
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. S. Süsstrunk, présidente du jury
Prof. M. Pauly,   directeur de thèse

Prof. M. Botsch, rapporteur
Dr D. Panozzo, rapporteur

Prof. Y. Weinand, rapporteur

Computational Methods for Fabrication-aware Modeling, 
Rationalization and Assembly of Architectural Structures

THÈSE NO 6685 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 7 SEPTEMBRE 2015

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE D'INFORMATIQUE GRAPHIQUE ET GÉOMÉTRIQUE

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2015

PAR

Mario Moacir DEUSS





It matters not how strait the gate,
How charged with punishments the scroll,

I am the master of my fate:
I am the captain of my soul.
— William Ernest Henley

To my family and friends.





Acknowledgments
I would like to thank my mother, my father and my sister very much for their never
ending support and unconditional love.

I would like to express my sincere gratitude to my advisor Mark Pauly. Your inspiring
lectures on computer graphics and geometry during my studies at ETH Zürich not only
provided me with the necessary theoretical and practical knowhow for my PhD but also
deepened my interest in the subjects. Thank you also for supporting me with my Master
Thesis at Stanford University. You were a great and kind mentor and teacher to me.

I would like to thank Yang Liu and Microsoft for my summer research internship in
Beijing, China. Yang, you gave me all the freedom and support necessary to study the
topic of self-supporting structures. Special thanks to all the national and international
interns turning that internship into a fascinating cultural experience. Thank you Daniele
Panozzo for the close collaboration and nurturing support during our project on self-
supporting structures. Thank you Leonidas Guibas for supporting me with my Master
Thesis at Stanford University.

I would like to thank Sabine Süsstrunk, Mario Botsch, Yves Weinand and Daniele Panozzo
for being part of my thesis committee.

I would like to acknowledge my many collaborators without whom my PhD would not
have been the same. Many thanks to Anders Holden Deleuran, Bailin Deng, Sofien
Bouaziz, Daniel Piker and Mark Pauly for the collaboration on the ShapeOp project.
Thank you, Michael Eigensatz, for introducing into the world of architectural geometry
and your software tool.

Also I thank Alexander Schiftner, Helmut Pottmann, Johannes Wallner, Niloy Mitra and
Mark Pauly for the collaboration on our publications of cost-optimized paneling. In the
context of this project, I would like to thank Yves Brise, Peter Kaufmann and Sebastian
Martin for their help. Special thanks to Formtexx for providing the architectural datasets
and to RFR for fruitful comments.

Thanks to Daniele Panozzo, Emily Whiting, Yang Liu, Philippe Block, Olga Sorkine-
Hornung and Mark Pauly for the collaboration on our project on assembling self-
supporting structures. In the context of this project I would like to thank Hao Pan and

i



Xiaoming Fu for providing their source code and support, and Etienne Vouga, Fernando
de Goes, Ramon Weber and Matthias Rippmann for providing datasets, as well as Bailin
Deng, Andrea Tagliasacchi and Sofien Bouaziz for inspiring discussions.

Many thanks to all the members of LGG for your inspiration, support, co-teaching,
knowledge-sharing and feedback. Thank you also for all the fun times we had together.
Thank you Sofien Bouaziz for being a never ending source of inspiration and motivation
for research. Thank you Bailin Deng for your patient supervision. Thank you Duygu
Ceylan for being there early on and sharing our office with me. Thank you Andrea
Tagliasacchi for your competent advice and interesting discussions. Thank you Juyong
Zhang for collaboration and your kind invitation to University of Science and Technology
of China. Thank you Yuliy Schwartzburg for collaboration and proofreading. Many
thanks to Boris Neubert, Thibaut Weise, Hao Li, Mina Konakovic, Anastasia Tkach,
Alexandru–Eugen Ichim, Stefan Lienhard, Minh Dang, Romain Testuz for making the
LGG such a unique lab.

Thank you very much Madeleine Robert for your support in any kind of situation during
my PhD. May your laughter keep the aisles of BC filled with joy. I would also like
to thank our visitors Keenan Crane and Justin Solomon for interesting lectures and
discussions, our summer interns Laura Gosmino, Ian Dewancker, Mihita Cvitanović and
Rosália Schneider for the collaboration and the students I supervised for their trust in
me.

Special thanks to my friends in Lausanne, Zürich and all around the world for all the good
times and support during my PhD, to Capoeira ACL and Caopeira CTE for the refreshing
trainings and events, and to the MADdancers for the great practices, performances and
tasty dinners.

My research was supported by the SNF Grant (200021-137626) and received funding
from the European Research Council under the European Union’s 7th Framework
Programme/ERC Grant Agreement 257453, ERC Starting Grant COSYM.

Lausanne, 9 July 2015

Mario Deuss

ii



Abstract
Architectural structures such as buildings, towers, bridges and roofs are of fundamental
importance in urban environments. Their design, planing, construction and maintenance
carry numerous challenges in engineering due to the complex interplay of material, form,
spaces and statics. The history of architecture shows proof of the many approaches
humanity has come up with to tackle those challenges. To mention a few, think of
tents, timber huts, pyramids, masonry bridges, steel structures and modern skyscrapers.
The methods presented in this thesis are tailored to handle the general case of freeform
architectural structures.

A common way to develop novel architectural structures is to produce prototypes
at various scales. Physical prototypes, however, do not allow for quick changes of
aspects of a design such as material and form. The advent of computer-aided design
tools alleviated some of these limitations, but brought with it new challenges in terms
of simulation of physics and interaction with virtual content. Compared to physical
prototypes, digital ones can in theory include many more types of constraints by leveraging
numerical computation. To be practical, however, a digital prototyping tool needs to be
designed carefully considering efficiency, generality, accuracy, simplicity and robustness
of its implementation. Also, there are currently many unsolved problems in the digital
exploration of desirable and feasible designs with respect to constraints.

Important constraints are imposed directly or indirectly by the ease and cost of realization
and maintenance of a freeform architectural structure. For example, the geometry of
components making up a structure can have a big impact on the cost of fabrication:
planar components can simply be cut out of material that usually comes in flat sheets,
while curved ones tend to require more costly production processes. The construction
and assembly of architectural structures can cause a considerable part of the full cost. A
well-chosen assembly sequence can reduce both labor and necessary temporary support
structures such as scaffolds.

This thesis approaches challenges and open questions in the context of computational
prototyping tools for architectural structures by studying three concrete subproblems
and proposing practical solutions to them.

We present a constraint-aware modeling tool capable of robustly simulating physics
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and handling various geometric constraints at interactive rates. We show how con-
straints relevant to aesthetics and production can be implemented in our tool, yielding a
fabrication-aware modeling tool.

We present a computational method for finding a mass-producable approximation of
a given surface which minimizes fabrication cost. The method optimizes for a set of
molds each of which can be used to produce multiple components, so-called panels, of the
approximation, while respecting user-defined constraints on the continuity and deviation
from the input surface. The problem this method solves is referred to as paneling,
which in turn is an instance of the rationalization problem: approximating input under
constraints relevant to the physical realization of a structure.

We present a computational method for minimizing the work necessary for the construction
of a freeform self-supporting structure. We study the use of chains to support the structure
during assembly. Our method searches for an assembly sequence of the structure’s
components which minimizes the number of times a chain has to be rehung.

Key words: architectural geometry, complex assembly, constrained optimization, paneling,
rationalization, fabrication-aware modeling, self-supporting structures
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Zusammenfassung
Architektonische Strukturen sowie Gebäude, Türme, Brücken und Überdachungen sind
fundamental wichtig in urbanen Umgebungen. Design, Planung, Konstruktion und War-
tung bergen zahlreiche technische Herausforderungen aufgrund des komplexen Zusam-
menspiels von Material, Form, Räumen und Statik. Die Geschichte der Architektur
zeigt eine Vielzahl von Angehenweisen der Menschheit, um diese Herausforderungen in
Angriff zu nehmen. Man denke zum Beispiel an Zelte, Holzhütten, Pyramiden, Stein-
brücken, Stahlstrukturen und moderne Wolkenkratzer. Die Methoden, welche in dieser
Dissertation präsentiert werden, sind für den allgemeinen Fall der architektonischen
Freiformstrukturen ausgelegt.

Eine verbreitete Methode zur Entwicklung neuartiger architektonischer Strukturen ist der
Gebrauch von Prototypen verschiedener Grössenordnungen. Physikalische Prototypen
aber beschränkten bisher die Möglichkeit Aspekte des Designs wie Material und Form
rasch zu ändern. Die Entwicklung von computer-assistierten Design-Programmen half
diese Beschränkungen aufzuheben, brachten aber neue Herausforderungen bezüglich der
Physiksimulation und Interaktion mit virtuellem Inhalt. Im Vergleich zu physikalischen
können digitale Prototypen theoretisch eine Vielzahl andersartiger Bedingungen mit
Hilfe von numerischen Berechnungen miteinbeziehen. Um von praktischer Relevanz zu
sein, sollte ein Programm für digitale Prototypen unter sorgfältiger Berücksichtigung
von Effizienz, Generalität, Präzision, Einfachheit und Robustheit entwickelt werden.
Auch die rechnergestützte Erkundung von gewünschten und realisierbaren Designs unter
Bedingungen birgt viele ungelöste Fragestellungen.

Wichtige Bedingungen leiten sich direkt oder indirekt von den Realisierungs- und War-
tungskosten einer architektonischen Freiformstruktur her. Die Form der Komponenten
einer Struktur zum Beispiel kann eine grosse Auswirkung auf die Fabrikationskosten
haben: Planare Komponenten kann man ohne grossen Aufwand aus Materialien, die nor-
malerweise in flachen Platten geliefert werden, ausschneiden, währenddessen gekrümmte
Komponenten tendenziell kostenintensivere Produktionsmethoden verlangen. Die Kon-
struktion und Montage von architektonischen Strukturen kann auch einen erheblichen
Anteil der Gesamtkosten verursachen. Eine gut gewählte Montageabfolge kann sowohl den
Arbeitsaufwand wie auch die benötigen Baustützten wie zum Beispiel Gerüste erheblich
reduzieren.
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Diese Dissertation geht die Herausforderungen und offenen Fragen im Kontext der rech-
nergestützten Programme für digitale Prototypen von architektonischen Strukturen an,
indem sie drei konkrete Teilprobleme studiert und dazu praktische Lösungen vorschlägt.

Wir präsentieren ein Modellierungsprogramm, das imstande ist in interaktivem Tempo
physikalische Aspekte unter Einbezug einer Vielzahl von geometrischen Bedingungen
robust zu simulieren. Wir zeigen wie Bedingungen bezüglich Ästhetik und Produktion in
unserem Programm implementiert werden können.

Wir präsentieren eine rechnergestützte Methode zur Berechnung einer massenproduzier-
baren Annäherung einer gegebenen Oberfläche, welche Fabrikationskosten minimiert.
Die Methode berechnet Press- und Gussformen, mit welchen mehrere Komponenten
der Annäherung hergestellt werden können. Gleichzeitig respektiert die Methode be-
nuzterdefinierte Bedingungen an die Kontinuität und Abweichung von der gegebenen
Oberfläche. Das damit gelöste Problem ist eine Instanz des Rationalisierungsproblemes:
Die Annäherung eines digitalen Designs an die physikalische Realität einer Struktur.

Wir präsentieren eine rechnergestützte Methode zur Minimierung des Arbeitsaufwandes,
der für den Bau einer selbststützenden Freiformstruktur nötig ist. Wir untersuchen die
Verwendung von Ketten, um die Struktur während des Baus zu stützen. Unsere Methode
sucht eine Montagereihenfolge für die Komponenten der Struktur, welche die Anzahl der
nötigen Kettenneuplazierungen minimiert.

Stichwörter: Architekturgeometrie, komplexe Montagereihenfolgen, bedingte rechnerge-
stützte Optimierung, Fabrikation, Modellierung, Panelisierung, Rationalisierung, selbst-
stützende Strukturen
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1 Introduction

Figure 1.1 – Examples of freeform architectural structures. From left to right, top row:
Yas Marina, Abu Dhabi by Stephen Colebourne, CC BY 2.0. Harbour Bridge, Sindey by
helen@littlethorpe, CC BY NC ND 2.0. Centre Pompidou, Metz by Jean-Pierre Dalbéra,
CC BY 2.0. Bottom row: Stone Bridge, Pakenham by Shawn Nystrand, CC BY SA 2.0.
British Museum, London by Dave Catchpole, CC BY 2.0. Hungerburgbahn, Innsbruck by
IngolfBLN, CC BY SA 2.0

1.1 Architectural Structures

This thesis presents computational methods for fabrication-aware modeling, rational-
ization, and assembly of architectural structures such as buildings, roofs, and bridges.
Furthermore, our methods are tailored to freeform structures of varying curvature, in
contrast to traditional horizontal and vertical constructions. See Figure 1.1 for examples.
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Chapter 1. Introduction

Large structures are often technically impossible or overly expensive to build in one
piece. They are therefore commonly realized by assembling multiple components. There
are also many advantages to subdividing a structure. Individual components can be
fabricated independently and more cheaply using general-purpose machinery. Trans-
porting components is easier than transporting the whole structure. The components
can therefore be produced remotely, wherever most suitable, even in multiple places at
once. Later in the life cycle of a structure, individual components can be replaced when
necessary or reused in other structures.

1.1.1 Challenges

The components of a structure need to fit together with a certain tolerance depending
on how they will be connected to each other. For example, glass panels mounted on
a steel structure do not need to fit together as precisely as masonry blocks or bolted
metal beams. Designing such structures is challenging—constraints, e.g. those dictated
by the design intent, fabrication and assembly, make any change in a single component
potentially propagate through the whole structure, turning a local edit into a global
change. This renders manual edits extremely time-consuming, often infeasible in realistic
budgets.

Computers however can potentially represent and edit thousands of components of an
architectural structure at interactive rates. They are therefore an ideal complement to a
designer’s creativity in our context. This thesis was developed in the context of computer
graphics. We believe that computer graphics with its rich history in digital 3D modeling
is a promising field of research to tackle the interdisciplinary challenges of computer-aided
methods for architectural structures. In fact, a part of the computer graphics community
began to study possibilities of incorporating architectural fabrication into 3D modeling
under the topic of architectural geometry around the year of 2005 [PEVW15] in close
collaboration with geometric mathematicians.

Major cost factors of large-scale structures are fabrication and assembly. Computation
can greatly help to reduce fabrication cost, e.g. by forcing various components to be of
the same shape. These components can then be mass-produced using the same machinery
and settings, saving time and cost. An assembly order that reduces work and support
material can further reduce cost considerably. Finding a mass-producible approximation
of a structure and cost-minimizing assembly order are both globally coupled problems
and therefore well-suited to be tackled, or at least assisted, by computers. Due to the lack
of appropriate digital tools however, architectural structures are still developed in costly
iterations between designers and technical experts. This thesis proposes computational
tools to aid the user and minimize the iterations necessary between collaborators.
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1.2 Modeling

In this thesis, we refer to modeling as the process of defining the geometry of a 3D
architectural structure. Besides aesthetics and stability, we consider other citeria like
cost of fabrication and assembly, which have an important practical influence on the
modeling process. For the process of mathematically describing a problem, often referred
to as mathematical modeling, we use the term formalization.

1.2.1 Prototyping

Traditionally, designs of architectural structures were often developed on scaled physical
prototypes or on intuition gained thereof. While prototypes have the advantage of being
tactile and highly responsive, many physical properties are not independent of scale
and therefore, not well represented in a scaled prototype. Also, certain aspects such as
material and geometry can be laborious to change. The advent of digital design tools has
enabled designers to quickly vary appearance and adapt shape. Purely digital content
like movie sets and characters or special effects have benefited tremendously from those
tools.

When used for prototyping real world objects a digital design tool needs to simulate
physical behavior. But accurate physical simulations are notoriously computationally
intensive and limit the response time of the tool. Challenging designs are thus often first
modeled geometrically while neglecting physics. Only later does an expert get to evaluate
the feasibility of the model using expert knowledge and computationally intricate software
tools. If any aspect of the model is infeasible, the designer needs to alter the model. Due
to a lack of close collaboration with the experts, the designer can often only guess which
modifications render the model feasible, which can lead to many costly iterations.

In response, researchers developed computational tools that use specific aspects of a
design problem to overcome the limitations of more general physical simulations. Those
tools typically not only evaluate the model, but additionally support the user by proposing
changes that improve the design. While such a tool can effectively reduce or even replace
the designer’s interaction with an expert, it needs to be developed or adapted by computer
scientists in close collaboration with experts separately for each project.

1.2.2 Properties of Digital Prototyping Tools

One can identify the following desirable properties of a digital prototyping tool:

1. Efficiency: To give the user an immersive experience comparable to the interaction
with a physical prototype, a tool needs to reflect results as fast as possible.
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2. Generality: The more individual aspects a tool can cope with in an integrated
fashion, the more expressive a user can be, and the more novel are resulting designs.
Additionally, time-consuming and costly iterations between tools and experts can
be reduced.

3. Accuracy: A digital prototyping tool should accurately reflect the behavior of a
physical full-scale structure.

4. Simplicity: A tool based on simple technology is easier to implement and adapt.
This also increases chances that the tool is made available in commonly used
software which in turn increases its spread.

5. Robustness: A tools dynamics should be able to handle drastic changes in the
design gracefully. This enables the user to explore very different designs quickly.

While each of the properties enumerated above is important, most of them are in conflict
with each other and therefore yield a trade-off. To develop a practical digital prototyping
tool, one has to carefully evaluate the requirements of the targeted users.

1.2.3 Constrained Modeling

Modeling an architectural structure can be formalized as an instance of a constrained
modeling task with specific types of constraints. At the core of most computer assisted
constrained modeling is a combination of Constrained Numerical Optimization and a
numerical representation of the geometry together with a formalization of the constraints
of interest. A clever combination of those ingredients can make all the difference in terms
of the properties enumerated in Section 1.2.2. In the following we first discuss the two
fundamental parts of computational modeling, then the common types of constraints.
We then describe three types of approaches to constrained modeling relevant in our
context: rationalization, constraint-aware modeling and design space exploration. We
list examples of fabrication constraints in Section 1.3.

1.2.4 Combinatorial and Continuous Modeling

Computational approaches to the modeling task can be divided into two conceptually
different parts: combinatorial and continuous modeling. In the first step, the combinato-
rial modeling, also referred to as discretization or remeshing in the context of meshes,
the parameter of a model and their interpretation have to be chosen. An example
would be the connectivity of a triangle mesh. On a polygonal mesh, one would have
to additionally define an interpolation scheme for the surface defined by non-planar
polygons. Another commonly used discretization is a tensor-product surface including its
control points. In the second step, the continuous modeling, an assignment of a concrete
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value for each parameter has to be found such that all constraints are fulfilled. The
combinatorial choice in the first step often has a big influence what can be achieved in
the second step. Computational approaches to step one usually fall into the class of
Combinatorial Optimization which are more difficult than their continuous counterparts
because finding an optimum involves exhaustive searching in very large sets. Both steps
could be combined into a single problem of mixed discrete-continuous nature.

1.2.5 Hard and Soft Constraints

The concept of constraints is often used in two fundamentally different meanings: Hard
constraints express a must-have. The slightest deviation from a hard constraint renders
the result meaningless. A typical example of a hard constraint is the static equilibrium
of an architectural structure. Soft constraints express a nice-to-have and are also called
objectives. They are often formalized as an objective function to be optimized which
assigns a niceness measure to each result. Typical examples of soft constraints are
smoothness or cost. Soft constraints can be converted into hard constraints by setting
a hard limit on the objective function, for example, to formalize the fact that a flat
glass panel can be slightly deformed without breaking. The importance of individual
soft constraints can be weighted relative to each other. In contrast, each hard constraint
needs to be satisfied completely. When formalizing a problem with hard constraints one
has to be very careful to ensure that a solution exists at all. This however is often a hard
problem in itself due to global coupling and non-linearity of constraints, and renders
corresponding methods less popular.

1.2.6 Rationalization and Paneling

Rationalization refers to the process of finding an approximation of a given freeform model
which can be fabricated and built at reasonable cost. A rationalization usually follows as
a post-processing step of an unconstrained freeform modeling session, often stressed by
using the term post-rationalization. This approach is preferred by many designers who
argue that the constraints limit their creativity. However, the approximation resulting
from rationalization can deviate considerably and uncontrollably from the unconstrained
input model. In contrast, a tool that directly integrates fabrication-awareness lets the
designer explore and choose a final model in a more informed manner. Paneling is
a instance of rationalization and refers to the approximation of a surface by a set of
surface components, so-called panels, producable at reasonable cost. We propose a
cost-optimizing paneling method in Chapter 4.
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1.2.7 Constraint-aware Modeling

In contrast to rationalization, constraint-aware modeling refers to modeling approaches
which directly integrate constraints, leading to a “what you see is what you get” experience
for the user. Relevant to this thesis are more specifically fabrication-aware and statics-
aware modeling. Note that a rationalization method fast enough to compute results
at interactive rates would also yield a constraint-aware modeling tool. We present a
constrained continuous fabrication-aware modeling framework in Chapter 3.

1.2.8 Design Spaces

Figure 1.2 – Various designs of a design space defined by a hard, co-circular constraint
for each grid line, and soft squareness objective per quad. Figure from [BDS+12].

Design spaces provide an alternative view on constrained modeling. A design space
contains all the sets of parameters of a numerical representation of a model (e.g. vertex
positions of a mesh) that satisfy all hard constraints. Modeling under constraints can
then be interpreted as an exploration of the corresponding design space. Soft constraints
define an objective function for each design. The minima of this objective function in the
design space correspond to the best designs among the constrained designs, as according
to the soft constraints. Ultimately the user will have to choose a unique point out of
the design space for an actual realization. As soon as a model exposes more then a few
parameters, its design space gets high-dimensional, and therefore, very challenging to
grasp and hard-to-impossible to keep a global overview or intuition. This is equally true
for humans as for algorithms in general. Only in-depth geometric study could reveal
global insights of a specific constraint set. The user can keep exploring locally, e.g. with
explicit handles or low-parametric approximations, until he is satisfied with a solution.
He can also add soft constraints to guide an algorithm towards the minimum, or he can
add hard constraints to refine the design space. The latter however can quickly lead to
contradicting constraints where the design space is empty.

1.3 Fabrication Constraints

One of the key benefits of building architectural structures by components (compared to
monolithic ones) is fabrication: Each component can be produced in the most appropriate
manner. The combination of material, fabrication-process and budget constrain each
component and in turn the whole structure. Freeform concrete shells might appear
as counter examples because they are a single component of material. The formwork
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necessary for casting the concrete however often consists of components, for example the
ground floor of the Rolex Learning Center at EPF Lausanne. In the following we discuss
a few examples of fabrication-processes and their constraints.

1.3.1 Cutting

Raw material can be cut apart by tools such as a knife, saw, water-jet or laser. If
mounted onto a machine, a computer can directly control the tool, enabling precise
reproduction of digital cuts and saving manual labor. A machine to cut flat pieces is
particularly simple and many raw materials come in flat sheets. In this case, the cut
component is constrained to be planar. Other machines can move the cutting tool or
equivalently the raw material: A hot-wire cutter for example spans a hot piece of wire,
which can melt through polystyrene. Assuming the tool can only cut straight lines,
such a machine can be used to cut a particular type of surface, called a ruled surface.
Cutting is often also necessary to bring raw material into the appropriate shape for other
fabrication steps.

1.3.2 Milling

Similar to cutting, a milling machine uses a tool, e.g. a spindle, to remove material from a
raw piece. The material is milled away at the location of the tool. The subtractive nature
of milling poses a first constraint on the result. Milling machines vary tremendously in
size and their degrees of freedom in positioning and orienting their tool, which further
limits producible pieces. Also, there is an inherent trade-off between the smoothness of
the result, and the milling time and implied cost through the size of the tool in use.

1.3.3 Bending and Folding

Bending is a continuous deformation that stretches the material only slightly. Cylindrical
pieces for example can be produced with a roll parallel to a raw sheet of material. More
generally, roll forming refers to the fabrication process resulting from concatenating rolls
of various shapes and orientation. Folding is a particular way of bending, where curvature
is concentrated into curvilinear folds. The company RoboFold develops industrial robots
for folding curved sheet metal. Bending constrains the result to be a continuous, slightly
stretching, so-called quasi-isometric deformation of the input. Often bending constraints
are idealized to be non-stretching purely isometric deformations, because numerical and
fabrication tolerances will satisfy them only approximately anyway.

7
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1.3.4 Casting and Molds

In casting, a liquid material is cast into a mold where it solidifies. Constraints arise due
to the separability of the solid result from the mold. Molds consisting of multiple parts
can be carefully designed to ensure separability. A variant of casting is drawing, where a
piece of flat material, usually metal, is drawn by a mold or robot in its solid state. This
leads to constraints on the thickness of stretched material and overhang relative to the
drawing direction. Other fabrication processes can be used to produce molds for casting.
Reusable molds can be used to mass-produce many copies of a single piece.

1.3.5 3D Printing

3D printing is a very flexible fabrication process that has seen a huge development
in recent years. 3D printers are used to print food, fully functional plastic and metal
prototypes and even human tissue appropriate for surgery. Widespread interest has lead
to affordable consumer-level printers. Some 3D printers add material layer by layer,
where each layer consists of a partially molten material similar to a 2D printer using
thick ink. These types of additive 3D printers are limited in the overhang, which is often
alleviated by adding support material or decomposing the target into multiple prints.
The support material then has to be removed after printing. Other 3D printers proceed
by binding part of a powder volume or respectively solidifying liquid. While 3D printers
are very versatile, they tend to be slower and more expensive than other fabrication
processes. 3D printers are often ideal for a small number of rapid prototypes, while
casting would be used to mass-produce a design. The mold for casting could for example
be 3D printed as well.

More fabrication-processes and geometric constraints are also discussed in our work on
paneling freeform surfaces in Chapter 4, in particular in Table 4.1.

1.4 Assembly

In our context, assembly refers to the process of joining components together, resulting in
an architectural structure. While individual components can usually be handled comfort-
ably with common tools such as cranes and scaffolds, partially assembled substructures
that arise during construction need to be held in place by temporary support. For tradi-
tional, box-like structures, it is usually quite obvious that a vertically increasing assembly
order minimizes support. In a freeform structure however, finding a support-minimizing
assembly order can be challenging. The temporary support, together with the common
tools and labor of construction make assembly a major cost factor of a project.

The choice of temporary support, order and joints all depend on each other. For example,
the joints used between neighboring components impose constraints on the stability of
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partially assembled substructures and the temporary support. The joints also limit the
directions in which components can be assembled, which in turn constrains the order.

1.4.1 Joints

Since joints are very practical and ubiquitous, they come in various flavors: slits, friction-
based shapes such as LEGO R©, holes and screws, glue, welding, mortar, nails and inelastic
materials (e.g. ropes in a wooden raft). Some joints need or consist of additional material,
e.g. glue or screws, while others are integral to the components to be joined, e.g. jigsaw
puzzle pieces or the timber panels discussed in [Rob15]. The wooden joint types which
can be unjoined easily also facilitate replacement of components which is useful for
restoration of a structure. The blocks of historic masonry bridges are held in place
purely by self-weight and friction. Intermediate substructures were often held in place
by wooden support and ropes. We propose a method to compute a work-minimizing
assembly sequence for masonry structures using chains instead of traditional formwork
in Chapter 5.

Even if there are no physical joints present in self-supporting structures, the assembly
order has to be carefully designed to ensure that each block can be slid in without
colliding with the already assembled substructure. In practice, this can be alleviated
by temporarily deforming the substructure slightly before sliding in the next block. In
general, there is a trade-off between the necessary deformation and the restriction on
assembly direction dictated by the joint.

In practice, architects and builders must take care of many more aspects of construction,
some of which are the temporal synchronization with production, safety factors and
external loads such as workers, wind or snow, collision-avoidance at the construction site,
e.g. between the components lifted into place, the existing substructure and temporary
support. A discussion of these aspects however would go beyond the scope of this thesis.

1.5 Computational Tools

Above, we discussed various aspects of fabrication-aware modeling and assembly of
architectural structures. In particular, we list requirements for a digital prototyping
tool, fabrication methods and their inherent constraints and discuss aspects of assembly
including joints, support, and order. The ever-growing computational power available
suggests that digital tools can alleviate the complexity of architectural structures bur-
dening a designer. Given such a tool, the designer can focus on the main aspects of a
structure, instead of staying busy with tedious and time-consuming tasks. The designer
can explore feasible designs and may develop some intuition about the corresponding
design space. Such a tool could also be used for rationalization.
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A significant challenge in developing such a computational tool lies in finding the
appropriate level of abstraction: The mathematical models of design, fabrication and
assembly of architectural structures should cover a wide range of practical aspects for as
many projects as possible. An abstract model would not cover many practical aspects,
while a overly specialized model would only serve for a few projects.

1.6 Contributions

In this thesis we contribute various methods and frameworks towards a computational
tool for composite structures.

1. A robust and extensible computational fabrication-aware modeling framework
handling a multitude of constraints on subsets of points. In this framework
architectural structures are modeled by any type of point-based geometry, and
constraints such as planarity, strain-limits, angle-bounds and many more can act on
various combinations of those points. Also the tool ShapeOp makes this framework
available as an open-source project which can be used in other code, in particular
in Rhino’s Grasshopper, a tool widely used by architects and designers for digital
freeform modeling. The framework is presented in Chapter 3.

2. A method to enable mass-production of a freeform architectural surface by finding
a set of molds and an assignment to a mold for each component. By defining
the cost of each mold and component, the method can minimize the budget by
deforming the input design slightly. The tolerable offset is defined by the user. The
method was extended to handle sharp edges and to define tolerances locally, e.g. to
stay closer to the original in highly visible regions, while allowing more deviation
elsewhere. The method is presented in Chapter 4.

3. A method to find a work-minimizing assembly order for a given self-supporting
structure. The temporary support is limited to a set of chains from each component
to a few user-given anchor points. The amount of work is measured by the number
of times a chain has to be added or removed. The method is presented in Chapter
5.

1.7 Publications

This thesis presents the content of three publications in detail:

Mario Deuss, Anders Holden Deleuran, Sofien Bouaziz, Bailin Deng, Daniel Piker,
and Mark Pauly. Shapeop - a robust and extensible geometric modeling paradigm,
2015. [DDB+15]

10



1.7. Publications

Michael Eigensatz, Mario Deuss, Alexander Schiftner, Martin Kilian, Niloy J. Mitra,
Helmut Pottmann, and Mark Pauly. Case studies in cost-optimized paneling of
architectural freeform surfaces, 2010. [EDS+10]

Mario Deuss, Daniele Panozzo, Emily Whiting, Yang Liu, Philippe Block, Olga
Sorkine-Hornung, and Mark Pauly. Assembling self-supporting structures, 2014.
[DPW+14]

Also, the following publications were developed and written during the thesis, but are
not presented in detail:

Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly.
Shape-up: Shaping discrete geometry with projections, 2012. [BDS+12]

Bailin Deng, Sofien Bouaziz, Mario Deuss, Juyong Zhang, Yuliy Schwartzburg, and
Mark Pauly. Exploring local modifications for constrained meshes, 2013.[DBD+13]

Bailin Deng, Sofien Bouaziz, Mario Deuss, Alexandre Kaspar, Yuliy Schwartzburg,
and Mark Pauly. Interactive design exploration for constrained meshes, 2015.
[DBD+15]
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2 Related Work

The work presented in this thesis concerns the modeling and assembly of freeform
architectural structures. Our main goal is aiding designers to cope with the many
constraints arising in fabrication-aware modeling while minimizing cost of fabrication
and assembly with computational tools.

The paneling method presented in Chapter 4 and the fabrication-aware modeling frame-
work in Chapter 3 both fall under the broader topic of constrained modeling. The
former is a rationalization method enabling mass-production of various panel types
which is typically applied only after unconstrained modeling, while the latter integrates
various constraints into the modeling. We will first discuss related work in the context
of constrained modeling, followed by work related to our assembly method proposed in
Chapter 5.

A recent survey on existing solutions and open problems in architectural geometry
[PEVW15] provides an in-depth discussion of many topics touched upon in this thesis.

2.1 Constrained Modeling

There exists a large body of research on constrained modeling. Here we only discuss a
few that are applied to architectural structures. Methods for shape space exploration
were introduced in [KMP07] and [YYPM11]. The latter has a particular focus on
constrained meshes and was extended to support curve-based editing in [ZTY+13].
Recently, a more efficient method for exploration of meshes under various constraints
was proposed in [TSG+14] and [JTT+15]. In many constrained modeling tools a local
edit leads to a global change due to the coupling between constraints. This can be
counter-intuitive and frustrating to a user. A computational method for local edits in
the presence of constraints by means of linear bases in the design space is presented in
[DBD+13]. Constrained space deformation, with the advantage of being independent of
the underlying geometric representation, is considered in [SMB14]. Fabrication methods
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and computational approaches considered in architectural geometry are also discussed
in [PEVW15]. The term bidirectional modeling was coined in [Kil06]. It stresses that
constraints are not only influenced by the design and fabrication, but also the other way
around: the design can be informed by constraints—they can act as a driver for the
design.

2.1.1 Combinatorial Modeling

Regular quadrilateral (quad) panels are an interesting alternative to triangular panels.
The combinatorics of a panel layout have a big impact on qualities achievable in terms of
regularity and constraints. The problem of combinatorial modeling with regular polygons
is throughly discussed in the computer graphics community under the topic of surface
and volume remeshing. Two recent surveys on quad-remeshing are available at [Pan15]
and [BLP+13]. Hexagonal remeshing is addressed in [NPPZ12]. One important approach
to remeshing involves computing n-symmetric tangential vector fields as discussed in
[BZK09] and [KCPS13]. Volumetric remeshing with regular hexahedrons (cube-like
elements) has been addressed in [LLX+12] and [KBLK14]. Constrained regular meshes
are very restrictive for modeling, so modeling tools usually only consider the regularity
as soft constraints. Alternatively hybrid meshes are considered, e.g. triangulated quad
meshes or quadrangulated hexagons (see Figure 5 and 44 (right) in [PEVW15]).

Our paneling method is initialized from a polygonal mesh, but then uses a more flexible
representation to allow gaps between panels and deviation from the input design.

2.1.2 Paneling

Paneling an architectural freeform surface refers to an approximation of a design surface
by a set of panels. Approximations consisting of geometric primitives were considered
in computer graphics as proxies for rendering or simulation and shape abstractions
for analysis or modeling [CSAD04] and [YLW06]. These methods alternate between
segmentation and approximation. In paneling, however, the seams between the panels
need to be considered or designed explicitly because they are of high visual importance.

Planar Paneling

Most work on the paneling problem deals with planar panels. Based on the theory
of discrete differential geometry (see also [BS08]), Pottmann and colleagues propose
methods for covering general freeform surfaces with planar quad panels. Additionally,
their panelings allow for simple, new ways of supporting beam layouts and multi-layer
structures [LPW+06, PLW+07]. Their method was then extended to the covering of
freeform surfaces by single-curved panels arranged along surface strips [PSB+08]. Figure
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4.3 shows an example of a freeform surface rationalized using planar quads and developable
strips, respectively. Combinatorial modeling, or remeshing, has also been addressed for
planar quads [LXW+11] and hexagons [LLW15] and with further fabrication-constraints
[JWWP14]. A generalization of n-symmetric tangential vector fields that can be used to
compute conjugate fields leading to approximately planar panels once integrated was
proposed in [DVPSH14].

Developable Paneling

Other early contributions to the field of freeform architecture come from research at Gehry
Technologies [She02]. These are mostly dedicated to developable or nearly developable
surfaces, as a result of the specific design process that is based on digital reconstruction
of models made from material that assumes (nearly) developable shapes. This approach
is well suited for panels made of materials like sheet metal that may be deformed to
developable or nearly developable shapes at reasonable cost. Panels made of materials
like glass, however, limit affordable production processes to very restricted classes of
developable surfaces (see Table 4.1).

General Paneling

The approaches discussed above, however, focus on specific types of panels (planar or
developable) for paneling a given freeform surface, and do not explicitly consider the
aesthetic quality of panel layout or surface smoothness. With these rationalization
approaches it is difficult to freely choose the paneling seams, since they need to closely
follow a so-called conjugate curve network on the given freeform surface, which is defined
by the curvature behavior of the surfaces (see [dC76] and [LPW+06]).

Our paneling method computes solutions by controlled deviation of the reference surface
to increase the mold reuse for mass-fabrication. This is similar in spirit to symmetrization
[MGP07, GPF09] proposed to enhance object symmetry, i.e., repetitions, by controlled
deformation of the underlying meshing structure. Our method explicitly represents a
curve-network to which the panels only need to fit approximately. Most approaches
discussed above however use polygonal meshes to represent a paneling, which can overly
constrain the problem. In fact, the parameters our method exposes to a user are thresholds
on the closeness and angle between neighboring panels.

Another type of paneling uses so-called point-fold structures consisting of pyramidal
panels. A method to maximize mold-reuse is discussed in [ZCBK12]. Extreme panelings
consisting of repetitions of a single equilateral triangle are looked at in [HEB15].
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2.1.3 Rationalization

Because freeform surfaces are visually exposed, high-quality panelings are very important.
Rationalizations of other elements in architectural structures, however, have also been
investigated: A rationalization method for structures consisting of circular arcs, congruent
nodes and smooth panels have been proposed in [BPK+11]. Long-range components
of architectural structures have been considered in the construction of timer rib shells,
where straight wooden beams behave like geodesics when bent onto a given surface
[WP06]. The work on functional webs discusses the layout of long-range components by
looking at families of curves covering freeform surfaces under a variety of constraints
[DPW11]. Approximations of structures using a limited set of primitives is studied on
an example of the physical modeling tool Zometool in [ZLAK14].

Parametric Modeling

A forward approach to rationalization is parametric modeling. An example for this
was proposed by Glymph and coworkers [GSC+02], where certain classes of surfaces are
rationalized using planar quadrilateral panels. Parametric modeling is also available in
many standard computer-aided design tools nowadays. Such an approach introduces a
logic into a geometric model by means of a generative sequence and relations between
geometric objects. This logic helps in enabling simultaneous control of the surface shape
and the paneling layout. The simple causal chains inherent to parametric modeling,
however, are insufficient for the rationalization of complex freeform geometries.

2.1.4 Self-supporting Structures

Optimization of masonry structures is an active area of research in the computer graphics
community. The shape of architectural models can be automatically adjusted to guarantee
structural stability [WOD09, WSW+12]. Our assembly method uses the same model
of statics for verifying structural stability, as formalized in [Liv92]. Much effort has
been devoted to designing valid self-supporting shapes [VHWP12, LPS+13, dGAOD13,
PBSH13], yet the issue of how to construct such structures from the ground up has been
largely ignored. Cable elements were integrated in masonry design in [WSW+12] but
with predetermined connectivity.

2.1.5 Constrained Numerical Optimization

For computational modeling, numerical optimization is a fundamental tool as it allows
multiple requirements to be incorporated in the design process. For example, in ar-
chitectural geometry, design shapes are often optimized according to certain geometric
constraints that correspond to fabrication requirements [PEVW15]. In this section, we
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discuss methods related to the solver we propose in our fabrication-aware modeling
framework. Since a complete overview on constrained numerical optimization is out of
the scope of this thesis, we refer the reader to [NW06] for further information on this
subject.

Non-linear Least Squares

Many constrained problems arising in architectural geometry are formulated as a non-
linear least squares problems with each residual term corresponding to one constraint.
This problem is then solved using standard solvers such as Gauss-Newton and Levenberg-
Marquardt, or a penalty method based upon them, to obtain the final shape [PSB+08,
SHWP09, ZSW10, PHD+10, DPW11, BPK+11]. Our paneling method uses this approach
to solve the continuous subproblem in the alternating minimization.

Force-based Solver

For form-finding, one popular approach is to model the shape as a system of nodes subject
to internal and external forces, and to compute the final shape as an equilibrium state of
the system [Day65, KO05, AAS+09, SP15]. For example, Kilian and Ochsendorf [KO05]
use particle-spring systems for finding structural forms composing only axial forces. Using
an implicit Runge-Kutta solver for computing the equilibrium state, their method allows
the user to interact with the simulation while it is running. Such force-based approach
is also adopted in Kangaroo, a live physics engine built on top of the computer-aided
design tool Grasshopper [Pik13]. By modeling geometric constraints as forces, Kangaroo
can perform not only form-finding and physics simulation, but also constraint solving
and optimization, making it a popular tool among architects.

Implicit Solver

Although force-based systems are intuitive to set up, it is challenging to simulate their
behavior in an efficient, accurate, and stable way [WB97]. Implicit solvers allow for large
time steps and require fewer iterations, but each iteration can be quite costly to compute
since it requires solving a system of algebraic equations. Also, adding new forces requires
the derivation of a Jacobian, making them more difficult to extend.

Explicit Solver

Explicit solvers involve lower computational cost for each iteration, but at the same time
require smaller step sizes to produce stable results, which can lead to a large number
of iterations. For example, one issue of Kangaroo as presented in [Pik13] is that the
simulation can explode for highly stiff problems, since such problems require a step
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size much smaller than the default value; as a result, it is difficult to compute a shape
that satisfies the given constraints exactly, because this will require large forces for the
constraints and lead to very stiff systems.

2.2 Assembly

Assembly is a universal concept in production across disciplines. There exists a large
variety of joining mechanisms, assembly order strategies and temporary support. In
this section we limit our discussion to work related to computer graphics and freeform
architectural structures. Interesting joints for timber construction leveraging the forces
acting on the structure have been considered in a recent thesis [Rob15].

2.2.1 Masonry Building Fabrication

Historically, construction practices for masonry buildings involved elaborate timber-frame
structures guiding the vaulted forms and further sub-structures for intermediate points of
support [Fit61, Fal12]. In the construction of modern freeform shells, traditional methods
are still in use, with wood panels cut according to section curves [Wen09]. Formwork can
be reduced in thin tile vault construction [ROR+10, DRPB12], however, these methods
rely on significant tensile strength of mortar in comparison to the light weight of the
tiles. Our assembly method presented in Chapter 5 addresses the more general case
of heavy masonry blocks where mortar strength must be neglected, and consequently,
intermediate stages of construction require dense support structures.

While less common, in medieval vault structures, tensioned ropes were sometimes used to
hold arch blocks in place [Fit61]. Tensioned elements have also been used as an alternative
to formwork in the contemporary building industry. For example, the Arch-Lock system
[Dre13] uses chains in the construction of Roman arch bridges, tunnels and vaults. This
chain-based system was an inspiration for our assembly method, however our method
greatly expands on the complexity and generality of chain supports, such that it can be
applied to freeform shell construction.

2.2.2 Optimizing Construction Sequences

Constructability has been investigated in the context of 3D puzzles [LFL09, XLF+11,
SFCO12], 3D assembly instructions [APH+03], and design with planar interlocking pieces
[HBA12, SP13, CPMS14]. These methods address geometric constraints that ensure no
piece is obstructed by the existing structure during assembly. Some aspects of stability
have also been studied in these works, such as the rigidity of joints as a function of slit
placement. In contrast, our assembly method tackles the constructability problem with a
focus on equilibrium constraints and optimizations to simplify the assembly process.
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2.2.3 3D Printing

Support structures are an essential component of the 3D printing process, needed to
stabilize a model at all stages of fabrication [WWY+13]. While 3D printers use an
additive method, building models layer by layer, our assembly method takes advantage
of freedom in the construction sequence; blocks can be placed in arbitrary sequences,
constrained only by connectivity. For 3D printing, several methods have been developed to
determine areas of high stress in the final printed model [SVB+12, US13]. Strut and truss
structures have been proposed as a solution to reducing internal stress and preventing
breakage of the print material [SVB+12, WWY+13]. Our chain-based assembly method
is intended for temporary support that can be easily added and removed.

A large body of work exists in optimizing for physical phenomena in fabrication-oriented
design. For example, prescribed deformation behavior [BBO+10] and kinematic con-
straints [CTN+13] have been studied in the context of character design. A sparse set
of strings is used in [STC+13] to animate actuated models. In our assembly method,
we apply fabrication technology for creating physical prototypes, but our goal is rather
directed at the assembly, while physical validity of the final shape is assumed at input.
New printing technologies supporting large-scale 3D printing [HD14] could directly be
applied to fabricate freeform blocks for masonry structures.

2.2.4 Rationalization and Assembly

Surface rationalization [SS10, FLHCO10, EKS+10] and decomposition in freeform sweeps
[BPW14] can be used to create architectural tessellations that reduce construction costs.
These approaches could potentially be used to optimize block tessellations, and thus
benefit directly from our assembly method that can generate construction sequences for
masonry structures composed of arbitrarily shaped blocks.
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3 ShapeOp

A Robust and Extensible Geometric Modeling Paradigm

We present ShapeOp, a robust and extensible geometric modeling paradigm. ShapeOp
builds on top of the state-of-the-art physics solver [BML+14]. We discuss the main
theoretical advantages of the underlying solver and how this influences our modeling
paradigm. We provide an efficient open-source C++ implementation1 together with
scripting interfaces to enable ShapeOp in Rhino/Grasshopper and other tools. To
evaluate the potential of ShapeOp we present various examples using our implementation
and discuss potential implications on the design process.

3.1 Introduction

Under the well established geometric modeling paradigms such as constructive solid
geometry or spline-based modeling, polygonal mesh modeling yields a good tradeoff
between expressibility - its many degrees of freedom allow to approximate an arbitrary
design - and computational effort - its inherent linear interpolation reduces mathematical
complexity. This has led to the development of various form-finding and modeling tools
for the exploration of shape spaces of polygonal meshes. In our context we consider a
shape space as a set of all designs that respect given geometric constraints dictated by
aesthetic, fabrication and cost requirements. See Fig. for an example of a shape space.

Shape space exploration is typically facilitated by an optimization algorithm that negoti-
ates a large number of complex and possibly conflicting constraints to satisfy the design
goals. Numerical solvers for constraint satisfaction therefore play a fundamental role in
shape exploration environments. A number of requirements on these solvers are essential
for an effective design process, such as numerical robustness, computational efficiency,
flexibility to handle a diverse set of design constraint, and extensibility to adapt to new

1www.shapeop.org
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design environments.

Existing shape exploration methods are often restricted by inherent limitations of their
optimization approach. They might be tailored to a specific set of constraints, for
example planarity of polygons, which can limit design flexibility. They exhibit numerical
instabilities or slow convergence, which makes interactive modeling cumbersome. Last
but not least, they are often closed, monolithic software, which makes adaptations or
extensions in new design tasks difficult. We propose a new computational approach to
geometric modeling and design that alleviates these limitations.

We adopt the physics solver proposed in [BML+14] that integrates a variety of constraints,
dynamics and handle-based shape space exploration, and add projective constraints
described in [BDS+12]. We refer to the combination as ShapeOp. In this chapter, we
evaluate the potential of ShapeOp for design in a number of examples using Rhino’s
Grasshopper as a graphical user interface. We also discuss and provide our implementation
of ShapeOp, which effectively bridges the gap between computer graphics research and
practical computational design, and acts as a open-source template for making research
available. ShapeOp can also act as a building block for algorithms exploring further
aspects of the shape space, e.g. adaptive meshing, evolutionary optimization and
automatic constraint selection. The contribution of this chapter is three-fold:

1. We propose ShapeOp, a state-of-the-art unified and extensible constraint solver,
and make it accessible to the architectural modeling community.

2. We describe and provide an efficient C++ open-source implementation of ShapeOp
and an integration into Rhino’s Grasshopper using Python’s ctypes.

3. We highlight design applications and demonstrate the extensibility of ShapeOp in
various examples.

In the remainder of this chapter, we first describe the main ingredients of the ShapeOp
modeling approach and numerical solver. We then provide more details on the open-
source implementation, show several design examples and discuss potential implications
of our approach to design processes.

The two papers [BDS+12] and [BML+14] provide a thorough discussion about previous
work related to ShapeOp. Other work related to ShapeOp is discussed in Section 2.1, in
particular in Subsection 2.1.5.

3.2 Solver

ShapeOp is a physics engine as well as an optimization tool, designed for a set of points
that are subject to physical and geometric constraints. In dynamic mode ShapeOp
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simulates physics by preserving momentum. In static mode ShapeOp optimizes for an
equilibrium solution, which converges considerably faster due to the absence of oscillations
induced by momentum.

For constrained optimization, ShapeOp adopts the iterative solver of [BML+14], which
models physical potentials as well as geometric constraints including the ones presented
in [BDS+12] in a unified manner. Each iteration of the solver consists of a local step and
a global step (see Fig. 3.1):

Local Step A candidate shape is computed for each set of points that are commonly
influenced by a constraint. For a geometric constraint, this amounts to fitting to the
points a shape that satisfies the constraint. For a physical constraint, this reduces
to finding the closest point positions that have zero physical potential value. For
example, in Fig. 3.1, each quad face of a mesh is subject to the constraint of being
a square. Thus in the local step, a square is fitted to each face as its candidate
shape.

Global Step The candidate shapes computed in the local step which might be incom-
patible. New point positions are computed, such that each set of points subject to
a common constraint are as close as possible to the corresponding candidate shape
(see Fig. 3.1 right).

By repeating the above steps, the overall constraint violation is weakly decreased in each
iteration, and the mesh converges to a shape that satisfies all physical and geometric
constraints as much as possible. Moreover, each iteration can be run very efficiently: in
the local step different constraints can be handled in parallel, while in the global step we
only need to solve a linear system with a fixed matrix.

For simulating dynamics, ShapeOp uses the implicit Euler integration scheme from
[BML+14], where at each integration step the physical and geometric constraints are
resolved using the above local-global solver. Thanks to the efficiency of the local-global
solver, ShapeOp benefits from the stability of implicit integration, with significantly
lower computational cost than traditional implicit Euler solvers. ShapeOp also allows
defining external forces such as wind and gravity.

For completeness of this chapter we include parts of the paper [BDS+12] in the following:
Section 3.2.1 describes the general approach for constraint satisfaction based on projection.
Section 3.2.2 adapts this approach to the domain of discrete geometry.

3.2.1 Proximity Function

We draw inspiration from a technique applied in the signal processing community for
constraint satisfaction problems that may not have feasible solutions [Com94]. Central to
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Figure 3.1 – A quad mesh constrained to consist of squares illustrating the ShapeOp
solver. Left: Initial configuration. Middle: Local step - Projecting each quad onto
its closest square. Right: Global step - Joining the individual projections by a global
minimization. The resulting mesh is then used as initial configuration and the solver
iterates.

the method is a proximity function that measures the weighted sum of squared distances
of a point to a collection of constraint sets, i.e. the sets containing feasible solutions to
their respective constraints. For a collection of constraint sets {C1, C2, ..., Cm}, let di(x)
measure the ’least amount of change’ in x ∈ Rn in order to satisfy the constraint Ci. The
proximity function is then defined as

φ(x) =
m∑
i=1

widi(x)2, (3.1)

where wi are non-negative weights that control the relative importance of the different
constraints. Formally, di is the distance between a point x and its projection Pi(x) onto
the constraint set Ci (see Figure 3.2). We can formulate this projection as

y = Pi(x) = argmin
y∈Ci

||y− x||22, (3.2)

which can be seen as moving x in the minimal way to satisfy the constraint. The
proximity function can now be written as

φ(x) =
m∑
i=1

wi||x− Pi(x)||22. (3.3)

This function encodes how well the constraints are satisfied through a distance measure.
Finding a solution that minimizes the proximity function will therefore satisfy all the
constraints if φ(x) = 0. Otherwise, a least-squares solution is obtained.
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C1

C1

C3

C3

C2

C2

Figure 3.2 – The proximity function φ(x) is the weighted sum of squared distances di(x)
of the point x to the projections Pi(x) onto the respective constraint sets Ci. Minimizing
φ(x) yields a feasible solution if the constraint sets intersect (left), and a least-squares
solution otherwise (right).

For linear projections Pi the global optimum is found using standard linear least-squares.
Often, however, the projections are nonlinear and do not have an intuitive gradient. We
therefore employ an iterative two-step minimization strategy:

I Compute the projections Pi(x) using the current estimate x (local step).

II Update x by minimizing Equation 3.3, keeping Pi(x) fixed (global step).

This scheme is guaranteed to converge monotonically to a local minimum, even though
this minimum is not necessarily reached in a finite number of steps. The convergence
rate depends on the conditions of the problem and the projection functions involved. To
understand why the optimization converges, we observe that step I weakly decreases each
constraint cost ||x− Pi(x)||22 given the current estimate x, hence φ(x) cannot increase.
Step II minimizes Equation 3.3 globally for a fixed Pi(x), thus φ(x) also cannot increase.
As a consequence, we obtain a sequence that is non-increasing and bounded from below
(as mean-square errors cannot be negative), a sufficient condition for convergence to a
local minimum. This argumentation is similar in spirit to the convergence proof exposed
in [BM92] for the Iterative Closest Point (ICP) algorithm. The two step process is
illustrated in Figure 3.3.

3.2.2 Shape Proximity for Geometric Data

Our key observation is that the proximity function is ideally suited to encode geometric
shape constraints. The projection of a set of vertices onto a geometric shape is found
by minimizing the sum of the squared distances of the vertices to the corresponding
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Figure 3.3 – Two iterations of the two-step minimization of the proximity function φ(x)
with wi = 1. Step I computes the projections using the current estimate x. Step II updates
x by minimizing φ(x) keeping the projections fixed. At each step, φ(x), illustrated by the
sum of the error bars, will decrease, even if some of the individual elements increase.

constraint set. This minimum is computed through shape matching, i.e. by finding the
least-squares fit of the constraint shape onto the set of vertices. Let V be a vector that
stacks all vertices v1, . . . ,vn ∈ Rd of our d-dimensional data set and let Vi ⊆ V be the
ni vertices involved in shape constraint Ci. We formulate the shape proximity function
as

φ(V) =
m∑
i=1

wi||NiVi − Pi(NiVi)||22, (3.4)

where wi are weights and Pi(·) is the projection onto the constraint Ci, i.e. the corre-
sponding least-squares fitted shape. The matrix Ni is used to center the vertices of Vi
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3.3. Projections

at their mean and is defined as

Ni = (Ini×ni −
1
ni
1ni×ni)⊗ Id×d, (3.5)

where ⊗ is the Kronecker product and 1ni×ni is a ni × ni matrix of ones. Subtracting
the mean allows translational motion as a degree of freedom during the optimization.
This introduces a global solve, but considerably improves convergence (see also Figure 10
of [BDS+12]). This formulation is possible because shape projections are invariant under
translation. Equation 3.4 can be reformulated by rewriting φ(V) as

Eshape = φ(V) = ||QV− p||22, (3.6)

where the matrix Q combines all weighted mean-centered constraint vertices, and p
integrates all projections. The alternating optimization scheme for each iteration then
becomes:

I For fixed V, compute the projection vector p using shape matching.

II For fixed p, solve the normal equations QTQV = QTp to update V.

Since Q only depends on the shape constraints, we can pre-factor the matrix QTQ using
sparse Cholesky factorization. Figure 3.4 illustrates our two-step optimization scheme.
In the projection step, we first compute the best fitting shape for each shape constraint.
From the fitted shapes, we obtain the projected vertex positions and solve the linear
system by back substitution using the prefactored matrix.

3.3 Projections

Central to the constrained optimization solver in ShapeOp are the so-called projection
operators, which are used to compute the candidate shapes in the local step. Specifically,

original projection linear solve projection linear solve converged

Figure 3.4 – Our optimization alternates between projection and linear solve. In this
example, we prescribe a regular polygon constraint that pushes all quadrilaterals to become
squares. The projection finds the best matching square for each quadrilateral to determine
the target position for each vertex. The linear solve reconciles these projected positions in
a least-squares sense.
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given a set of points that are subject to a constraint, the projection operator finds the
closest point positions that satisfy the constraint. A new constraint can be added easily
to ShapeOp, as long as its projection operator is provided. No changes to global step of
the solver are necessary to add a constraint.

3.3.1 Closeness

A simple example of a constraint is the closeness constraint: It is satisfied if the constrained
vertex v coincides with a prescribed position c. Since the only way to satisfy the closeness
constraint is by setting v equal to c , the projection P (·) simply is given by P (v) = c.

3.3.2 Orientation

An example of a slightly more involved constraint is the orientation constraint: An
orientation constraint acts on a set of vertices and is satisfied if those vertices all lie
on a plane with a prescribed orientation. The orientation of a plane can be defined by
a normal n. The constraint projection first subtracts the mean of the input set from
each vertex. After doing so the least-square fitting plane with normal n contains the
origin. The projection of a given vertex v onto the plane with normal n is then given by
P (v) = v−n(n ·v), where n ·v denotes the dot-product of n and v. A step-by-step tutorial
on how to implement the orientation constraint in the source code and grasshopper
component is provided in the ShapeOp documentation. See Table 3.1 for the constraints
implemented in ShapeOp.

In the following we include the description of all projections presented in [BDS+12].
To simplify notation, we now denote with V = {v1, . . . ,vn} the vertices of a single
constraint Ci (and not the full dataset) in the current configuration, and assume that
these vertices are already mean centered. The original vertex positions are denoted by
an apostrophe, i.e. V′ = {v′1, . . . ,v′n}, and the projected vertex positions by a star, i.e.
V∗ = {v∗1, . . . ,v∗n}.

We describe three classes of constraints. Continuous shapes, such as planes or circles,
polygonal shapes, such as line segments, regular polygons, or rectangles, and relative
shapes. The latter encode the class of transformations that the shapes of the original
geometry, e.g. polygons, tetrahedra, one-ring neighborhoods, etc., can undergo during
the optimization. This allows the preservation of geometric properties such as lengths or
angles of the original model.
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3.3. Projections

3.3.3 Continuous Shapes

Line - Plane
This constraint specifies that the vertices of V should all lie on a
continuous line or plane.

Projection: We can efficiently solve for the projection by first computing the sorted
eigenvectors U =

[
e1, e2, e3

]
of the 3×3 covariance matrix CTC where C =

[
v1, . . . ,vn

]
.

We remove the last column of U for plane projection and the last two columns for line
projection. The projected vertices are then given as

[
v∗1, ...,v∗n

]
= UUTC.

Circle - Sphere
This constraint specifies that the vertices of V should all lie on a
2D circle or a 3D sphere.

Projection: Since the direct projection of 3D vertices to their 2D least-squares circle can
be computationally expensive, we apply an approximate projection. We first project the
vertices onto their least-squares plane (see above) and then fit a 2D circle within that
plane. Circle fitting is achieved by minimizing

∑
j(||vj − c||22 − r2)2, where r and c are

the unknown radius and center of the circle, respectively. We solve for these parameters
using the closed-form solution of [TC89] and project the vertices of V onto this circle to
obtain V∗. The projection onto a sphere is computed by minimizing the same equation
directly on the 3D points.

3.3.4 Relative Shapes

Rigid - Similar
These constraints are defined relative to the original vertex set
V′, i.e. they constrain the type of transformation that the vertex
set can undergo. Rigid aims at restricting the deformations to
isometries, while Similar aims for a conformal deformation.

Projection: Finding the closest rigid transform or similarity that maps the original vertices
V′ onto the current set V can be solved using the method described in [Ume91]. The
algorithm computes the rigid transformation and uniform scale using least-squares fitting
and allows a minimal and maximal scale constraint by keeping the rigid transformation
as is and clamping the scale to the desired range.

While this approach works well, we also propose a faster projection operator for 2D
shapes. The idea is to first project the vertices onto their least-squares plane and then
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formulate the fitting in 2D. We denote the projected 2D points by a bar, e.g. v′j is the
projection of the original vertex v′j onto the least-squares plane.

Let M be all the sets of points conformal to the 2D points V′ = {v′1, . . . ,v′n}. We first
find the point set V∗ ∈M closest to V, i.e. solve for

{v∗1, . . . ,v∗n} = argmin
V∗∈M

n∑
j=1
||v∗j − vj ||22. (3.7)

As explained in [Hor87], at the minimum of Equation 3.7 the centroids of V and V∗

coincide. Therefore, if V is centered, Equation 3.7 can be expressed as

argmin
v∗1x,v∗1y

||


I2×2
s2Rθ2

...
snRθn


︸ ︷︷ ︸

A

v∗1︸︷︷︸
x

−


v1
v2
...
vn


︸ ︷︷ ︸

b

||22, (3.8)

where siRθi
represent the scale and rotation mapping the first point to the ith point in

the original centered set V′.

The minimum x of Equation 3.8 is obtained by solving the normal equation x =
(ATA)−1ATb. We can then express the projection as a linear operatorP = A(ATA)−1AT ,
which maps the current point set V to the closest point set V∗ in M. The matrix P
depends only on the original point set V′ and can thus be precomputed. If P is applied
to any point set in M, by the idempotence property of the projection operator, the result
is unchanged. Since ATA is a 2× 2 matrix, this projection operator has a closed form
expression.

3.3.5 Polygonal Shapes

Line Segment
For a pair of vertices {v1,v2}, this constraint specifies the allowed
value for their relative distance.
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Projection: Let d = ||v1 − v2||2 be the current distance between the vertices and d∗

the desired length of the line segment. Then the projection {v∗1,v∗2} is computed as
v∗1 = d∗

d v1 and v∗2 = −v∗1.

Regular Polygon
This constraint specifies that the vertex set V should assume the
shape of a regular polygon, i.e. have all angles be equal and all
sides be of equal length.

Projection: Since a regular polygon is invariant only under similarity transformations,
we can use the same projection method as described above for relative shapes. We
simply replace the original vertex set V′ by the vertices of the regular polygon of the
corresponding order.

Parallelogram
This constraint specifies that a quadrilateral should become a
parallelogram, i.e. have two pairs of parallel sides.

Projection: We formulate the parallelogram fitting by extending the projection for relative
shapes as described above. We first project the vertices onto their least-squares plane,
then formulate the optimization as

argmin
v∗1,v∗2

||
[
I4×4
−I4×4

]
︸ ︷︷ ︸

A

[
v∗1
v∗2

]
︸ ︷︷ ︸

x

−


v1
v2
v3
v4


︸ ︷︷ ︸

b

||22. (3.9)

As previously, the solution of this optimization is V∗ = A(ATA)−1AT b.

Rectangle
This constraint specifies that a quadrilateral should become a
rectangle, i.e. have only right angles.
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Projection: We first project the vertices onto their least-squares plane and then fit the
rectangle in 2D. Unlike the other polygonal shapes, we compute the equation of the four
lines that define the rectangle by solving

argmin
c1,c2,n

||



1 0 v1x v1y
1 0 v2x v2y
0 1 v2y −v2x
0 1 v3y −v3x
−1 0 v3x v3y
−1 0 v4x v4y
0 −1 v4y −v4x
0 −1 v1y −v1x


︸ ︷︷ ︸

A


c1
c2
nx
ny


︸ ︷︷ ︸

x

||22 s.t ||n||22 = 1. (3.10)

This optimization is minimized by taking the QR decomposition of A and solving a
2× 2 eigenvalue problem as described in [GH95]. We then find the projected points by
computing the intersection of these four lines.

While many of the constraints intuitively apply to specific primitives, some of them
can be applied to an arbitrary set of points defining novel shape spaces. For example,
the circle constraint was often applied to all quads of a mesh because of its desirable
offset properties [PLW+07]. However, it can also be applied to each grid line of a quad
mesh, defining an interesting shape space as illustrated in Figure 1.2. Similarly, the
plane constraint is often applied to all polygons of a mesh to allow for fabrication by
cutting planar material. But alternatively, one could apply a plane constraint to a point
and all its immediate neighbors, yielding a smoothness constraint depending much less
on the mesh than the laplacian constraint. Also note that the ShapeOp Solver has no
explicit knowledge of a mesh, but only of a list of points. If an application or its user
tries to constrain mesh primitives like triangles or quads, it has to provide ShapeOp
with the indices for the list of points corresponding to the primitive when adding a
constraint. This allows to apply ShapeOp to any set of points, e.g. mixing different
geometric primitives such as splines, tetrahedral meshes, bezier patches or triangle soups,
that are parametrized by point positions.
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Constraint Description

Edge Strain Bounds the length of an edge ([BML+14], § 5.1).
Triangle
Strain

Bounds the strain of a triangle with respect to its initial configura-
tion ([BML+14], § 5.1).

Tetrahedron
Strain

Bounds the strain of a tetrahedron with respect to its initial con-
figuration ([BML+14], § 5.1).

Area Bounds the area of a triangle ([BML+14], § 5.2).
Volume Bounds the volume of a tetrahedron ([BML+14], § 5.2).
Bending Bounds the change in mean-curvature ([BML+14], § 5.4).
Closeness Constrains a point to a prescribed position (Section 3.3.1).
Line Constrains points to a lie on a line (Section 3.3.3).
Plane Constrains points to a lie on a plane (Section 3.3.3).
Circle Constrains points to a lie on a circle (Section 3.3.3).
Sphere Constrains points to a lie on a sphere (Section 3.3.3).
Rectangle Constrains four points to form a rectangle (Section 3.3.5).
Parallelogram Constrains four points to form a parallelogram (Section 3.3.5).
Uniform
Laplacian

Constrains a point to the average of its neighbors ([BDS+12], § 4).

Uniform
Laplacian of
Deformation

Constrains a deformation vector with respect to the initial position
to be the average of its neighboring deformation vectors ([BDS+12],
§ 4).

Rigid This constraint is equivalent to Similarity, only that it does not
allow for uniform scaling (Section 3.3.4).

Angle Bounds the angle formed by three points ([DBD+15], § 3.3.2).
Similarity Constrains points to be similar to one of the prescribed set of

points. Two sets of points are similar if there exists a rotation,
translation and uniform scaling that maps one set onto the other.
The similarity constraint automatically selects the closest of the
prescribed sets of points to project to at each iteration (Section
3.3.4).

Table 3.1 – Constraints implemented in ShapeOp.
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The projections of [BDS+12] also been adapted in a more advanced and complex opti-
mization enabling hard constraints in [DBD+15]. Their solver however is substantially
more involved and would undermine the simplicity of ShapeOp.

3.4 Implementation

Our implementation of ShapeOp is distributed as a header-only C++ library. While it is
possible to develop C++ plugins for computational design environments this requires a
larger and substantially more involved development investment than what is offered by
higher level programming languages provided in .NET compliant CAD environments such
as Rhino 3D and Revit. Here languages such as C#, VB and Python make development of
computational design models fast, responsive, and interchangeable. Below we demonstrate
how we have integrated the ShapeOp C++ library directly into the Rhino/Grasshopper
environment using Python scripting components. A selection of examples will demonstrate
how Grasshopper users can start to implement ShapeOp in their definitions.

Solver
Constraint
Force

API
GrasshopperC-types

SWIG C#, Java, ...

GHPythonC++ C

libShapeOp bindings

Figure 3.5 – Schematic overview of our implementation of ShapeOp.

The implementation can be conceptually divided into two components: The core library
libShapeOp with various bindings, and applications which use libShapeOp. The core
library contains the abstract C++-classes Solver, Constraint and Force, and many
classes deriving from and implementing them. The C-API provides an interface using
C only, which simplifies calling libShapeOp from other code or programs considerably.
ShapeOp also provides everything necessary to use SWIG2, a software development tool
that can generate a multitude of bindings for libShapeOp. The applications contains
the Grasshopper definitions using libShapeOp. The definitions use GhPython3 to enable
Python in scripting components. Inside the component we use Python’s ctypes to directly
call libShapeOp.

There are six ShapeOp Grasshopper components in the current release. The functionality
of each is implemented in a Python script and can be viewed and edited by double-clicking
a component. The ShapeOp ConstraintSolver (SOSolver) is the central component
and is the only one that calls the libShapeOp library. It sends points and constraint
signatures to the library and retrieves the result. The ShapeOp SettingsLive (SOSL)
and ShapeOp SettingsStatic (SOSS) components are used to edit the ShapeOp solver
settings and run the solve process. A constraint signature contains all the necessary

2www.swig.org
3www.food4rhino.com/project/ghpython
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information to setup a constraint: The constraint type represented by a string; the
indices of points to be constrained with respect to the global list of points; the weight of
this constraint; the scalars, a list of floating point numbers encoding additional settings
of the constraint.

Figure 3.6 – The Grasshopper definition used for the hanging cloth example seen in
Fig. 3.7.

ShapeOp ConstraintSignature (SOCSig) constructs the constraint signatures. Con-
straint signatures are implemented using a Python dictionary, so they could also be
created by custom python components other than SOCSig. ShapeOp MeshIndexer (SOMI)
is a utility component to extract point indices from a mesh according to a provided pattern
represented by a string. The resulting point indices are represented by a Grasshopper
data-tree, which is equivalent to a list of lists, and could again come from any other script
or Grasshopper component if desired. Note that SOCSig creates multiple constraints if
the inputs are lists. For example, the two upper SOMI and SOCSig components produce
a bending constraint with weight 4.36 for each edge in the mesh that is shared by two
triangles. ShapeOp AnchorsIndexer (SOAI) is a utility component for setting up anchor
constraints and translating them to closeness constraints. It picks the closest point in
the mesh to the provided anchor point.

3.5 Examples

In Figs. 3.7 to 3.14, we provide some examples of using ShapeOp in Rhino/GhPython for
different applications, including physics simulation, constrained modeling, rationalization,
and form-finding.
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Figure 3.7 – Use of ShapeOp for physics simulation of elastic materials. A hanging
cloth modelled using edge strain and bending constraints. The three vertices are anchored
using closeness constraints and all points are subjected to a gravity load. Left: The input
mesh. Middle: The constrained mesh at the first solve iteration in which the anchors are
immediately moved very far apart. Right: The constrained mesh after 100 iterations with
the anchor point moved back to their starting positions. Top: Wireframe rendering with
the edges coloured by their strain (red = high, blue = low). Bottom: Shaded rendering.
The example demonstrates both the stability and the fast convergence of the solver.

Figure 3.8 – Use of ShapeOp for constrained modeling of a shell with rational geometric
properties. The vertices on the parameter lines of a quad-mesh are constrained to always
lie on a circular are using the circle constraint. Each face is constrained towards being
square using the similarity constraint. Five vertices are anchored to different positions
than their initial positions, enabling shape exploration. Left to right: 1) The input mesh,
the face used for similarity and vectors visualizing start/end positions for the anchors. 2)
The constrained mesh after 10 iterations. 3) The constrained mesh after 300 iterations.
4) The constrained mesh with circles drawn through each of the parameter line vertices
(Red = Line vertices distance to circle is large, Blue = Line vertices distance to circle is
small).
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Figure 3.9 – Use of ShapeOp for rationalizing an existing geometry. Each face of the
quad-mesh is constrained towards being planar using the the plane constraint. Each vertex
is constrained to its initial position using the closeness constraint by a small weight to
maintain the shape of the mesh. Left: Input mesh. Middle: The constrained mesh after
10 iterations. Right: The constrained mesh after 200 iterations. Top: Shaded rendering.
Bottom: Planarity analysis rendering (Red = Low planarity, Green = High planarity).

Figure 3.10 – Use of ShapeOp for constrained modeling of box shape with multiple rigid
shape targets. A quad-mesh box is anchored at the vertices on two sides of the box. The
image sequence shows the vertices on one side being pulled away over time. As this occurs
each mesh face attempts to project itself onto one of the three shape targets below the
box. The solver has been initialized using dynamics leading to the rippling effect as the
faces switch their projection targets from short to medium to long. This projection type
is enabled using the rigid constraint.
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Figure 3.11 – Use of ShapeOp for constrained modeling of a shell with topologically
different shape targets. A planar mesh composed of both triangles and quads is anchored
at four vertices using the closeness constraint. Using the similarity constraint, each face
is constrained towards their initial shape i.e. an equilateral triangle or a square. 1)
The input mesh. 2) The mesh after 1 iteration. 3) After 100 iterations. 4) After 500
iterations.

Figure 3.12 – Use of ShapeOp for constrained modeling of a randomly generated quad-
mesh with multiple constraints as design drivers. The example demonstrates the effect of
applying the same constraints on meshes with different resolutions. It uses three primary
constraints: 1) Limit the internal angles of each face to be within 80 and 110 degrees, 2)
The boundaries of the mesh should lie on circles, 3) Each face should preserve its area.
Additionally, a Laplacian of displacement constraint is added which smoothens out the
mesh while maintaining the shape, and a bending constraint is added which ensures that
face-face angles do not become too acute. The color code is a based on scoring system:
The internal angles for each face are calculated. If an angle is within the desirable range
it is scored 0, else 1. The scores are added for each face, best face score is 0 (Dark green)
worst is 4 (Dark red).
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Figure 3.13 – Use of ShapeOp for funicular form finding. A hexagonal quad-mesh is
anchored at each corner and subjected to an inverse gravity load. In this image sequence
the only other constraint is that each edge should be 2.0 units long. This is implemented
using the edge strain constraint. 1) The input mesh. 2) The constrained mesh after 1
iteration. 3) The constrained mesh after 10 iterations. 4) The constrained mesh after
reaching equilibrium at iteration 1000.

Figure 3.14 – Use of ShapeOp for funicular form finding under fabrication constraints.
Demonstrates the effect of combining different constraints: Desired edge length, planarity
of faces and desired range of internal face angles. All images show the constrained mesh
at equilibrium. From left to right: 1) Shaded rendering. 2) Edge length deviation from
desired length. 3) Face angles deviation from desired angle range. 4) Face Planarity
Deviation (Red = High deviation, Green = Low deviation). Row 1: The mesh with edge
strain constraints. Row 2: The mesh with edge strain and internal mesh face angles
constraints. Row 3: The mesh with edge strain and face planarity constraints. Row 4:
The mesh with edge strain, internal mesh face angles and face planarity constraints.
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3.6 Design Process

We believe that ShapeOp can have a considerable impact on a design process in various
ways. In interactive modeling tools the graphical user interface often cost non-negligible
fraction of the execution time, in particular on large data. Since ShapeOp is built
modularly, it can be run independently of any user interface. Also, due to the C/C++
implementation, ShapeOp runs natively and is heavily optimized by compilers and
parallelization with OpenMP4. ShapeOp can therefore potentially handle huge models.

In ShapeOp, the global and local steps are both numerically stable least-squares problems,
implying that the overall method is also stable and robust. Also, many constraints such
as the plane constraint only concern the relative arrangement of points and stay satisfied
after applying a translation to all points. ShapeOp utilizes this in the global step by
implicitly solving for the translations for each constraint independently. This allows for
constrained points to move arbitrarily far and greatly increases convergence speed.

Another benefit of ShapeOp is that it is fully open-source, with bindings for many
languages including C, C++, C#, Java, and Python. This makes it easy to use ShapeOp
from different programming environments, and to extend and adapt the codes according
to specific needs.

4www.openmp.org
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4 Cost-Optimized Paneling of Ar-
chitectural Freeform Surfaces

Paneling an architectural freeform surface refers to an approximation of the design
surface by a set of panels that can be manufactured using a selected technology at a
reasonable cost, while respecting the design intent and achieving the desired aesthetic
quality of panel layout and surface smoothness. Eigensatz and co-workers [EKS+10]
have recently introduced a computational solution to the paneling problem that allows
handling large-scale freeform surfaces involving complex arrangements of thousands of
panels. We extend this paneling algorithm to facilitate effective design exploration, in
particular for local control of tolerance margins and the handling of sharp crease lines.
We focus on the practical aspects relevant for the realization of large-scale freeform
designs and evaluate the performance of the paneling algorithm with a number of case
studies.

4.1 Introduction

Freeform shapes play an increasingly important role in contemporary architecture. Recent
technological advances enable the large-scale production of single- and double-curved
panels that allow panelizations of architectural freeform surfaces with superior inter-panel
continuity compared to planar panels. However, the fabrication of curved panels incurs a
higher cost depending on the complexity of the panel shapes, as well as on the employed
material and panel manufacturing process (see Table 4.1). This gives rise to the so-called
paneling task: The approximation of a design surface by a set of panels that can be
manufactured using a selected technology at a reasonable cost, while respecting the
design intent and achieving the desired aesthetic quality of panel layout and surface
smoothness. The paneling task is a key component of the rationalization process for
architectural freeform designs.

The challenge in paneling architectural freeform surfaces lies in the complex interplay
of different objectives related to geometric, aesthetic, and fabrication constraints that
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mold types

reference surface

panelized surface

plane
cylinder
paraboloid
torus
cubic

Figure 4.1 – Given a reference surface (top row), the paneling algorithm produces a
rationalization of the the input. The paneling solution (middle row) employs a small
set of molds that can be reused for cost-effective panel production (bottom row), while
preserving surface smoothness and respecting the original design intent. The shown metal
paneling solution is 40% cheaper than the production alternative of using custom molds
for each individual panel. Figure 4.11 presents a variety of solutions that achieve cost
savings of up to 60%. Figure 4.4 lists the metal cost ratios used.
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need to be considered simultaneously. In this chapter, we discuss the paneling solution
recently introduced in [EKS+10], henceforth referred to as the paneling algorithm, and
focus on the practical aspects relevant for the realization of large-scale freeform designs.
We enhance the algorithm to handle spatially adaptive quality thresholds and propose an
extension that allows incorporating sharp feature lines. With these new functionalities,
the algorithm offers improved control for the architect to adapt the paneling according
to the design specifications. We present three case studies to evaluate the performance
of the paneling algorithm and provide insights into how the different parameter tradeoffs
affect the quality of the results.

Research related to this work is discussed in Section 2.1, in particular in Subsection
2.1.2.Figure 4.3 compares the original paneling method to other rationalization algo-
rithms.he rest of the chapter is organized as follows: We first classify different available
panel types and fabrication processes (Table 4.1). We then formalize the paneling
problem as stated in [EKS+10] and review the main algorithmic contributions of their
paneling solution. Section 4.5 presents our extensions to the existing formulation that
allow processing freeform surfaces with sharp feature curves and enable local control
of the paneling quality. In Section 4.6, we present three case studies to evaluate the
performance of the algorithm.

Figure 4.2 – Projects involving double-curved panels where a separate mold has been
built for each panel. These examples illustrate the importance of the curve network and
the existing difficulties in producing architectural freeform structures. (Left: Peter Cook
and Colin Fournier, Kunsthaus, Graz. Right: Zaha Hadid Architects, Hungerburgbahn,
Innsbruck.) Figure taken from [EKS+10].
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surface types manufacturing possibilities

glass metal
fibre
reinforced con-
crete/plastic

single curved
isometric to the plane, no or little plastic deformation of material

cylindrical
parts of right circular
cylinders

machine for
bending and
thermal
tempering

roll
bending
machine

configurable
mold or
custom
hot-wire cut
foam mold

conical
parts of right circular
cones

configurable
or custom
mold, no
thermal
tempering

machine
or recon-
figurable
mold

configurable
mold or
custom
hot-wire cut
foam mold

general single
curved
developable surfaces

custom mold,
no thermal
tempering

custom
hot-wire cut
foam mold

double curved
usually plastic deformation of material is involved

general double
curved

custom molds,
no thermal
tempering of
glass

machine
or recon-
figurable
mold

custom molds
commonly
made of EPS
foam

general ruled
generated by a moving
straight line

straight lines
can be
exploited see above

foam molds
can be
hot-wire cut

translational
2 families of congruent
profiles congruent

profiles can be
exploited

congruent
profiles can be
exploited

rotational, cf.
Figure 4.7
1 family of congruent
profiles

Table 4.1 – Classification of panel types and typical production processes for common
materials in architecture. Although we do not cover all the relevant production processes,
this table is for a rough guideline. Planar panels have been left out.
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(a) A conical planar quad mesh according to
[LPW+06] results in a maximum kink angle of
11◦.

(b) Developable surface strips according to
[PSB+08] results in a maximum kink angle of
6◦ between strips.

(c) Paneling solution using 1◦ kink angle thresh-
old (divergence: 4.7mm; cost: 294).

(d) Paneling solution using 1/4◦ kink angle
threshold (divergence: 1.6mm; cost: 998).

(e) Panels colored by type of corresponding mold. (f) Panels colored by type of corresponding mold.

Figure 4.3 – Comparison with other rationalization algorithms on a freeform facade
design study. (a, b) Rationalization using a planar quad mesh and developable surface
strips, respectively. (c-f) Rationalization using the paneling algorithm with 1◦ and 1/4◦
kink angle thresholds, shown along with visualization of respective mold types (using glass
cost ratios listed in Figure 4.4). A detailed overview of mold reuse for (e) is shown in
Figure 4.5.
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4.2 Panels and Fabrication

Table 4.1 gives an overview of common manufacturing processes for architectural panels.
Curved panels are either produced using specially fabricated molds with the cost of
mold fabrication often dominating the panel cost, or the panels require unique machine
configurations, which drive cost by means of machining time. There is thus a strong
incentive to reuse the same mold or machine configuration for the production of multiple
panels to reduce the overall cost. In the following we use the term mold to also refer to
machine configuration.

The choice of panel types depends on the desired material and on the available manufac-
turing technology. The paneling algorithm does not depend on materials: they may be
transparent or opaque, include glass, glass-fibre reinforced concrete or gypsum, metal,
wood, etc. Currently the algorithm supports five panel types that possess different cost
to quality tradeoffs: planes, cylinders, paraboloids, torus patches, and general cubic
patches (see Figure 4.4). If these types cannot approximate a surface segment within the
required tolerances, a custom general double curved panel is used.

glass
Costs per mold and per panel

plane
cylinder

paraboloid

torus
cubic
custom

Panel types

mold
panel

-
55521
3024182 -

35
-

66631
6663 -

12

metal

Figure 4.4 – The panel types currently supported by our algorithm and two typical cost
sets.

Planar panels are easiest to produce, but result in a faceted appearance when approx-
imating curved freeform surfaces, which may not satisfy the aesthetic criteria of the
design. A simple class of curved panels are cylinders, a special case of single-curved
(developable) panels. Naturally, such panels can lead to a smooth appearance only if the
given reference surface exhibits one low principal curvature. General freeform surfaces
often require double-curved panels to achieve desired quality specifications prescribed
in terms of tolerances in divergence and kink angles (see Section 4.3 for details). The
paneling algorithm currently supports three instances of such panels: paraboloids, torus
patches, and cubic patches. Paraboloids and tori are important because they are special
classes of translational and rotational surfaces and carry families of congruent profiles
(parabolae and circles, respectively). This typically simplifies mold production (see
Table 4.1 and Figure 4.7).

Although cubic panels do not have any such advantage for manufacturing, they offer
the highest flexibility and approximation power. Thus a small number of cubic or more
general double-curved molds are often indispensable to achieve a reasonable quality-cost
trade-off.
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Figure 4.5 – Illustration of the mold depot and the cost model by means of the example
shown in Figure 4.3(e). The colors of panels are saturated according to mold reuse.
Figure 4.4 lists the glass cost ratios used for this example.

Mold reuse is a critical cost saving factor. In order to compute paneling solutions with
mold reuse in reasonable time one needs to restrict the search space and parameterize
panel types using a few parameters only. The paneling algorithm, therefore, uses the
restricted panel types paraboloids, tori and cubics instead of the much more general
translational, rotational and general double-curved surfaces. Paraboloid, torus, and cubic
are defined by 2, 3 and 6 shape parameters, respectively (please refer to the Appendix of
[EKS+10] for details).
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4.3 Paneling Architectural Freeform Surfaces

We review both the specification of the paneling problem and the optimization approach
presented by Eigensatz and coworkers. For a more detailed description, in particular
with respect to mathematical and algorithmic aspects, we refer the reader to Section 4.4
and [EKS+10].

200m

reference
surface F

divergencedivergence

kink anglekink angle

mold depot curve network

...cylinders cubicstori
curve samples c

0.2m

normal n(x)

foot point xfoot point x

ksurface segment s i

transformation Ti

assignment A

Figure 4.6 – Terminology and variables used in the paneling algorithm. The reference
surface F and the initial curve network C are given as part of the design specification.
The optimization solves for the mold depotM, the panel-mold assignment function A, the
shape parameters of the molds, the alignment transformations Ti, and the curve network
samples ck. Figure taken from [EKS+10].

4.3.1 Problem Specification

Let F be a given input freeform surface, called reference surface, describing the shape of
the design. The goal is to find a collection of panels, such that their union approximates
the reference surface. Since the quality of the approximation strongly depends on the
position and tangent continuity across panel boundaries, Eigensatz and coworkers identify
two quality measures (see Figure 4.6):

• divergence: quantifies the spatial gap between adjacent panels and,

• kink angle: measures the jump in normal vectors between adjacent panels.

While divergence is strongly related to the viability of a paneling solution, the kink angles
influence the visual appearance, since they are related to reflections. Hence one can allow
higher kink angles in areas not or only barely visible to an observer. We will elaborate
on this possibility in Sections 4.5.2 and 4.6.2.

The intersection curves between adjacent panels are essential for the visual appearance
of many designs (see Figure 4.2) and typically reflect the structure of the building, as
they often directly relate to the underlying support structure. An initial layout of these
curves is usually provided by the architect or engineer as an integral part of the design.
While small deviations are typically acceptable in order to improve the paneling quality,
the final solution should stay faithful to the initial curve layout and reproduce the given
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4.3. Paneling Architectural Freeform Surfaces

pattern as good as possible by the intersection lines of adjacent panels. The collection of
all panel boundary curves (strictly speaking panel intersection curves) forms the curve
network, which splits the given input freeform surface into segments. Each segment, in
general polygonal, of the curve network has to be covered by a panel.

The paneling problem is formulated as follows: Approximate a given freeform surface F by
a collection of panels of selected types such that pre-defined thresholds on divergence and
kink angle are respected, the initial curve network is reproduced as good as possible, and
the total production cost is minimized. The production cost of a panelization comprises
the following terms: the production cost of each employed mold and the cost of producing
each panel from its assigned mold (see Figure 4.4 for two typical cost sets and Figure 4.5
for an illustration).

4.3.2 Paneling Algorithm

A paneling solution can be computed using the optimization algorithm described
in [EKS+10]. This algorithm takes as input the reference surface F , the initial curve
network, and global thresholds on maximal kink angle and divergence, along with a per-
mitted deviation margin of the final paneled surface from the reference surface. As output,
the algorithm computes the parameters that determine the shape of the fabrication molds
and the alignment transformations that position the panels in space. These parameters
are computed in such a way that the reference surface is approximated as good as possible,
while the kink angle and divergence thresholds are satisfied everywhere. At the same
time, the cost of fabrication is minimized by favoring panels that are geometrically simple
and thus cheaper to manufacture wherever possible, and maximizing the amount of mold
reuse.

mold base surfacemold base surfacemold base surfacemold base surfacemold base surfacemold base surfacemold base surfacemold base surfacemold base surfacemold base surfacemold base surfacemold base surfacemold base surfacemold base surfacemold base surfacemold base surfacemold base surface

panel boundariespanel boundariespanel boundariespanel boundariespanel boundariespanel boundariespanel boundariespanel boundariespanel boundariespanel boundariespanel boundariespanel boundariespanel boundariespanel boundariespanel boundariespanel boundariespanel boundaries

mold boundarymold boundarymold boundarymold boundarymold boundarymold boundarymold boundarymold boundarymold boundarymold boundarymold boundarymold boundarymold boundarymold boundarymold boundarymold boundarymold boundary

generating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circlesgenerating circles

Figure 4.7 – Example of mold reuse. Panel boundary curves are in general not congruent.
However, several panels may be closely grouped together on the same mold base surface.
In that case the same mold or machine configuration, which embraces all affected panels,
may be used to manufacture the panels. This figure further illustrates how the congruent
profiles of a rotational or translational surface, in this case the circles generating a torus,
can be exploited for mold fabrication.

In order to achieve these conflicting goals, the paneling optimization is formulated as
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a mixed discrete/continuous optimization that simultaneously explores many different
paneling solutions (see Section 4.4 for details). From all these different alternatives, the
solution of minimal overall fabrication cost is selected that satisfies the kink angle and
divergence thresholds. An essential ingredient in this optimization is controlled deviation
of the paneling from the initial design surface. By allowing the curve network to move
away from the reference surface, panels can fit together with smaller kink angles and
divergence, simpler and thus cheaper panels can be used in certain regions, and the
amount of reuse of molds can be increased. Figure 4.8 demonstrates the effectiveness of
the discrete optimization presented by [EKS+10] on an illustrative example, comparing
different techniques to enable mold reuse.

The results shown in [EKS+10] include solutions to the paneling problem for large-scale
architectural freeform designs that often consist of thousands of panels. Typically, these
paneling solutions consist of patches of flat, single and double curved panels as shown
in Figure 4.3, therefore partly generalizing the approaches introduced in [LPW+06] and
[PSB+08] to include double curved panels.

The main innovations of the paneling algorithm can be summarized as follows:

• Given a table of mold and panel production costs, the paneling algorithm computes
a panelization with minimal cost while meeting predefined quality requirements.

• The algorithm is adaptable to numerous production processes and materials.

• The possibility to explore diverse quality requirements and cost tables provides
valuable information to guide design decisions.

• The rationalized 3D models produced by the algorithm may be used for visual
inspection, prototype panel manufacturing, quality control, and the final production
of freeform surfaces.

• Interference with the architects design intent is minimized.

The original paneling algorithm provides a general framework and is extensible in various
ways. We first provide more details of the original method in 4.4, then propose and
investigate two specific extensions in Section 4.5 and discuss further extension possibilities
in Section 6.2.
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16
8.2mold radii 21.8
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max. angle: 8.7°

max. angle: 4.2° max. angle: 2.9°
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5.414.8

935
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(d) Discrete Optimization

(a) Design Curve (b) Clustering  radius

(c) Clustering  (1 / radius)

7
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1328
10.3
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mold radii

Figure 4.8 – Illustrative comparison of different techniques for mold reuse. The curve
should be approximated with circle arcs of varying radii. This can be understood as a
simple paneling with cylinders of varying radii, where the figure shows an orthogonal
cross section. The input design curve shown in (a) consists of nicely aligned circle arcs
with decreasing radii from 25 to 5. The method shown in (b) clusters these radii (using
k-means clustering) to obtain 3 molds and assigns the best mold to each segment. The
colors indicate the segments sharing the same mold. The method shown in (c) does
the same, but performs a clustering of (1/radius) instead of clustering the radius itself,
which is a much better distance approximation for cylinders as shown in [EKS+10] and
therefore the maximal kink angle is already much lower compared to (b). The method
shown in (d) performs the full discrete optimization presented in [EKS+10] and leads to
an even better mold depot that enables a paneling with only 3 molds but very low kink
angles. The differences presented on this schematic example become even more prominent
if more complex surfaces and/or panel types are involved.

51



Chapter 4. Cost-Optimized Paneling of Architectural Freeform Surfaces

4.4 Formalization of the Paneling Algorithm

This section is a summary of the original paneling algorithm, providing the necessary
details for completeness of this chapter. We first describe the paneling problem and then
the algorithmic approach of [EKS+10].

4.4.1 Problem

In the following, we formalize the paneling problem. We discuss input, goal, output, cost
and representation.

Input

The input to the paneling algorithm consists of a freeform surface F and an initial curve
network C on F , both describing the design intent. Each part of F , bounded by curves of
C, defines a segment si, which will be approximated by a panel Pi. Additionally, the cost
c(Mk) for producing a mold Mk of a specific type, and the cost c(Mk, Pi) for producing
a panel Pi from Mk, has to be provided for each supported panel type.

Goal

The goal of the paneling algorithm is to find a collection of panels P such that their
union approximates the input surface F and their boundaries follow C. The algorithm
minimizes the cost of producing P, while respecting the thresholds on divergence and
kink angles provided by the user.

Output

The output of the paneling algorithm contains a collection of panels P = {P1, . . . , Pn}
and a set of Molds M = {M1, . . . ,Mn}, with m ≤ n. M represents the mold depot,
which can be used to produce all panels in P. The algorithm computes an explicit
panel-mold assignment function A : [1, n] → [1,m] mapping each panel Pi ∈ P to its
mold Mk ∈ M, as well as a set of rigid transformations T = {T1, . . . , Tn}, where Ti
describes the global placement of panel Pi in the final paneling.
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Cost

Given the cost c(Mk) of the mold Mk and c(Mk, Pi) of the panel Pi made with Mk, the
total production cost of the final paneling is measured by

cost(F,P,M, A) =
m∑
k=1

c(Mk) +
n∑
i=1

c(MA(i), Pi). (4.1)

Representation

The curve network C is represented as an explicit network of polygonal lines that can
deviate from the input surface F during optimization. Each vertex cl of C is represented by
a scalar offset along the normal of F , which reduces the number of variables significantly,
while preserving the design intent. This explicit representation of C avoids numerical
instabilities when intersecting well-aligned neighboring panels, simplifies the formalization
of the surface fitting and kink angle minimization and enables cheaper solutions with
better quality (smaller kink angles and divergence). A mold Mk is represented by a set
of parameters fully describing the mold surface (see Appendix of [EKS+10] for details).
Note that a panel Pi produced from Mk is usually only a part of the full mold surface
(see Figure 4.7).

4.4.2 Algorithm

The number and types of molds and the assignment function are discrete variables, while
the other variables are continuous. This makes the paneling problem, as formalized above,
a mixed discrete/continuous optimization problem. The paneling algorithm tackles this
difficult optimization problem by alternating continuous (Section 4.4.3) and discrete
(Section 4.4.4) optimization steps. Section 4.4.5 describes how these two optimizations
are combined to yield the full paneling algorithm.

4.4.3 Continuous Optimization

The continuous optimization reduces divergence and kink angles, while keeping the
number and types of molds and the assignment function fixed. The optimization is
formalized as a non-linear least-squares problem consisting of a weighted sum of the
five least-squares objective functions, respectively energies, described in the following
paragraphs.
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The surface fitting energy minimizes the distance of the curve network C to the input
surface F . The energy measures the sum of distances between cl and the points fl on F
closest to cl.

Efit =
L∑
l=1
‖cl − fl‖2 (4.2)

The divergence energy is approximated by the sum of distances between the curve
network vertices cl and the points xi(l) and xj(l), on the adjacent aligned mold surfaces
M∗i(l) and M∗j(l), closest to cl.

Ediv =
L∑
l=1
‖cl − xi(l)‖2 + ‖cl − xj(l)‖2 (4.3)

The kink angle energy achieves tangent continuity by minimizing the sum of differences
between the normal vector n(xi(l)) of the aligned mold M∗i(l) at xi(l), and n(xj(l)) defined
analogously (Figure 4.6).

Ekink =
L∑
l=1
‖n(xi(l))− n(xj(l))‖2 (4.4)

The curve fairness energy minimizes ondulations in the curve network C. Tangential
ondulations are completely avoided by the choice of representing the curve network
vertices cl by a scalar offset dl from the initial curve network, along the normal of F . IC
is the set of vertex index pairs connected by an edge in the curve network C.

Efair =
∑

(j1,j2)∈IC

(dj1 − dj2)2 (4.5)

The panel centering energy keeps all panels produced by the same mold close to each
other on the mold surface. This reduces the size of the part of the mold surface that has
to be manufactured for producing the panels. bi is an approximation of the barycenter of
the segment si. bi is computed as the average of all adjacent vertices. pi is the projection
of bi onto the normal of the mold surface at the center of the aligned mold M∗i .

Ecen =
n∑
i=1
‖bi − pi‖2 (4.6)
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Global optimization

The above least-squares energies are weighted and summed up to form the global objective
function E, which is minimized using a Gauss-Newton solver.

E = αfitEfit + αdivEdiv + αkinkEkink + αfairEfair + αcenEcen. (4.7)

Unless stated otherwise, the following weights are used: αfit = 1, αdiv = 1000, αfair = 1,
αcen = 10. The paneling system sets αkink = (ε/δ)2αdiv, where ε is the threshold on
divergence and δ the threshold on kink angles.

4.4.4 Discrete Optimization

The discrete optimization finds a mold depot M and assignment function A which
minimize the production cost of panels and keep divergence and kink angles below the
given thresholds. The optimization first computes a set of candidate moldsM′, from
which it then chooses a cost-minimizing subsetM⊆M′ respecting the thresholds. M′

is initialized with the molds of the current mold depot, and enriched by five molds per
segment, which are the result of fitting a mold of each type to the segment. To simplify
the fitting, each curve network vertex stores the average normal of all closest points
on incident panels of the current paneling solution. This allows to use faster, localized
versions of the divergence, kink angle and panel centering energies (Equations 4.3, 4.4,
4.6) for fitting.

Set cover

Let Sk = {sk1 , . . . , skl
} be the set of surface segments that can approximated by Mk

while respecting the thresholds. Computing the sets Sk requires a non-linear alignment of
each candidate mold with every segment, which is a critical performance bottleneck. To
reduce the computational effort, the paneling algorithm evaluates approximate alignment
distances in a 6D euclidian space, which allows to reject 95-99% of the segments before an
expensive, non-linear alignment (see Appendix of [EKS+10]). The production cost of Sk is
given by c(Sk) = c(Mk)+|Sk| c(Mk, P∗). The optimal mold depot is given by the cheapest
set of molds Mk which covers all segments S = {s1, . . . , sn}. The problem of finding
this mold depot is reminiscent to the classical weighted set cover problem [Joh74]. This
problem is known to be NP-hard, therefore the paneling algorithm uses the approximation
algorithm presented in [Fei98], which has the best possible approximation ratio logn of
any polynomial-time algorithm. While the problem is not equivalent to weighted set
cover, the proof of the approximation algorithm generalizes directly to it.
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Algorithm

The discrete optimization algorithm requires a notion of efficiency φ(Sk,S ′) of a set
Sk with respect to the yet uncovered segments S ′. In the discrete part of the paneling
algorithm, the efficiency is defined as φ(Sk,S ′) = |Sk|/c(Sk), where the size and cost of
Sk considers only segments of S ′. The algorithm iteratively finds covering sets σ, and
keeps track of the so far unused sets σ′ (pseudo-code taken from [EKS+10]):

σ ← ∅, σ′ ← {S1, . . . ,S|M′|}, S ′ ← S1 ∪ . . . ∪ S|M′|
while S ′ 6= ∅

eval. φ(Sk,S ′) ∀Sk ∈ σ′ update efficiencies

Si ← arg maxSk∈σ′ φ(Sk,S ′) set with max. efficiency

σ ← σ ∪ {Si} add to covering sets

S ′ ← S ′ − Si, σ′ ← σ′ − {Si} remove covered segments

end

After running this algorithm, segments that cannot be covered by any mold candidate
get assigned the best-fit cubic mold. Segments covered by multiple molds get assigned
the cheapest of them.

4.4.5 Alternating Optimization

The paneling algorithm start with thresholds ε′ = ε + 10mm and δ′ = δ + 5◦, then
iteratively reduces them until ε′ = ε and δ′ = δ. The algorithm starts with a single plain
as a mold depot, and first performs a re-initialization step, then iterates the steps listed
below ten times, and finishes with a discrete step using (ε, δ).

1. Discrete optimization

2. Continuous optimization

3. Re-initialization

4. Reduce ε′ and δ′

The re-initialization step first assigns a mold of the cheapest type that satisfies (ε′, δ′) to
each segment that did not satisfy (ε, δ), followed by a continuous optimization step. This
reverses unsuccessful assignments from the previous discrete step.
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4.5 Extensions

In this section we discuss algorithmic extensions to the method of Eigensatz and cowork-
ers [EKS+10] that broaden its applicability.

4.5.1 Sharp Features

The algorithm introduced by Eigensatz and coworkers assumes that the input reference
surface is smooth everywhere. Sharp feature lines, however, are used in architectural
freeform designs to highlight strong characteristic features and to enhance the visual
appeal of a design.

We therefore propose an extension of the paneling algorithm to incorporate sharp features.
Sharp feature lines can either be specified by the designer as specially marked lines of
the initial curve network, or automatically computed by detecting sharp creases on the
design surface. To support sharp features we adapt the original paneling algorithm such
that

• kink angle thresholds are not applied along the curves describing sharp features
and

• the tangent continuity between two panels on opposite sides of a sharp feature is
not optimized.

Figure 4.14 demonstrates how this extension enables paneling freeform surfaces with
sharp features.

4.5.2 Adaptive Control of Paneling Quality

The paneling algorithm introduced in [EKS+10] guarantees compliance with user-specified
tolerance thresholds on divergence and kink angle. These thresholds are specified globally
for the entire surface. In practice, however, the quality requirements might vary for
different regions of the design. For regions not visible from certain view-points, for
example, higher kink angles might be acceptable to reduce manufacturing cost. We
therefore extend the original paneling algorithm to optimize the paneling quality with
respect to a spatially adaptive importance function on the design surface.

As shown in Figure 4.10 this importance function can, for example, be computed using a
visibility calculation that computes the visibility for every point on the design surface, if
the design is viewed from a path or street around the building. This importance function
is then an additional input to our extended paneling algorithm to

• adaptively specify a separate kink angle threshold for every point on the curve
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network and

• focus the tangent continuity optimization on important regions.

Figures 4.10-4.13 demonstrate how this adaptive quality control directs the use of
expensive panels towards regions where they are needed most, leading to an improved
paneling quality at similar or lower costs compared to globally specifying thresholds.
Achieving the same quality at the important regions with the original paneling algorithm
using global thresholds requires a much more expensive paneling. The same technique
can be used to adaptively control the divergence or the deviation from the original design
surface.

4.6 Case Studies

In this section we demonstrate the performance of the paneling algorithm on three
case studies. Specifically we compare our solutions with state-of-the-art rationalization
alternatives, study the preservation of sharp features, and compare the cost trade-offs for
global kink angle specifications versus spatially adapted ones.

4.6.1 Facade Design Study

We compare several rationalization possibilities for a freeform facade. For this case study
we use glass mold cost ratios as listed in Figure 4.4.

Figure 4.3a shows a rationalization result using a conical planar quad mesh, which implies
very favorable properties for simplifying the substructure, cf. [LPW+06, PLW+07].
Naturally this approach leads to a facetted result with kink angles up to 11◦. A further
option makes use of the close relation between planar quad meshes and developable strip
models ([PSB+08]): Refining the planar quad mesh in one direction and keeping the
faces planar leads to a rationalization using single-curved strips. Clearly this results in a
much smoother representation of the surface as can be seen in Figure 4.3b (maximum 6◦

kink angle), while one could still make use of a planar quad mesh for the substructure.
The deformation of glass to general single-curved panels, however, requires molds to
be built, a possibility that was ruled out because of budgetary issues. Therefore the
paneling algorithm was used to proof feasibility for the competition, making use of
cylindrical panels only. The superiority of such a restricted paneling solution to results
that are achievable using local fitting of cylinders is documented in Figure 4.9. Figure 4.3
compares further paneling solutions with respect to cost and paneling quality, making
use of the complete set of mold types.
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(a) Local fitting of cylinders.

(b) Paneling solution.
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(c) Cumulative histograms of divergence and kink angles for the above solutions.

Figure 4.9 – The paneling algorithm restricted to cylindrical panels. Here we compare a
result on the Facade Design Study computed using simple local fitting of cylinders (a) to
a paneling solution using only cylinders (b). For both results we show the axis directions
of cylinders colored in magenta and the cumulative histograms of resulting divergences
and kink angles.
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4.6.2 Skipper Library

Initially issued by Texxus, the skipper library is a feasibility study also picked up by
Formtexx for freeform metal cladding. The case study demonstrates our extension of
the paneling algorithm allowing adaptive control of the paneling quality, as well as the
ability of the paneling algorithm to handle arbitrary panel layouts. The presented panel
layout was created using the dual mesh of a circle packing mesh (cf. [SHWP09]), which
leads to a panel layout consisting mainly of hexagonal panels combined with a torsion
free support structure. Our motivation to adaptively control the paneling quality is given
by the following:

Due to various constraints imposed by surrounding buildings, restricted access paths,
neighboring trees and foliage, different sections of architectural buildings have different
visibility. This can be exploited to reduce the manufacturing cost of such buildings
by allowing larger kink angles in less visible regions. As described in Section 4.5, we
generalize the paneling algorithm proposed in [EKS+10] to allow spatially variable kink
angle specifications as opposed to a global maximum kink angle threshold. Figures 4.10-
4.13 compare the results on manufacturing cost for a global threshold versus two spatially
adapted threshold specifications. The local importance functions are computed based
on visibility of the reference surface when moving along the specified access paths (see
Figure 4.10). For this case study we use metal mold cost ratios as listed in Figure 4.4. The
middle row in Figure 4.1 shows a paneling solution with 1◦ global kink angle threshold.

4.6.3 Lissajous Tower

Lissajous Tower is an example skyscraper specifically created for illustrating our extension
to the paneling algorithm for handling sharp features. The surface contains large nearly
flat and single-curved parts as well as small highly curved parts, which can not be
approximated by cylinders within realistic tolerances. Figure 4.14 compares two paneling
solutions produced by the paneling algorithm with maximum kink angle thresholds of 1◦

and 3◦, respectively. While both solutions preserve the characteristic sharp feature line
of the design, the production cost is significantly reduced (by 40%) for a slight relaxation
in the maximum kink angle constraint. For this case study we use glass mold cost ratios
as listed in Figure 4.4.
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Low High
Importance

(a) Spatially adaptive importance functions computed based on visibility from path 1 (top
row) and path 2 (bottom row). These importance functions are used for paneling solutions
as shown in 4.10(b) and Figures 4.11-4.13 (b) and (c), respectively.

Resulting kink angles
0°6°

(b) Kink angles of two paneling solutions (top and bottom rows) using adaptive thresholds
based on the two importance functions shown in 4.10(a). Further renderings of the results
are shown in Figures 4.11-4.13.

Figure 4.10 – Adaptive quality control.
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Chapter 4. Cost-Optimized Paneling of Architectural Freeform Surfaces

(a) Paneling solution with kink angle thresholds specified globally over the surface.

(b) Paneling solution with spatially adaptive kink angle thresholds.

(c) Paneling solution with another set of spatially adaptive kink angle thresholds.

Figure 4.11 – Effect of global vs spatially varying kink angle specifications on the Skipper
Library dataset. Paneling solutions using a global kink angle specification (a) and using
adaptive kink angle thresholds computed based on the extent of visibility while moving
along the indicated ground paths (b, c). Left column images show the reflection lines on
paneled surfaces, while right column images show the mold types for individual panels
(color convention same as in Figure 4.1). Figures 4.12 and 4.13 show the same solutions
from two other views. Figure 4.10 shows the spatially varying kink angle thresholds used
in (b) and (c).
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(a) Paneling solution with kink angle thresholds specified globally over the surface.

(b) Paneling solution with spatially adaptive kink angle thresholds.

(c) Paneling solution with another set of spatially adaptive kink angle thresholds.

cost: 5946 cost: 5810 cost: 6265
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max angle:  3° 
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-
321517683152
1691873

22
22

divergence: 6mm
max angle:  1°-6° (adaptive)
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Figure 4.12 – Effect of global vs spatially varying kink angle specifications on the
Skipper Library dataset, along with statistics for corresponding paneling solutions (see
also Figure 4.11).
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(a) Paneling solution with kink angle thresholds specified globally over the surface.

(b) Paneling solution with spatially adaptive kink angle thresholds.

(c) Paneling solution with another set of spatially adaptive kink angle thresholds.

Figure 4.13 – Effect of global vs spatially varying kink angle specifications on the Skipper
Library dataset. Please refer to Figure 4.11 for details.
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Figure 4.14 – Paneling solution respecting crease line(s) on the input model. The
characteristic sharp feature line of the Lissajous Tower is preserved in our paneling
solution.
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5 Assembling Self-Supporting
Structures

Figure 5.1 – We propose a construction method for self-supporting structures that
uses chains, instead of a dense formwork, to support the blocks during the intermediate
construction stages. Our algorithm finds a work-minimizing sequence that guides the
construction of the structure, indicating which chains are necessary to guarantee stability
at each step. From left to right: a self-supporting structure, an intermediate construction
stage with dense formwork, an intermediate construction stage with our method and the
assembled model.

Self-supporting structures are prominent in historical and contemporary architecture due
to advantageous structural properties and efficient use of material. Computer graphics
research has recently contributed new design tools that allow creating and interactively
exploring self-supporting freeform designs. However, the physical construction of such
freeform structures remains challenging, even on small scales. Current construction
processes require extensive formwork during assembly, which quickly leads to prohibitively
high construction costs for realizations on a building scale. This greatly limits the practical
impact of the existing freeform design tools. We propose to replace the commonly used
dense formwork with a sparse set of temporary chains. Our method enables gradual
construction of the masonry model in stable sections and drastically reduces the material
requirements and construction costs. We analyze the input using a variational method to
find stable sections, and devise a computationally tractable divide-and-conquer strategy
for the combinatorial problem of finding an optimal construction sequence. We validate
our method on 3D printed models, demonstrate an application to the restoration of
historical models, and create designs of recreational, collaborative self-supporting puzzles.

67



Chapter 5. Assembling Self-Supporting Structures

5.1 Introduction

The majority of man-made objects are composed of multiple inter-locking parts, kept
together by glue, bolts or other connections. The division into components is often
necessary to achieve a certain purpose (computers, cars) or to make the fabrication of
large models feasible or cheaper (buildings, furniture, roads, railways, large 3D printed
models, etc.).

In this work, we focus on the construction of self-supporting structures that are composed
of bricks or stone blocks without any mortar to bind them together. Most of the world’s
architectural heritage consist of self-supporting masonry structures that require no
supporting framework, since the entire structure is in a static equilibrium configuration.

The design of modern, freeform self-supporting structures has recently received a lot
of interest in computer graphics [VHWP12, LPS+13, dGAOD13, PBSH13], but their
physical construction has only been addressed for small-scale models. The method
proposed in [PBSH13] relies on dense formwork (Figure 5.1) to support all the blocks
until the entire construction is completed; after the last piece is put in place, the structure
is in equilibrium and the formwork can be carefully removed. This method is difficult to
apply to large-scale structures, because a dense formwork able to sustain the weight of large
stone blocks is too expensive and not practical, especially considering that the formwork
has to be dismantled after all the blocks are in place. Also, removing the formwork
demands technically complex and expensive solutions: the formwork has to be lowered
evenly to avoid failures due to redistribution of forces. Due to the lack of an economically
feasible construction strategy, freeform masonry structures are currently rarely built,
despite their advantageous structural properties and unique aesthetics. Additionally, the
majority of the cost is associated with the foundations necessary to support the formwork.

We propose a different approach, replacing the dense formwork with a sparse set of chains
that are connected to fixed anchor points. While chains have been used for construction
before, our method specifically aims at finding a work-minimizing assembly sequence,
requiring as few chains to be rehung as possible. Our solution leverages the internal
force distribution of the partially assembled structure and only provides the minimally
required additional supports to keep the structure in static equilibrium at all stages of
the assembly. The use of chains has been pioneered in modern construction by [Dre13],
who successfully built simple self-supporting structures using one or more chains per
block (Figure 5.2). Historical methods applied rope supports in arch construction [Fit61].
Our work extends this idea to general freeform self-supporting structures. We show that
designs created with the methods of [VHWP12, LPS+13, dGAOD13, PBSH13] can all
be handled by our algorithm.

The core problem that we address is finding a sequence of block insertions that minimizes
a specific cost function defined on the number of chains required during assembly. This
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Figure 5.2 – The Arch-Lock system [Dre13] is used to construct a simple arch (left),
and a barrel vault (right). [Copyright photographs: Lock-Block Ltd. 2013]

search problem is hard, because the space of assembly sequences is exponential in the
number of blocks and anchor points. The situation is exacerbated by the fact that even
verifying the force equilibrium of a single construction state is already computationally
involved (see Section 5.2). As illustrated in Figure 5.3, naive solutions lead to an
impractically high number of chains and are often not able to complete the structure
since it is impossible to find valid configurations of chains that keep the structure in
equilibrium for each state (Figures 5.3, 5.13, 5.14, and 5.15 are the only ones that can be
constructed using a trivial z-filling sequence according to the equilibrium model we use).
In feasible sequences, the z-ordering approximately doubles the number of times a chain
needs to be rehung compared to our solution, which is significant for real construction.

To make this combinatorial optimization problem computationally tractable, we introduce
a divide-and-conquer strategy that first decomposes the design model into stable sections.
This decomposition is computed using an optimization approach that applies sparsity-
inducing norms to minimize the number of non-zero forces acting between blocks. Given
the decomposition, we apply a greedy optimization to find the assembly sequence of the
individual sections. While this strategy is not guaranteed to find the globally optimal
solution, it greatly reduces the amount of work and chains compared to non-optimized
construction sequences.

While our focus is on the fabrication of self-supporting surfaces, our contributions can
be applied to other domains, such as restoration of existing structures and design of
self-supporting puzzles. These can be printed with a consumer 3D printer and assembled
by multiple players using fingers instead of chains.
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Chapter 5. Assembling Self-Supporting Structures

The contributions of this chapter are as follows:

1. We propose an alternative way of constructing masonry structures that requires a
negligible amount of formwork compared to traditional techniques.

2. We present an optimization algorithm to analyze the equilibrium of a structure
exposing its arches and implying a segmentation into stable sections. We propose an
algorithm that leverages sparsity to minimize the number of chains that are necessary
to avoid failures in the intermediate construction stages.

3. We validate our algorithm on physical examples of a small-scale 3D printed model
and a self-supporting puzzle.

Work related to our method is discussed in Section 2.2

16 chains, 20 blocks

38 chains, 60 blocks

10 chains, 20 blocks

14 chains, 60 blocks

trivial ours

Figure 5.3 – Two intermediate construction stages of our optimized sequence (right)
and a trivial z-ordering (left). Our sequence needs considerably less work (0.62 instead of
1.13 chain changes per state in average), while computing it takes 3.5 times longer than
determining the sparse set of chains for the trivial sequence.
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Max.

Min.

Figure 5.4 – Our algorithm converts an input masonry model in a work-minimizing
construction sequence. From left to right: Forces resulting from our global equilibrium
analysis, arch-blocks as extracted from flood-fill, four different states of the construction
sequence. In all our figures, the blocks and chains are color-coded as follows: blue for
support, light yellow for free blocks, gold for the newly added block and chains, dashed lines
for chains that can be removed, and black lines for other active chains. We also color-code
the candidate blocks considered by our sequence optimization using the minimum of
Equation (5.5) relative to the other candidates in the color-bar on the right. Candidate
blocks leading to an invalid state are shown in black.

5.2 Method

Figure 5.4 provides an overview of our algorithm to generate a work-minimizing construc-
tion sequence for a given self-supporting structure. After introducing some terminology
(Section 5.2), we discuss how we verify static equilibrium in a collection of blocks and
chains (Section 5.2.1). This method is an important component of our two-stage opti-
mization algorithm. The first stage analyzes the equilibrium of the surface to find a set of
stable regions (Section 5.2.3). Based on this decomposition, we generate a construction
sequence using a greedy algorithm that initially constructs the arches separating the
regions, and then fills the stable regions one by one (Section 5.2.4). We evaluate our
algorithm in different scales and applications (see Section 5.3 for more details).

Preliminaries

We model a masonry structure as a set of rigid blocks that are represented by closed
manifold triangle meshes. The construction site is specified as a collection of supports
and anchor points (see Figure 5.5). Each block can be in contact with other blocks or
any of the supports. We call the contact surfaces between blocks interfaces. A block can
also be attached to an anchor using a chain, represented as an inextensible straight line
segment connecting the block and the anchor. Each block has a hook that provides an
attachment point for the chains. Multiple chains can be attached to the same hook. In
our examples, the block’s hook is placed at the intersection of the top face and the ray
emanating from the center of gravity parallel to the direction of the normal of the top
face. An intermediate construction state is a spatial arrangement of blocks and chains.
We say that a state is valid if and only if it is in static equilibrium (Section 5.2.1).

Our algorithm converts an unordered collection of blocks into an ordered construction
sequence, composed of valid construction states, each adding one single block to the
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Chapter 5. Assembling Self-Supporting Structures

structure. Of the many construction sequences that exist for a given set of blocks and
anchor positions, we strive to find one that minimizes the amount of work required in
the construction.

We define the work required to assemble a structure as the total number of chains
added and removed during the construction. This definition is motivated by practical
construction concerns: adding or removing a chain is an expensive operation that requires
a considerable amount of time and energy, and thus directly relates to the construction
cost.

5.2.1 Construction State Validity

An important component of our system is an algorithm to check whether an intermediate
construction state is valid, i.e. , the blocks are in static equilibrium. Traditional physical
simulation methods are known to be unreliable in a masonry setting due to the extreme
stiffness of the system [DeJ09]. We thus rely on the alternative model proposed in
[WOD09], which we review in the following paragraphs. In this method, a state is valid
if there exists a force distribution that satisfies a set of constraints. In general, those
constraints admit more than one single distribution and do not fully determine the actual

anchors

chains

supports

Figure 5.5 – Construction site mockup.
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Figure 5.6 – Model of chain forces and contact forces at interfaces between blocks.

forces acting. We leverage this indeterminacy by picking sparse force distributions to
reveal a sparse valid subset of chains on one hand, and an approximately valid subset of
blocks on the other hand.

We decompose each force f i acting on an interface between two blocks into its axial
component f in, perpendicular to the face, and two orthogonal in-plane friction components,
f iu and f iv (Figure 5.6). We model one force vector per vertex of the contact-polygon
between the two blocks. We encode the magnitude of the force introduced by the chain
connecting a block B to an anchor a with a scalar value fB,ac and its orientation by a
unit vector dB,a. Note that we are interested in static equilibrium, so dB,a is fixed and
only depends on the input geometry.

5.2.2 Static Equilibrium

Static equilibrium conditions require that net force and net torque acting on each block
cancel out. In our model, we assume to have a small set of blocks anchored to the ground
and a set of additional forces fc acting on the blocks due to chain actions. Combining
equilibrium constraints for each block yields a linear system of equations [Liv92]. For
each block B, the force distribution must satisfy the following equilibrium conditions:

[1.6]
∑

i∈V (B)
f i +

∑
a∈C(B)

fB,ac dB,a∑
i∈V (B)

AB,if i +
∑

a∈C(B)
AB,ac fB,ac dB,a

 =
[
[1.9]− gB

0

]
(5.1)

The top row corresponds to force equilibrium, where gB is a vector containing the gravity
caused by block weight, V (B) is the set of all force indices acting on the interfaces of
block B, and C(B) is the set of all chains acting on block B. The bottom row corresponds
to torque equilibrium where matrix AB,i contains coefficients for the torque contribution
of force f i, and coefficient matrix AB,ac accounts for the torque contribution of the chain
force fB,ac (see the Appendix in [WOD09]).
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Compression and Tension Constraints

According to the limit analysis of masonry, the material can be assumed to have zero
tensile strength. This condition is expressed as a non-negativity constraint on the axial
components of the forces:

f in ≥ 0. (5.2)

Similarly, all chains can only introduce tensile forces:

f jc ≤ 0. (5.3)

Friction Constraints

A friction constraint is applied at all block interfaces. For each triplet of forces {f in, f iu, f iv},
the two in-plane forces are constrained within the friction cone of the normal force fn.
We linearize the friction constraints with a pyramid approximation:

|f iu|, |f iv| ≤ α√
2f

i
n , ∀ i ∈ interface vertices (5.4)

where α is the coefficient of static friction. More details are given in Section 5.4.3.

5.2.3 Global Equilibrium Analysis

Historical self-supporting structures are highly regular and explicitly composed of primary
arches that were constructed before the rest of the structure and used as support while
building the other parts. Following this construction strategy, the expensive support
material is used only for a small fraction of the structure, which then acts as a support
for the other parts.

The lack of regularity and symmetry in freeform designs makes the manual identification
of arches challenging, even for experts. Furthermore, freeform designs often do not
contain any exact arches, i.e. , they do not have any subset of blocks that is in static
equilibrium without any external support. However, any masonry structure contains one
or more of what we term quasi-arches: subsets of blocks that require only a small number
of chains to stand. Finding quasi-arches is even harder than finding arches, since it is
a global problem that requires an understanding of how forces distribute in the entire
structure. We propose a segmentation algorithm that analyzes the distribution of forces
in a masonry structure and automatically extracts quasi-arches.
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Combinatorial Problem

Finding quasi-arches is equivalent to finding a maximal, non-trivial subset of blocks
that can be removed from a masonry structure without collapsing the remaining part.
Determining which blocks can be removed is a hard and ill-posed combinatorial problem,
since we want to avoid the trivial solution which contains no blocks. A brute-force
approach is infeasible, since testing for the validity of all possible construction sequences
has exponential complexity. In the following section, we describe our proposed approach
that makes the discovery of quasi-arches a tractable problem.

Continuous Relaxation

Equations (5.1), (5.2), (5.3) and (5.4) define a convex constraint set containing all
the possible internal force distributions for which the structure is in static equilibrium.
By using a variational method, we can explore this constrained space using a sparsity
inducing functional to find valid distributions that tend to concentrate the internal force
on a small subset of interfaces and thus indicate potential quasi-arches in the model.

To convert the combinatorial problem into a computationally tractable continuous
problem, we model only the side effects of removing a block. Each removal implies that
the forces on its interfaces should be zero. We continuously relax this condition using a
block-sparsity approach that searches for an equilibrium solution that can be explained
with the majority of the forces concentrated on a small subset of the interfaces. Note
that the trivial solution does not satisfy the equilibrium constraints (5.1), since they
prohibit all interfaces and chains of a block to be zero.

To induce sparsity on the interface forces, we first introduce a new scalar variable sI for
each interface I that bounds the magnitude of the resultant of the forces acting on it.
We minimize the number of non-zero sI and fc solving a Lp-relaxation (Section 5.4.1) of
the following optimization problem with an iterative reweighting scheme (Section 5.4.2) :

min
fufvfnfc

(1− λ)
∑
B

∑
a

I0(fB,ac ) + λ
∑
I

I0(sI) (5.5)

s.t. (5.1), (5.2), (5.3), (5.4), (5.6)

sI ≥
(∑
i∈I
‖f i‖2

)1/2
(5.7)

where I0(x) = 1 for x 6= 0, I0(x) = 0 otherwise. We use λ = 0.06 in all our experiments.
The functional contains two sparsity-enforcing terms: the first minimizes the number
of introduced chains, while the second minimizes the number of used interfaces, see
Figure 5.7. The minimization of the auxiliary variables sI together with the bound
from below imply equality for Equation (5.7). At a minimum, sI therefore is equal
to right-hand side, which is the resultant of the forces per interfaces. Note that the
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(a) (b)

Figure 5.7 – Global analysis on a synthetic example. Force vectors (red lines) indicate
the magnitude of forces between blocks.

Figure 5.8 – The parameter λ controls the tradeoff between stable regions and introduced
chains. Chain forces are shown as blue lines. From left to right, λ = 0.15, 0.12, 0.06.

equilibrium constraints are guaranteed to be satisfied after the minimization since they
are enforced as hard constraints. The tradeoff between the number of stable regions and
chains used is controlled by a single parameter λ ∈ [0, 1] (Figure 5.8). For each input
model, we normalize the variables by choosing the material density such that the average
length of the blocks’ gravity forces is one. Our constraints are scale-independent with
respect to density.

Quasi-arch Extraction

Despite the sparsification, the weight of each block must still be redirected through the
assembly down to the boundary or up along the chains to satisfy equilibrium equations.
This naturally leads to a concentration of forces along linear subsets of blocks, even if the

76



5.2. Method

minimization is not explicitly trying to concentrate the force distribution in connected
components.

We extract the quasi-arches from the force distribution using a flood-fill approach
restricted to grow across interfaces whose maximum of the normal component of its
forces is above an user-defined threshold t (Figure 5.9). A quasi-arch is a connected
component found by the flood-fill procedure that connects two supported blocks. The
following steps extract connected arches and erode dense regions after the flood-fill: We
reject a quasi-arch if it contains less than two support blocks, or if the bounding box
diagonal of the centroids of support blocks is more than 10 times smaller than that of
the whole model including anchor points. We then remove singly-connected blocks which
are not supported. After minimizing Equation (5.5), the extraction can be computed in
real-time, allowing the user to manually choose a value for t based on visual feedback.

Remark. The masonry crack prediction of Fraternali [Fra10] bears some similarity with
our quasi-arch extraction: The method applies an iterative scheme to jointly find a
discrete stress surface and a compressive stress distribution explaining its equilibrium via
a thrust network approach, then predicts cracks in regions of zero or uniaxial compressive
stress. In contrast, our quasi-arch extraction explicitly optimizes for sparse forces over
all valid equilibrium solutions.

t=4 t=11
Figure 5.9 – Extracting quasi-arches. This figure shows the quasi-arches extracted with
two thresholds on the maximal normal component of interface forces.
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5.2.4 Construction Sequence

We want to find a work-minimizing sequence to assemble each part of the structure using
the global equilibrium analysis. To reduce the complexity of this combinatorial problem,
we use a greedy approach that inserts a block at a time, taking local decisions. The work
required for a certain step depends on the previous and successive states and it is thus
impossible to minimize locally. Observing that the maximal work is bounded from above
by the number of chains used, we opt for a strategy that directly minimizes the chains
used, indirectly minimizing the work.

The detected quasi-arches are constructed first by restricting the greedy approach to only
consider the blocks of the quasi-arches. After this stage, each remaining stable region is
constructed using the same strategy, one at a time, starting with the region containing
the most blocks. If the greedy approach fails to find a valid next block to insert, the next
region is added to the candidate blocks. This heuristic drastically reduces the search
space and consequently the computation time (5 times faster on Figure 5.3) and can
reduce the work of the resulting sequence.

Next Block Insertion

Our algorithm attempts to independently insert each block that is connected to a support
part or to any other block. For every inserted block, we solve the minimization problem
in Equations (5.5) and (5.6), with λ = 0. If no equilibrium state can be found, we discard
the configuration. We apply this procedure for all candidate blocks and select the valid
configuration with the lowest cost. The cost is given by the Lp-relaxation of Equation
(5.5), see Section 5.4.1. Directly using Equation (5.5) would potentially assign the same
cost to many candidates. In Figure 5.10, we show the cost for inserting each of the
candidate blocks in a specific intermediate configuration.

Optimization and Chain Pruning

To simplify the construction process, we only allow a chain to be introduced on newly
inserted blocks, that is, whenever a chain is removed from a block, we do not allow our
optimization to insert it again. In addition to simplifying construction, this heuristic also
reduces the problem size. Note that we disable chain pruning for the comparisons with
the trivial z-ordered sequences, since the pruning might prevent the z-ordering strategy
to find a valid sequence.
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Figure 5.10 – At each construction step we test the work cost for inserting an additional
block and we select the one with minimal energy. We highlight in black that blocks for
which the optimization failed to find a force distribution that satisfies the equilibrium
constraints.

Trivial Filling Strategy Failure

We demonstrate on many examples that our approach is efficient and greatly reduces the
work required to assemble the sequence. We show in Figure 5.3 a comparison between
our approach and a height-ordered filling approach: our method requires around 50%
less additions and removals of chains.

5.2.5 Practical Constraints

In practice, the anchors cannot support arbitrary forces; the chains will break if the
tension is extreme. We therefore add constraints to our algorithm that account for
bounds on chain forces. In addition, we introduce geometric and frictional safety factors
to account for unavoidable fabrication inaccuracies as described below.

Anchor Bounds

We conservatively bound the maximal force acting on an anchor a by adding a linear
inequality constraint on the sum of the involved forces:∑

B

fB,ac > −fmax (5.8)

The condition is linear because we only sum the magnitude of the forces (all negative,
see Equation 5.3), which are exactly the variables that we use in the optimization to
represent the chain forces. Note that the bound is strict and our linearization is a
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(a) (b)

Figure 5.11 – Adding a bound on the maximal force that an anchor can support generates
a sequence that distributes the chain forces more evenly by adding additional chains. Left:
Unbounded solution using 3 chains with max. fc = 7.1 and max. anchor bound 7.1. Note
the max. chain is the only one connected to the max. anchor. Right: Solution with 8
chains bounded by 3.5 and anchors bounded by 5. For details please refer to Equations
(5.8) and (5.9).

Figure 5.12 – A large concert hall designed with RhinoVault is constructed using a
sequence generated by our algorithm. The entire structure is made of hexagonal blocks
placed using an interleaved layout typical of masonry constructions.

conservative estimate that does not take into account possible force cancellations. We
show an example of a construction state with and without bounds on the anchors in
Figure 5.11.

Chain Bounds

Restricting the chain forces is a simple box constraint on the corresponding variables
fB,ac , which directly represents its magnitude:

fB,ac < fmaxc (5.9)
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Figure 5.13 – A freeform self-supporting structure designed with [VHWP12]. We
tessellated the surface with quadrilateral elements, which have no interlocking and are
thus prone to sliding failures, requiring a considerable number of supporting chains to be
stable in all intermediate stages.

5.2.6 Manufacturing Tolerances and Safety Factors

To account for manufacturing imprecisions and to incorporate a safety factor in the
construction we introduce a geometric tolerance, to prevent torque failure, and a friction
tolerance to prevent sliding failures. The former is achieved by uniformly downscaling
the interface around the average of its vertices [Hey95], effectively reducing the space of
stable equilibrium configurations and forcing our algorithm to introduce more chains.
The second tolerance is on the friction parameter, which directly reduces the feasible
space by attenuating the magnitude of the friction forces. For all our experiments, we
used a 10% geometric tolerance and we conservatively set the friction coefficient α to 0.6,
which is approximately 10% lower than the value we experimentally measured on our 3D
printed model.

Intersecting Chains

To prevent chains from intersecting blocks during the construction sequence, we optimize
only over the chains that do not intersect with any of the blocks. This set of chains is
determined in a preprocessing step.

5.3 Results

We tested our algorithm on self-supporting surfaces designed with [RLB12] (Figures
5.12, 5.14), [PBSH13] (Figures 5.1, 5.9), [VHWP12] (Figures 5.4, 5.13, 5.11), [LPS+13]
(Figure 5.10) and [dGAOD13] (Figure 5.3).We provide full construction sequences for all
our results as short movie clips in the supplementary material. All our experiments were
performed on a quad-core Intel i7 processor using the multi-threaded conic solver in the
MOSEK optimization library [Mos14]. Statistics on the datasets and computation times
are provided in Table 5.1. The optimization requires from a few minutes to a couple of
hours, depending on the number of blocks. The computation time of the global analysis,
in our largest models below 15 seconds, is negligible w.r.t. the sequence optimization.
This comes without surprise, since we only solve a slightly bigger conic problem once,
while the sequence needs many of them.
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Model #B #C #A t Avg. #C Avg. ∆C Time

Figure 1 61 194 4 8 1.4 1.8 2
Figure 3 237 612 4 3.1 9.5 1.2 20
Figure 4 580 1652 4 4.6 4.9 1.2 249
Figure 8 203 1194 6 5 5.7 1.2 15
Figure 10 416 1127 4 0.9 9.4 1.1 95
Figure 11 128 306 4 0.6 2.0 0.5 9
Figure 12 588 2030 4 4.6 10.1 0.8 243
Figure 13 280 666 4 2.7 2.5 0.9 41
Figure 14 12 42 4 1 1.8 2.0 0.2

Table 5.1 – Table with statistics for our results. From left to right: number of blocks,
number of chains in the optimization, number of anchors, threshold parameter for the
quasi-arch extraction, average number of used chains, average number of chain changes
and computation time in minutes.

5.3.1 Large-scale Simulations

We test our algorithm on a complex self-supporting model designed using RhinoVault
[RLB12] (Figure 5.12) and tessellated with a manually-designed staggered pattern.

To stress test our approach, we create construction sequences for two models tessellated
with quads in Figure 5.4 and 5.13. These cases are particularly challenging because the
lack of interlocking between the blocks makes these structures prone to friction failures.

5.3.2 Self-supporting Puzzles

To demonstrate the flexibility of our algorithm, we designed the small self-supporting
model in Figure 5.14 using RhinoVault [RLB12]. We used our algorithm to find a
construction sequence with an upper bound of three blocks supported by chains at any
given time. The conditions have been enforced by rejecting all the construction states
where more than three blocks were connected to anchors. The construction sequence is the
solution to the puzzle, which allows to build it with four hands: three to simulate the chain
forces and one to insert the pieces. Our algorithm opens interesting possibilities to design
complex 3D self-supporting collaborative puzzles, which we plan to explore in future works.
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Figure 5.14 – Our algorithm can be used to design challenging physical puzzles.
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Figure 5.15 – We validate our algorithm by constructing a masonry structure using our
optimized work-minimizing construction sequence.
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5.3.3 Validation via Small-scale Models

Since masonry is a problem of stability rather than stresses [Hey95], scaled block models
can actually be used as structural models [ZLO10, VMMDB12]. We validate our algorithm
by 3D printing the blocks of a masonry structure designed with [PBSH13] and using
metal hooks and sewing string to model the chains. We used our algorithm to generate
the construction sequence and then physically constructed the model following all steps
(Figure 5.15). We provide in the additional material the full sequence of photographs for
each construction step, validating our simulation results. During the construction, we
observed that the chains predicted by our algorithm are always in tension, suggesting
that the equilibrium model we use accurately predicts the forces acting on the structure
and does not introduce redundant chains.

5.3.4 Restoration of Historical Buildings

Restoring an existing masonry building is a difficult task, since it is not possible to remove
and replace blocks without risking a structural failure. Our method can be used to tackle
this difficult problem, as shown in Figure 5.16. We optimize for a new equilibrium solution
that does not contain the blocks we want to replace. The optimization redistributes the
internal forces, and decides which chains should be inserted to guarantee the stability
of the structure. After the chains are inserted, the blocks can be safely removed and
restored. Note that intrusive techniques may be required such as drilling holes in the
stones or gluing lightweight hooks/anchors.

Figure 5.16 – Our algorithm finds a sparse set of chains that guarantee stability even
after the removal of a subset of the blocks. This can be applied to restoration of masonry
structures.
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(a) stable with single chain (b) collapse with chain released

Figure 5.17 – This quasi-arch needs a chain to be stable. When the chain is loosened,
the arch collapses due to a torque failure.

5.3.5 Evaluation of Safety Factors

We designed an experiment to evaluate the accuracy of our safety factors and the
equilibrium model we use. The global analysis step finds a quasi-arch in the middle of
the structure only if we do not introduce a safety factor (Figure 5.17). Adding a friction
and safety factor of 1% is sufficient to make the quasi-arch unstable and forcing our
algorithm to introduce a chain. We reproduced this case with our 3D printed model, and
verified that the arch is indeed extremely close to be in equilibrium, but cannot stand
safely without a chain due to a torque failure.

5.4 Implementation

5.4.1 Lp-Relaxation

Minimizing Equation (5.5) is a hard, discrete problem. We therefore use a continuous
Lp-relaxation (0 < p < 1) to approximate the minimization by

min
xi

∑
i

wi(ri|xi|p) s.t. (5.6), (5.7), (5.10)

where ri are additional, dynamic weights used for iterative reweighting as describe in the
next section. wi are weights of the discrete problem, e.g. 1− λ and λ in Equation (5.5).
We experimentally found that p = 0.05 produces the least work, see Table 5.2.

5.4.2 Iterative Reweighting

Iterative reweighting strategies convert non-linear Lp-minimization problems into a series
of linear or quadratic problems. We choose an iterative reweighted L1-minimization
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(IRL1) [LLSZ13]to minimize Equation (5.10), in particular because each subproblem is a
conic program that can be solved globally optimal. Suppose x̂i is a minimum of Equation
(5.10) with ri = 1. Then x̂i is also a minimum of the conic program in Equation (5.10)
with p = 1 and ri = r̂i(x̂i):

r̂i(xi) = 1
|xi|1−p + εr

(5.11)

for εr = 0 and r̂i(0) = ∞. In practice we use εr = 10−5 to avoid division by zero.
However, we do not know x̂i. According to IRL1 we iteratively estimate r̂ti from the
previous solution r̂ti := r̂i(x̂t−1

i ), leading to the following series of conic problems:

x̂ti := argmin
xi

∑
i

wi(r̂ti |xi|) s.t. (5.6), (5.7), (5.12)

starting with r̂0
i := 1. Note that the modulus can be replaced with the proper sign

since all the variables subject to minimization are constrained to be either non-negative
or non-positive according to Equation (5.2) and (5.3). We perform 5 iterations in our
experiments. The resulting chain forces however are rarely precisely zero due to the
relaxation and numerical precision. We therefore choose a parameter εc = 10−8 below
which we consider a chain to inactive. After minimizing Equation (5.12) we solve the
first iteration again, this time setting variables below εc to zero: In case we cannot
find a solution, we reject the candidate block. Otherwise our construction sequence
optimization picks the candidate minimizing Equation (5.10) with ri = 1.

5.4.3 Friction Cones

Cone constraints of a conic program would be ideal to model the friction cone. In Equation
(5.5), with λ > 0, some variables would then be part of multiple cone constraints, which is
not allowed in the standard conic program formulation. We therefore use the conservative
pyramidal approximation of Equation (5.4) for quasi-arch extraction, but use cone
constraints for friction during the sequence optimization. The standard conic program
does only allow cones of the form of Equation (5.7), but the friction cone needs a scalar

p 0.001 0.01 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1

#C 7.36 6.51 3.51 1.28 1.16 1.31 2.05 2.84 8.03 18.33
∆C 1.41 1.34 1.25 1.02 1.15 1.21 1.31 1.41 1.41 3.25

Table 5.2 – Average number of chains and chain changes for sequences of the model in
Figure 5.1 computed with different parameter p. The sequences were computed without
quasi-arches to isolate the influence of the parameter. Note that p = 1 requires no
reweighting.
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coefficient sK on the variable on the left-hand side. We therefore transform the conic
program with scaled cones:

min
x
wTx s.t. bl ≤ x ≤ bu, Ax ≤ b, Cx = d,

∀K ∈ Cones : sKxK0 ≥
(∑

i

‖xKi‖2
)1/2

where xK0 is the left-hand side variable in cone K, and xKi summands of the right-hand
side, into a standard conic program with the same minima:

min
y

(wTD)T y s.t. Dbl ≤ y ≤ Dbu,

(AD−1) y ≤ b, (CD−1) y = d,

∀K ∈ Cones : xK0 ≥
(∑

i

‖xKi‖2
)1/2

where D is a diagonal matrix where Dii = sK if xi appears in the left-hand side of cone
K, Dii = 1 otherwise. Note that this transformation is only meaningful if each variable
only appears in the left-hand side of cones with the same sK .
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6 Discussion

This thesis presents methods of computational aid for realizing architectural structures,
from modeling to cost-optimized fabrication and assembly. In this chapter, we first
discuss each method individually, then compare how each of them handle constraints,
and finally discuss directions of future work within the topic of the thesis.

6.1 ShapeOp

In Chapter 3, we presented ShapeOp, a robust and extensible geometric modeling
paradigm. We explain the theoretical advantages over existing methods, and present
the implementation as a simple, fast and extensible C++ library1. Our examples use
the scripted grasshopper components provided with ShapeOp to highlight its practical
importance.

ShapeOp is a continuous modeling tool directly incorporating various constraints in the
modeling process. In the spirit of “what you see is what you get”, ShapeOp aims at
restricting the user to only see models that satisfy the constraint and therefore qualifies
as a constraint-aware modeling tool. If used for fabrication-constraints such as planarity
of polygons, it acts as a fabrication-aware modeling tool.

Numerical optimizations such non-linear least-squares can be time-consuming, due to the
need for evaluating the Jacobian and solving a different linear system in each iteration of
the solver [NW06]. Therefore, although this approach works well for optimizing a single
shape, it is not suitable for exploring the design space, where shapes need to be computed
continuously in real time according to current input from the user. In comparison,
each iteration of ShapeOp only involves parallel evaluation of projection operators, as
well as the solution of a pre-factorized linear system. Such low computational cost
makes ShapeOp a good choice for interactive constraint-based design. Recently, Tang

1www.shapeop.org

89

http://www.shapeop.org


Chapter 6. Discussion

et al [TSG+14] proposed a form-finding technique for polyhedral meshes, with much
better performance than classical non-linear least squares formulations. However, their
approach still relies on solving different linear systems in each iteration, resulting in poor
performance for meshes with more than a few thousand vertices. On the contrary, the
fixed linear system in ShapeOp makes it suitable even for large models.

Unlike force-based solvers, ShapeOp computes the equilibrium state of a system by
minimizing a potential energy that incorporates physical forces as well as geometric
constraints. Using the carefully designed numerical solver in ShapeOp, a stable solution
can be computed in a small number of iterations with low computational cost, achieving
better stability and efficiency than force-based solvers.

As future work, we plan to further explore the combination of continuous and discrete
constraints. It is a common feature of many design problems to require some components
to be selected from a finite set of choices, e.g. to allow for mass-production or adhere
to standardized offerings. Unfortunately, such a finite set can be too restrictive to
satisfy other criteria on the design. The optimization could potentially be enhanced
to automatically detect a sparse set of constraints that needs to be violated in order
to better preserve the design intent. This enhancement would have great potential to
address challenges in constrained modeling.

6.2 Paneling

In Chapter 4, we presented a method for computing cost-optimized panelings. This
paneling method tackles the difficult problem of choosing a set of molds, an assignment
of a mold for each panel and a panel placement on the structure while minimizing cost
and respecting tolerances in distance to the input surface and continuity.

Our paneling method presents improvements of the paneling algorithm introduced by
Eigensatz and coworkers [EKS+10] to enable the preservation of sharp feature lines and
the adaptive control of tolerance margins, allowing advanced exploration of cost effective
rationalizations of architectural freeform surfaces. In our case studies on cutting edge
architectural designs we evaluate the various modes of control enabled by our extended
paneling algorithm and demonstrate the effectiveness of the algorithm with new examples,
focusing on practical aspects complementary to the ones presented in [EKS+10].

The input to our paneling algorithm is a design surface and a set of curves (panelization
seams) that define how the surface is divided into panels. We consider both the surface
and the panelization seams as design intent and thus aim to change them as little as
possible.
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This approach leads to the following implications:

1. If the design surface or seams inherently violate the limits of a certain material or
production process, for example with respect to maximum panel sizes, then the
paneling algorithm will not eliminate this.

2. When computing minimum cost solutions, the paneling algorithm cares about cost
of panel production only. This is reasonable because it just minimally changes the
design surface and panelization seams, and therefore does not influence the cost of
further parts like the substructure.

There are a few desirable extensions to the paneling algorithm leading to challenging
problems for future research.

An obvious possibility for extending the paneling algorithm concerns the support of
further mold types. We plan to include simple additional types like cones, but also more
general surface types like general ruled surfaces. This would involve finding bounds to
the new type of component to be supported for the set-cover approximation.

Figure 4.3 compares the paneling algorithm with rationalization approaches given by
planar quad meshes and developable strip models. The latter include favorable geometric
properties for the layout of substructures. It is natural to ask for possibilities of combining
these approaches with the paneling algorithm. This motivates an adaption of the paneling
algorithm towards the incorporation of optimization goals for the curve network, for
example with respect to offsets and supporting structures.

For the three presented case studies—the Facade Design Study, the Lissajous Tower,
and the Skipper Library—the paneling solutions are obtained in roughly 10 minutes, 1
hour, and 10 hours, respectively. In the future, we plan to explore both algorithmic and
computational changes to speed up the process in order to ultimately enable interactive
and simultaneous exploration of reference surface design (continuous modeling), curve
network layout (combinatorial modeling), and paneling solutions. Such a method would
then qualify as a paneling-aware modeling tool.

6.3 Assembly

In Chapter 5, we presented a method to assemble self-supporting structures using a
sparse set of chains instead of a dense formwork. Our algorithm can process models
generated with any of the existing design methods for self-supporting structures and
can incorporate practical construction constraints in the optimization. Our method
qualifies as a rationalization tool in the general sense of making an architectural structure
realizable by reducing expenses.
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We assume the construction site, and the masonry structure are given as input, and we
focus on optimizing a valid construction sequence. An interesting venue for future work
is a relaxation of this problem, where the algorithm is allowed to alter the anchor and
hook placements. This would greatly increase the solution space and can further reduce
the construction cost, but is extremely challenging since moving hooks and anchors has a
global effect on all the construction states. Additionally, surface shape and/or tessellation
could also be optimized.

Our greedy sequence optimization may fail when none of the candidate blocks can be
inserted. We handled this case by manually perturbing the anchor positions to seek
a possible solution. In particular, we moved the anchors to reduce the intersections
between candidate chains and blocks, expanding the solution space. Relocating or adding
anchor points automatically will be an interesting venue for future work. Alternatively, a
backtracking strategy could be employed to further explore the space of valid sequences.

Explicitly maximizing temporal smoothness on the (in)active chains could theoretically
help our method to reduce work. This maximization is hard to implement in our
framework since the chain force magnitudes can vary substantially between states, while
the corresponding chain stays active. A simple smoothness term on the magnitudes could
therefore lead to denser solutions, producing sequences needing more work.

The static equilibrium analysis we use is based on the lower bound theorem [Hey95]
which assumes hinging failure between blocks. While sliding failure is not accounted
for, we guarantee existence of a feasible static equilibrium solution which satisfies the
friction cone constraint. Further, we use a conservative coefficient of friction. Stability of
masonry structures under sliding is an active area of research. Hinging is predominantly
considered the limiting constraint in masonry analysis, particularly for arched and domed
structures [Liv92].

More research will be required to address the additional constraints of large-scale con-
structions sites, but we did validate our algorithm on small scale, 3D printed models.
We demonstrated that our algorithm can be used to design interesting physical puzzles,
using hands instead of chains.

In our 3D printed models, we currently use small registration spheres (hemispheres added
to the interface, respectively carved out from the interface in contact) to ensure that the
construction is precise. They are not necessary but they greatly simplify construction
since exact block alignment is difficult at a small scale. However, we found that small
errors in chain length and fabrication technology (i.e. imbuing with glue powder-printed
3D blocks) can quickly sum up in an error of a few millimeters, making the construction
difficult. We believe that a better locking mechanism between the blocks could be
introduced to ameliorate this problem, or a computer vision system could be developed
to help the exact placement of each block. Errors with fabrication tolerance would be
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negligible at full scale. The chain stretching is proportional to the load and dependent
on the cables’ properties (cross-sectional area and axial stiffness), and can be computed
precisely. In a real scenario, the cables should be adjusted after each construction step
to compensate for the changing load. In our 3D printed models, we assumed chains do
not stretch and adjusted the chain length manually when first introduced.

The quasi-arches have an unexplored advantage: They might allow using full, curvilinear
formwork (from below) to fix only the quasi-arches, decoupling the equilibrium of each
stable region. The stable regions could then be constructed in parallel, drastically
speeding up the construction time.

It could be extended to structures which are not self-supporting, e.g. some that have
explicit joints, by adapting the equilibrium model and redefining the cost function. Our
method can also simply be used to determine a sparse set of chains or poles to support
architectural structures assembled from components.

We believe that this work may have an impact both in digital fabrication, where the
optimization over construction sequences is mostly unexplored, and in architecture. We
demonstrated that it is possible to build self-supporting models with a negligible material
overhead, and we hope that architects and engineers will be inspired by our work and
apply this construction method to large-scale constructions.

The C++ source code of our implementation is available for download at http://lgg.epfl.
ch/selfassembly.

6.4 Implicit and Explicit Constraints

It is interesting to observe how each of the methods presented in this thesis represents
constraints differently. We can distinguish two ways of encoding constraints: explicitly,
by computation, for example the planarity of a polygon in a mesh and implicitly, in the
geometric representation, for example coinciding edges of neighboring faces in a polygon
mesh. Implicit constraints are satisfied by construction.

In ShapeOp, projections are used to enforce constraints explicitly in an alternating
minimization scheme. When a single point is involved in many explicit constraints,
ShapeOp splits the point into one copy per constraint in the projection phase, but then
enforces all copies to coincide in the global step by solving for a single point in the
least-squares sense.

In contrast, our paneling method represents a curve network kept close to the input
surface by a soft constraint, and a panel per face of the curve network, also linked by
a soft closeness constraint. The panels themselves however are represented by a type
(plane, cylinder, paraboloid, torus, cubic or custom) and the necessary parameter. This
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enforces the panel shape as an implicit constraint.

In our assembly method, the blocks, anchor points and chains are fixed. We solve for an
assembly sequence of the blocks and forces on the chains. The chains could be represented
by boolean variables saying if they are needed, or not. The corresponding optimization,
however, would be discrete and hard to approach. Our method relaxes the variables
to be continuous, real force magnitudes, but then enforces a choice of active chains by
means of a sparsifying optimization. This approach has been useful in many practical
applications and it also allows to add an upper bound to the forces.

6.5 Future Work

The three methods presented in this thesis lay the groundwork for a sequential tool
that handles modeling, mass-fabrication and assembly of architectural structures. While
ShapeOp offers interactive response, the paneling and assembly methods can take up to
several hours for a run. It is likely that the necessary speed-up for the latter two methods
to ultimately become paneling- and assembly-aware modeling tools will only be achieved
by a fundamentally different formalization and optimization approach. They are useful
as is though because they only need a small fraction of the time necessary to actually
build a full-scale structure. Also, ShapeOp is not capable of indicating changes in the
combinatorics of a model as-is, but the user can rely on a combinatorial rationalization
method for good initializations if available.

A modeling tool unifying all three aspects of architectural structures discussed here in an
interactive process seems out of reach in the near future. And even if such a tool existed,
there are still fundamental challenges in constrained combinatorial modeling, understand-
ing of proper formalizations involving hard constraints and finding appropriate level of
abstractions that need to be addressed. Also, approaches to more global understanding of
general constrained design spaces are necessary for thorough exploration. This, however,
presents itself as a very difficult problem which probably does not have a meaningful,
simple solution.

This thesis approaches the general problems discussed in the last paragraph by studying
specific instances and introducing meaningful assumptions. The resulting tools give some
examples of what is to come and are also already useful in practice.
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