Majority-based Synthesis for Digital Nano-Technologies

Giovanni De Micheli

Outline

- Introduction
- Technological innovations and motivation
 - Emerging nanotechnologies and devices
- Design with emerging technologies
 - Physical and logic synthesis
- The majority paradigm in logic synthesis
 - Models, algorithms and tools
- Conclusions

The emerging nano-technologies

- Enhanced silicon CMOS is likely to remain the main manufacturing process in the medium term
 - The 10 and 7nm technology nodes are planned
- What are the candidate technologies for the 5nm node and beyond?
 - Silicon Nanowires (SiNW)
 - Tunneling FETs (TFET)
 - Carbon Nanotubes (CNT)
 - 2D devices (flatronics)
- What are the common denominators from a design standpoint?

22 nm Tri-Gate Transistors

[Courtesy: M. Bohr]

FinFETs versus SiNW FETs

Double gate SiNW FET

Electrically program the transistor to either p-type or n-type

Silicon Nanowire Transistors

- Gate all around transistors
- Double gate to control polarity

(c) Giovanni De Micheli

[Courtesy: De Marchi, EPFL] 7

Device I_d/V_{cg}

Logic level abstraction

- Three terminal transistors are switches
 - A loaded transistor is an *inverter*
- Controllable-polarity transistors compare two values
 - A loaded transistor is an exclusive or (EXOR)
- The intrinsic higher computational expressiveness leads to more efficient data-path design
- The larger number of terminals must be compensated by smart wiring

Modeling various emerging nanogates

Outline

- Introduction
- Technological innovations and motivation
 - Emerging nanotechnologies and devices
- Design with emerging technologies
 - Physical and logic synthesis
- The majority paradigm in logic synthesis
 - Models, algorithms and tools
- Conclusions

Logic cell design

- CMOS complementary logic is efficient only for negative-unate functions (INV, NAND, NOR...etc)
- Controllable-polarity logic is efficient for all functions
- Best for XOR-dominated circuits (binate functions)

Physical design

Sea of Tiles: Homogeneous array of Tiles

Dumbbell-stick diagrams

Layout abstraction and regularity with Tiles

Biconditional Binary Decision Diagrams

- Native **canonical** data structure for logic design
- Biconditional expansion:

$$f(v, w, ..., z) = (v \oplus w)f(w', w, ..., z) + (v \overline{\oplus} w)f(w, w, ..., z)$$

- Each BBDD node:
 - Has two branching variables
 - Implements the *biconditional* expansion
 - Reduces to Shannon's expansion for single-input functions

BBDD: Examples

• The BDD counterparts for these examples have about 50% more nodes!

Why BBDDs ?

- BBDDs are the representation of choice for controllable-polarity devices
 - Direct mapping to transistor structures
- BBDDs are very effective for standard CMOS, especially for design of arithmetic circuits
- BBDDs are proven to be more compact for:
 - Adders:
 - BBDD best size: 3n +1
 - BDD best size: 5n +2
 - Majority:
 - BBDD size: 0.25 (n² + 7)
 - BDD size: _г0.5n₋ (n- _г0.5n₋ +1) + 1

Efficient Direct Mapping of BBDD Nodes

BBDDs are Compact (Majority Function)

Number of nodes of MAJ(n):

 $0.25(n^2 + 7)$

MAJ(3): 4 (including sink)

MAJ(5): 8 (including sink)

MAJ(7): 14 (including sink)

The BBDD optimization tool

- Unique table to store BBDD nodes
- Recursive formulation of Boolean operations
- Performance-oriented memory management
- Chain variable reordering

http://lsi.epfl.ch/BBDD

Experimental results

- We implemented a BBDD package in C language
 - Comparison with CUDD (BDD)
- Both CUDD and BBDD first build the DDs and then apply sifting (no dynamic reordering)

Also 1.63x speedup for arithmetic intensive circuits

Outline

- Introduction
- Technological innovations and motivation
 - Emerging nanotechnologies and devices
- Design with emerging technologies
 - Physical and logic synthesis
- The majority paradigm in logic synthesis
 - Models, algorithms and tools
- Conclusions

Why Majority Logic?

- Majority logic is a powerful generalization of AND/ORs
 - MAJ(a,b,c)=ab+ac+bc. MAJ(a,b,1)=a+b. MAJ(a,b,0)=ab.
- Unlocks optimization opportunities not apparent before

x2

Synthesis Motivation for Majority

MCNC.GENLIB + MIN3

module ANDOR (
 x0, x1, x2, x3, x4,
 z0);
input x0, x1, x2, x3, x4;
output z0;
wire n6, n7, n8, n9, n10, n11;
nor2 g0(.a(x4), .b(x3), .O(n(x), nand2 g1(.a(x4), .b(x3), .O(n(x), nand2 g1(.a(x4), .b(x3), .O(n10));
inv1 g2(.a(x1), .b(x1), .O(n10));
inv1 g5(.a(x2), .O(n11));
nand2 g6(.a(x1), .b(x0), .O(n12));
nand2 g7(.a(n12), .b(n11), .O(n13));
nand2 g8(.a(n13), .b(n10), .O(n14));
aoi21 g9(.a(n14), .b(n7), .c(n6), .O(z0));
endmodule

Area

Delay

25

How to Exploit Majority Logic?

We want good and scalable methods for manipulating MAJ

State-of-the-art

- AND-OR Inverter Graphs (AOIGs)
- Use traditional Boolean algebra axioms and theorems to manipulate & optimize AOIGs

For majority

- Majority Inverter Graphs (MIGs)
- New Boolean algebra to deal natively with majority and inverters

Majority-Inverter Graph

Definition: An MIG is a logic network consisting of 3-input majority nodes and regular/complemented edges

MIG Properties

MIGs include AOIGs include AIGs

Manipulating MIGs: MIG Boolean Algebra

$$\Omega \begin{cases} 1 - \text{Commutativity: } M(x, y, z) = M(y, x, z) = M(z, y, x) \\ 2 - \text{Majority: } if(x = y), M(x, y, z) = x = y \\ if(x = y'), M(x, y, z) = z \end{cases} \\ 3 - \text{Associativity: } M(x, u, M(y, u, z)) = M(z, u, M(y, u, x)) \\ 4 - \text{Distributivity: } M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z) \\ 5 - \text{Inverter Propagation: } M'(x, y, z) = M(x', y', z') \end{cases}$$

Theorem: (B,M,',0,1) subject to axioms in Ω is a Boolean algebra

 Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
 Majority: if(x = y), M(x, y, z) = x = y if(x = y'), M(x, y, z) = z
 Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
 Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)

5- Inverter Propagation: M'(x, y, z) = M(x', y', z')

 Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
 Majority: if(x = y), M(x, y, z) = x = y if(x = y'), M(x, y, z) = z
 Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
 Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
 Inverter Propagation: M'(x, y, z) = M(x', y', z')

- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
 Majority: *if*(x = y), M(x, y, z) = x = y *if*(x = y'), M(x, y, z) = z
- 3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
 4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
 5- Inverter Propagation: M'(x, y, z) = M(x', y', z')

 Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
 Majority: if(x = y), M(x, y, z) = x = y if(x = y'), M(x, y, z) = z
 Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
 Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
 Inverter Propagation: M'(x, y, z) = M(x', y', z')

 Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
 Majority: if(x = y), M(x, y, z) = x = y if(x = y'), M(x, y, z) = z
 Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
 Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
 Inverter Propagation: M'(x, y, z) = M(x', y', z')

Properties

- The Boolean algebra with axioms Ω is:
 - Sound:
 - If a formula is derivable from $\Omega,$ then it is valid
 - Complete:
 - Each valid formula is derivable from $\boldsymbol{\Omega}$
- Any MIG configuration is reachable from any other equivalent MIG configuration

Enhancing Ω

- Powerful macro-transformations: Ψ
- Serve as shortcut to longer sequences in Ω
- Define: z_{x/v} as replace x by y in all appearances in z

 $\Psi \left\{ \begin{array}{l} \textbf{1-Relevance: } M(x, y, z) = M(x, y, z_{x/y'}) \\ \textbf{2-Complementary Associativity:} \\ M(x, u, M(y, u', z)) = M(x, u, M(y, x, z)) \\ \textbf{3-Substitution:} \\ M(x, y, z) = \\ M(v, M(v', M_{v/u}(x, y, z), u), M(v', M_{v/u'}(x, y, z), u')) \end{array} \right.$

Optimizing MIGs

- $\Omega \left\{ \begin{array}{l} 1-\text{Commutativity: } M(x, y, z) = M(y, x, z) = M(z, y, x) \\ 2-\text{Majority: } if(x = y), M(x, y, z) = x = y \\ if(x = y'), M(x, y, z) = z \\ 3-\text{Associativity: } M(x, u, M(y, u, z)) = M(z, u, M(y, u, x)) \\ 4-\text{Distributivity: } M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z) \\ 5-\text{Inverter Propagation: } M'(x, y, z) = M(x', y', z') \end{array} \right.$

 - By using Ω and Ψ we optimize an MIG
 - What we really care about?
 - Area → MIG size
 - Delay
 → MIG depth
 - Power

 MIG switching activity

MIG Size Optimization

- How to reduce the number of nodes in an MIG?
- Let's see what comes handy from Ω:

1- Commutativit : $M \stackrel{1}{} \stackrel{1}{} y, z) = M \stackrel{1}{} y, x, z) = M(z, y, x)$ 2- Majority: if(x = y), M(x, y, z) = x = y if(x = y'), M(x, y, z) = z3- Associativity: $M(x, u, M(y, 1 z), \stackrel{1}{} \stackrel{1}{} node$ 4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)5- Inverter Propagation: M'(x, y, z) = M(x', y', z')

MIG Size Optimization

- How to enable majority and distributivity laws for node reduction?
- Other rules from Ω and Ψ to reshape the MIG
- Reshape rationale: move closer similar/equivalent variables/ nets

MIG Depth Optimization

- How to reduce the depth of an MIG?
- Let's see what comes handy from Ω:

1- Commutativit f: M(x, y, z) = M(y) = M(z, y, x)2- Majority: if(x = y), M(x, y, z) = M(z, u, x) if(x = y'), M(x, y, z) = M(z, u, M(y, u, x))3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)5- Inverter Propagation: M'(x, y, z) = M(y', z')

MIG Depth Optimization

- Rationale: move critical variables closer to the outputs via associativity, distributivity and majority rules
- Reshaping the MIG with other Ω rules

MIG Depth Optimization: Adders

MIG Activity Optimization

- How to reduce the switching activity of an MIG?
- We want to make the switching probability of nodes close to 0
- Solution: substitute variables with p~0.5 with other having p~0 or p~1
- How to make this? Let's see what comes handy from Ψ :

$$\Psi \left\{ \begin{array}{l} \text{if } |\mathbf{p}(\mathbf{y}) - \mathbf{0.5}| > |\mathbf{p}(\mathbf{x}) - \mathbf{0.5}| \\ 1 - \text{Relevance: } M(x \ y \ z) = M(x \ y \ z \ z) \\ 2 - \text{Comp} \text{ if } |\mathbf{p}(\mathbf{x}) - \mathbf{0.5}| > |\mathbf{p}(\mathbf{u}) - \mathbf{0.5}| \\ M(x, u, M(y, u', z)) = M(x, u, M(y, x, z)) \\ 3 - \text{Subst} \text{ if } |\mathbf{p}(\mathbf{u}) - \mathbf{0.5}| > |\mathbf{p}(\mathbf{v}) - \mathbf{0.5}| \\ M(x, y, z \ + \text{extra nodes overhead} \\ M(v, M(v', M_{v/u}(x, y, z), u), M(v', M_{v/u'}(x, y, z), u')) \end{array} \right\}$$

MIG Activity Optimization

- How to enable switching activity reduction?
- Rationale: same as size and activity but oriented at reducing the switching probability

Majority-based synthesis: MIGthy

- MIGhty: a logic manipulation package for MIG
 - *MIGhty* reads and writes Verilog
 - Different optimization strategies (depth/area/activity)
 - Hybrid optimization: depth-oriented interlaced with area/power recovery phases
- MCNC, IWLS'05, arithmetic HDL benchmarks
 - Comparison with ABC, BDS and commercial synthesis tool
 - First set of experiments: pure logic optimization
 - Second set of experiments: complete design flow (logic optimization + technology mapping + physical design)

Experimental Results: MCNC circuits

(c) Giovanni De Micheli

CMOS Design Results

All circuits underwent formal verification with success

Both circuits underwent formal verification with success

Modeling various emerging nanogates

Nanotechnology Design

MIGs Summary

- Majority-Inverter Graphs with their Boolean algebra push further the capabilities of contemporary logic synthesis
- Improvements at the design level for general benchmarks but also for highly-optimized units (div32)
- Promising results for CMOS (22nm and 90nm nodes) and even better results for DG-SiNWFET nanotechnology with enhanced device functionality
- MIGs unveil efficient design opportunities unseen by state-of-art synthesis techniques

Outline

- Introduction
- Technological innovations and motivation
 - Emerging nanotechnologies and devices
- Design with emerging technologies
 - Physical and logic synthesis
- The majority paradigm in logic synthesis
 - Models, algorithms and tools
- Conclusions

Conclusions

- Emerging nano-technologies with enhanced-functionality devices increase computational density
- New design, synthesis and verification methods stem from new abstractions of logic devices
- Current logic synthesis is based on specific heuristics: new models with stronger properties lead us to better methods and tools for both CMOS and emerging devices

Never stop exploring!

Thank you

