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a  b  s  t  r  a  c  t

We  define  isotropic  springs  to  be central  springs  having  the  same  restoring  force  in all  directions.  In pre-
vious  work,  we  showed  that isotropic  springs  can  be advantageously  applied  to  horological  time  bases
since  they  can  be used  to eliminate  the  escapement  mechanism  [7]. This  paper  presents  our  designs  based
on planar  serial  2-DOF  linear  isotropic  springs.  We  propose  two  architectures,  both  based  on parallel  leaf
springs,  then  evaluate  their  isotropy  defect  using  firstly  an  analytic  model,  secondly  finite element  anal-
eywords:
entral spring
lexure
ompliant mechanism
tiffness
sotropy defect

ysis  and  thirdly  experimental  data  measured  from  physical  prototypes.  Using  these  results,  we  analyze
the  isotropy  defect  in terms  of  displacement,  radial  distance,  angular  separation,  stiffness  and  linearity.
Based  on  this  analysis,  we  propose  improved  architectures  stacking  in  parallel  or  in series  duplicate  copies
of the  original  mechanisms  rotated  at specific  angles  to cancel  isotropy  defect.  We  show  that  using the
mechanisms  in  pairs reduces  isotropy  defect  by  one  to two  orders  of  magnitude.

©  2015  The  Authors.  Published  by  Elsevier  Inc.  This  is an  open  access  article  under  the  CC  BY-NC-ND
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).
. Introduction

The biggest improvement in timekeeper accuracy was  due to
he introduction of the oscillator as a time base, first the pendulum
y Christiaan Huygens in 1656 [10], then the balance wheel–spiral
pring by Huygens and Hooke in about 1675, and the tuning fork by
iaudet and Breguet in 1866 [14]. Since that time, these have been

he only mechanical oscillators used in mechanical clocks and in all
atches.

In [7], we presented new time bases for mechanical timekeepers
hich, in their simplest form, were based on a harmonic oscillator
rst described in 1687 by Isaac Newton in Principia Mathematica
13, Book I, Proposition X]. This oscillator is the isotropic harmonic
scillator, where a mass m at position r is subject to a central linear
Hooke) force.

Since the resulting trajectories have unidirectional rotation, this
scillator has the advantage of solving the problem of inefficiency
f the escapement by eliminating it or, alternatively, simplifying it
7]. Isochronism is the key feature of a good time base, and in this
ase, the spring of the spring–mass system must be as isotropic as
ossible, meaning that in every direction, the spring stiffness and

ass must remain the same. In addition, it should be planar in order

o be easy to manufacture at any scale (note that Newton’s model
mplies planar motion, by preservation of angular momentum).

∗ Corresponding author.
E-mail address: lennart.rubbert@insa-strasbourg.fr (L. Rubbert).

ttp://dx.doi.org/10.1016/j.precisioneng.2015.07.003
141-6359/© 2015 The Authors. Published by Elsevier Inc. This is an open access article u
d/4.0/).
In this paper, we  mechanize Newton’s model by designing new
planar isotropic springs. Our designs are based on the principle
of compliant XY-stages [1,3,11,12] which are mechanism with two
degrees of freedom (2-DOF) both of which are translations. As these
mechanisms are composed of compliant joints [9] they exhibit
planar restoring forces so can be considered as planar springs. In
the literature, many planar flexible XY-stages have been proposed
and if some may  be implicitly isotropic, none has been explic-
itly declared to be isotropic. This could be explained by the fact
that, in general, XY-stages are controlled in closed-loops [17] and
isotropy stiffness defects are therefore not necessarily a matter
of concern. Moreover, we use a serial architecture instead of the
parallel one generally seen in XY-stages used actuator integration
applications.

Simon Henein [6, p. 156, 158] proposed two  non-planar archi-
tecture XY-stages exhibiting planar isotropy. The first is composed
of two serial compliant four-bar mechanisms, also called parallel
arm linkage, which produce, for small displacements, translations
in X and Y (see also [5]). The second is composed of four parallel
arms linked by eight spherical joints and a bellow connecting the
mobile platform to the ground.

In this paper the designs of two  central springs based on parallel
leaf springs are presented after a brief presentation of the context.
For each of both designs, their analytical model is presented and

compared to the performance based on finite element analysis and
on experimental data of physically constructed prototypes.

Some images of these designs have appeared in [7] and some
appear in recent patent applications.

nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
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Fig. 1. Elliptical orbit under central Hooke Law.

. Context

In order to understand the elliptical trajectories of planets pre-
icted by Kepler’s Laws, Isaac Newton considered the possible
entral laws producing elliptical orbits and he showed that apart
rom the inverse square law, a linear Hooke’s law would also pro-
uce elliptical orbits,1 see Fig. 1.

Newton’s result is very easily shown. Consider a point mass
oving in two dimensions subject to a central force

(r) = −Kr,

here r is the distance of the mass to the center. Applying Newton’s
econd law F = ma, where m is the mass of the particle and a its
cceleration, gives the general solution

 = (A1 sin(ω0t + ϕ1), A2 sin(ω0t + ϕ2)), (1)

or initial conditions A1, A2, ϕ1, ϕ2 and frequency

0 =
√

K

m
.

his shows that orbits are elliptical, but also that the period only
epends on the mass m and the stiffness K of the central force, and
ot on the energy of the system, what is generally called isochro-
ism. This last property is the key feature of horological time bases

n which the regulation must be kept independent of the energy
ource. It follows that this oscillator is a good candidate to be a time
ase for a timekeeper, an observation first made in our previous
rticle [7].

In order to exploit this oscillator as a mechanical time base, New-
on’s model must be followed as closely as possible. In particular,
he mechanism’s central linear restoring force must be as isotropic
s possible. Expressed quantitatively, the isotropy defect must be
inimized.

. Definition of isotropy defect

The first step in analyzing the isotropy defect of a central spring
s to give a precise definition of what is meant by isotropy defect.
n particular, since isotropy defect only applies to central springs,
he term “central” will be suppressed without ambiguity. The basic
ontext of our isotropy defect computations is given in Fig. 2.

.1. Baseline behavior

In order to evaluate isotropy defect, a baseline is required for

omparison. We  assume that our spring has ideal stiffness K. A force

� of magnitude F and direction � is applied, where � will vary
etween 0◦ and 360◦ and the magnitude F will be constant (i.e.

1 The occurrence of ellipses in both laws is now understood to be due to a relatively
imple mathematically equivalence [4] and it is also well-known that these two
ases are the only central force laws leading to closed orbits [2,15].
Fig. 2. Basic model of isotropy defect.

independent of �). Under this force, the point O on the spring moves
to the ideal position P� , and by Hooke’s Law, �OP� has magnitude F/K
and direction �, see Fig. 2. Therefore, as � varies between 0◦ and
360◦, the ideal point P� describes a perfect circle of radius F/K, and
the restoring force is linear and isotropic.

3.2. Definitions

The previous example illustrates ideal behavior with zero
isotropy defect. Divergence from this example will be used to mea-
sure the isotropy defect. Thus, when isotropy defect does occur, the
force F will move the point O to a point Q� generally distinct from
P� , see Fig. 2. The isotropy defect vector in the direction � is defined
to be �P�Q� .

In order to evaluate and compare the isotropy defect of our
mechanisms, it is more convenient to have scalar measures of
isotropy defect. We  therefore define the simpler radial isotropy
defect given by

�� = ‖ �OQ �‖ − ‖ �OP�‖.

Note that this measure of isotropy defect considers the discrepancy
between the magnitudes of the actual displacement and the ideal
displacement for angle � which is different from the magnitude
‖ �P�Q�‖ of the isotropy defect vector, see Fig. 2.

The angular isotropy defect ϕ� is defined as the angle between
�OP� and �OQ � , as measured in the counterclockwise direction, see

Fig. 2.
In order to define stiffness isotropy defect, we first introduce the

notion of stiffness in a given direction � by

k� = F

‖ �OP�‖ + ��

= F

‖ �OQ �‖
.

The stiffness isotropy defect in the � direction is then

�k� = K − k�,

where K is the ideal stiffness defined as the maximum of k� for all
angles. Note that �k� is non-negative, by definition of K.

The relative stiffness isotropy defect in the � direction is defined

as

�� = �k�

k�
= ��

‖ �OP�‖
,
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Fig. 3. Conceptual design of our isotropic springs.

here the right hand expression follows by applying K = F/‖ �OP�‖.
We finally define the stiffness isotropy defect to be �max, the max-

mum of �� over all 0◦ ≤ � < 360◦. This will be used in Section 7 to
valuate isotropy performance.

In addition, we need our central springs to be linear, i.e., the
elation between force and displacement should be linear. In order
o evaluate this quantitatively, for each mechanism and for each
orce direction, a second order polynomial fit is applied to the dis-
lacement versus the force. Formally, this means that the force is
ritten in polar coordinates r and � as F� = (A� + B�r + C�r2) u� , with

� a unit vector in the � direction. For a linear spring A� = C� = 0 and

� defines the constant spring stiffness in the � direction. Thus, C�

uantifies the stiffness linearity defect.

emark 3.2. In order to simplify notation, the subscript � in these
uantities may  be suppressed in the following.

. Isotropic spring design

Formula (1) of Section 2 shows that harmonic isotropic oscilla-
or solutions can be considered as sums of two independent linear
-DOF oscillators, one in the x direction and the other in the y direc-
ion. For this reason, we have chosen to consider planar isotropic
prings following the conceptual configuration shown in Fig. 3. This
onfiguration consists of two linear springs of length L0 (in neutral
osition) placed orthogonally in serial configuration. The geometry

s chosen such that both springs are in their neutral positions when
oints P and O are coincident.

.1. The 1-DOF parallel spring stage
The basic building block of our design is the linear spring, and
his can be refined by replacing linear springs with 1-DOF parallel
pring stages, as shown in Fig. 4. The point is that parallel spring

Fig. 4. 1-DOF parallel spring stage.
eering 43 (2016) 132–145

stages have the advantage of having a simple compact architecture
so are easy to manufacture and downscale [16].

As it constitutes the main building block of our central spring
designs, we  present an extensive analysis of this architecture in
order to fully describe its stiffness and kinematic properties.

Fig. 4 consists of two parallel leaf springs (blades) attached to
the ground and to a mobile rigid body whose position is uniquely
determined by the image of the point O = (0, 0). Note that the point O
lies exactly half way along the vertical leaf springs, that is, at height
L/2 from the ground (this satisfies one of the main conditions of
Appendix). As defined previously, when a force F is applied at point
O = (0, 0) it moves to Q = (x, y), as illustrated in Fig. 4. The force F can
be decomposed into horizontal and vertical components

F = (Fx, Fy) = (F cos �, F sin �),

where � is the angle between the horizontal x-axis and F. We
assume that deformations are sufficiently small so that beam short-
ening theory, as described in [8, Section 8.7], can be applied. As a
consequence, and as shown in Appendix A, the effective stiffness
kx = Fx/x along the x-axis is very well approximated by the linearized
approximation to the analytic model

kx = 24EI

L3
+ 6Fy

5L
, (2)

where I = bh3/12, E is the Young modulus of the material and h, b,
L are the thickness, the width and the length of the beam, respec-
tively.

Remark 4.1.1. Strictly speaking, formula (2) is an abuse of nota-
tion since it refers to an approximation of the horizontal stiffness
kx. In Appendix, we  make this difference explicit by referring to kx

as the actual stiffness, kcom
x the complete analytic stiffness and klin

x
as the linearized analytic stiffness given in formula (2).

Remark 4.1.2. The necessary condition that the force F be applied
at the mid-height of the beam length L/2 will hold for all the mech-
anism architectures presented in this paper.

Remark 4.1.3. Formula (2) shows that for this structure, the stiff-
ness kx depends on Fy which means that this spring is sensitive to a
force applied along the y-axis. Formula (2) also shows that the influ-
ence of Fy on the horizontal stiffness kx can be reduced by increasing
the beam length L.

The other result we  will use concerning the 1-DOF parallel
spring stage is that, as shown in Appendix A.12, the trajectory of
the rigid block is parabolic since its defining point Q = (x, y) is very
well approximated by(

x, −3x2

5L

)
. (3)

Remark 4.1.4. We  note that our formula (2) for the horizontal
stiffness is derived using Euler–Bernoulli theory, so as is standard
in this theory, the vertical displacement of the mobile block is con-
sidered negligible and taken to be zero. The parabolic trajectory
computation included above is used exclusively for the computation
of the kinematics.

4.2. The simple 2-DOF parallel spring stage

In order to get a 2-DOF central spring, two  parallel spring stages

are therefore placed orthogonally and in a serial configuration, as
shown in Fig. 5.

For a radial force F acting in the x–y plane and applied at angle
� with respect to the x-axis, the displaced position Q = (x, y) of the
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whose geometric and material Young modulus are given in Table 1.
The aluminum frames of the prototypes were machined with a
numerically controlled machining tool and the flexible blades were
laser cut. The blade manufacturing and assembly tolerances are
Fig. 5. Simple 2-DOF parallel spring stage.

enter of the mechanism is obtained by summing the contribution
f the 1-DOF parallel spring stages and

 = x1 + x2, y = y1 + y2,

here, by the results stated in the previous section,

1 = Fx

kx
, y1 = −3x2

1
5L

, x2 = −3y2
2

5L
, y2 = Fy

ky
.

oreover, as before

x = 24EI

L3
+ 6Fy

5L
, ky = 24EI

L3
+ 6Fx

5L
,

here once again

 = (Fx, Fy) = (F cos �, F sin �).

ombining these results is once again a straightforward computa-
ion which yields the following expression for x and y in terms of
he force angle �

 = F cos �

2Ebh3

L3 + 6F sin �
5L

− 3
5L

(
F sin �

2Ebh3

L3 + 6F cos �
5L

)2

,

 = F sin �

2Ebh3

L3 + 6F cos �
5L

− 3
5L

(
F cos �

2Ebh3

L3 + 6F sin �
5L

)2

.

.3. Compound 2-DOF parallel spring stage

In Section 4.1 we showed that the parallel leaf spring stage has
arabolic displacement, however, as pointed out in Section 4.1,

sotropic harmonic oscillator solutions are built from orthogonal
inear oscillators. We  remedy this situation by using the compound
arallel spring stage shown in Fig. 6. When force is applied along
he x direction only, the second order terms of each stage exactly
ancel as Fy = 0, their stiffness along the x-axis are equal and the sec-
nd order term y of each stages are of same amplitude, resulting in
erfect rectilinear motion.

The same holds in the y direction, so the compound 2-DOF par-
llel stage yields a faithful mechanization of the isotropic harmonic
scillator’s x and y components, each taken separately, and is there-
ore a good candidate for the minimization of isotropy defect. The

ompound 2-DOF parallel spring stage is illustrated in Fig. 7.

If a constant radial force F is applied at angle �, then the position
f the center O of the compound 2-DOF parallel spring stage is dis-
laced by the action of the four parallel leaf spring stages, these are
Fig. 6. Compound parallel spring stage.

numbered to in Fig. 7. The resulting position Q = (x, y) satisfies

x = x1 + x2 + x3 + x4, y = y1 + y2 + y3 + y4,

and writing F = (Fx, Fy) as before yields

x1 = Fx

kx1
, x2 = Fx

kx2
, y3 = Fy

ky3
, y4 = Fy

ky4
,

y1 = 3x2
1

5L
, y2 = −3x2

2
5L

, x3 = −3y2
3

5L
, x4 = 3y2

4
5L

,

where

kx1 = 24EI

L3
− 6Fy

5L
, kx2 = 24EI

L3
+ 6Fy

5L
,

ky3 = 24EI

L3
+ 6Fx

5L
, ky4 = 24EI

L3
− 6Fx

5L
.

Note that the first expression makes it clear that the four parallel
springs can be assembled sequentially in any order. Therefore the
compound spring mechanism can be obtained by combining two
simple spring mechanisms with the correct orientation.

4.4. Prototype design

In order to evaluate these two central springs, we manufactured
two prototypes illustrated in Figs. 8 and 9. The prototypes are com-
posed of aluminum frames and spring steel (X10CrNi18-8) blades
Fig. 7. In plane orthogonal compound parallel spring stages invention, top view.
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Fig. 8. Simple 2-DOF parallel spring stage prototype. Frame dimensions
220  × 220 mm2.

Fig. 9. Two  stages assembled for the 2-DOF compound planar spring prototype.
Frames dimensions 150 × 150 mm2.

Table 1
Flexible beam geometric and material parameters for each prototype.

b [mm] h [mm]  L [mm] E [GPa]

±
t
t
x

Prototype 1 20 0.2 50 200
Prototype 2 20 0.3 50 200
7  �m and ±60 �m for the thickness h and for the length L, respec-
ively. The compound 2-DOF parallel spring stage is composed of
wo layers, as illustrated in Fig. 10. Each layer gives one DOF in the

 and y directions, respectively. The bottom layer frame is rigidly

Fig. 10. Two layers of the compound 2-DOF parallel spring
Fig. 11. Experimental setup with simple 2-DOF spring stage prototype.

fixed to the ground and the top layer frame is the mobile platform
marked . The layers are connected though the center elements
marked , see Fig. 10.

5. Experimental evaluation

5.1. Experimental setup

The experimental setup is shown in Fig. 11. The prototype is
rigidly fixed to the ground. The center of the moving platform is
connected to a force sensor (Kistler 9207) by a flexible beam which
acts as a connecting rod. The force sensor is mounted on a linear
stage driven manually by a Vernier micrometer (Newport SM-25)
which has theoretical displacement resolution of 1�m; its role is
to impose a displacement on the prototype center.

This system is fixed on a turntable, that is to say, a table allow-
ing the displacement direction to be varied by 15 ± 0.04◦. For each
orientation, an increasing displacement is applied to the prototype
center by actuating the micrometer. The force sensor has an abso-
lute precision of 0.8598 mN with a decreasing drift of 0.5 mN/s.
The x and y positions of the moving platform are measured thanks
to two displacement sensors: Keyence laser head LK-H082 having
measurement range of ±18 mm and absolute precision of ±7.3 �m.
Data is acquired with an acquisition card (NI PCI-6052E) and asso-

ciated to the measured force through a Labview software program,
where a 3.30 GHz Intel Core i5-2500 computer with 64-bit archi-
tecture is used.

 stage prototype. Frames dimensions 150 × 150 mm2.
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ig. 12. Polar plots of displacement, in millimeters, of the center of each mechan
ompound 2–DOF spring stage, 12N.

.2. Load case description

Measurements from 1 N to 5 N with 1 N steps were made on the
rst prototype. Measurements from 1 N to 12 N with 1 N steps were
ade on the second prototype. Both prototype measurements were
ade with force directions going from 0◦ to 345◦ in 15◦ steps.
The measurement of stiffness in a single direction takes about

0 s for each force level, which means that for measurements up to
 N, the force sensor exhibits a drift error of 2.5 mN  (0.05% error)
nd for measurements up to 12 N, the force sensor exhibits a drift
rror of 6 mN  (0.05% error).

. Results

.1. Analytical versus numerical and experimental data

Three different type of methods were used to create data
escribing the mechanism.
.1.1. Analytical model
The analytical model of Section 4 was implemented using the

pring parameters given in Table 1. The resulting data was  com-
uted using Matlab. Each plot is given with angular 1◦ steps.

ig. 13. Polar plots of radial isotropy defect, analytical model, FEM and prototype. (a) Rad
adial  force. (b) Radial isotropy defect in millimeters for the compound 2-DOF parallel sp
a) Center displacement, simple 2–DOF spring stage, 5N. (b) Center displacement,

6.1.2. Finite element model
Finite element analysis (FEA) was done using Comsol, with 1 N

force steps, 5◦ orientation steps and a 0.001 convergence factor.
The simple and compound 2-DOF parallel spring stage were com-
puted up to 5 N and 12 N respectively. The simulations were based
on non-linear models. Total computation time for the simple and
compound 2-DOF parallel spring stage was  about 6 days and 9 days,
respectively, on a 6 cores (12 threads) Xeon processor cadenced at
3.2 GHz with 48 GB of RAM.

6.1.3. Experimental measurements
The displacement of each prototype’s center as a function

of force direction was  acquired for all force levels. The Vernier
micrometer is actuated manually and the data is acquired automat-
ically. Total acquisition time for the simple and compound 2-DOF
parallel spring stages was approximately 1.5 and 2 h, respectively.

6.2. Data plots
6.2.1. Displacement polar plots
Displacement polar plots display in polar coordinates the dis-

placed positions Q of the center of each mechanism for a range of
force orientations, where Q refers to the notation of Section 3.2.

ial isotropy defect in millimeters for the simple 2-DOF parallel spring stage for 5N
ring stage for 12N.
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ig. 14. Angular displacement as a function of force direction, analytical model, FE
-DOF  parallel spring stage under 12N load.

ig. 12(a) shows the displaced positions of the center of the simple
-DOF parallel spring stage as predicted by the analytical model,
omputed by FEA and measured experimentally with the proto-
ype under a 5 N load. Fig. 12(b) shows the displaced positions of
he center of the compound 2-DOF parallel spring stage as predicted
y the analytical model, computed by FEA and measured with the
rototype under a 12 N load.

emark 6.2.1. The stiffness properties of the prototypes are very
ensitive to the length and thickness tolerances of the blades since
hese parameters appear to the third power in the stiffness formu-
ation. Thus, manufacturing and assembly tolerances are sufficient
o explain discrepancies compared to the model, see Section 4.4.

.2.2. Radial isotropy defect
Recall from Section 3.2 that the radial isotropy defect was quan-

ified by �. In order to plot the radial isotropy, for each given force,
 constant independent of � is subtracted from the measured dis-
ances, with the force angle varying from 0◦ to 360◦. This constant
alue is chosen as the minimum of the measured distances for that
iven force. This choice appears to give the most readable plot.

The resulting plots for the simple 2-DOF parallel spring stage are
llustrated in Fig. 13(a). Here, the maximal radial isotropy defects
or the analytical model and the experimental measurements are
5.36% and 86.04%, respectively, of the minimum displacement

istance.

The same plot for the compound 2-DOF parallel spring stage,
gain with the displacement distance offset equal to the minimum
isplacement distance, is plotted in Fig. 13(b). Here, the maximal

ig. 15. Stiffness as a function of force direction for each mechanism. (a) Simple 2-DOF p
2N  load.
d prototype. (a) Simple 2-DOF parallel spring stage under 5N load. (b) Compound

radial isotropy defect for the analytical model and the prototype
are to 2.92% and 8.87%, respectively, of the minimum displacement
distance.

6.2.3. Angular isotropy defect
Recall from Section 3.2 that the angular isotropy defect was

quantified by ϕ. Fig. 14(a) and (b) plots the angular isotropy defect
for each spring. Recall that this quantifies the angular displacement
of the center of the mechanism when a radial force is applied.

These plots show that for the simple 2-DOF parallel spring stage,
a 0◦ angular isotropy defect is expected at 45◦, 116◦, 164◦, 225◦,
287◦ and 335◦ and a maximum angular isotropy defect is expected
at 194◦.

For the compound 2-DOF parallel spring stage, a 0◦ angular
isotropy defect is expected at 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and
315◦, and a maximum isotropy defect is expected at the midpoint of
these angles, that is, at 22.5◦, 22.5◦+45◦, 22.5◦+90◦,. . .,  22.5◦+315◦.

6.2.4. Stiffness isotropy
Recall the definition of k� in Section 3.2 which shows that the

isotropy defect �k  can represented by plotting stiffness k� as a func-

tion of force direction �. For a perfectly isotropic spring, this should
be constant and the plot a horizontal line. Fig. 15(a) and (b) illus-
trates stiffness as a function of force direction for the simple and
compound 2-DOF parallel spring stages.

arallel spring stage up to 5N load. (b) Compound 2-DOF parallel spring stage up to
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Fig. 16. Second order term of stiffness polynomial fit as a function of force direction. (a) Simple 2-DOF parallel spring stage up to 5N load. (b) Compound 2-DOF parallel
s
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pring  stage up to 12N load.

.2.5. Stiffness linearity
We  recall the stiffness linearity assumptions and notation of Sec-

ion 3.2. We  focus here on the second order term C� quantifying the
tiffness linearity defect. In Fig. 16, a polynomial fit for C� is given for
ach central spring. Fig. 16(a) shows that the simple 2-DOF parallel
pring stage has a non-linearity defect ten times greater than the
ompound 2-DOF parallel spring stage shown in Fig. 16(b). More-
ver, the simple 2-DOF parallel spring stage has both positive and
egative second order terms whereas the compound 2-DOF parallel
pring stage has only negative order terms.

The simple 2-DOF parallel spring stage is also highly non-linear
n the 45◦ and 225◦ directions. Therefore, the simple 2-DOF parallel
pring stage has both non-linearity and stiffness isotropy defects.

. Improved mechanism architectures

With the goal of reducing isotropy defect, one can improve the
erformance of the simple and compound mechanisms by placing
n additional copy in parallel, at the cost of a loss of simplicity and
lanarity. The following results were obtained from the analytical

odel.
For the simple mechanism, one places in parallel a second iden-

ical copy which is rotated 180◦ in-plane (Fig. 18(a)). This is done in
rder to cancel out the minimal and maximal stiffness values found

ig. 17. Stiffness of parallel central springs with isotropy defect reduction. (a) Stiffness 

tiffness of 45◦ parallel compound 2-DOF parallel spring stages as a function of direction.
in Fig. 15(a) and leads to an isotropy defect �max of 6.77% instead
of 65.36%, with �max as defined in Section 3.2. In order to compare
stiffness isotropy defects of the original versus the double mecha-
nism, the compound mechanism has its leaf spring beams stiffness
divided by two  (e.g., beam width halved) and the comparison is
shown in Fig. 17(a). For the same reason, when the serial arrange-
ment is considered, the leaf spring beams stiffness is multiplied by
two (e.g., beam width doubled).

An even greater improvement is possible for the compound
mechanism by placing a parallel copy at 45◦ (Fig. 18(b)). This cancels
out the minimal and maximal stiffness values shown in Fig. 15(b)
and yields an isotropy defect �max of only 0.0262% instead of 2.92%.
This pair of compound mechanism is 111 times more isotropic than
the single structure. Once again, a comparison of stiffness for the
single versus the compound mechanism is possible by halving the
leaf spring stiffness of the compound mechanism with the results
shown in Fig. 17(b).

This process can be continued by further combining 22.5◦ par-
allel in-plane rotations of four compound mechanisms to cancel
out minimal and maximal stiffness. The isotropy defect could thus

be reduced to �max = 1.58 e−6% by stacking together four layers
of compound mechanisms with the above orientation. Stacking
four compound mechanisms is 16,567 times better than stack-
ing two compound mechanisms and 1,847,200 times better than

of 180◦ parallel simple 2-DOF parallel spring stages as a function of direction. (b)
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Fig. 18. Possible realizations of parallel central spring arrangement decreasing isotropy defect. (a) Exploded view of realization of the 180◦ parallel arrangement of simple
2-DOF  parallel spring stages, top view. (b) Exploded view of realization of the 45◦ parallel arrangement of compound 2-DOF parallel spring stages, top view. (c) Realization
of  the 180◦ parallel arrangement of simple 2-DOF parallel spring stages, top view. (d) Realization of the 45◦ parallel arrangement of compound 2-DOF parallel spring stages,
top  view.

Table 2
Stiffness isotropy defect �max comparison between the single and multi-layer parallel arrangement of the simple and compound 2-DOF spring stages.

# of stages Simple Compound

�max Defect reduction factor # global max  Stage offset �max Defect reduction factor # global max  Stage offset

1 65.36% 1 1 – 2.92 % 1 4 –
2  6.77% 9.66 2 180◦ 2.62e− 2 % 111.53 8 45◦

4 1.87 % 35.02 4 90◦ 1.58e− 6 % 1.85e6 16 22.5◦

8 0.11% 578.26 8 45◦ 1.04e− 13 % 28e12 32 11.25◦

Table 3
Stiffness isotropy defect �max comparison between the single and multi-layer serial arrangement of the simple and compound 2-DOF spring stages.

# of stages Simple Compound

�max Defect reduction factor # global max  Stage offset �max Defect reduction factor # global max  Stage offset

1 65.36% 1 1 – 2.92% 1 4 –
2  5.41% 12.08 4 180◦ 5.46e− 3 % 535.60 8 45◦

4 5.16% 12.66 4 90◦ 3.81e− 7 % 1.40e9 16 22.5◦

8 4.99e− 2 % 1310.41 8 45◦ 5.21e− 14 % 56.01e12 32 11.25◦
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Fig. 19. Possible realizations of serial central spring arrangement decreasing isotropy defect. (a) Exploded view of realization of the 180◦ parallel arrangement of simple
2-DOF parallel spring stages, top view. (b) Exploded view of realization of the 45◦ parallel arrangement of compound 2-DOF parallel spring stages, top view. (c) Realization
of  the 180◦ parallel arrangement of simple 2-DOF parallel spring stages, top view. (d) Realization of the 45◦ parallel arrangement of compound 2-DOF parallel spring stages,
top  view.
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he single compound mechanism. For both architectures, the
erformances of parallel rotated arrangement are presented in
able 2.

A possible realization for each central springs combining two
ayers, 180◦ and 45◦ rotation respectively, is illustrated in Fig. 19.
n order to avoid contact between the intermediate parts, shims
re placed between the two layers connected rigidly to the frames
ground) and moving platforms (see Figs. 5 and 7). Note that
he roles of the moving platform and of the ground can be
nverted.

Further iterations reduce the isotropy defect to arbitrarily small
alues.

emark 7. Another method for reducing the isotropy defect is
o stack two stages in series at specific shift angles. The resulting
mprovement is quantified in Table 3.
. Conclusion

The number, position and value of local maximums as predicted
y the analytical model and the FEM model are consistent and they
match the experimental results. This validates the use of the simple
analytical model established in Section 4 to predict the isotropy
performance of such structures.

Tables 2 and 3 show that the isotropy defect of the original sim-
ple spring stage can be drastically reduced using two approaches

• Use of compound stages instead of simple stages.
• Parallel or serial stacking of identical stages rotated by precisely

chosen angles.

For the parallel arrangements, the quantitative evaluation of these
designs shows that stacking four simple stages leads to a maximum
relative stiffness isotropy defect close to that of a single compound
stage (values shown in boldface in the table).

For example, Fig. 18 shows how pairs of simple and compound
stage having maximum relative stiffness isotropy defects 65.36%

and 2.92%, respectively, can be stacked leading to a decrease of
the relative stiffness isotropy defect by a factor 9.66 and 111.53,
respectively, leading to relative residual defects of 6.77% and
0.0262%.
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ppendix A. Stiffness and kinematics of the 1-DOF parallel
pring stage

In this Appendix, we give a formal, self-contained proof of the
laims of Section 4.1. In other words, we will show that given the
-DOF parallel spring stage shown in Fig. A.20, horizontal stiffness
x is very well approximated by

lin
x = 24EI

L3
+ 6Fy

5L
,

nd that the rigid block has a parabolic trajectory since the coordi-
ates of the distinguished point Q = (x, y) is very well approximated
y

x, −3x2

5L

)
.

ote that, as stated in Remark 4.1.4, our formula for the hor-
zontal stiffness is derived using Euler–Bernoulli theory, so the
ertical displacement of the mobile block is considered negligi-
le. The parabolic trajectory computation included above is used
xclusively for the computation of the kinematics.

.1. Plan of proof

The proof applies standard methods of mechanics of materials,
.g., as found in [8].

We examine the situation illustrated in Fig. A.20, in which a hor-
zontal force is applied to a parallel spring stage when a vertical load
s present. Clearly this vertical load affects the horizontal stiffness,
nd making this explicit will be the focus of our investigation.

The general idea of the proof is to consider a single beam, use
uler–Bernoulli theory to compute the horizontal deformation at
he beam extremity for a given horizontal force and vertical load,
ecover the horizontal stiffness using Hooke’s Law, then multiply
y two to get the total horizontal stiffness.

The vertical tension and compression cases lead to completely
ifferent analytic solutions, despite giving the same result for the

inearized horizontal stiffness, so we will take care to distinguish
hese cases in this Appendix.

Our computations up to and including Appendix A.9 are com-
lete analytic expressions with linearization only occurring in
ppendix A.10 to Appendix A.12.

We  begin the proof in Appendix A.2 with an explicit descrip-
ion of the parameters involved and note that three vertical load
ituations occur.

In Appendix A.4, we begin the computation by considering only
 single beam of our model. We  then set up the known gover-

ing differential equations of deformation for each of the three load
ituations.

In Appendix A.5, we give the known general analytic solutions
o the differential equations of Appendix A.4.

Fig. A.20. Parallel spring stage under load.
eering 43 (2016) 132–145

In Appendix A.6, we apply the boundary conditions in order to
compute the complete analytic solutions to our three load situa-
tions.

In Appendix A.7, we  compute, for our three load situations, the
horizontal restoring force for a given horizontal displacement of a
single beam extremity (which is exactly the displacement of the
mobile rigid block).

In Appendix A.8, we apply Hooke’s law to the result of Appendix
A.7 to derive the complete analytic expression for the horizontal
stiffness of a single beam at its extremity, and this for our three
load situations.

In Appendix A.9, we  apply the result of Appendix A.8 to find an
complete analytic solution to the horizontal stiffness for the 1-DOF
parallel spring stage given our three vertical load situations. This
gives the complete analytic solution to our main problem.

In Appendix A.10, we  give the linearization of the formulas of
Appendix A.9 completing the proof of the first main result of this
Appendix.

In Appendix A.11, we give a numerical estimate of the relative
error between the complete analytic expression and its lineariza-
tion used in the paper and show that it is bounded by 404ppm.

Appendix A.12 is independent of the previous analysis and is
based on well-known results of beam deformation theory. These
known results yield the vertical and horizontal displacements of
the beam extremities in our model, and approximating to second
order yields the parabolic trajectory, the second main result of this
Appendix.

A.2. Problem description

The two vertical beams in Fig. A.20 are identical and have a
moment of inertia I around z, and Young’s modulus E. The hori-
zontal displacement of the mobile rigid block is given by F and its
vertical displacement by �. Note that, by Hooke’s Law, the horizon-
tal stiffness of the model is simply kx = Fx/f, where Fx = Fxx.

Our goal is to find a simple approximation to the horizontal stiff-
ness kx. Our approach will be to apply Euler–Bernoulli theory to
find a complete analytic formula kcom

x for this horizontal stiffness
and use its linearized value klin

x as our simple approximation. We
will keep the superscripts explicit during our entire computation in
order to minimize confusion regarding the three different values of
horizontal stiffness: exact, complete Euler–Bernoulli and linearized
Euler–Bernoulli.

Since the technical evaluation of total horizontal stiffness is car-
ried out for a single beam, we denote the horizontal stiffness of
a single beam by 	x, its complete analytic formula 	com

x and its
linearized value 	lin

x .
In the technical discussion that follows, it is necessary to dis-

tinguish three vertical (axial) load situations. Writing Fy = Fyy, we
have

1. No vertical load: Fy = 0.
2. Vertical tensile load: Fy > 0.
3. Vertical compression load: Fy < 0.
In order to distinguish these cases in the computations below,

it will be convenient to work with the magnitude Fabs
y = |Fy| of Fy.

A.3. Reduction to single beam

The technical part of the proof will be established by considering
a single beam on the structure of Fig. A.20. This reduction is possible
since the horizontal stiffnesses of the two  beams are identical and
the total horizontal stiffness of the structure is exactly twice the

horizontal stiffness of each beam.

To show that this is true, first note that the horizontal force
is applied to the rigid block at vertical height L/2, and that the
torque at L/2 vanishes. This means that no spurious vertical force is
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enerated and that no torque is applied to the mobile rigid block.
t follows that the block does not exhibit parasitic rotations and

oves translationally only.
It follows from the previous paragraph that the vertical load

n each beam is identical. Since the two beams are geometrically
dentical, their stiffnesses are also identical in the special case of
orizontal force applied at height L/2. This justifies our study of a
ingle beam.

Since the mechanism has a parallel architecture, the magnitude
f the load carried by one beam becomes Fabs

y /2.
It then follows that the total horizontal stiffness of the 1-DOF

arallel spring stage under a vertical load is recovered by multiply-
ng the single beam horizontal stiffness by two, as claimed at the
eginning of this section.

.4. Setting up the differential equation

The governing differential equation of the deformation of an
uler–Bernoulli beam under load and up to the fourth derivative is
ell-known [8, p. 464, p. 591]

Ix(4) − Fy

2
x′′ = 0.

or our three load situations, this gives
1. No vertical load:

Ix(4) = 0.

2. Vertical tensile load:

Ix(4) − Fabs
y

2
x′′ = 0.

3. Vertical compression load:

Ix(4) + Fabs
y

2
x′′ = 0.

.5. General beam deflection solution

The beam deflection solutions for the three vertical load situa-
ions are as follows, where ω =

√
Fabs

y /(2EI).
1. No vertical load:

0 = a0 + a1y + a2y2 + a3y3. (A.1)

2. Vertical tensile load:

t = b0 + b1y + b2 cosh(ωy) + b3 sinh(ωy).

3. Vertical compression load:

c = c0 + c1y + c2 cos(ωy) + c3 sin(ωy).

.6. Boundary conditions

The beam extremities of our model satisfy the following bound-
ry conditions.

(0) = 0, x′(0) = 0, x(L) = f, x′(L) = 0,

here the last boundary condition follows from the fact that the
obile mass does not rotate, as shown in Appendix A.3.
Applying these boundary conditions allows us to compute the
onstants in the general solutions found in the previous section.
1. No vertical load:

0 = a1 = 0, a2 = 3f

L2
, a3 = −2f

L3
. (A.2)
eering 43 (2016) 132–145 143

2. Vertical tensile load:

b0 = − f (cosh(Lω) − 1)
B

, b1 = fω sinh(Lω)
B

,

b2 = f (cosh(Lω)  − 1)
B

, b3 = − f sinh(Lω)
B

,

where B = 2 (1 − cosh(Lω)) + Lω sinh(Lω).
3. Vertical compression load:

c0 = − f (cos(Lω) − 1)
C

,  c1 = − fω sin(Lω)
C

,

c2 = f (cos(Lω)  − 1)
C

,  c3 = f  sin(Lω)
C

,

where C = 2 (1  − cos(Lω)) − Lω sin(Lω).

A.7. Horizontal force for given horizontal displacement

The differential equation governing the horizontal force at ver-
tical height y is

Fx(y) = −EIx(3)(y) + Fy

2
x′(y).

We  are interested in the horizontal force Fx = Fx(L) at the extremity
y = L of the beam since it is essentially the restoring force applied to
the mobile rigid block. Since x′(L) = 0 this reduces to

Fx = −EIx(3)(L).

The explicit analytic formula found in the previous sections can
be applied to find the horizontal force Fx at vertical height y = L
which produces the horizontal displacement f, and this for the three
vertical load situations.

1. No vertical load:

Fx = 12EI

L3
f.

2. Vertical tensile load:

Fx = EIω3 sinh(ωL)
B

f.

3. Vertical compression load:

Fx = EIω3 sin(ωL)
C

f.

A.8. Complete horizontal stiffness of a single beam

The complete Euler–Bernoulli horizontal stiffness 	com
x of a sin-

gle beam is now computed by simply applying Hooke’s Law

	com
x = Fx

f
,

to the formulas of the previous section for each of the three load
cases and performing some elementary trigonometric simplifica-
tion.

1. No vertical load:

	com
x = 12EI

L3
. (A.3)

2. Vertical tensile load:

	com
x = Fabs

y /2

L − 2
ω tanh

(
Lω
2

) . (A.4)
3. Vertical compression load:

	com
x = Fabs

y /2
2
ω tan

(
Lω
2

)
− L

.  (A.5)
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We  see from formula (A.5) that there exists a vertical load 
0

roducing zero stiffness exactly when ωL = � so that 
0 = �2EI
L2 .

We then define � = Fabs
y /(2
0) so that ω = �

L
√

� . This allows
s to rewrite the stiffness as a multiple of 	0, the stiffness of one
eam without axial load. Note that the superscript 	com

0 has been
uppressed, since all values of k0 will be identical in what follows.

1. No vertical load:

com
x = 	0. (A.6)

2. Vertical tensile load:

com
x = 	0

��2

12
(

1 − 2
�

√
� tanh

(
�

√
�

2

)) .

3. Vertical compression load:

com
x = 	0

��2

12
(

2
�

√
� tan

(
�

√
�

2

)
− 1
) .

.9. Complete horizontal stiffness of the 1-DOF parallel spring
tage

As shown in Appendix A.3, the parallel flexure stage is composed
f two identical beams therefore its complete analytical horizontal
tiffness is simply kcom

x = 2	com
x .

It follows that the vertical compression load inducing zero hor-
zontal stiffness is simply N0 = 2
0 so that

0 = 2�2EI

L2
.

xpressing � in terms of N0 gives � = Fabs
y /(2
0) = Fabs

y /N0. The
otal horizontal stiffness for the three load cases, expressed as a
unction of the no vertical load case k0, are found by simply multi-
lying the expressions of the previous section by two.

1. No vertical load:

com
x = k0 = 24EI

L3
.

2. Vertical tensile load:

com
x = k0

��2

12
(

1 − 2
�

√
� tanh

(
�

√
�

2

)) . (A.7)

3. Vertical compression load:

com
x = k0

��2

12
(

2
�

√
� tan

(
�

√
�

2

)
− 1
) . (A.8)

.10. Linearized horizontal stiffness of the 1-DOF parallel spring
tage

In this section, we use the Taylor series expansion of the solu-
ions found in the previous section to linearize the complete
nalytic stiffness kcom

x of the 1-DOF parallel spring stage.
1. No vertical load:

lin
x = k0 = 24EI

L3
.

2. Vertical tensile load:

The Taylor expansion of tanh (X) up to third order gives

anh
(

�
√

�

2

)
= �

√
�

2
− �3�

√
�

24
+ �5�2√

�

240
eering 43 (2016) 132–145

so that

klin
x = k0

1 − ��2

10

.

Applying the Taylor expansion of 1
1+X up to second order gives

klin
x = k0

(
1 + ��2

10

)
= k0 + 6

5L
Fabs

y . (A.9)

3. Vertical compression load:
The Taylor expansion of tan(X) up to third order gives:

tan
(

�
√

�

2

)
= �

√
�

2
+ �3�

√
�

24
+ �5�2√

�

240

so that

klin
x = k0

1 + ��2

10

.

Applying the Taylor expansion for 1
1+X up to second order gives

klin
x = k0

(
1 − ��2

10

)
= k0 − 6

5L
Fabs

y . (A.10)

Finally, one notes that in Eq. (A.9) one has Fy = Fabs
y and that in

Eq. (A.10) one has Fy = −Fabs
y , so applying this and substituting the

explicit formula for k0 found in case 1 gives the main result of this
Appendix

klin
x = 24EI

L3
+ 6Fy

5L
,

as promised.

A.11. Error estimate

In this section we investigate the discrepancy between the com-
plete analytical stiffness kcom

x and the linearized analytical stiffness
klin

x as a function of � = Fabs
y /N0.

Let us define Zcom(�) = kcom
x /k0. Note that Zcom(�) expresses the

relative discrepancy from the nominal stiffness k0. We  have
1. No vertical load:

Zcom(0) = 1.

2. Vertical tensile load:

Zcom(�) = ��2

12
(

1 − 2
�

√
� tanh

(
�

√
�

2

)) .

3. Vertical compression load:

Zcom(�) = ��2

12
(

2
�

√
� tan

(
�

√
�

2

)
− 1
) .

We  similarly define Z lin(�) = klin
x /k0, which again expresses the

relative discrepancy from the nominal stiffness k0.
1. No vertical load:

Z lin(0) = 1 .

2. Vertical tensile load:

Z lin(�) = 1 + ��2

10
.

3. Vertical compression load:

Z lin(�) = 1 − ��2

10
.
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Fig. A.21. Normalized models comparison.

In Fig. A.21 the two normalized stiffness models Zcom(�) and
lin(�) are plotted on the same graph. Note that, by definition, � ≥ 0.

We define the relative error ε� between the complete and lin-
arized model to be

� = Z lin(�) − Zcom(�)
Z lin(�)

= klin
x − kcom

x

klin
x

,

o that the relative error ε� expresses the relative error in Z(�) as
ell as in kx.

For the first prototype’s beam dimensions (see Table 1), the
oad which produces a zero stiffness of the parallel spring stage
s N0 = 21.05N. The maximal applied vertical load we  consider for
his mechanism is Fabs

y = 5N, corresponding to � = 0.2375, which
ives a maximal relative error ε� = 877ppm.

For the second prototype’s beam dimensions, see Table 1, the
oad which produces a zero stiffness of the parallel spring stage is
0 = 71.06N. The maximal applied vertical load we consider for this
echanism is Fabs

y = 12N, corresponding to � = 0.1689, which gives
 maximal relative error ε� = 404ppm.

Conclusion. The 1-DOF parallel spring stage linearized analyt-
cal horizontal stiffness model used in this paper is a very good
pproximation to the complete analytical model.

.12. Parabolic trajectory with no vertical load
As shown in Appendix A.3, the mobile rigid block moves trans-
ationally so its position is uniquely described by the position Q = (x,
) of the translated point O = (0, 0). We  now show that the trajec-
ory is well approximated by a parabola. In order to do this, we

[

[
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compute the vertical displacement � of the beam extremity, see
Fig. A.20, that is, the difference between the original beam length L
before deformation and the length of the deformed beam’s projec-
tion on the y-axis. As is found in the literature [8, p. 465], � can be
evaluated by the classical formula

� 
 1
2

∫ L

0

(
x′ (y)

)2
dy. (A.11)

This formula is established using a truncated power series devel-
opment, so is valid only for small beam deflection angles.

Taking the derivative of formula (A.1) with respect to y and using
the constant values of formula (A.2) we get

x′(y) = 6f

L2

(
y − y2

L

)
, (A.12)

Using (A.11) and (A.12), we obtain the vertical displacement � as a
function of horizontal translation f

� 
 3f 2

5L
,

which is the equation of a parabola.
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