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Abstract
A precise knowledge of co-axial flow dynamics and a better understanding of the mecha-
nisms that act to destabilize the interface between the two fluids is of fundamental interest
in many industrial applications like lubricated transport, injection devices, atomization
and controlled microdroplet production. The flow is in general unstable, since at least two
mechanisms act to destabilize the cylindrical interface: shear and capillary instabilities.
While these two mechanisms are active in a jet issuing from a tap, their respective
influence strongly depends on the Reynolds number, the Ohnesorge number, but also on
the viscosity, density, and aspect ratios.
In this thesis, the global stability characteristics of two-phase co-axial flow are deter-
mined. The stability analysis follows two successive steps. First the steady base flow is
determined, via the resolution of the nonlinear Navier-Stokes equations together with the
location of the free interface. Second, these equations are linearized around the base flow
and the dominant eigenmodes determined. The novelty lies in the formulation of models
that can describe both the qualitative and quantitative characteristics of the two-phase
flow configuration and the adaptation of the tools of global stability analysis for this
configuration. We find that the dripping to jetting regime transition depends on the
Capillary number, the degree of the confinement and the viscosity ratio, and we show
that, surprisingly, the nozzle geometry does not affect the stability properties of the flow
with subtle effects.
Finally, the influence of surface viscosity on these coaxial flows has been considered.
The governing and constitutive equations describing the continuum mechanics of the
surface in the axisymmetric case are derived. With the addition of surface viscosity at
the interface, the base flow evolves over a lengthscale which is much larger than the entry
length in the Stokes regimes and than the typical unstable wavelength. We show that
while the flow becomes eventually more convectively unstable once it reaches the fully
developed profile, the surface viscosity creates an absolute region at the inlet, that is
expected to promote droplet formation.

Key words: co-axial flow, free interface, instabilities, drop formation, surface viscosity
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Résumé
Une description détaillée de la dynamique des écoulements coaxiaux ainsi qu’une meilleure
compréhension des mécanismes qui déstabilisent l’interface cylindrique entre les deux
fluides sont d’un grand intérêt dans de nombreuses applications industrielles telles que les
systèmes d’injection, de transport lubrifié, d’atomisation ou encore pour la production
contrôlée de micro-gouttes. L’écoulement est généralement instable en raison d’au moins
deux mécanismes qui déstabilisent l’interface cylindrique : la contrainte de cisaillement et
l’instabilité capillaire. Bien que les deux contraintes soient présentes dans tout jet, leur
influence dépend considérablement des caractéristique physiques des fluides telles que la
viscosité, la densité, la tension du surface à travers du nombre de Reynolds, du nombre
de Ohnesorge ainsi que du confinement géométrique et
Dans cette thèse, les caractéristiques de stabilité globale pour les écoulements coaxiaux
à diphasiques sont investigués. L’analyse est développée en deux partie distinctes. En
premier lieu, l’écoulement de base est déterminé par la résolution des équations non-
linéaires de Navier-Stokes et l’interface entre les deux fluides est calculé. Ensuite, ces
équations sont linéarisées autour de l’écoulement de base et les modes propres dominants
sont déterminés. La nouveauté du travail présenté se situe dans la formulation de modèles
capable de décrire lu même temps les caractéristiques qualitatives et quantitatives de
la configuration des écoulements diphasiques. Les outils d’analyse de stabilité ont par
conséquence du être adaptés à la nouvelle description du phénomène. L’application des
modèles proposés à permis de mieux comprendre la dynamique en jeu. L’étude de la
transition entre le régime de gouttes et celui de jet a montré que le processus est dominé
par les propriétés intrinsèques des écoulements développés, mais a révélé des effets subtils.
Finalement, l’influence des surfactants sur les écoulements coaxiaux a aussi été investiguée.
La résistance mécanique à l’interface des deux fluides s’avère être de grande importance
et la contrainte de cisaillement ne peut plus être négligée lors de la définition des
conditions à l’interface. Dans cette thèse, une première évaluation quantitative des effets
des surfactants sur la stabilité de l’écoulement est proposée. Il en ressort qu’une plus
haute viscosité de surface stabilise l’écoulement développé, mais perturbe le jet dans la
région d’injection.

Mots clefs : écoulements coaxiaux, interface, instabilité, formation de gouttes, viscosité
de surface
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Riassunto
Una conoscenza precisa della dinamica dei flussi coassiali e una migliore comprensione dei
meccanismi che agiscono per destabilizzare l’interfaccia tra due fluidi è di fondamentale
interesse in molte applicazioni industriali come il trasporto lubrificato, dispositivi di
iniezione, atomizzazione e la produzione controllata di micro gocce. Il flusso coassiale
è generalmente instabile, poiché almeno due meccanismi agiscono per destabilizzare
l’interfaccia: lo sforzo tangenziale e l’instabilità capillare. Mentre questi due meccanismi
sono attivi in un getto emesso da un rubinetto, la rispettiva influenza dipende fortemente
dal numero di Reynolds, dal numero di Ohnesorge, ma anche dai rapporti di viscosità,
densità, e confinamento.
In questa tesi, le caratteristiche globali di stabilità di un flusso bifase coassiale sono
determinate. L’analisi di stabilità è eseguita in due fasi. In primo luogo il flusso
stazionario viene determinato mediante la risoluzione delle equazioni di Navier-Stokes,
ottenendo la posizione dell’interfaccia. Successivamente, le equazioni constitutive vengono
linearizzate intorno alla soluzione stazionaria e le autofunzioni vengono determinate. La
novità consiste nella formulazione di modelli che possano descrivere sia qualitativamente
che quantitativamente le caratteristiche del flusso stazionario e di quello perturbato.
Studiando la stabilità globale di un getto bifase, scopriamo che la transizione da un getto
continuo a un getto che si rompe in gocce dipende dal numero di capillarità, dal rapporto
di viscosità tra le due fasi e dal grado di confinamento. Vedremo che, sorprendentemente,
la geometria dell’iniettore non influenza la stabilità del flusso.
Infine, l’influenza della viscosità dell’interfaccia dei flussi coassiali è stata analizzata .
Le equazioni di governo e quelle costitutive che descrivono la meccanica dei continui
dell’interfaccia sono derivate. Con l’aggiunta di viscosità di interfaccia, il flusso stazionario
evolve in una lunghezza d’onda che è molto maggiore rispetto alla lunghezza caratteristica
dei flussi di Stokes e rispetto alla lunghezza d’onda tipica dell’instabilità. Mostriamo che
mentre il sistema diventa più convettivamente instabile una volta raggiunto il profilo
completamente sviluppato, la viscosità di superficie crea una regione di instabilità assoluta
all’ingresso del tubo, che promuove la formazione di gocce.

Parole chiave: flussi coassiali, interfaccia, instabilità, formazione di gocce, viscosità di
superficie
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Introduction
Improving the understanding of dynamics of immiscible co-axial flows is of fundamental
importance in widespread industrial applications, including lubricated transport, injection
devices, atomization and controlled microdroplet production, to name a few (figure 1).
The developing instabilities can be either detrimental or useful. In lubricated transport
(figure 2), the addition of an outer layer of lubricating fluid for drag reduction depends
on instabilities at the origin of the formation of an emulsion. In engines exhaust jets,
the production of noise is directly related to the formation of axisymmetric toroidal ring
vortices, as seen in figure 3. In contrast, in coaxial injection devices, these instabilities
help to ensure a rapid and homogeneous mixing between the high velocity fuel injected
by a central nozzle and the surrounding low velocity oxydizer injected by a concentric
annular nozzle. A cascade of hydrodynamic and capillary instabilities is also responsible
for spray formation in atomization devices (Lasheras & Hopfinger (2000)).

Figure 1 – Examples of co-axial flow. On the left agricultural irrigation, reprinted from
Eggers & Villermaux (2008). On the right lubricated pipeline for the oil transportation
(INTEVEP, SA).

While the phenomenology of these flows is extremely rich, as illustrated by the abundant
terminology coined for that purpose (see for instance figure 2 for a simplified flow map of
immiscible core annular flows), it is striking that the frequency and pattern selection are
yet exclusively addressed using the framework of the local instability theory of parallel
flows. This approach considers a parallel flow profile Uz(r) independent of the streamwise
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Introduction

RESEARCH PLAN

1. State of the art
Improving the understanding of dynamics of miscible and immiscible coaxial

flows is of fundamental importance in widespread industrial applications, includ-
ing lubricated transport, injection devices, atomization and controlled microdroplet
production, to name a few. The developing instabilities can be either detrimental or
useful. In lubricated transport (figure 1), the addition of an outer layer of lubricat-
ing fluid for drag reduction hinges on instabilities at the origin of the formation of an
emulsion. In engines exhaust jets, the production and directivity of noise are directly
related to the formation of axisymmetric toroidal ring vortices, as seen in figure 2. In
contrast, in coaxial injection devices, these instabilities help to ensure a rapid and ho-
mogeneous mixing between the high velocity fuel injected by a central nozzle and the
surrounding low velocity oxydizer injected by a concentric annular nozzle. A cascade
of hydrodynamic and capillary instabilities is also responsible for spray formation in
atomization devices [16].

Figure 1: Example of detrimental instabilities and instability patterns associated
to viscosity contrast in immiscible core-annular flows for lubricated transport from
Joseph and Renardy [18].

While the phenomenology of these flows is extremely rich, as illustrated by the
abundant terminology coined for that purpose (see for instance figure 1 for a simpli-
fied flow map of immiscible core annular flows), it is striking that the frequency and

Figure 2 – Example of instability patterns associated to viscosity contrast in immiscible
core-annular flows for lubricated transport in horizontal pipe, when the oil is lighter than
the water. Reprinted from Joseph et al. (1997).

direction z, in order to derive a so called dispersion relation, that links the temporal
frequency ω to the spatial and azimuthal wavenumbers k and m. This framework is
the basis for a spatio-temporal description of the evolution of perturbations in open
flows characterized by a mean advection, based on the distinction between absolute
instabilities, that can withstand the mean advection and give birth to self-sustained
oscillations and convective instabilities that are advected with the flow, and only amplify
incoming perturbations (see Huerre & Monkewitz (1990) for a review).

It is for example well known that a light jet flowing in an heavier medium can be the
place of self-sustained well tuned oscillations, characterized by the periodic emission of
axisymmetric toroidal vortices (Monkewitz & Sohn (1988)), while iso-density jets are
known to behave as noise amplifiers, characterized by a broad frequency response.
Building on this qualitative difference between oscillators (absolutely unstable flows)
and noise amplifiers (convectively unstable flows), quantitative predictions were enabled
by the development of the nonlinear global mode theory for weakly non parallel flows
(see Chomaz (2005) for a review). In this approach, the base flow is chopped into
slices, as it evolves downstream and the parallel spatio-temporal instability analysis is
extensively repeated on a slice by slice basis. This has enabled to establish that the light
jet oscillations indeed had all characteristics of self-sustained nonlinear global modes
triggered by a wavemaker front located at the upstream absolute/convective (A/C)
transition of the local flow profiles (Lesshafft & Huerre (2007)).
With these successes in mind, renewed interest in parallel flow instability for arbitrary
profiles can be observed today, with the analysis of complex physical properties: Juniper
& Candel (2003) analyzed the influence of confinement, Lesshafft, Huerre & Sagaut
(2007) and Meliga, Sipp & Chomaz (2008) the influence of compressibility, Selvam,
Talon, Lesshafft & Meiburg (2009) the instabilities triggered by viscosity contrast in

2



The corresponding Strouhal number spectra, computed
from v!!r=1,x=1, t", are displayed in Fig. 3. As in Monke-
witz et al.,1 the Strouhal number is defined as St=2fR /Uc. In
the globally stable configuration with S=0.65 !thin line", the
spectrum is broadband. As the base flow in this case is con-

vectively unstable throughout the entire physical domain,
persisting perturbations at long times can only arise from a
continuous, spurious excitation at the numerical inlet bound-
ary. This excitation is caused by upstream-travelling acoustic
waves that in turn are emitted from the downstream vortices.
The jet shear layer then acts as a bandpass filter, promoting
the growth of the most amplified spatial instability modes. In
contrast, the spectrum of the synchronized flow case !thick
line in Fig. 3" is marked by sharp peaks, while the back-
ground noise level is significantly lowered. As the spectra are
taken near the upstream boundary, the dominant peak corre-
sponds to the fundamental global frequency Stg of vortex
roll-up. A subharmonic peak in the spectrum of the synchro-
nized case announces the occurrence of vortex pairing fur-
ther downstream. Some peaks in the line-dominated spec-
trum in Fig. 3, e.g., at St=1.1, are accompanied by small
“side peaks” on both sides. Whether these are the result of a
sideband instability,30 or just an effect of the FFT algorithm

FIG. 1. Snapshots of synchronized os-
cillations in two globally unstable jets.
Vorticity isosurfaces !=1 !blue" and
!=3 !red", isocontours 1"!"3. !a"
Thick shear layer jet, no vortex pair-
ing; !b" thin shear layer jet, with vor-
tex pairing.

FIG. 2. Spatio-temporal diagrams of the radial perturbation velocity
v!!r=1,x , t" in the long-time regime. !a" Globally stable case R /#=25,
S=0.65; !b" globally unstable case R /#=25, S=0.55.

FIG. 3. Spectral density of v!!r=1,x=1, t" as a function of Strouhal number
for the two configurations of Fig. 2. Thin line: globally stable case R /#
=25, S=0.65; thick line: globally unstable case R /#=25, S=0.55.

054108-4 Lesshafft, Huerre, and Sagaut Phys. Fluids 19, 054108 !2007"

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
128.179.133.155 On: Mon, 25 May 2015 08:02:45

Figure 3 – Strong sound emissions are the cause of instabilities on light jets, picture
fromLesshafft et al. (2007).

miscible flows at low Reynolds number. Even immiscible flows (Guillot, Colin, Utada &
Ajdari (2007)) were recently subjected to spatio-temporal parallel flow analysis so as to
better understand the combined influence of viscosity ratio, velocity ratio, confinement
and surface tension. Still, these analysis stopped at this level and the weakly non
parallel analysis was not performed, precluding detailed comparisons with experimental
measurements like dominant frequencies and wavelengths. Furthermore, in the region of
the nozzle exit, the flow is expected to vary very rapidly as it evolves downstream (see
figure 4), and global stability analysis is required, that allows one to relax the parallel
flow assumption, to the price of computational expense (Theofilis (2003)).

Figure 4 – Steady base flow of a co-axial Poiseuille flows at Reynolds number Re = 0.
Representation of the streamwise velocity (color map) and interface location (solid
continuous line).

3



Introduction

Co-axial jets

The stability of jets and wakes when two immiscible fluids are co-injected is of fundamental
importance in several applications. Among them are high Reynolds flows where an inner
slow liquid jet is literally peeled by an outer fast gaseous stream. This configuration is
an archetype for atomization, and the detailed understanding of its dynamics should
open new opportunities for optimization of atomization devices. As reviewed for instance
by Lasheras & Hopfinger (2000), the classical scenario proceeds through the following
cascade. As far as jets are concerned, a primary axisymmetric instability first deforms
the jet surface in the form of toroidal vortices which very soon are subjected to a
violent secondary instability breaking the axisymmetry. The resulting ligaments are
then accelerated and atomized in droplets by mechanisms which are yet only partially
understood (Eggers & Villermaux (2008)).

Rep. Prog. Phys. 71 (2008) 036601 J Eggers and E Villermaux

Figure 37. Transition from a thin shear layer to a thick shear layer
as a function of the Weber number Weδ for v2/v1 = 20, using the
parameters of an air/water interface; ◦, group velocity; ⊓#, most
unstable wavenumber; - - - -, transition value of (ρ2/ρ1)

1/2.

velocity ∂ωr/∂k jumps from nearly v1 to the value given in
(138) when the Weber number increases, after a discontinuous
transition (see figure 37); this transition occurs for

Weδ ∼
(
ρ2

ρ1

)1/2

. (141)

Even in the presence of surface tension, the shear does not
affect the layer for wavelengths shorter than δ(ρ1/ρ2)

1/2. The
Rayleigh mode selection thus overcomes the selection of the
Kelvin–Helmholtz mode as long as γ /ρ2v

2
2 < δ(ρ1/ρ2)

1/2,
resulting in (141) above [231].

Note finally that, if the liquid phase is a jet of radius h0,
the shear instability overcomes the capillary instability of the
jet itself as soon as its growth rate (v2/δ)(ρ2/ρ1) is larger than

the capillary growth rate
√
σ/ρ1h

3
0. This is equivalent to

Weδ ≫
ρ1

ρ2

(
δ

h0

)3

, (142)

a condition fulfilled for example in the experiment shown in
figure 38.

The above scenario, based on the instability of an
inflectional profile, was first suggested in [231]. Viscous
corrections were considered in [237] and used in [236]
to compute the breakup of a liquid jet in air. Even for
moderate jet speeds, significant deviations from Rayleigh’s
analysis are found [148, 238], since the shear generated
by the surrounding air enhances destabilization. Such an
analysis was first carried out by Weber [38], using the
Kelvin–Helmholtz approximation, which is irrelevant in this
context (cf section 3.8.1). Later, Sterling and Sleicher [238]
included the effect of viscosity on the shear profile, whose
finite thickness reduces the aerodynamic effects. However,
to achieve quantitative agreement with theory, an empirical

Figure 38. Destabilization of a slow water jet (h0 ≈ 4 mm) by a fast
coaxial air stream [232] (v1 = 0.6 m s−1, v2 = 35 m s−1). The
wavelength of the primary axisymmetric undulation is governed
by (137).

correction factor had to be introduced. The origin of this
correction has finally been explained in [236], by including
a full self-consistent account of the air boundary layer (see
figure 39 and also section 3.12).

These studies have led to a fully quantitative explanation
of the observed growth rates and mode selection of a liquid jet
in relative motion to a gas phase. They have been a crucial
step in understanding the subsequent atomization of the liquid
discussed in section 5.

3.9. Charged jets

New phenomena arise when the jet contains electric charges,
which can be achieved by letting the jet fall into a bucket
maintained at a given potential, while an electrode upstream
of the jet orifice is set at a different potential. This was
demonstrated in the 18th century by Abbé Nollet (1749) [33],
cf figure 10. If the liquid is not too conductive, the charges have
time to migrate, by electrostatic repulsion, to the jet’s surface
before reaching the counter-electrode at the bucket, inducing
new instabilities of the interface.

3.9.1. Electrostatic repulsion. Let a jet be superficially
charged at potential V0 with a charge (positive or negative) per
unit area σ0 = V0 ε0/h0. The repulsion between the charges
tends to push the interface outwards, therefore counteracting
the cohesive action of capillarity. If the charges are confined
to the jet surface, a direct application of Gauss’ theorem
(∇ · E = ρe/ε0, where ρe is the charge volume density) shows
that the field E is zero inside the jet, since there are no charges
in the liquid bulk. Outside of the (unperturbed) jet (i.e. for
r > h0), the field is radial:

E = σ0

ε0

h0

r
er , (143)

corresponding to a potential V (E = −∇V )

V = V0 −
σ0h0

ε0
ln

(
r

h0

)
, (144)

where ε0 is the permittivity of free space.

28

Figure 5 – Typical destabilization of a slow water jet uwater = 0.6m/s by a fast coaxial
air stream uair = 35m/s. The primary instability forms ligament which are subsequently
broken into droplets. Experiment performed by from Marmottant & Villermaux (2004)

When the Reynolds number is small, the only remaining instability is the so-called
Rayleigh-Plateau or capillary instability. This instability, which is also observed in
similar but different geometries like a coated cylindrical fiber or inner coated tube (see
6), can be interpreted from an interfacial energy minimization when transitioning from
a cylindrical fluid interface to a collection of droplets. This argument also predicts the
typical size of the droplets to be formed. Besides this static interpretation, a well-known
dynamic interpretation starts from a slightly distorted cylindrical interface. Because of the
underpressure (respectively overpressure) resulting from a local crest (resp. trough) along
the cylindrical interface resulting from the Laplace pressure jump across the interface, a
flow is driven out the throughs into the crests by this pressure imbalance. This flow further
enhances the interface distortion: an instability is born. This instability is mediated
by the other component of the curvature (the streamwise curvature) intervening in the
Laplace pressure jump in addition to the azimuthal curvature driving the instability.
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(a) (b) (c)

t = 0

t = τ

Figure 1. Capillary instability of cylindrical interfaces: (a) liquid jet, (b) liquid film on a
fibre, (c) liquid film in a tube.

Jet Fibre Tube

Re ≫ 1 τ ∼
√

ρR3
i /σ τ ∼

√
ρR4

i /(σh0) τ ∼
√

ρR4
i /(σh0)

Re ≪ 1 τ ∼ µRi/σ τ ∼ µR4
i /(σh3

0) τ ∼ µR4
i /(σh3

0)

Table 1. Scaling for the characteristic time τ of the capillary instability for the three different
cases displayed in figure 1. For the jet, Ri is the jet radius. For the fibre Ri = R0 + h0 where
R0 is the fibre radius and h0 the film thickness. For the tube Ri = R0 − h0 where R0 is the
inner tube radius and h0 the film thickness.
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Figure 2. (a) Experimental setup. (b) Evolution of the relative film thickness h0/R0 as a
function of the capillary number Ca (the continuous line is equation (2.1) and the symbols
correspond to our measurements).

ρ µ σ a
Liquid (kg m−3) (kg m−1 s−1) (kg s−2) (m)

SO V100 952 0.1 0.0225 1.6 10−3

SO V1000 965 1 0.0225 1.5 10−3

SO V12500 965 12.5 0.0225 1.5 10−3

Glycerol 98 % 1260 0.9 0.063 2.25 10−3

Table 2. Physical properties of the different Newtonian liquids (at 25 ◦C). SO is silicone oil.

Figure 6 – Capillary instability of a cylindrical interface for (a) a liquid jet, (b) a liquid
film on a fibre, (c) a liquid film in a tube, from Duclaux et al. (2006).

Renewed interest in this classical instability has been triggered by the microfluidic coaxial
injectors developed to produce microdroplets of prescribed size and rate of emission. This
geometry, exemplified in figure 7 was first implemented for microfluidics applications by
Cramer, Fischer & Windhab (2004), who inserted a microcapillary into a rectangular
flow cell, and showed that the breaking-up of droplets from a capillary tip immersed in a
continuous co-flowing liquid could be separated into two distinct regimes: dripping, in
which droplets pinch off near the capillary tip, and jetting, in which droplets pinch off
from an extended thread downstream of the capillary tip. The transition from dripping
to jetting occurs as the continuous phase velocity increases above a critical value in close
analogy with the classical jetting/dripping transition from a faucet, as seen in figure
7 (see Clanet & Lasheras (1999) for a more scientific account). They found that the
critical velocity decreases as the dispersed phase flow rate increases. Since the interface
velocity increases with both dispersed and continuous velocities, this phenomenon can be
interpreted as an increased advection of the instability by an increased interface velocity.
The critical velocity also decreases as the dispersed phase viscosity increases and as the
interfacial tension is reduced.

ping to jetting. The first is driven by the flow rate of the
outer fluid; as it is increased, drops formed at the tip
decrease in size until a jet is formed, whereupon drop
breakup occurs downstream at the end of the thin jet
[Fig. 1(c)]. The second class of transition is driven by the
flow rate of the inner fluid; as it is increased, the dripping
drop is pushed downstream and is ultimately pinched off at
the end of the resultant jet [Fig. 1(d)].

The first class of dripping-to-jetting transition is charac-
terized by a jet that thins as it moves downstream. In the
dripping regime, the diameter of the drop first decreases as
the flow rate of the outer liquid, qout, increases. When the
drop diameter becomes approximately equal to dtip, there
is a spontaneous transition to jetting. The diameter of the
jet decreases with distance downstream but ultimately
reaches a constant value as shown in Fig. 1(c). Still farther
downstream, the jet develops undulations driven by the
Rayleigh-Plateau instability; these grow larger and ulti-
mately drive the formation of drops whose diameter is
only slightly larger than that of the cylindrical jet itself.
In this regime, it is the viscous drag from the flow of the
outer fluid that drives drop formation. In the dripping
regime, the growing droplet experiences two competing
forces: viscous drag pulling it downstream and forces due
to surface tension holding it to the tip. Initially, surface
tension dominates but the drag forces eventually become
comparable as the droplet grows. This force balance is
given by: !outuoutddrop ! "dtip, where uout is the mean
velocity of the outer liquid and " is the surface tension

[27]. The diameter of the detaching drop decreases as qout
increases; ultimately, a critical shear stress is reached
where the emerging liquid is stretched into a narrowing
jet [Fig. 1(c)]. The diameter of this jet is initially equal to
dtip and decreases as the liquid moves downstream until the
stress gradient across the jet relaxes. This is similar to flow
focusing in microfluidic devices [15,20] and in model
calculations [28].

We measure the final downstream diameter of the jets
and resulting drops from high-speed movies. We compare
these data to calculations of the steady-state diameter of
the jet, djet, obtained by solving for the motion of two
coaxially flowing liquids with constant shape under Stokes
flow: !r2u " rp, where p is the pressure. By relating the
mean velocities of both fluids to the flow rates, we obtain a
function [29] where the dominant term is qin=qout #
2$djet=D%2. Solving for djet=D, we obtain the scaled jet
diameter as a function of the flow rate ratio. This relation
(solid line) agrees well with the measured jet diameters, as
shown in Fig. 2.

We can also calculate the drop diameter by assuming
that it is related to djet. For static fluid cylinders suspended
in another immiscible liquid, the wavelength of the fastest
growing mode of the Rayleigh-Plateau instability is pro-
portional to the diameter of the cylinder itself [30]. In turn,
the volume contained in one wavelength of this mode, #,
on the cylinder, $d2

jet#=4, is approximately equal to the
volume of the drop that is formed when the cylinder
breaks. The most unstable mode is a function of viscosity
ratio; in this experiment, !in=!out " 0:1 and # " 5:48djet

[30]. We solve for ddrop as a function of djet, assuming that
this argument applies for nearly uniformly translating jets,
giving ddrop # 2djet. The calculated results (dotted line)
agree very well with the measured drop sizes, as shown in
Fig. 2.

FIG. 2 (color online). Experimentally measured djet (!) and
ddrop (") scaled by D as a function of qin=qout for the narrowing
jets with !in=!out " 0:1. The solid line is the prediction from the
model for djet with no fitting parameters. The dashed line is the
predicted result assuming ddrop # 2djet from the Rayleigh-
Plateau instability as described in the text. The inner and outer
Reynolds numbers, Rin " %indtipuin

!in
and Rout " %outDuout

!out
, vary

from !7–70 and !15–50, respectively.

FIG. 1. (a) Device geometry showing the tapered inner capil-
lary in the outer square capillary. (b) Image of the dripping
regime. (c) Image of a narrowing jet generated by increasing qout

above a threshold while keeping qin constant, with !in=!out "
0:1. (d) Image of a widening jet generated by increasing qin

above a threshold while keeping qout constant, with !in=!out "
0:1. Images (b)–(d) were taken with a high-speed camera (walls
not shown). Scale bar applies to (b)–(d).

PRL 99, 094502 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
31 AUGUST 2007

094502-2

Figure 7 – Coflowing liquid stream: dripping and jetting regime, experiments from
Utada et al. (2007).

These trends were confirmed by a series of more recent, local stability analysis of parallel
viscous threads confined within a viscous outer liquid in a microchannel, in the limit of
vanishing Reynolds number (Utada, Fernandez-Nieves, Gordillo & Weitz (2008); Guillot
& Colin (2008); Herrada, Gañán Calvo & Guillot (2008)). These authors interpreted
the transition from dripping to jetting as a transition from an absolute to a convective
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Introduction

instability. Recall that this terminology refers to the ability of perturbations to grow
and withstand the mean advection. Absolute instabilities grow in place, contaminate
the whole domain and yield a self-sustained well-tuned oscillation while convective
instabilities are characterized by an irremediable advection of perturbation and behave
as noise amplifiers. In co-axial injection devices, an absolutely unstable configuration
is expected to result in the self-sustained immediate formation of droplets close to the
inlet where the two fluids are put in contact, in contrast, a convectively unstable flow
is expected to result in droplets which form only after the instability has grown over
a finite downstream distance. While this interpretation is appealing, the scaling laws
resulting from the application of the absolute/convective instability theory regarding the
frequency and wavelength selection have not been quantitatively verified.

Using a lubrication approximation, Guillot et al. (2007) carried out a detailed analysis of
the transition as a function of the viscosity ratio, the capillary number and the equilibrium
confinement parameter defined as the ratio of the equilibrium jet radius relative to the
effective radius of the outer channel, the latter being itself a nonlinear function of both
the viscosity and flow rate ratios. For a given confinement parameter, absolute instability
holds below a critical capillary number above which the instability becomes convective.
This critical capillary number, assumed to trigger the transition from dripping to jetting
was found to decrease as the confinement parameter increases, the predicted transition
thresholds being in good agreement with the experimental observations. While the whole
theory was developed for co-axial cylindrical streams, these authors also considered
the influence of the geometry of the outer capillary and showed that the instability
was suppressed as soon as the inner jet radius reached the smallest side of rectangular
channels.

Figure 8 – Example of home made of dripping and jetting regime.

Cordero, Gallaire & Baroud (2011) have recently conducted an experimental analysis
of the base flow in the dripping and jetting regimes which further confirms the relation

6



Present work

of jetting with a convective instability. The authors have showed that convectively
unstable flows are indeed suspected to display a broad frequency response, in contrast
with absolutely unstable flows for which the response is likely to be overshadowed by the
self-sustained mode (Chomaz (2005)).

The studies using global methods have until now been concentrated on wakes behind
solid obstacles and detached flows (see Theofilis (2011)), but mainly of single phase flows.
A global stability analysis of the two dimensional wake of immiscible flows has been
carried out by Tammisola, Lundell & Söderberg (2012), where they have observed a
counterintuitive destabilizing effect of the surface tension. Gordillo, Sevilla & Campo-
Cortés (2013) studied the dripping to jetting transition of two coaxial streams in the so
called tip-streaming regime, where the inner phase presents a cone-jet structure.

Surface viscosity

The influence of surfactants on these coaxial flows has been much less considered, and
the boundary condition on the tangential stress has generally been taken as a free-shear
condition, thus neglecting any interfacial mechanical resistance. However, it is well known
that surfactant adsorption layers at fluid-fluid interfaces can display a finite elasticity
and viscosity (Sagis (2011); Fuller & Vermant (2012)), leading to a drastic modification
of boundary conditions from free shear to no slip, or to tip streaming (Anna & Mayer
(2006)). The influence of surfactants and of surface viscoelasticity has been studied on
liquid threads (Palierne & Lequeux (1991); Hansen, Peters & Meijer (1999); Timmermans
& Lister (2002)) or liquid jets with a quiescent surrounding phase, but not in co-axial
flow. While the most unstable wavelength still scales like the jet radius (see figure 9 for
a home-made illustration), the details of the dispersion relation and the prefactor are
affected.

In the general case, coupling surfactant transport and flow is very complex, because
it involves several different processes (Edwards, Brenner & Wasan (1991)). Interfacial
stretching or compression induced by bulk flows alters the surface concentration of surfac-
tants, hence the surface tension, which can lead to surface tension gradients (Marangoni
effect). This is compensated by surface diffusion and, more importantly for soluble
surfactants, by adsorption from the bulk, or desorption to the bulk. These exchanges
between the bulk and the interface depend on the subphase bulk concentration, and can
be limited either by diffusion or by sorption kinetics. The resulting interfacial stress
results from this complex interplay, and only in highly simplified situations, such as in
the absence of convection (Lucassen & van den Tempel (1972)), can surface elasticity
and viscosity be predicted. In other cases, numerical simulations are required and have
been used to study e.g. drop detachment (Jin, Gupta & Stebe (2006)).
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Figure 9 – Example of free interface. Blowing on a soap bubbles toy, the soap film
inflates and forms a hollow jet which destabilizes into a train of soap bubbles. The
characteristic wavelength is consistently given by the blowing radius.

Present work

The major aim of this thesis is to determine the global stability characteristics of spatial
developing co-axial jets. This has required the development of new tools for the analysis
of immiscible flows. The main task was to cope with two main features of immiscible
flows: the existence of a sharp interface separating the fluids and the existence of localized
stress discontinuity at the interface between these fluids. The difficulties associated to
these features are likely to explain why only parallel flow analysis have been conducted so
far. Indeed, in the parallel framework, the flow profile can be either computed from the
parallel solution of the two-phase Navier-Stokes equations, or even chosen as an arbitrary
velocity profile. Consequently, since no base flow has to be calculated, the nonlinearity
introduced by the free interface is simply avoided.
In the present work, we have determined non-parallel base flow solutions from the steady
equations themselves, which adds considerable numerical difficulties, as a consequence of
the nonlinear free interface problem at hand. Hence, the interface needs to be accurately
described by being captured by the numerical scheme. The two fluids are computed on
the same fixed grid but the two phases are distinguished by the presence of a function,
called level set. The global eigenvalue calculation has been assessed through a linear
stability analysis by considering the time evolution of a small perturbation sought in
term of normal mode expansion. The global problem is formulated in two different grids,
one for each fluid, and the perturbed interface is described by a height function.
Finally, a first qualitative insight whether surfactants may affect co-axial flow instability
is given. We have concentrated our analysis on surface viscosity as a source of mechanical
resistance. The steady solution and the local stability is performed in the lubrication
approximation framework.
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The outline is the following. Chapter 1 gives a general overview of the instabilities of
liquid thread and jet in a dynamically inert medium. The principal tools to perform a
linear stability are presented. A brief explanation of the link between absolute/convective
and global stability is given. Chapter 2 outlines the effects of a surrounding flow on the
stability mechanism of threads and jets. Chapter 3 tackles the problem of co-axial jets
investigating the effect of viscosity ratio, confinement and interfacial tension for both the
base flow and the perturbed flow. Finally, chapter 4 is dedicated to the influence of
surface viscosity on a viscous threads and co-axial jets.
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1 Liquid threads and jets

This chapter modestly aims at giving a brief overview of the instabilities of liquid threads
and jets. It is largely inspired by the review by Eggers & Villermaux (2008) but it
also contains original material. The phenomenon of the jet breakup involves intricate
competition among surface tension, interfacial shear, normal stress and inertial forces of
the liquid jet and of the surrounding medium.

Section § 1.1 introduces the governing equations used throughout this chapter. Section §
1.2 presents a reduction of the problem to 1D simplified model based on long-wavelength
assumption, while section § 1.3 describes the linear stability analysis and the linearized
governing equations. Sections § 1.4 presents the physical mechanisms leading to breakup
of a thread of fluid at rest immersed in a constant pressure medium remaining at rest,
while section § 1.5 describes a infinite jet breakup.

1.1 Hydrodynamic description of jets

We consider an incompressible fluid injected into a dynamically inert medium. The jet
has density ρ, viscosity µ, surface tension γ, radius h and mean velocity u0 (as sketched
in figure 1.1). The gravity effect as well as the effect of the surrounding environment are
neglected.

h(z, t)

z

r

ρ, µ

Figure 1.1 – Flow domain and notations used in the chapter.
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Chapter 1. Liquid threads and jets

To outline the description of a thread or a jet, we need to investigate the relative
importance of fluid inertia, viscosity force and surface tension. This description can be
made introducing the following non dimensional numbers:

- the Reynolds number relates the inertial forces and the viscous forces

Re = ρu0h

µ
, (1.1)

- the Weber number measures the relative importance of the kinetic energy respect
to the surface energy

We = ρhu2
0

γ
, (1.2)

- the Capillary number compares the viscous forces to the surface tension

Ca = µu0
γ
, (1.3)

- the Ohnesorge number measures the relative importance of the viscous forces with
respect to the inertial and surface tension forces

Oh = µ√
ργh

. (1.4)

This four dimensionless group are related through the relations Ca = We/Re and
Oh =

√
We/Re.

The governing equations for the jet are the incompressible Navier-Stokes equations in
axisymmetric coordinates (r, z). The flow variable are the velocity u = uez + ver and
the pressure p.

∂tu + (u · ∇) u = −1
ρ
∇p+ ν∆u (1.5)

∇ · u = 0 (1.6)

where ν = µ/ρ is the kinematic viscosity.
The jet interface moves at the same speed of the fluid. If we introduce the height function
h(z, t), to describe the surface, then the motion of the interface is described by the
kinematic equation

∂th+ u∂zh = v|r=h (1.7)
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1.2. Long-wavelength description

At the free interface the stress balance is given by

σ · n|r=h = −γCn (1.8)

where

σ = −pI + µ
(
∇u + (∇u)T

)
(1.9)

is the stress tensor. The unit normal vector n to the interface pointing outward to the
dynamically inert medium is defined as

n = (−∂zh, 1)
(1 + ∂zh)1/2 . (1.10)

The mean curvature C is define as C = −∇n, and in cylindrical coordinates can be
written as

C = 1
h (1 + h′2)1/2 −

h′′

(1 + h′2)3/2 , (1.11)

where the prime denotes the derivation with respect to z. Hence the shape of the interface
h(z, t) is coupled to the flow equations throw the stress conditions and the interface
kinematic equation.

The fully axisymmetric analysis of the free surface flows can become a significant challenge
and a computationally intensive task. A reduction of the problem to one dimensional
simplified model based on the long-wavelength description will give huge savings in
computer time. We will show, that the main advantage of the long-wavelength assumption
is that is simple and transparent. In the picture, additional ingredients can be easily
incorporated. The long-wavelength approximation becomes a powerful tool to study
different kinds of threads and jets.

1.2 Long-wavelength description

Since the works of Eggers & Dupont (1994) and Brenner, Shi & Nagel (1994), the
long-wavelength approximation has been widely used. The Eggers & Dupont (1994)
work provides a good comparison between the reduced model and the numerical results
on the full equation. Eggers & Villermaux (2008) give an exhaustive overview of the
long-wavelength model comparing the results with the exact solution of the Navier-Stokes
equation for few cases, while the work of van Hoeve, Gekle, Snoeijer, Versluis, Brenner
& Lohse (2010) gives a good agreement between the theory and the experimental results
obtained with the high speed imaging system.
The long-wavelength approximation can be extended to other configuration, as the hollow
jet (Eggers & Villermaux (2008)), or can be studied to a higher order including the
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Chapter 1. Liquid threads and jets

non-linear effects (Bechtel, Bolinger, Cao & Forest (1995), Eggers (1997)). We have
applied the long-wavelength assumption to a viscous thread with surface dilation (see §
4.2).

In the following, the essential steps leading to the long-wavelength equations are explained.
The main idea is that the typical radial length lr of a liquid jet is much smaller than the
its longitudinal scale lz. In this case the velocity and pressure fields can be expand in
Taylor series around r = 0:

u(z, r, t) = u0(z, t) + u2(z, t)r2 + · · · (1.12)

v(z, r, t) = −1
2
∂u0
∂z

r − 1
4
∂u2
∂z

r3 − · · · (1.13)

p(z, r, t) = p0(z, t) + p2(z, t)r2 + · · · (1.14)

the longitudinal velocity u is described by a uniform flow u0 and a second order correction
term u2. The expanded fields are inserted into the Navier-Stokes equation and it is
solved at the lowest order of r. The normal and the tangential stress conditions close the
system giving a reduced form of the original equation:

∂u0
∂t

= −u0
∂u0
∂z
− γ

ρ

∂C
∂z

+ 3ν
[

2
h

∂h

∂z

∂u0
∂z

+ ∂2u0
∂z2

]
(1.15)

The prefactor of the viscous term 3ν is called the Trouton viscosity and it comes from
the fact that the elongation viscosity, in an axisymmetic extensional flow, is three times
the shear viscosity (Trouton (1906)).
The kinematic equation (1.7), at the leading order, gives:

∂h

∂t
= −u0

∂h

∂z
− 1

2
∂u0
∂z

h (1.16)

The set of linear equations (1.15)-(1.16) is a coupled system of equation for the uniform
velocity u0 and the interface height h. In the following, u0 ≡ u is replaced for a more
fluid reading.

The full axisymmetric system is now reduced to one-dimensional model and the free
surface motion is given in explicit form. The advantages of this reduced method is that
allow to explore the parameter space in faster and more efficient way than the solve the
full Navier-Stokes equations. Furthermore it allow a better understanding of the effect of
the liquid viscosity, density, surface tension and jet velocity on the breakup mechanism
and a more insight view of the competition between the characteristic inertia timescale
and viscous timescale.

In the following we use the reduced model to describe the stability of some well know flow
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1.3. Stability analysis

cases (e.g. inviscid jet, viscous thread), comparing the results with the exact formula, if
it exists, or with the numerical results.

1.3 Stability analysis

Since the pioneer work of Rayleigh (1879) the most basic and powerful tool to analyze
the physical mechanism leading to breakup is the linear stability analysis. The stability
analysis is made by assuming small disturbances, so that the governing equations can be
linearized around the steady state. The flow variable Q = (U, P, H) is decomposed into
one steady state q̄ = (ū, p̄, h) and one small perturbation q′ = (u′, p′, η):

U(r, z, t) = ū(r, z) + εu′(r, z, t)
P (r, z, t) = p̄(r, z) + εp′(r, z, t) (1.17)
H(z, t) = h(z) + εη(z, t)

where ε� 1.

The Navier-Stokes equations (2.1)-(1.6), the kinematic equation (1.7) and the stress
condition (1.8) for the linear evolution of the perturbations can be written as:

∂tu′ + (ū · ∇) u′ +
(
u′ · ∇) ū = −1

ρ
∇p′ + ν∆u′ (1.18)

∇ · u′ = 0 (1.19)
∂tη + ū∂zη + u′∂zh+ η∂rū∂zh = v′ + η∂rv̄|∂Ω (1.20)

σ̄ · n′ + σ′ · n̄ + η∂rσ̄ · n̄|∂Ω = −γ
(
C̄n′ + C′n̄

)
(1.21)

where the perturbed stress tensor is

σ′ = −p′I + µ
(
∇u′ +

(∇u′
)T) (1.22)

while the perturbed unit vector

n′ = (−∂zη, −∂zh∂zη)
(1 + ∂zh)3/2 (1.23)

and the perturbed curvature C′ = −∇n′.

The stability of a liquid jet can be carried out with three different approaches. In the first
approach (i) the perturbations q′(r, z, t) can sought in normal modes form q̂(r)ei(kz−ωt),
where k ∈ R is the wavenumber and ω ∈ C is the complex wave frequency. Describing
q̂(r) with the Stokes current function, the solution of (1.18)-(1.21) can be written as
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Chapter 1. Liquid threads and jets

combination of Bessel functions. In few cases it is possible to determine an exact explicit
analytical dispersion relation ω = f(k).
Or in alternative way (ii), q̂(r) is discretized by Chebyshev polynomials in radial direction
and a numerical dispersion relation is obtained where the wave frequency ω is the
eigenvalue of

A(k)q(r) = ωB(k)q(r) (1.24)

where is the the state vector discretized on the Gauss-Lobatto collection (GLC) nodes.
A(k) and B(k) are respectively the stiffness and the mass matrices function of the
wavenumber k (for details see Canuto, Hussaini, Quarteroni & Zang (1993)).
Another approach is linearize directly the long-wavelength description of the Navier-Stokes
equations (1.15)-(1.16)

∂u′

∂t
= −ū∂u

′

∂z
− u′∂ū

∂z
+ γ

ρ

∂

∂z

(
η

h2 + ∂2η

∂z2

)
(1.25)

+3ν
[
−2η
h3
∂h

∂z

∂ū

∂z
+ 2
h

∂η

∂z

∂ū

∂z
+ 2
h

∂h

∂z

∂u′

∂z
+ ∂2u′

∂z2

]

∂η

∂t
= −u′∂h

∂z
− ū∂η

∂z
− 1

2
∂u′

∂z
h− 1

2
∂ū

∂z
η (1.26)

The equations (1.25)-(1.26) are independent of the coordinate r, then is not necessary
discretize q̂(r) . The applied normal mode expansion is q′(z, t) = ei(kz−ωt). This last
approach allows to obtain an explicit dispersion relation. The power of this method lies
on its mathematical simplicity.

In the following, in progressive manner, the physical mechanisms leading to breakup are
introduce. The dispersion relation obtained with the linearization of the long-wavelength
approximation is compared with the exact solution of the linearized Navier-Stokes
equations. If an explicit form of the linearized governing equations does not exist, the
comparison is made with the numerical results of the Chebyshev discretization.

1.4 Liquid thread

The stability analysis is initially applied to the study of an infinitely long liquid thread
ū = 0 with a constant height h(z) = h0. Two limit case are introduced (inviscid and
purely viscous thread) and a general dispersion relation is given. In the next section §
1.5, the velocity is introduced, and the stability of jets is discussed.
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1.4. Liquid thread

1.4.1 Inviscid thread

We initially consider an inviscid thread ν = 0. The linearized governing equations
(1.25)-(1.26) are:

∂u′

∂t
= γ

ρ

∂

∂z

(
η

h2
0

+ ∂2η

∂z2

)
(1.27)

∂η

∂t
= −1

2h0
∂u′

∂z
(1.28)

injecting the normal mode expansion the following dispersion relation is yielded:

ω2 = −1
2
γ

ρh3
0

(
(kh0)2 − (kh0)4

)
(1.29)

The characteristic inertial timescale of (1.29) is determined by

τi =
√
ρh3

0
γ

(1.30)

and it describes the competition between inertia and surface tension, therefore the
time τi gives an estimation of the total time for the breakup. The instability, called
Rayleigh-Plateau instability, is caused by the action of the surface tension, which tends
to destabilize a fluid system to create another one with the same volume but smaller
surface area.
The above dispersion relation can be compared with the Rayleigh (1879) exact solution:

ω2 = − 1
τ2

i
(kh0)

[
1− (kh0)2

] I1(kh0)
I0(kh0) (1.31)

The long-wavelength dispersion relation (1.29) not only has a good agreement with the
exact equation (1.31), as shown in figure 1.2, but also catches the cut-off kch0 = 1 and
the most amplified wavenumber kmh0 =

√
2/2.

1.4.2 Viscous thread

For a viscous thread the inertial terms can be consider negligible compare to the viscous
terms. The linearized governing equations (1.25)-(1.26) are:

0 = γ

ρ

∂

∂z

(
η

h2
0

+ ∂2η

∂z2

)
+ 3ν ∂

2u′

∂z2 (1.32)

∂η

∂t
= −1

2h0
∂u′

∂z
(1.33)
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Figure 1.2 – Dimensionless growth rate −iωτi as function of the dimensionless wavenum-
ber kh0 for an inviscid thread. The long-wavelength approximation (continuous line) fits
well the Rayleigh exact solution (dashed line).

injecting the normal mode expansion q′(r, z, t) = q̂(r)ei(kz−ωt), the following dispersion
relation is yielded:

−iω = 1
6
γ

µh0

(
1− (kh0)2

)
(1.34)

As for the inviscid thread, in the equation (1.36) it is possible recognize a characteristic
timescale

τv = µh0
γ

(1.35)

it is called characteristic viscous timescale and it describes the competition between
viscous force and surface tension.
The comparison with the Rayleigh (1892) exact solution

−iω = 1
2τv

1− (kh0)2

1 + (kh0)2
[
1− (I0(kh0)/I1(kh0))2

] (1.36)

gives a perfect agreement, as shown in figure 1.3, and the cut-off is still kch0 = 1. Both
dispersion relations, long-wavelength description (1.34) and exact solution (1.36), involve
ω and not ω2, since the ∂tu term drops out in the viscous limit. The system predicts the
most amplified wavenumber a zero wavelength kmh0 = 0 and therefore the inertia-less
limit is ill-posed.
The inertia effect can be neglected if τv � τi, in other words if

µ√
γρh0

� 1 (1.37)
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Figure 1.3 – Dimensionless growth rate −iωτv as function of the dimensionless wavenum-
ber kh0 for a viscous thread. The long-wavelength description (continuous line) fits
perfectly the exact solution (circles).

that is exactly the Ohnesorge number (1.4). Hence the Ohnesorge number can be
expressed as the ratio of the viscous timescale τv and its inertial counterpart τi

Oh = τv
τi

(1.38)

The Ohnesorge number, therefore, describes the relative importance of the viscous terms
over the inertial effects for a thread.

1.4.3 Viscous thread with inertia

In order to have a well-posed problem in the viscous thread, the inertial term ∂tu has to
be to take into account. In this case the linearized governing equations are:

∂u′

∂t
= γ

ρ

∂

∂z

(
η

h2
0

+ ∂2η

∂z2

)
+ 3ν ∂

2u′

∂z2 (1.39)

∂η

∂t
= −1

2h0
∂u′

∂z
(1.40)

the associated dispersion relation is:

ω2 = −1
2
γ

ρ

1
h3

0

(
(kh0)2 − (kh0)4

)
− iω3ν

h2
0

(kh0)2 (1.41)

the thread is not anymore prone to instability at zero wavelength. The growth rate is
then determined by a balance of surface tension, viscous force and inertia effect and the
breakup is determined by the competition of the inertial and viscous time scales.
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Figure 1.4 – Growth rate −iωτi as function of the wavenumber k for a viscous thread
where the inertial term ∂tu is take into account. Comparison between long-wavelength
approximation (line) and numerical results of the Chebyshev discretization of the Navier-
Stokes equation (circle) for a thread with Oh = 1.

The most amplified wavenumber is

kmh0 =
4√ργh0√

2
√
ργh0 + 3

√
2µ

(1.42)

and the cut-off remains unvaried kch0 = 1. For this case, there is not an explicit
form for the exact dispersion relation (for the details see Chandrasekhar (1961) and
Timmermans & Lister (2002)) and the equations are solved numerically with Chebyshev.
The comparison between the long-wavelength approximation and the numerical results
gives a perfect agreement (figure 1.4).

In order to study the stability of a viscous thread both inertial and viscous timescale
are to be take into account. Hence, the dispersion relation (1.41) can be rewritten in
dimensionless form using both the inertial timescale or the viscous timescale:

−iωτi =
√

1
2(x2 − x4) + 9

4Oh
2x4 − 3

2Ohx
2 (1.43)

−iωτv = Oh

√
1
2(x2 − x4) + 9

4Oh
2x4 − 3

2Oh
2x2 (1.44)

Figure 1.5 shows the deformation of the growth rate as the Ohnesorge number is increased.
If Oh → 0 the inviscid limit is retrieved with kmh0 =

√
(2)/2, while if Oh → ∞ the

purely viscous limit is found with kmh0 = 0.
Also the most amplified wavenumber (1.42) can be rewritten as function of the Ohnesorge
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Figure 1.5 – Dispersion relation −iωτi (above) and −iωτv (below) or increasing Ohne-
sorge number Oh−1 = τi/τv = {100, 5, 1, 0.2, 0.05}. The red lines are the locus of points
where the most amplified wavenumber occurs.

number:

kmh0 = 1√
2 + 3

√
2Oh

(1.45)

Figure (1.6) shows a growth rate −iωτi for Oh = 1/2. The inviscid and purely viscous
limit curves are the two asymptotical behavior of the dimensional curve. The growth rate
is well described from the inviscid theory (Oh→ 0) for small value of the wavenumber,
while the purely viscous limit (Oh→∞) have a perfect agreement for large value of k.

1.5 Liquid jets

So far situations where the disturbances are spatially uniform have been analyzed. A
liquid thread always breaks into droplets (fig. 1.7). As the velocity of the jet ū = u0ez is
increased a transition from dripping to jetting regime occurs. Now the perturbations
which grow in time are simultaneously convected downstream and a continuous jet can
persist in the system.
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Figure 1.6 – Growth rate −iωτi for a liquid thread with τi = 1 and Oh = 1/2.
Comparison with the inviscid limit Oh→ 0 (dashed line) and the viscous limit Oh→∞
(dash-dot line).

for the complex shape evolution shown in Fig. 1. Indeed, this
is the case in most examples of front propagation, where,
however, the MSC nearly always provides correct predic-
tions for the front speed. In our studies of drop breakup
below we find that the front speed is rather accurately given
by the linear MSC, a remarkable result in light of the
strongly nonlinear, singular shape evolution behind the
front.10 In addition to the front velocity, we compute the time
between primary pinching events in the breakup of the cyl-
inder using the MSC quantities and find good agreement
with the numerical calculations.

II. DROP EVOLUTION

We look for the propagation of the Rayleigh instability
in a numerical simulation of a long, axisymmetric, approxi-
mately cylindrical drop, initially stationary and with hemi-
spherical caps on the ends. The axis of the cylinder defines
the x-direction, so that the shape is given by the surface of
revolution generated by the radius R(x). We work in the
overdamped limit in which the inertial terms of the Navier–
Stokes equations may be neglected. Therefore, the outer and
inner fluids with velocities u6 and pressures p6 are de-
scribed by the Stokes equations and the constraint of incom-
pressibility

h6π2u65“p6, “•u650. ~1!

Propagation in the inertial regime is complicated by the pres-
ence of dispersive capillary waves, and we leave this case
and the case of net flow ~like a jet! for future work. The
boundary conditions at the interface S are continuity of fluid
velocity u1uS5u2uS , continuity of tangential stress, and the
jump in normal stress:

ni~s i j
12s i j

2!uS522gHn j , ~2!

where n is the outward surface normal, H is the mean cur-
vature, g is the ~constant! interfacial tension, and the stress
tensors are s i j

65h6(π iu j
61π jui

6)2p6d i j . For an axisym-
metric shape with radius R(x), and with Rx[]R/]x ,
the mean curvature is H5(Rxx/2)(11Rx

2)23/2

2(2R)21(11Rx
2)21/2. The only important material param-

eters are therefore the surface tension g and the viscosities
h1 and h2.

Note that ~2! gives rise to the absolute ~rather than con-
vective! instability of a stationary cylindrical interface.
When the fluid velocity is zero, the pressure jump across the
interface is Dp52gH . Consider an axisymmetric perturba-
tion in which the radius is slightly pinched to form a neck. If
the disturbance is of sufficiently long wavelength, the mag-
nitude of the curvature is increased, thus raising the pressure
in the neck. Fluid is therefore forced out of the pinched re-
gion, leading to growth of the perturbation.

The challenging numerical task of solving the three-
dimensional Stokes equations is greatly simplified by the
boundary integral technique, in which ~1! and ~2! are recast
as an integral equation for quantities on the interface.11 This
approach removes one spatial dimension from the problem,
leading to
~11l!

2 u j~y!

5
g

4ph1E
S
H~x!ni~x!Ji j~x,y!dS~x!

1
~12l!

4p
P .V .E

S
ui~x!nk~x!Ki jk~x,y!dS~x!, ~3!

where y is a point on the interface S , u~y! is the velocity of
the interface at y, P .V . denotes the principal value, and the
kernels Ji j and Ki jk are Green’s functions.12

Axisymmetry reduces our problem to an integral equa-
tion with one space and one time dimension. This equation is
solved numerically by standard adaptive-grid techniques13 to
yield the interfacial velocities, and so the drop shape, as a
function of time. This procedure can describe the continuous
motion of the interface only; to describe the breakup of the
interface we simply demand that pinching occurs whenever
the radius R(x)<0.005R0 , where R0 is the initial cylinder
radius. Although somewhat arbitrary, we expect this choice
for the cutoff leads to little error in the gross evolution since
further decreases in the neck radius occur rapidly owing to
the large velocity and curvature gradients near the pinch
point. Furthermore, the size of the region in which these
quantities grow large is small.14 In any case, these same fac-
tors make it difficult to do numerical calculations when the
neck approaches rupture. Once a droplet has pinched off, we
neglect it in further calculations, since experience has shown
the the evolution of the droplet that pinches off has little
effect on the evolution of the main drop.15

Our findings for the shape evolution are in qualitative
accord with previous investigations.9 At higher values of l,
i.e. around l510, the evolution is dominated by retraction.
As an example, Fig. 2 shows that the l510 drop simply
retracts and shows no sign of developing a neck in the time
it takes the l50.1 drop to break a few times. Figure 3 shows
a magnified view of the evolution of these droplets. Note that
at a given time the radius R(x) of the l510 drop grows
monotonically in x to its maximum value, but the radius for
l50.1 is modulated; these undulations are the seeds of the
capillary instability.

When the outer viscosity is not too small, we can esti-
mate the retraction speed by assuming the bulge on the drop

FIG. 1. Sequence of drop shapes for viscosity ratio l50.05 at
tn56.67nh1R0 /g; n51,2,3, . . . ,15 from top to bottom. To illustrate the
complete evolution, we have drawn the daughter droplets ~but not the sat-
ellite droplets!. However, the evolution of each connected component was
computed independently of the others.
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Figure 1.7 – Front propagation of the Rayleigh instability of a viscous thread with
viscosity ratio λ = µ/µmedium = 0.05 at tn = 6.67nµmediumh0/γ with n = 1, 2, · · · , 5
from top to bottom. Figure reprinted from Powers et al. (1998).

Historically the distinction between absolute and convective instability come from the
literature on plasma (Briggs (1964) and Bers (1983)). Since the pioneer work of Huerre
& Monkewitz (1990) the absolute/convective (A/C) theory has wisely applied to fluid
instabilities. The flow is convectively unstable if the perturbations are amplified while
moving away from the disturbance source, on the other hand, the flow is absolutely
unstable when the amplified perturbations grow on the entire flow. While in the temporal
stability analysis the wavenumber k is supposed real and the wave frequency ω complex,
conversely, in the A/C analysis the nature of the instability is determined by applying the
Briggs-Bers zero-group velocity criterion to the dispersion relation for both wavenumber
and wave frequency complex. In order to determine the transition from absolute to
convective regime it is sufficient to identify the saddle point of the associated spatio-
temporal analysis, i.e. determine the complex value of the complex wave number k0 such
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1.5. Liquid jets

that

∂ωr
∂kr

= ∂ωi
∂kr

= 0. (1.46)

The discrimination between absolutely and convectively unstable flow explains the
transition from jetting to dripping in two-phase immiscible microfluidic co-axial flow
Guillot et al. (2007), as well different regimes occurring in the pearl forming instability
of a film flowing down a fiber Duprat, Ruyer-Quil & Giorgiutti-Dauphiné (2009).

An unstable perturbation travel with the complex group velocity

vg = ∂ω

∂k
(1.47)

and if we denote k0 and ω0 the absolute wavenumber and frequency respectively, the pair
(k0, ω0) is given by the zero group velocity condition

v±g (k0) = 0 s.t. ω0 = ω(k0) (1.48)

When the absolute wave frequency Im(ω0) < 0 the flow is convectively unstable, while
when Im(ω0) > 0 the flow is absolutely unstable. In both case the flow is linearly unstable,
however the absolutely or convectively instabilities lead to different scenario, how will
see in the following.

When the flow is convectively unstable (Im(ω0) < 0), the waves packet increases with
time but it is convected downstream faster than it spread across the flow, and the
receding front is positive v−g > 0, as shown in figure 1.8. On the other hand, when
the flow is absolutely unstable (Im(ω0) > 0), the perturbation grows exponentially and
withstands the mean advection. In this case the receding front is negative v−g < 0 and
the perturbation travel upstream.

In fact, a sister theory of the absolute/convective instability concept is due to Van Saarloos
(1989) and is sometimes referred to as marginal stability criterion (Powers et al. (1998))
It consists of identifying the edge velocities by the following three conditions

∂ωi
∂kr

= 0, v±g = ωi
ki
, v±g = ∂ωi

∂ki
(1.49)

The relevance of these linear edge velocities extends in fact far beyond the intrinsic
limitations expected from a linear analysis. The nonlinear front separating the base state
from the invading unstable nonlinearly saturated state can be shown in many cases to
inherit the linear edge velocity, as exemplified in figure 1.7 where the nonlinear saturated
state is played by the droplets. This linear criterion for the nonlinear front propagation
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FIG. 4. Spatio-temporal evolution of two wave packets generated by a Dirac perturbation in x = 0
at t = 0+ for hi/`c ' 0.67 and (a) ↵ = ⇡/4 and (b) ↵ = ⇡/2.2. Both cases are unstable, but
(a) is convectively unstable, the perturbation decreases with time in x = 0, and conversely, (b)
is absolutely unstable as the perturbation grows exponentially in the laboratory frame. Dashed
lines correspond to the fronts of the perturbed wedges. (c) shows the time evolution of the relative
amplitude of the perturbation at the origin in both cases.

With a dispersion relation taking the form found in eq. (8), the leading ṽ+
f and receding

ṽ�f front velocities of the wedge of the impulse response can be directly determined as the
sum of the inherent advection ũ and ± ũ⇤:

ṽ±
f = ũ ± ũ⇤ = ũ ± �ṽf

2
, (16)

where �ṽf = ṽ+
f � ṽ�f = 2ũ⇤ is the width of the perturbed region. This concept is best

illustrated when following the time evolution of a wave packet generated with a localized
initial perturbation. In Fig. 4, we report the time evolution of two packets generated by a
Dirac impulse in x = 0 at t = 0 and observed in the laboratory frame. First, a global view
of the flow as a function of time is presented in the two panels in Fig. 4(a) and (b). They
correspond to !̃0,i < 0 and !̃0,i > 0, respectively. Second, the time evolution at the impulse
location, h(0, t), is presented in Fig. 4(c). When !̃0,i < 0, the perturbation increases with
time but is carried away faster than it spreads across the flow and the upstream front velocity
ṽ�f of the perturbed wedge is positive. As a consequence, the perturbation at the source

point (x = 0) decreases with time such that h(0, t) is quickly indistinguishable from the
vertical axis, and the instability is convective. Conversely, if !̃0,i > 0, the perturbation grows
exponentially in the laboratory frame despite the presence of the flow. The upstream front
velocity ṽ�f of the perturbed wedge is negative, so the wave-packet counter-propagates to

invade the all space, and the instability is absolute (Figure 4b). These examples emphasize
that the absolute/convective transition is found when ṽ�f = 0, i.e., ũ = ũ⇤.

Recalling from eqs. (10) and (15) that ũ is a decreasing function of ↵ and that ũ⇤ is con-
stant, one may derive the critical value of the inclination ↵⇤ yielding the absolute/convective
transition:

p
sin↵⇤ tan↵⇤ =

3`c

ũ⇤hi
. (17)

The existence of such an angle had been anticipated in the time scale analysis in Sec. II
using temporal arguments. However, the presented spatio-temporal analysis constitutes a
rigorous derivation of its exact expression. Note that these results are consistent with the
mechanism depicted in Sec. II. Representing eq. (16) with dimensional terms, the existence
of a critical angle results from the competition of the advection velocity ui = cos↵ ⇢g

µ h2
i ,

which increases with an increasing inclination (decreasing values of ↵), and the wedge

Figure 1.8 – Spatio-temporal evolution of two perturbation packets. The packet (a)
is convectively unstable, while (b) is absolutely unstable. Reprinted from Brun et al.
(2015).

is one of the cornerstones of modern nonlinear global mode theories (see Chomaz (2005)
for a review).

In systems affected by uniform advection U > 0 as the jets considered in this section,
there is a natural link between the absolute/convective properties and the receding edge
velocity. The flow is convective if U > |v−| and absolute otherwise.

1.5.1 Inviscid jet

For an inviscid jet µ = 0, with constant longitudinal velocity u0 and radius h0, the
linearized governing equations (1.25)-(1.26) are:

∂u′

∂t
= −u0

∂u′

∂z
+ γ

ρ

∂

∂z

(
η

h2
0

+ ∂2η

∂z2

)
(1.50)

∂η

∂t
= −u0

∂η

∂z
− 1

2h0
∂u′

∂z
(1.51)

the associated dispersion relation is

ω = u0k + i

√
2

2τi

√
(kh0)2 − (kh0)4 (1.52)

Respect to the inviscid thread, in the linearized equations for an inviscid jet, there are
two more terms u0∂zu′ in the momentum and u0∂zη in the kinematic equations. The
contribution of the jet velocity does not change the growth rate wi only the frequency
wr. The frequency is not anymore zero but is a linear function of the wavenumber:

ωr = u0k. (1.53)

24



1.5. Liquid jets

If we define the dimensionless wave frequency and wavenumber as

ω̃ = ωτi , k̃ = kh0 (1.54)

the dispersion relation (1.52) can be written as

ω̃ =
√
We k̃ + i

√
1
2
(
k̃2 − k̃4

)
(1.55)

Hence, the Weber number We is sufficient to describe the stability of an inviscid jet. The
calculation of the jetting/dripping transition with the long-wavelength description shows
that the an inviscid jet has enough kinetic energy to overcome the surface energy, when

We > 4. (1.56)

Below this critical Weber number the inviscid jet is absolutely unstable, otherwise it is
convectively unstable. Conversely, the determination of the A/C transition performed
by Leib & Goldstein (1986)-Le Dizès (1997) on the exact dispersion relation gives the
transition at We ∼ 3.15. The discretize of the two critical Weber number is due to the
long-wavelength approximation.

1.5.2 Viscous jet

For a viscous jet the inertial terms can be consider negligible compare to the viscous
terms. The linearized governing equations (1.25)-(1.26) are:

0 = γ

ρ

∂

∂z

(
η

h2
0

+ ∂2η

∂z2

)
+ 3ν ∂

2u′

∂z2 (1.57)

∂η

∂t
= −u0

∂η

∂z
− 1

2h0
∂u′

∂z
(1.58)

injecting the normal mode expansion q′(r, z, t) = q̂(r)ei(kz−ωt), the following dispersion
relation is yielded:

ω = u0k + 1
6τv

i
(
1− (kh0)2

)
(1.59)

as for the viscous thread, the viscous jet is ill-posed problem since it predicts the most
amplified wavenumber at zero wavelength.
In this case, we define the dimensionless wave frequency as:

ω̃ = ωτv (1.60)
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and the dimensionless dispersion relation becomes:

ω̃ = Cak̃ + 1
6 i
(
1− k̃2

)
. (1.61)

For a purely viscous effect, the Capillary number Ca is sufficient to describe the linear
stability. The calculation of the absolute/convective transition shows that the absolute
wavenumber and frequency are respectively

k0 = −3iCa (1.62)

ω0 = −3
2 iCa

2 + i
1
6 . (1.63)

A viscous thread has enough energy to overcome the surface tension and then maintain
the jetting regime when

Ca >
1
3 (1.64)

Below this critical value of the Capillary number the jet is absolutely unstable and
therefore the liquid jet breaks up.

1.5.3 Viscous jet with inertia

The translation invariance in not anymore broken (ω(k = 0) = 0) if also the inertial
term are take into account in the stability analysis. In this case the associated dispersion
relation can be written as:

ω = u0k −
3i
2
Oh

τi
(kh0)2 + i

τi

√
1
2 ((kh0)2 − (kh0)4) + 9

4Oh
2(kh0)4 (1.65)

where the growth rate is same found for the thread and the frequency is linear respect
to the wavenumber. Also for this case, the long-wavelength approximation gives a very
perfect agreement with the numerical discretization of the Navier-Stokes equations with
Chebyshev polynomials (figure 1.9).

The Ohnesorge number is independent on the velocity and therefore it is not anymore
sufficient to describe the behavior of a liquid jet. If we define the dimensionless wave
frequency and wave number as

ω̃ = ω
µh0
γ

, k̃ = kh0 (1.66)
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Figure 1.9 – Frequency ω̃r and growth rate ω̃i as function of kh0 for a viscous jet with
inertia contribution. Comparison between long-wavelength approximation (line) and
numerical results (circle) for a jet with Oh = 0.7 and Ca = 1.

the dispersion relation (1.65) can be rewritten as:

ω̃ = Cak̃ − 3
2 iOh

2k̃2 + iOh

√
9
4Oh

2k̃4 + 1
2(k̃2 − k̃4) (1.67)

where Ca is the Capillary number. To describe the stability of a liquid jet only two
adimensional number are necessary: Ohnesorge Oh and Capillary Ca number.
Ohnesorge (1936) in his work developed an operative diagram in (Re,Ca)-plane to
distinguish dripping and jetting regime (figure 1.10). The transition appears to be a
power law relationship between the Reynolds and Ohnesorge number. More recently
Derby (2010) proposed an operating diagram for drop-on-demand inkjet printing as
power law of Reynolds and Weber number (figure 1.11).

In conclusion, we have analyzed, in progressive manner, the physical mechanism leading
to breakup of a liquid jet immersed in a dynamically inert medium. We have seen that
the stability of the jet can be studied with the long-wavelength description, and that it
can always be described by one or two adimensional numbers. We have also observed,
that while for a liquid thread the instability is always an absolute instability, for a jet
the transition from absolute to convective instability occurs. In the last case, criteria
that allows to distinguish from the two regimes are given in function of the adimensional
numbers.
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thesis concludes with a demonstration that the clearest way
of delineating the boundaries of the distinct operating
regimes for the jet breakup problem is by defining a new
Kennzahl or dimensionless group given by

Z ¼ gffiffiffiffiffiffiffiffi
qrd
p : (1)

Here g is the shear viscosity of the fluid, r is the surface ten-
sion, q is the density, d is the jet diameter, and V is the fluid
speed. This is the original definition of what is now referred
to commonly as the Ohnesorge number. The central findings
of the thesis were published in the ZAMM (Zeitschrift fuer
Angewandte Mathematik und Mechanik) article of 1936
(Ref. 4) that featured a slightly expanded operating diagram
(reproduced here in Figure 4) with data for two additional
fluids (“gas oil,” i.e., diesel or heating oil and “ricinus,” i.e.,
castor oil) beyond those studied in the thesis.

B. Physical interpretation

Representing the experimental results on an operating dia-
gram of the form in Figure 4 clearly delineates the transitions

between different modes of breakup, and it is immediately
apparent that there appears to be a simple power
law relationship between the critical Reynolds number and
the corresponding value of the dimensionless number Z,
although Ohnesorge never gave such an expression (as is
discussed further below). The dimensionless grouping of
variables captured in the parameter Z can be best under-
stood as a ratio of two time scales, the Rayleigh timescale
for breakup of an inviscid fluid jet, tR "

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qd3=r

p
and the

viscocapillary time scale tvisc" gd/r that characterizes the
thinning dynamics of a viscously dominated thread:14,15

Z ¼ tvisc

tR
¼ gd=rffiffiffiffiffiffiffiffiffiffiffiffiffi

qd3=r
p : (2)

The Ohnesorge number, thus, provides a ratio of how large
each of these timescales is for a fluid thread or jet of diame-
ter d, given knowledge of the fluid viscosity, density, and
surface tension. In typical jets (with d" 1 mm) of low vis-
cosity fluids (such as water or aniline), the Ohnesorge num-
ber is very small, Z # 1; in viscous liquids such as glycerin
or machine oils, the Ohnesorge number can exceed unity.

FIG. 3. “Static” drop breakup associated with slow dripping of a viscous fluid from a nozzle. The nozzle diameter (d¼ 2r) is expressed in terms of the ratio r/
a¼ 0.52, where a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðqgÞ

p
is the capillary length (or “Laplace constant” as Ohnesorge refers to it) of the dripping fluid stream. The sequence of image

frames plays from right to left as was customary in German hydrodynamic literature of the era. Reproduced from W. v. Ohnesorge, Anwendung eines kinema-
tographischen Hochfrequenzapparates mit mechanischer Regelung der Belichtung zur Aufnahme der Tropfenbildung und des Zerfalls flüssiger Strahlen. Copy-
right VC 1937 by Konrad Triltsch (Abbildung 26, p. 66).

FIG. 4. The operating diagram devel-
oped by Ohnesorge in his thesis to distin-
guish between the critical conditions for
transition between different modes of
breakup for a cylindrical jet exiting from
an orifice. The dimensionless number or
Kennzahl on the ordinate axis is now
referred to as the Ohnesorge number.
Reprinted with permission from W. v.
Ohnesorge, Z. Angew. Math. Mech. 16,
355 (1936). Copyright 1936, Wiley
Interscience.

127101-3 Wolfgang von Ohnesorge Phys. Fluids 23, 127101 (2011)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
128.179.130.189 On: Fri, 06 Mar 2015 14:23:17

Figure 1.10 – Ohnesorge operative diagram. The power law allows to distinguish the
dripping (i), the jetting (ii) and the wind induced regime (iii). The Kennzahl number Z
in this work is referred as the Ohnesorge number. Reprinted from Ohnesorge, ZAMN,
16, 1936.

1.6 Relationship between absolute/ convective and global
stability

The stability properties of weakly non-parallel flows, that are slowly developing in space,
are conveniently described by local stability analysis and the associated absolute/con-
vective instability theory (Huerre & Monkewitz, 1990). In contrast, strongly spatially
developing flows are better analyzed in a global stability framework (Chomaz, 2005).
Trying to understand the links between the two approaches, Heaton, Nichols & Schmid
(2009) found that the global instability modes of an x-independent parallel base flow
are equivalent to its absolute instability modes. These global modes include appropriate
boundary conditions at the upstream and downstream locations, while the absolute
modes are given by the dispersion relation of the system. However, their analysis was
based on a two-dimensional flow that required numerical calculations for the obtention
of both the global and absolute modes. By contrast, we present here a similar analysis
on a simpler one-dimensional system, which allows for the analytical retrieval of these
modes and their direct comparison.
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MR40CH16-Derby ARI 3 June 2010 22:36
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Figure 4
Equations 2–4, together with the range of Z = 1/Oh that allows stable printing, can be plotted in a
coordinate system defined by the Reynolds and Weber numbers to illustrate the regime of fluid properties
where DOD inkjet printing is possible.

during DOD printing, and these can destabilize into a train of satellite droplets that follow the
main drop (Figure 3). The action of small concentrations of polymers can stabilize the tail so that
it retracts into the main drop during flight through surface tension, resulting in a single drop on
impact.

DROP/SUBSTRATE INTERACTION
For most applications of interest to materials scientists, the liquid drop will impact on a sub-
strate, and a subsequent phase change will transform the liquid into a solid. For some applications,
this phase change will generate the final desired product, whereas for others a secondary process
(e.g., sintering) is required. The liquid/solid phase change can occur by a number of mechanisms,
including solvent evaporation, cooling through a transition temperature, gelling of a polymer
precursor, and chemical reaction. In all these cases, solidification occurs postdeposition, and the
printed pattern must retain some stability in the liquid state prior to solidification. To fully un-
derstand the processes that occur between the printed drop and the substrate prior to attaining
the desired structure, we must identify the interactions that occur between the substrate and the
fluid drop prior to solidification.

Drop Impact and Spreading
The behavior of a liquid drop on impacting a solid surface is controlled by a number of physical
processes and can be driven by inertial forces, capillary forces, and gravitational forces. The
important dimensionless groupings are the Reynolds, Weber, and Ohnesorge numbers, as with

www.annualreviews.org • Inkjet Printing of Functional and Structural Materials 401

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
01

0.
40

:3
95

-4
14

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 E
co

le
 P

ol
yt

ec
hn

iq
ue

 F
ed

er
al

 L
au

sa
nn

e 
on

 0
5/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Figure 1.11 – Derby operative diagram for drop-on-demand injecting printing. Accord-
ing to Derby’s criterion, a drop has sufficient kinetic energy to be ejected from the nozzle
if We > 4 and Re < 2/Oh. Instead, the onset of splashing is given by the criterion
OhRe5/4 > 50. Reprinted from Derby (2010).

1.6.1 System description and local stability analysis

We consider an axisymmetric viscous jet flowing along the z-direction in a dynamically
inert medium. The base flow is formed by the jet of viscosity µ moving downstream
at constant velocity u0 and having constant radius h0. Inertial terms are neglected,
and all quantities are made nondimensional using the length scale h0 and the viscous
time scale τv = µh0/γ, where γ is the surface tension of the jet. In order to perform a
local stability analysis, the extent of the flow in the z-direction is supposed infinite, so
that small perturbations of the interface position around its equilibrium value may be
expanded into normal modes η(z, t) ∼ ei(kz−ωt). Inserting this expansion in the linearized
governing equations leads to the following dispersion relation

ω = Ca k + i

6(1− k2), (1.68)

where Ca = µu0/γ is the capillary number (for details see § 1.5.2). This dispersion
relation exhibits a range of unstable wavenumbers 0 ≤ k < 1 and the maximum growth
rate is attained at k = 0. The absolute wavenumber k0 observed on the ray z/t = 0 in
the laboratory frame is given by the following zero group velocity condition

dω
dk (k0) = 0 ⇒ k0 = −3iCa, (1.69)
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Chapter 1. Liquid threads and jets

and the corresponding absolute frequency ω0 follows as

ω0 = ω(k0) = −3
2 iCa2 + i

6 . (1.70)

An absolute to convective instability transition therefore occurs when the absolute growth
rate ω0,i changes sign

ω0,i = Imω0 = 0 ⇒ Ca = 1
3 . (1.71)

1.6.2 Global stability analysis

In reality, the system is bounded and the flow enters and exits the domain at streamwise
locations z = 0 and z = l, respectively. The perturbations thus need to be zero at these
locations, resulting in the following boundary conditions

η(0, t) = η(l, t) = 0. (1.72)

Hence, the Fourier expansion used in the local analysis is no longer applicable. Instead,
note that a linearized differential equation for the time evolution of the perturbations
can be recovered from the dispersion relation (1.68)

∂η

∂t
= −Ca∂η

∂z
+ 1

6η(z, t) + 1
6
∂2η

∂z2 , (1.73)

which, interestingly, turns out to be a specific case of the linearized Ginzburg-Landau
model equation. The perturbation may then be expanded in global modes

η(x, t) = η̄(z)eλt. (1.74)

that can be inserted in (1.73) to give the following boundary value problem
(
λ− 1

6

)
η̄(z) = −Cadη̄

dz + 1
6

d2η̄

dz2 , (1.75)

with the boundary conditions η̄(0) = η̄(l) = 0. This can be seen as an eigenvalue problem
where λ are the eigenvalues and η̄(z) the eigenvectors. Expanding the eigenvectors as
η̄(z) = η̂eαz leads to the following quadratic equation for α

α2 − 6Caα+ 1− 6λ = 0, (1.76)

the roots of which are given by

α1,2 = 3Ca± 1
2

√
36Ca2 + 24λ− 4. (1.77)
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1.6. Relationship between absolute/ convective and global stability

The eigenvectors are thus expressed as the linear combination η̄(z) = η̂1eα1z + η̂2eα2z.
To find admissible values for λ, we make use of the boundary conditions to write

[
1 1
eα1l eα2l

] [
ĥ1
ĥ2

]
=
[

0
0

]
. (1.78)

Setting the determinant of the above matrix to zero yields the condition

eα2l− eα1l = 0 ⇒ α1−α2 = i
2πm
l

⇒
√

36Ca2 + 24λm − 4 = i
2πm
l
, (1.79)

where m is an integer. The admissible values for the global frequencies λm then follow
as

λm = −3
2Ca2 + 1

6 −
m2π2

6l2 = −iω0 −
m2π2

6l2 , (1.80)

where ω0 is the absolute frequency given in (1.70) by local stability analysis. One therefore
observes that the most amplified global frequency λ0 corresponds to the absolute frequency,
i.e. λ0 = −iω0! Thus it is not surprising that the flow becomes globally unstable, meaning
λ0,r > 0, at the same capillary number Ca = 1/3 for which the instability becomes
convective in the local analysis. Also, the sequence of global frequencies for m = 1, 2, ...
form a branch that emanates out of the absolute frequency and in which consecutive
modes have spacing that scales with 1/l2. Finally, from the values of the frequencies λm,
we can recover the shape of the corresponding global eigenmodes

η̄m(z) = η̂1(eα1z − eα2z) = 2iη̂1e
3Caz sin mπz

l
. (1.81)

It is seen that the global mode η̄0 associated with the most amplified global frequency
does not oscillate. As a final remark, we note that the strong exponential growth of the
eigenmodes in the axial direction observed by Heaton et al. (2009) appears explicitly
here in the term e3Cax. Our expression also confirms that eigenmodes still exist for large
domain sizes l, and the convergence issues encountered by Heaton et al. (2009) were
indeed of numerical nature.
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2 Threads and jets in a surrounding
flow

In this chapter, we outline the effect of a surrounding flow on the stability mechanism of
threads and jets. Initially the analysis is focused on the effect quiescent external medium.
In a second moment the dynamic of the jet and the external flow is added.

2.1 Hydrodynamic description of jets and surrounding flow

We consider an incompressible fluid injected throw a nozzle in a surrounding medium.
The jet has density ρ1, viscosity µ1, surface tension γ, radius h and mean velocity u0.
Let ρ2 and µ2 the density and the viscosity of an incompressible medium surrounding
the jet. The external medium is initially unbounded (as sketched in figure 2.1).

h(z, t)

z

r

ρ1, µ1

ρ2, µ2

Figure 2.1 – Flow domain and notations used in the chapter

The governing equations for the jet and for the external matrix are the incompressible
Navier-Stokes equations in axisymmetric coordinates (r, z):

∂tui + (ui · ∇) ui = − 1
ρi
∇pi + νi∆ui (2.1)

∇ · ui = 0 (2.2)

where the subscripts i = {1, 2} denote respectively the jet and outer medium.
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Chapter 2. Threads and jets in a surrounding flow

The jet interface has to move at the same velocity of the near jet. Like in the first chapter
the interface motion can be describe by the kinematic equation

∂th+ ui∂zh = vi|r=h (2.3)

Along the interface the continuity of the velocity has to be respected

u1 = u2|r=h (2.4)

as well the stress condition

(σ1 − σ2) · n|r=h = −γCn (2.5)

The definition of the unit normal vector n and the mean curvature C is the same given
the for the jets in the void

n = (−∂zh, 1)
(1 + ∂zh)1/2 (2.6)

C = 1
h (1 + h′2)1/2 −

h′′

(1 + h′2)3/2 (2.7)

The tools necessary to describe the stability of the system are already described in § 1.3.

Initially the stability analysis is applied to the study of a liquid thread with constant
height h(z, t) = h0 surrounding by a quiescent external matrix. Two limit case are
introduced (inviscid thread in an inviscid surrounding and purely viscous thread in
viscous surrounding) and a general relation between the wavenumber and growth rate is
given. In a second step, the velocity is introduced, both for the jet and the medium, and
we will show that the linear stability analysis can not be used unless we compute the
dynamics of the base flow. Finally the case of two confined parallel co-axial jets at low
Reynolds number is presented.

2.2 Threads in a quiescent external medium

2.2.1 Inviscid thread immersed in a quiescent inviscid medium

Let ρ2 the density of the quiescent inviscid medium surrounding an inviscid thread of
constant height h(z) = h0 and density ρ1. The effect of an inviscid surrounding matrix
on the instability of an inviscid thread can be approached, also for this case, with the
long-wavelength description. The strategy is coupled the response of the thread and of the
external medium throw two one-dimensional equations. For the thread, the contribution
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2.2. Threads in a quiescent external medium

of the outer pressure enter in the z-momentum

∂u1
∂t

= − 1
ρ1

∂p1
∂z

(2.8)

where the normal stress condition gives

p1 = p2(r = h0) + γC (2.9)

Instead the outer medium responds to the interface deformation, contracting and ex-
panding radially:

∂v2
∂t

= − 1
ρ2

∂p2
∂r

(2.10)

1
r

∂(rv2)
∂r

= 0 (2.11)

using the kinematic equation v2(r = h0) = ∂th and the continuity of the velocity at
the interface v1(r = h0) = v2(r = h0), from the continuity equation (2.11) on finds the
external radial velocity as function of the interface position

v2 = h∂th

r
(2.12)

which, inserted into (2.10), gives

1
r

(
∂h

∂t

)2
+ h

r

∂2h

∂t2
= − 1

ρ2

∂p2
∂r

(2.13)

and keeping only the linear term in the perturbation:

h

r

∂2h

∂t2
= − 1

ρ2

∂p2
∂r

(2.14)

Integrating (2.14) and using (2.9), an expression of the inner pressure is obtained

p1 = ρ2h
∂2h

∂t2
log

(1 + kh

kh

)
+ γC (2.15)

and therefore the dispersion relation can be written as:
[
1 + 1

2
ρ2
ρ1

(kh0)2 log
(

1 + 1
kh0

)]
ω2 = − 1

2τ2
i

(
(kh0)2 − (kh0)4

)
(2.16)

The dispersion relation is characterized by two dimensional group, the inertial time
scale τi =

√
ρ1h3

0/γ and the density ratio ρ = ρ1/ρ2. The above equation (2.16) can be
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Figure 2.2 – Dimensionless growth rate −iωτi as function of the dimensionless wavenum-
ber kh0 for an inviscid thread of density in a quiescent external inviscid medium with
ρ1/ρ2 = 1. The long-wavelength approximation (continuous line) fits well the Rayleigh
exact solution (dashed line).

compared with Rayleigh’s exact solution
[
1 + ρ2

ρ1

K0(kh0)I1(kh0)
K1(kh0)I0(kh0)

]
ω2 = − 1

τ2
i

(kh0)
[
1− (kh0)2

] I1(kh0)
I0(kh0) (2.17)

and they have a good agreement as shown in figure 2.2. The small overestimation of the
long-wavelength approximation, found in the inviscid thread without external medium,
remains if the effect of the external inertia is take into account.

The presence of an inviscid external medium reduces the instability and shifts the most
amplified wavenumber toward smaller k compare to the inviscid thread immersed in a
dynamically inert medium, as shown in figure 2.3. However the cut-off remain unchanged
kch0 = 1. The original dispersion relation (1.29) is recovered if ρ2/ρ1 → 0, while the
opposite limit ρ2/ρ1 →∞ gives the dispersion equation for the hollow jet:

ω2 = − γ

ρ2h3
0

1− (kh0)2

log
(
1 + 1

kh0

) (2.18)

2.2.2 Inviscid thread immersed in a quiescent viscous medium

The limit case of an inviscid thread immersed in an inviscid medium can be easily
extended to the case of inviscid thread immersed in a viscous medium µ2 6= 0. The inner
thread and outer medium are connected to each other throw the continuity of the velocity
at the free interface and the normal stress condition. To compute the inner pressure p1 a
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2.2. Threads in a quiescent external medium
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Figure 2.3 – Dimensionless growth rate −iωτi as function of the dimensionless wavenum-
ber kh0 for an inviscid thread of density ρ in a quiescent external medium of density ρa,
for decreasing value of ρ1/ρ2 = {105, 1, 0.1}
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Figure 2.4 – Dimensionless growth rate −iωτ as function of the dimensionless wavenum-
ber kh0 for an inviscid thread in a quiescent external medium with ρ1/ρ2 = 1, for
increasing viscosity of the outer medium µ2 = {0, 0.1}

contribution of the viscous stress has to be added to (2.9)

p1 = p2(r = h0) + γC − 2µ2
∂v2
∂r

(2.19)

with similar calculations discussed above, the new dispersion relation can be written as
[
1 + 1

2
ρ2
ρ1

(kh0)2 log
(

1 + 1
kh0

)]
ω2 = − 1

2τ2
i

(
(kh0)2 − (kh0)4

)

+(−iω) µ2
ρ1h2

0
(kh0)2

(2.20)

The presence of an external viscous medium slows down the instability and shift the
most amplified wavenumber towards a smaller value of k compared with the thread in
an inviscid surrounding. Also, in this case also the cut-off remains unchanged kch0 = 1.
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Chapter 2. Threads and jets in a surrounding flow

2.2.3 Viscous thread immersed in a quiescent viscous medium

For the case of a viscous thread immersed in a quiescent viscous medium is not any longer
possible use the long-wavelength approximation. If also the inner thread is viscous, in
the dispersion relation the shear has to be taken into account, and in the long-wavelength
approximation also the second order correction term v2 of the streamwise velocity (1.12)
has to been included in the equation.

In the case of viscous thread and viscous matrix, Tomotika (1935) generalized the
Rayleigh equation (1.36) for an arbitrary viscosity ratio λ = µ1/µ2 giving an explicit
expression of the growth rate

−iω = γ

2µ1h

(
1− (kh0)2) (K1

K0
V1µ2 + I1

I0
V2µ1

)

(
µ2
µ1
− 1

) (
K1
K0
V1V3µ2 − I1

I0
V2V4µ2

)
+ (kh0)

(
2 + I0K1

I1K0
+ I1K0

I0K1

)
µ1

(2.21)

where the following abbreviations hold

V1 = (kh0)
(
I1
I0
− I0
I1

)
+ 2

V2 = (kh0)
(
−K1
K0

+ K0
K1

)
+ 2 (2.22)

V3 = (kh0)2
(

1− K2
0

K2
1

)
+ 1

V4 = (kh0)2
(
I2

0
I2

1
− 1

)
− 1

and all the Bessel functions are function of kh0. In the dispersion relation we can
recognize the characteristic viscous timescale τv = γ

µ1h0
.

Stone & Brenner (1996) obtained a direct and elegant derivation for the case of iso-
viscosity λ = 1 and found

−iω = γ

µh0

(
I1K1 + kh0

2 (I1K0 − IoK1)
)

(2.23)

As shown on figure 2.5, the presence of an external viscous matrix slows down the
instability, the thread becomes more stable as the viscosity ratio increase, maintaining
the cut-off unvaried kch0 = 1. The most amplified wavenumber is reached for non-
zero wavenumber, unless for the limit case λ = ∞ or λ = 0. In these two limit cases
(viscous thread in the void and hollow jet) the most amplified wave number is kmh0 = 0.
Translation invariance ω(k = 0) = 0 is not broken for finite viscosity ratio. From the
figure 2.5, we can easily observe that the value of the most amplified wavenumber varies
with the value of the viscosity ratio. The variation of kmh0 is not a monotonous function
of λ and reaches the maximum at λ ∼ 0.28, as shown on figure 2.6.
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Figure 2.5 – Dimensionless growth rate −iωτv as function of the dimensionless wavenum-
ber kh0 for a viscous thread in a viscous matrix. Dispersion relation plotted for decreasing
value of viscosity ratio λ = {∞, 10, 1, 0.1}.

10
−5

10
0

10
5

0

0.2

0.4

0.6

λ

k
m
h

0

Figure 2.6 – Most amplified wavenumber kmh0 as function of the viscosity ratio λ for
a viscous thread in a viscous matrix.

Tomotika (1935) derived also an explicit dispersion relation for the hollow jet λ = 0

−iω = γ

2h0µ2

1− (kh0)2

(kh0)2 + 1− (kh0)2K2
0

K2
1

. (2.24)
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Chapter 2. Threads and jets in a surrounding flow

2.2.4 Viscous thread with inertia in a quiescent viscous medium

As final step the analysis of the most general case of a thread with density µ1 and
viscosity ρ1 surrounding by a quiescent medium with density ρ2 and µ2 is provided. Like
for the viscous thread, the long-wavelength assumption is not anymore applicable, and
in addition an explicit analytical dispersion relation does not exist. Hence the dispersion
relation is obtain numerically.

γ
h(z, t) ≈ h0

ρ1, µ1

ρ2, µ2

Figure 2.7 – Sketch liquid thread in a surrounding medium and notations.

The linearized Navier-Stokes equations can be made dimensionless with two different
timescale: the inertial τi or the viscous τv timescale. In the first case (i) if the time scale
is τi, the length scale h0, and remembering that the pressure is related to the curvature
through the Laplace law ∆p = p1 − p2 = γC, we can set:

t = τih̃, u′ = h0
τi

ũ, p′ = γ

h0
p̃, r = h0r̃, z = h0z̃, η = h0η̃ (2.25)

and the adimensional linearized Navier-Stokes equations and boundary conditions can
be written as

1
Oh

∂t̃ ũ1 = − 1
Oh
∇p̃1 + ∆ũ1 (2.26)

1
ρ

1
Oh

∂t̃ ũ2 = − 1
Oh
∇p̃2 + 1

λ
∆ũ2 (2.27)

∇ũ = 0 (2.28)
∂t̃η̃ = ṽ1 (2.29)
ũ1 = ũ2|r=h (2.30)(
−p̃1I +Oh

(
∇ũ1 + (∇ũ1)T

)
+ p̃2I−

Oh

λ

(
∇ũ2 + (∇ũ2)T

))
ñ = C̃ñ (2.31)

In contrast (ii) if for the timescale τv is introduced and we set

t = τvh̃, u′ = h0
τv

ũ, p′ = γ

h0
p̃, r = h0r̃, z = h0z̃, η = h0η̃ (2.32)

The dimensionless linearized Navier-Stokes equation and boundary conditions can be
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2.3. Jet in a medium

read as

1
Oh2∂t̃ ũ = −∇p̃+ ∆ũ (2.33)
1
ρ

1
Oh2∂t̃ ũ = −∇p̃+ 1

λ
∆ũ (2.34)

∇ũ = 0 (2.35)
∂t̃η̃ = ṽ1 (2.36)
ũ1 = ũ2|r=h (2.37)(
−p̃1I +

(
∇ũ1 + (∇ũ1)T

)
+ p̃2I−

1
λ

(
∇ũ2 + (∇ũ2)T

))
ñ = C̃ñ (2.38)

We have obtained two set the of equations and boundary conditions described with three
dimensional group: the Ohnesorge number Oh = µ1/

√
ρ1h0γ, density ratio ρ = ρ1/ρ2

and the viscosity ratio λ = µ1/µ2.

The numerical dispersion relation f(ω, k,Oh, ρ λ) = 0 obtained with the Chebyshev
discretization incorporates all the limits and behaviors discussed above (see Appendix A
for mathematical details). The presence of an external quiescent flow always slows down
the instability. Increasing the outer viscosity or the outer density the instability is reduced
(as shown in figure 2.8). If both viscosity of the thread and medium are take into account
the cut-off wavenumber kch0 = 1 remains unvaried. The most amplified wavenumber
kmh0 is not a monotonous function of viscosity and density ratio and Ohnesorge number
varying from kmh0 = 0 and kmh0 =

√
(2)/2. In the limit case of a viscous thread in the

void λ → ∞ and Oh → ∞ the most amplified wavenumber is kmh0 = 0, while in the
opposite case of an inviscid thread in the void ρ→∞ and Oh→ 0 the most amplified
wavenumber is kmh0 =

√
2/2.

The sketch 2.9 describes how the instability is effected by the variation of the dimensional
group. Increasing the Ohnesorge number Oh of the liquid thread, namely increasing
the viscous force with respect to the inertial and surface tension forces, the instability
growth. While increasing the influence of the external flow, in other words decreasing
the density ratio or the viscosity ratio, the instability is reduced.

2.3 Jet in a medium

If the aim is to analyze the dynamics and breakup of fluid jet into another immiscible
fluid, considered to be unbounded, a significant difficulty arises. There is no parallel flow
solution of a jet penetrating and entraining fluid around it. Even in the case of liquid jet
in air, where both the viscosity and the density of the gas are usually negligible, the plug
flow solution does not constitute a good approximation of the real flow. Two important
factors have to be considered: (i) the continuity between the fluid velocity between inner
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Figure 2.8 – Dimensionless growth rate −iωτi as function of the wavenumber kh0 for a
liquid thread with Oh = 1 immersed in a quiescent fluid. In the first picture ρ = 1 and
λ = {0.1, 1, 10}, in the second λ = 1 and ρ = {0.1, 1, 10}.
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Figure 2.9 – Sketch of how the instability of a liquid thread in a quiescent medium can
growth or reduce varying the dimensional group Oh, ρ and λ.
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2.3. Jet in a medium

unperturbed axial velocity at !!1. In order to obtain non-
trivial solutions to the system in "1# subjected to "4#–"6#, it is
clear that Eqs. "5#–"6# must be linearly dependent, which
demands that

D"$ ,%#!
1
M

pg"1 #

dpg"1 #/d!
"

pl"1 #

dpl"1 #/d!
#

We"1

"Us%"$#2

$"1"%2#!0. "7#

In order to perform the stability analysis of our problem, we
must provide zeroth-order velocity profiles. In the literature,
numerous examples7,8 can be found in which shear layer ve-
locity profiles are modeled as hyperbolic tangents that are
functions of the radial coordinate and various parameters
characterizing the flow. Instead of choosing hyperbolic tan-
gents or polynomials to characterize the basic velocity pro-
files, we have chosen functions that satisfy the Blasius-like
differential equation,

2
d3&

d'3
#&

d2&

d'2
!0, "8#

subjected to the boundary conditions

'→( , &!→) , '!0, &!!Us . "9#

The relation between function & and the independent vari-
able ' with the nondimensional liquid and gas velocities and
the radial coordinate ! is given by

Ul0!
d&

d'
*'!"!"1 #/+ l, , Ug0!

d&

d'
*'!"1"!#/+g, ,

"10#
where the ) values used to determine the function & for the
basic liquid and gas velocity profiles are )!1 and )
!!- l /-g, respectively. This is done since the core of both
streams reach isentropically atmospheric pressure, starting
from the same stagnant pressure.1 The free parameters + l and
+g are used to characterize liquid and gas shear layer thick-

nesses, respectively. Since velocity profiles should be such
that tangential stresses match at the interface, and if we take
into account that the integral mass conservation for the gas
jet and the integral conservation of axial momentum of both
liquid and gas streams must be satisfied, we will obtain three
equations relating the parameters + l , R0 , and Us with +g .
Thus, we obtain the one-parameter family of velocity profiles
shown in Fig. 2, where it is assumed that - l /-g!870 and
. l /.g!55.5, which correspond to physical properties of
water and air at 293 K. Consistently with the classical
parallel-stream approximation, the basic velocity profiles are
completely determined once +g is given since no axial de-
pendence of the basic flow with the axial coordinate is con-
sidered. The reason why this procedure for obtaining a basic
solution "which, of course, is not exact# is followed is not
arbitrary. It is based on the fact that in the case of two-
dimensional shear layers developing between two different
fluids, a self-similar solution can be obtained through inte-
grating the Blasius equation for the streamfunction "8# sub-
jected to "9# and to the shear stress matching condition at the
interface. The procedure described in this paper is expected
to provide more realistic velocity profiles than those corre-
sponding to the hyperbolic tangent ones since the shear layer
will be approximately two dimensional for +/R0%1.

"2# Stability analysis. Equations in "1# have been solved
by integrating numerically toward the free surface !!1,
starting with behaviors near the axis and for large !, given by

!!/%1, pg!1#
"!%#2

4
, !!0 , pl!K0"!%#,

"11#
where 0 has been chosen large enough for the condition
dUl0 /d!(0)%1 to be satisfied. The complex values of % and
$ satisfying the dispersion relation "7# are then determined
by iteration using a Newton–Raphson scheme. The analysis
of the complex function %"$# yields5,6,9 the time response of
the system to an impulse at t!0. In fact, to determine
whether the nature of the instability of the system is convec-
tive or absolute, it suffices to analyze the time evolution of
the response along the ray x/t!0. If the perturbation grows
along this ray, the instability will be absolute; otherwise, it

FIG. 1. "a# Typical view of the steady bubble-jet mode. Here R!200 .m,
D!150 .m, H!500 mm, L!100 .m, 0Pg!10 kPa, Q!2 .l/s. Also, R
indicates the inner radius of the needle, D is the diameter of the exit orifice,
H is the distance from the bottom of the needle to the exit orifice, L is the
thickness of the plate with the orifice, 0Pg is the pressure jump across the
orifice, and Q is the gas flow rate. Liquid: 80% water 20% ethanol/vv. "b#
Closeup view of the orifice exit region taken with an ultra-high-speed video
camera "obturation time 150 ns#. Note the remarkably homogeneous mi-
crobubble size.

FIG. 2. Different velocity profiles for the range of values of the parameter
+g considered in this study.
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Figure 2.10 – Family of velocity profile U/US for different value of the boundary layer
thickness δ, from Gordillo et al. (2001).

jet and outer fluid at the interface should be ensured, and (ii) the inner fluid exerts a
force on the outer one through the shear stress and the continuity of stress that has to
be ensured at the interface. The situation is even more complicated if the outer flow is
also driven: it then acts as an external forcing that further deforms the jet.

In all these situations, the base flow solution evolves downstream and there are little
analytical approaches to describe the flow. The accurate representation of the free
interface as well as the steady solution of the governing equations become a significative
challenge. Besides numerical simulation techniques for two-phase flows (see for instance
the level-set approach described in dome detail in Appendix B), some attempts have been
done to solve boundary layer like equations so as to identify a self-similar solution of the
coaxial jets (Gordillo et al. (2001)), as shown in figure 2.10. In a situation of a viscous
thread falling under gravity, an analytical solution can be obtained neglecting surface
tension and a weakly non parallel stability analysis has revealed that the flow was globally
stable, while it was locally unstable (Javadi, Eggers, Bonn, Habibi & Ribe (2013)). The
physical reason lies in the kinematic gathering phenomenon (Eggers & Villermaux (2008)):
as the filament thins down and accelerates, there is a permanent mismatch between
the “grown-up” wavelengths and associated frequencies and the “coming up” stability
properties of the flow.

There is one exception to this difficulty to analytically solve for the base flow, which
is when the two streams are bounded by a pipe wall. In the latter case, a parallel flow
solution with a cylindrical interface can be obtained, as discussed in detail in the next
section.
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Chapter 2. Threads and jets in a surrounding flow

2.4 Co-axial parallel jets in circular capillaries

The stability of of viscous threads confined within a viscous outer liquid in a circular
capillary has been exhaustively studied from Guillot et al. (2007), Guillot & Colin (2008)
and Herrada et al. (2008) with the hypothesis of negligible inertia. The authors carried
out a local stability analysis on the fully developed profile and they predict the transition
from an absolute to a convective instability ruled by the capillary number and the degree
of confinement. While Guillot et al. (2007) solves the problem using the lubrication
approximation, Herrada et al. (2008) finds the dripping/jetting transition analytically.
Although the lubrication approximation is expected to be less accurate, both methods
present similar results, and once again the lubrication approximation presents the main
advantage that the dispersion relation is explicit with respect to ω and can be written in
polynomial form.

In the following, the essential steps leading to the base flow and stability analysis with
the lubrication approximation are explained.

2.4.1 Base flow

We consider a cylindrical capillary liquid jet of two incompressible and immiscible fluids
in a pipe of radius R2, as sketched in figure 2.11. The two fluids have different viscosity:
µ1 for the inner flow and µ2 for the outer flow, different flow rate Q1 and Q2. The two
stream are chosen to be neutrally buoyant ρ1 = ρ2. The radius of the inner flow is
assumed constant R1. The gravity effect is neglected and the stability analysis is made
in the limit of vanishing Reynolds number.

fluid 1

fluid 2

r

µ1, Q1

µ2, Q2

µ2, Q2

z

R1

R2

Figure 2.11 – Sketch of the co-axial jet and notations used in this section.

The base flow is assumed steady, unidirectional and fully developed. The governing
equations are the Stokes equations in axisymmetric coordinate. The boundary conditions
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2.4. Co-axial parallel jets in circular capillaries

together with the interfacial conditions (2.3)-(2.5) allow to determine the velocity field:

u1(r) = − 1
4µ1

∂z p̄(R2
1 − r2)− 1

4µ2
∂z p̄(R2

2 − h2) (2.39)

u2(r) = − 1
4µ2

∂z p̄(R2
2 − r2) (2.40)

and deduce the flow rates

Q1 = − π

8µ1
∂z p̄R

4
1 −

π

4µ2
∂z p̄R

2
1(R2

2 −R2
1) (2.41)

Q2 = − π

8µ2
∂z p̄(R2

2 −R2
1)2 (2.42)

Imposing the continuity of the velocity at the interface (2.39)-(2.40), the velocity interface
Uint and the degree of confinement h = R1/R2 are obtained:

Uint = 2Q2
πR2

2(1− h2) (2.43)

h = R1
R2

=
√
λ(1 +Q)−

√
λ(λ+Q)

λ(2 +Q)− 1 (2.44)

where λ = µ1/µ2 is the viscosity ratio and Q = Q1/Q2 is the flow rate ratio.
In figure 2.12 we can observe the dependency of velocity profile Ūz(r) and interface
position respect to the flow rates and viscosity ratio. For a fixed value of the flow rate
ratio, increasing the viscosity ratio, the interface accelerates while the velocity of the
central axis slows down. The interface position is shifted toward bigger value of h. Instead
for a fixed value of the viscosity ratio, increasing the flow rate ratio, both the interface
and centerline velocities accelerate and the interface position is shifted toward bigger
value of h. This behavior is also observable in figure 2.13. Increasing the flow rate or the
viscosity ratio the free interface moves toward the pipe wall.

2.4.2 Stability analysis

The stability analysis is performed using the lubrication approximation hypothesis (i.e.
consider perturbation whose wavelength is large compared to the capillary radius R2,
which implies ∂z � ∂r). Powers & Goldstein (1997) and Powers et al. (1998) demonstrated
that the lubrication assumption captures qualitative and semi-quantative properties of
non confined cylinders instabilities.

If we introduce small axisymmetric perturbations, the linearization of the governing
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Chapter 2. Threads and jets in a surrounding flow

0 0.5 1 0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 10 0.5 1

λ = 0.1 λ = 1 λ = 10

Q = 0.1

Q = 1

Q = 10
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Figure 2.12 – Velocity profile ū(r) normalized by the velocity on the axis ū(r = 0).
From left to right λ = {0.1, 1, 10} and from top to bottom Q = {0.1, 1, 10}. The red
lines correspond to the velocity of the outer flow, while the blue lines to velocity of the
inner flow

equation, using the lubrication approximation, gives:

1
r
∂r(rv′i) + ∂zu

′
i = 0 (2.45)

0 = −∂rp′i (2.46)

0 = −∂zp′i + µi
1
r
∂r(r∂ru′i). (2.47)

Besides the no-slip conditions at the wall

u′2(r = R2) = 0 (2.48)

and the symmetry condition

∂ru
′
1(r = 0) = 0, v′1(r = 0) = 0 (2.49)
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2.4. Co-axial parallel jets in circular capillaries
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Figure 2.13 – Contour of the interface position h as function of the viscosity ratio λ
and flow rate ratio Q.

the flow has to satisfy also the interface boundary conditions: continuity of the velocity,
stress balance and kinematic equation.
The continuity of the velocity at the interface gives:

u′1
∣∣∣∣
r=η

= u′2
∣∣∣∣
r=η

(2.50)

Since, a priori, we don’t know the position of the perturbed interface, we can expand
the interfacial condition in Taylor’s series around r = R1, the unperturbed interface, to
extract the quantities in the unperturbed location

u′i
∣∣∣∣
r=η

= u′i
∣∣∣∣
r=R1

+ η
∂ūi
∂r

∣∣∣∣
r=R1

(2.51)

With the flattening, we can rewrite the continuity of the velocity on the unperturbed
interface as

u′1 + η∂ru1

∣∣∣∣
r=R1

= u′2 + η∂ru2

∣∣∣∣
r=R1

(2.52)

The continuity of the tangential stress at the interface gives:

(µ1∂ru1 − µ2∂ru2)
∣∣∣∣
r=R1

= 0 (2.53)

while the jump of the normal stress can be written as

(−p1 + p2)
∣∣∣∣
r=R1

= γ

(
η

R2
1

+ ∂zzη

)
. (2.54)

47



Chapter 2. Threads and jets in a surrounding flow

The last interfacial condition to set is the perturbed kinematic equation

∂tη = vi(R1)− Uint∂zη (2.55)

In order to carry out the stability of the co-axial flow, the perturbations are sought in
normal mode decomposition:

u′i(r, z, t) = ûi(r) ei(kz−ωt) (2.56)
p′i(r, z, t) = p̂i(r) ei(kz−ωt) (2.57)
η(z, t) = η̂ ei(kz−ωt) (2.58)

From the r-momentum (2.46), it is possible to deduce that p̂i(r) = p̂i is a constant
function with respect to r, while, integrating the continuity equation (2.45) and the
z-momentum (2.47) it is possible to find an expression for ûi(r):

ûi(r) = ik

4µi
(p̂ir2 + Ci log r +Di) (2.59)

v̂i(r) = k2

4µi

(
p̂ir

3

4 + Ci
2

(
r log r − r

2

)
+ Dir

2 + Ei
r

)
(2.60)

where Ci, Di, Ei are constant of integrations (for the symmetry condition C1 = E1 = 0).

The boundary conditions can be written in matrix form:

Aφ = 0 (2.61)

where φ = (p̂1, D1, p̂2, C2, D2, E2, η̂) and the matrix A is

A =




0 0 R2
2 logR2 1 0 0

0 0 R3
2

4
2R2 logR2−R2

4
R2
2

1
R2

0
R2

1 1 −λR2
1 −λ logR1 −λ 0 2i(λ− 1)R1

k
∂zp

R3
1 2R1 −λR3

1 −λR1(2 logR1 − 1) −2λR1 − 4λ
R1

0
− k2

16µ1
R3

1 − k2R1
8µ1

0 0 0 0 i(kUint − ω)
2R1 0 −2R1 − 1

R1
0 0 0

−1 0 1 0 0 0 −γ
(

1
R2

1
− k2

)




(2.62)
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2.4. Co-axial parallel jets in circular capillaries

2.4.3 Temporal stability analysis and dispersion relation

The system has non-trivial solution if detA = 0, and the following dispersion relation is
founded:

ω = UintJk + i
γ

µ2R2
G(R2

2k
2 −R4

1k
4) (2.63)

where the terms J = J(h, λ) and G = G(h, λ) are positive function of the viscosity ratio
and interface position

J(h, λ) = λh2 − h2 − λ
λh4 − λ− h4 (2.64)

G(h, λ) = (−4 log h+ 4λ log h− 4λ+ 3)h5 + 4(2λ− 1)h3 + (1− 4λ log h− 4λ)h
16 (h4(1− λ) + λ)

If we adimensionalize the wave frequency with the characteristic viscous timescale
ω̃ = ω µ2R2

γ = ωτv and the wavenumber with the capillary radius k̃ = kR2, the above
dispersion relation (2.63) becomes:

ω̃ = CaJk̃ + iG
(
k̃2 − h2k̃4

)
(2.65)

where the Capillary number is defined as Ca = µ2Uint/γ.
For a co-axial jet, in the limit of vanishing Reynolds number, the stability is described
by three dimensionless group: the Capillary number Ca, the interface position h and the
viscosity ratio λ. The comparison of the lubricated dispersion relation with the exact
solution found by Herrada et al. (2008) gives a good agreement, as shown in figure 2.14.
With the dimensionless group proposed, the cut-off is always k̃c = 1

h and it gives an
information about the confinement. The frequency ω̃r = CaJk̃ has a linear dependency
on the wavenumber, while the growth rate ω̃i = G(k̃2 − h2k̃4) describes the surface
tension effects. More precisely k̃2 is related to the curvature in the cross section, and
k̃4 is related to the curvature in the flow direction. While the curvature in the axial
curvature promotes the jet regime, the radial curvature drives the breakup.

2.4.4 Spatio-temporal stability analysis and convective/absolute regime

The determination of the saddle point of the spatio-temporal analysis (2.65) lead to the
absolute wavenumber

k0 =


±

√
9 + 3

√
7

24 − i
√
−1 +

√
7

24


 1
kc

(2.66)
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Figure 2.14 – Dimensionless dispersion relation for a co-axial jet with h = 0.5, λ = 1
and Ca = 1/25. Comparison between lubrication approximation (lines) (Guillot et al.
(2007)) and exact solution (circles) (Herrada et al. (2008)).

with absolute wave frequency

ω0 =− hJCa

12

(
−3
√

6 + 2
√

7 + i

√
−6 + 6

√
7
)

− h2G

36




√
6 + 2

√
7

4
(
−6 + 5h4 +

√
7h4

)√
−6 + 6

√
7 + i(−3 + h4)(5 +

√
7)




We can find the group velocity v±g of the perturbation imposing

∂ωi
∂kr

= 0, v±g = ωi
ki
, v±g = ∂ωi

∂ki
(2.67)

this criterion leads to

v±g = CaJ ± G

h2

( √
7 + 5

12 kc(z)2 −
√

7 + 5
36 kc(z)4

)√
24 kc(z)2
√

7− 1
(2.68)

The determination of the dripping/jetting regime transition shows that a co-axial jet has
enough energy to overcome the surface energy and maintain the jetting regime when

Ca >
G(h, λ)
hJ(h, λ)

(
3− h2

) 5 +
√

7
36

√
24√
7− 1

(2.69)

Below the critical value of the Capillary number the jet is absolutely unstable, above
convectively unstable. The function v−g (Ca, h, λ) = 0 is plotted in the (h,Ca)-plane
for different values of viscosity ratio, as shown in figure 2.15. If the viscosity ratio is
increased, the convective region increases at expense of the absolute region. Instead, for
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Figure 2.15 – Phase diagram of the instability in the (h,Ca)-plane for different value
of viscosity ratio λ = {0.01, 0.1, 1, 10, 100}, as previously found by Guillot et al. (2007).

the same value of the viscosity ratio, the absolute regime is promoted if the confinement
or the Capillary number are decreased.

The link between the A/C properties and global modes of a model finite length parallel
jet with boundary conditions and the real spatial developing flow will be explored in
chapter 3.

2.4.5 Exact dispersion relation

The exact and explicit dispersion relation can be found analytically (for details Herrada
et al. (2008)). In the following, the essential steps leading to the exact solution are
explained.

The perturbed continuity equation and the perturbed Stokes equation are sought in
normal mode form

ikûi + 1
r

∂

∂r
(rv̂i) = 0 (2.70)

0 = −ikp̂i + µi

(1
r

∂

∂r

(
r
∂u′i
∂r

)
− k2û

)
(2.71)

0 = −∂pi
∂r

+ µi

(
∂

∂

(1
r

∂

∂r

(
rv′i
))− k2v̂i

)
(2.72)

The system equations (2.70)-(2.72) can be solved introducing the modified stream-
functions Ψi

ûi = 1
r

d

dr

(
r2Ψi

)
, v̂i = −ikrΨi (2.73)
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Chapter 2. Threads and jets in a surrounding flow

The p̂i and Ψi can be then written as function of modified Bessel functions:

Ψi = AiI1(kr) +BiK1(kr)
r

+ CiI0(kr) +DiK0(kr) (2.74)

p̂i = −2ikµi (CiI0(kr) +DiK0(kr)) . (2.75)

where Ai, Bi, Ci, Di are constant of integrations (for the symmetry condition B2 = D2 =
0). Replacing the expression of p̂i and Ψi in the boundary conditions and interfacial
conditions we obtain a system that can be written in matrix form:

AΦ = 0 (2.76)

where φ = (A1, C1, A2, B2, C2, D2, η̂) and the matrix A is

−kK0(kR2) 2I0(kR2) + I1(kR2)kR2 2K0(kR2)−K1(kR2)kR2 0
−ikK1(kR2) −ikI0(kR2)R2 −ikK0(kR2)R2 0

k K0(kR1)k −(II1kR1k)R1 − 2I0(kR1) K1(kR1)kR1 − 2K0(kR1) −2R1Uint(λ− 1)/((−1 +R2
1)λ)

ikK1(kR1) ikI0(kR1)R1 ikK0(kR1)R1 0
0 0 0 0 i(ω − Uintk)

−2k2µ2K1(kR1) 2k(−µ2I1(kR1)− µ2kR1I0(kR1)) 2k(µ2K1(kR1)− µ2kR1K0(kR1)) 0
2k(K1(kR1) + kR1K0(kR1))/R1 2iR1µ2k

2I1(kR1) −2iR1µ2k
2K1(kR1) γ(−1 +R2

1k
2)/R2

1




A =




0 0 kI0(kR2) −kK0(kR2) 2
0 0 −ikI1(kR2) −ikK1(kR2)

I0(kR1)k I1(kR1)kR1 + 2I0(kR1) −I0(kR1)k K0(kR1)k −(
−ikI1(kR1) −ikI0(kR1)R1 ikI1(kR1) ikK1(kR1)
−ikI1(kR1) −ikI0(kR1)R1 0 0 0 0

2µ1I1(kR1)k2 2k(µ1I1(kR1) + µ1kR1I0(kR1)) −2k2µ2I1(kR1) −2k2µ2K1(kR1) 2k(−µ
2iµ1k(I1(kR1)− kR1I0(kR1))/R1 −2iR1µ1k

2I1(kR1) −2iµ2k(I1(kR1)− kR1I0(kR1))/R1 −2iµ2k(K1(kR1) + kR1K0(kR1))/R1

(2.76)

The dispersion matrix A obtained has the same shape of the matrix obtained with the
lubrication approximation (2.62). The main difference of the two models is that the
exact solution take into account the viscous terms in the normal stress while these terms
are neglected in the lubrication approximation (see sketch 2.16).

The differences between the lubrication approximation and the exact solution are observ-
able in figure 2.17. For low values of confinement, the lubrication solution locates the
A/C transition at higher values of the Capillary number, while for high values of the
confinement the lubrication approximation locate the A/C transitional at slight lower
values of the Capillary number respect the exact solution. The intersection of the two
curves occurs at h ∼ 0.6 for isoviscous fluids λ = 1. If the outer fluid is more viscous
than the inner fluid (λ < 1), the intersection occurs at lower value of the confinement,
while for λ > 1 the intersection is shifted towards bigger value of confinement.

In this chapter, we have analyzed different variants of the Rayleigh-Plateau problem,
i.e. the stability of a thread or jet immersed in an external medium. We added in
progressive manner different mechanics leading the breakup as viscous force and velocity.
We proposed, when possible, both the long-wavelength/lubrication approximation and the
exact dispersion relation. We have analyzed the stability of pressure-driven co-axial jets
in a cylindrical confining geometry in the limit of vanishing Reynolds number. For this
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2.4. Co-axial parallel jets in circular capillaries

Fluid 1 Fluid 2 Interface

No slip

Continuity
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Figure 2.16 – Structure of matrix A for local stability analysis.
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Figure 2.17 – Phase diagram of the instability in the (h,Ca)-plane for λ = 1. Com-
parison between the lubrication approximation (black line) and exact solution (red
line).

latter case, we have identified the A/C transition as function of the operating parameters:
degree of confinement, viscosity ratio and Capillary number.
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Chapter 2. Threads and jets in a surrounding flow

Inert external medium Unbounded external
medium

Bounded external
medium

µ1 = 0 µ1 = 0, µ2 = 0
ρ1 6= 0 (1.4.1) ρ1 6= 0, ρ2 6= 0 (2.2.1)

µ1 = 0, µ2 6= 0
Threads ρ1 6= 0, ρ2 6= 0 (2.2.2)

µ1 6= 0 µ1 6= 0, µ2 6= 0
ρ1 = 0 (1.4.2) ρ1 = 0, ρ2 = 0 (2.2.3)∗
µ1 6= 0 µ1 6= 0, µ2 6= 0
ρ1 6= 0 (1.4.3) ρ1 6= 0, ρ2 6= 0 (2.2.4)∗∗

µ1 = 0 µ1 6= 0, µ2 6= 0
ρ1 6= 0 (1.5.1) ρ1 = 0, ρ2 = 0 (2.4.2)†

Jets µ1 6= 0 µ1 6= 0, µ2 6= 0
ρ1 = 0 (1.5.2) Case-dependent spa-

tially developing flow
ρ1 = 0, ρ2 = 0 (2.4.4)‡

µ1 6= 0 µ1 6= 0, µ2 6= 0
ρ1 6= 0 (1.5.3) ρ1 6= 0, ρ2 6= 0 (Ap-

pendix A)

Table 2.1 – Different jets and threads and their viscous and inviscid limits discussed in
sections 1 and 2. In all but the cases labelled by an ∗, a long-wave approximation can be
proposed. In addition, no explicit analytical expression can be obtained in case labelled
by a ∗∗. In the case labelled by †, a lubrication approximation is proposed, while in the
case labelled by ‡, the full Stokes equations are solved in each domain.
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3 Global stability analysis of co-
axial jets

In this chapter we consider the flow in a co-axial injector and we investigate the effect
of the entry region by means of a global stability analysis. The chapter is organized as
follows. Sec. § 3.1 introduces the problem and the state of art, Sec. § 3.2 describes the
geometry, the governing equations and the numerical methods. In Sec. § 3.3 we validate
our mathematical tools in special case of a parallel flow. In Sec. § 3.4 we investigate the
effect of fluids viscosities, flow rates and surface tension on the flow spatial evolution of
the inner phase jet. The stability proprieties of the base flow is then investigated by a
global stability analysis of the two dimensional axisymmetric flow in Sec. § 3.5.

Paper: On the influence of the entry region in a coflowing injector device
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On the influence of the entry region
in a coflowing injector device

L. Augello and A. Fani and F. Gallaire

LFMI, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Under consideration for publication in J. Fluid Mech.

Key words: instabilities, co-axial flow, drop formation

3.1 Introduction

The production of droplets is of fundamental importance in industrial liquid-liquid contact
processes, such as solvent extraction, ink jet printing, spray atomization, emulsification
process, and polymer extrusion, to name a few (see Stone (1994) and Eggers & Villermaux
(2008)). In microfluidic applications with two immiscible fluids, droplets are usually
produced through passive techniques, where the flow field deform the interface in order to
promote interfacial instabilities which leads to drop formation (see for instance Baroud,
Gallaire & Dangla (2010) and the references therein).

One of the simplest possible device consists in a co-axial injector, where the disperse
phase is injected in a outer carrier fluid which flows in a cylindrical tube. Cramer et al.
(2004) carried out experiments on a co-flowing device with a needle placed inside a
rectangular flow cell. They showed that the breakup of the liquid stream into droplets
can be classified in two regimes: dripping, in which droplets pinch off near the capillary
tube’s tip, and jetting in which droplets pinch off from an extended thread downstream
of the needle tip. The first regime is observed for small values of the inner phase flow rate
Q1, where the capillary force dominates. As Q1 is increased (keeping the external phase
flow rate Q2 constant), viscous and inertial forces becomes comparable to the capillary
one and a transition to the jetting regime occurs. The transition depends also on the
two fluids viscosities and on the interfacial tension.

Guillot and coworkers (Guillot et al. (2007); Guillot & Colin (2008)) studied the stability
of viscous jet confined within a viscous outer liquid in a microchannel by carrying out
a local stability analysis of the developed flow profile (see 3.1(b)), using a lubrication
approximation and neglecting the inertial terms. They interpreted the transition from
dripping to jetting as a transition from an absolute to a convective instability, a concept
widely applied in instabilities of shear flows and wakes (see Huerre & Monkewitz (1990)
for details). In an absolutely unstable system perturbations can grow and withstand the
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3.1. Introduction

mean advection, leading to self-sustained oscillations. In contrast, convectively unstable
system do not display intrinsic dynamics and essentially behave as amplifiers: external
perturbations are amplified while propagating through the system. In co-axial devices
an absolutely unstable configuration is related to a self sustained production of droplets
(dripping), while a convectively unstable flow is expected to result in droplets which
form at a finite distance downstream (jetting), only after the instability could grow.
The authors could identify a critical value of the capillary number Ca as a function
of the flow parameters such as the phases viscosities and the interface position (Hout

in figure 3.1(b)). A good agreement was found between the theoretical critical value
and the capillary number at which transition from dripping to jetting is observed in
experiments, confirming that the two transitions are related. The lubrication approach
fails for low values of the jet radius Hout, in that case the complete set of equations must
be considered in order to have a good agreement with experiments, as shown in Herrada
et al. (2008).

The local analysis carried out in the previous works can be applied to parallel or slowly
spatially evolving flows. Nonetheless, the flow is expected to vary rapidly from a bi-
Poiseuille velocity profile close to the nozzle to the fully developed one. In analogy with
single phase pipe flow, the entry length is expected to scale like the pipe radius in the
low Reynolds limit. In addition, the nozzle radius Hin can be significantly different from
the developed jet radius Hout, leading to an interface that vary along the stream-wise
direction. To take into account non-parallel effects, a global stability analysis must be
carried out. The studies using global methods have until now been concentrated on
wakes behind solid obstacles and detached flows (see Theofilis (2011)), but mainly of
single phase flows. A global stability analysis of the two dimensional wake of immiscible
flows has been carried out by Tammisola et al. (2012), where they have observed a
counterintuitive destabilizing effect of the surface tension. Gordillo et al. (2013) studied
the dripping to jetting transition of two coaxial streams in the so called tip-streaming
regime, where the inner phase presents a cone-jet structure. They carried out a global
stability analysis of the cone-jet, by using a slender body approximation, and they have
observed that regime where uniformly sized droplets are produced is associated to a
globally unstable flow.

In this study we consider the flow in a co-axial injector and we investigate the effect of
the entry region by means of a global stability analysis. The paper is organized as follows.
Sec. 3.2 describes the geometry, the governing equations and the numerical methods.
In Sec. 3.4 we investigate the effect of fluids viscosities, flow rates and surface tension
on the flow spatial evolution of the inner phase jet. In addition we varied the nozzle
diameter, in order to assess how the geometry influence the drop formation. The stability
proprieties of the base flow is then investigated by a global stability analysis of the two
dimensional axisymmetric flow in Sec. 3.5.
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Chapter 3. Global stability analysis of co-axial jets

3.2 Problem description

fluid 1

fluid 2
Hin

R

uD

z

r

µ2, Q2

µ1, Q1

inlet profile outlet profile

µ2, Q2

Hout

Figure 3.1 – Flow domain and notations used in the text. On the left a 3D sketch of
the core-annular flow, on the right a 2D view of the geometry. The dash-dot (−·) line is
the axisymmetric axis, the dotted line (··) is the interface, while the continuous line is
the pipe wall at r = R. The inner fluid, with viscosity µ1 and flow rate Q1, flows in an
immiscible fluid with viscosity µ2 and flow rate Q2.

We consider the flow of two incompressible and immiscible fluids in a pipe of radius R.
One of the fluids is injected by using a nozzle of radius Hin as sketched in figure 3.1.
The two fluids have the same density ρ but different viscosity: µ1 for the inner flow and
µ2 for the outer. The inlet velocity of respective stream has a Poiseuille profile with flow
rate Q1 for the inner flow, and Q2 for the outer. The interface evolves downstream until
it reaches the fully developed position Hout and velocity uD. In the following, we neglect
the inertial effects, as well as gravity, compared to the capillary forces ρu2

D � γ/R, where
γ is the surface tension.

The governing equations for the fluids are the incompressible Stokes equations in axisym-
metric coordinates (r, z), made dimensionless with the external pipe radius R, the fully
developed velocity uD and the outer viscosity µ2. The problem is characterized by the
three dimensionless parameters:

Ca = µ2uD
γ

, λ = µ1
µ2
, Q = Q1

Q2
(3.1)

where Ca is the capillary number, λ the viscosity ratio and Q is the flow rate ratio.

3.2.1 Steady solution

In order to carry out a stability analysis, we first need to compute a the steady solution.
The base flow is computed by solving a single Stokes equation in the full domain coupled
with the level set function that allow to distinguish the two fluid (see Olsson & Kreiss
(2005)-Olsson, Kreiss & Zahedi (2007) for details on the method). The varying fluid
properties, as viscosity, can be expressed as function of the level-set. The advantage of
this method is that we can perform numerical simulation with low capillary number Ca
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3.2. Problem description

Domain 1

continuity

stress

Domain 2µ2, û2, p̂2

Ω1

Ω2

µ1, û1, p̂1, ĥ

Γint

Level set φ = 0

µ, ū, p̄, φ

Single domain

(b) – Global stability(a) – Global stability

Figure 3.2 – Base flow (a): the two fluid are computed in the same fixed grid by
implementing the Stokes equation of a single velocity field in the full domain and the two
layers are distinguished by a presence of the level-set function. Perturbed flow (b): the
two fluid are computed in two different grid by implementing the Stokes equations of two
velocity fields with the addition of the linearized boundary conditions at the interface.

without having to parametrize the surface curvature (fig 3.2a). The governing equations
become:

0 = ∇ ·
[
−p̄I + µ

(
∇ū + (∇ū)T

)]
+ 1
Ca
C̄n̄δ (3.2)

ū · ∇φ = ∇ · (D∇φ) (3.3)
∇ · ū = 0 (3.4)

where µ = µ(φ) denotes the viscosity, which is a function of the level set function φ:

µ = 1 + (λ− 1)He(φ) (3.5)

where He(φ) is the Heaviside function with continuous second derivative and transition
thickness e which depends on the mesh size. The capillary effects are modelled by the
last term on the right-hand side of equation (3.2) 1

Ca C̄n̄δ. The geometric properties of
the interface are easily determined from the level-set function. The unit normal vector n̄
and the surface curvature C̄ are respectively given by

n̄ = ∇φ
|∇φ| (3.6)

C̄ = −∇ · n̄ (3.7)

The capillary force is localized at the interface by the Dirac delta function δ, such that
the level set variable φ = 0.
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Chapter 3. Global stability analysis of co-axial jets
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Figure 3.3 – Comparison of the interface position found with the level-set method
(red line), boundary element method (∗ marker) and VOF description (o marker) for a
co-axial flow. Simulations done for Hin = 0.7, Hout = 0.4, λ = 5 and Ca =∞. Flow rate
Q1 = 0.5122 and Q2 = 1.3195.

An important aspect of the level-set method is the treatment of the artificial diffusion D
required for numerical stability. In our model we used a streamline diffusion (Streamline
Upwind Petrow-Galerkin method with tuning parameter δsd = 0.25 Hughes & Mallet
(1986)).

The base flow simulations were carried out with COMSOL Multiphysics 4.2 a with P2-P1
discretization for the fluid and a cubic discretization for φ. The non linear base state
is obtained with a Newton method where the linear systems are solved with the direct
solver PARDISO (Schenk, Bollhöfer & Römer (2008)).

The base flow computation, based on the level set method, is validated against data
obtained with two other different numerical approaches. The first method used is the
boundary element method (BEM), a so-called meshless interface tracking method where
only the boundaries are discretized. Details on the method can be found in Pozrikidis
(1992). In addition, the base flow is also obtained by using a Volume Of Fluid (VOF),
along with a finite volume spatial discretization, implemented in the open source code
Gerris Flow Solver (Popinet (2003)). Fig. 3.3 shows the interface location obtained with
the three methods for a flow with the following parameters: inner pipe radius Hin = 0.7,
viscosity ratio λ = 5, inner flow rate Q1 = 0.5122, outer flow rate Q2 = 1.3195, fully
developed interface radius Hout = 0.4 and a capillary number Ca =∞. We can see that
the level set method is in remarkable agreement with the other two. For the base flow
calculation, the level set approach is preferred because the Newton method allows to find
the steady unstable solutions.

3.2.2 Global stability analysis

The stability proprieties of a steady base-flow can be assessed though a linear stability
analysis by considering the time evolution of a small perturbation sought in term of
normal mode. Nonetheless the linearization of the level set formulation can be tricky,

60



3.2. Problem description

due to the presence of the Dirac delta function.

In this study we preferred to use an alternative approach for the stability problem
formulation. The problem is formulated in two different grids (one for each fluids)
that can interact through the boundary conditions at the interface, i.e. continuity
of the velocity and stress jump (figure 3.2b). The flow variables are the velocity
Ui = uiez+vier, the pressure Pi and the interface position H, where the index i = {1, 2}
denotes respectively the inner and the outer flow. The nonlinear governing equations for
the two fluids are:

0 = ∇ · σi (3.8)
∇ ·Ui = 0 (3.9)
∂tH = −U1∇H (3.10)

where σi = −PiI+ µi
(
∇Ui +∇UT

i

)
is the stress tensor. Note that µi here is λ for i = 1

and 1 for i = 2. Equation (3.10) is the kinematic equation, defined only on the interface
boundary, which describe the motion of the interface (see Prosperetti & Tryggvason
(2007)). The unit vector n normal to the interface pointing towards the outer fluid, the
tangential vector t and the mean curvature C can be written as:

n = (1,−∂zH)
(
1 + (∂zH)2

)1/2 (3.11)

t = (∂zH, 1)
(
1 + (∂zH)2

)1/2 (3.12)

C = −∇ · n (3.13)

In order to carry out a global stability analysis we divide the flow variables Q = (U, P,H)
into one steady state q̄ = (ū, p̄, h̄) and one small amplitude time-varying perturbation
q̂ = (û, p̂, ĥ):

U(r, z, t) = ū(r, z) + εû(r, z) exp(−iωt) (3.14)
P (r, z, t) = p̄(r, z) + εp̂(r, z) exp(−iωt) (3.15)
H(z, t) = h̄(z) + εĥ(z) exp(−iωt) (3.16)

where ω ∈ C is the complex wave frequency.

By injecting the flow decomposition into the governing equations and linearizing, we
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Chapter 3. Global stability analysis of co-axial jets

obtain a set of equations which describe the linear evolution of the perturbations. Note
that the base flow and the linear stability computations are carried out through two
different methods (see Fig. 3.2 for a sketch of the two different approaches), thus some
preliminary steps need to be performed to do the stability analysis.

The computational domains are built using the level set interface position. Nonetheless,
the obtained interface is characterized by small numerical oscillation caused by the
interpolation of the isoline Φ = 0. Therefore a fitting procedure was devised where an
optimal fitting spline is computed by minimising an error indicator. Once the interface is
discretized, the base flow can be easily computed in the two separated domains and the
error due to the interface spline can be computed as

∫
Γi ū · n̄dΓ/

∫
Γi dΓ. The baseflow in

the separated domains is computed by using a finite-element method, with cubic elements
P3 for the velocities and quadratic elements P2 for the pressure, which is an higher order
version of the standard Taylor-Hood elements (see Brezzi & Falk (1991) for details).

The governing equations for the linear evolution of the perturbations can be written as:

0 = ∇ · σ̂i (3.17)
∇ · ûi = 0 (3.18)

−iωĥ = −ū1
∂ĥ

∂z
−
(
û1 + ĥ

∂ū1
∂r

)
∂h̄

∂z
+ v̂1 + ĥ

∂v̄1
∂r

(3.19)

where σ̂i = −p̂iI + µi
(
∇ûi + (∇ûi)T

)
is the perturbed viscous stress tensor. Equation

3.19 is the linearized kinematic equation. Besides the no-slip conditions at the wall
(û2|r=R = v̂2|r=R = 0) and the symmetry condition (∂rû1|r=0 = v̂1|r=0), the flow has to
satisfy also the interface boundary conditions at the unperturbed interface r = h̄(z). We
impose in the outer layer the continuity of the velocity

û1 + ĥ∂rū1 = û2 + ĥ∂ru2 (3.20)

while in the inner layer we impose the tangential and normal stress conditions

u

vtTσin̂ + tT σ̂in + t̂Tσin̂ + ĥnT ∂σi
∂r

n

}

~

r=h̄(z), i=1→2

= 0 (3.21)

u

vnT σ̂in + 2n̂Tσin̂ + ĥnT · ∂σi
∂r
· n

}

~

r=h̄(z), i=1→2

= γ(nT Ĉn + 2n̂T · Cn) (3.22)

where the notation J· · ·Ki=1→2 denotes the jump from the inner to the outer flow. The
geometric properties of the perturbed interface are obtained by introducing the flow
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3.2. Problem description

decomposition (3.16) into the relations (3.11-3.13) and linearising. In particular, the
perturbed normal vector n̂ and curvature Ĉ are written as:

n̂ = −
∂zĥ

(
∂zh̄, 1

)

(
1 +

(
∂zh̄

)2
)3/2 (3.23)

Ĉ =− ĥ

h̄2
(
(∂zh̄)2 + 1

)1/2 +




3∂zzh̄∂zh̄(
(∂zh̄)2 + 1

)5/2 −
∂zh̄

h̄
(
(∂zh̄)2 + 1

)3/2


 ∂zĥ

− 1
(
(∂zh̄)2 + 1

)3/2∂zzĥ

(3.24)

At the inlet boundary we impose an homogeneous Dirichlet conditions on the radial
velocity v̂ and interface displacement ĥ. Finally at the outlet we add a sponge region
where the velocities and the height function are forced smoothly towards zero (see details
§ 3.7).

The equations (3.17)-(3.19), together with the boundary conditions are discretized in
space similarly to the base-flow (P3− P2 elements). The interface perturbation ĥ has
been discretized with a P2 element defined on the interface boundary. The meshes as well
as the discrete matrices resulting from Galerkin finite-element method are generated with
the software FreeFem++ (Hecht (2012)), leading to a generalized eigenvalue problem

Ax = −iωBx (3.25)

where x is a vector containing all the discrete unknowns of the problem, i.e. velocities
and pressure for the two fluids and the interface perturbation ĥ. The matrix A contains
the discretization of the differential operators and includes the boundary conditions. To
build the matrix, the following steps have to be performed: (i) we build the matrices
A1 and A2 for the separated domains, (ii) we build the linking matrices Uc and St and
(iii) finally we assembly the four matrices into the global one. A sketch of the matrices
structure is shown in figure 3.4. The matrix A1 contains the discretization of the stokes
equations for the inner fluid and the kinematic equation with a stress condition on the
interface. The matrix A2 contains the discretization of the stokes equations for the
outer fluid, where we have a Dirichlet boundary condition on interface velocity. The
two sub-problems are coupled together by imposing at discrete level the stress exerted
by fluid 2 on fluid 1 with a matrix St and the continuity of velocity at the interface
with the matrix Uc. The matrix B is in principle equal to a mass matrix on the degree
of freedom related to the interface position and null anywhere else. Nonetheless, for
numerical stability reasons, at the left-hand side of the perturbed Stokes equation (3.17),
a small term −iεωûi is added. The value ε = 10−5 has been chosen in such way that the
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Figure 3.4 – Structure of matrix A for the global stability analysis

first four digits of the most unstable eigenvalue did not change with the addition of this
term. The eigenvalue problem (3.25) is solved with a Krilov-Shur method along with a
shift-invert strategy by using the numerical library SLEPc (Hernandez, Roman & Vidal
(2005)).

3.3 Validation: stability of a parallel flow

In the following we will take into account a parallel flow. We took as computational
domain a part of an infinitely long pipe where the two phase flow is fully developed.
Therefore the interface height is constant (h̄(z) = Hin = Hout), the base flow velocity
field depends only on the r-coordinate ū = ū(0, ūz(r)) and the pressure field p̄ respects
both the pressure jump at the interface p̄1− p̄2 = γC = γ/Hout and the pressure gradient
∂z p̄ = −4µ2uD/(R2 − H2

out). The parallel flow case allows us to validate the global
stability tools against the results of a local stability analysis. As reference we consider the
lubricated local analysis performed by Guillot et al. (2007) and the exact local analysis
performed by Herrada et al. (2008) for the creeping flow limit.

Figure 3.5 shows the stability for a parallel flow case with interface height Hout = 0.5,
viscosity ratio λ = 1, Capillary number Ca = 1/20. As a first validation we impose
periodic boundary conditions at the right and left boundaries. As expected the global
analysis spectrum recover the local analysis dispersion relation. In figure 3.5a we see
that the global analysis is in excellent agreement with the exact analysis by Herrada
et al. (2008), while under the lubrication hypothesis (Guillot et al. (2007)) we have an
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Figure 3.5 – Comparison of the global and local stability results for a parallel flow case
with Hout = 0.5, λ = 1 and Ca = 1/20. The computational domain has height R = 1
and width L = 10π. At inlet and outlet we impose different boundary conditions (a)
periodic boundary (b) Dirichlet boundary u′r = 0 and η = 0. The black dots (•) are the
solution of the local lubrication stability analysis performed by Guillot et al. (2007), with
periodic boundary conditions on the left, and dirichlet conditions on the right. While
the green crosses (×) are the exact solution of the local analysis performed by Herrada
et al. (2008). The red dots (•) are the solution of the global stability analysis. While the
stars are the saddle points of Guillot (∗) and Herrada (∗) dispersion relation.

overestimation of the growth rate.

Successively we consider a finite computational domain, where we impose the Dirichlet
boundary conditions v̂ = ĥ = 0 both at the inlet and the outlet. The global modes
for an z-independent system, such as the one studied in this section, are known to
be precisely the absolute modes of the system. The global mode spectrum therefore
comprises a set of points at the absolute frequencies (ω0, k0) and the global mode will be
q̂(z, r) = q′(r) exp(ik0z). Additionally, a continuous branch of the spectrum emanates
from each saddle points (see, for example, Huerre & Rossi (1998), Heaton et al. (2009)).
This holds exactly in the limit of an infinite domain. In contrast, when we consider a
computational box of finite size a discrete spectrum of global modes which satisfy the
boundary conditions is expected. In figure 3.5b we see that the absolute mode does indeed
mark a point at which a sequence of global modes begins. The global modes behaviour
is also confirmed in the lubrication hypothesis case, where we perform a global analysis
by using a simplified model derived by taking advantage of the lubricated polynomial
dispersion relation (see Sec. 3.8 for details). Figure 3.5b shows that in the lubricated
case both the frequency and growth rate of the global modes are overestimated.
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Chapter 3. Global stability analysis of co-axial jets

3.4 Base flow of co-axial streams

The set of possible parameters to describe the base flow is a very large parameter space.
Therefore, we will concentrate on present few sets of interesting parameters and then we
will concentrate on present the results of the stability.

The base flow is obtained as described in § 3.2.1. We use a rectangular computation
domain with height R and width 10R. The domain is long enough to allow the flow to
reach the fully developed state. The inlet profile, assumed parabolic in the inner layer
and parabolic-logarithmic in the outer layer, introduces a region of local deficit which
gradually recedes as a parabolic channel flow profile developed downstream.

The base flow changes rapidly as it evolves downstream. In figures 3.6 -3.7 we plot
the streamwise and radial velocity for different location along z. In the region close to
the nozzle we notice that a region with negative radial velocity appears, which quickly
diminishes. The bi-Poiseuille flow develops in about a radius R. The necessary space to
obtain a completely developed flow does not depend on the initial confinement Hin/R of
the co-axial flow, as also confirmed by figure 3.8.

The base flow and the interface location depend on the Capillary number Ca, the
viscosity ratio λ = µ1/µ2, flow rate ratio Q = Q1/Q2 and aspect ratio Hin/R. Figure
3.9 underlines how the streamwise velocity in the entry region and the height of the
interface depends on the aspect ratio. Changing the viscosity ratio, the monotoniticy of
the interface position changes. If the outer flow is more viscous the interface reaches the
fully developed state always in non-monotonous way. Moreover, for the same imposed
inlet flow rate Q1 and Q2, if λ < 1 the flow evolves faster, reaching the fully developed
state before than the opposite case when the inner flow is more viscous.

Surprisingly, the surface tension play a minor role on the base flow. Increasing the surface
tension, for the same operating parameters, the interface position does not change. As
consequence also, the velocity field is not effected by the increasing of the surface tension.
Some small different can be noticed only when the inner flow is more viscous than the
outer (see Fig. 3.10). Only the pressure jump, according to the Laplace law, increases if
the surface tension increases.

3.5 Stability of the spatially developing flow

We now investigate the stability of the steady spatially developing flow described in the
section above.

Fig. 3.11 shows how the surface tension on the interface can affect the stability of the
flow. We consider a co-axial flow with Hin = 0.5, Hout = 0.4, λ = 5 and we decrease
the Capillary number. In (ωr, ωi)-plane we plot the eigenvalues obtained by the global
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Figure 3.7 – Velocity profile ūr for diffferent section along z = {0, 0.05, 0.5, 1}. The
continuous lines are the velocity profiles for the inner fluid, while the dashed lines for the
outer. Simulations done for Q̄1 = 0.9163, Q̄2 = 1.1781 and Ca = 1. From the top to the
bottom Hin = 0.4, 0.5, 0.6 and λ = 1/5 (purple line), λ = 1 (red line) and λ = 5 (green
line).

68



3.5. Stability of the spatially developing flow

z

r

0

1

4

ū
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stability described in § 3.2.2. The frequency and growth-rate of the eigenvalues are given
by the real and complex part of ω = ωr + iωi respectively. We observe a bifurcation from
stable (ωi < 0) to unstable (ωi > 0) between Ca = 1/21 and Ca = 1/30. The growth
rate increases if the Capillary number decreases. If Ca < 1/35 there are several unstable
modes, in analogy with the general picture shown in Sec. 3.3. The spatial shape of the
unstable mode can be seen in figure 3.12. The streamwise and radial components of the
oscillation û, v̂ and the perturbed interface are amplified downstream.

In the following, we are interested on the stable/unstable bifurcation point. The bifur-
cation point is found as the smallest Capillary number such that there is at least one
unstable mode.

The bifurcation points can be determined as function of two dimensionless parameters:
the interface position Hout and the capillary number Ca. Figure 3.13 describes the
dynamic behavior of our system, with the transition separating the unstable region
(below the points) and the stable region (above the points) in (Hout, Ca)-plane for a fixed
inlet nozzle position Hin = 0.5 and varying viscosity λ = {1/5, 1, 5}. In the (Hout, Ca)-
plane we can also plot the absolute/convective unstable transition obtained from the
local stability analysis for the same operating parameters. Convective instabilities, which
are convected downstream while growing in amplitude, are in this setting represented
by the stable eigenvalues. Absolute instabilities, which growth and travel backwards,
instead, are represented by the unstable eigenvalues. In the specific, the bifurcation
points are plotted against the A/C transition found by Guillot et al. (2007) (black lines)
and Herrada et al. (2008) (red lines). Generally, we observe that the global stability
predicts a more stable flow than the averaged and exact local analyses. In particular we
notice that for small value of the degree of confinement Hout the analytical local solution
and the global stability have the same qualitative and qualitative behaviour, while the
averaged local stability fails in the prediction of the convective/absolute transition. In
contrast the averaged and exact local solutions slightly overestimate the global results
when the confinement ratio is large (Hout ≤ 1) and the flow becomes more sensitive to the
presence of the wall. The viscosity ratio has a large impact on the stability proprieties of
the flow. In particular, the flow is more and more stable as the viscosity ratio λ decreases.

We now let the nozzle radius Hin vary. From the different base flow behaviour depicted
in Sec.3.4, a relevant effect was expected. Surprisingly, for a fixed Hout the critical
capillary number slightly depends has been found insensitive to the nozzle dimension,
as shown in figure 3.14. The error bars in the figure are computed by keeping fixed the
mesh resolution and by just changing the interface interpolation spline. We estimate an
average error of about 10% due to the interface interpolation procedure. We can see
that the fitting error is comparable to the influence of the nozzle position. Out of these
considerations, we can estimate a general uncertainty in the critical capillary number,
related to the nozzle geometry along with the interface relaxation shape, of about 12.5%.
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Figure 3.14 – Phase diagram of the instability in the (Hin, Ca)-plane for a fixed value
of the degree of confinement Hout = 0.5 and viscosity ratio λ = 1/5. The red line is the
theoretical line separating the dripping region (above) and the jetting region (below)
predict by the local analysis (Herrada et al. (2008)). The black lines are the global modes
and the respective error bars for different value of the inner radius of the pipe.

Following the guideline of Herrada et al. (2008) and Guillot et al. (2007), we represent
the stability results also in the (Q1, Q2) operational plane, for values of the parameters
common in microfluidic devices (see figure 3.15). This representation is particularly
useful for comparison with experimental data, since in experiments the flow is modified
by changing the flow rates. At fixed Q2, increasing Q1 increases the jet velocity allowing
the instability to have more convection, and this behaviour promotes continuous jets.
As observed above, for small value of the outer flow rate Q2, that correspond to large
value of Hout the local solution slightly overestimate the global results. In the graphs is
also plotted the error made keeping Hin fixed and with the interpolation of the steady
interface. We notice that a constant error in the Capillary number is translated in a
constant error on the interface velocity (grey region). We can conclude that the dripping
to jetting transition is a process mostly dominated by the intrinsic properties of the
developed streams, and that the development of the flow in the entry region stabilize
the flow. In particular, the entry region seems to be more relevant for low values of
the external flow rate. Moreover, also the uncertainty on the nozzle geometry seems
to have a relevant role at those flow operating conditions. It is noteworthy that also
available experimental data (see Herrada et al. (2008)) shows that in this regime the flow
is more stable that the local analysis prediction. This is confirmed by figure 3.16: the
stable/unstable transition is plotted against the co-axial experiments performed by A.
Colin and M. Moire (IFP). From the graph we observe that the global stability prediction
is more accurate than the local analysis one.
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3.6 Conclusion

In this study, we have analysed the influence of the entry region on the dripping to jetting
transition in a coflowing streams device.

We have fist investigated the effect of several parameters such as the flow rate ratio Q,
the viscosity ratio λ and the capillary number Ca on the flow behaviour of the steady
continuous jets solution. In addition, we characterized the effect of geometry by varying
the nozzle radius Hin, showing that the flow vary rapidly (in about one radius) from the
bi-Poiseuille solution to the parallel developed flow.

In the second part we performed a global stability analysis of the spatially evolving two
phase flow. We found that the global stability of the non-parallel flow recover always more
stable results of the exact local analysis by Herrada et al. (2008). In the entry region,
where the interface velocity is close to zero, the flow is locally absolutely unstable and,
as consequence, the flow becomes globally more stable. Surprisingly, for high external
flow rate value, the global stability analysis almost recover the same results of the exact
local analysis. This implies that for low degree of confinement the dripping to jetting
transition is a process dominated by the intrinsic proprieties of the developed streams
and not by the geometrical details of the injection co-axial nozzle. In contrast for small
external flow rate value, or high degree of confinement, the flow is more sensitive to the
presence of the wall and becomes more stable than the local stability theory prediction.

Cordero et al. (2011) showed that the linear analysis fails to predict the frequency
selection in the dripping regime and they suggest that it is maybe caused by local shear
effects at the nozzle. However, the present analysis can not take into account transient
non linear effects which can be dominant and have to be investigated by means of non
linear simulations.

3.7 Appendix 1: Sponge region at the outlet of the per-
turbed computational domain

The sponge region is extends from Lbf = 12.5R to Lgs = 15 and in this region we impose
a forcing both in the momentum and kinematic equation:

ξf = αf

1 + exp
(

1
z′−1 + 1

z′

) (3.26)

where z′ = z−Lbf
Lgs−Lbf , α = 50 is the force strength parameter and f indicates respectively

{u, η}.
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3.8 Appendix 2: Toy model for the global stability analysis
of coaxial jets under the lubrication hypothesis

Under the lubrication hypothesis, the dispersion relation for the coaxial jets has a
polynomial form (Guillot et al. (2007)):

ω(k) = αk + iβ
(
k2 − k4h2

)
(3.27)

where α and β are functions of the flow parameters (Ca, λ and Q) and h is the interface
position.

In same cases, such as this one, it is possible to recover the underlying PDE from the
dispersion relation. Let us consider a general plane wave solution φ(z, t) = φ0 exp(ikz −
iωt), where the differential operators become:

∂

∂t
= −iω (3.28)

∂n

∂zn
= (ik)n (3.29)

By manipulating Eqs.(3.28-3.29) and (3.27) we obtain:

∂φ

∂t
= −β

(
∂2φ

∂z2 + h2∂
4φ

∂z4

)
− α∂φ

∂z
(3.30)

This one dimensional problem can be used to carry out a global stability analysis and to
investigate the effect of the streamwise confinement. In the spirit of a global analysis,
let us consider a solution in the following form φ(z, t) = ˆφ(z) exp(−iωt), where only the
time dependence is sought in normal mode form. We obtain the following eigenvalue
problem:

−iωBφ̂ = A(α, β)φ̂ (3.31)

where A = −β
(
∂2

∂z2 + h2 ∂4

∂z4

)
− α ∂

∂z .

Problem (3.31) is numerically solved with a Chebyshev spectral collocation method in a
physical domain ranging from 0 ≤ z ≤ L, with inlet and outlet homogeneous Dirichlet
boundary conditions.

As already noted by Heaton et al. (2009), there is an upper limitation on the lenght L
of the computational box. In figure 3.17 we can see that when L is larger than 20π the
global spectrum is not aligned on a single branch, but instead the eigenvalues arrange
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Figure 3.17 – Influence of the length of the domain L on the eigenvalues with α = 1
and β = 0.4438, i.e. degree of confinement h = 0.5, viscosity ratio λ = 1 and Capillary
number Ca = 1/20.

themselves on a bell shaped curve which passes above the location of the true global mode.
Heaton et al. (2009) suggest that this phemonenon is caused by a combination of the
non-normality of the linear operator and issues of numerical precision. Since the global
mode is expected to grows exponentially in the axial direction, if the computational
box is too large the global mode can not be resolved accurately. Heaton et al. (2009)
proposed that |k0i|L < c where c is a constant that depends on the considered case.
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4 Complex fluid-fluid interface:
surface viscosity

In the previous chapters, we saw that interfaces between two-phase fluids occur in
everyday life, both in nature or in industrial applications. When the two phases are not
contaminated with insoluble material, the value of the surface tension is sufficient to
characterize the interface (Young (1805)). However, in most biological and technological
application, surfactants, particles and proteins will populate the interface. For this
complex fluid interface, it becomes insufficient to characterize the interface only by its
tension. It is necessary to generalize the interfacial transport phenomena both across and
within the complex fluid-fluid interface (Slattery, Sagis & Oh (2007)). In addition to the
surface tension, one should also consider a more general surface stress (Gibbs (1878)).

One of the first studies of a complex fluid-fluid interface was performed by Plateau (1873),
who conducted some experiments using a magnetic compass needle. He interpreted the
differences of the behavior of the floating needle on a bare interface and on an interface
with surfactant as the existence of molecular forces. Plateau’s interpretation was probably
wrong, as suggested by Marangoni (1872): the rotating floating needle indeed sweeps the
interface, and the concentration gradient responds creating a surface tension gradient.
To resolve the misunderstanding of Plateau’s results, Marangoni (1872) designed a new
device with a solid brass disc, which oscillations do not cause any accumulation or
dilution of the surface film, but he was not able to measure any significant difference
between a bare interface and a surfactant-laden interface, in terms of surface viscosity.
Few years later, Rayleigh (1890) proposed a new experiment using a ring. With this
device Rayleigh was able to explain the importance of reducing area of the measurement
geometry in contact with different phases. Boussinesq (1913) was the first to introduce a
mathematical continuum mechanics interfacial description. Boussinesq’s equations are
not particularly convenient since they are expressed in terms of the principal axes of the
surface rate of the deformation tensor. Scriven (1960) rewrote Boussinesq’s equations
describing the conservation of the momentum at fluid-fluid interface in terms of an
arbitrary surface coordinate system.
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a) b)

Figure 4.1 – Sketches of the experiment performed by Plateau (1873) with the floating
needle on the left, and by Marangoni (1872) with the brass disc on the right.

One approach is coupling surfactant transport and flow equation. This method can be very
complex, because it involves several different processes (Edwards et al. (1991)). In general,
interfacial stretching or compression induced by bulk flows alters the surface concentration
of surfactants, hence the surface tension, which can lead to surface tension gradients
(Marangoni effect). This is compensated by surface diffusion and, more importantly
for soluble surfactants, by adsorption from the bulk, or desorption to the bulk. These
exchanges between the bulk and the interface depend on the subphase bulk concentration,
and can be limited either by diffusion or by sorption kinetics. The resulting interfacial
stress results from this complex interplay, and only in highly simplified situations, such as
in the absence of convection (Lucassen & van den Tempel (1972)), can surface elasticity
and viscosity be predicted. In other cases, numerical simulations are required and have
been used to study, e.g. drop detachment (Jin et al. (2006)). In alternative, instead to
model these transport processes in detail, we get a first qualitative insight as to whether
surfactants may affect jet instability. Therefore, we have chosen to retain only surface
viscosity as a source of mechanical resistance, in the frame of the Boussinesq-Scriven
constitutive equation of a Newtonian interface (Scriven (1960); Slattery et al. (2007)).
This stringent simplification can be justified two-fold: (i) there are situations where the
response of the surfactants is indeed dominated by an intrinsic surface viscosity, especially
for concentrated solutions at high velocity (Scheid, Delacotte, Dollet, Rio, Restagno, van
Nierop, Cantat, Langevin & Stone (2010)), (ii) surface viscosity can be considered as an
effective parameter, which often describes qualitatively correctly the mechanical response
of a surfactant adsorbed layer. For instance, in the classical example of the settling of a
drop in a surface solution, surface elastic and viscous effects, coming from very different
processes, all have the same qualitative effects to slow down the settling compared to the
case of an interface with free shear (Levich (1962)).

In this chapter we introduce the governing equations and constitutive equations able to
describe the surface viscosity in axisymmetric coordinates (§ 4.1). We then outline the
effects of the surface viscosity on a viscous thread immersed into a dynamically inert
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medium (§ 4.2). Finally, we consider the influence of surface rheology into the two-phase
co-axial system (§ 4.3).

4.1 Dynamic description of a two-phase flow interface

4.1.1 Governing equation

Generally an interface is defined as a three dimensional surface of infinitesimal thickness,
separating two adjoining bulk phases. The two-phase physical properties (i.e. mass,
momentum and energy) change rapidly but continuously across this region, from their
value in one bulk phase to their respective value in the other bulk phase. To describe the
effects of interfacial stress-deformation behavior on the dynamics of two-phase systems,
a mathematical model has to be introduced for the interface.

The interfacial region is usually modeled as a thin film, with its own behavior and
constitutive equations (Slattery et al. (2007)-Sagis (2011)). As for the bulk phase, also
for the interface the conservation laws have to be set. The interface balance equations
act as interfacial boundary conditions for the two bulk phases of the system. In the
hypothesis of no mass transfer to or from the interface, if we define as us the interface
velocity, then the conservation of mass requires that on the dividing interface

dsρ
s

dt
+∇s · (ρsus) + Jρu · ξK = 0 (4.1)

where ρs and ρ are respectively the density of the interface and the bluk phase and ξ
is the unit normal vector. ∇s is the surface operator, and it is defined as ∇s = Is · ∇,
where Is is the surface projector tensor. The surface material derivative ds/dt is defined
by (Slattery et al. (2007), Sagis (2011))

dsρ
s

dt
= ∂ρs

∂t
+ (∇sρs) · (us − v) (4.2)

where v is the speed of displacement of the interface.

The momentum balance requires than on the fluid-fluid interface:

ρs
(
∂us
∂t

+ (us · ∇s) us
)

= ∇sγ + γCξ +∇sτ s + JσξK, (4.3)

where ρs is the surface mass density, γ the surface tension, C the curvature. The second
order tensor σ is the stress tensor in the bulk phase, while τs is the surface stress tensor.
The equation (4.3) is often referred as jump momentum balance (Slattery et al. (2007)),
and it describes the change time rate of the surface momentum as function of the surface
stress at the interface, and inertial and viscous forces applied at the interface by the
adjoining bulk phases.
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In the limit of vanishing Reynolds number, and constant surface tension, the momentum
balance (4.3) is reduced to

0 = γCξ +∇sτ s + JσξK. (4.4)

The set of equations (4.1)-(4.4) need to be closed by a constitutive equation for the
surface stress tensor τs.

In order to model the surface stress tensor different constitutive equations have been
proposed. Since we are interested in analyzing interfaces with a purely viscous response
we use the linear Boussinesq surface fluid model (Scriven (1960)):

τs = (ks − µs)∇s · us Is + 2µsDs (4.5)

where κs and µs are respectively the surface dilatation viscosity and surface shear viscosity,
Is is the surface projection tensor and Ds is the surface rate of deformation tensor

Ds = 1
2
(
Is · ∇sus + (∇sus)T · Is

)
(4.6)

4.1.2 Derivation of the constitutive equation

In the following, the essential steps leading to the computation of the divergence of surface
stress ∇sτ s of a fluid-fluid interface are explain. The Slattery et al. (2007)’s notation
are used. The derivation is made for a rotationally symmetric surface in cylindrical
coordinates:

x1 = r

x2 = θ (4.7)
x3 = z

The free interface is described by the function

r = h(z) (4.8)

and it is parameterized by

y1 = z (4.9)
y2 = θ
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zr = h(z)

ξ

a1

Figure 4.2 – Geometry of the free surface.

The surface vectors are defined as:

aα = ∂ps
∂yα

(4.10)

where ps = h(z)er + zez is the position vector on the surface. Therefore:

a1 = h′er + ez (4.11)
a2 = heθ

where the superscript denotes the derivative on z.
Let ξ be the unit normal vector to the interface pointing from inside to outside.

ξ = er − h′ez√
1 + h′2

(4.12)

Since the vector field a1, a2 and ξ are linearly independent, they form a basis for the
spatial vector field on the free surface.

The divergence of the surface stress, according to Slattery et al. (2007) is written as

∇s · τ s =
[
(κs − µs)

∂

∂yα
∇sus α

+µs
(
usα,βγ + usβ,αγ − 2usξ,γBαβ − 2usξBαβ,γ

)
aβγ

]
aα

+
[
2H (κs − µs)∇sus + µs

(
2usγ,β − 2usξBβγ

)
Bβγ

]
ξ

(4.13)

where all undefined terms are now progressively introduced. The surface divergence of
the surface velocity is

∇s · us = us ββ − 2Husξ (4.14)

In order to express the divergence of the surface stress (4.13) for an axisymmetric surface,
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we introduce the factors aαβ ≡ aα · aβ defined as:

a11 = 1 + h′2

a22 = h2 (4.15)
a12 = a21 = 0

In contrast, the cofactors aαβ are defined such that aαβaβγ = aγβa
βα = δαγ where δαγ is

the Kronecker delta. Introducing the dual basis such that aα = aαγaγ , it is possible to
define the surface velocity in terms of its tangential and normal component as:

us = us αaα + usξξ (4.16)

To gradients are computed using the rule

∂aα
∂yβ

= Γsγβαaγ +Bβαξ (4.17)

where Γsγβα are the surface Christoffel symbols of second kind

Γs111 = h′h′′

1 + h′2
, Γs122 = − hh′

1 + h′2
, Γs212 = Γs221 = h′

h
(4.18)

the other Christoffel symbols are zero.
The second ground form tangential tensor field B = Bαβaαaβ = Bαβaαaβ for an
axisymmetric surface is defined as

B11 = h′′

(1 + h′2)1/2 , B22 = − h

(1 + h′2)1/2 , B12 = B21 = 0 (4.19)

Hence, the mean curvature H is

H = 1
2trB = h′′

2
(
1 + h′2

)−3/2
− 1

2h
(
1 + h′2

)−1/2
(4.20)

while the surface covariant derivatives are:

us α,β = ∂us α

∂yβ
+ Γs αβγus γ

usα,β = ∂usα
∂yβ
− Γs γβαu

s
γ (4.21)

Bαβ,γ = ∂Bαβ
∂yγ

− Γs µγαBµβ − Γs µγβBαµ

For an axisymmetric surface vs 2 = 0 and ∂y2 = 0, which leads to the simplified the
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calculation:

∇sus = ∂us 1

∂z
+ h′h′′

1 + h′2
us 1 − hh′′ − h′2 − 1

h(1 + h′2)3/2

usα,β = δ1
αδ

β
1
∂us 1

∂z
− Γs 1

βαu
s 1 (4.22)

usα,βγ = δ1
αδ

β
1 δ

γ
1
∂2us 1

∂z2 −
(
δ1
αΓs 1

γβ + δβ1 Γs 1
γα + δγ1 Γs 1

βα

) ∂us 1

∂z

−δγ1
∂Γs 1

βα

∂z
us 1 +

(
Γs µαγΓs 1

βµ + Γs µγβΓs 1
µα

)
us 1

Replacing all the quantities found in the divergence of surface stress (4.13), and solving
at the first order of the interface variable h, the final expression of ∇sτ s is found

∇sτ s =
{

(κs − µs)
(
∂2u

∂z2 + ∂zh

h2 v + 1
h

∂v

∂z

)

+2µs
(
∂2u

∂z2 + ∂zh

h

∂u

∂z
− ∂2h

∂z2
∂v

∂z
−
(
∂h3

∂z
+ ∂zh

h2

)
v

)}
a

+
{
−(κs − µs)

1
h

(
∂u

∂z
+ v

h

)
+ 2µs

(
∂2h

∂z2
∂u

∂z
− ∂zh

h2 u−
v

h2

)}
ξ

(4.23)

where we replaced us 1 ≡ u and usξ = v for clarity. Since in the following we are interested
to perform linear stability analysis, we limit the calculation of ∇s · τ s at the first order.

In the limit of vanishing shear viscosity µs = 0, the divergence of the surface stress is

∇sτ s = κs

(
∂2u

∂z2 + v

h2
∂h

∂z
+ 1
h

∂v

∂z

)
a − κs

1
h

(
∂u

∂z
+ v

h

)
ξ (4.24)

The constitutive equations relevant to hydrodynamic instability of two-phase flow with
shear viscosity founded in § 4.1.2, are initially applied to the case of a viscous thread in
a dynamically inert medium. In a second step we will analyze the influence of surface
viscosity on the base flow and the stability of two-phase co-axial jet.
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4.2 Stability of a viscous thread immersed in an inert medium

Let analyze the stability of a viscous thread immersed in a dynamically inert medium.
The thread ū = 0 is considered infinitely long with a constant height h(z) = h0, viscosity
µ, surface tension γ and dilatation viscosity κs, as sketched in figure 4.3. According to
the kinematic equation u|∂Ω = us, therefore in the following for clarity of reading the
subscript s is dropped.

µ
γ, κs

h(z, t) ≈ h0

Figure 4.3 – Domain sketch and notations used in this section

In the limit of vanishing Reynolds number, the governing equations are the Stokes
equation with the kinematic condition. The new normal and tangential stress conditions
close the problem

−p+ 2µ∂v
∂r

∣∣∣∣∣∣
∂Ω

= −γC − κs
1
h

(
∂u

∂z
+ v

h

)
(4.25)

µ

(
∂u

∂r
+ ∂v

∂z

) ∣∣∣∣∣∣
∂Ω

= κs

(
∂2u

∂z2 + v

h2
∂h

∂z
+ 1
h

∂v

∂z

)
(4.26)

As for the stability of a viscous thread without surface viscosity (see § 1.4.2), we can use
the lubrication approximation to reduce the dimension of the problem. The velocity and
pressure field are expanded in Taylor series around r = 0:

u(z, r, t) = u0(z, t) + u2(z, t)r2 + · · ·

v(z, r, t) = −1
2
∂u0
∂z

r − 1
4
∂u2
∂z

r3 − · · · (4.27)

p(z, r, t) = p0(z, t) + p2(z, t)r2 + · · ·

The expanded field are inserted into the Stokes equation ant it is solved at the lowest
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order of r, giving the reduced Stokes equation:

0 =− γ ∂C
∂z

+ 3µ
(

2
h

∂h

∂z

∂u0
∂z

+ ∂2u0
∂z2

)

+ κs
2

(
1
h

∂2u0
∂z2 −

1
h2
∂h

∂z

∂u0
∂z
− h∂

4u0
∂z4 − h

∂h

∂z

∂3u0
∂z3

) (4.28)

and the reduced kinematic equation

∂h

∂t
= −1

2h
∂u0
∂z

+ κsh
2

8µ
∂3u0
∂z3 (4.29)

Linearizing the equations (4.28)-(4.29) around the base flow, the perturbed equations
are obtained:

0 = γ
∂

∂z

(
η

h0
+ ∂2η

∂z2

)
+ 3µ∂

2u′

∂z2 + κs
2h0

∂2u′

∂z2 −
κsh0

2
∂4u′

∂z4 (4.30)

∂η

∂t
= −1

2
∂u′

∂z
h0 + κsh

2
0

8µ
∂3u′

∂z3 (4.31)

and the associated dispersion relation is

−iω = 1
4τv

(
1− (kh0)2

) 4 +Bq(kh0)2

6 +Bq (1 + (kh0)2) (4.32)

where

Bq = κs
µh0

(4.33)

is the Boussinesq number and it measures the relative importance of interfacial viscosity
to bulk viscous effects.

As for the viscous thread without surface viscosity at the interface, the characteristic
timescale is τv. The instability is then described by three non-dimensional group: ωτv,
Bq and kh0. The comparison can be made with the Palierne & Lequeux (1991) exact
solution. Palierne & Lequeux (1991), in their work, consider the relation between the
wavelength and growth rate of sausage instability of a viscous thread immersed in a
quiescent medium, in the limit of vanishing Reynolds number. They analyzed a general
viscoelastic fluid and took into account the dynamic properties of the interface stress
due to the contamination of surfactants and the capability of the free interface to resist
a shear deformation. In their paper, the authors analyzed different cases among which
a viscous thread immersed in a viscous medium without surface stress retrieving the
Tomotika (1935) equation, and the case of a viscous thread with surface dilatation at
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Figure 4.4 – Dimensionless growth rate −iωτv as function of the dimensionless wavenum-
ber kh0 for a viscous thread with Bq = 12, and the lubricated approximation (continuous
line) fits well the Palierne & Lequeux (1991) exact solution (dashed line).

the interface, the case of our interest. Palierne & Lequeux (1991) found:

−iω = 1
2τv

(
1− (kh0)2) ( 2

kh0
I1
I0

+Bq
(
kh0

(
I1
I0
− I0

I1

)
+ 2

))

2
(
kh0

(
I0
I1
− I1

I0

)
− I1

kh0I0

)
+ I1

I0

(
kh0 + 1

kh0

)
Bq

(4.34)

The lubrication dispersion relation 4.32 and the exact solution 4.34 are in excellent
agreement, as shown in figure 4.4. The lubrication solution slightly overestimate the
exact solution, and for Bq → 0 the solution of the viscous thread given by Rayleigh
(1892) is retrivied.

The dimensionless growth rate −iωτv as function of dimensionless wavenumber kh0 is
plotted for increasing value of the Boussinesq number Bq in figure 4.5. For 0 ≤ Bq ≤ 6
the most amplified wavenumber occurs at a zero value of the wavenumber kmh0 = 0,
while for Bq ≥ 6 the maximum growth rate occurs for non zero value of the wavenumber.
The variation of the most amplified wavenumber is a monotonous function of Bq, as
shown in figure 4.6, and reaches its maximum kmh0 ∼ 0.65 for κs →∞. The viscous
thread remains an ill-posed problem because the translation invariance (ω(k = 0) = 0) is
broken for any finite value of Bq. In order to have a well-posed problem, it is necessary to
consider the inertial effects of the viscous thread or the viscous effect of the surrounding
medium (for details see Palierne & Lequeux (1991)).
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Figure 4.5 – Dimensionless growth rate −iωτv as function of the dimensionless wavenum-
ber kh0 for with increasing value Bq = {0, 6, 24, ∞}.

0 20 40 60 80 100
0

0.2

0.4

0.6

B q

k
m
h

0

Figure 4.6 – Most amplified wavenumber kmh0 as function of Bq for a viscous thread.
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4.3 Stability of a two-phase co-axial jet

Paper: Influence of surface viscosity on co-axial flows
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4.3.1 Introduction

Bubble and drop generation occurs in many industrial processes, e.g. liquid atomization
in engines (Lefebvre (1989); Bayvel & Orzechowski (1993)), ink-jet printing (Wijshoff
(2010)), or foaming and emulsification (Drenckhan & Saint-Jalmes (2015)). It often
originates from the break-up of threads or jets. Recently, there has been much interest
in the production of microdrops and microbubbles of controlled diameter; for instance,
in medical imaging, microbubbles are used as ultrasound contrast agents (Quaia (2005)),
and their echogenicity crucially depends on their size, which has triggered much interest
in producing monodisperse microbubbles (Hettiarachchi, Talu, Longo, Dayton & Lee
(2007); Dollet, van Hoeve, Raven, Marmottant & Versluis (2008)). This often requires
the use of microfluidic tools, where drops can be produced at T-junctions, in cross flow,
or in flow focusing (Anna, Bontoux & Stone (2003); Baroud et al. (2010)). In these
geometries, there is a coflow of two fluid phases, and drops are formed as the inner phase
is pinched off by the outer one. In practice, surfactants are used, to avoid dewetting and
the pinning of the inner phase on the confining walls, which suppresses pinching.

Focusing on the coaxial flow of two phases (Cramer et al. (2004)), where the inner phase
is injected by a nozzle inside a channel where the outer phase is flowing, drops can be
created by two mechanisms, refered to as jetting and dripping. In the former case, a long
slender jet forms at the nozzle exit, which eventually destabilizes to release drops. In
the latter case, drops are formed close to the nozzle exit. These two processes can be
rationalized by studying jet instability, but the detachment mechanism differs whether
the instability be absolute or convective (Huerre & Monkewitz (1990)). These regimes,
and the transition between absolute and convective instability, have been studied in
detail by Guillot et al. (2007) and Guillot & Colin (2008). Experimentally, they have
mapped the formation of drops by either dripping or jetting for various flow rates of
both phases. Theoretically, they have performed a stability analysis of the coflow, taking
as a base state two embedded parabolic velocity profiles (or bi-Poiseuille flow), yielding
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an analytical prediction of the transition between convective and absolute instability
in excellent agreement with the experimental transition between dripping and jetting.
Global instabilities, accounting for the variation of jet radius after the nozzle exit to
accommodate the outer flow, have also been studied (Castro-Hernández, Campo-Cortés
& Gordillo (2012), Gordillo et al. (2013)).

The influence of surfactants on these coaxial flows has been much less considered, and
the boundary condition on the tangential stress has generally been taken as a free-shear
condition, thus neglecting any interfacial mechanical resistance. However, it is well known
that surfactant adsorption layers at fluid-fluid interfaces can display a finite elasticity
and viscosity (Sagis (2011); Fuller & Vermant (2012)), leading to a drastic modification
of boundary conditions from free shear to no slip, or to tip streaming (Anna & Mayer
(2006)). The influence of surfactants and of surface viscoelasticity has been studied on
liquid threads (Palierne & Lequeux (1991); Hansen et al. (1999); Timmermans & Lister
(2002)) or liquid jets with a quiescent surrounding phase, but not in coflow. The aim of
our paper is therefore to study whether surfactants can affect jet stability in a coflow
situation.

In the general case, coupling surfactant transport and flow is very complex, because
it involves several different processes (Edwards et al. (1991)). In general, interfacial
stretching or compression induced by bulk flows alters the surface concentration of
surfactants, hence the surface tension, which can lead to surface tension gradients
(Marangoni effect). This is compensated by surface diffusion and, more importantly
for soluble surfactants, by adsorption from the bulk, or desorption to the bulk. These
exchanges between the bulk and the interface depend on the subphase bulk concentration,
and can be limited either by diffusion or by sorption kinetics. The resulting interfacial
stress results from this complex interplay, and only in highly simplified situations, such as
in the absence of convection (Lucassen & van den Tempel (1972)), can surface elasticity
and viscosity be predicted. In other cases, numerical simulations are required and have
been used to study e.g. drop detachment (Jin et al. (2006)).

Our aim is not to model these transport processes in detail, but to get a first qualitative
insight as to whether surfactants may affect jet instability. Therefore, we have chosen
to retain only surface viscosity as a source of mechanical resistance, in the frame of
the Boussinesq–Scriven constitutive equation of a Newtonian interface (Scriven (1960);
Slattery et al. (2007)). This is a major simplification, because it enables to disregard
surface and bulk concentration fields, and to solve only for the velocity field. This
stringent simplification can be justified two-fold. First, there are situations where the
response of the surfactants is indeed dominated by an intrinsic surface viscosity, especially
for concentrated solutions at high velocity (Scheid et al. (2010)). Second, in more complex
situations, surface viscosity can be considered as an effective parameter, which often
describes qualitatively correctly the mechanical response of a surfactant adsorbed layer.
For instance, in the classical example of the settling of a drop in a surface solution,
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surface elastic and viscous effects, coming from very different processes, all have the same
qualitative effects to slow down the settling compared to the case of an interface with
free shear (Levich (1962)). This approach has been undertaken before in other contexts,
such as the formation of free-standing films (van Nierop, Scheid & Stone (2008)) or in
dip coating (Scheid et al. (2010)).

In Sec. § 4.3.2, we present the governing equations and boundary conditions of the
co-axial flow in presence of surface viscosity. In Sec. 4.3.3 we describe the base flow,
while in Sec. § 4.3.4 the perturbed flow, with focus on the linearized lubrication analysis
(§ 4.3.4.1) and dispersion relation (§ 4.3.4.2). Then, in Sec. § 4.3.5 we analyze the effects
of the surface viscosity on the fully developed flow, and in Sec. § 4.3.6 the effects on
the region of the nozzle exit. Eventually, in Sec. § 4.3.7 we summarize the results and
present the conclusions.

4.3.2 Governing equations and boundary conditions

We consider a cylindrical capillary liquid jet, confined in a cylindrical co-axial pipe of
radius R, as sketched in figure 4.7. The two fluids have the same density ρ but different
viscosity: µ1 for the inner flow and µ2 for the outer. The inlet velocity of respective
stream has a Poiseuille profile with flow rate Q1 for the inner flow, and Q2 for the outer.
The interface evolves downstream until it reaches the fully developed velocity ūd. In the
following, we neglect the inertial effects, as well as gravity, compared to the capillary
forces ρu2

d � γ/R, where γ is the surface tension.

fluid 1

fluid 2

µ1 , 2Q1

µ2 , Q2

µ2 , Q2

r

z

inlet profile outlet profile

R 1

R 2

Figure 4.7 – Flow domain and notations used in the text. On the left a 3D sketch of
the core-annular flow, on the right a 2D view of the geometry. The dash-dot (−·) line
is the axisymmetric axis, at the position r = 0, and the dotted line (··) is the interface,
at the position r = R1, while the continuous line is the pipe wall at r = R2. The inner
fluid, with viscosity µ1 and flow rate Q1, flows in an immiscible fluid with viscosity µ2
and flow rate Q2.

The governing equation for the fluids are the incompressible Stokes equations in ax-
isymmetric coordinates (r, z), scaled with the external pipe radius R2, the fully de-
veloped interface velocity ūd and the outer viscosity µ2. The flow variables are the
velocity u(r, z) = ver + uez, the pressure p and the fluid-fluid interface is defined by
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r = ±R1/R2 = ±hd(z)

0 = −∇pi + µi∆ui (4.35)
∇ · ui = 0 (4.36)

The subscripts i = {1, 2} denote the inner and outer flow. The unit normal vector ξ
to the interface pointing towards the outer fluid, the tangential vector a and the mean
curvature C can be written as:

ξ = (1, −∂zh)
(
1 + (∂zh)2

)1/2 (4.37)

a = (∂zh, 1)
(
1 + (∂zh)2

)1/2 (4.38)

C = −∇ · n (4.39)

Along the interface, the continuity of tangential and normal stress are imposed at the
interface

a · τ · a = a · ∇sτ s (4.40)
ξ · τ · ξ = ξ · ∇sτ s (4.41)

where τij = µ(∂xiuj + ∂xjui)− p δij is the stress tensor in the Newtonian liquid bulk, δij
the Kronecker delta, while ∇s is the surface divergence of the constraint tensor at the
interface τ s. The surface stress tensor τ s depends from both the surface tension and
surface viscosity, and it can be described as

τ s = γIs + (κs − µs) (Is : Ds) Is + 2µsDs (4.42)

where κs and µs are the surface viscosity (respectively dilation and shear surface viscosity).
The unit surface tension Is = I− ξ ⊗ ξ can be written in compact form as:

Is = h′2

1 + h′2
(êr ⊗ êr)+(êθ ⊗ êθ)+ 1

1 + h′2
(êz ⊗ êz)+ h′2

1 + h′2
(êr ⊗ êz + êz ⊗ êr) (4.43)

while Ds = ∇s ⊗ vs is the surface rate of strain, with ∇s = Is · ∇ the surface gradient
and vs the velocity at the interface according to the Slattery et al. (2007) notation.

∇s = h′2

1 + h′2

(
∂

∂r
+ ∂

∂r

)
êr + 1

r

∂

∂θ
êθ +

(
h′2

1 + h′2
∂

∂r
+ 1

1 + h′2
∂

∂z

)
êz (4.44)
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Finally the divergence ∇sτ s of the viscous constraint at the interface τ s for an axisym-
metric problem is define as

∇sτ s =
{

(κs − µs)
(
∂2u

∂z2 + ∂zh

h2 v + 1
h

∂v

∂z

)

+2µs
(
∂2u

∂z2 + ∂zh

h

∂u

∂z
− ∂2h

∂z2
∂v

∂z
−
(
∂h3

∂z
+ ∂zh

h2

)
v

)}
a

+
{
−(κs − µs)

1
h

(
∂u

∂z
+ v

h

)
+ 2µs

(
∂2h

∂z2
∂u

∂z
− ∂zh

h2 u−
v

h2

)

−γ
(

1
h
− ∂2h

∂z2

)}
ξ

(4.45)

The problem is therefore characterized by four dimensionless parameters:

Ca = µ2ud
R2

, λ = µ1
µ2
, hd = R1

R2
, Bq = κs + 3µs

µ2R2
(4.46)

where Ca is the Capillary number, λ is the viscosity ratio, hd is the degree of confinement
and Bq is the Boussinesq number. We have constructed Bq with κs + 3µs because, how
we will see in the following, this is exactly the combination of dilation and shear viscosity
that describes the characteristic length of the base flow adaption.

4.3.3 Base flow

We first turn to the description of the base flow solution: this amounts to determine the
steady interface location which ensures that the steady Stokes equations are satisfied in
each fluid as well as the nullity of the normal velocity component across the interface and
the interface stress jump condition. The numerical resolution of this strongly coupled
problem requires a dedicated discretization method well-suited to the approximation of
all surface differential operators, and has not been, to the author’s knowledge, reported
in the literature so far.

A first observation is that the classical bi-Poiseuille parallel analytical solution remains
a valid solution in presence of surface rheology when streamwise invariance is assumed.
The absence of radial velocity and the constance of the tangential velocity ensure indeed
that all interfacial viscous jumps vanish, except the interfacial tension term. However, in
a real system, the spatial invariance is broken by the inlet condition and the flow needs a
certain adaptation length to reach this streamwise invariant solution, referred to as the
entry length.

While for pure tensile interfaces, the entry length, i.e. the distance needed for the inlet
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velocity profile to smoothly adapt through diffusion to the fully developed profile, is
expected to scale with the tube radius in the creeping flow limit, we expect surface viscosity
to retard this adaptation and to significantly increase the entry length. Indeed surface
viscosity will slow down the acceleration of the interface from its null velocity at the inlet
to its nominal fully developed velocity. The resulting separation of scales between this
surface rheology induced adaptation length and the tube radius (an hypothesis that will be
validated a posteriori) calls for a parallel flow approximation. Let us accordingly assume
that the interface remains cylindrical at a streamwise-independent location hd = R1/R2
and consider an approximate base flow solution where radial velocity components are
neglected and where surface viscosity effects retard the progressive acceleration of the
surface velocity vs ≈ ūs(z)ez from its entry null value to its fully developed value.

Under these assumptions, the solution remains unidirectional and a local bi-Poiseuille-like
flow prevails, with the stream-wise velocity defined as:

ū1 = A1
(
r2 − h2

d

)
+ ūs (4.47)

ū2 = A2
(
r2 − h2

d

)
+B2 log r

hd
+ ūs (4.48)

where the coefficients A1,2 are related to the pressure gradients by Ai = ∂zpi/(4µi), the
coefficient B2 is related to the no-slip condition ū2(r = 1) = 0. The radial velocities are
null v̄1 = v̄2 = 0 due to the parallel assumption.

The explicit expression of the stress conditions at the interface (4.40)-(4.41) are greatly
simplified with the parallel geometry assumption:

µ1
∂ū1
∂r
− µ2

∂ū2
∂r

= (κs + µs)
∂2ūs
∂z2 , (4.49)

−p1 + p2 = −(κs − µs)
1
hd

∂ūs
∂z
− γ

hd
, (4.50)

which express respectively the continuity of tangential stress and normal stress at the
unperturbed interface r = hd.

Derivating the normal stress boundary condition with respect to z and combining with
the tangential condition, together with the no-slip condition at the wall and the flow rate
conservation, we get a simple ODE for the evolution of the interface velocity ūs:

κs + 3µs
R1

(
−
(
R2

2 +R2
1
)

log R1
R2
−R2

2 +R2
1

)
ū′′s(z)

−2µ2
(
R2

2 −R2
1
)
ūs(z) = 4µ2Q2

π

(4.51)
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Figure 4.8 – Interface velocity ūs as function of the coordinate z for different value of
the Boussinesq number Bq = {0.1, 1, 10, 100}, with hd = R1/R2 = 0.5, µ = µ1/µ2 = 0.1
and terminal velocity ud = 1. Increasing the surface viscosity, the interface velocity tends
to the fully developed velocity more downstream.

Imposing zero velocity at the inlet z = 0 and a finite velocity for the fully developed flow
z →∞, this equation can be solved to yield

ūs(z) =
(
1− e−z/LS

)
ud. (4.52)

The expression of the interface velocity ūs(z) predicts the same fully developed interface
velocity found by Guillot & Colin (2008) ud = 2Q2

πR2
2(1−h2

d
) . Figure 4.8 confirms that

this terminal velocity does not depend on the surface viscosity. The surface viscosity
adaptation length appears naturally as the exponential relaxation length in expression
(4.52), in non dimensional terms

Ls =

√√√√(κs + 3µs)
(
− (R2

2 +R2
1
)

log R1
R2
−R2

2 +R2
1

)

2µ2
(
R2

2 −R2
1
)
R1

(4.53)

Therefore the order of magnitude of the characteristic length is Ls ∝
√
R2 µ∗/µ2 where

µ∗ the effective viscosity is a combination of dilatation and shear viscosity µ∗ = (κs+3µs).
Remembering that the Boussinesq number is defined as Bq = (κs + 3µs)/(µ2R2), the
characteristic length can be rewritten as Ls ∝ R2

√
Bq. The validity of this scaling is

confirmed in figure 4.9, where the dependence of the entry length with the interface
location is shown. The characteristic length tends towards zero both as hd tends towards
0 and 1, because the stress exerted by the outer flow diverges for hd → 1, whereas the
stress exerted by the inner flow diverges for hd → 0.
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Figure 4.9 – Dependency of the characteristic length LS , rescaled by R2
√
Bq, as

function of the radius ratio hd = R1/R2.
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Figure 4.10 – Base flow evolution for λ = 0.1, Ca = 1 and Bq = 100 at different location
z = {0, 2, 4, 6, 20}. The characteristic length scale is LS = 1.97. At z = 2 the interface
velocity has reached the 64% of the fully developed velocity (ūs(z = 2) = 0.6377ud).
While at z = 4 the 87%, and at z = 6 the 95% and finally at z = 20 ūs(z = 20) = ud.

4.3.4 Stability analysis

4.3.4.1 Linearized lubrication anaysis

Guillot & Colin (2008), Guillot et al. (2007) and Herrada et al. (2008) have addressed the
local stability problem of the core-annular flow, when capillary effects are predominant
compare to the inertial forces, in absence of surface viscosity. While Guillot et al. use the
lubrication assumption, Herrada et al. solve the problem analytically. Both approaches
lead to similar results. Even though the lubrication approximation is expected to be less
accurate, the difference between the results is rather marginal in the parameter space
explored, and we will therefore prefer the lubrication approximation.

The parallel stability analysis is made by assuming small disturbances, so that the Stokes
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4.3. Stability of a two-phase co-axial jet

equations can be linearized around the steady state. The flow field is decomposed into a
steady and fluctuating part so that velocity filed u = ū + εu′, pressure p = p̄+ εp′ and
interface location h = hd + εh′, with ε� 1. We consider the spatio-temporal response of
the system to small z-dependent perturbations.

Besides the no-slip conditions at the wall (u′2|r=R2 = v′2|r=R2 = 0) and the symmetry
condition (∂ru′1|r=0 = v′1|r=0 = 0), the flow has to satisfy the interfacial boundary
conditions: continuity of the velocity u′1 + h′∂ru1 = u′2 + h′∂ru2 at the unperturbed
interface and stress continuity conditions. The stress equations (4.40)-(4.41), with the
lubrication assumption for a small perturbation assume the explicit form respectively for
the tangential and normal stress:

u

vµ
∂u′

∂r
+µ∂v

′

∂z
+µh′∂

2ū

∂r2−2µ∂ū
∂z

∂h′

∂z

}

~

i=1→2

= (κs+µs)
∂2u′

∂z2 +κs − µs
hd

∂v′

∂z
+κs + µs

hd

∂ūs
∂z

∂h′

∂z

(4.54)

u

v− p′ + 2µ∂v
′

∂r
− µ∂ū

∂r

∂h′

∂z

}

~

i=1→2

= −κs − µs
hd

∂u′

∂z
+ (κs − µs)

h′

h2
d

∂ūs
∂z
− (κs + µs)

v′

h2
d

+2µs
∂2h′

∂z2
∂ūs
∂z
− 2µs

∂h′

∂z

ūs
h2
d

+ (κs + µs)
∂2ūs
∂z2

∂h′

∂z
+ γ

(
h′

h2
d

+ ∂2h′

∂z2

)

(4.55)

where the notation J·Ki=1→2 denotes the jump from the inner to the outer flow.

Finally, the linearized kinematic equation imposes, at the the unperturbed interface,

∂h′

∂t
= v′i − ūs

∂h′

∂z
. (4.56)

The next step in the resolution of our problem is to scale the different terms in the Stokes
equations and in the boundary conditions, so as to proceed to a lubrication approximation.
There are indeed three length scales to be used to scale the equations: the external
jet radius R2 ∼ 1, the characteristic length of the base flow LS , and the characteristic
length of the perturbation λ. In the previous section, the analysis of the characteristic
length of the base flow has shown that 1� LS , while the lubrication requires that the
perturbation wavelength is much larger than the external radius 1� λ. All equation will
be solved at the lowest sensible order. We set for the z-coordinate z̄ = LSz

∗, z′ = λz∗,
for the radial coordinate r̄ = R2r∗, r′ = R2r∗, for the axial velocity ū = udu

∗, u′ = udu
∗,
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for the radial velocity v̄ = R2/LSudv
∗, v′ = R2/λudv

∗, for the pressure p′ = Pp∗ and for
the surface tension γ = Γγ∗. We have already set for the effective viscosity µ∗ ∼ L2

S .

According to the dominant balance principe, let us set the characteristic length of
steady flow and perturbation with the same magnitude order 1 � λ ∼ LS . With this
adimensionalization the equation (4.54)-(4.55) will be slightly simplified:

u

vµ

(
∂u′

∂r
+ h′

∂2ū

∂r2

)}

~

i=1→2

= (κs +µs)
∂2u′

∂z2 + κs − µs
hd

∂v′

∂z
+ κs + µs

hd

∂ūs
∂z

∂h′

∂z
(4.57)

u

v− p′
}

~

i=1→2

= −κs − µs
hd

∂u′

∂z
+ (κs − µs)

h′

h2
d

∂ūs
∂z

−(κs + µs)
v′

h2
d

− 2µs
∂h′

∂z

ūs
h2
d

+ γ

(
h′

h2
d

+ ∂2h′

∂z2

) (4.58)

4.3.4.2 Dispersion relation

We make the local mode Ansatz proportional to ei(kz−ωt), where k is the wavenumber
and ω the complex angular frequency. The analysis yields a dispersion relation ω = f + ig

where both frequency f and growth rate g can be slip in one term depends on the surface
viscosity parameters, and one term does not

ω = F (k) + Fsv(k, µ∗) + i (G(k) +Gsv(k, µ∗)) (4.59)

Furthermore, in the frequency we recognize three term: one term Fu proportional to the
velocity of the jet interface, one term Ff proportional to (∂rū1 − ∂rū2) |r=hd due to the
flattening of the velocity continuity at the interface, and one term Fp proportional to
(µ1∂rrū1 − µ2∂rrū2) |r=hd that will vanish for the fully developed flow, when the velocity
reaches the bi-Poiseuille profile

f = (Fu + Ff + Fp) k + Fusv(k, µ∗) + Ffsv(k, µ∗) + Fpsv(k, µ∗). (4.60)

The frequency terms that do not depend on the surface viscosity are linear in the
wavenumber k, while the terms that depends on the surface rheology are not linear
function of the wavenumber (their exact expressions are given in Appendix 1 - § 4.3.8).

Likewise, the growth rate can be split in three terms: the first term Gγ is proportional to
the surface tension and does not depend on the surface viscosity, Gγsv is proportional to
the surface tension and depends on the surface rheology parameters and Guzsv depends
on the surface viscosity and it is proportional to ∂zūs. The latter term vanishes when
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4.3. Stability of a two-phase co-axial jet

the the flow reaches the fully developed state.

g = Gγ(k2 − h2k4) +Gγsv(k, µ∗) +Guzsv(k, µ∗) (4.61)

The terms Fu, Ff and Gγ are the same elements found by Guillot et al. analysis. The
contribution Fp results from taking into account velocity profiles which are not fully
developed, while all other terms are associated to surface rheology effects.

While for a jet immersed in an inviscid inert medium the shear viscosity can be neglected
(van den Tempel (1977)), this is not necessary anymore true for two-phase flow. With
this limitation in mind the results of the local stability will still be given neglecting
µs with respect to κs, in first instance. Then the effects of the shear viscosity will be
introduced and discussed.

4.3.5 Effect of surface rheology on the temporal and spatio-temporal
stability of the fully developed flow

In this section, we first consider the effect of surface dilatation viscosity on the linear
stability properties of the fully developed core-annular velocity profile under the assump-
tion of parallel flow. For conciseness the analysis is here reported only for an interface
location h = 0.5 and for three representative viscosity ratios, λ = 0.1, 1, 10. We first turn
to the temporal stability analysis: a real wavenumber k is imposed and one looks for the
complex eigenvalues ω(k). Figure 4.11 shows the effect of an increasing surface dilatation
viscosity (of non dimensional values Bq = 1, 10, 100 and µs = 0) onto both the frequency
and the growth-rate of the dispersion relation.

4.3.5.1 Temporal stability

Figure 4.11 (a,c,e) shows that an increase in the surface dilatation viscosity κs increases
the frequency f . This effect is more pronounced when the outer flow is more viscous
than the inner flow λ < 1 (fig. 4.11a), while the addition of surface viscosity does not
have any effect on the frequency when the two fluids have the same viscosity λ = 1 (fig.
4.11c).

As far as the temporal growth-rate is concerned, the addition of surface viscosity is seen
to have an overall stabilizing effect, as seen in figure 4.11 (b,d,f). Interestingly, the cut-off
wavenumber is not affected, it is solely dictated by the interface location kc = 1/hd. As
already noticed on the real part of the dispersion relation, the strongest effect of the
surface rheology are observable when the inner flow is less viscous than the outer flow
λ < 1 (fig. 4.11b).

Now we fix the value of the dilatation viscosity κs = 100 and let the shear viscosity µs
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FIG. 4: Spatio-temporal stability analysis for a cross section of fully developed flow with

interface position h = 0.5, Capillary number Ca = 1, for different value of viscosity ratio

� = {0.1, 1, 10} and surface dilatation viscosity s = {0, 1, 10, 100}. On the left column

the frequency f , and on the right column the growth rate g as function of the wavenumber
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Figure 4.11 – Spatio-temporal stability analysis for a cross section of fully developed
flow with interface position h = 0.5, Capillary number Ca = 1, for different value of
viscosity ratio λ = {0.1, 1, 10} and surface dilatation viscosity κs = {0, 1, 10, 100}. On
the left column the frequency f , and on the right column the growth rate g as function
of the wavenumber k.
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Figure 4.12 – Spatio-temporal stability analysis for a cross section of fully developed
flow with interface position h = 0.5, Capillary number Ca = 1, for different value of
viscosity ratio λ = {0.1, 1, 10}, surface dilatation viscosity κs = 100 and increasing value
of the shear viscosity µs = {0, 1, 10, 100}. On the left column the frequency f , and on
the right column the growth rate g as function of the wavenumber k.
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vary. As for the dilation viscosity, also the shear viscosity has a stabilizing effect on the
temporal growth-rate (fig. 4.12 b,d,f). Again the cut-off kc = 1/hd only depends on the
interface position and not the surface viscosity.

An increase of the shear viscosity µs = 0, 1, 10, 100 corresponds to an increase of the
frequency only if λ ≥ 10 (fig. 4.12 c,e). In contrast when the outer flow is more viscous
than the inner flow (λ = 0.1), an increase of the shear viscosity µs decreases the frequency
f (fig. 4.12 a).

4.3.5.2 Spatio-temporal stability
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Figure 4.13 – Phase diagram of the instability in the (h,Ca) plane for different value
of viscosity ratio λ = {0.1, 1, 10} and surface dilatation viscosity κs. The red lines
correspond to the co-axial flow analysis without surface viscosity, while the black lines
correspond to different value of κs = {1, 10, 100} with µs = 0. Above the lines, the
system is convectively unstable, while below is absolutely unstable.

Since the growth rate is a nonlinear function of the wavenumber, the spatio-temporal
growth and propagation of the perturbations occurs in dispersive way. An unstable
wavepacket grows and travels within two limiting velocities ranging between v− charac-
terizing the receding edge and v+, which characterizes the leading edge. Of particular
importance is the sign of v−, which determines if the flow is convectively or absolutely
unstable. If v− > 0 all unstable perturbations are convected downstream making the
jet convectively unstable, while if v− < 0 there are unstable perturbations that travel
backwards and the flow is absolutely unstable.

Guillot et al. (2007) predicted that the transition from an absolute to a convective
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FIG. 6: Dynamic behavior in the (Q1, Q2) plane and A/C transition. The red lines

correspond to the co-axial flow analysis without surface viscosity, while the black lines

correspond to increasing value of s. Above the lines, the system is convectively unstable,

while below is absolutely unstable. For the figure (a) and (b): µ1 = 0.055 Pa s,

µ2 = 0.235 Pa s and � = 24 mN/m with R2 = 275 µm for (a) and R2 = 435 µm for (b). For

(c) and (d) µ1 = 1 mPa s, µ2 = 3 mPa s and R2 = 275 µm with � = 12 mN/m for (c) and

� = 0.12 mN/m for (d). The flow rates are expressed in [µL/h].
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Figure 4.14 – Dynamic behavior in the (Q1, Q2) plane and A/C transition. The red
lines correspond to the co-axial flow analysis without surface viscosity, while the black
lines correspond to increasing value of κs. Above the lines, the system is convectively
unstable, while below is absolutely unstable. For the figure (a) and (b): µ1 = 0.055Pa s,
µ2 = 0.235Pa s and γ = 24mN/m with R2 = 275µm for (a) and R2 = 435µm for (b).
For (c) and (d) µ1 = 1mPa s, µ2 = 3mPa s and R2 = 275µm with γ = 12mN/m for
(c) and γ = 0.12mN/m for (d). The flow rates are expressed in [µL/h].

instability (A/C transition) depends on a critical value of capillary number Ca = µ2uD/γ.
This critical Ca was found to well predict the transition from the dripping to the jetting
regimes. With a dispersion relation of the form ω = Fk + G

(
(k/kc)2 − (k/kc)4), the

receding edge velocity is determined from the equality of the envelope velocity and group
velocity ωi/ki = ∂kiωi and the condition maximal growth rate ∂krωi = 0 (van Saarloos
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Figure 4.15 – Phase diagram of the instability in the (h,Ca) plane for different value
of viscosity ratio λ = {0.1, 1, 10}, fixed value of surface dilatation viscosity κs = 100 and
increasing shear viscosity µs. The red lines correspond to the co-axial flow analysis without
surface viscosity, while the black lines correspond to different value of µs = {1, 10, 100}.
Above the lines, the system is convectively unstable, while below is absolutely unstable.

(1988)):

v− = F −G
(
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√

7
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7
36

1
k4
c

)
kc

√
24√
7− 1

(4.62)

The A/C transition is reached when v− = 0 and it can easily plotted as function
of two dimensionless parameters: the interface position h and the capillary number
Ca = µ2uD/γ. As seen in Figure 4.13, the (h,Ca)-plane is separated into an convectively
unstable region above the A/C marginal curve at large Ca and h and a absolutely
unstable region at small h and small Ca.

Let us now investigate the influence of surface viscosity on the spatio-temporal properties
of the fully developed co-axial jet velocity profile. Since the addition of surface dilatation
viscosity decreases the growth-rate and increases the frequency, the combined effect of
less growth and more advection is expected to make the flow more convectively unstable.

This is confirmed by figure 4.13: for the three chosen values of the viscosity ratio, an
increase in κs is always seen to decrease the region of absolute instability at the expense
of the convective region. The A/C transition can be also plotted against the flow rates Q1
and Q2 for realistic values of the parameters of microfluidic devices. Figure 4.14 confirms
the above results by comparing the A/C transition curve in absence of viscosity. When

106



4.3. Stability of a two-phase co-axial jet

increasing κs, the convectively unstable region increases. The figure compare the Guillot
et al. (2007) predictions (red lines) to the same co-axial flow with surface viscosity (black
lines) obtained for different value of viscosity ratios, external radii and capillary numbers.

Let us now analyze the influence of the shear viscosity on the A/C transition for three
choose representative value of viscosity ratio λ = 0.1, 1, 10 and one choose value of dilation
viscosity κs = 100. As we have seen in the temporal stability, for λ ≥ 1 an increase in
µs corresponds to a decrease of the absolutely unstable region and an increase of the
convectively unstable region (fig. 4.15 c,d). For λ = 0.1, an increase in µs corresponds
instead to an increase of the convective region for small value of confinement degree, for
large value of the confinement h . 1 it yields a decrease of the convective region, while
the flow becoming more absolutely unstable.

4.3.6 Effect of surface viscosity on the stability of the overall flow

In the following, we study the influence of surface viscosity in the co-axial flow in all
its complexity: we proceed to a weakly non parallel analysis of the flow at different
streamwise locations ranging from the inlet to the region where the flow has reached the
fully developed state, via the entry region. As discussed in section § 4.3.3, this region
has, for pure Stokes flow without the surface rheology, a length which scales like the
external radius l ∼ R2 and the flow quickly reaches the fully developed state. This lack
of separation of scale between the streamwise base flow evolution and the characteristic
instability scale outrules the quasi-parallel assumption. In contrast, with the addition of
surface viscosity at the interface, we have shown in section § 4.3.3 that the characteristic
length of the transition region LS ∝

√
R2 µ∗/µ2 becomes large when the Boussinesq

number is large.

With the base flow evolving over a lengthscale which is much larger than the typical
unstable wavelengths, it becomes relevant to conduct a weakly non parallel stability
analysis: the base flow is chopped into slices, as it evolves downstream and the parallel
spatio-temporal instability analysis is extensively repeated on a slice by slice basis. With
the flow evolving slowly spatially, a local stability analysis can be conducted considering
the flow prevailing at any streamwise station as strictly parallel and determining the local
dispersion relation, as described in section 4.3.4. While the absolute/convective analysis
can be conducted using the full dispersion relation (Herrada et al. (2008)), we have
followed a different approach which consists of approximating the temporal dispersion
relation by ω ∼ Fk + G

(
(k/kc)2 − (k/kc)4) so as to immediately get the effect of the

surface viscosity onto the A/C convective properties of flow, within less than 5% error.
Approximating the dispersion relation as ω(k, z) ∼ F (z)k +G(z)

(
(k/kc)2 − (k/kc)4), it

is straightforward to determine the absolute/convective of the flow prevailing at a given
station z.
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The A/C transition is plotted in fig. 4.16 as function of the z-coordinate and the capillary
number, for a fixed interface position and three fixed value of the viscosity ratio. While
the flow becomes eventually more convectively unstable once it reaches its fully developed
profile, the surface viscosity creates an absolute region at the inlet, that is expected to
promote droplet formation. The length of the absolute region increases when κs increases,
in accordance with the base flow description provided in section § 4.3.3. The effect of κs
is more pronounced when the two fluid have the same viscosity (fig. 4.16c) due to an
increase in the entry length.

Interestingly the smallest absolute region is obtained for capillary numbers not far from
one. When the capillary number is too small the flow becomes absolutely unstable
throughout the domain, while when the capillary number becomes large, the absolute
region extends.
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Figure 4.16 – A/C transition in the (z, Ca) plane for different value of viscosity ratio
λ = {0.1, 1, 10} and surface dilatation viscosity κs = {10, 25, 50, 75, 100}, while the
interface position is set h = 0.5. The red lines correspond to the co-axial flow analysis for
κs = 0. While the black lines correspond for increasing value of κs. The shaded region is
the absolute region, convective otherwise.

To better understand the physical origin of this absolutely unstable flow region, we now
fix the capillary number in addition to the interface position and the viscosity ratio.
It is then possible to analyze the co-axial flow for different location along z. In the
first instance we set the capillary number such that the flow without surface viscosity
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4.3. Stability of a two-phase co-axial jet

will result convectively unstable Ca = 1 (fig. 4.17). If we include surface rheology,
the convectively unstable character of the fully developed flow is reinforced, but the
inlet region displays an absolute region. Proceeding downstream, one can observe a
competition between the advection resulting from the Doppler effect associated to the
almost linear frequency dependence with the wavenumber and the spreading of the
unstable wave packet associated to the unstable wavenumber band. As z is increased,
the slope of f(k) decreases slower than the maximum growth rate, causing the change of
v− sign. The flow turns convectively unstable at a certain distance from the inlet.

We can observe a similar behavior if we consider a co-axial flow with the same flow
parameters, but with lower capillary number Ca = 0.1 (fig. 4.18). In this configuration
the case κs = 0 is absolutely unstable. If we add surface viscosity κs = 100, the flow
presents an absolutely unstable initial region before it becomes convective.
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Figure 4.17 – A/C transition and spatio temporal analysis for h = 0.5, λ = 0.1 and
Ca = 1 (green line). The red line is plotted for κs = 0, while the black line for κs = 100.
The spatio - temporal analysis if performed at three different location z = {2, 4, 6}. The
characteristic length scale is LS = 1.97.

This shows that the addition of surface viscosity considerably changes the stability
predictions of the flow. Because of the slow base flow evolution towards the fully
developed flow, an absolutely unstable region opens whether or not the fully developed
flow is absolutely unstable. The somewhat peculiar situation arises where the fully
developed flow is absolute in absence of surface viscosity, convective once the latter is
introduced, but the flow becomes absolutely unstable over a noticeable portion of its
entry region.
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Figure 4.18 – A/C transition and spatio temporal analysis for h = 0.5, λ = 0.1 and
Ca = 0.1 (green line). The red line is plotted for κs = 0, while the black line for κs = 100.
The spatio-temporal analysis if performed at three different location z = {2, 4, 6}. The
characteristic length scale is LS = 1.97.

4.3.7 Discussion and conclusion

The implications of the results obtained in the last section are the following. According to
recent development in global mode theories (see Chomaz (2005) for a review), a spatially
evolving flow will become globally unstable once it has a sufficiently large pocket of
absolute instability. While the required finite extension remains problem specific, one
can expect that as soon as the surface viscosity becomes large enough, the flow will
turn globally unstable, with a substantial portion of the entry region becoming globally
unstable. In this case, dripping would be observed independently of the capillary number.

There are several natural continuations of this work that could help confirming this
prediction. On one hand, careful experiments should be conducted using surfactants
which provide a large viscosity to the interface. On the other hand, we plan to conduct
global stability calculations including both (i) the determination of the base flow and its
interface deflection, relaxing the parallel interface condition used in the present study (ii)
global stability calculations relaxing the weakly non parallel stability analysis approach.
These two steps require the development of dedicated numerical methods. A last approach
would be to directly simulate the governing Stokes equations, including the full nonlinear
conditions prevailing at the interface, i.e. the kinematic equation as well as the complete
interfacial stress jump accounting for the surface dynamics.
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4.3.8 Appendix 1: Normal mode expansion

Linearized Stokes equation and continuity equation around the steady state, with the
lubrication assumption:

1
r
∂r(rv) + ∂zu = 0 (4.63)

0 = −∂rp (4.64)

0 = −∂zp+ µ
1
r
∂r(r∂ru) (4.65)

Integrating the continuity equation (4.63) and the z-momentum (4.65), using the local
normal mode decomposition u′ = û(r)ei(kz−ωt), p′ = p̂(r)ei(kz−ωt) and h′ = ĥ(r)ei(kz−ωt),
we obtain the velocity field:

ûj(r) = ik

4µj
(p̂jr2 + Cj log r +Dj) j = 1, 2 (4.66)

v̂j(r) = k2

4µj

(
p̂jr

3

4 + Cj
2

(
r log r − r

2

)
+ Djr

2 + Ej
r

)
j = 1, 2 (4.67)

where Cj , Dj , Ej are constant of integrations (for the symmetry condition C1 = E1 = 0).

Boundary conditions with the normal mode decomposition:

- No-slip conditions

p̂2R
2
2 + C2 logR2 +D2 = 0 (4.68)

p̂2R3
2

4 + C2
2

(
R2 logR2 −

R2
2

)
+ D2R2

2 + E2
R2

= 0 (4.69)

- Continuity of the velocity at the interface
(
p̂1R

2
1 +D1

)
− 2i∂zp

k
R1ĥ = λ

(
p̂2R

2
1 + C2 logR1 +D2

)
− λ2i∂zp

k
R1ĥ (4.70)

p̂1R
3
1 + 2D1R1 = λ

(
p̂2R

3
1 + 2C2

(
R1 logR1 −

R1
2

)
+ 2D2R1 + 4E2

R1

)
(4.71)

111



Chapter 4. Complex fluid-fluid interface: surface viscosity

- Kinematic equation

−iωĥ = k2

4µ1

(
p̂1R3

1
4 + D1R1

2

)
− ikūsĥ (4.72)

- Tangential stress
(

2R1 + 3
4κs k

2h
2
d

µ1

)
p̂1 − 2R1p̂2 + κsk

2

2µ1
D1 −

1
R1
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−4i
k

(
µ1
∂2ū1
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∂2ū2
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ĥ− 4κs

R1

∂ūs
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(4.73)

- Normal stress
(
−1− 3k2R1

16µ1

)
p̂1 + p̂2 −

k2

8µ1R1
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−γ
( 1
R2

1
− k2
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R2
1

∂ūs
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ĥ+ 2µs
ik

R2
1
ūsĥ = 0

(4.74)

We can write the boundary conditions in matrix form: Aφ = 0, where the unknown
vector φ = (p̂1, p̂2, D1, C2, D2, E2, ĥ), and the matrix A is:
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We can write the boundary conditions in matrix form: A„ = 0, where the unknown
vector „ = (p̂1, p̂2, D1, C2, D2, E2, ĥ), and the matrix A is:
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ˆūs
ˆz
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We can write the boundary conditions in matrix form: A„ = 0, where the unknown
vector „ = (p̂1, p̂2, D1, C2, D2, E2, ĥ), and the matrix A is:
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4.3.9 Appendix 2: Dispersion relation

The system has non-trivial solution if detA = 0, giving the dispersion relation:

ω = F (k) + Fsv(k, κs) + i (G(k) +Gsv(k, κs)) (4.75)

If we define the dimensionless wave frequency and wavenumber as

ω̃ = ωτv, k̃ = kR2 (4.76)

where τv = µ2R2/γ is the characteristic viscous timescale, the dispersion relation can be
rewritten as

ω = (Fu + Ff + Fp)k̃ + Fsv(k̃, κs) + i
(
G
(
k̃2 − h2k̃4

)
+Gsv(k̃, κs)

)
(4.77)

112



4.3. Stability of a two-phase co-axial jet
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∂2ū2
∂r2

)

2γ
(
(λ− 1)h4

d − λ
)

Ffsv = −1
2
(((

(λ− 1)h4
d − λ

)
ln (hd) + (1/4− λ)h4

d + 2h2
dλ− λ− 1/4

)
h2
dk̃

3

κs µ
2
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Conclusion
In this thesis we studied the stability of two phase co-axial jets in progressively increas-
ing complexity. We tackled the problem starting from a liquid thread in a quiescent
surrounding, and adding ingredients, like viscous effects or a surrounding dynamically
active medium, we identified key parameters that influence the stability of co-flow jets.

Chapter 1 Our analysis started from liquid threads and jets immersed in a dynamically
inert medium. The stability analysis can be performed with three different approach: (i)
exact solution, express as function of Bessel functions, (ii) numerically, discretizing the
equation by Chebyshev polynomials or (iii) long-wavelength description. We saw that
the latter method is always in very good agreement with the exact solution, if it exists,
and with the numerical results. The power of the long-wavelength description lies on his
mathematical simplicity and allows to easily determine different quantities like the cut-off
and the most amplified wavenumber. While a liquid thread always breaks up in droplets,
if we increase the streams velocity, for a liquid jet a transition from dripping to jetting
can occurs. The dripping/ jetting transition can be determined as a function of the
dimensionless parameters: Weber number (for the inviscid jet), Capillary number (for the
viscous thread) and Ohnesorge number (for viscous thread with inertia). Finally, in order
to explain the relationship between absolute/convective instability and global instability,
for a cylindrical viscous thread, bounded by an inlet and an outlet boundary condition,
we saw that the global eigenvalues are dictated by the local absolute properties.

Chapter 2 In the second chapter, we added the contribution of an external medium. We
saw that a quiescent surrounding fluid has always a stabilizing effect on liquid threads,
although it is not anymore possible to use the long-wavelength description. When an
external medium is added to the system, we need to consider two important factors: (i)
the outer flow has to move with the inner flow, and (ii) the external flow exerts a force
through its shear stress. This precludes the use the long-wavelength description. The
leading order expansion of the equations is not able to describe the system, and in order
to take into account the viscous effect we need to include the second order correction
term of the streamwise velocity. To study the stability of a jet in a surrounding medium,
an accurate determination of the base flow becomes necessary. Finally, we focused on
the case which is studied in the rest of the thesis: viscous jet immersed in another
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viscous radially bounded flow. The flow eventually becomes parallel after a transition
(so called entry) region, and then it is possible determine analytically the base flow.
The absolute/convective transition shows that the lubrication solution of the perturbed
equations and the exact solution yield very similar results.

Chapter 3 With the aim of study the global stability of a co-axial flow, where the flow
is not anymore assumed parallel, we had to take into account the existence of a sharp
interface separating the fluids and the existence of localized stress discontinuity at the
free surface between these two fluids. We developed two new tools: (i) we implemented
a level set function in order to obtain an accurate description of the steady state and
interface, and (ii) a two-domain discretization to determine the global eigenvalues. We
have determined the transition from dripping to jetting as function of three dimensionless
parameters: the viscosity ratio, the degree of confinement and the Capillary number. We
showed that, surprisingly, the nozzle geometry doesn’t affect the stability proprieties of
the flow. The global stability analysis of the non-parallel flow recovers almost the same
results of the local analysis by Herrada et al. (2008), which implies that the dripping
to jetting transition is a process dominated by the intrinsic properties of the developed
streams.

Chapter 4 To complete the description of the two-phase co-axial jet, we studied the in-
fluence of the surface viscosity. In first instance we derived the governing and constitutive
equations to describe the continuum mechanism of the surface in the axisymmetric case.
With this new set of equations we were able to outline the effects of surface viscosity on
a viscous thread immersed into a dynamically inert medium: the presence of a surface
dilatation viscosity stabilizes the thread, maintaining the cut-off unvaried, while the
most amplified wavenumber depends on the dilatation viscosity. For the viscous thread
we were able to write the dispersion relation using the long-wavelength description,
and the comparison of the approximate solution with the exact one gave an excellent
agreement. Then we applied the new constitutive equations to describe the steady state
and stability of a co-axial jet. With the addition of surface viscosity at the interface, the
base flow evolves over a lengthscale which is much larger than the entry length in the
Stokes regimes and than the typical unstable wavelength. We showed that while the flow
becomes eventually more convectively unstable once it reaches the fully developed profile,
the surface viscosity creates an absolute region at the inlet, that is expected to promote
droplet formation.

The present thesis suggests that a wide variety of flow parameters can be included in the
analysis of two-phase co-axial flow, and that at same time other mathematical tools can
be explored. How can we extend the long-wavelength description to co-axial flow? Can
we linearize the level set method to perform a global stability analysis? How does the
inertia affect the steady state and the global stability of a coflow? Is it possible to set up
experiments to validate the results obtained? These are only a few possible questions
opening interesting perspectives.
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Theoretical perspectives

In the thesis we saw the long-wavelength description is a very powerful tool for
the study both of the base flow and the stability properties. The long-wavelength
approximation, as presented by Eggers & Dupont (1994), fails when the effect of a
surrounding medium is included in the system. The description of the streamwise velocity
through a uniform flow is not sufficient to describe the shear effects on the interface.A
possible approach to extend the long-wavelength description to co-axial jet comes from
Ruyer-Quil & Manneville (2000) Amaouche, Mehidi & Amatousse (2007) and Mehidi &
Amatousse (2009). These authors use a combination of the long-wavelength description
and of a weighted residual approach for determine the stability of two-layer film flow
down in a inclined plane. The strategy follows four main steps: (i) with the hypothesis of
slow variation in time and streamwise direction, the governing equations and boundary
conditions are rewritten with the thin layer approximation. In order to reduce the number
of unknowns, (ii) the pressure is eliminated from the Navier-Stokes using the normal
stress interfacial condition and the boundary conditions. (iii) the velocity field is then
expanded is Taylor series ui = ai(z, t) + bi(z, t)ε+ ci(z, t)ε2 +O(ε3) and the equations
are solved up to the second order of ε. Finally (iv) the dependency on r is eliminated
with the residual approach, i.e. multiply each governing equation for a suitable weight
function.

same is not true for the short wave mode. Although good
results for the complex wave velocity are predicted for the
long wave mode by the Shkadov model as well for k larger
than about unity, the latter gives markedly altered results for
small k.

We continue to test the accuracy of our model through
the marginal stability curves displayed in Figs. 7 and 8. Cal-
culations were performed with W=100, by varying the incli-
nation angle and the lower layer mean height. It is clearly

seen that the full second-order model follows quite closely
the OS numerical model up to wavenumbers of order 3 and
Reynolds numbers of order 300. Varying the inclination
angle yields no significant effects on its accuracy. The latter
is slightly altered by decreasing the lower layer height due to
the fact that, for a fixed value of the Reynolds number, the
marginal wavenumber is more important for smaller values
of h1. We notice that the one-mode Galerkin model gives
good results for small Reynolds numbers but diverges from
the numerical model by increasing the Reynolds number.
The same is observed for the LWE model, which predicts
accurately the behavior of the flow only close to criticality
but deviates significantly from the other three for k values
exceeding approximately 0.5. The marginal curves obtained
by the Shkadov procedure for h1=0.7 are shown, for a ques-

FIG. 5. Neutral stability curves from numerical solution of the OS equation
for the shear mode !solid thin lines" compared to those given in Ref. 5
!diamonds" for m=1 and 10. Flow parameters are W=0, !=1, and h1=0.5.

FIG. 6. Complex wave celerity vs the wavenumber for the first two inter-
facial modes from different models: the second-order model !solid thin
lines", the one-mode Galerkin approach !dotted lines", the Shkadov model
!solid thick lines", and the numerical solution of the Orr-Sommerfeld equa-
tion !crosses". Flow parameters are !=0.0012, m=0.012, R=100, W=100,
h1=0.3, and cot "=0.

FIG. 7. Comparison of the neutral stability curves generated from the
second-order model !solid thin lines", the LWE !dashed dotted line", the
one-mode Galerkin approach !dotted lines", the Shkadov model !solid thick
lines", and the numerical solution of the Orr-Sommerfeld equation !dashed
lines" for the air-water system !!=0.0012, m=0.012" and W=100, h1=0.3,
!a" "=90°, !b" "=20°.
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Figure 1 – Amaouche et al. (2007), comparison of the neutral stability curve generate
with the second order approach (solid continuous line) and numerical solution dashed
line, for the air-water system in the (Reynolds,marginal wavenumber)-plane, for Capillary
number Ca = 1/100, inclination of the plane θ = 20̊ inclination plane and height of the
interface h = 0.3.
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Conclusion

The linearization level set allows to determine the global stability properties in one
fixed domain, implementing only one Navier-Stokes equation for both phases. With
the level set approach the continuity of the velocity at the interface and the stress
conditions are naturally imposed, while the Capillary effects are modeled like a forcing
term in the Navier-Stokes equations. All the varying quantities like viscosity, density
and normal vector are expressed as function of the level set functions. The advantage
of the level set method is that we can perform numerical simulation with low Capillary
number without having to parametrize the surface curvature. While the expression of
the equilibrium is quite straightforward, the linearization of equation is quite involved.
The perturbed equations require the differentiation of each function with respect to the
level-set, including the Heaviside and Dirac δ-function.

Introduction Interface quantities Linearization Rayleigh–Taylor Conclusion
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Figure 2 – Example of Rayleigh-Taylor instability solved numerically with the level
set approach. Convergence analysis with different transition thickness of the Heaviside
function. Numerical simulation carried out by M.A. Habisreutinger (LFMI).

Numerical perspectives

The inertial effect can be included in the analysis with similar steps done in the global
stability analysis (chapter 3). As far as the base flow is concerned , in the level set
approach it is necessary to investigate a new suitable criterium for diffusion coefficient in
the advection-convection equation (Hughes & Mallet (1986)). Moreover, the bi-Poiseuille
flow does not develop anymore in about a radius of the pipe, and an a priori investigation
of the suitable length of computational domain is required. This is confirmed by figure 3
where we see that the entry length increases with the Reynolds number.
Regarding the second step, the stability analysis, Herrada et al. (2008) have shown for
the fully developed profile, how to perform a numerical local analysis using Chebyshev
spectral collocation points, and a transition from dripping to jetting is given as function of
the Capillary number. We have obtained similar results using a modification of the code
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Figure 3 – Effect of inertia on the interface location with viscosity ratio λ = 0.1 and
Reynolds number Re = {0, 1, 5, 10, 20, 50}.
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Figure 4 – Effect of inertia on the local stability on a fully developed profile with
viscosity ratio λ = 0.1 and Reynolds number Re = {0, 1, 5, 10, 20, 50}.

described in appendix A and obtained the preliminary results shown in figure 4. These
modified A/C marginal curves will be of great importance when detailed experimental
comparisons have to be performed.

In presence of inertia, the weakly non parallel or fully global analyses remain to be
conducted by combining these two steps (in the spirit of chapter 4) or by a generalization
of the global analysis of chapter 3. A significant effect of the nozzle geometry can be
expected when the Reynolds number increases.
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Conclusion

Surface rheology solved with the level set. Solve the steady state and the perturbed
problem with the level set approach together with the constitutive equations of the surface
rheology can be an interesting and challenging future project. The terms in the stress
condition that depend on the surface viscosity have to be model as forcing terms and
added to the classic level set description. A correct determination of the steady state
allows a better understanding of the effect of surface rheology on the entry region, where
the spatial invariance is broken.

A DNS simulation allows a deep understanding of the droplet shedding. A parametric
study can be very interesting especially to study the formation of satellite droplets and
the characteristic length and timescale for the breakup. As seen in figure 4.21, we have
started to use an axisymmetric version of Gerris to conduct such an approach, with
promising preliminary results.

Figure 5 – Volume of fraction and streamwise velocity for two consecutive simulation
times. Simulation carried out at LFMI with the software Gerris.

Experimental perspectives

In order to fully validate the results the comparison with the experiments becomes
necessary. Probably the best way to proceed is benchmark the experiment with the one
of Guillot et al. (2007), and add ingredients like surfactants and see how the dripping
transition is modified by varying the capillary number (in collaboration with Benoit Sheid).
In another starting collaboration with A. Colin and M.Moire (IFP), who plan to measure
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FIG. 3. Map of the flow behavior in the !Q1 ,Q2" plane for various geometries and fluid combinations. Gray symbols correspond to
dripping regimes and black symbols to jet regimes. The light gray line is the averaged !lubrication" approximation !Guillot et al. 2007", the
dark gray line is the asymptotic noninertial analytic axisymmetric model, and the black line is the inertial axisymmetric model. Comparisons
between experimental and theoretical transitions are in good agreement for all the experimental conditions presented here. !a1" is obtained
for R2=275 !m, !1=55 mPa s, !2=235 mPa s, and "=24 mN /m; !a2" for R2=430 !m, !1=55 mPa s, !2=235 mPa s, and "
=24 mN /m; !a3" is obtained with R2=275 !m, !1=55 mPa s, !2=235 mPa s, and "=16 mN /m; !b1" is obtained with R2=275 !m, !1
=1 mPa s, !2=3 mPa s, and "=12 mN /m; !b2" is obtained with R2=275 !m, !1=1 mPa s, !2=3 mPa s, and "=0.12 mN /m; !c1" is
obtained with R2=275 !m, !1=235 mPa s, !2=55 mPa s, and "=24 mN /m; !d1" is obtained with R2=275 !m, !1=650 mPa s, !2
=235 mPa s, and "=24 mN /m.

SPATIOTEMPORAL INSTABILITY OF A CONFINED… PHYSICAL REVIEW E 78, 046312 !2008"

046312-5

Figure 6 – Simulation and experiment on co-axial flow carried out by Guillot et al.
(2007), Herrada et al. (2008)

very small surface tension using the dripping/jetting experimental transition, we will
provide an accurate dripping/jetting transition prediction based on absolute/convective
transition or global stability analysis including inertia.
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A Numerical scheme for the spatio-
temporal analysis of coaxial jets

Problem governs the perturbation evolution of two phase coaxial jets configuration,
written in a cylindrical frame of reference. A sketch of the domain, along with an example
of base flow velocity profiles is shown in Fig. 1.

It is useful to rewrite the equations in the following form

L (k, λ, Ca) q = −iωMq (A.1)

where L depends on the complex streamwise wavenumber k and of the flow parameters
such as viscosity ratio λ and capillary number Ca. The array

q = [u1(r), v1(r), p1(r), u2(r), v2(r), p2(r), η] (A.2)

contains the field variables (velocity and pressure) for the two fluids and the interface
perturbation η. The complex matrix L can be written as

L =




λDz 0 −ik 0 0 0 0
0 λDr −∂r 0 0 0 0
ik 1

r + ∂r 0 0 0 0 0
0 0 0 Dz 0 −ik 0
0 0 0 0 Dr −∂r 0
0 0 0 ik 1

r + ∂r 0 0
0 1 0 0 0 0 −ik




(A.3)

where Dz = ∂2
r + ∂r

r − k2 and Dr = Dz + 1
r2 are the streamwise and radial components
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Appendix A. Numerical scheme for the spatio-temporal analysis

N2

N1 U1

U2

Figure 1 – Physical domain for the spatiotemporal analsys. An example of the
Chebyshev-Gauss-Lobatto collocation points is plotted as circles for the two domains.

of the laplacian operator. The mass matrix M is

M =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1




(A.4)

Problem (A.1) along with the appropriate boundary conditions (see § 2.4.5 for details)
is solved numerically by using a Chebyshev spectral collocation method (see Canuto
et al. (1993) for details on the method). The linearized equations are discretized in the r
direction using Chebyshev spectral collocation points (N1 points for the inner fluid and
N2 points for the outer one). The interval 0 ≤ r ≤ hint is discretized and mapped into
the Chebyshev-Gauss-Lobatto polynomial domain −1 ≤ ξ ≤ 1 by means of the algebraic
transformation:

rj = hint
(1− ξj)

2 (j = 1, ..., N1) (A.5)

while the interval hint ≤ r ≤ 1 is mapped using:

rj = hint+ (1− hint)
(1− ξj)

2 (j = 1, ..., N2) (A.6)

The generalized eigenvalue problem is solved numerically by using the QZ algorithm
(Moler & Stewart (1973)) present in MATLAB (function eig).
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In a spatio-temporal analysis k and ω are both allowed to be complex numbers and we look
for the absolute frequency and wavenumber (ω0, k0). Here we compute numerically the
saddle point in the (kr, ki) complex plane by looking for the solution of vg = ∂ω/∂k = 0.
The group velocity vg is computed with the following procedure, using the proprieties of
the adjoint operator (see Luchini & Bottaro (2014) for details) :

Algorithm 1 Computation of ∂ω/∂k
1: Choose k
2: Solve eigenvalue problem: L(k)q = −iωMq
3: Solve adjoint problem: yHL(k) = −iωyHM
4: Compute δL for a choosen δk
5: Compute δω = yHδLq

yHq
6: ∂ω

∂k = δω
δk

If the hypothesis of vanishing Reynolds number is not anymore valid, this approach can
be generalized, including the inertial terms.
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B Level set

Problems involving moving boundaries and free interfaces exist in a wide range of
applications, such as image processing, fluid-structure interactions, front propagations
and multi-phase flows.

To capture the free surface different methods have been developed. Historically one of
the first method to distinguish the two fluid is the volume of fluid (VOF) method (Hirt
& Nichols (1981)). In this case the interface is given by a color function, defined as the
volume fraction of one component within each cell. The propagation of the interface is
made implicitly by updating the color function. This method has the advantage of being
a conservative method but is often rather inaccurate (Olsson & Kreiss (2005)).
Another approach for the free surface is to track the interface boundary explicitly by
markers, and then propagate these markers. The free surface is viewed as a movable
object and the two fluids are solved in two different grids. The continuity of the velocity
as well the jump of the stress are imposed at the interface. This method is called front
tracking and requires mesh deformation and special care has to be taken to topological
changes (Wilkes, Phillips & Basaran (1999) and Li, Renardy & Renardy (2000)).
Recently, the level set method have widely used in variety of application such as imagining
segmentation (i.e. read the MRI Li, Huang, Ding, Gatenby, Metaxas & Gore (2011)),
flame propagation and multi-phase flows. A general description of level set can be found
in Sethian (1999) and Osher & Fedkiw (2001), a conservative version of level set can be
found in Olsson & Kreiss (2005) and Olsson et al. (2007). Application to two phase flow
can be found in Sussman, Smereka & Osher (1994)-Sussman, Fatemi, Smereka & Osher
(1998).

The idea of the level set is quite simple, the interface is represented by the zero contour of
a signed distance function. The displacement of the interface is governed by a differential
equation for the level set function. The main advantages of this method is that it
automatically deals with topological changes and it is amenable to hight orders of
accuracy.
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Appendix B. Level set

Figure 1 – The isolines are special case of the level set value, where the shape of
the mountain relates the shape of the level set function. Conventionally the zero level
corresponds to the level of the sea, but in general any altitude can be chosen as reference
level. Then in a geographical map the isolines identify the signed altitude from the
reference level.

Mathematical formulation

In our model an inner and a surrounding outer fluid stream with different velocity enter
into a channel with the hypothesis of axisymmetry. The development of the flow field
in space is completely determined by the inflow profile, densities and viscosities of the
fluids, as well as the surface tension between them. The outlet boundary condition is
chosen in such a way that it disrupts the flow as little as possible.

The fluid flow is governed by the stationary Navier-Stokes equation

ρ(u · ∇)u = ∇ · [−pI + µ(∇u + (∇u)T )] + σCnδ (B.1)
∇ · u = 0 (B.2)

where ρ denotes the total density, µ the local viscosity, u the velocity field, p the pressure,
σ the surface tension coefficient, C the surface curvature at the fluid interface, n is the
unit normal to the interface and δ is the delta function which has unit integral and is
located, or so to say infinitely peaked, on the interface.

In a finite element formulation, to avoid computing the curvature explicitly in the surface
tension term, it is possible to integrate this term by parts using a surface divergence
theorem. By doing so, the corresponding force can be included by adding the weak
contribution

d∑

i=1
σδ(∇sûi)i (B.3)
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NS: Symmetry
L7: Symmetry

NS: Inlet Velocity
L7: Concentration

NS: Laminar outflow
L7: Flux

NS: No slip
L7: Insulation

Figure 2 – Sketch of the boundary conditions for the Navier-Stokes equation (NS) and
level set equation (L7).

where ∇s = (I−nn) · ∇ represents the surface gradient operator and ûi the test function
for the i-th velocity component.

The two fluids are computed in the same fixed grid by implementing the Navier-Stokes
equation for a single velocity field in the full domain, and the two layers are distinguished
by the presence of the level set function. This approach is very similar to the case of two
miscible flow at very high Schmidt number.

The level set method models the fluid interface by tracking the isolines of a dimensionless
level set function φ. As stated previously, the idea is construct the level set as a signed
distance function, therefore the zero level set at φ = 0 determines the position of the
interface. While positive value of φ denote the inner fluid and negative value of φ the
outer fluid:





φ > 0 inner fluid,
φ = 0 interface,
φ < 0 outer fluid.

(B.4)

The variable φ is transported by the stationary advection-convection equation:

∇ · (−D∇φ) = −u · ∇φ, (B.5)

where D is a diffusion coefficient required for numerical stability.

An important aspect in this model is the treatment of the varying viscosity as a function
of the level set function. Denoting with µ1 the viscosity of inner layer and µ2 the viscosity
of outer layer, it is possible express a local viscosity function as

µ = µ2 +He(φ) · (µ1 − µ2). (B.6)

where He(φ) is a Heaviside function with continuous second derivative and e is the
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Appendix B. Level set
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Figure 3 – Isolines of the level set function. The black lines correspond to the outer
flow (φ < 0), red line to the interface location (φ = 0), while the grey lines to the inner
flow (φ > 0).

transition thickness of the Heaviside function which depends on the mesh size.
The geometric properties of the interface are easily determined from the level set function.
The surface curvature at the fluid interface C, and the unit normal to the interface n,
are defined as:

C = ∇ · ∇φ|∇φ|

∣∣∣∣∣∣
φ=0

(B.7)

n = ∇φ
|∇φ|

∣∣∣∣∣∣
φ=0

(B.8)

The capillary force is then localized at the interface by the Dirac function.

An important aspect of the level-set method is the treatment of the artificial diffusion D
required for numerical stability. The diffusion coefficient is defined as

D = δsdh||u|| (B.9)

where h is the mesh size. In our model we used a streamline diffusion (Streamline Upwind
Petrow-Galerkin method with tuning parameter δsd = 0.25 Hughes & Mallet (1986)).
This consists of non isotropic diffusion coefficient which only acts along the streamlines
and the cross-stream distortions.

The base flow simulations were carried out with COMSOL Multiphysics 4.2 a with P2-P1
discretization for the fluid and a cubic discretization for φ. The non linear base state
is obtained with a Newton method where the linear systems are solved with the direct
solver PARDISO (Schenk et al. (2008)).
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