The importance of steric and electronic factors in the control of Ln by Ln is afforded.

Introduction

The molecular chemistry of Eu²⁺, Yb²⁺, and Sm²⁺ has been used in a wide variety of applications and has afforded original reactivity. Furthermore, several examples of activation of small molecules such as CO₂, CS₂, and N₂ have been reported. Due to the recognized importance of steric and electronic factors in the control of Ln²⁺ reactivity by Ln²⁺ complexes have been reported. Due to the recognized importance of steric and electronic factors in the control of Ln²⁺ reactivity, the association of the high reducing ability of divalent lanthanides with a range of appropriate supporting ligands is crucial for establishing novel Ln²⁺ mediated transformations. Carbocyclic ligands have been extensively and successfully used as supporting ligands in divalent lanthanide chemistry. However, reactivity studies associating Ln²⁺ with O or N donor chelating ligands are less developed. Tripodal polypyridyl ligands such as TPA and tripodal aminephenolate ligands have been largely used as supporting ligands in d-block chemistry but they are rarer in f element chemistry. Ln³⁺ complexes of tripodal aminobisphenolates and of the TPA ligand have been reported and were shown to promote original stoichiometric and catalytic transformations. In contrast the complexation of divalent lanthanides by the TPA ligand has never been explored. Moreover, only a few examples of Ln²⁺ complexes of tripodal aminobisphenolates have been reported. Furthermore, while some of these complexes demonstrated attractive catalytic activity and the ability of activating organic molecules, their reactivity with heteroallenes has not been investigated.

Recent results from our group show that electron-rich siloxide ligands can impart high reducing power to Ln²⁺ ions (Ea = -1.56V for Yb-siloxide, Ea = -0.63V for Eu-siloxide vs. NHE), with relatively high Ln³⁺/Ln²⁺ redox potential (E1/2 Ln³⁺/Ln²⁺) calculated for aqueous ions = -0.35 V for Eu and = -1.15 for Yb vs. NHE and E1/2 measured = -0.05V (YbI₂), 0.49V (EuI₂) vsNHE) and promote unusual reactivity in homoleptic “ate” complexes of the classical lanthanide ions Eu²⁺, Yb²⁺. In the search for new ligand systems capable to promote higher reactivity in Eu²⁺ , Yb²⁺ complexes, in this work, we investigate the influence of tripodal tetradeinate ligands of different charge (Scheme 1) on the redox properties of the Eu²⁺ and Yb²⁺ ions in homoleptic bis-ligand complexes.

Supporting information for this article is given via a link at the end of the document.

Scheme 1. Targeted N- and O-donor tripodal ligands.
The previously reported tripodal tetradentate ligands presented in scheme 1, the neutral TPA (tris(2-pyridylmethyl)amine),11, the monoaionic BPA (HBPA = bis(2-pyridylmethyl)(2-hydroxybenzyl)amine) and BPPA (HBPPA = bis(2-pyridylmethyl)(3.5-di-tert-butyl-2-hydroxybenzyl)amine) ligands12, 20 and the dianionic MP\textsubscript{2} ligand (H\textsubscript{2}MP\textsubscript{a} = (2-pyridylmethyl)bis(3.5-di-tert-butyl-2-hydroxybenzyl)amine),21 provide a series of analogous ligands with different charge which allow to investigate the effects of electronics on the stability and reactivity of divalent lanthanides. Here we report the first examples of heteroleptic mono-ligand and homoletic bis-ligand complexes of TPA with the Sm3+, Eu3+ and Yb3+ ions. We also report the synthesis and crystal structure of the [Eu(TPA)]\textsubscript{3} complex and its reactivity with CS\textsubscript{2}. The redox properties of the bis-ligand complexes of Eu3+ and Yb3+ have been investigated for all the tetradeinate ligands presented in scheme 1.

Results and Discussion

TPA complexes

The Ln3+ heteroleptic mono-ligand complexes [Ln(TPA)]\textsubscript{2} were obtained from the reaction of the divalent lanthanide iodide salts LnI\textsubscript{2} (Ln= Sm3+, Yb3+, Eu3+) with one equivalent of TPA in THF. Crystals suitable for X-ray diffraction of [Yb(TPA)]\textsubscript{2}(CH\textsubscript{3}CN)\textsubscript{2}.CH\textsubscript{3}CN\textsubscript{0.5} and of [Eu(TPA)](µ-I)\textsubscript{2} were obtained by slow diffusion of diisopropylether into acetonitrile solutions of the Yb3+ and Eu3+ complexes.

The complex [Yb(TPA)]\textsubscript{2}(CH\textsubscript{3}CN)\textsubscript{2}.CH\textsubscript{3}CN\textsubscript{0.5}, crystallizes in the orthorhombic Pbca space group (Figure 1 Bottom). The europium ion is situated 1.253 Å above the plane defined by the N\textsubscript{pyrol} atoms. This value is larger than one observed for the Yb3+ in [Yb(TPA)]\textsubscript{2}(CH\textsubscript{3}CN) (1.087 Å) due to the smaller ionic radius of the Yb3+ ion compared to the Eu3+. These differences are probably responsible for the observed nuclearity of the Yb and Eu complexes in the solid state crystal structure. The structure has a C\textsubscript{2} symmetry with a two-fold axis passing through the two bridging iodides. The europium atoms are seven coordinated, with a distorted monocapped octahedron geometry by four nitrogen atoms of TPA, two cis coordinated iodide ions and a nitrogen atom of an acetonitrile molecule. The coordination of the acetonitrile is nearly linear, with an Yb-N21-C21 angle of 172.7(4)°. The triangular face N3, N2, N4 is capped by a distorted monocapped octahedron geometry by the four nitrogens of the TPA ligand, one terminal and two bridging iodide ligands. The ligand TPA adopts an helical arrangement around the metal cation as found in the in the Eu3+ complex [Eu(TPA)]Cl\textsubscript{6}136. The average Eu-N\textsubscript{pyrol} distance is 2.67(1) Å and is significantly shorter than the Eu-N\textsubscript{amine} distance (2.748(3) Å). Significantly shorter Eu-N distances were found in the Eu3+ complex [Eu(TPA)]Cl\textsubscript{6}136 (Eu-N\textsubscript{amine} = 2.612(1) Å; mean Eu-N\textsubscript{pyrol} = 2.57(2) Å) but the difference in bond length values remain smaller that the difference in ionic radii (0.2 Å).122 The Eu-I distance is shorter for...
the terminal iodide (Eu-I2=3.2888(3) Å) than for the bridging ones (Eu-I1=3.3142(1) Å and 3.3111(1) Å).

Due to the strong paramagnetism of the 4f electronic configuration of Eu2+, no informative NMR spectrum could be obtained for the europium complexes. In contrast, the 1H NMR spectrum of the Yb2+ complex in deuterated acetonitrile shows a set of 5 (with two signals overlapping) signals in the diamagnetic region from 4.0 to 8.8 ppm in agreement with the presence of dynamically averaged C3v symmetric solution species. The [Eu(TPA)2]2 and [Yb(TPA)2] complexes are stable both in solid state and in acetonitrile solution. In contrast the [Sm(TPA)2] complex is stable in the solid state but decomposes rapidly in acetonitrile solution preventing further characterization.

Thus, TPA has proven a suitable ligand for the synthesis of stable heteroleptic complexes of the Eu(II) and Yb(II) cations. Therefore, we also investigated the possibility of preparing homoleptic 2:1 complexes of TPA.

The Ln2+ homoleptic complexes [Ln(TPA)2]2 (Ln=Sm, Yb, Eu) have been obtained by reacting the divalent lanthanide iodide salts LnI2 (Ln=Sm2+, Yb2+, Eu2+) with two equivalents of TPA in THF at room temperature (Scheme 2). The isolated complexes have been characterized by 1H NMR spectroscopy, X-ray crystallography and elemental analysis. Due to the very low solubility of these complexes in THF, crystals suitable for X-ray diffraction were obtained by slow diffusion of the ligand into a solution of LnI2 in THF (for Eu, Sm) or by slow diffusion of DPE into a concentrated solution of the complex in acetonitrile (for Yb). The complexes [Sm(TPA)2]2 and [Eu(TPA)2]2 both crystallize in the monoclinic centrosymmetric P21/c space group. The complex [Yb(TPA)2]2 crystallizes in the non-centrosymmetric monoclinic Cc space group. The two complexes are isostructural and accordingly only the ellipsoid diagram of [Sm(TPA)2]2+ is given in Figure 2 (top).

Scheme 2. Synthesis of [Ln(TPA)2]2.

In the [Ln(TPA)2]2+ complexes the metal cations are 8-coordinated by the 8 nitrogens from the TPA ligands with a distorted cubic geometry. The angle between the two square faces is 1.46° in the Yb complex [Yb(TPA)2]2 while the two faces are perfectly parallel (0°) in the [Sm(TPA)2]2 and [Eu(TPA)2]2 complexes resulting in a less distorted polyhedron. The N-N distances defining the edges of the cube range from 2.77 Å to 3.48 Å for [Sm(TPA)2]2, 2.77 Å to 3.45 Å for [Eu(TPA)2]2, 2.65 Å to 3.38 Å for [Yb(TPA)2]2, and the angles within the cube described by the eight N atoms lie between 72.67° and 96.19° for [Sm(TPA)2]2, 73.28° and 96.28° for [Eu(TPA)2]2, 75.42° and 97.12° for [Yb(TPA)2]2. The value of the N-Ln-N (Ln= Sm, Eu) trans angles is of 180° as required by the presence of an inversion center symmetry in the [Sm(TPA)2]2 and [Eu(TPA)2]2 complexes. The mean value of the Ln-N distances found for pyrdyl nitrogen are 2.69(2) Å for [Sm(TPA)2]2, 2.67(2) Å for [Eu(TPA)2]2, and 2.60(2) Å for [Yb(TPA)2]2. The mean value of the Ln-N distance found for the apical tertiary amine nitrogen is 2.730(8) Å, 2.727(3) Å and 2.65(2) Å for the Sm, Eu and Yb complexes respectively (Table 1 and 2). Similarly to the previously reported trivalent analogues,[15a] the Ln-N distances show a linear increase with increasing ionic radii as expected in a ionic bonding model and for ligands that can adapt well to metals of different sizes. In the structures of the [Ln(TPA)2]2+ complexes the two ligands show opposite right and left handed helical arrangement around the cation (Figure 2 bottom left). This differs from the structure of the previously reported Ln3+ complexes [Ln(TPA)3]3+ (Ln= La3+, Ce3+, Nd3+), [Eu(TPA)2]OTf[15a] and of the U3+ [U(TPA)3][Cl3] complex where both ligands have the same helical arrangement. Such difference in the ligand arrangement is probably the result of the larger ionic radius of the Ln3+ ions compared to the Ln2+ ones. Notably the same difference is also observed between the structure of [Sm(TPA)2]2 and that of the Sm3+ complex [Sm(TPA)3]3+ (Figure 2 bottom right) prepared according to the procedure described for [Ln(TPA)2]2+ complexes.[15a] The Ln-N distances found in the [Sm(TPA)3]3+ (Sm-Npyridine= 2.55(3) Å and Sm-Namine=2.59(2) Å) are shorter than those found in [Sm(TPA)2]2 (Sm-Npyridine= 2.69(2) Å and Sm-Namine=2.730(8) Å) in agreement with the difference in the ionic radii between Sm3+ (1.079 Å) and Sm2+ (1.27 Å).[22]

The proton 1H NMR spectra of the [Ln(TPA)2]2 complexes (Ln= Sm2+ and Yb2+) in CD3CN shows the presence of one set of signals with four resonances for the pyrdyl protons and a single resonance for the methylene protons both at room temperature and at low temperature (283 K) in agreement with the presence of dynamically averaged D3h symmetric solution species in which all chelating arms of the TPA ligand are equivalent. The complex [Sm(TPA)2]2 is insoluble in THF and unstable at room temperature in acetonitrile. After one day, the color of the acetonitrile solution turned from blue green to yellow and only unidentified decomposition products are found in solution.
The complexes [Yb(TPA)2]2 and [Eu(TPA)2]2 are stable for weeks in acetonitrile at room temperature. The higher solution stability compared to the Sm2+ analogue is in agreement with the less negative LnIII/Ln2+ redox potential of Eu and Yb ions (-0.35 V and -1.15 vs. NHE respectively) compared to that of Sm (-1.55 vs. NHE) and with the electrochemistry studies carried out on the homoleptic complexes (see electrochemistry section).

In order to investigate how the charge and electron-donor character of the ligand affects the redox properties and reactivity of Ln2+ ions we have studied the complexation of Yb and Eu in the oxidation state +III and +II by the monoanionic tetradentate ligands BPA- and BPPA- and by the dianionic MPA2- ligands. Due to their low solution stability we did not attempt the study of the analogous BPA- and BPPA- complexes of Sm2+.

BPA complexes

The [Ln(BPA)2]OTf complexes (Ln = Eu, Yb) were prepared in situ for electrochemistry studies by reacting the trivalent lanthanide salts Ln(OTf)3 with 2 equivalents of the KBPA ligand in acetonitrile (Scheme 2). The Eu3+ complex [Eu(BPA)2]OTf was also prepared and characterized. Orange crystals suitable for X-ray diffraction were obtained from a slow diffusion of DIPE into a THF solution of the complex.

Scheme 2. Synthesis of [Eu(BPA)2] and [Ln(BPA)2]OTf complexes.

[Eu(BPA)2]OTf crystallizes in the monoclinic P21/c space group. The structure presents an octacoordinated europium surrounded by two BPA ligands in a distorted dodecahedral fashion (Figure 3 left). Similar values are found for the average Eu-Npyridyl bond distances (mean value = 2.62(3) Å) and the Eu-Namine distance (2.61(5) Å). The mean value of the Eu-O distances is 2.34(8) Å and fall in the range of Eu-Ophenoxide bond distances reported in the literature. The two ligands BPA wrap around the Eu3+ cation with a pincer arrangement rather than the helical one found in bis-TPA complexes (Figure 3). The 1H NMR spectrum of the complex in CD3CN shows a set of very broad signals for the 18H from 31 to -18 ppm.

The reaction of the divalent Eu2 salt with 2 equivalents of the KBPA ligand in THF leads to isolation of the neutral homoleptic Eu2+ complex [Eu(BPA)2] (Scheme 2). The complex has very low solubility in THF but is partially soluble in acetonitrile and pyridine and is stable in the three solvents for several weeks. The paramagnetism of the Eu2+ ion leads to an uninformative 1H NMR spectrum. Suitable single crystals were obtained from slow diffusion of hexane into a pyridine solution of the complex. The X-ray diffraction studies show the presence of the bis-ligand complex [Eu(BPA)2], which crystallize in monoclinic system and P21/c space group. The overall neutral charge is in agreement with the presence of an Eu2+ cation. The octacoordinated europium is surrounded by two ligands in a distorted cubic fashion (Figure 3 right). The two ligands wrap around the metal ion in a geometry that brings the two oxygen atoms from the phenolate arms side by side. In each ligand, a Eu-Npyridyl distance is significantly shorter than the other: 2.755(3) Å and 2.666(3) for the first ligand, 2.742(3) and 2.887(3) Å for the second one. These distances are slightly elongated compared to the bis-TPA europium complex where the average Eu-Npyridyl is 2.68(2) Å. This is probably due to the steric effect of the phenol arms. The average value of the Eu-Npyridyl 2.83(5) Å is 0.1 Å longer than the value found for the bis-ligand complexes [Eu(TPA)2]2. The large lengthening of the Eu-N and Eu-O (2.83(5) Å) distances found in the [Eu(BPA)2] compared to the...
Eu$^{3+}$ analogue can be interpreted in term of the difference in ionic radii of the Eu$^{3+}$ and Eu$^{2+}$ cations (0.19 Å). The two ligands in the Eu$^{2+}$ complex adopt the same helical conformation leading to a chiral complex. Both enantiomers $\Delta\Delta$ and $\Delta\Lambda$ are present in the structure.

Attempts to isolate single crystals of the Yb$^{2+}$ [Yb(BPA)$_2$]$^+$ complex failed due to the low stability of this species at -40°C. Proton NMR studies of the reaction of YbI$_2$ with two equivalents of the KBPA ligand salt in THF at 233 K or at room temperature show the presence of a complicated mixture of paramagnetic species while proton NMR studies of the reaction of YbI$_2$ with two equivalents of the KBPA ligand salt in acetonitrile at 233 K show paramagnetic signals assigned to the Yb$^{2+}$ [Yb(BPA)$_2$]$^+$ complex. Signals of intermediate diamagnetic species are also observed immediately after mixing the YbI$_2$ and the ligand, but these species decompose even at 233 K. After 1 night at room temperature or at 233 K, the THF and acetonitrile reaction mixture became deep blue. The deep blue color of the reaction mixture after complete decomposition is suggestive of the presence of additional reaction products since the [Yb(BPA)$_2$]$^+$ complex is colorless. The formation of [Yb(BPA)$_2$]$^+$ could arise from a disproportionation reaction of a Yb$^{2+}$ intermediate species to Yb$^{3+}$ and Yb0 or from solvent/ligand reduction. Notably C-C coupling of aromatic heterocycles by Yb$^{2+}$ complexes has been previously reported. Attempts to isolate potential additional decomposition products were not successful.

These results indicate that the replacement of one pyridine of the TPA ligand with a phenol group reduces significantly the stability of the respective homoleptic Yb$^{2+}$ complexes compared to their Yb$^{3+}$ analogues. The difference in stability of the [Eu(BPA)$_2$]$^+$ and of the [Yb(BPA)$_2$]$^+$ complexes can be explained by the difference in redox potential between the two cations (see electrochemistry section).

However, the proton NMR in CD$_2$CN of a solution of YbI$_2$ reacted with one equivalent of BPA ligand shows the presence of only one set of signals in the diamagnetic region, in agreement with the formation of a stable heteroleptic Yb$^{2+}$ complex. Indeed, the complex [Yb(BPA)I(CH$_3$CN)]$_2$ (Figure 4) crystallizes from a saturated acetonitrile solution in the P2$_{1}$/n space group. The crystals structure of the Yb$^{2+}$ mono-BPA complex shows that the phenolate oxygen atoms of the ligand BPA bridge two Yb$^{2+}$ ions affording a dimer with an inversion center in the middle of the YbO0Yb diamond core (Figure 4). The two Yb ions are heptacoordinated by three nitrogen and two oxygen atoms from the BPA ligands, one nitrogen from an acetonitrile molecule and one iodide with a distorted pentagonal bipyramidal geometry. The value of the Yb-N$_{amine}$ distance (2.594(3) Å) and the average value of the Yb-N$_{phenolide}$ distance (2.626(9) Å) are similar to those found for the Yb-N$_{amine}$ and Yb-N$_{phenolide}$ distances in the [Yb(TPA)$_2$]I(CH$_3$CN) and [Yb(TPA)$_2$I$_2$] complexes. The Yb-O distances is 2.346(3) Å and falls in the range of bridging Yb-O phenolide bond distances reported in literature.

These results suggest that, in spite of its more electron rich character compared to TPA, the BPA ligand can be used in the preparation of stable heteroleptic complexes of divalent ytterbium. Future studies will be directed to investigate the reactivity and catalytic activity of this compound.

BPPA complexes

The [Ln(BPPA)$_2$]OTf complexes (Ln = Eu, Yb) were prepared in situ for electrochemistry studies by reacting the trivalent lanthanide salt Ln(OTf)$_3$ with 2 equivalents of the KBPPA ligand in acetonitrile (Scheme 3). The Eu$^{3+}$ complex [Eu(BPPA)$_2$]OTf was also isolated and characterized. The complex is partially soluble in THF but fully soluble in acetonitrile. The 1H NMR spectrum of this complex in CD$_2$CN shows 34H broad and sharp peaks.
signals in the range -15 to +23 ppm. The quality of the X-ray data collected for the orange needles obtained by a slow diffusion of hexane into a pyridine solution of the complex was good enough to establish the overall structure and connectivity (Figure 5) but insufficient to allow the discussion of the bond distances.

Scheme 3. Synthesis of [Ln(BPPA)₂]OTf complexes.

The crystal structure shows that the europium center is octacoordinated by two tetradeutate BPPA ligands with a distorted cubic geometry. The ligand arms are both in a helical conformation presenting opposite rotation direction. This results in an achiral complex. The overall monocationic charge of the Eu³⁺ complex is counterbalanced by the triflate anion. The structure of the [Eu(BPPA)₂]OTf complex shows that the presence of the bulky tBu-butyl substituents do not prevent formation of homeoleptic bis-ligand complexes.

Figure 5. Ellipsoid diagrams of [Eu(BPPA)₂]OTf (50% probability ellipsoids). Hydrogen atoms, solvent molecules, disorder and triflate counter anion are omitted for clarity.

MPA complexes

Proton NMR studies in CD₃CN/THF of the reaction of the trivalent lanthanide salts Ln(OTf)₃ (Ln= Eu, Yb) with 1 or 2 equivalents of the K₂MPA ligand show the formation of the bis-ligand complex independently of the used stoichiometry (Scheme 4). This suggests a strong preference of the MPA²⁻ for the formation of 2:1 complexes, a behavior rarely encountered in coordination chemistry,[24] but previously reported for Nd³⁺ complexes of aminobis-phenolates.[17b] The bis-ligand “ate” complex [Yb(MPA)₂]K was isolated from the reaction of Yb(OTf)₃ with 2 equivalents of the K₂MPA ligand in THF. The presence of the tert-butyl groups renders the final complex very soluble in non-polar solvents such as hexane. Colorless crystals suitable for X-ray diffraction of the complex [Yb(MPA)₂K(dme)₂] were obtained from a concentrated solution of the complex in hexane/dme (30:1) at 233 K. The X-ray crystal structure (Figure 6) shows that two MPA ligands bind to the Yb³⁺ ion, but in the resulting complex the pyridine nitrogens remain not binding with a Ln-N distance of 5.393(19) Å.

Scheme 4. Synthesis of [Ln(MPA)₂]K complexes.

As a result the ytterbium center is only hexacoordinated by two MPA ligands in a distorted octahedral fashion. The average values of the Yb-O distance and of the Yb-Nmo₃ distance are respectively 2.16(2) Å and 2.448(16) and are slightly shorter than the Yb-O and Yb-Nmo₃ average distances of the divalent Yb complex [Yb(BPA)][(CH₃CN)₂]. This is in agreement with the shorter ionic radius of Yb(III) center (Table 2). A potassium cation is also present in the structure binding a phenolate oxygen from each ligand with a K-O distance of 2.794(14) Å. The K coordination sphere is completed by two dme molecules. The ¹H NMR spectrum of [Yb(MPA)₂]K in CD₃CN shows the presence of paramagnetically shifted signals in the -50 - +186 ppm range, indicative of a Yb³⁺ metal centre.

While X-ray suitable crystals of the [Eu(MPA)₂]K complex were not obtained, the ¹H NMR spectrum of a 1:2 solution of Eu₂ and K₂MPA in CD₃CN only shows one set of paramagnetically shifted signals in the -9 to +10 ppm range.

Table 1. Selected average bond distances (Å) for Eu complexes.

<table>
<thead>
<tr>
<th>Bonds</th>
<th>[Eu⁺(TPA)]⁻[µ-I][I]</th>
<th>[Eu⁺(TPA)₂]⁻</th>
<th>[Eu⁺(BPA)]⁻OH</th>
<th>[Eu⁺(BPA)]⁻</th>
<th>OTf</th>
<th>[Eu⁺(BPA)]⁻[K][OTf]</th>
<th>[Eu⁺(BPA)]⁻[K][DMSO]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu⁺</td>
<td>N_{tetra}</td>
<td>2.748(3)</td>
<td>2.731(3)</td>
<td>2.63(5)</td>
<td>2.64(5)</td>
<td>2.674(8)</td>
<td></td>
</tr>
<tr>
<td>Eu⁺</td>
<td>N_{pyram}</td>
<td>2.67(1)</td>
<td>2.68(2)</td>
<td>2.749(9) and 2.88(1)</td>
<td>2.62(3)</td>
<td>2.61(1)</td>
<td></td>
</tr>
<tr>
<td>Eu⁻</td>
<td>/</td>
<td>/</td>
<td>2.41(3)</td>
<td>2.234(8)</td>
<td>2.273(7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This suggests a strong preference of the MPA²⁻ for the formation of 2:1 complexes, a behavior rarely encountered in coordination chemistry[24] but previously reported for Nd³⁺ complexes of aminobis-phenolates.[17b] The bis-ligand “ate” complex [Yb(MPA)₂]K was isolated from the reaction of Yb(OTf)₃ with 2 equivalents of the K₂MPA ligand in THF. The presence of the tert-butyl groups renders the final complex very soluble in non-polar solvents such as hexane. Colorless crystals suitable for X-ray diffraction of the complex [Yb(MPA)₂K(dme)₂] were obtained from a concentrated solution of the complex in hexane/dme (30:1) at 233 K. The X-ray crystal structure (Figure 6) shows that two MPA ligands bind to the Yb³⁺ ion, but in the resulting complex the pyridine nitrogens remain not binding with a Ln-N distance of 5.393(19) Å.

Scheme 4. Synthesis of [Ln(MPA)₂]K complexes.

As a result the ytterbium center is only hexacoordinated by two MPA ligands in a distorted octahedral fashion. The average values of the Yb-O distance and of the Yb-Nmo₃ distance are respectively 2.16(2) Å and 2.448(16) and are slightly shorter than the Yb-O and Yb-Nmo₃ average distances of the divalent Yb complex [Yb(BPA)][(CH₃CN)₂]. This is in agreement with the shorter ionic radius of Yb(III) center (Table 2). A potassium cation is also present in the structure binding a phenolate oxygen from each ligand with a K-O distance of 2.794(14) Å. The K coordination sphere is completed by two dme molecules. The ¹H NMR spectrum of [Yb(MPA)₂]K in CD₃CN shows the presence of paramagnetically shifted signals in the -50 - +186 ppm range, indicative of a Yb³⁺ metal centre.

While X-ray suitable crystals of the [Eu(MPA)₂]K complex were not obtained, the ¹H NMR spectrum of a 1:2 solution of Eu₂ and K₂MPA in CD₃CN only shows one set of paramagnetically shifted signals in the -9 to +10 ppm range.

Table 1. Selected average bond distances (Å) for Eu complexes.

<table>
<thead>
<tr>
<th>Bonds</th>
<th>[Eu⁺(TPA)]⁻[µ-I][I]</th>
<th>[Eu⁺(TPA)₂]⁻</th>
<th>[Eu⁺(BPA)]⁻OH</th>
<th>[Eu⁺(BPA)]⁻</th>
<th>OTf</th>
<th>[Eu⁺(BPA)]⁻[K][OTf]</th>
<th>[Eu⁺(BPA)]⁻[K][DMSO]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu⁺</td>
<td>N_{tetra}</td>
<td>2.748(3)</td>
<td>2.731(3)</td>
<td>2.63(5)</td>
<td>2.64(5)</td>
<td>2.674(8)</td>
<td></td>
</tr>
<tr>
<td>Eu⁺</td>
<td>N_{pyram}</td>
<td>2.67(1)</td>
<td>2.68(2)</td>
<td>2.749(9) and 2.88(1)</td>
<td>2.62(3)</td>
<td>2.61(1)</td>
<td></td>
</tr>
<tr>
<td>Eu⁻</td>
<td>/</td>
<td>/</td>
<td>2.41(3)</td>
<td>2.234(8)</td>
<td>2.273(7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The reaction of the divalent Eu\(_{2}\) salt with two equivalents of K\(_3\)MPA in THF at 233 K leads to the formation of intermediate Eu\(^{2+}\) species which decompose slowly to afford the Eu\(^{3+}\) complex [Eu(MPA)\(_2\)K] as identified by NMR spectroscopy. \(^1\)H NMR studies of the 1:2 Yb\(_{2}\): K\(_3\)MPA reaction in THF at 233 K show the immediate formation of the Yb\(^{3+}\) complex [Yb(MPA)\(_2\)K], which was also identified by X-ray diffraction studies. The formation of the [Ln(MPA)\(_2\)K] compounds could arise from a disproportionation process affording the Ln\(^{3+}\) bis-ligand complexes and Ln\(^{3+}\) (not unambiguously identified), or from solvent/ligand reduction.

The formation of a bis-ligand complex of Yb\(^{3+}\) has also been observed for the reaction of the Yb\(_2\)I\(_2\) or the [Yb(N(SiMe\(_3\))\(_2\)2] precursors with tripodal aminoisobisphenate ligands containing a methoxide arm\(^{[18]}\) or a dimethylamine arm\(^{[18]}\).

The presented results show that the replacement of two pyridyl groups in the TPA ligand with two phenoxide groups prevents the formation of stable homoleptic bisligand complexes for both the Yb\(^{3+}\) and Eu\(^{2+}\) ions.

In order to relate the stability properties of the described complexes to their redox properties, cyclic voltammetry studies were carried out on the homoleptic complexes of the ligands TPA, BPA, BPBA and MPA.

Electrochemistry Studies

Cyclic voltammograms were measured in acetonitrile on samples of the trivalent complexes [Yb(TPA)\(_2\)]OTf and [Eu(TPA)\(_2\)]OTf (Figure S.C.2) prepared in situ. These data clearly show the quasi-reversible reduction of the metal center at \(E_{1/2} = \) -1.11 V and -0.41 V vs Fc\(^+/\)Fc, respectively. The cyclic voltammograms of the Sm complex [Sm(TPA)\(_2\)]OTf prepared in situ shows an irreversible reduction of the metal center at -1.7 V vs Fc\(^+/\)Fc (Figure S.C.2). The irreversible character of this event is in agreement with the instability of the divalent Sm complex [Sm(TPA)\(_2\)]\(^{2+}\) in acetonitrile. The cyclic voltammogram of the free ligand (see supporting info) confirms the absence of redox events at these potentials when the metal ions are missing. The voltammogram of the free ligand also presents an irreversible oxidation feature at \(E_{1/2} = 0.63 \) V which is attributed to the oxidation of the central tertiary amine. This event is absent in the voltammogram of [Eu(TPA)\(_2\)]OTf. The coordination of the amine to the metal center probably renders its oxidation more difficult resulting in a shift of this wave from 0.63 V to higher potentials.

Table 2. Selected average bond distances (Å) for Yb complexes.

<table>
<thead>
<tr>
<th>Bonds</th>
<th>[Yb(^2+)(TPA)(_2)](^+) (CH(_3)CN)</th>
<th>[Yb(^2+)(TPA)(_2)](^+) (CH(_3)CN)</th>
<th>[Yb(^3+)(MPA)(_2)]K (dme)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yb-N(_{\text{amine}})</td>
<td>2.620(4)</td>
<td>2.65(3)</td>
<td>2.594(3)</td>
</tr>
<tr>
<td>Yb-N(_{\text{phen}})</td>
<td>2.565(6)</td>
<td>2.68(2)</td>
<td>2.626(9)</td>
</tr>
<tr>
<td>Yb-O</td>
<td>/</td>
<td>/</td>
<td>2.346(3)</td>
</tr>
</tbody>
</table>

Figure 6. Ellipsoid diagram of [Yb(MPA)\(_2\)]K(dme)\(_2\)] (50% probability ellipsoids). Hydrogen atoms, solvent molecules and methyl groups are omitted for clarity. *\(^{\text{a}}\) y,x,-z.

\(^1\)H NMR studies of the reaction of Yb\(_2\)I\(_2\) with one equivalent of K\(_3\)MPA in THF at 233 K show the formation of a diamagnetic species assigned to the [Yb(MPA)\(_2\)] complex (Figure S.A.12). A broad uninformative proton NMR spectrum is obtained for the reaction of Eu\(_2\)I\(_2\) with one equivalent of K\(_3\)MPA in THF at 233 K suggesting the presence of the Eu\(^{3+}\) ion. The neutral [Ln(MPA)\(_2\)] complexes are stable in THF at room temperature, but the addition of small ligand excess leads in both cases to the apparition of the paramagnetic signals of the Eu\(^{2+}\) and Yb\(^{3+}\) complexes. Stable mono-ligand complexes of Yb\(^{3+}\) with bulky aminobisphenate (\(^{\text{a}}\)Buyl substituents on the phenolate groups) containing a methoxy\(^{[16,19a]}\) or a dimethylamine arm\(^{[18a]}\) have been previously reported and proven active catalysts in ring-opening polymerization of cyclic esters.\(^{[16,15a,19a]}\) Attempts to isolate crystal of the neutral [Ln(MPA)\(_2\)] complexes suitable for X-ray diffraction were not successful so far. However, NMR studies suggest that the presence of a pyridyl arm does not lead to a decreased stability of the mono-ligand Yb\(^{3+}\) complexes compared to the methoxy and dimethylamino arms.

The reaction of the divalent Eu\(_{2}\) salt with two equivalents of K\(_3\)MPA in THF at 233 K leads to the formation of intermediate Eu\(^{2+}\) species which decompose slowly to afford the Eu\(^{3+}\) complex [Eu(MPA)\(_2\)K] as identified by NMR spectroscopy. \(^1\)H NMR studies of the 1:2 Yb\(_{2}\): K\(_3\)MPA reaction in THF at 233 K show the immediate formation of the Yb\(^{3+}\) complex [Yb(MPA)\(_2\)K], which was also identified by X-ray diffraction studies. The formation of the [Ln(MPA)\(_2\)K] compounds could arise from a disproportionation process affording the Ln\(^{3+}\) bis-ligand complexes and Ln\(^{3+}\) (not unambiguously identified), or from solvent/ligand reduction.

The formation of a bis-ligand complex of Yb\(^{3+}\) has also been observed for the reaction of the Yb\(_2\)I\(_2\) or the [Yb(N(SiMe\(_3\))\(_2\)2] precursors with tripodal aminoisobisphenate ligands containing a methoxide arm\(^{[18]}\) or a dimethylamine arm\(^{[18]}\).

The presented results show that the replacement of two pyridyl groups in the TPA ligand with two phenoxide groups prevents the formation of stable homoleptic bisligand complexes for both the Yb\(^{3+}\) and Eu\(^{2+}\) ions.

In order to relate the stability properties of the described complexes to their redox properties, cyclic voltammetry studies were carried out on the homoleptic complexes of the ligands TPA, BPA, BPBA and MPA.
In order to investigate the impact of the presence of phenolate oxygen donors on the redox properties of their Yb$^{3+}$ and Eu$^{3+}$ complexes we studied the redox properties of the analogous BPA and MPA complexes.

The cyclic voltammograms obtained in acetonitrile solutions of the trivalent complex [Yb(BPA)$_2$]OTf prepared in situ show an irreversible reduction of the metal center at the very low potential of -2.41 V (vs Fc$^+/\text{Fc}$) close to the reduction of the solvent (Figure 8-b). This reduction does not become reversible even at 1 V/s scan rate suggesting that a highly reactive Yb$^{3+}$ species is formed. Notably, a shift to more negative potentials of the metal center reduction process is observed for both [Yb(BPA)$_2$]OTf and [Eu(BPA)$_2$]OTf complexes compared to the TPA analogous complexes (from $E_{pc}=-1.17$ V to $E_{pc}=-2.41$ V i.e. -1.24V shift for Yb and from $E_{pc}=-0.48$ V to $E_{pc}=-1.73$ V i.e. -1.25 V shift for Eu).

The substitution of a pyridine arm on TPA by an anionic phenolate arm on BPA ligand renders the metal center significantly more electron-rich and thus more difficult to reduce. As a result the corresponding Ln$^{2+}$ species are much more reductive.

While the complexes [Yb(TPA)$_2$]OTf and [Eu(TPA)$_2$]OTf did not exhibit any oxidation process in the range 0.5-1 V, the voltammograms of the complex [Yb(BPA)$_2$]OTf and [Eu(BPA)$_2$]OTf show also an irreversible oxidation at 0.70 V and 0.72 V, respectively attributed to the oxidation of the phenolate function on the BPA ligand that are easier to oxidize than the tertary amine (see supporting info).

A summary of the redox potentials is given in Table 3 to 6.

Reactivity

A preliminary study of the reactivity of the isolated Ln$^{2+}$ complexes with heteroallens has been carried out. The Ln$^{2+}$ complexes [Ln(TPA)$_3$]$:I_2$ do not react with CO$_2$ or CS$_2$. The [Eu(BPA)$_3$] and [Eu(MPA)$_3$K] complexes do not react with carbon dioxide. In contrast [Eu(BPA)$_3$] reduces CS$_2$. When 1 eq of 13CS$_2$ was added to a THF suspension or a pyridine solution of [Eu(BPA)$_3$], a color change from purple to red was observed. Only the signals of the trivalent Eu complex [Eu(BPA)$_3$]$^+$ appear in the 1H NMR spectrum probably due to the fluxional nature of a putative [Eu(CS$_2$)(BPA)$_3$]$^+$ complex. Dissolution of the reaction mixture in deuterated DMSO leads to the release of the free...
ligand BPA and to the appearance in the proton NMR spectrum of an additional set of paramagnetic signals assigned to the thiocarbonate complex \([\text{Eu(BPA)}(\text{CS}_3)(\text{DMSO})_2]\) (Scheme 5). Slow diffusion of toluene into a DMSO solution of the reaction products lead to the isolation in 33% yield of the analytically pure \([\text{Eu(BPA)}(\text{CS}_3)(\text{DMSO})_2]\). The structure of the complex was confirmed by X-ray diffraction analysis. When 1 eq of \(^{13}\text{CS}_2\) is added to a 1:1 solution of \(\text{Eu}^{2+}\) and \(\text{KBPA}\) in pyridine, the formation of the \([\text{Eu(BPA)}]^{3+}\) complex is observed by proton NMR. However, the \(^1\text{H NMR}\) of the reaction mixture in deuterated DMSO does not show the formation of the \([\text{Eu(BPA)}(\text{CS}_3)(\text{DMSO})_2]\). This suggests that, in this case, different products are formed from the reduction of \(\text{CS}_2\) that could not be identified.

\[\text{Scheme 5. Synthesis of [Eu(BPA)(CS}_3)(\text{DMSO})_2].}\]

The structure \([\text{Eu(BPA)}(\text{CS}_3)(\text{DMSO})_2]\) (Figure 10) shows the presence of a trivalent europium ion surrounded by one BPA ligand and a terminal thiocarbonate moiety. The coordination sphere is completed by two DMSO molecules. The europium center is octacoordinated in a distorted dodecahedral fashion. The values of the Eu-Namine, of Eu-Npyridyl and Eu-OPh antarafacial distances (respectively 2.672(6) Å, 2.601(7) Å and 2.588(7) Å and 2.272(5) Å) are very similar to those found in the Eu\(^{3+}\) bis-ligand complex \([\text{Eu(BPA)}]^{3+}\text{OTf}\). The average Eu-S bond (2.88(1) Å) falls in the range of Eu-S distances previously reported for Eu\(^{3+}\) thiocarbamate complexes.\(^{[26]}\) The S-C bonds of the thiocarbonate moiety, S1-C2 and S2-C2 measure respectively 1.735(10) Å and 1.725(10) Å. The S3 atom is disordered between two positions. The main position (55% occupancy) leads to a C-S distance of 1.748(15) Å, the minor position (45% occupancy) leads to a shorter C-S distance of 1.630(16) Å. The C-S bond distances remain in the range of previously reported thiocarbamate complexes.\(^{[36-37]}\)

There are two previous reports of trithiocarbonate complexes containing f elements.\(^{[28-29]}\) but the complex \([\text{Eu(BPA)}(\text{CS}_3)(\text{DMSO})_2]\) is the first example of a trithiocarbonate complex containing a 4f element. Moreover only three examples of \(\text{CS}_2\) reduction by lanthanide complexes have been reported before. The reduction of \(\text{CS}_2\) by Eu\(^{3+}\) and Yb\(^{3+}\) tetrathiosiloxide complexes has been reported by our group\(^{[34]}\) and was found, by \(^{13}\text{C NMR}\) studies, to afford trithiocarbonate and tetrathiooxalate products in different ratios depending on the Ln\(^{3+}\) ion. However, the \(\text{CS}_2\) reduction products are quickly released in the reaction media and no lanthanide bound product was isolated. Very different results were found for the reaction of formamidinato\(^{[35]}\) and guanidinato\(^{[36]}\) complexes of Sm\(^{2+}\) with \(\text{CS}_2\). These compounds were found to promote a C-S coupling reaction affording the thioformyl carbonotrithioate the \((\text{SCSCS}_2)\) bridging ligand.

\[\text{Table 3. Voltammetric data for Eu complexes (vs Fc+/Fc).}\]

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Metal-based wave</th>
<th>Ligand-based waves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_{pc}) (V)</td>
<td>(E_{pa}) (V)</td>
</tr>
<tr>
<td>([\text{Eu(TPA)}]^{3+}\text{OTf})</td>
<td>-0.46</td>
<td>-0.36</td>
</tr>
<tr>
<td>([\text{Eu(BPA)}]^{3+}\text{OTf})</td>
<td>-1.77</td>
<td>-1.66</td>
</tr>
<tr>
<td>([\text{Eu(BPPA)}]^{3+}\text{OTf})</td>
<td>-1.78</td>
<td>-1.52</td>
</tr>
</tbody>
</table>

\[\text{Table 4. Voltammetric data for Eu complexes (vs NHE).}\]

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Metal-based wave</th>
<th>Ligand-based waves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_{pc}) (V)</td>
<td>(E_{pa}) (V)</td>
</tr>
<tr>
<td>([\text{Eu(TPA)}]^{3+}\text{OTf})</td>
<td>0.17</td>
<td>0.27</td>
</tr>
<tr>
<td>([\text{Eu(BPA)}]^{3+}\text{OTf})</td>
<td>-1.14</td>
<td>-1.03</td>
</tr>
<tr>
<td>([\text{Eu(BPPA)}]^{3+}\text{OTf})</td>
<td>-1.15</td>
<td>-0.89</td>
</tr>
</tbody>
</table>

\[\text{Table 5. Voltammetric data for Yb complexes (vs Fc+/Fc).}\]

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Metal-based wave</th>
<th>Ligand-based waves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_{pc}) (V)</td>
<td>(E_{pa}) (V)</td>
</tr>
<tr>
<td>([\text{Yb(TPA)}]^{3+}\text{OTf})</td>
<td>-1.17</td>
<td>(E_{p1}=1.11)</td>
</tr>
</tbody>
</table>
Conclusions

Complexation studies have been performed with a series of tetradeionate tripodal pyridylamine and pyridylaminephenolate ligands for the lanthanide ions Eu and Yb in their oxidation state III and II. Stable mono ligand and bis-ligand complexes of Eu\(^{3+}\) and Yb\(^{3+}\) have been prepared and characterized with the neutral tetradeionate ligand TPA. The replacement of one pyridyl group by a phenolate group in the ligand BPA leads to a decrease of the stability of the bis-ligand complex of Yb\(^{3+}\) preventing its isolation but the mono-BPA complex of divalent Yb can be isolated and it is stable in acetonitrile solution. The bis-ligand complexes of Eu\(^{2+}\) and Eu\(^{3+}\) with BPA were also isolated and their solid state structure was characterized. The neutral Eu\(^{3+}\) complex [Eu(BPA)_2] is stable in acetonitrile solution. The replacement of two pyridyl groups by two phenolate group in the ligand MPA leads to a further decrease of the stability of the bis-ligand complexes of Eu\(^{2+}\) and Yb\(^{3+}\) preventing their isolation: Cyclic voltammetry studies carried out on the bis-ligand complexes of Eu\(^{3+}\) and Yb\(^{3+}\) show that the metal center reduction occurs at significantly lower potentials for the BPA ligand compared to the TPA ligands. No metal centered redox event was observed in the used conditions for the bis-MPA complexes most likely due to the fact that metal reduction occurs at even lower potential. These studies show that the successive replacement of pyridyl groups by phenolate groups, leading to more electron-rich ligands, results in significant differences in the reducing character of the lanthanide complexes of TPA, BPA and MPA ligands. The important differences in the stability and reactivity of the investigated complexes are probably due to the observed difference in redox potential. Preliminary reactivity studies show that, while the bis-TPA complexes of Eu\(^{2+}\) and Yb\(^{3+}\) do not react with heteroallenes, the [Eu(BPA)_2] complex reduces CS\(_2\) affording the first example of a lanthanide thiocarbonate complex. Future work will be directed to investigate the reactivity of heteroleptic Ln\(^{2+}\) complexes of BPA- and MPA with different substrates.

Experimental Section

General Considerations. Unless otherwise noted, all manipulations were carried out at ambient temperature under an inert argon atmosphere using Schlenk techniques and an MBraun glovebox equipped with a purifier unit. The water and oxygen levels were always kept at less than 1 ppm. Glassware was dried overnight at 130°C before use.

\(^1\)H NMR experiments were carried out using NMR tubes adapted with J. Young valves. **\(^1\)H NMR spectra** were recorded on Bruker 200 MHz and 400 MHz spectrometers. NMR chemical shifts are reported in ppm with solvent as internal reference.

Elemental analyses were performed under argon by Analytische Laboratorien GMBH at Lindlar, Germany.

Starting materials. Unless otherwise noted, reagents were purchased from commercial suppliers and used without further purification. The solvents were purchased from Aldrich or Eurisotop (deuterated solvents) in their anhydrous form; conditioned under argon and vacuum distilled from K/benzophenone (hexane, Pyridine, DiPE, dme and THF). Acetonitrile was let 2 days at reflux on CaH\(_2\) prior to be distilled. All reagents were dried under high vacuum for 7 days prior to use. TPA was purchased from Aldrich and recrystallized from Et\(_2\)O prior to use. 2-(3,5-Di-tert-buty1-2-hydroxybenzylaminomethyl)pyridine was prepared according to the published procedure.[28]

The ligand HBPPA[29] was prepared according to the published procedure. The previously reported HBPA ligand[29] was prepared in 78% yield with the same procedure[29] used for ligand HBPPA. The previously reported ligand H\(_2\)MPA[28] was synthetized from 2-(3,5-Di-tert-buty1-2-hydroxybenzylaminomethyl)pyridine in 24% yield according to the literature procedure used for a similar system.[28] The proton NMR data are in agreement with those reported in the literature. The potassium salts of all ligands were prepared according to a published procedure.[13a] The complexes [Ln(TPA)\(_2\)]OTf\(_2\) (Ln=Eu and Yb) were prepared “in situ” according to the published procedure.[11a]

KBPA.

\(^1\)H NMR (200 MHz, py-ds, 298 K): \(\delta = 8.3\) (d, 2H), 7.5-7.1 (m, 7H), 6.9 (dd, 2H), 6.5 (td, 1H), 3.7 (m, 6H).

KBPPA.

HBPPA (1.1 g, 2.5 mmol, 1 equiv) and potassium hydride (0.11 g, 2.8 mmol, 1.1 equiv) were mixed in anhydrous THF (25 mL). The reaction mixture was put at reflux under argon for 12 hours. The mixture was then filtered to remove the excess of KH, the filtrate was taken to dryness and washed with 10 mL of hexane. The obtained solid was dried under vacuum for 2 days to give KBPPA(THF)\(_{n/2}\) (0.9 g, 1.7 mmol, 68% yield) where the amount of THF was determined by quantitative \(^1\)H NMR. **\(^1\)H NMR** (200 MHz, py-ds, 298 K): \(\delta = 8.3\) (d, 2H), 7.5-7.2 (m, 6H), 6.9 (dd, 2H), 3.9 (s, 2H), 3.8 (s, 4H), 1.8 (s, 9H), 1.5 (s, 9H).

K\(_2\)MPA.

\(^1\)H NMR. **\(^1\)H NMR** (200 MHz, py-ds, 298 K): \(\delta = 7.9\) (d, 1H), 7.4-7.3 (m, 4H), 7.1 (d, 2H), 6.7 (t, 1H), 4.1 (s, 2H), 3.9 (bs, 4H), 1.7 (s, 18H), 1.4 (s, 18H).

Table 6. Voltammetric data for Yb complexes (vs NHE).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Metal-based wave</th>
<th>Ligand-based waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Yb(TPA)}\text{]OTF})_2)</td>
<td>-0.54 (E(_{1/2}=-0.48))</td>
<td>- / -</td>
</tr>
<tr>
<td>([\text{Yb(BPA)}\text{]OTF})_2)</td>
<td>-1.78</td>
<td>1.33</td>
</tr>
<tr>
<td>([\text{Yb(BPPA)}\text{]OTF})_2)</td>
<td>-1.77</td>
<td>E({1/2}=0.97) E({1/2}=1.27)</td>
</tr>
</tbody>
</table>

Starting materials. Unless otherwise noted, reagents were purchased from commercial suppliers and used without further purification. The solvents were purchased from Aldrich or Eurisotop (deuterated solvents) in their anhydrous form; conditioned under argon and vacuum distilled from K/benzophenone (hexane, Pyridine, DiPE, dme and THF). Acetonitrile was let 2 days at reflux on CaH\(_2\) prior to be distilled. All reagents were dried under high vacuum for 7 days prior to use. TPA was purchased from Aldrich and recrystallized from Et\(_2\)O prior to use. 2-(3,5-Di-tert-buty1-2-hydroxybenzylaminomethyl)pyridine was prepared according to the published procedure.[28]

The ligand HBPPA[29] was prepared according to the published procedure. The previously reported HBPA ligand[29] was prepared in 78% yield with the same procedure[29] used for ligand HBPPA. The previously reported ligand H\(_2\)MPA[28] was synthetized from 2-(3,5-Di-tert-buty1-2-hydroxybenzylaminomethyl)pyridine in 24% yield according to the literature procedure used for a similar system.[28] The proton NMR data are in agreement with those reported in the literature. The potassium salts of all ligands were prepared according to a published procedure.[13a] The complexes [Ln(TPA)\(_2\)]OTf\(_2\) (Ln=Eu and Yb) were prepared “in situ” according to the published procedure.[11a]
Synthesis of [Ln(TPA)I] (Ln = Eu, Yb, Sm).

Ln=Eu, Sm. Addition of a solution of TPA (20.9 mg, 0.071 mmol) in THF (1 mL) to a stirred solution of Ln(II) (1 equiv) in THF (1 mL) resulted in an orange suspension for [Eu(TPA)I] and a red-purple suspension for [Sm(TPA)I]. After filtration, the residue was washed several times with THF and hexane and dried under vacuum to yield [Eu(TPA)I] as an orange powder in 90% yield and [Sm(TPA)I] as a red-purple powder in 82% yield. Crystals suitable for X-ray diffraction were obtained for Ln=Eu by slow diffusion of DIPE into an acetonitrile solution of the complex. Anal. Calc'd for [Eu(TPA)I] C 31.06, H 2.61, N 8.05; found C 31.11, H 2.75, N 8.19. For [Sm(TPA)I] C 42.54, H 3.70, N 11.26. For [Eu(TPA)I] and [Sm(TPA)I] no satisfactory elemental analysis was obtained due to the presence of KOTf salt. A white suspension of KBPA (0.051 mmol, 1 eq) in CHCl₃ (1.5 mL) was added drop by drop to an orange solution of Yb₂(THF)₃ (0.051 mmol, 1 eq) in CHCl₃ (1.5 mL) and stirred 18 h. The resulting mixture turned dark green in few seconds. The mixture was then concentrated to 2 mL and filtered. The filtrate was layered with DIPE. A dark green crystalline solid formed after 24 h. The proton NMR spectrum shows the presence of only one set of signals assigned to the [Yb(BPA)(CHCl₃)]₂ complex. Unfortunately, the obtention of a satisfactory elemental analysis was prevented by the co-crystallization of KI that we were no able to separate. X-ray quality dark green crystals of [Yb(BPA)(CHCl₃)]₂ were obtained from a saturated solution of the complex in CHCl₃ (243 mL). Anal. Calc'd for [Eu(BPPA)I] C 50.57, H 3.91, N 6.21; found C 50.62, H 3.88, N 6.19.

A white suspension of KBPA (0.051 mmol, 1 eq) in CHCl₃ (1.5 mL) was added drop by drop to an orange solution of Yb₂(THF)₃ (0.051 mmol, 1eq) in CHCl₃ (1.5 mL) and stirred 18 h. The resulting mixture turned orange in few seconds. The solvent was then removed under vacuum and pyridine (2 mL) was added to afford a deep orange suspension that was filtered to partially remove KOTf. Complete removal of KOTf salt is not possible due to the very similar solubility of the desired complex and KOTf. The filtrate was layered with hexane to yield 96.1 mg of [Eu(BPA)I]OTf. The proton NMR spectrum shows the presence of only one set of signals assigned to the [Yb(BPA)I]OTf. A white suspension of KBPA (0.051 mmol, 1 eq) in CHCl₃ (1.5 mL) and stirred 18 h. The resulting mixture turned dark green in few seconds. The mixture was then concentrated to 2 mL and filtered. The filtrate was layered with DIPE. A dark green crystalline solid formed after 24 h. The proton NMR spectrum shows the presence of only one set of signals assigned to the [Yb(BPA)(CHCl₃)]₂ complex. Unfortunately, the obtention of a satisfactory elemental analysis was prevented by the co-crystallization of KI that we were no able to separate. X-ray quality dark green crystals of [Yb(BPA)(CHCl₃)]₂ were obtained from a saturated solution of the complex in CHCl₃ (243 mL). Anal. Calc'd for [Eu(BPPA)I] C 50.57, H 3.91, N 6.21; found C 50.62, H 3.88, N 6.19.

Synthesis of [Eu(TPA)I]OTf.

A white suspension of KBPA (THF)₂ (93.3 mg, 0.18 mmol, 2 equiv) in THF (2 mL) was added to a white suspension of Eu(OTf)₃ (55.6 mg, 0.09 mmol, 1 equiv) in THF (2 mL) and stirred for 1 h. The resulting suspension turned orange in few seconds. The solvent was then removed under vacuum and pyridine (2 mL) was added to afford a deep orange suspension that was filtered to partially remove KOTf. Complete removal of KOTf salt is not possible due to the very similar solubility of the desired complex and KOTf. The filtrate was layered with hexane to yield 96.1 mg of [Eu(BPA)I]OTf. The proton NMR spectrum shows the presence of only one set of signals assigned to the [Yb(BPA)I]OTf. A white suspension of KBPA (0.051 mmol, 1 eq) in CHCl₃ (1.5 mL) and stirred 18 h. The resulting mixture turned dark green in few seconds. The mixture was then concentrated to 2 mL and filtered. The filtrate was layered with DIPE. A dark green crystalline solid formed after 24 h. The proton NMR spectrum shows the presence of only one set of signals assigned to the [Yb(BPA)(CHCl₃)]₂ complex. Unfortunately, the obtention of a satisfactory elemental analysis was prevented by the co-crystallization of KI that we were no able to separate. X-ray quality dark green crystals of [Yb(BPA)(CHCl₃)]₂ were obtained from a saturated solution of the complex in CHCl₃ (243 mL). Anal. Calc'd for [Eu(BPPA)I] C 50.57, H 3.91, N 6.21; found C 50.62, H 3.88, N 6.19.

Synthesis of [Sm(TPA)II].

A white suspension of KBPA (113.0 mg, 0.039 mmol) in CH₃CN (2 mL) to a stirred solution of Yb₂ (1 equiv) in CH₃CN (2 mL) resulted in a dark blue solution. After stirring for 3 h, the reaction mixture was layered with DIPE. Big dark crystals formed in 3 days and were collected by filtration and dried under vacuum to yield [Yb(TPA)I₂(CH₃CN)₄] in 69% yield. Crystals suitable for X-ray diffraction were obtained by slow diffusion of DIPE into a CH₃CN solution of the complex. H NMR (200 MHz, CDCl₃, 298 K) δ = 8.8 (s, 3H), 7.8 (t, 3H), 7.3 (d, 6H), 4.0 (s, 6H). Anal. Calc'd for [Yb(TPA)I₂(CH₃CN)₄] C 23.8, H 10.8, N 5.3; found C 23.9, H 10.8, N 5.4.

Synthesis of [Yb(TPA)I]OTf.

A light yellow solution of K₂MPA (54.9 mg, 0.08 mmol, 2 equiv) in THF (3 mL) was added to a white suspension of Yb₂(OTf)₃ (24.8 mg, 0.04 mmol, 1 equiv) in THF (2 mL) affording a pale yellow suspension which was stirred for 4 h. The reaction mixture was evaporated and the resulting solid was extracted with hexane. The insoluble KOTf was removed and the colorless filtrate was concentrated and let standing at 40°C. After 15 h, colorless crystals formed that were washed with cold hexane and dried under vacuum for 24 h to afford 42.5 mg of [Yb(MPA)I][KOTf] (0.03 mmol, 78% yield). Colorless crystals suitable for X-ray diffraction were obtained from a concentrated solution of the complex in 30:1 Hexane/dmle. Anal. Calc'd for [Yb(MPA)I][KOTf] (C₃₅H₂₆N₆O₁₂F₃S₂Z₄K₂Eu) C 41.91, H 3.8, N 9.05; found C 41.9, H 3.8, N 9.14.
43.9 (bs, 18H), -50.9 (bs, 18H). Anal. Calcd for [Yb(MPA)₂][OTf]₂.₃(C₅H₁₂N₄O₂S₁₂K₁₂·Yb) C 64.13, H 7.44, N 4.14; found C 64.26, H 7.37, N 4.15.

Reaction of Yb₂(THF)₂₄ with two equivalents of K₂MPA.

A light yellow solution of Yb₂(THF)₂₄ in THF-d₈ and a white suspension of 2eq of K₂MPA in THF-d₈ were prepared separately and cooled down to -40°C. The cold ligand solution was added to the cold suspension of ytterbium iodide leading to a light orange suspension. The 'H NMR spectrum of this reaction mixture show only the presence of the signals assigned to the trivalent Yb complex [Yb(MPA)₂]⁺.

Synthesis of [Eu(BPA)(CS₂)(DMSO)]₂.

To a pyridine solution of [Eu(BPA)]⁺ (0.081 mmol, 1eq), 4.9 μL of ¹³CS₂ was added. The solution turned from red-brown to red. Then pyridine was removed under vacuum and DMSO was added. Red crystals suitable for X-ray diffraction were obtained from a DMSO solution of the reaction mixture layered with toluene. 11 mg of [Eu(BPA)(CS₂)(DMSO)]₂(DMSO)₃ were recovered (33%). Anal. Calcd for [Eu(BPA)(CS₂)(DMSO)]₂(DMSO)₃: C 38.85, H 0.59, N 0.51; found C 38.46, H 4.48, N 4.91.

Electrochemical Methods. Cyclic voltammetry data were carried out at room temperature in an argon-filled glovebox described above. Data were collected using a Biologic SP-300 potentiostat connected to a personal computer. All samples were 4 mM in complex with 0.1 M [Bu₄N][PF₆] supporting electrolyte in CH₂CN solution. The experiments were carried out with a platinum disk (d = 1 mm) working electrode, a platinum wire counter electrode and an Ag/AgCl reference electrode. Potential calibration was performed at the end of each data collection cycle using the ferrocene/ferrocenium [(C₆H₅)₂Fe]⁺⁻ couple as an internal standard (E°=+0.630V/NHE).

Solution of the trivalent complexes [Ln(TPA)₂]OTf, [Ln(BPA)₂]OTf and [Ln(MPA)₂]K (Ln=Eu and Yb) for voltammetric studies were prepared in situ by the addition of 2 equivalents of ligand to the corresponding LnOTf₃ salt.

X-ray Crystallography. Diffraction data were taken using an Oxford Diffraction Xcalibur S kappa geometry diffractometer (Mo-Kα radiation, graphite monochromator, λ = 0.7073 Å). To prevent evaporation of co-crystallised solvent molecules the crystals were coated with light hydrocarbon oil and the data were collected at 150 K. The cell parameters were obtained with intensities detected on three batches of 5 frames. The crystal-detector distance was 4.5 cm. The number of settings and frames has been established taking in consideration the Laue symmetry of the cell by CrysAlisPro Oxford-diffraction software. [31] Unique intensities detected on all frames using the Oxford-diffraction Red program were used to refine the values of the cell parameters. The substantial redundancy in data allows empirical absorption corrections to be applied using multiple measurements of equivalent reflections with the ABSPACK Oxford-diffraction program. [31] For [Sm(TPA)₂]OTf, [Eu(TPA)₂]OTf, [Yb(TPA)₂]OTf, [Sm(TPA)₂]OTf, [Yb(TPA)₂]OTf and [Eu(BPA)₂]OTf the solution of the trivalent complex [Ln(TPA)₂]OTf, and by charge flipping method using Superflip[22] for [Sm(TPA)₂]OTf, [Eu(BPA)₂]OTf, [Yb(TPA)₂]OTf, and [Yb(MPA)K]OTf. All non-hydrogen atoms were found by difference Fourier syntheses and refined on F². For [Sm(TPA)₂]OTf, [Eu(TPA)₂]OTf, [Yb(TPA)₂]OTf, [Sm(TPA)₂]OTf, [Eu(BPA)₂]OTf and [Yb(MPA)K]OTf hydrogen atoms were fixed in ideal position and refined with a riding model. All hydrogen atoms were found by Fourier synthesis and isotropically refined for [Eu(TPA)₂]OTf. The data reduction was driven taking in account a twin law with two components (62% and 38%) and the structure was solved with the concatenated hklf5 file. For [Yb(MPA)K]OTf, a squeeze treatment were applied, modeling an electron number corresponding with a dme molecule. For the [Eu(BPA)(CS₂)(DMSO)]₂(DMSO) structure, the diffraction data were measured at low temperature [100(2) K] using Mo radiation on a Bruker APEX II CCD diffractometer equipped with a kappa geometry goniometer. The data sets were reduced by EvaCCD[33] and then corrected for absorption. [34] The solution and refinement was performed by SHELXL. [35] The crystal structure was refined using full-matrix least-squares based on F² with all non hydrogen atoms anisotropically defined. Hydrogen atoms were placed in calculated positions with means of the "riding" model. Additional electron density found in the difference Fourier map (due to highly disordered solvent) was treated by the SQUEEZE algorithm of PLATON. [36] Anion C₇₅[6] and DSMO molecules (bound and free) showed high disorder and were treated by means of the split model and by applying some restraints to their thermal parameters (SIMU card). A tough constraint was applied to the adp’s of C22A and C22B (EADP).

Acknowledgements

We thank L. Plassais for technical support and ligand synthesis, and C. Camp for useful discussions. We acknowledge support from the Swiss National Science Foundation and from the Ecole Polytechnique Fédérale de Lausanne (EPFL).

Keywords: ytterbium • europium • heteroallenes reduction • divalent lanthanides • N-donor ligands

Tuning reducing power.

The successive replacement of pyridyl groups with phenolate groups in tripodal ligands results in a higher reducing power of the respective Ln(II) homoleptic complexes. The [Eu(BPA)_2] complex reduces CS$_2$ affording the first example of a lanthanide trithiocarbonate.

Julie Andrez, Gülay Bozoklu, Grégory Nocton, Jacques Pécaut, Rosario Scopelliti, Lionel Dubois and Marinella Mazzanti

Lanthanide(II) Complexes Supported by N,O-Donor Tripodal Ligands: Synthesis, Structure and Ligand-Dependent Redox Behavior