratios. In contrast, the cache size affects neither the hit nor the miss latency in case of UC

and AC, which is why UC outperforms FC for larger cache sizes.

A more realistic scenario is shown in Figure 4.8, which compares the performance of the three

designs for TPC-H queries, for 1-8GB caches. In this case Unison Cache constantly outper-

forms the hypothetical Footprint Cache design due to its low and constant access latency,

whereas the tag array access latency precludes performance improvements for Footprint

Cache. Alloy Cache sees steady performance improvements, which are however limited by its

low hit ratio.

Overall, Unison Cache provides a 14% performance improvement over Alloy Cache and 2%

over the hypothetical Footprint Cache design for a 1GB cache (7% and 6% in case of an 8GB

cache for TPC-H queries). We note once again that beyond 256-512MB, Footprint Cache is

not a feasible option due to its SRAM-based tag array, which requires up to 50MB for an 8GB

design.

69



Chapter 4. Scalable DRAM caches

1.0 

1.2 

1.4 

Sp
ee

du
p 

Alloy 

Footprint 

Unison 

Ideal 

TPC-H Queries 

1GB 
 

2GB 
 

 4GB 
 

 8GB 
 

Figure 4.8 – Performance comparison for TPC-H queries.

4.4.4 Energy Considerations

All designs reduce the off-chip main memory energy by reducing the number of accesses to

it. However, both UC and FC provide a significant further reduction in energy by reducing

the number of DRAM row activations, the most energy-demanding operations, by an order of

magnitude [29, 65]. Namely, while cache misses in the case of AC result in random memory

accesses, both UC and FC perform off-chip data transfers at the granularity of footprints,

which fit in a DRAM row. In case of AC, for almost every block transferred between the cache

and memory, a DRAM row needs to be activated both in off-chip DRAM and in the cache,

whereas for UC a row activation happens once for the whole footprint (i.e., once per ∼10

blocks). Similarly, the DRAM cache energy is reduced due to the cache evictions and fills

that happen at the footprint granularity. Data transfers between the die-stacked and off-chip

DRAM are, thus, much more energy-efficient in the case of UC and FC. We quantified these

benefits in Chapter 4.2, which are around 20-25% of dynamic DRAM energy and to the first

order are the same for FC and UC.

4.5 Tag Cache

Besides accurate way prediction, high spatial locality also allows for effective caching of tags

in any page-based cache design. The tag array provides two important pieces of information:

data presence and data location. Regarding data presence, Unison Cache statically decides
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that every access is a hit based on the premise that misses are rare, and therefore does not

require data presence information. Regarding data location, Unison Cache employs a simple

and accurate way predictor and does not rely on data location information from the tags either.

Tag caching is therefore not essential for Unison Cache. Nevertheless, tag caching can improve

performance in several ways, by:

• significantly reducing the number of cache probe traffic in case of dirty evictions for non-

inclusive page-based DRAM caches. Unison Cache uses cache bypassing for singleton

pages, and therefore is a non-inclusive cache; as such, upon dirty evictions it first needs

to check the tags if a block is there and if so, where it is exactly, because write-backs

cannot be done speculatively using presence prediction, be it static or dynamic (with

miss predictors), and way prediction. Accurate tag caching can significantly reduce

the number of dirty eviction probes by providing the exact tag information. While way

prediction always provides approximate information, tag caching frequently provides

exact information, which is what eviction probes require.

• reducing the number of cache probes in case of cache misses. Cache misses, although

rare, unnecessarily probe the cache and increase the overall cache traffic. Tag cache hits

eliminate such probes.

• reducing miss penalty upon tag cache hits. Unison Cache’s static speculation that every

access is a hit postpones off-chip miss serving by one cache access. Hits in a tag cache

eliminate this increase in miss penalty.

• reducing the number of cache updates due to the replacement policy and prediction

metadata maintenance upon cache hits. While the vast majority of cache hits are

MRU accesses that do not require updates to the LRU bits3, the first cache hits to any

prefetched cache block must be registered in the valid/dirty bits to indicate that the

block was demanded, which is required for footprint prediction. Hits in the tag cache

essentially coalesce all these updates and write them back at once during tag cache

eviction.

Figure 4.9 shows the tag cache hit ratio as a function of the number of tag entries, where each

tag entry occupies around 40B of storage. Tag cache hit ratio is independent of the cache

capacity. To be able to coalesce LRU updates, each tag cache entry keeps the metadata for

one cache set consisting of four pages. This metadata includes four page tags, one for each

3Accesses to cache ways that are at the most-recently used position in the recency list do not change the
replacement bits.
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Figure 4.9 – Tag cache hit ratio as a function of the number of tag cache entries. Each entry
corresponds to one cache set (four 1KB pages) and requires 40B of storage.

way, four valid/dirty bit vector pairs, and the LRU information for the whole set. As Figure 4.9

shows, the tag cache requires around 1280KB of storage to achieve the accuracy of a way

predictor that has only 1KB of storage. The reason is that the tagless way predictor that Unison

Cache employs uses only two bits per entry to indicate the predicted cache way, whereas the

tag cache stores the complete tag metadata for the entire set. Moreover, accessing 1280KB of

SRAM storage requires many CPU cycles, whereas way prediction can be done in a single cycle

and off the critical path. Nevertheless, smaller tag caches could still be useful in filtering out

many cache accesses and should be used with way prediction, which can facilitate locating

the correct way in the case tag cache misses.

Our DRAM cache contains four tiles that are set-interleaved. Tag cache can be easily tiled

in the same manner, reducing the size and the access latency of each tile. Assuming a tag

cache tile of 80KB that could be probed in three CPU cycles, an 8K-entry tag cache occupying

320KB in total could be practical. Figure 4.10 shows the reduction in cache probes on dirty

evictions that an 8K-entry tag cache achieves across our workloads, regardless of the cache

capacity, and the reduction in cache probes on cache misses such a tag cache provides for

a 256MB cache (2GB for TPC-H queries), as well as the reduction in metadata updates. We

see that tag caching can significantly reduce the cache activity and also lower the cache miss
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Figure 4.10 – Cache accesses eliminated by a practical tag cache with a three-cycle access
latency. The figure shows the fraction of unnecessary probes upon dirty evictions and cache
misses that are eliminated, as well as the fraction of LRU/metadata updates upon cache hits
that can be coalesced. The cache capacity is 256MB (2GB for TPC-H queries).

penalty, at a three-cycle latency cost paid upon all cache accesses. On average, practical tag

caching can eliminate around 85% of unnecessary cache probes upon dirty eviction requests,

something less than a half of unnecessary cache probes upon cache misses, and more than

80% of metadata updates. Metadata updates happen on cache hits that are either non-MRU

accesses and therefore require updates to the LRU bits, or had not been accessed before

and the information that they were demanded have to be registered for footprint prediction.

Figure 4.10 shows the fraction of those accesses that can be coalesced by a tag cache. The

performance impact of the slightly lower miss penalty is not significant, having in mind that

all cache hits are prolonged by three cycles. However, the impact of avoiding unnecessary

cache accesses can be significant depending on the cache bandwidth utilization. Besides

performance gains, tag caching has obvious implications on energy saving in die-stacked

DRAM.

4.5.1 Tag Cache vs. Miss Predictor

In the context of Unison Cache, tag caches could be considered as miss predictors. Because

Unison Cache uses way prediction to locate data, the only important information tag caches
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provide is a more accurate estimate of data presence in the cache, as compared to Unison

Cache’s static policy. The important difference between miss predictors and tag caches is

that tag caches provide the exact presence information upon tag cache hits, which prefetchers

can relied upon. Namely, if Unison Cache had an approximate miss predictor, a cache hit

that is wrongly predicted as a miss would initiate fetching of the entire page’s footprint only

to realize that the access was in fact a hit. In the case of tag caching, a tag cache hit always

guarantees correctness of the presence information and any cache prefetches can be issued

safely. Without a tag cache, Unison Cache must conservatively assume that the access may be

a hit and delay miss serving and any prefetching associated with misses. Miss predictors that

are not conservative, such as Alloy Cache’s instruction-based miss predictor, are not useful at

all to DRAM caches that use prefetching.

Tag caching comes at a several-cycle latency cost for all cache accesses. This cost can be

partially avoided if tag caching is not used for early miss detection, which is what the tag cache

does least effectively anyways, as illustrated in Figure 4.10. The reason why tag caching is less

effective for miss detection, as compared to eviction probes and metadata updates, is because

cache misses typically happen as the first access to a page — i.e., the triggering miss — which

cannot be captured by tag caches. If we let cache accesses bypass the tag cache and if we use

the tag cache only for evictions and metadata updates, which are not on the critical path, the

main benefits of tag caching can be preserved without any latency penalty in the common

case of cache hits. Eliminating the latency cost of tag caching can allow for larger tag caches,

which are more effective in eliminating eviction probes and metadata updates.

4.6 Efficient Footprint Tracking through Sampling

Moving tags into DRAM implies a significant increase in die-stacked DRAM traffic coming

from various tag probes and updates. Embedding the footprint predictor metadata into DRAM

has similar consequences; upon page insertion, the PC & Offset pair need to be written to every

DRAM row that contains a fraction of that page, ideally only one; upon the first access to any

block its valid and dirty bits must be updated to indicate that the block has been demanded, for

the purpose of footprint tracking, which under low data reuse imposes a significant overhead;

upon page eviction, the corresponding PC & Offset pair must be read along with the actual

footprint of the page and the footprint history needs to be updated.

To virtually eliminate the predictor metadata maintenance overhead, we make the observation

that the prediction history does not need to be updated upon every eviction. Namely, page
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Figure 4.11 – Storage required for PC & offset pairs for an 8GB cache with 1KB pages.

footprint are stable and repetitive, and they are associated to a limited number of PC & offset

pairs. As a result, many redundant history updates happen all the time, upon every page

eviction, because too many page evictions happen per one PC & offset pair. It is therefore

possible to sample the history update process by performing the history updates only for

a small fraction of the pages. More precisely, maintaining the PC & Offset pairs in DRAM,

tracking the footprints in DRAM upon every cache access and updating the global history upon

eviction can be done only for a tiny fraction of the pages, saving bandwidth and energy without

any accuracy penalty. This can be efficiently implemented through set sampling, where only a

number of dedicated sets, for example one out of 64, would generate the prediction history,

while all other cache sets would use the history during the page fetch.

Besides reducing the stacked DRAM activity required to maintain the prefetcher metadata by

orders of magnitude, the sampling approach can be used to reduce the total storage overhead

of keeping the PCs and page offsets in DRAM. A similar idea has been used to reduce the

prediction history in dead-block predictors in SRAM caches [35]. While storing the PCs and

offsets does not introduce any extra storage overhead in DRAM because of the available

unused space in DRAM rows, a significant reduction could allow for storing the PCs and offsets

corresponding to the selected history-generating pages in SRAM. For example, tracking only

PCs and offsets for every 64th cache set would reduce the storage overhead to only 1MB, as

shown in Figure 4.11.
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4.7 Page Alignment

In this section we investigate the problems associated with non-power-of-two page sizes and

propose a practical way to fully mitigate them.

4.7.1 Effects of Misalignments

Non-power-of-two page size causes problems for Unison Cache in three different ways:

• First, operating system pages are typically 4-8KB, and always aligned to a power-of-

two number. Software objects in server applications are typically aligned to 64B to

improve on-chip cache locality, but they are also aware of the operating system page size.

An obvious example of this awareness are relational databases, where the bufferpool

page size is always related to the operating system page size. Let’s take an example

of MonetDB, which allocates KB objects. To fetch such an object, Unison Cache with

960B pages will always have to bring two objects, which basically doubles the miss

ratio. Lets further suppose that the object starts at the beginning of the first Unison

Cache page. The last block of the object will be brought into the cache separately, in

a different cache page. If it is a scan operation, both the first and the last block will

initiate a page access with the same PC, and the same offset (offset 0). Therefore, it will

be hard for Unison Cache to distinguish which page is full, and which page is singleton.

In this extreme example, the bandwidth efficiency can drop significantly, as well as the

predictor accuracy.

• The misalignment between the cache page size and the object size causes a lot of pres-

sure to the footprint history table, because it inflates the number of offsets associated

with each PC, and therefore inflates the number of entries that the history table needs to

store. For example, with 2KB pages (32 blocks) the number of offsets per PC is typically

two. However, with 1984B pages, the number of offsets per PC can go as high as 31.

Because the history table is kept in SRAM and has to be small, high pressure on the

history table will eventually affect the prediction accuracy.

• Because the cache page size in a non-power-of-two number, it is not enough to keep

only some of the address bits as page tags. We either need to keep the whole address as

a tag, or do more complex computation to match tags in the cache against an address

during tag comparison.
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Figure 4.12 – Increase in miss ratio due to misaligned pages.

Figure 4.12 compares the miss ratio of two four-way associative Unison Cache designs. The

first design uses 960B pages, whereas the second one uses 1KB pages, assuming that we could

somehow efficiently integrate 1KB pages and their metadata. Both designs use a 16KB history

table for the footprint predictor. The cache size is 256MB, except for the Data Analytics case,

where the cache size is 2GB due to the scale of its dataset (see section 4.3. We show the miss

ratio of the first design normalized to the miss ratio of the second design. In other words, the

figure illustrates the increase in miss ratio due to the misalignment. All workloads are notably

sensitive to the misalignment problem, but TPC-H queries on MonetDB exhibit by far the

strongest sensitivity. It miss ratio essentially doubles because of misalignments. This situation

suggests a strong need for aligning the pages to a power-of-two number. As expected, the only

exceptions are, Data Analytics and Software testing. As explained in chapter, Data Analytics

suffers complete absence of spatial locality, whereas Software testing does not even have a

dataset, but generates data on the fly. Slightly changing the page size introduces noise that

varies across cache sizes.

4.7.2 Mitigating Page Alignment Problems in Unison Cache

Figure 4.13 illustrates a possible data layout of 1KB cache pages in 16 consecutive rows in the

stacked DRAM. Note that the page size is exactly 1KB, and not 960B. For simplicity, we assume
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Figure 4.13 – Alternative data layout with 1KB pages.

a direct-mapped cache and 1KB DRAM rows that could accommodate one cache page per row

without the page metadata. Because the first 64B in each DRAM row are reserved for metadata

for all pages residing in that row, the last cache block of the first page cannot fit and is stored

in the subsequent DRAM row. In this example, each cache page spans exactly two DRAM rows,

and each DRAM row contains blocks from at most two different pages.

The first block (denoted as B0) of Page 0 in Figure 4.13 is placed in the second block of Row 0;

we denote its offset as Offset 1, while position Offset 0 is reserved for metadata. The first part of

the metadata block contain metadata of the page that ends in the current row (i.e., the parts of

the page that could not fit in the previous row), whereas the second part contains metadata of

the following page that starts in the current row. Because Row 0 contains only one page, which

starts in that row, the first part of the metadata block is empty, denoted as X. The last block of

the same page, B15, happens to be at the same position in the subsequent row, Row 1. The

first block of the next page, Page 1, occupies the block at position Offset 2 in Row 1, whereas

the last block of the same page occupies the same position in the subsequent row. Page 14

starts at the very end of Row 14, and occupies whole Row 15. Because there is no page that

starts in this row, the second metadata slot in this row is empty, as shown in the figure. The
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layout of Row 16 is exactly the same as the layout of Row 0 — i.e., rows 0–15 form a cycle that

repeats. Within these 16 rows we are able to accommodate 15 different pages.

While this data layout enables conventional power-of-two page sizes, locating the page upon

a request becomes difficult. The target DRAM row cannot be computed only based on the

page tag only. In fact, each page spans two different DRAM rows, and the requested block may

be in any of them. Furthermore, the physical position of the requested block within the page

cannot be determined solely based on the offset. Fortunately, simple circuitry can be used to

determine the both the exact DRAM row and the exact position of the requested block within

it. The DRAM row where given page starts can be computed as

st ar t_dr am_r ow = pag e_t ag ·k

k −1
= pag e_t ag << log (k)

k −1
(4.1)

where page_tag represents address bits of without the block offset and the word bits, as

illustrated in figure 4.14, k denotes the number of blocks within a page, in this case 16, and

<< performs the left shift operation. The DRAM row where a given page ends will be simply

the next one. The DRAM row where a given block resides can be either the start row or the

end row. Regardless of its position, the target DRAM row can be easily determined using the

following, even simpler formula:

t ar g et_dr am_r ow = bl ock_i denti f i er

k −1
(4.2)

This formula will produce the correct result regardless of the position of the block in its page.

The exact position where the requested data block resides within the target DRAM row can be

computed as follows:

block_o f f set = block_i denti f i er mod (k −1)+1 (4.3)

The resulting residual in the above formula is incremented by one because of the metadata
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block that occupies the first slot in each row. Both the DRAM row location and the block

position within it can be computed by a single and fairly simple hardware unit. Division by a

fixed small number can be implemented using several adders, producing the required residual

as a side effect. Such circuitry is especially simple for numbers in the form 2n −1. For 1KB

pages in the above example, the circuitry needed to implement this functionality (i.e., division

by 15) consists of four 4-bit adders. We estimate the latency of this computation to take two

CPU cycles. This idea can be easily generalized to account for any combination of associativity,

cache page size and DRAM row size, as discussed in section 4.2.

4.8 Unison Cache in the Context of Near-Memory Acceleration

This thesis shows that die-stacked caches on average provide a 2-3x reduction in memory

traffic of servers chips, postponing the bandwidth wall for a few generations. Even though

technological advances will likely allow for larger cache capacities, the rapid data growth

and the growth of memory systems hosting the data might offset any benefits. The ultimate

solution to the data movement problem lies in moving the computation from the processor

closer to the memory, which is becoming possible with the emergence of new DRAM devices

that feature a thin layer of logic (e.g., HMC [53, 63]). The idea is to use the available logic

layer to offload certain memory-intensive computation and utilize the device’s high internal

bandwidth, while avoiding off-chip communication. This style of computation is often referred

to as near-memory processing, and we refer to these devices as Intelligent Memory Devices

(IMD).

The biggest research problem in this context is in finding the exact useful role for the emerging

IMDs in server systems, and in their integration with the rest of the system components, and

particularly regarding their integration into the virtual memory system and enabling efficient

address translation. Address translation could be performed by the IMD itself, if equipped

with translation lookaside buffers (TLBs) and page-walker caches. Every computational unit

within the logic layer of IMDs must be equipped with a TLB to avoid frequent communication

throughout the logic layer only for the purpose of translation. However, placing the TLBs within

the IMD causes the problem of TLB coherence, maintenance and inefficient TLB shootdowns.

TLBs are also shown to be less and less effective as the memory capacity increases [3, 15, 32].

For a certain class of applications and operations, such as database scans, there is a simple

solution to this problem. For such applications, virtual-to-physical address translation can be

performed on the processor side, after which a scan request for the entire page is sent to an
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IMD for scanning. The observation here is that the translation can be performed once and be

valid for each address within the page. The IMD would utilize its high internal bandwidth to

efficiently perform the scan operation on the requested page and return only the aggregate

result. Unfortunately, this style of computation has very limited applicability, because the

server applications rarely scan data sequentially. Instead, they exhibit complex and irregular

access patterns as a result of the pointer-intensive data structures they employ [12]. A much

more general solution is needed to support address translation for server applications and

enable the “pointer is a pointer” semantics.

Virtual memory provides a level of protection and, historically, the illusion of a huge virtual

address space for multitasking systems; the latter has been very important for systems in

which the memory requirements of all active processes were exceeding the amount of available

DRAM by orders of magnitude. General, flexible and fully associative table structures, called

page tables, were needed to map any virtual page to any available physical slot. However,

in today’s datacenters data is almost entirely stored in memory, and the content of memory

is much more static; a simpler and more efficient mapping between virtual and physical

addresses could be used. An extreme example of such simplification would be direct segmen-

tation [3], where the application tries to allocate most of its memory as a single huge region of

memory (segment) and map its virtual address space into a contiguous region of the physical

address space. The address translation for that segment is greatly simplified, as the same

simple arithmetic is used to compute the physical address of any virtual address belonging to

the segment. This technique is applicable to some server applications provided that the whole

dataset fits in memory.

In the context of IMDs, Instead of using direct segments, we could employ direct paging and

provide in-memory address translation. The idea is to keep the traditional page-table based

translation for compatibility and flexibility, but avoid any TLB involvement in the translation

for the part of memory stored in IMDs. Since datasets mostly fit in memory, one could use

a direct-mapped approach to map every virtual page to exactly one possible physical page,

which solves the problem of locating the page. The per-page translation metadata would be

integrated into DRAM the same way as it is done with tags in Unison Cache [28], and accessed

in parallel with data accesses to a page. The proposed system would essentially be a virtual

cache, yet having the functionality of main memory. Upon an access, the fetched translation

metadata would be consulted to see if the desired page is indeed present. If the entire dataset

fit in memory, the vast majority of the time the required page would be found. While the

technique of direct segments is not applicable if the dataset exceeds the DRAM capacity by a
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single byte, this mechanism would work even for moderately larger datasets. Direct paging is

applicable to all cases where direct segments are applicable, but also when direct segments

are not. In case the dataset is significantly larger than the available DRAM, a small degree

of associativity could be efficiently added to the page mapping process, as it is done in the

Unison Cache design, to reduce the incidence of page faults. Unlike TLBs, the way predictor

structures in the case of a set-associative solution do not need to be coherent or maintained

in software, as they do not impact the translation correctness.

It is important to note that the layout optimization in section 4.7.2 is crucial in applying the

Unison Cache idea to in-memory address translation. While in the case of die-stacked caches

the page size has only performance implications, in the case of virtual memory the page size

has to be aligned to a power-of-two number. Besides virtual memory, this way of metadata

integration can be generally used to efficiently tag memory pages in DRAM with arbitrary

application-specific metadata, and access the data and tags in unison.

4.9 Summary

This chapter introduced Unison Cache, a practical and scalable stacked DRAM cache design,

which brings together the best traits of Footprint Cache and the state-of-the-art block-based

design. Unison Cache achieves high hit rates and low DRAM cache access latency, while

eliminating impractically large on-chip tag arrays by embedding the tags in the DRAM cache.

Cycle-level simulations of scale-out server platforms using Unison Cache show a 14% perfor-

mance improvement over the state-of-the-art block-based DRAM cache design, stemming

from the high hit rates achieved by Unison Cache. Unlike Footprint Cache, Unison Cache

requires no dedicated SRAM-based tag storage, enabling scalability to multi-gigabyte stacked

DRAM cache sizes.

82



5 Research Directions for Improving

DRAM Cache Efficiency

Research on DRAM caches has been primarily driven by the need for reduction in traffic

between the processor and the memory. DRAM caches provide a traffic reduction on the

processor side solely through reuse of locally stored copies of data within high capacity on-chip

DRAM. What makes the reuse possible is data skew; certain types of data, such as metadata,

are more frequently accessed than others; certain objects also happen to be more popular

than others. Despite their high capacity, practical DRAM cache sizes are still two orders of

magnitude smaller than the off-chip main memory in the following level of the hierarchy and

as such cannot accommodate the hot data structures for the majority of the applications [28].

As a result, the amount of temporal reuse in on-chip DRAM caches is fairly low [8, 29].

The abundance of spatial locality and the lack of either temporal reuse or mechanisms to

exploit it may lead to cache thrashing. In page-based designs, pages with high spatial locality

typically show less temporal reuse and occupy space in the cache for a long time, but are often

not useful after they are completely scanned. In block-based designs, most of the data that

are inserted into the cache are dead upon arrival [8, 29]. It is therefore important to provide

DRAM caches with mechanisms that would on one hand minimize the cache space and cache

bandwidth resources allocated to data that is not reused, and on the other hand exploit the

existing and encourage more reuse among data that are prone to it, and therefore improve the

overall cache efficiency.

In this chapter we revisit commonly used techniques for improving cache efficiency in SRAM

caches and study their applicability in the context of DRAM caches. We conclude that many

of the prior techniques are either ineffective or not directly applicable to DRAM caches. We

propose new research directions for improving cache efficiency both in block-based and in

page-based DRAM caches.
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The rest of this chapter is organized as follows. In Section 5.1 we take a look at the direct and

indirect impact of associativity on DRAM caches and practical ways to increase associativity.

In Section 5.2 we study adaptive cache insertion policies that protect caches from thrashing,

whereas in Section 5.3 we investigate the opportunity to improve the cache behavior through

cache bypassing. In Section 5.4 we study the mechanism for timely prediction of dead blocks

and pages. Finally, in Section 5.5, we look at the opportunity for prefetching in block-based

cache designs.

5.1 Increasing the Associativity in DRAM Caches

The underlying mechanism through which capacity-constrained caches exploit reuse is asso-

ciativity, which stands for the number of slots into which a new cache entry can be inserted.

Another, in certain contexts equivalent definition of associativity is the number different

options for selecting the victim entry during cache replacement [60]. Associativity enables

control over the placement of data in the cache and over their promotion through recency lists

that aim to rank the possible victim options according to the likelihood of their reuse. Unfor-

tunately, practical DRAM cache implementations provide either no associativity at all [8, 55]

or very limited associativity [18, 28, 55], which severely limits the cache’s ability to identify and

keep reusable data in the cache.

Increasing associativity is a trivial technique to reduce conflict misses and support reuse, but

comes at a high cost. High associativity in SRAM caches used to be associated with higher

access latency. Today, high associativity is expensive primarily from the energy perspective [54].

In L1 caches data and tag lookups are typically performed in parallel due to the strict latency

requirements. Looking up all the ways in the tag array and reading out data from every cache

way implies substantial energy costs, considering that these operations are performed at every

cycle. For that reason highly associative L1 caches usually employ way prediction [54]. Last-

level caches typically serialize tag and data accesses to avoid the overhead of reading out all the

cache ways, but still look up all the ways in the tag array, although less frequently compared

to L1 caches. Regarding DRAM caches, the cost of associativity, as well as its benefits, greatly

depend on the cache organization.

5.1.1 Associativity in Block-Based DRAM Caches

To provide efficient support for associativity in block-based DRAM cache designs, all the ways

of a set must be placed within the same DRAM row as in the Loh & Hill Cache design [46, 47, 48].
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Figure 5.1 – Miss ratio as a function of associativity for a 256MB block-based cache (2GB for
TPC-H queries).

In such designs, the beginning of each row is reserved for metadata, and the rest of the blocks

correspond to one way each. For example, a 2KB DRAM row could accommodate up to 30

different ways. Unfortunately, this implies that two dependent accesses to the same row are

needed: the first access reads the metadata for all the ways (2-3 64-byte blocks) and locates the

correct way, whereas the second access fetches the requested block [46]. Unfortunately, this

comes at a high latency cost, as two dependent die-stacked DRAM accesses may be as costly as

an off-chip DRAM access. The two accesses can be merged into one compound access [47, 48]

with the help of DRAM controller to guarantee a row-buffer hit for the second access and

partially reduce its cost. Unfortunately, the latency penalty is still prohibitively high, because

the second access is dependent on the first and the accesses must be therefore serialized.

Fortunately, 30-way associativity that Loh&Hill Cache provides is not in fact needed. Figure 5.1

shows the effect of associativity on block-based caches. We show the miss ratio of two-, four-,

and eight-way associative designs normalized to the miss ratio of the direct-mapped design. As

expected, the associativity does not play a significant role, partially because of the enormous

number of sets and total absence of false conflicts at this level of the hierarchy, but mainly

because there is no much sensitivity to cache capacity at this portion of the miss ratio versus
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Figure 5.2 – Way prediction accuracy as a function of associativity for a 256MB block-based
cache (2GB for TPC-H queries).

capacity curve.1 Direct-mapped caches are indeed a preferable option [55] for the baseline

cache performance. However, associativity still plays an important role in virtually all cache

optimization techniques, as we will see in the following sections.

One could still implement a small amount associativity in block-based caches that are orga-

nized as Alloy Cache. However, because block-based caches cannot leverage spatial locality,

accurate way prediction is not possible. Therefore, associativity in Alloy Cache comes at high

cache bandwidth and a non-negligible latency costs. Namely, to fetch a requested block in a

single access without way prediction, all the ways have to be read in parallel and serialized

on the bus, as we explained in Chapter 4. Figure 5.2 shows the accuracy of an address-based

way predictor with 16KB of dedicated storage as we vary the cache associativity. We see that

without spatial locality, way prediction is not much better than flipping a coin. The same

observation is valid for tag caching in SRAM: only page-based designs can benefit from tag

caching, because they leverage spatial locality.

Because there is no opportunity for accurate way prediction, block-based caches must stream

together all cache ways, to avoid the high latency penalty. Reading out all the ways together

1As we approach the knee of the curve, associativity, and in general most of the techniques that aim to improve
cache efficiency, gain more importance.
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results in a commensurate bandwidth overhead, which is not an option for die-stacked DRAM

because its bandwidth is a highly contended resource [8, 29].

In conclusion, existing block-based DRAM caches have no practical way of supporting asso-

ciativity and consequently cannot benefit from many standard cache optimization techniques

that rely on it. An interesting research direction would be to study way prediction techniques

for block-based DRAM caches that could yield better accuracy than way predictors that lever-

age spatial locality.

5.1.2 Associativity in Page-Based DRAM Caches

In contrast to block-based designs and as evidenced by Figure 4.5, a small amount of asso-

ciativity is crucial for page-based caches not only for enabling various cache optimizations,

but also for the baseline cache performance. In certain cases, a total lack of associativity

can double the miss ratio in page-based caches due to false conflicts. Such a scenario is very

typical in L1 block-based caches due to the small number of sets [22] and a high probability of

conflicts.

Page-based caches that keep tags in SRAM, such as CHOP [30] or Footprint Cache [29], can

afford arbitrarily high associativity. The tag lookup frequency is substantially lower compared

to SRAM caches and so is the power associated with the tag search. Unfortunately, placing

the tags in SRAM is not a scalable solution, as it is applicable only to caches of up to at most

512MB. Page-based DRAM caches that keep tags in DRAM must rely on way prediction to avoid

reading all the ways in parallel from the die-stacked DRAM [18, 28], which would otherwise

incur prohibitive bandwidth and latency costs [28].

The bandwidth cost associated with reading all the ways in parallel2 is directly proportional

to the number of ways, whereas the latency overhead comes from the serialization of the

ways during the bus transfer. Fortunately, way prediction in page-based caches is extremely

accurate thanks to the spatial locality and repeated accesses to the same page [28]. When

using way prediction, the tag metadata for all ways is read along with the data belonging to

the predicted way. The advantage of this approach, besides latency and bandwidth savings,

is that way mispredictions are not too expensive. Namely, the tags are already read and the

correct way is known, while the corresponding DRAM row is already activated and data from

the correct way can be read quickly and in at most two trials (in the uncommon case of a way

misprediction).

2Reading the ways in a serial fashion is not an option, as it would require multiple round-trips to DRAM.
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Figure 5.3 – The layout in DRAM of a single cache set in a two-way associative cache with 2KB
pages and 2KB DRAM rows. Each cache set consists of two DRAM rows, and each way spans
both rows.

An efficient implementation of associativity requires placing all the ways into the same DRAM

row. Placing all the ways in the same DRAM row allows certain block-based designs to achieve

very high associativity, up to 30 for 2KB rows [46, 47]. However, enabling associativity for

page-based designs is severely constrained by the ratio between the DRAM row size and cache

page size. The layout depicted in figure 4.3 with associativity of four is only possible because

the DRAM row size is 8x larger than the page size. While off-chip DRAM row sizes tend to

be quite large (8-16KB) because they must span multiple DRAM chips, on-chip DRAM row

sizes are typically smaller because they do not have such a constraint. In a scenario where the

on-chip DRAM row size is 2KB and the cache page is 2KB, the associativity would be physically

limited to one (i.e., direct-mapped). Reducing the page size could enable higher associativity,

but at the expense of lower hit ratio and poor way prediction behavior. To tackle this problem

and achieve independence between the DRAM row size, cache page size and associativity, we

propose a solution illustrated in 5.3, where we place two 2KB pages of a two-way associative

cache in two DRAM rows. The basic idea is still to place multiple ways (logical pages) into the

same DRAM row, but to overcome the associativity limitation by splitting each cache page

across multiple DRAM rows, as illustrated in Figure 5.3. Each DRAM row holds only a fraction

of each page of every cache way, along with the metadata corresponding to only that fraction

of the page. Note that the first row contains the tags for both ways, and only a fraction of the

valid/dirty bit vectors. Based on the address (i.e., based on the requested block within the

page), and the predicted way, the request is forwarded to the appropriate DRAM row.

The prediction metadata — i.e., PC & offset — does not need to be fully present in both DRAM

rows, as it is not needed on every access, but only upon evictions. The prediction metadata for

one way could be stored in the first row, and the metadata for the other way could be stored in

the second row. Because a page spans two rows, both rows need to be read out upon a page
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eviction and the correct prediction metadata is read at that time. In contrast, the LRU bits

have to be present and correctly maintained in both rows upon every access. However, thanks

to the spatial locality, more than 90% of the accesses are MRU accesses, which do not require

any updates to the LRU bits. Therefore, maintaining the LRU information in both DRAM rows

causes only a negligible activity overhead that could be further reduced by caching of the LRU

metadata in a small amount SRAM.

Mapping the cache content into DRAM in the described way allows for complete independence

between the DRAM row size, cache page size and associativity, and therefore allows arbitrarily

high associativity for page-based designs. An interesting further research direction could be

towards enabling adaptive page sizes and variable associativity. It is important to note that it is

spatial locality, exposed through larger page sizes, that enables associativity in DRAM caches

through accurate way prediction. An important research question that needs to be answered

is: can we leverage associativity to improve cache efficiency in page-based DRAM caches?

5.2 Cache Insertion and Promotion Policies

Some of the traditional cache replacement optimizations, such as LRU Insertion Policy (LIP)

and its variations [56], aim to protect caches from thrashing. LIP inserts all incoming cache

blocks into the LRU position, promoting them to the MRU position only upon the second

access — i.e., upon the first reuse. In doing so, LIP conservatively limits the amount of space

that blocks with no reuse can occupy in the cache, letting such blocks to compete for a single

way in the cache, and leave more space for reusable blocks. Because of the limited reuse in

DRAM caches in server applications, LIP is expected to perform well for block-based DRAM

cache designs. Although LIP requires associativity and block-based DRAM caches can neither

support associativity efficiently nor directly benefit from it, as Figure 5.1 shows, it would be still

interesting to see if associativity-based techniques could benefit block-based DRAM caches if

they had the necessary support for it and whether enabling associativity in block-based DRAM

caches is worth studying.

Figure 5.4 and Figure 5.5 show the increase in hit ratio LIP achieves normalized to the baseline

four-way set-associative block-based cache at 256MB for CloudSuite applications. Most of

the applications show significant increase in hit ratio. Note the difference in scale among the

figures. The vertical distance between the curves is also directly proportional to the off-chip

bandwidth savings LIP provides, because the baseline cache is block-based and any hit ratio

increase comes solely from temporal reuse. The horizontal distance in the figure directly
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Figure 5.4 – Hit ratio in a four-way associative block-based DRAM cache with the traditional
LRU policy and MRU Insertion (LRU) and with LRU Insertion (LIP) for Data Serving (left)
and Media Streaming (right). Note the difference in the scale. Increase in hit ratio is directly
proportional to the off-chip bandwidth savings (vertical dimension). The horizontal distance
in the figure directly corresponds to the difference in effective capacity between the designs.

corresponds to the difference in effective capacity between the designs. For example, in Data

Serving a 512MB cache that uses LIP behaves the same as a 1GB cache that does not use LIP.

Note that the net effect of LRU Insertion highly depends on the cache size, i.e., it depends

on how far we are from the next knee in the miss curve. The point at which the curves cross

each other in the case of Web Serving is a starting point after which a block is more likely to

be reused than not. We do not show the results for Data Analytics, because the baseline hit

ratio is already very high at 256MB and the advantage of LIP compared to LRU is too small to

show. The only outliers are TPC-H queries, where LRU consistently performs better than LIP

(not shown). The negative effect of LIP on some applications, such as TPC-H queries, could

be completely avoided using adaptive mechanisms, set-dueling, that dynamically choose

between LRU and LIP.

We also tested a variant of LIP, called Bimodal Insertion Policy (BIP), which with a probability

of 1/32 inserts incoming block at the MRU and the rest at the LRU position, with the intent to
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Figure 5.5 – Hit ratio in a four-way associative block-based DRAM cache with the traditional
LRU policy and MRU Insertion (LRU) and with LRU Insertion (LIP) for Web Search (left) and
Web Serving (right). Note the difference in scale. Increase in hit ratio is directly proportional
to the off-chip bandwidth savings (vertical dimension). The horizontal distance in the figure
directly corresponds to the difference in effective capacity between the designs. The point in
the figure on the right at which the curves cross each other is a starting point after which a
block is more likely to be reused than not.

better adapt to the workload needs. We found that, for all of our benchmarks and data points,

BIP slightly degrades the cache performance as compared to LIP. The Dynamic Insertion Policy

(DIP) that dynamically chooses between the standard LRU and BIP would consequently also

be inferior to LIP. The only exception is TPC-H queries, where LIP performs slightly worse than

LRU, and BIP partially bridges this gap by cancelling out LIP’s effect.

Unfortunately, Figure 5.4 and Figure 5.5 only demonstrate the lost opportunity that block-

based DRAM caches could realize if they supported associativity, because LIP fundamentally

relies on associativity. In practice, associativity in block-based designs incurs prohibitively

high latency and on-chip bandwidth costs that would likely offset any gains in hit ratio and

off-chip bandwidth. It is therefore important to study the ways in which associativity in block-

based caches can be efficiently increased, for example through PC-based way prediction.
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While associativity can be practically implemented in page-based designs, LIP and its variants

would not be applicable to such designs for a different reason. Namely, LIP insertion of the

whole page upon the first access promotes the page’s early eviction, while a different block of

the same page is likely to be used soon. Similarly, promotion of a page to the MRU position

upon the second access, which is most often an access to a different block within the same

page, in fact does not encourage temporal reuse. While such situations do happen due to page

reuse — i.e., due to spatial locality — the effective temporal data reuse does not happen. LIP

will therefore confuse spatial locality within a page for temporal reuse and promote the page

in question, penalizing pages that do exhibit temporal reuse.

Unison Cache’s encodings for valid and dirty bits enables distinction between a block being

already demanded by the cores and being only present in the cache.3 It is therefore trivial

to detect the first reuse on any block. We also tried promoting the page to the MRU position

upon actual temporal reuse of any of its blocks, but we did not see any benefits because of the

impact that neighboring blocks have on each other with respect to the replacement policy. In

this particular case, such a policy will discourage spatial locality by inserting and keeping the

page at the LRU position for a long time until it sees temporal reuse.

5.2.1 Promotion upon Evictions

Every cache policy seeks to promote a cache entry to the most recently used (MRU) position

on the premise that the entry will be used again. This always happens upon a cache hit.

Unless the cache is implemented as a victim cache, caches rarely promote an entry upon

receiving a dirty eviction, because it is assumed that a block evicted from the previous level

in the hierarchy will not be required soon. Because of the limited temporal reuse in DRAM

caches, this policy works better for block-based caches. However, in page-based caches, a

block eviction from a higher-level cache should promote the whole page to the MRU position

on the premise that more evictions to the same page are expected to come. Although this

approach does not increase the number of cache hits, it has a significant impact on energy,

because the die-stacked cache also serves for write coalescing, as explained below.

Assume that a completely scanned page receives an eviction. Our experience with server

workloads shows that if there is a single dirty block in a page, highly likely all of the present

blocks will eventually become dirty, therefore more evictions to the same page are expected to

happen. If the page is not promoted, it may eventually become evicted from the cache before

it receives evictions for the rest of its blocks. In such cases, every eviction is sent to the main

3A block being only present means that the block has been prefetched, but not yet demanded.
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memory separately, most of them incurring an off-chip DRAM row activation. Off-chip DRAM

rows are much larger than on-chip DRAM rows, because they span multiple chips that work

in lockstep, and each row activation incurs a proportionately higher energy cost. Coalescing

all those evictions in the die-stacked DRAM and writing them back to the main memory all

together with a single off-chip row activation saves a significant amount of energy and results

in more preferable, sequential access patterns. For that reason, in our page-based designs we

promote a page to the MRU position upon any received eviction.

5.2.2 Summary

Block-based caches could greatly benefit from the LRU Insertion Policy (LIP) [56], which places

incoming blocks at the least-recently used position, and promotes them only upon reuse.

However, LIP fundamentally relies on associativity, which existing block-based cache designs

cannot provide in a practical way. We strongly encourage research on cache associativity in

block-based caches. Further research into page insertion, promotion and replacement policies

in page-based DRAM caches would also be interesting to pursue. However, our hypothesis

is that research in replacement policies, whether with block-based or page-based caches,

could be overshadowed by dead-block and dead-page prediction. Namely, optimizations to

insertion/promotion/replacement policies always aim to minimize the residency of the cache

content that will not be needed again. The policies in this case will be just a tool towards that

goal, which is to evict the dead content. Identifying dead content and its eviction from the

cache, in our opinion, is more general and has more potential.

5.3 Cache Bypassing

Cache bypassing is a well-known technique that aims to identify non-reusable cache blocks

and avoid storing them in the cache to prevent cache pollution. In the context of DRAM caches,

it is an important technique for block-based designs because it does not rely on associativity.

Figure 5.6 shows the fraction of blocks that were reused before their eviction in a direct

mapped block-based cache. In this experiment we track only evictions, which excludes the

cache resident blocks and includes only blocks that move in and out of the cache. We see that

on average 70% of the content that is brought into the cache is dead upon arrival. Identifying

such blocks and letting them bypass the cache could significantly improve performance.

Cache bypassing can be particularly useful in block-based DRAM caches, because they lack
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Figure 5.6 – Fraction of evicted blocks that were reused before their eviction for various
cache sizes. The cache is organized as direct-mapped block-based cache. The cache size for
CloudSuite applications is between 256MB-1024MB, whereas for TPC-H queries the cache size
is between 1GB and 4GB. The reuse of all blocks that flow in and out of the cache on average
ranges between 23% for the smallest cache size, and 37% for the largest cache size.

associativity needed for the majority of other optimization techniques. A large body of research

looked at cache bypassing in conventional block-based SRAM caches, proposing various

address-based, PC-based and hybrid reuse predictors to identify blocks that exhibit no reuse.

These predictors maintain a global history state used for making predictions, and local state

within each cache block used for generation and maintenance of the global history. Address-

based and hybrid reuse predictors require the state for global history that is proportional

either to the dataset size or to the cache size, and as such are not an option for DRAM caches

and server applications. In contrast, PC-based predictors require much less storage for history,

because its size is proportional to the application’s instruction working set. Because blocks

that show no reuse are always accessed once and therefore always by a single instruction, such

instructions could serve as a prediction of potential reuse or the absence of it.

Some PC-based predictors require keeping local state consisting of the program counter that

initiated the first access to the block and various flags/counters. This state is kept next to the

every cache block. Block-based DRAM caches, however, do not have the possibility of keeping

such state next to every cache block. The best performing block-based cache, Alloy Cache [55],

keeps the cache tag next to each cache block, which together form a Tag-And-Data (TAD) unit,
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Figure 5.7 – DRAM row layout in Alloy Cache and BEAR.

shown in Figure 5.7. The tag overhead is 8B per 64B of data — 12.5% of the whole cache is

dedicated to tags. Because of the irregular address mapping, the whole tag needs to be stored

in the cache, except the last six bits corresponding to the byte within a block, which can be

used as valid/dirty and coherence bits. Because the remaining one or two bits (depending on

the coherence protocol) cannot be used to integrate the program counter or its hashed value

— any such state would need much more storage. However, integrating even an extra byte of

metadata would require doubling the metadata storage to 25% of the stacked DRAM capacity,

which is unacceptable.

5.3.1 Random Cache Bypassing

A recent proposal, called BEAR [8], optimizes Alloy Cache by introducing stateless, random

cache bypassing. BEAR builds on the observation that a large number of cache lines experience

no reuse due to low temporal locality. Such lines do not save any off-chip bandwidth, but

their placement in the cache and its eviction from the cache introduce unnecessary traffic to

die-stacked DRAM. To lower the pressure on die-stacked DRAM bandwidth, BEAR caches only

randomly selected 10% of the content brought onto the chip. As a side effect, by inserting only

10% of the blocks into the cache, BEAR replaces the cache content at a 10x slower rate and

proportionately increases its residency in the cache. Because the content in the cache is more

static, the amount of reuse among the data in the cache increases, eventually providing cache

hits. To be hit-ratio neutral, BEAR needs to increase the cache reuse by a factor of ten. If the

whole dataset is accessed randomly, random bypassing will on average be hit-ratio neutral.

Figure 5.8 plots the average number of accesses per cache block with and without random

bypassing. As expected, BEAR significantly increases the reuse among the blocks in the cache.

However, the increase in reuse (7.5x) is not proportional to the increase in the average cache

residency (10x), and BEAR therefore may experience significant losses in hit ratio. Random
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Figure 5.8 – Average number of accesses per block with (BEAR) and without (Baseline) random
bypassing for a 256MB cache (2GB for TPC-H Queries), and the ratio between the two.

cache bypassing could however increase the hit ratio in situations when the working set is

accessed in a cyclical manner, but the cache is not large enough to capture it all, and therefore

thrashes. Because random cache bypassing significantly prolongs the residency of data in the

cache, it will provide hits for at least the part of the dataset that it covers. By making cache

more static, aggressive random bypassing avoids thrashing.

Besides cache bypassing, BEAR also makes the observation that, due to the width of the bus

(16B), each TAD read actually results in an 80-byte transfer. Instead of discarding the extra 8B

(next tag in Figure 5.7), it understands that these 8B constitute the tag for the next block, that

might likely be requested soon, and stores it in a small tag cache to avoid unnecessary DRAM

accesses on sequential tag probes that may turn out to be misses.

On one hand BEAR may degrade hit ratio, but on the other hand, BEAR provides a 10x reduction

in the number of cache insertions upon cache misses. The overall cache bandwidth savings

are much smaller though, because the cache still needs to be probed upon misses. Assuming

that a hit ratio is 50%, typical for block-based caches, BEAR saves around 30% in total cache

traffic. However, we find that BEAR can increase the off-chip traffic by up to 20% for two

reasons: lower hit ratio and lower miss predictor accuracy. Random bypassing may confuse

Alloy Cache’s PC-based miss predictor and significantly degrade its accuracy. For any hit that

was mispredicted as a miss, there is an unnecessary request sent off-chip. Similarly, for any

cache miss that was mispredicted as a hit, miss serving is postponed. BEAR’s applicability
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therefore highly depends on the available off-chip and on-chip bandwidth resources.

5.3.2 PC-Based Cache Bypassing

Cache bypassing significantly prolongs the residency of data inside the cache. It is therefore

important to carefully select the data that will be placed in the cache and ensure their high

reuse.

It would be interesting to understand if we could make a decision as to what to place in cache

that is better than random. To answer that question, we study the correlation between data

reuse and instructions that access the data. The intuition behind possible existence of such

correlation is that certain types of data, such as metadata, tend to be more frequently accessed

than others. It is important to note that within the same type of data, certain objects are more

popular than the others, but this type of popularity skew cannot be captured by looking only

at the code & data reuse correlation.

An obvious way to leverage the correlation between the code and reuse is to monitor the

hit ratio of instructions that access the cache and place into the cache only blocks accessed

by instructions that frequently hit. Similar ideas have been proposed in the past for SRAM

caches [17, 64]. Because of the large number of instructions that access SRAM caches, previous

proposals assume predictors that keep a 2-bit saturating counter or a similar tiny state machine

associated with each instruction. The state is used to predict whether an instruction will reuse

the block it is currently missing, and the decision whether to place the block in the cache

or not is made accordingly. When the instruction accesses the cache, the state is updated

according to the outcome (hit or miss). While these solutions may work well for L1 caches,

such a small state can hardly predict the overall reuse behavior of an instruction in DRAM

caches that hold gigabytes of data. Whether an instruction has recently hit in the cache or not

does not tell us much about the importance to cache that type of data. The same instruction

may reuse certain data, and not reuse other data. What we would like to know is whether the

type of data accessed by a particular instruction is worth caching in general or not.

PC-based approaches may introduce a systematic bias by placing into the cache only blocks

accessed by instructions that currently achieve high hit ratio, not allowing other instructions

to improve their hit ratio. The gap in hit ratio between the instructions that place data into

the cache and those that bypass it can be artificially created and increased only because of

the bypass cache policy. The only way an instruction’s hit rate history can be changed in

such situations is when another piece of code prefetches a data block later accessed by the
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instruction. The problem arises because the instruction statistics is created by monitoring the

behavior of the cache while it follows a certain policy, which systematically introduces a bias.

To correctly monitor behavior of instructions, we propose an approach whereby only a sample

of cache sets, called monitor sets, generate instruction hit rate statistics and those cache sets

never employ bypassing.4 The rest of the cache sets, called follower sets read the history created

by the monitor sets and decide whether to bypass the cache or not based on the instruction’s

hit rate. The hit rate of instructions is monitored only by the monitor sets, which do not use

bypassing. The monitor sets are also the only ones who create the statistics, avoiding the

bias introduced by bypassing. Besides avoiding bias, this approach also allows for a practical

implementation in block-based DRAM caches that cannot keep any predictor state next to

every block. We illustrate its design below.

Practical Implementations

To maintain the precise hit rate behavior, we propose maintaining history table organized as

a tagless 64K-entry array with two-byte entries. The array is indexed by a 2-byte XOR hash

of the program counter of instructions that miss in the cache. The hash directly points to

the two-byte array entry, where the first byte indicates the number of hits the instruction

has experienced so far, whereas the second byte counts the number of misses. The history is

probed upon every cache miss in the follower sets. A prediction to bypass the cache is made

if the computed hit ratio of the instruction is less than a dynamically determined threshold,

otherwise the instruction is placed into the cache. The history is updated upon any access

to the monitor sets. Depending on whether the access is a hit or a miss, the appropriate

counter in the history table is updated. Because the history is updated upon every access to

the monitor sets, there is no need to keep any information within the blocks belonging to

either the monitor or the follower sets.

Other approaches to PC-based bypassing, such as counter-based bypassing [36], are also

applicable. Counter-based bypassing uses a PC-based predictor to estimate the number of

accesses for every cache block based on the instruction that brought it into the cache. The

approach was proposed in the context of dead-block prediction, where a block would be

declared dead after a predicted number of accesses. Blocks predicted to have a single access

or fewer than a certain threshold are not stored in the cache. While dead-block prediction is

not applicable to direct-mapped block-based caches, counter-based cache bypassing could

still be applied.

4Note that in direct-mapped block-based caches, one set corresponds to one block
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The counter-based approach requires keeping the PC information and the access count within

every block in order to maintain the history, which is updated upon every cache eviction.

Keeping the PC and a counter next to every cache block, writing them on every insertion

and reading them on every eviction, along with the counter increments in DRAM upon every

access would result in a prohibitive overhead. Instead, one could use a sampling approach to

history maintenance, in which only the last block in each DRAM row maintains the PC of the

instruction that brought it into the cache and the access counter. Because this block is the last

one in the row, and because there is 32B of unused space, as shown in Figure 5.7, this way of

integrating predictor metadata practically comes at no storage cost and no bandwidth costs,

because the extra 8B after the last block 8B are read anyways and they do not store the tag for

the next block that could be useful. In this implementation, the last block in each row is the

history generator block, the only block that updates the history table and creates the reuse

history. The rest of the blocks only read the history and make predictions. Similar to the first

approach, the generator block should always store every requested block in the cache, to be

able to determine which of them will show no reuse.

Our findings indicate that cache bypassing based on instruction hit rates is superior to counter-

based bypassing. The reason is that the approach based on the hit rates has a better picture

of the overall behavior of each instruction and can make a more informed decision about

bypassing. The mechanism we propose for efficient metadata integration for counter-based

bypassing could be, however, useful for integrating other predictors into block-based DRAM

caches.

Comparison with Random Bypassing

Random cache bypassing was proposed not to improve the cache hit rate but to reduce the

number of cache insertions [8]. To make a fair comparison between random bypassing and

PC-based bypassing, we dynamically tune the hit ratio threshold an instruction needs to reach

for its blocks to be cached so that both designs insert 10% of cache blocks upon insertion.

For PC-based bypassing we designate the last block in each row as a monitor block. The

monitoring sample thus constitutes 1/28th of the effective cache capacity for a 2KB DRAM

row.

Figure 5.9 compares the baseline Alloy Cache design against the designs with random cache

bypassing (BEAR) and PC-based bypassing for Data Serving (left) and Media Streaming (right),

normalized to the baseline design at 256MB. The designs that use bypassing insert blocks

into the cache at the same rate and therefore achieve the same on-chip bandwidth reduction.
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Figure 5.9 – Hit ratio of a direct-mapped Alloy Cache (baseline), Alloy Cache with random
cache bypassing (BEAR) and PC-based bypassing for Data Serving (left) and Media Streaming
(right), normalized to the baseline design at 256MB. Note the difference in the scale. Increase
in hit ratio is directly proportional to the off-chip bandwidth savings (vertical dimension). The
horizontal distance in the figure directly corresponds to the difference in effective capacity
between the designs

While BEAR reduces the hit ratio compared to the baseline, PC-based bypassing actually

increases the hit ratio significantly. For Data Serving, a 256MB cache with PC-based bypassing

performs better than the baseline cache with 512MB, while significantly reducing the number

of cache insertion.

Figure 5.10 shows the results for Web Search (left) and Web Serving (right), normalized to the

baseline design at 256MB. Web Search has a working set of around 800MB that is uniformly

accessed. As discussed in section 5.3.1, applications that uniformly access their data benefit

from random bypassing. For such applications, PC-based bypassing performs marginally

better than random bypassing. For cache sizes above 800MB, all designs capture the working

set and show no difference in behavior. In contrast, bypassing hurts Web Serving. Random

bypassing drastically reduces the hit rate, while PC-based bypassing performs only slightly

worse than the baseline.

Figure 5.11 shows the results for Data Analytics (left) and TPC-H queries (right), normalized to
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Figure 5.10 – Hit ratio of a direct-mapped Alloy Cache (baseline), Alloy Cache with random
block bypassing (BEAR), and PC-based bypassing for Web Search (left) and Web Serving (right),
normalized to the baseline design at 256MB. Note the difference in the scale. The horizontal
distance in the figure directly corresponds to the difference in effective capacity between the
designs

the baseline design at 256MB. Data Analytics’ exhibit very high reuse, as shown in Figure 5.8,

and does not benefit from bypassing. Data Analytics is a Hadoop MapReduce application that

slowly streams through vast amounts of data that is heavily reused. A mix of TPC-H queries

behave very similarly in that respect except that their data structures greatly exceed the cache

capacity and the level of reuse is much lower. Because cache bypassing makes the cache

content much more static by slowing down the rate at which cache content is replaced, cache

bypassing, especially random bypassing, consistently degrades the performance of these two

applications.

Summary

Figure 5.9, Figure 5.10, and Figure 5.11 demonstrate two important things. First, aggressive

cache bypassing does not necessarily have to degrade the cache hit rate. Instead, hit rates

can be significantly improved through better selection of the blocks for insertion. Second,

the correlation between the code and data reuse exists in server applications. Note that we
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Figure 5.11 – Hit ratio of a direct-mapped Alloy Cache (baseline), Alloy Cache with random
block bypassing (BEAR), and PC-based bypassing for Data Analytics, normalized to the base-
line design at 256MB (left) and TPC-H queries, normalized to the 1GB baseline (right). Note
the difference in the scale. The horizontal distance in the figure directly corresponds to the
difference in effective capacity between the designs.

designed the PC-based scheme to directly leverage the skew among the hit rates of different

instructions. Its significant advantage over random bypassing at the same bypass frequency

shows the extent of the correlation. Leveraging such correlation could be a fruitful research

direction.

Block-based DRAM caches are direct-mapped and have no choice when selecting a victim

block for eviction. The question whether to place incoming block A into the cache could be

thus turned into a question whether to keep existing block B in the cache or not; or more

generally, should we replace block A by block B. Designs that could intelligently compare the

two blocks to decide on replacement would probably yield the best result, but they require

certain metadata about every block residing in the cache. Integration of such metadata into

DRAM would be a challenge, but could provide a much better control over the cache content.

We strongly encourage further research into this topic.
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5.3.3 Cache Bypassing in Page-Based Designs

Similarly to block-based caches, cache bypassing could be applied to pages that exhibit no

reuse. In fact, a large fraction of pages are only scanned once and never reused. From the

off-chip bandwidth perspective, caching these pages does not contribute to any reduction

in off-chip bandwidth, and causes more traffic to and from the die-stacked DRAM. However,

caching those pages is important for two reasons: hit ratio and energy.

Regarding the hit ratio, it is spatial locality that gives page-based designs a significant ad-

vantage over block-based designs. Letting these pages bypass the cache would significantly

lower the hit ratio and the overall performance. As for the energy, we already mentioned

in Section 5.2.1 that die-stacked DRAM also serves as a large prefetch buffer that coalesces

reads from and writes to the off-chip DRAM. While caching these pages may slightly increase

the energy in die-stacked DRAM, it provides more significant savings in the off-chip DRAM.

Therefore, cache bypassing for page-based pages is not a reasonable option not only due to the

cost in hit ratio, but also due to the loss in opportunity for energy savings in off-chip DRAM.

5.4 Dead-Block and Dead-Page Prediction

Dead-block prediction is a well-established approach to improving cache efficiency [23, 35,

36, 40, 44]. As the name says, such techniques seek to timely identify cache blocks that will

not be referenced again before they become evicted. Accurate dead-block prediction can be

useful in cache replacement, to improve the LRU algorithm by replacing dead blocks first, or

in coherence protocol optimizations, where a dead block can be self-invalidated early. The

other possibility is to repurpose dead blocks and use them as a prefetch buffer to prefetch

data into. In the context of DRAM caches we consider dead-block prediction as a replacement

optimization that increases the effective cache capacity for data that exhibit reuse.

Dead-block prediction could be accurately performed in block-based DRAM caches, but the

lack of cache associativity severely limits its usability. Namely, after a dead-block prediction,

dead blocks are either moved to the LRU position to promote their eviction, or the replacement

algorithm takes into account the existence of dead blocks and evicts them before the block

that currently sits at the LRU position. Unfortunately, such optimizations do not apply to

direct-mapped caches. Blocks predicted to be dead-upon-arrival could be used for bypassing,

which we covered in Section5.3.

In set-associative page-based designs, dead-page prediction has the potential to limit the
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cache residency of pages that show low reuse. We see two practical approaches to dead-page

predictions:

• Counter-based. Similar to counter-based dead-block prediction, counting the number

of accesses to a page and correlating it with the code that fetched the page into the

cache could serve as an estimate of the number of future accesses by the same code.

Unlike counter-based dead-block prediction which tries to predict only temporal reuse,

counter-based dead-page prediction tries to predict both temporal and spatial reuse.

The approach requires storing the counter within every page, and updating it upon

every access, without the possibility to sample. However, the updating overhead can be

virtually removed with practical tag caching, as we explained in Section 4.5.

• Pages that stream through the cache, fully scanned but never reused, are common in

certain applications, such as Media Streaming, TPC-H queries and Web Search. The

moment when a page becomes fully scanned, i.e., when every block in the page becomes

demanded, is easy to identify in the Unison Cache design and requires no additional

state.

Trace-based approaches, which mark a block as dead once it has been accessed by a certain

sequence of instructions [40], could also be generalized to page-based designs. A page would

be announced dead if the signature containing all instructions that have accessed the page

so far matches a signature in the history of sequences that led to dead pages in the past.

Unlike the counter-based approach, which uses only the PC of the instruction that brought a

block into the cache to make predictions, the trace-based approach can distinguish between

pages that are brought into the cache by the same instruction but are referenced by different

instruction sequences [44]. However, sequences that lead to dead pages in page-based designs

can be quite long, even in the case of pages that are just scanned once. These sequences are

at least an order of magnitude longer compared to sequences that lead to death of a block

in SRAM caches. The explosion of the history and the complexity of history lookups make

trace-based designs impractical in the context of page-based DRAM caches.

Time-based approaches have also been proposed for dead-block prediction in SRAM caches [23],

and could be generalized to dead-page prediction in page-based DRAM caches. However,

the residency of pages in a DRAM cache is orders of magnitude longer compared to the resi-

dency of blocks in SRAM caches. Eventual temporal reuse happens between different server

requests after long and unpredictable intervals, so we expect that time-based approaches are

less accurate in estimating the reuse. Time-based approaches could be useful for pages that
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Figure 5.12 – Off-chip traffic in Data Serving and Media Streaming in the baseline four-way
Unison Cache, Unison Cache with counter-based dead-page prediction and Unison Cache
with cache partitioning. The results are normalized to the off-chip traffic of the baseline
design at 256MB. The horizontal distance in the figure directly corresponds to the difference
in effective capacity between the designs.

are sequentially accessed once, but such predictions could be made by other, less complex

mechanisms.

Another way to limit the time a low-reuse page spends in the cache is by physically limiting

the cache space allocated to such pages. Similar to cache partitioning into a spatial and a

temporal cache [17], one could way-partition a page-based cache into a part with high reuse,

and a part with low reuse, which do not interfere with each other. As a practical example, a

four-way associative Unison Cache could dedicate three ways to pages with high reuse and

run the LRU replacement algorithm among the three ways, while the remaining way could be

used as a smaller direct-mapped cache for pages with high spatial locality and low reuse.

5.4.1 Quantitative Comparison

We compare a baseline four-way associative Unison Cache with our vanilla implementations

of counter-based dead-page prediction and cache partitioning.

105



Chapter 5. Research Directions for Improving DRAM Cache Efficiency

For the counter-based approach, we maintain a counter per page counting the total number

of accesses to the page, including evictions (as mentioned in section 5.2.1, eviction hits are

important accesses in page-based caches). Upon a page-eviction, we the read the counter

from the page’s metadata and update the Footprint History Table (FHT) used for footprint

predictions, whose entries are also augmented to store an access counter and a confidence bit

indicating the counter’s stability. Upon a miss, we probe the FHT to read the expected page

footprint but also the expected number of accesses to the incoming page. If the confidence

flag indicates that the counter is stable, we store that information in the inserted page as well.

On every cache access, including evictions, we increment the access counter in a page and

check if the counter has reached the expected number of accesses. Once the number of access

has reached the expected value, we move the page to the LRU position to promote its eviction

if the confidence bit was set upon the page’s insertion.

For the cache partitioning scheme, we dedicate one way to the pages with low reuse and

the other three to pages with high reuse. The bigger partition runs internally runs the LRU

algorithm. We measure the reuse in a page as a ratio between the number of accesses and

the number of touched blocks (the size of the footprint). This approach requires keeping a

small counter next to each page to update the history correctly. The reuse history is associated

with the instruction that brought the page into the cache. Note that the space and activity

overhead the counter and its maintenance introduce can be significantly reduced by sampling.

A page is inserted into the smaller partition if its expected reuse is lower than a threshold. In

this study we statically set the threshold to two.

Figure 5.12 compares the two approaches against the baseline for Data Serving and Media

Streaming in terms of off-chip traffic.5 With the parameters we selected for our vanilla designs,

only these two applications showed a significant improvement, while the others were less

sensitive. However, in these two applications both techniques show significant potential to

increase the effective capacity. A 512MB cache with cache partitioning performs better than a

baseline cache at 1GB for Data Serving. Note that cache partitioning performs slightly better

than dead-page prediction in our setup.

This experiment confirms the correlation between the code and data reuse, and shows that

the correlation can be used to limit the time and space allocated to pages with low reuse. We

strongly encourage further research into both dead-page prediction and cache partitioning.

5For page-based designs, hit ratio is not a representative metric of reuse.
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5.5 Prefetching

Page-based designs implicitely rely on spatial prefetching to boost their hit ratio. Prefetching

could significantly benefit block-based designs as well. However, as explained in Section 4.2.1,

the lack of centralized and reliable information about the presence of neighboring blocks in

the cache severely limits the applicability of spatial prefetchers in practical block-based DRAM

caches, such as Alloy Cache.

Alloy Cache could still implement an effective next-line prefetcher of degree one. Upon every

access, regardless of whether it is predicted to be a hit or a miss, Alloy Cache probes the cache

and fetches the tag and the data, but also the tag for the next block as a side effect. At that

point, if the tag for the neighboring block does not correspond to the next block address,

a prefetch request can be sent to memory. However, if the first access was predicted to be

a miss, the two requests, the miss and the prefetch, would be sent off-chip separately and

the prefetch request may not hit in the off-chip row buffer. Because the two blocks will also

arrive separately, they likely won’t be stored in on-chip DRAM with a single row activation. In

contrast, in page-based designs a whole page (or its footprint) is read from memory with one

off-chip DRAM row activation and stored in the cache with one on-chip DRAM row activation.

While a limited form of prefetching is still possible in block-based designs, prefetching in

page-based designs is much more efficient.

Because practical block-based DRAM caches achieve low hit rates, designing an effective

prefetcher for them is of great importance. We therefore highly encourage further research on

effective prefetchers for block-based designs.
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6 Related Work

6.1 Die-Stacked DRAM

Die stacked DRAM has been recognized as a powerful technology to improve DRAM latency,

bandwidth, and capacity. Many researches have tried to exploit the advantages die-stacking

provides and address the challenges it imposes [16, 51], assuming die-stacked DRAM in form

of a main memory [19, 25, 34, 43, 45] or a large cache [8, 18, 24, 30, 46, 47, 48, 55, 72]. Die-

stacked DRAM has been also studied in the context of heterogeneous memory systems, where

it is employed as a hardware- or software-managed extension to off-chip main memory [7, 11,

41, 52]. In the context of server processors, practical on-chip die-stacked DRAM capacities are

insufficient to meet the memory needs of modern servers; it is virtually impossible to fit all the

main memory distributed across multiple multi-chip DRAM modules onto a single processor

chip. Such a constraint forces the architects to use the on-chip stacked DRAM as a hardware-

managed cache [30, 46, 47, 48, 55, 72] or as a software-managed cache or scratchpad [11, 41].

Managing die-stacked DRAM in software is a preferable option in custom designs where

hardware and software evolve together, such as embedded systems. In contrast, deep, diverse

and rapidly changing software stacks in server systems rely on general-purpose processors

and operating systems, mandating non-intrusive hardware-based solutions.

In this thesis we extensively covered block-based and page-based DRAM cache proposals.

A bimodal DRAM cache, which supports both granularities has also been proposed as a

compromise between the two [18]. Bimodal Cache places the tags and other metadata into a

dedicated DRAM bank, which is accessed in parallel with the data bank. The problem with

such an approach is that it is not possible to precisely balance the bandwidth and, more

importantly, the latency between the data and metadata accesses. For example, the effective
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access latency of a cache access would be the bigger of the tag access and data access latency.

Tag caching could, however, reduce the imbalance by making metadata accesses less frequent.

In this thesis we show that, besides data caching, accesses related to prediction metadata can

be drastically reduced through sampling.

ATCache is a recent proposal that leverages tag caching in the context of block-based DRAM

caches [24]. However, because of the absence of spatial locality, tag caching is much less

effective in block-based designs. To mitigate the poor performance of tag caching in block-

based designs, ATCache prefetches tags for nearby cache sets to improve the tag cache hit

ratio.

Jiang et al. were the first to argue for page-based DRAM caches to leverage spatial locality [30].

Before them, Woo et al. explored the spatial locality of desktop applications, concluding that

large cache blocks in L2 caches boost performance better than conventional prefetchers, if

supported with a high-density TSV bus connected to die-stacked main memory [25]. They also

argued that fetching larger regions from DRAM in the open-page mode can save a substantial

amount of power by minimizing the number of row activations. While most of the researchers

agree that large cache blocks are beneficial for overall performance for systems that are

not bandwidth-constrained [14, 25, 30], some proposed filtering of unused data. Lin et al.

proposed filtering of unused data coming from aggressive prefetchers [42].

Page-migration between off-chip and on-chip DRAM is a hardware-software solution that

maintains most frequently accessed OS pages in the die-stacked DRAM [11, 41]. The tag array

functionality is offloaded to TLBs, whereas the page replacement is done in software. The

latter allows for greater flexibility regarding page replacement but makes it longer compared to

hardware-based solutions. The main disadvantage of this technique is that the granularity of

transfers is an OS page, which is not an optimal unit as we have shown in this thesis. Systems

that employ super pages to minimize the address translation overhead are further penalized

by page-migration.

6.2 Spatial Prefetchers

Instruction-based predictors are used extensively in data prefetching [6, 62], dead-block

prediction [40], last-write prediction [67], traffic reduction in networks-on-chip [37], and

on-chip and off-chip fetch granularity speculation [39, 65, 70]. Our footprint predictor builds

upon previous work on spatial memory streaming [62], which estimates the footprints of

spatial regions, based on the first instruction that accesses a region, and prefetches them into

110



6.3. Cache Bypassing

SRAM caches. The opportunity for spatial streaming in SRAM caches is remarkably lower

though, because most of the spatial locality in the application is revealed in large DRAM

caches.

The idea of Footprint Cache is conceptually similar to the work of Kumar and Wilkerson [38],

who used a similar predictor based on spatial footprints to predict and fetch only useful words

within an L1 cache block, and store such words in a decoupled sectored cache [61]. Their

predictor, though, relies on the missing instruction and the full missing address, requiring

larger history storage and covering only previously accessed data.

6.3 Cache Bypassing

Cache bypassing has been widely used to improve SRAM cache efficiency [17, 27, 31, 36, 57,

64]. Tyson et al. proposed bypassing based on the recent hit rate of the missing load/store

instruction [64]. Johnson et al. proposed bypassing based on the reference frequency of

the data being referenced [31] but put bypassed blocks in a separate buffer parallel to the

cache. Jalminger and Stenstrom proposed bypassing based on the reuse distance of the

missing block [27]. Gonzalez et al. proposed to bypass L1 data cache blocks with low temporal

locality [17].

In the context of DRAM caches, a recent proposal, called BEAR [8], optimizes Alloy Cache by

introducing random cache bypassing. BEAR builds on the observation that a large number

of cache lines experience no reuse due to low temporal locality. Such lines do not save

any off-chip bandwidth, but their placement in the cache and its eviction from the cache

introduce unnecessary traffic to die-stacked DRAM. To lower the pressure on die-stacked

DRAM bandwidth, BEAR caches only randomly selected 10% of the content brought onto the

chip. We find that random cache bypassing can significantly degrade the cache hit rate and

confuse PC-based predictors. In contrast, we demonstrate that PC-based cache bypassing can

not only save on-chip DRAM bandwidth, but also improve the cache hit rate.

6.4 Way Prediction

Way prediction is widely employed in SRAM caches to allow for an energy-efficient implemen-

tation of high associativity. Prior work on way prediction has found that address-based way

predictors are the most accurate way predictors for L1 caches [4, 54], mostly because they can

leverage spatial locality. However, such predictors are not an option for L1 caches because

111



Chapter 6. Related Work

the actual address is not known at the time when the prediction has to be made for L1 blocks.

We do not have such a constraint in DRAM caches. While the accuracy of address-based

way predictors is found to be around 85% for individual blocks [4, 54], Unison Cache’s way

predictor achieves much higher accuracy (∼95%), because it operates at the page level. The

abundant spatial locality leads to repeated accesses to the same page; subsequent accesses to

the same page result in correct predictions.

6.5 Dead-Block Prediction

Dead-block prediction is a well-established approach to improving cache efficiency [23, 35, 36,

40, 44]. Accurate dead-block prediction can be useful in cache replacement, to improve the

LRU algorithm by replacing dead blocks first, or in coherence protocol optimizations, where

a dead block can be self-invalidated early. The other possibility is to repurpose dead blocks

and use them as a prefetch buffer to prefetch data into. In the context of DRAM caches we

considered dead-block prediction as a replacement optimization that increases the effective

cache capacity for data that exhibit reuse, and are therefore applicable only to set-associative

caches, which in practice implies page-based designs.

Lai et al. were the first to propose the concept of dead-block prediction and proposed a

trace-based approach to identifying dead blocks [40]. Trace-based approaches, which mark a

block as dead once it has been accessed by a certain sequence of instructions, are not practical

for page-based DRAM caches because of the amount of state they require and the complexity

of state lookups. We also believe that time-based approaches [23] are less applicable to DRAM

caches due to the large variation in cache residency of pages in multi-gigabyte caches and their

complex reuse patterns. In contrast, we demonstrated that counter-based approaches [36] to

dead-page prediction have a great potential to improve DRAM cache efficiency in page-based

designs.
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Die-stacked DRAM has been advocated as a promising technology to break the memory

bandwidth wall and improve memory latency and density. It delivers several times more

internal bandwidth compared to off-chip memory due to dense on-chip TSV buses, as well as

lower access latency due to reduction in physical distances enabled by die stacking. Recent

advances in die-stacking technologies have made it possible to tightly integrate a sizeable

amount of DRAM in the same chip as the processor. Having die-stacked DRAM on the chip

could virtually eliminate the memory bandwidth wall by exposing all of its internal bandwidth

at lower access latency. The latency advantage that die-stacked on-chip DRAM provides over

conventional off-chip DRAM is particularly important in server applications, which are known

for being memory-bound.

Technological constraints, however, limit the on-chip stacked DRAM capacity to levels that are

orders of magnitude lower than what modern server applications demand. It is impossible to

fit all the main memory distributed across multiple multi-chip DRAM modules onto a single

processor chip. Such a constraint forces the architects to use the on-chip stacked DRAM

as a hardware-managed cache or as a software-managed cache or scratchpad. Managing

die-stacked DRAM in software is a preferable option in custom designs where hardware and

software evolve together, such as embedded systems. In contrast, deep, diverse and rapidly

changing software stacks in server systems rely on general-purpose processors and operating

systems, mandating non-intrusive hardware-based solutions.

This thesis investigated the use of on-chip die-stacked DRAM as a hardware-managed cache in

processor chips for datacenters with the purpose of reducing memory traffic on the processor

side and improving memory latency. We provided a detailed characterization of real-world

server software stacks with respect to DRAM caches in order to gain the critical insights
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that lead to appropriate cache designs. We demonstrated the potential of die-stacked DRAM

caches to reduce memory traffic and improve memory latency in server systems, and proposed

effective, scalable and energy-efficient designs that realize that potential.

In this thesis we argued that effective and efficient DRAM cache designs for servers must

leverage spatial locality and must do so in a bandwidth- and capacity-efficient manner. Using

analytic models, trace-driven and cycle-accurate full-system simulation of modern, real-world

server workloads, this thesis demonstrated that:

• High capacity on-chip DRAM caches expose abundant spatial locality of server applica-

tions and their modest temporal locality. As a consequence, DRAM caches that manage

and fetch data at a coarser granularity exhibit overall superior properties compared

to caches that do fine-grain management. These properties include higher hit rates,

smaller tag storage, and higher energy efficiency. However, their naïve employment

results in excessive data overfetch and capacity waste that can offsets any benefits of

DRAM caches.

• If the cache is organized as page-based, page footprints — i.e., the set of blocks that are

touched while the page is in the cache — are highly predictable using well-established

code-correlation techniques. Predicting page footprints can eliminate most of the

bandwidth overhead and capacity waste that page-based caches suffer from. We demon-

strated such a design, called Footprint Cache.

• Fetching whole page footprints at once and writing them back together to the main

memory greatly improves the energy efficiency in off-chip DRAM by reducing the num-

ber of DRAM row activations by an order of magnitude as compared to fetching the

same set of blocks separately.

• In contrast to block-based caches, page-based caches need a modest amount of as-

sociativity to avoid frequent conflicts. Associativity can be efficiently implemented

through way prediction, which is highly accurate for and only for page-based designs.

We demonstrated an efficient implementation of arbitrarily high associativity for page-

based designs.

• It is possible to build a scalable, associative, low-latency page-based cache design

with DRAM-based tags that achieves high hit rates and high bandwidth efficiency. We

demonstrated such an implementation, called Unison Cache, in this thesis.
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• Although associativity is not crucial for the baseline cache performance in block-based

DRAM caches, its absence disables many standard cache optimization techniques that

block-based caches could otherwise greatly benefit from.

• There is a correlation between the code and data reuse. In the absence of associativity,

block-based DRAM caches could leverage this correlation and perform cache bypassing

not only to reduce the cache activity but also to increase the hit rate. Page-based caches

can leverage the correlation between the code and data reuse to employ dead-page

prediction and increase cache efficiency.

This thesis showed that die-stacked caches on average provide a 2-3x reduction in memory

traffic of servers chips, postponing the bandwidth wall for a few generations. Even though

technological advances will likely allow for larger cache capacities, the rapid data growth and

the growth of memory systems hosting the data might offset any benefits. We believe that

the ultimate solution to the data movement problem lies in moving the computation from

the processor closer to the memory, which is becoming possible with the emergence of new

DRAM devices that feature a thin layer of logic. This style of computation is often referred to as

near-memory processing, and we refer to these devices as Intelligent Memory Devices (IMD).

The biggest research problem in this context is in finding the exact useful role for the emerging

IMDs in server systems, and in their integration with the rest of the system components, and

particularly regarding their integration into the virtual memory system and enabling efficient

address translation. In this thesis we also demonstrated how Unison Cache’s idea of metadata

integration can be extended to facilitate the integration of IMDs into the virtual memory

system.
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