Majority-based Synthesis
 for Digital Nano-Technologies
 Giovanni De Micheli

Outline

- Introduction
- Technological innovations and motivation
- Emerging nanotechnologies and devices
- Design with emerging technologies
- Physical and logic synthesis
- The majority paradigm in logic synthesis
- Models, algorithms and tools
- Conclusions

The emerging nano-technologies

- Enhanced silicon CMOS is likely to remain the main manufacturing process in the medium term
- The 10 and 7 nm technology nodes are planned
- What are the candidate technologies for the 5 nm node and beyond?
- Silicon Nanowires (SiNW)
- Tunneling FETs (TFET)
- Carbon Nanotubes (CNT)
- 2D devices (flatronics)
- What are the common denominators from a design standpoint?

22 nm Tri-Gate Transistors

32 nm Planar Transistors

22 nm Tri-Gate Transistors

[Courtesy: M. Bohr]
(c) Giovanni De Micheli

FinFETs versus SiNW FETs

Double gate SiNW FET

- Electrically program the transistor to either p-type or n-type

Silicon Nanowire Transistors

- Gate all around transistors
- Double gate to control polarity

(c) Giovanni De Micheli
[Courtesy: De Marchi, EPFL] 7

Device $I_{d} / V_{c g}$

Logic level abstraction

- Three terminal transistors are switches
- A loaded transistor is an inverter
- Controllable-polarity transistors compare two values
- A loaded transistor is an exclusive or (EXOR)
- The intrinsic higher computational expressiveness leads to more efficient data-path design
- The larger number of terminals must be compensated by smart wiring

Modeling various emerging nanogates

Outline

- Introduction
- Technological innovations and motivation
- Emerging nanotechnologies and devices
- Design with emerging technologies
- Physical and logic synthesis
- The majority paradigm in logic synthesis
- Models, algorithms and tools
- Conclusions

Logic cell design

- CMOS complementary logic is efficient only for negative-unate functions (INV, NAND, NOR...etc)
- Controllable-polarity logic is efficient for all functions
- Best for XOR-dominated circuits (binate functions)

Physical design

- Sea of Tiles: Homogeneous array of Tiles

Dumbbell-stick diagrams

Layout abstraction and regularity with Tiles

Biconditional Binary Decision Diagrams

- Native canonical data structure for logic design
- Biconditional expansion:

$$
f(v, w, . ., z)=(v \oplus w) f\left(w^{\prime}, w, . ., z\right)+(v \oplus \bar{\oplus}) f(w, w, . ., z)
$$

- Each BBDD node:
- Has two branching variables
- Implements the biconditional expansion
- Reduces to Shannon's expansion for single-input functions

BBDD: Examples

- The BDD counterparts for these examples have about 50% more nodes!

Why BBDDs ?

- BBDDs are the representation of choice for controllable-polarity devices
- Direct mapping to transistor structures
- BBDDs are very effective for standard CMOS, especially for design of arithmetic circuits
- BBDDs are proven to be more compact for:
- Adders:
- BBDD best size: $3 n+1$
- BDD best size: $5 n+2$
- Majority:
- BBDD size: $0.25\left(\mathrm{n}^{2}+7\right)$
- BDD size: $\Gamma 0.5 n_{7}\left(n-\Gamma 0.5 n_{7}+1\right)+1$

Efficient Direct Mapping of BBDD Nodes

BBDDs are Compact (Majority Function)

Number of nodes of $\operatorname{MAJ}(n)$:

$$
0.25\left(n^{2}+7\right)
$$

MAJ(3): 4 (including sink)
MAJ(5): 8 (including sink)
MAJ(7): 14 (including sink)

The BBDD optimization tool

- Unique table to store BBDD nodes
- Recursive formulation of Boolean operations
- Performance-oriented memory management
- Chain variable reordering
http://lsi.epfl.ch/BBDD

Experimental results

- We implemented a BBDD package in C language
- Comparison with CUDD (BDD)
- Both CUDD and BBDD first build the DDs and then apply sifting (no dynamic reordering)

Also 1.63x speedup for arithmetic intensive circuits

Outline

- Introduction
- Technological innovations and motivation
- Emerging nanotechnologies and devices
- Design with emerging technologies
- Physical and logic synthesis
- The majority paradigm in logic synthesis
- Models, algorithms and tools
- Conclusions

Why Majority Logic?

- Majority logic is a powerful generalization of AND/ORs
- $\operatorname{MAJ}(a, b, c)=a b+a c+b c . \operatorname{MAJ}(a, b, 1)=a+b . \operatorname{MAJ}(a, b, 0)=a b$.
- Unlocks optimization opportunities not apparent before

- Majority logic handles efficiently arithmetic circuits

Synthesis Motivation for Majority

MCNC.GENLIB + MIN3

```
module ANDOR (
    x0, x1, x2, x3, x4,
    z0 );
    input x0, x1, x2, x3, x4;
    output z0;
    wire n6, n7, n8, n9, n10, n11;
        nor2 g0(.a(x4),.b(x3),.O(n
    nand2 g1(.a(x4)
    inv1 g2c
    rrea=18 Dela
        Area
    inv1 g5(.a(x2),.O(n11));
    nand2 g6(.a(x1), .b(x0), .O(n12));
    nand2 g7(.a(n12), .b(n11), .O(n13));
    nand2 g8(.a(n13),.b(n10),.O(n14));
    aoi21 g9(.a(n14), .b(n7), .c(n6), .O(z0));
endmodule
```

```
module MAJ (
    x0, x1, x2, x3, x4,
    z0 );
    input x0, x1, x2, x2 Delay }=3.2
    output 70
    w, }\Deltarea=1
    in Axea(ss),.O(n6));
    inv1 g1(.a(x4), .O(n7));
    min3 g2(.a(x2),.b(x1),.c(x0),.O(n8));
    min3 g3(.a(n8),.b(n7),.c(n6),.O(z0));
endmodule
    nanu< gد(.a(x4),.D(x\nu),.v(n11));
    nand2 g6(.a(n11), .b(n10), .O(z0));
endmodule
```


Area $\sqrt{-}$ Delay

Area $\sqrt{ }$ Delay \downarrow

How to Exploit Majority Logic?

We want good and scalable methods for manipulating MAJ

State-of-the-art

- AND-OR Inverter Graphs (AOIGs)
- Use traditional Boolean algebra axioms and theorems to manipulate \& optimize AOIGs

For majority

- Majority Inverter Graphs (MIGs)
- New Boolean algebra to deal natively with majority and inverters

Majority-Inverter Graph

Definition: An MIG is a logic network consisting of 3-input majority nodes and regular/complemented edges

MIG Properties

AOIGs \rightarrow MIGs

MIGs include AOIGs include AIGs

Manipulating MIGs:
 MIG Boolean Algebra

```
            1- Commutativity: \(M(x, y, z)=M(y, x, z)=M(z, y, x)\)
    2- Majority: \(i f(x=y), M(x, y, z)=x=y\)
            \(i f\left(x=y^{\prime}\right), M(x, y, z)=z\)
    3- Associativity: \(M(x, u, M(y, u, z))=M(z, u, M(y, u, x))\)
    4- Distributivity: \(M(x, y, M(u, v, z))=M(M(x, y, u), M(x, y, v), z)\)
    5- Inverter Propagation: \(M^{\prime}(x, y, z)=M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\)
```

Theorem: ($\mathrm{B}, \mathrm{M},{ }^{\prime}, 0,1$) subject to axioms in Ω is a Boolean algebra

MIG Boolean Algebra

1- Commutativity: $M(x, y, z)=M(y, x, z)=M(z, y, x)$
2- Majority: $i f(x=y), M(x, y, z)=x=y$

$$
i f\left(x=y^{\prime}\right), M(x, y, z)=z
$$

3- Associativity: $M(x, u, M(y, u, z))=M(z, u, M(y, u, x))$
4- Distributivity: $M(x, y, M(u, v, z))=M(M(x, y, u), M(x, y, v), z)$
5- Inverter Propagation: $M^{\prime}(x, y, z)=M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$

MIG Boolean Algebra

1- Commutativity: $M(x, y, z)=M(y, x, z)=M(z, y, x)$
2- Majority: $\operatorname{if}(x=y), M(x, y, z)=x=y$

$$
i f\left(x=y^{\prime}\right), M(x, y, z)=z
$$

3- Associativity: $M(x, u, M(y, u, z))=M(z, u, M(y, u, x))$
4- Distributivity: $M(x, y, M(u, v, z))=M(M(x, y, u), M(x, y, v), z)$
5- Inverter Propagation: $M^{\prime}(x, y, z)=M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$

MIG Boolean Algebra

1- Commutativity: $M(x, y, z)=M(y, x, z)=M(z, y, x)$
2- Majority: $i f(x=y), M(x, y, z)=x=y$

$$
i f\left(x=y^{\prime}\right), M(x, y, z)=z
$$

3- Associativity: $M(x, u, M(y, u, z))=M(z, u, M(y, u, x))$
4- Distributivity: $M(x, y, M(u, v, z))=M(M(x, y, u), M(x, y, v), z)$
5- Inverter Propagation: $M^{\prime}(x, y, z)=M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$

MIG Boolean Algebra

1- Commutativity: $M(x, y, z)=M(y, x, z)=M(z, y, x)$
2- Majority: $i f(x=y), M(x, y, z)=x=y$

$$
i f\left(x=y^{\prime}\right), M(x, y, z)=z
$$

3- Associativity: $M(x, u, M(y, u, z))=M(z, u, M(y, u, x))$
4- Distrilbutivity: $M(x, y, M(u, v, z))=M(M(x, y, u), M(x, y, v), z)$
5- Inverter Propagation: $M^{\prime}(x, y, z)=M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$

MIG Boolean Algebra

1- Commutativity: $M(x, y, z)=M(y, x, z)=M(z, y, x)$
2- Majority: if $(x=y), M(x, y, z)=x=y$

$$
i f\left(x=y^{\prime}\right), M(x, y, z)=z
$$

3- Associativity: $M(x, u, M(y, u, z))=M(z, u, M(y, u, x))$
4- Distributivity: $M(x, y, M(u, v, z))=M(M(x, y, u), M(x, y, v), z)$
5- Inverter Propagation: $M^{\prime}(x, y, z)=M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$

Properties

- The Boolean algebra with axioms Ω is:
- Sound:
- If a formula is derivable from Ω, then it is valid
- Complete:
- Each valid formula is derivable from Ω
- Any MIG configuration is reachable from any other equivalent MIG configuration

Enhancing Ω

- Powerful macro-transformations: Ψ
- Serve as shortcut to longer sequences in Ω
- Define: $z_{x / y}$ as replace \times by y in all appearances in z

Optimizing MIGs

- By using Ω and Ψ we optimize an MIG
- What we really care about?
- Area \rightarrow MIG size
- Delay \rightarrow MIG depth
- Power \rightarrow MIG switching activity

MIG Size Optimization

- How to reduce the number of nodes in an MIG?
- Let's see what comes handy from Ω :

1- Commutativit $\left.\left.: M,-\frac{1}{r}, z\right)=N, x, z\right)=M(z, y, x)$
2- Majority: if $(x=y), M(x, y, z)=x=y$

$$
i f\left(x=y^{\prime}\right), M(x, y, z)=7
$$

3- Associativity: $M(x, u, M(y, ? z, \lambda)$
4- Distributivity: $M(x, y, M(u, v, z))=M(M(x, y, u), M(x, y, v), z)^{\circ}$
5- Inverter Propagation: $M^{\prime}(x, y, z)=M\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$

MIG Size Optimization

- How to enable majority and distributivity laws for node reduction?
- Other rules from Ω and Ψ to reshape the MIG
- Reshape rationale: move closer similar/equivalent variables/ nets

MIG Depth Optimization

- How to reduce the depth of an MIG?
- Let's see what comes handy from Ω :

1- Commutativit $: M(1, y, z)=M_{1} y, d=M(z, y, x)$
2- Majority: $i f(x=y), M(x, y, z)$ < if $\left(x=y^{\prime}\right), M(x, y, z)$
3- Associativity: $M(x, u, M(y, u, z))=M(z, u, M(y, u, x))$
4- Distributivity: $M(x, y, M(u, v, z))=M(M(x, y, u), M(x, y, v), z)^{\circ}$ 。
5- Inverter Propagation: $M^{\prime}(x, y, z)=\pi y^{\prime}, z^{\prime}$

MIG Depth Optimization

- Rationale: move critical variables closer to the outputs via associativity, distributivity and majority rules
- Reshaping the MIG with other Ω rules

MIG Depth Optimization: Adders

8-bit adder: original

8-bit adder: Mía

Adder type	Inputs		Outputs	Original AIG		Optimized MlG	
		Depth	Size	Depth			
2-op 32 bit	64	33	352	96	610	12	
2-op 64 bit	128	65	704	192	1159	11	
2-op 128 bit	256	129	1408	384	14672	19	
2-op 256 bit	512	257	2816	768	7650	16	
3-op 32 bit	96	32	760	68	1938	16	
4-op 64 bit	256	66	1336	136	2212	18	

MIG Activity Optimization

- How to reduce the switching activity of an MIG?
- We want to make the switching probability of nodes close to 0
- Solution: substitute variables with $\mathrm{p} \sim 0.5$ with other having $\mathrm{p} \sim 0$ or $\mathrm{p} \sim 1$
- How to make this? Let's see what comes handy from Ψ :

MIG Activity Optimization

- How to enable switching activity reduction?
- Rationale: same as size and activity but oriented at reducing the switching probability

Majority-based synthesis: MIGthy

- MIGhty: a logic manipulation package for MIG
- MIGhty reads and writes Verilog
- Different optimization strategies (depth/area/activity)
- Hybrid optimization: depth-oriented interlaced with area/power recovery phases
- MCNC, IWLS'05, arithmetic HDL benchmarks
- Comparison with ABC, BDS and commercial synthesis tool
- First set of experiments: pure logic optimization
- Second set of experiments: complete design flow (logic optimization + technology mapping + physical design)

Experimental Results: MCNC circuits

MIGs \& AlGs better than BDDs

MIGs size \& activity ~ AIGs

MIGs depth
-20\% w.r.t AIGs
Size
(c) Giovanni De Micheli

CMOS Design Results

Advanced 22 nm CMOS
MIG as front-end to LS \& PD Behavioral

remainder_tc);	
parameter width = 32;	
input [width-1 : Area: 0.21 mm^{2} output [width-1 :	
output signed [wi Delay: 11.22 1	er_tc;
// operators for	nainder
assign quotient_u GC: 37K	
assign remainder_uns $=\mathbf{a} \% \mathrm{~b}$;	
assign remainder_tc $=$ \$signed(a) \% \$signed(b);	
endmodule	

All circuits underwent formal verification with success

Well-established 90 nm CMOS
MIG as front-end to LS \& PD

MIG

Both circuits underwent formal verification with success

Modeling various emerging nanogates

Nanotechnology Design

Spin Wave Device
fonturo cizo 71 mun
Behavioral

MIGs Summary

- Majority-Inverter Graphs with their Boolean algebra push further the capabilities of contemporary logic synthesis
- Improvements at the design level for general benchmarks but also for highly-optimized units (div32)
- Promising results for CMOS (22nm and 90nm nodes) and even better results for DG-SiNWFET nanotechnology with enhanced device functionality
- MIGs unveil efficient design opportunities unseen by state-of-art synthesis techniques

Outline

- Introduction
- Technological innovations and motivation
- Emerging nanotechnologies and devices
- Design with emerging technologies
- Physical and logic synthesis
- The majority paradigm in logic synthesis
- Models, algorithms and tools
- Conclusions

Conclusions

- Emerging nano-technologies with enhanced-functionality devices increase computational density
- New design, synthesis and verification methods stem from new abstractions of logic devices
- Current logic synthesis is based on specific heuristics: new models with stronger properties lead us to better methods and tools for both CMOS and emerging devices

Never stop exploring!

Thank you

