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Abstract. The development of stream temperature regression

models at regional scales has regained some popularity over

the past years. These models are used to predict stream tem-

perature in ungauged catchments to assess the impact of hu-

man activities or climate change on riverine fauna over large

spatial areas. A comprehensive literature review presented

in this study shows that the temperature metrics predicted

by the majority of models correspond to yearly aggregates,

such as the popular annual maximum weekly mean temper-

ature (MWMT). As a consequence, current models are of-

ten unable to predict the annual cycle of stream tempera-

ture, nor can the majority of them forecast the inter-annual

variation of stream temperature. This study presents a new

statistical model to estimate the monthly mean stream tem-

perature of ungauged rivers over multiple years in an Alpine

country (Switzerland). Contrary to similar models developed

to date, which are mostly based on standard regression ap-

proaches, this one attempts to incorporate physical aspects

into its structure. It is based on the analytical solution to a

simplified version of the energy-balance equation over an

entire stream network. Some terms of this solution cannot

be readily evaluated at the regional scale due to the lack of

appropriate data, and are therefore approximated using clas-

sical statistical techniques. This physics-inspired approach

presents some advantages: (1) the main model structure is

directly obtained from first principles, (2) the spatial extent

over which the predictor variables are averaged naturally

arises during model development, and (3) most of the regres-

sion coefficients can be interpreted from a physical point of

view – their values can therefore be constrained to remain

within plausible bounds. The evaluation of the model over a

new freely available data set shows that the monthly mean

stream temperature curve can be reproduced with a root-

mean-square error (RMSE) of ±1.3 ◦C, which is similar in

precision to the predictions obtained with a multi-linear re-

gression model. We illustrate through a simple example how

the physical aspects contained in the model structure can be

used to gain more insight into the stream temperature dynam-

ics at regional scales.

1 Introduction

Among the parameters affecting the ecological processes in

streams, temperature occupies a predominant role. It influ-

ences the concentration of chemicals, such as dissolved oxy-

gen, and may increase the toxicity of dissolved substances

(Langford, 1990). It also affects the life cycle of many fish

species, particularly the salmonids whose rate of spawning,

timing of birth and rate of death are directly influenced by

stream temperature (Caissie, 2006; Benyahya et al., 2007).

Water temperature is also a relevant factor for many thermal

power plants which rely on cooling by river water, and whose

electricity production decreases when water temperature ex-

ceeds a certain limit (Haag and Luce, 2008).

As a result of the rising concern about climate change and

water management impacts on aquatic life, stream tempera-
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ture modelling has regained some interest over the past 10–

15 years. This fostered the development of many stochastic

and deterministic models (e.g. Mohseni et al., 1998; Segura

et al., 2014; Chang and Psaris, 2013; DeWeber and Wagner,

2014; Meier et al., 2003; Westhoff et al., 2007). The for-

mer type relies on a statistical analysis to empirically relate

stream temperature to climatic and physiographic variables,

such as air temperature, discharge, altitude or channel width

(see Benyahya et al., 2007, for a complete review of this

subject). Deterministic models, on the other hand, rely on

a physically based formulation of the stream energy conser-

vation to compute water temperature (Caissie, 2006). Both

model types have usually been applied to a single stream

reach or a limited number of catchments (e.g. Sinokrot and

Stefan, 1993; Roth et al., 2010; Caissie et al., 2001; Cald-

well et al., 2013; Grbić et al., 2013). As a response to the

lack of stream temperature data, some studies have recently

attempted to develop regionalized models. This effort was

certainly encouraged by the incentive of the International As-

sociation of Hydrological Sciences (IAHS), which set the fo-

cus of the last decade on hydrological prediction in ungauged

basins (Sivapalan et al., 2003; Hrachowitz et al., 2013). In

the case of stream temperature, the difficulty in meeting the

data requirements of the physically based models led the au-

thors to mostly rely on statistical approaches to make predic-

tions in ungauged catchments. However, the validity of these

models for studying climate change impacts or water man-

agement techniques has not been assessed yet.

In this paper, more than 30 studies describing regionalized

statistical models for stream temperature estimation were re-

viewed to put our work in a larger context (see Table 1). The

extensive introduction below discusses several aspects of the

reviewed literature which motivated the development of the

novel stream temperature model described in the next sec-

tion.

1.1 Predictions with limited precision

One recurring issue described in the reviewed literature is

the difficulty in predicting stream temperature with a high

level of precision. A typical example is the statistical model

of Isaak et al. (2010) for the estimation of mean summer

stream temperature (15 July–15 September) in the Boise

River basin, Idaho. Despite considering a significant num-

ber of predictor variables and two different modelling ap-

proaches a priori, Isaak et al. (2010) could not reduce the

root-mean-square error (RMSE) of their model below 1.5 ◦C.

Prediction uncertainties of the same order of magnitude are

reported e.g. by Wehrly et al. (2009), Ruesch et al. (2012),

Moore et al. (2013) or Hill et al. (2013).

In general, it seems that the model error originates partly

from the lack of appropriate field data, such as measures of

riparian shading, groundwater infiltration or irrigation with-

drawals (Moore et al., 2013). As noted by Hill et al. (2013),

“these types of data are not readily available everywhere and

will take time to develop”. In the meantime, they can in some

circumstances be accounted for through indirect measures.

For example, Tague et al. (2007) used the geological aquifer

type as a proxy for the presence or absence of groundwa-

ter infiltration. Similarly, Hrachowitz et al. (2010) and Scott

et al. (2002) estimated riparian shading based on riparian for-

est coverage, computed over buffer areas of various widths

and lengths around the streams. In the absence of such prox-

ies, the model cannot represent some known processes and

must concede some increase in its prediction error (Moore

et al., 2013). The size of the areas over which stream tem-

perature is modelled – and hereby the diversity of encoun-

tered climatic and geomorphologic conditions – constitutes

another factor potentially explaining the model uncertainties

for some studies.

Regarding the impact of the modelling approach, Wehrly

et al. (2009) investigated four different statistical model types

and showed that their difference in prediction accuracy was

relatively small. The same conclusion was reached by Daigle

et al. (2010), who compared four other modelling techniques.

Isaak et al. (2010) found that networked kriging regression

performed better than multi-linear regression over the cali-

bration data set, but this assertion became much less evident

over the validation set. Similarly, Pratt and Chang (2012)

and Chang and Psaris (2013) concluded that geographically

weighted regression is slightly more accurate than multi-

linear regression, but they did not validate their results on

an independent data set. These studies tend to suggest that

no significant decrease in the prediction errors should be

awaited from a change in the statistical modelling technique.

Further comparisons between the different models re-

ported in the literature are unfortunately hindered by the di-

versity of temperature metrics and error measures used by

the authors. As mentioned in several studies already, we ad-

vocate here the systematic use of the different error mea-

sures that are RMSE, bias and coefficient of determination

R2 for the evaluation of the model precision, possibly com-

bined with a benchmark model (Schaefli and Gupta, 2007). It

should be noted that R2 is also referred to as Nash–Sutcliffe

efficiency by the hydrological community (Nash and Sut-

cliffe, 1970), and is defined as 1 minus the ratio of the model

error variance over the variance of the observed data.

1.2 Few models can predict the stream temperature

annual cycle

Inspecting Table 1, it can be seen that most regionalization

efforts have concentrated on some particular periods of the

year. For example, Jones et al. (2006), Isaak et al. (2010) and

Chang and Psaris (2013) focused on the annual maximum of

the 7-day moving average of the daily maximum temperature

(MWMT). Similarly, both Pratt and Chang (2012) and Hill

et al. (2013) aimed at estimating mean stream temperature in

summer and winter. Very few studies have actually attempted
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Table 1. List of reviewed publications about statistical stream temperature prediction in ungauged basins.

Reference
Geographic Model Number of Number of Temporal

Model precisionb,c

location typea sites yearsb scale

Arscott et al. (2001) Italy MLR 22 1 Season R2
= 0.37–0.8

Bogan et al. (2003) Eastern USA AE 596 30 Week R2
= 0.80, σe = 3.1 ◦C

Chang and Psaris (2013) Western USA MLR, GWR 74 n/a Week, year R2
= 0.52–0.62, σe = 2.0–2.3 ◦C

Daigle et al. (2010) Western Canada Various 16 0.5 Month σe = 0.9–2.8 ◦C

DeWeber and Wagner (2014) Eastern USA ANN 1080 31 Day σe = 1.8–1.9 ◦C

Ducharne (2008) France MLR 88 7 Month R2
= 0.88–0.96, σe = 1.4–1.9

Gardner and Sullivan (2004) Eastern USA NKM 72 1 Day σe = 1.4 ◦C

Garner et al. (2014) UK CA 88 18 Month n/a

Hawkins et al. (1997) Western USA MLR 45 ≥ 1 Year R2
= 0.45–0.64

Hill et al. (2013) Conterminous USA RF ∼ 1000 1/site Season, year σe = 1.1–2.0 ◦C

Hrachowitz et al. (2010) UK MLR 25 1 Month, year R2
= 0.50–0.84

Imholt et al. (2013) UK MLR 23 2 Month R2
= 0.63–0.87

Isaak et al. (2010) Western USA MLR, NKM 518 14 Month, year R2
= 0.50–0.61, σe = 2.5–2.8 ◦C

Isaak and Hubert (2001) Western USA PA 26 1/site Season R2
= 0.82

Johnson (1971) New Zealand ULR 6 1 Month n/a

Johnson et al. (2014) UK NLR 36 1.5 Day R2
= 0.67–0.90, σe = 1.0–2.4 ◦C

Jones et al. (2006) Eastern USA MLR 28 3 Year R2
= 0.57–0.73

Kelleher et al. (2012) Eastern USA MLR 47 2 Day, week n/a

Macedo et al. (2013) Brazil LMM 12 1.5 Day R2
= 0.86

Mayer (2012) Western USA MLR 104 ≥ 2 Week, month R2
= 0.72, σe = 1.8 ◦C

Miyake and Takeuchi (1951) Japan ULR 20 n/a Month n/a

Moore et al. (2013) Western Canada MLR 418 1/site Year σe = 2.1 ◦C

Nelitz et al. (2007) Western Canada CRT 104 1/site Year n/a

Nelson and Palmer (2007) Western USA MLR 16 3 Season R2
= 0.36–0.88

Ozaki et al. (2003) Japan ULR 5 8 Day n/a

Pratt and Chang (2012) Western USA MLR, GWR 51 1/site Season R2
= 0.48–078

Risley et al. (2003) Western USA ANN 148 0.25 Hour, season σe = 1.6–1.8 ◦C

Rivers-Moore et al. (2012) South Africa MLR 90 1/site Month, year R2
= 0.14–0.50

Ruesch et al. (2012) Western USA NKM 165 15 Year R2
= 0.84, σe = 1.5 ◦C

Segura et al. (2014) Conterminous USA MLR 171 ≥ 1.5 Week, month R2
= 0.79

Sponseller et al. (2001) Eastern USA MLR 9 1 Year R2
= 0.81–0.93

Scott et al. (2002) Eastern USA MLR 36 1/site Season R2
= 0.82

Stefan and Preud’homme (1993) Eastern USA ULR 11 n/a Day, week σe = 2.1–2.7 ◦C

Tague et al. (2007) Western USA MLR 43 4 Day R2
= 0.49–0.65

Wehrly et al. (2009) Eastern USA Various 1131 1/site Month σe = 2.0–3.0 ◦C

Westenbroek et al. (2010) Eastern USA ANN 254 1/site Day R2
= 0.70, σe = 1.8 ◦C

Young et al. (2005) New Zealand MLR 23 1 Season R2
= 0.75–0.93

a AE: analytical expression; ANN: artificial neural network; CA: cluster analysis; CRT: classification and regression trees; GWR: geographically weighted regression; LMM: linear mixed model; MLR:

multi-linear regression; NKM: networked kriging model; NLR: non-linear regression; PA: path analysis; RF: random forest; ULR: univariate linear regression.
b n/a: not available.
c σe : root-mean-square error; R2: coefficient of determination (sometimes referred to as the Nash–Sutcliffe index).

to derive regional models to compute the complete annual

cycle of stream temperature over several years.

Miyake and Takeuchi (1951) and Stefan and

Preud’homme (1993) were probably the first authors to

address this issue; they relied on linear regression against

air temperature to simultaneously estimate stream tem-

perature at multiple sites. However, their respective works

are restricted to a limited number of rivers (20 and 11,

respectively) and could probably not be applied to larger

areas. In an attempt at generalizing these models, Ozaki

et al. (2003) and Kelleher et al. (2012) separately regressed

stream temperature against air temperature in each one of the

catchments they considered, and subsequently regionalized

the slopes of the regression lines. However, both studies

were only partly successful in completing the regionaliza-

tion step, since the modelled regression slopes had large

prediction errors. They would additionally have had to

model the intercepts of the regression lines to completely

regionalize the stream–air temperature relationship. In a

similar fashion, Johnson et al. (2014) relied on the logistic

equation introduced by Mohseni et al. (1998) to relate stream

temperature to air temperature in each catchment. Also,

they faced difficulties in regressing the equation parameters

against geomorphological properties of the catchments.

The two most complete works on the regionalization of the

linear stream–air temperature relationship were recently

conducted by Ducharne (2008) and Segura et al. (2014).

These two studies attempted to regionalize both the slopes
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and intercepts of the regression lines between stream and

air temperature. To this end, Ducharne (2008) grouped the

streams according to their Strahler order and fitted a single

line in each group. Segura et al. (2014), on the other end,

expressed the slopes and intercepts as linear combinations

of climatic and physiographic variables. The model of

Ducharne (2008) had nominally a higher explanatory power

(R2
= 0.88− 0.96, depending on the Strahler order) than

Segura et al. (2014)’s model (R2
= 0.79), but was effectively

based on about 10 times fewer rivers.

Instead of using air temperature as an independent vari-

able, Bogan et al. (2003) relied on equilibrium temperature.

This variable corresponds to the stream temperature at which

the net energy flux at the air–water interface vanishes (e.g.

Edinger et al., 1968). It was shown by Bogan et al. (2003)

to be a fairly good estimator of stream temperature for al-

most 600 rivers in the eastern and central United States, with

a prediction error of about 3 ◦C.

As an alternative to the above-mentioned studies, the an-

nual cycle of stream temperature has been modelled by some

authors as a function of time directly, rather than air or

equilibrium temperature. Hrachowitz et al. (2010), Imholt

et al. (2013) and Rivers-Moore et al. (2012) expressed water

temperature as a linear combination of climatic and phys-

iographic variables for each month of the year separately.

Their models were derived for a particular year, but can be

transferred to other years by estimating stream temperature

at a few measurement points using Mohseni’s logistic equa-

tion and fitting the multi-linear regression model to the re-

sulting values (Hrachowitz et al., 2010). Based on a similar

approach, Macedo et al. (2013) succeeded in deriving one

single regression model to estimate daily mean stream tem-

perature at 12 different sites in Brazil over 1.5 years. The

performance of their model was not tested using data from

subsequent years, though.

Johnson (1971) relied on another different technique to

estimate the thermal regime of six rivers in New Zealand.

He first fitted the stream temperature annual cycles with

sine curves. In a second step, he identified the physiographic

properties of the catchments which best correlated with the

fit coefficients. The focus of his study being on the investi-

gation of these physiographic properties, he did not evaluate

the prediction error of his model. Although not intended for

this purpose, the work of Garner et al. (2014) is based on

a somewhat similar approach and may be used to get a first

estimate of the annual cycle of temperature in UK streams.

The authors classified rivers into several groups according to

the shape and magnitude of their respective thermal regimes.

Then, they investigated the similarities and dissimilarities of

some geomorphological properties among and between the

groups. This processing could be inverted to infer the thermal

regime from the physiographic properties of the catchments.

Finally, some studies have evaluated the possibility of

modelling the time evolution of stream temperature using

machine learning techniques. For example, DeWeber and

Wagner (2014) trained an artificial neural network to repro-

duce daily mean temperature values from May to October

over more than 30 years for 1080 streams in the eastern

United States. Their approach could be easily extended so

as to model the complete annual cycle of stream temperature

each year.

1.3 Space-averaging of the predictor variables

Some of the reviewed publications on regional stream tem-

perature modelling addressed the question of the spatial scale

over which the predictor variables should be averaged. It is

common knowledge that stream temperature is not only af-

fected by local environmental conditions, but also by the con-

ditions prevailing upstream. However, the exact extent of the

area controlling the stream energy balance at a given point is

not clear (Moore et al., 2005).

Due to this uncertainty, different approaches have been

used in the literature to average the predictor variables. Based

on studies of the effect of forest harvesting on stream tem-

perature (e.g. Moore et al., 2005), some authors considered

riparian buffer zones of various widths and lengths as aver-

aging areas. This approach was usually applied to average

the land cover characteristics only, particularly forest cover-

age (e.g. Sponseller et al., 2001; Scott et al., 2002; Macedo

et al., 2013; Segura et al., 2014), but also in some cases to

average most of the predictor variables, including elevation

or slope (Hrachowitz et al., 2010; Imholt et al., 2013). Other

authors considered larger portions of the catchments as av-

eraging areas, sometimes extending far beyond the riparian

zone. For example, Wehrly et al. (2009) used the whole area

drained by the stream segment located directly upstream of

the temperature measurement point. Whereas most studies

relied on simple spatial averaging, a few of them applied

a weighting scheme to give more emphasis to the condi-

tions prevailing near the gauging point. As such, Isaak et al.

(2010) and Hill et al. (2013) applied a weight w decreas-

ing exponentially with the distance d to the catchment outlet,

w = exp(−d/Lc), where the e-folding distance Lc controls

the spatial extent of the averaging area.

In response to this diversity of methods, we could not find

a general consensus in the reviewed literature concerning the

extent of the spatial area which is relevant for stream temper-

ature prediction. While some studies conclude that this area

should have a length of about 1–4 km (Isaak et al., 2010; Hra-

chowitz et al., 2010; Chang and Psaris, 2013; Macedo et al.,

2013), others tend to indicate that the catchment scale is the

most appropriate one (Sponseller et al., 2001; Scott et al.,

2002). Similarly, values between 30 and 200 m are assumed

for the width of the riparian buffer affecting stream tempera-

ture at a given point (e.g. Jones et al., 2006; Scott et al., 2002;

DeWeber and Wagner, 2014).
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1.4 State-of-the-art in the European Alps

Of all the regional models reported in Table 1, less than a

third were developed for stream temperature prediction out-

side of North America, and only one – the model devel-

oped by Arscott et al. (2001) – is applied over a European

Alpine region. An unpublished attempt at developing an-

other model for an Alpine country (Switzerland) was con-

ducted by Rubin et al. (2012). They relied on the regional-

ization of the stream–air temperature relationship, but unfor-

tunately did not evaluate the precision of their model. Other

studies have sought to classify the thermal regimes of Alpine

rivers (Jakob, 2010; Müller, 2011), sometimes with minimal

success (see Schädler, 2008, for a review of the classifica-

tion efforts before 2008). These authors grouped the streams

according to the physiographic characteristics of their asso-

ciated watershed, such as mean basin altitude, water origin

(lake, artificial reservoir, deep aquifer or shallow subsurface

groundwater), channel width or slope. They computed the

characteristics of the typical thermal regime of each group.

However, inter-annual variations of the thermal regime can-

not be accounted for by this method.

1.5 Investigation of a new modelling approach

All the reviewed models rely on standard statistical tech-

niques to estimate stream temperature. The range of meth-

ods encompasses traditional approaches such as multi-linear

regression (e.g. Arscott et al., 2001; Mayer, 2012; Imholt

et al., 2013) or linear mixed modelling (Macedo et al., 2013),

but also more advanced techniques such as geographically

weighted regression (Pratt and Chang, 2012; Chang and

Psaris, 2013), networked kriging models (Gardner and Sulli-

van, 2004; Isaak et al., 2010; Ruesch et al., 2012) or machine

learning techniques (e.g. Westenbroek et al., 2010; Hill et al.,

2013; DeWeber and Wagner, 2014).

All these methods are general, in the sense that they can

be used to model almost any possible relationship between

given input and output variable(s). As a consequence of this

generality, the user has to specify the set of predictor vari-

ables to be considered by the model. Although some objec-

tive methods can help to perform this selection (e.g. Burn-

ham and Anderson, 2002), the original set of variables on

which these methods act must initially be indicated by the

user. In the end, the choice of predictor variables is necessar-

ily affected to some extent by the training and experience of

the authors, hereby introducing some diversity in the sets of

predictor variables. Thus, in the case of stream temperature

modelling in ungauged catchments, some studies consider

only physiographic characteristics as predictor variables (e.g.

Scott et al., 2002; Jones et al., 2006; Nelson and Palmer,

2007; Hrachowitz et al., 2010), while others also include cli-

matic variables (e.g. Isaak et al., 2010; Ruesch et al., 2012;

Moore et al., 2013), stream morphological factors such as

channel width or bed gravel size (e.g. Hawkins et al., 1997;

Arscott et al., 2001; Daigle et al., 2010), or even markers

of anthropogenic activities (e.g. Pratt and Chang, 2012; Hill

et al., 2013; Macedo et al., 2013). It should be mentioned that

this diversity also largely results from the varying availability

and reliability of data among different geographic areas. This

is particularly true for riparian shading, which is never di-

rectly measured and can only be estimated based on the data

at one’s disposal. For example, Isaak et al. (2010) approxi-

mated riparian shading using a sophisticated combination of

satellite orthoimages and ground hemispherical canopy pic-

tures, whereas DeWeber and Wagner (2014) could only rely

on country-wide land-use data.

Although the generality of the standard statistical meth-

ods allows them to be applied to many problems, it prevents

them from incorporating prior knowledge about the system

dynamics into their structure. For example, a multi-linear

model expresses the predictand as a linear combination of

the predictors regardless of the problem at hand. This fact is

also true for non-parametric methods such as artificial neural

networks, which implicitly impose some (flexible) functional

form onto the model. As advocated by Burnham and Ander-

son (2002), our idea is therefore to attempt to derive a statis-

tical model whose structure includes known dynamics of the

predictand variable of interest, namely stream temperature in

the case at hand.

Our approach is strongly inspired by the physically based

models which have been used for decades to predict wa-

ter temperature along stream reaches (e.g. Brown, 1969;

Sinokrot and Stefan, 1993; Westhoff et al., 2007). However,

it differs from these models in the sense that we seek a much

simpler expression for stream temperature, expressed as a

function of variables which are readily available at the re-

gional scale. To this end, we analytically solve a simpli-

fied version of the energy-balance equation over an entire

stream network (see Sect. 3.1). The resulting expression in-

volves variables whose value cannot be estimated based on

the available spatial data sets. Due to our lack of knowl-

edge regarding the nature of the relationships between the

unknown variables and the available data, we choose to rely

on multi-linear regression to estimate the former as a func-

tion of the latter. Although this step involves the subjective

selection of predictor variables and assumes a linear relation-

ship, we do not think that it entirely questions our incentive

to incorporate physical considerations into the model struc-

ture. As a matter of fact, only the unknown variables are re-

placed in the analytical formula, letting the global form of

the relationship be unaffected. Assuming that the major non-

linearities are already captured by the global structure of the

model, the specific form of the expressions used to approxi-

mate the unknown terms may be considered to have a minor

effect. Moreover, our approach attributes a physical meaning

to some of the terms appearing in the formula. These terms

can be constrained to remain within physical bounds, hereby

restricting the range of values that the calibration parameters

can adopt.
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The objectives of the present work are three-fold: (1) de-

scribe a new physics-inspired statistical model for the predic-

tion of stream temperature in ungauged basins, allowing for

the computation of the monthly resolved annual cycle and

capturing inter-annual variability; (2) through proper cali-

bration of the model, determine the length of the upstream

area which controls stream temperature at a given point; and

(3) compare the physics-inspired model with a more standard

statistical approach over a set of various Swiss catchments,

so as to evaluate the potential benefits of the incorporation of

physical considerations into the model structure. The data set

used to evaluate the performances of the models is presented

in Sect. 2. The models are described in Sect. 3. Results are

detailed in Sect. 4 and discussed in Sect. 5, followed by the

conclusion.

2 Data description

2.1 Selected catchments for model evaluation

In order to test the two stream temperature models, catch-

ments are selected in Switzerland such that (a) the natural

regime of the river is as little affected by anthropogenic ac-

tivities as possible, and (b) measurements of discharge and

stream temperature are available for more than 1 year. This

results in a set of 29 catchments, whose locations are de-

picted in Fig. 1 and physiographic properties are summarized

in Table 3.

About half of the selected catchments are situated on the

Swiss Plateau – a large area with little altitude variations be-

tween Lake Geneva in the south-west and Lake Constance in

the north-east. The climate in this region is relatively mild,

with precipitation mostly falling as rain in winter and mean

daily maximum air temperature hardly exceeding 30 ◦C in

summer. The hydrological regimes of the catchments in the

plateau depend on the precipitation patterns and are there-

fore strongly variable from year to year (Aschwanden and

Weingartner, 1985). Discharge does not vary by more than a

factor 2 over the year; it usually reaches its maximum during

winter, when evapotranspiration is the lowest. As catchments

gain in altitude, the discharge control mechanism changes

from evapotranspiration to snowmelt: higher-altitude catch-

ments present a discharge peak during the melt season, in

April–May.

Only two catchments are found in the Jura mountains, a

relatively low-altitude (< 1700 m) mountainous range with

rigorous winters. This region is characterized by its karstic

aquifers with preferential flow paths, generating fast and

complex responses to precipitation events. Although more

marked, the hydrological regimes of the Jura catchments are

relatively similar to those of the watersheds in the plateau. A

clear peak in discharge is noticeable in April for the highest

catchments (Aschwanden and Weingartner, 1985).
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Figure 1. Locations of the gauging stations selected for the eval-

uation of the physics-inspired and standard statistical models. The

stations are displayed as red points and their associated catchments

as green or orange areas, depending on whether they are used to

calibrate or validate the model. The four main climatic regions

of Switzerland – the Jura mountains, Plateau, Northern Alps and

Southern Alps – are displayed in different colours. The numbering

corresponds to Table 3.

The Alpine region of Switzerland is typically subdivided

into its northern and southern parts, based on their difference

in climate. The Southern Alps are influenced by Mediter-

ranean weather, implying warmer winters and more precip-

itation in autumn than in the Northern Alps. The hydro-

logical regimes of the catchments in the Northern Alps are

strongly related to altitude. The month in which the peak of

discharge is observed ranges from May for low-altitude wa-

tersheds to July–August for catchments partially covered by

glaciers. Moreover, the ratio of annual maximum to annual

minimum discharge increases with altitude. Similar hydro-

logical regimes are observed in the Southern Alps, except for

a second discharge peak in autumn due to rainfall (Aschwan-

den and Weingartner, 1985). As seen in Fig. 1, only three un-

perturbed catchments could be found in the Northern Alps,

while five are located in the Southern Alps.

All in all, 10 of the 16 hydrological regimes identified

by Aschwanden and Weingartner (1985) in Switzerland are

present among the 29 selected catchments (see Table 3). The

surface area distribution is quite large, with catchments rang-

ing from 3.31 km2 (Rietholzbach at Mosnang) to 392 km2

(Broye at Payerne). The mean altitudes of the watersheds

also span a wide range of values. Few catchments are par-

tially covered by a glacier, with only two of them having a

glacier cover fraction over 10 %.

2.2 Stream temperature data

The stream temperature data which are used in the

present study were provided by the Swiss Federal Of-

fice for the Environment (FOEN). Advantage is taken
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of the present publication to describe this new data set,

which is freely accessible for research purposes at the

following address: http://www.bafu.admin.ch/wasser/13462/

13494/15076/index.html?lang=en. A map displaying the po-

sition of all available hydrological stations which measure

stream temperature can also be found on the website of the

FOEN (http://www.hydrodaten.admin.ch/en/messstationen_

temperatur.html).

The FOEN operates an automatic network of stream gaug-

ing stations, continuously measuring water level and dis-

charge at more than 180 locations in Switzerland. Water

level is recorded using an ultrasonic distance sensor and con-

verted into discharge values through a rating curve adapted

each year. The water level values are validated against the

measurements of a second instrument – a pressure probe –

and rejected in case the difference between the two values

is greater than 2 cm. A limited number of gauging stations

has been equipped with a thermometer, the earliest starting

in 1968. This number has increased greatly since 2002, with

now more than 70 stations automatically probing water tem-

perature every 10 min (Jakob, 2010). The measurement val-

ues are automatically uploaded and displayed in real time on

the webpage of the FOEN (same page as for the map display-

ing the positions of the stations).

Among the watersheds in which temperature is monitored,

25 have been identified in the present study as being little af-

fected by anthropogenic activities. In order to complete this

data set, the temperature and discharge measurements of four

additional gauging stations were obtained from the Depart-

ment for Construction, Transport and Environment of Canton

Aargau (see Table 3). The period in which water temperature

was measured by each station is also indicated in Table 3.

The temperature data are usually not quality-proofed by

the FOEN or Canton Aargau. As a validation procedure, we

performed two different tests on the data at the hourly time

step, on top of visual inspection.

a. All temperature measurements lower than 0 ◦C or

greater than 30 ◦C were removed, except for the values

between −0.5 and 0 ◦C, which were set to 0 ◦C, and the

values between 30 and 30.5 ◦C which were set to 30 ◦C.

Although the limit of 30 ◦C might be naturally reached

in shallow areas, some temperature series showed clear

evidence that such temperature was recorded as a result

of the sensor being out of water. As a consequence, it

was decided to remove all data points above 30 ◦C, po-

tentially discarding correct data.

b. The temperature variation between consecutive time

steps was checked to remain within physical bounds.

In particular, it was verified that temperature varied by

more than 0.01 ◦C over 5 h, but less than 3 ◦C within

1 h. Constant temperature values could result from a

defect in the sensor, but also from the fact that the

hourly values had been replaced with their daily mean in

some cases. In order to distinguish between the two, the

present quality control procedure was performed semi-

manually.

After quality control, the hourly data were aggregated into

monthly mean values.

2.3 Meteorological data

The two statistical models described in Sect. 3 use monthly

mean air temperature and incoming solar radiation as pre-

dictor variables. Data for these variables were obtained from

the Swiss Meteorological Office (MeteoSwiss), which pro-

vides free access to them for research purposes. For each

one of the selected catchments described in Sect. 2.1, the air

temperature and incoming solar radiation values measured

by all the meteorological stations located at less than 20 km

from the catchment outlet were collected. In case fewer than

three stations could be found within a 20 km radius, data

from the three closest meteorological stations were retained.

The value of 20 km was chosen so as to ensure that data inter-

polations would remain representative of the climatic condi-

tions at the catchment outlet, while being based on three sta-

tions at least. In fact, 27 of the 29 selected catchments are

entirely contained within the disk of radius 20 km centered

on their respective outlet point (not shown). As such, the col-

lected meteorological data can actually be considered as rep-

resentative for the entire catchments, and not just for their

outlet point.

We were provided with hourly mean data, which

we aggregated into monthly mean values. We did not

perform any quality checks on the data, since Me-

teoSwiss already follows strict quality control pro-

cedures (see http://www.meteosuisse.admin.ch/home/

systemes-de-mesure-et-de-prevision/gestion-des-donnees/

preparation-des-donnees.html; webpage only available in

German, French or Italian).

Among its network of operated meteorological sta-

tions, MeteoSwiss selected a subset of 14 stations which

are considered to be representative of the climate di-

versity in Switzerland (see http://www.meteoswiss.admin.

ch/home/climate/past/homogenous-monthly-data.html; de-

scription only available in German, French or Italian). These

stations, referred to as “reference stations” in the following,

are used by the standard statistical model to estimate the

monthly mean air temperature over the entire Swiss territory

(see Sect. 3.2).

2.4 Thermal regime classification

A preliminary study of the selected catchments was per-

formed, with the aim of classifying the rivers according to

their thermal behaviour. This classification was intended to

be used later in order to investigate whether the performance

of the models was affected by the river thermal regime.

As a first attempt, we examined whether the catchments

could be classified based on the shape of their stream tem-
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Figure 2. Classification of the thermal regimes of the selected

catchments. Streams impacted by groundwater infiltration are

shown in green, the proglacial stream in blue and the thermally

climate-driven streams in orange. (a) Normalized monthly mean

stream temperature curves over 3 consecutive years (2010–2012);

all curves are z scored independently each year. (b) Slopes and

intercepts of the regression lines fitted to the stream–air tempera-

ture points of the respective catchments. All points with negative

air temperature values have been discarded prior to fitting. The bars

indicate the standard error estimates.

perature curve. To this end, we z scored (i.e. standardized)

the monthly mean stream temperature values in each water-

shed similarly to Garner et al. (2014). However, as observed

by these authors, we could identify only one single thermal

regime (Fig. 2a). Only two catchments among the 29 did not

to present the same thermal regime as the others, namely

those labelled as 5 and 14 in Table 3.

As an alternative approach, we tested whether the charac-

teristics of the stream–air temperature curve could be used

to characterize the thermal regime of the catchments. For

this purpose, monthly mean stream temperature was linearly

regressed against monthly mean air temperature, excluding

the points with negative air temperature values (e.g. Kelle-

her et al., 2012). Based on the values of the slope and in-

tercept of this relationship, three groups of catchments could

be clearly identified (Fig. 2b). The first group contains the

watersheds in which a significant portion of discharge origi-

nates from deep aquifer infiltration (watersheds 9 and 14 in

Table 3, labelled as “groundwater-fed streams” in Fig. 2b).

This group is characterized by low slope and high intercept

values, as reported by many studies (e.g. Caissie, 2006; Webb

et al., 2008). The second group of watersheds corresponds to

the high-altitude basins with more than 50 % glacier cover.

Both the slope and intercept of the stream–air temperature

relationship are small for the members of this group, which

is actually composed of only one catchment (watershed 5

in Table 3, denoted as “proglacial” in Fig. 2b). The vast

majority of the watersheds do not fall into any of the two

aforementioned groups. These catchments, denoted as “ther-

mally climate-driven”, are characterized by relatively low in-

tercept and high slope values; i.e. their stream temperature is

strongly correlated with air temperature.

Because of the predominance of the thermally climate-

driven streams, only the latter will be considered for the test-

ing of the physics-inspired and standard regression models.

The inclusion of the groundwater-dominated streams in the

test set would require the amount of groundwater discharging

into the stream to be estimated. We tested several methods,

including the derivation of the baseflow index from discharge

measurements (e.g. Eckhardt, 2005; van Dijk, 2010) or from

the TOPMODEL topographic index (e.g. Ducharne, 2009).

However, none of the investigated techniques succeeded in

predicting a larger baseflow index for the catchments labelled

as “groundwater-fed” as compared to the others (not shown).

Similarly, the consideration of the proglacial streams would

imply the glacier cover fraction being included in the models.

This addition of one calibration parameter was not consid-

ered justified given that this group contains only one catch-

ment. In total, 26 catchments were used for the calibration

and validation of the models, namely all those listed in Ta-

ble 3 except watersheds 5, 9 and 14.

3 Formulations of the stream temperature models

The new physics-inspired statistical model for stream tem-

perature prediction is derived in the following subsection.

The standard statistical model used for comparison is pre-

sented in Sect. 3.2.

3.1 Physics-inspired statistical model

As mentioned above, the physics-inspired stream tempera-

ture model presented in this paper is based on the analyt-

ical solution to the stream energy-balance equation. This

topic has been investigated extensively in the literature (e.g.

Edinger et al., 1968; Theurer et al., 1984; Gosink, 1986;

Polehn and Kinsel, 2000; Toffolon et al., 2010), although

used only once for stream temperature prediction in un-

gauged basins (Bogan et al., 2003). In order to analytically

solve the energy-balance equation, all studies relied on the

linearization of the heat flux φa at the air–water interface as

a function of stream temperature T : φa =−k(T −Te). Some
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of them assumed the heat transfer coefficient k to be con-

stant and used prescribed functions of time, space or both to

express the equilibrium temperature Te (e.g. Gosink, 1986;

Polehn and Kinsel, 1997; Daly, 2005). Other studies derived

analytical formulations for k and Te based on the physical

expressions of the heat fluxes occurring at the stream–air in-

terface (e.g. Edinger et al., 1968; Bogan et al., 2003; Caissie

et al., 2005; Bustillo et al., 2014). While a minority of authors

considered the temperature distribution to be spatially homo-

geneous (Edinger et al., 1968; Caissie et al., 2005; Bustillo

et al., 2014), most of them assumed the stream to be in a

steady state or, equivalently, the stream celerity to be con-

stant. In addition, they all assumed the river width to re-

main constant along the stream so as to analytically solve the

energy-balance equation. Very few studies accounted for the

heat exchange with the stream bed or the heat advected by

lateral inflow of water (Bogan et al., 2004; Herb and Stefan,

2011). Bogan et al. (2003) were the only authors to evaluate

their analytical expression over ungauged basins. They tested

their model in the central and eastern United States, since this

region has a topography flat enough for a meteorological sta-

tion located even at more than 100 km from a given point

to be still representative of the climate at that point. Their

work is therefore hardly transferable to Switzerland, where

the mountainous landscape prevents the proper interpolation

of variables such as air humidity or wind speed, which are

required as input by the model.

3.1.1 Derivation of the analytical solution to the

energy-balance equation

Assuming a well-mixed water column and a negligible lon-

gitudinal heat dispersion, the mass and energy-balance equa-

tions along a stream reach read (adapted from Westhoff et al.,

2007)

∂A

∂t
+
∂Q

∂x
= q`, (1)

∂(AT )

∂t
+
∂(QT )

∂x
=
wφa+pφb

ρcp

+ q` T`−Q
g

cp

∂z

∂x
, (2)

where w (m), p (m), A (m2), Q (m3 s−1) and T (◦C) denote

the width, wetted perimeter, cross-sectional area, discharge

and temperature of the stream, respectively; t (s) refers to

time, x (m) to the downstream distance, z (m) to altitude, and

g (ms−2) to the gravitational acceleration. The water mass

density ρ (kgm−3) and the specific heat capacity of water

cp (J ◦C−1 kg−1) are both assumed constant. The quantities

φa (Wm−2) and φb (Wm−2) refer to the energy fluxes at the

stream–air and stream–bed interfaces, respectively. The lat-

eral heat fluxes due to the inflow of surface, fast subsurface

and slow subsurface runoffs into the stream are merged into

a single term, q` T`, where q` (m2 s−1) denotes the sum of

these three runoffs per unit stream length and T` (◦C) stands

for their mean temperature. The last term on the right-hand

side of Eq. (2) corresponds to friction, which is usually ne-

glected in stream temperature models (e.g. Sinokrot and Ste-

fan, 1993; Westhoff et al., 2007), but has been shown by Han-

nah et al. (2004) and Leach and Moore (2014) to be an im-

portant term in the energy balance of small streams during

winter.

The present study builds mainly upon the work of Theurer

et al. (1984), which is one of those considering the less re-

strictive approximations for the derivation of the solution to

Eqs. (1)–(2). Our own assumptions are the following.

i. At the timescale of the month, the stream temperature is

assumed to be in a steady state.

ii. The energy flux at the stream–air interface is expressed

as

φa = φr+ k (Ta− T ), (3)

where φr (Wm−2) denotes the net radiative heat flux, in-

corporating both the short-wave and long-wave compo-

nents. The second term on the right-hand side accounts

for both the latent and sensible heat fluxes (e.g. Polehn

and Kinsel, 1997; Toffolon et al., 2010), where the bulk

heat transfer coefficient k (Wm−2 ◦C−1) between water

and air is assumed to be constant, and Ta (◦C) refers to

the air temperature.

iii. The energy flux at the stream–bed interface is neglected;

i.e. φb = 0 (e.g. Bogan et al., 2003; Caissie et al., 2005;

Bustillo et al., 2014).

iv. The lateral inflow of water q` is assumed to be spatially

constant (e.g. Biswal and Marani, 2010; Mutzner et al.,

2013).

v. The ratio of stream width to discharge w/Q is assumed

to be spatially constant, as opposed to Theurer et al.

(1984) and Polehn and Kinsel (2000), who both as-

sumed a constant stream width. This approximation also

differs from the typical relationship used in fluvial geo-

morphology, which expresses stream width as a power-

law function of discharge with exponent ∼ 0.5 (see e.g.

Knighton, 1998). It allows for the definition of a char-

acteristic stream length Lc (m),

Lc =
cp ρQ

wk
. (4)

vi. All sources in the network are supposed to have the

same discharge, denoted as Qs in the following. This

approximation is discussed in more detail in Sect. 3.1.2.
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Using the above assumptions, the mass and energy-

balance equations simplify to Eqs. (5)–(6),

dQ

dx
= q`, (5)

dT

dx
=

1

Lc

(γ φr+ Ta− T )+
q`

Q
(T`− T )−

g

cp

dz

dx
, (6)

where γ = 1/k. The reader is referred to Appendix A for

the complete derivation of the analytical solution to these

equations. Only the final expressions for discharge Qout and

stream temperature Tout at the outlet of a catchment are re-

ported here,

Qout = nsQs+Ltotq`, (7)

Tout = ω1Ts+ω2

〈
T`
〉
L+ω3

〈
γφr+ Ta−Lc

g

cp

dz

dx

〉
L, (8)

with

ω1 = (1− η)δs, (9)

ω2 = ηδ`, (10)

ω3 = 1−ω1−ω2. (11)

In the above equations, Ltot and ns correspond to the to-

tal length of the river network and the number of sources

in the catchment, respectively. The operator
〈
·
〉
L refers to

the distance-weighted average; it computes the average of its

operand over the entire stream network using a weight equal

to exp(−d/Lc), where d denotes the distance to the catch-

ment outlet. This operator gives much more emphasis to the

points located near to the catchment exit. It should be noted

that the spatial extent of the area over which the average is

computed is controlled by the characteristic length Lc: the

smaller Lc, the smaller the contributing area. The quantity Ts

appearing in Eq. (8) denotes the weighted average of water

temperature at the network sources. The latter are weighted

by a factor exp(−ds,i/Lc), where ds,i is the distance along

the stream between the ith source point and the catchment

outlet. The weights ω1, ω2 and ω3 are all in the interval [0,1].

In Eqs. (9)–(10), the factor η refers to the fraction of dis-

charge at the catchment outlet originating from lateral inflow

of water along the stream network – i.e. excluding the frac-

tion coming from the sources,

η =
q`Ltot

Qout

= 1−
nsQs

Qout

. (12)

The two factors δs and δ` are defined as

δs =
1

ns

ns∑
i=1

e−ds,i/Lc , (13)

δ` =
Lc

Ltot

nr∑
k=1

e−dk/Lc
(
1− e−Lk/Lc

)
, (14)

where nr denotes the number of reaches in the stream net-

work, dk the streamwise distance between the downstream

point of stream reach k and the catchment outlet, and Lk the

length of stream reach k. The factor δs corresponds to the

average of the weight exp(−d(x)/Lc) over all the network

sources, and the factor δ` refers to the average of the same

weight over the set of all stream reaches in the catchment. It

follows that both δs and δ` decrease roughly exponentially as

a function of the network length.

Equation (8) expresses stream temperature as a linear

function of air temperature, the slope of the regression line

between the two being equal to ω3 = 1−ω1−ω2. Assuming

η to vary only slightly along the network, it can be seen in

Eqs. (9) and (10) that ω1 and ω2 decrease roughly exponen-

tially with the stream network length. As a consequence, the

present model predicts ω3 to tend towards 1 as the catchment

size increases, a fact which has been observed at many loca-

tions (e.g. Ozaki et al., 2003; Ducharne, 2008; Kelleher et al.,

2012; Chang and Psaris, 2013; Segura et al., 2014).

The present expression for Tout differs from those reported

previously in the literature in at least two aspects (see Sect. 1

for a review of the analytical solutions to the energy-balance

equation published to date). First, the terms on the right-hand

side of Eq. (6) were not assumed to be spatially homoge-

neous when integrating them. This explains the presence of

the spatial averaging operator
〈
·
〉
L in Eq. (8), which in turn

translates the fact that stream temperature is not impacted by

local conditions only. This operator has already been used for

the computation of predictor variables in regression-based

stream temperature models (Isaak et al., 2010; Hill et al.,

2013), but never in association with analytical solutions to

the energy-balance equation. Second, the source and lateral

inflow terms have not been neglected. These two terms are

weighted by the factors ω1 and ω2 in Eq. (8), respectively,

and tend to decrease exponentially with the stream length

(see discussion above). Although negligible in large catch-

ments, they might be of the same order of magnitude as the

heat exchange term in small watersheds. Only a few studies

relying on an analytical expression for stream temperature

modelling have considered the lateral inflow term to date

(Bogan et al., 2004; Herb and Stefan, 2011), and none has

retained the source term.

As noted above, the extent of the zone over which
〈
·
〉
L av-

erages its operand is controlled by the characteristic length

Lc. Given that this length is a function of the river discharge-

to-width ratio Q/w (see Eq. 4) and that the stream celer-

ity is assumed here to be constant, Lc is approximately pro-

portional to the water height. Its value should therefore be

expected to change over the course of the year. Based on a

formula similar to Eq. (4), Herb and Stefan (2011) have es-

timated Lc to vary between 3 and 45 km for discharge val-

ues between 0.4 and 5.8 m3 s−1 in the case of the Vermillion

River in Minnesota. As most of the catchments considered

in the present study have discharges contained within this

range, we should expect a marked variation in the values of

Lc both during the course of the year and across catchments.

However, since the characteristic length will be treated as
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a calibration parameter here (see Sect. 3.1.2), only its sea-

sonal variability will be investigated. A single value will be

assumed in each season for all the catchments (see Sect. 4),

for otherwise Lc would have to be calibrated independently

for each catchment, which would prevent prediction in un-

gauged basins. We acknowledge this as a limitation of our

model.

3.1.2 Parametrization of the unknown terms

Equation (8) contains several unknown quantities. The pro-

cedure used to calculate their respective values is detailed

below.

The channel slope dz/dx is computed along the cen-

tre line of each stream. A vector representation of the

centre lines was extracted from a land cover map at

scale 1 : 25 000 (for more information on this map, see

http://www.swisstopo.admin.ch/internet/swisstopo/en/

home/products/maps/national/25.html). This map was over-

laid with a digital elevation model of Switzerland with 2 m

horizontal resolution produced by the Swiss Federal Office

of Topography (see http://www.swisstopo.admin.ch/internet/

swisstopo/en/home/products/height/swissALTI3D.html) in

order to extract the altitude of each point. As an alternative

approach, a geomorphological analysis of the stream wa-

tersheds could have been performed so as to automatically

extract the stream networks. However, it was observed that

the results of this analysis did not match with the land cover

map in some basins (not shown).

The monthly mean air temperature Ta along the streams is

computed based on the values measured by the neighbouring

meteorological stations (see Sect. 2.3). Within each catch-

ment i, air temperature Ta,i is assumed to be a linear function

of altitude only,

Ta,i(z)= aT ,i(z− zi)+ bT ,i , (15)

where zi (m) refers to the altitude of the gauging station. The

lapse rate aT ,i (◦C m−1) is computed each month separately

by regressing the air temperature measurements of the neigh-

bouring meteorological stations against the station altitudes.

In case the coefficient of determination R2 of the regression

line is lower than 0.6, aT ,i is set equal to 0. The intercept

bT ,i (◦C) is computed each month as the inverse-distance-

weighted average of the same air temperature measurements,

which are first corrected for the altitude effect by virtually

transferring them to altitude zi using the lapse rate aT ,i .

The quantity γφr, which accounts for the effect of the net

radiation heat flux at the air–water interface, cannot be read-

ily computed based on the available data. As a matter of fact,

long-wave radiation and reflected short-wave radiation mea-

surements are performed by MeteoSwiss at a few locations

only. Incoming short-wave radiation φisw (Wm−2), on the

other hand, is a commonly measured variable which can be

interpolated along the stream networks. To this end, it is as-

sumed that the incoming short-wave radiation φisw,i in each

catchment i is a function of altitude only,

φisw,i(z)= aφ,i(z− zi)+ bφ,i , (16)

where the lapse rate aφ,i (Wm−3) and the intercept

bφ,i (Wm−2) are computed similarly to aT ,i and bT ,i in

Eq. (15). An attempt is made to correct the values computed

using Eq. 16 in order to account for riparian shading. As dis-

cussed in Sect. 1.5 above, very few spatial data sets exist for

riparian shading, which in practice often has to be estimated

using proxy variables. In the present case, riparian shading

at a given stream point is approximated based on the stream

orientation θ and riparian forest cover ff at that point. Using

the land cover map at scale 1 : 25 000 mentioned above, θ is

computed as the cosine of the angle between north and the

stream flow direction; it is a measure of northing, i.e. values

close to 1 indicate a catchment that is oriented towards north

and values close to −1 a catchment that is south-oriented.

The riparian forest cover ff is defined here as the fraction of

the riparian zone which is covered with forests according to

the land cover map. As the extent of the riparian zone affect-

ing stream temperature is unclear (Moore et al., 2005), the

forest cover fraction is computed over riparian buffers with

different widths: 25, 50 and 100 m on each side of the centre

line of the streams (total buffer widths are 50, 100 and 200 m,

respectively). The map does unfortunately not allow for the

distinction between coniferous and deciduous forests. In ad-

dition to θ and ff, topographical shading fs is also computed

in order to correct the incoming solar radiation values esti-

mated from Eq. (16). fs is expressed at each point along the

streams as a value between 0 and 1, 1 indicating complete

shading. It is derived from the above-mentioned 2 m digital

elevation map of Switzerland at nine different hours of day

time – corresponding to the fractions 0.1–0.9 of the day-time

period – on the 15th day of each month of the year. These

values are then averaged at each grid cell and in each sea-

son to obtain the spatial distribution of fs. Since shading by

topography and by the riparian forest does not only affect

incoming solar radiation, but also incoming long-wave radi-

ation, it was decided not to use the variables θ , ff and fs to

directly modify the values of φisw. Instead, it is the unknown

term γφr which is approximated as a linear combination of

φisw, θ , ff and fs:

γφr = aφ,iswφisw+ aφ,sfs+ aφ,θθ + aφ,fff+ bφ . (17)

As discussed in Sect. 1.5, the choice of a linear relationship

is motivated by our wish to keep the model simple and by

our ignorance of the actual form of the function linking γφr

to the above-mentioned predictor variables. A linear relation-

ship also significantly simplifies the computation of the dis-

tance average of γφr using the operator
〈
·
〉
L. Equation (17)

requires the calibration of five unknown coefficients, namely

{aφ,x}x=isw,s,θ,f and bφ . In order to limit the number of model

parameters, this expression is not directly used as is, but more

parsimonious formulations are evaluated instead. All possi-

ble sub-expressions involving any combination of either one
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or two of the predictor variables {φisw,θ,ff,fs} is consid-

ered for approximating γφr. It should be mentioned that the

choice to consider expressions with at most two terms (plus

the intercept) is arbitrary and only introduced to avoid equifi-

nality issues (Beven, 1993). In total, 11 different models are

tested for γφr – including the constant expression with only

bφ as calibration parameter.

The two weights ω1 and ω2 cannot be readily estimated

from Eqs. (9) and (10). While the values of the factors δs

and δ` can be easily derived from the vector representa-

tion of the stream network described above, the parameter

η requires additional assumptions. It should be remembered

that this parameter corresponds to the fraction of the out-

let discharge which originates from lateral inflow. Assuming

a typical power-law relationship between drainage area and

discharge (e.g. Mutzner et al., 2013), η could in principle

be approximated as the ratio between the area Anet drained

by the network (excluding the area drained by the sources)

and the total catchment area Atot, raised to some power α:

η ∼ (Anet/Atot)
α . However, the computation of Anet would

require a geomorphological analysis, which was discarded

based on the discrepancy between the stream network pre-

dicted by this analysis and the observed one (see above).

As alternative methods, we consider two different techniques

for estimating η. The simplest approach assumes a constant

single value for η, calibrated over all catchments. The sec-

ond approach relies on the analytical expression for η pre-

sented in Eq. (12), in which the ratio Qs/Qtot is replaced

with (As/Atot)
α:

η = 1− ns

(
As

Atot

)α
. (18)

The calibration parameters of this second method correspond

to the area As drained by a single source and the exponent α.

In order to compute Ts and
〈
T`
〉
L in Eq. (8), two different

methods for the estimation of the source and lateral inflow

temperatures are considered. In a first approximation, these

two temperatures are assumed to be both constant and equal.

The second method considers them to be linearly related to

air temperature as measured at their respective altitudes. In

other words, it expresses the temperature Ts,i of each source

i = 1. . .ns and the lateral inflow temperature T`(z) at any

point with altitude z along the network as

Ts,i = awTa(zs,i)+ bw, (19)

T`(z)= awTa(z)+ bw, (20)

where zs,i (m) denotes the altitude of source i, and

aw (◦C ◦C−1) and bw (◦C) are two parameters to be calibrated

over the set of all catchments. Notice that the same slope aw
and intercept bw are used to derive both Ts,i and T` from air

temperature, hereby assuming that the source and lateral in-

flows originate from the same hydrological processes. More-

over, since these two parameters are the same for all catch-

ments, it is implicitly supposed that the ratio of surface runoff

to subsurface runoff is the same in all watersheds. As dis-

cussed in Sect. 2.4, this requires catchments to be classified

by hydrological regime before aw and bw can be calibrated

separately for each regime. In Eqs. (19)–(20), the monthly

mean air temperature is computed in each catchment using

Eq. (15).

The distance average of variables T`, γφr, Ta and dz/dx

are computed by discretizing the operator
〈
·
〉
L over the stream

segments,

〈
f
〉
L =

∑
k∈0e

−(dk+Lk/2)/Lc Lk fk∑
k∈0e

−(dk+Lk/2)/Lc Lk
, (21)

where fk denotes the unweighted mean value of variable f

along stream segment k; the other quantities have been de-

fined previously in Sect. 3.1.1. Except for the riparian forest

cover ff, which is derived over buffers of widths 25, 50 and

100 m, the unweighted means of all other quantities (namely

φisw, fs, Ta and dz/dx) along each stream segment are com-

puted over a 20 m wide buffer centered around the centre

line of the segment, as extracted from the vector represen-

tation of the stream network at scale 1 : 25 000 (see above).

The value of 20 m is considered to be typical for the width of

the streams investigated in the present study; although only

this value has been tested, it is expected to have little im-

pact on the computed averages. It should be noted that the

expressions for
〈
Ta

〉
L and

〈
φisw

〉
L both reduce to linear func-

tions of the distance-weighted average of altitude along the

stream network
〈
z
〉
L as per Eqs. (15) and (17). The length

Lk of stream reach k and the distance dk between the down-

stream end of reach k and the catchment outlet are derived

from the vector map of the stream network.

Replacing the terms in Eq. (8) with their above expres-

sions, the stream temperature model reads

Tout = (1− η)δs

(
awTa+ bw

)
+ ηδ`

(
aw
〈
Ta

〉
L+ bw

)
+ (1− δs− ηδs− ηδ`)

〈
Teq

〉
L, (22)

where

Teq = aφ,isw

〈
φisw

〉
L+ aφ,s

〈
fs

〉
L+ aφ,θ

〈
θ
〉
L

+ aφ,f
〈
ff

〉
L+

〈
Ta

〉
L−Lc

g

cp

〈 dz
dx

〉
L+ bφ . (23)

The calibration parameters of the model are listed in Table 2.

When testing a constant parametrization for the source and

lateral inflow temperatures, aw should be set to 0. Similarly,

at least two of the coefficients {aφ,x}x=isw,s,θ,f are assumed

equal to 0, as per the parametrization of the radiation term

discussed above. Thus, between three and eight parameters

must be calibrated, depending on the methods used to ap-

proximate the respective unknown variables in Eq. (8). Ad-

vantage is taken of the fact that each parameter can be inter-

preted from a physical point of view to restrict its associated

calibration range (see Table 2). For example, η is imposed
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Table 2. Calibration parameters of the physics-inspired statistical model.

Parameter Defined in Units Calibration range Physical constraints

aw Eqs. (19)–(20) (◦C◦C−1) Chosen so as to constrain Ts,i and T` to the range 0–25 ◦C Must be positive

bw (◦C) None

aφ,isw Eq. (17) (◦Cm2 W−1) Chosen so as to constrain γφr to the range −20–20 ◦C Must be positive

aφ,s (◦C) Must be negative

aφ,θ (◦C) Must be negative

aφ,f (◦C) None

bφ (◦C) None

η Eqs. (9)–(10) (–) 0–1 None

As Eq. (18) (m2) Chosen so as to constrain η in the range 0–1 Must be positive

α (–) 0–3 None

Table 3. Physiographic properties of the 29 selected hydrological catchments in Switzerland. The three watersheds indicated in bold are not

used for the model evaluation.

Basin Name Basin Gauging station Mean basin Glacier Hydrological Temperature measure- Data

number area (km2) altitude (m) altitude (m) cover (%) regimea ment period providerb

1 Broye at Payerne 392.0 441 710 0 Pluvial inferior 1976–2012 FOEN

2 Sitter at Appenzell 74.2 769 1252 0.1 Transition nival 2006–2012 FOEN

3 Murg at Wängi 78.0 466 650 0 Pluvial inferior 2002–2012 FOEN

4 Gürbe at Belp, Mülimatt 117.0 522 849 0 Transition pluvial 2007–2012 FOEN

5 Massa at Blatten, Naters 195.0 1446 2945 65.9 Glacial 2003–2012 FOEN

6 Sense at Thörishaus, Sensematt 352.0 553 1068 0 Pre-Alpine nivo-pluvial 2004–2012 FOEN

7 Allenbach at Adelboden 28.8 1297 1856 0 Alpine nival 2002–2012 FOEN

8 Rosegbach at Pontresina 66.5 1766 2716 30.1 Glacial 2004–2012 FOEN

9 Grosstalbach at Isenthal 43.9 767 1820 9.3 Alpine nival 2005–2012 FOEN

10 Goldach at Goldach, Bleiche 49.8 399 833 0 Pluvial superior 2005–2012 FOEN

11 Dischmabach at Davos, Kriegsmatte 43.3 1668 2372 2.1 Glacio-nival 2004–2012 FOEN

12 Langeten at Huttwil, Häberenbad 59.9 597 766 0 Pluvial inferior 2002–2012 FOEN

13 Riale di Roggiasca at Roveredo 8.1 980 1710 0 Meridional nivo-pluvial 2003–2012 FOEN

14 Riale di Calneggia at Cavergno, Pontit 24 890 1996 3.0 Meridional nival 2002–2012 FOEN

15 Poschiavino at La Rösa 14.1 1860 2283 0.4 Meridional nival 2004–2012 FOEN

16 Mentue at Yvonand, La Mauguettaz 105.0 449 679 0 Jurassian pluvial 2003–2012 FOEN

17 Necker at Mogelsberg, Aachsäge 88.2 606 959 0 Pluvial superior 2007–2012 FOEN

18 Grossbach at Gross, Säge 9.1 940 1276 0 Pre-Alpine nivo-pluvial 2003–2012 FOEN

19 Rietholzbach at Mosnang, Rietholz 3.3 682 795 0 Pluvial superior 2002–2012 FOEN

20 Gürbe at Burgistein, Pfandersmatt 53.7 569 1044 0 Pre-Alpine nivo-pluvial 2007–2008 FOEN

21 Biber at Biberbrugg 31.9 825 1009 0 Pluvial superior 2003–2012 FOEN

22 Sellenbodenbach at Neuenkirch 10.5 515 615 0 Pluvial superior 2003–2012 FOEN

23 Alp at Einsiedeln 46.4 840 1155 0 Transition pluvial 2003–2012 FOEN

24 Riale di Pincascia at Lavertezzo 44.4 536 1708 0 Meridional nivo-pluvial 2004–2012 FOEN

25 Rom at Müstair 129.7 1236 2187 0.1 Meridional nival 2003–2012 FOEN

26 Sissle at Eiken 123.0 314 529 0 Jurassian pluvial 2004–2012 Aargau

27 Bünz at Othmarsingen 110.6 390 526 0 Pluvial inferior 2005–2012 Aargau

28 Wyna at Unterkulm 92.1 455 643 0 Pluvial inferior 2005–2012 Aargau

29 Talbach at Schinznach-Dorf 14.5 358 559 0 Jurassian pluvial 2009–2012 Aargau

a According to the classification by Aschwanden and Weingartner (1985).
b FOEN: Swiss Federal Office for the Environment, Aargau: Department for Construction, Transport and Environment of Canton Aargau.

to adopt a value between 0 and 1 as per Eq. (12), and only

positive values are considered for aφ,isw based on the fact

that solar radiation is contributing positively to the net radi-

ation heat flux. Moreover, six different values are tested for

the characteristic length Lc used in the definition of
〈
·
〉
L: 1,

2, 4, 8, 16 and 32 km (see Sect. 4.2). All possible combina-

tions of the different parametrizations of the model terms are

tested for each one of these values of Lc. The model associ-

ated with the lowest value of the modified Akaike informa-

tion criterion (AICc) is considered to be the best one among

the tested set (e.g. Burnham and Anderson, 2002). As men-

tioned in Sect. 3.1.1, the model is calibrated in each season

separately to account for the fact that the value of the param-

eter Lc varies over the year.

3.2 Standard regression model

In order to assess its performances, the physics-inspired sta-

tistical model described by Eq. (22) is compared with a more

classical regression model which we developed based on a

combination of some of the standard statistical approaches

reviewed in Sect. 1. The regression model takes advantage

of the fact that most stream temperature curves have a simi-

lar shape (see Sect. 2.4). This shape is first estimated by the

model based on air temperature, before being mapped to the
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respective stream temperature curves of the catchments using

a linear transformation.

The model assumes all streams to have the same z scored

(i.e. standardized) temperature T̂ (–). The latter is related to

the monthly mean temperature Ti of each individual catch-

ment i through (see e.g. Garner et al., 2014)

Ti = σi T̂ + T i , (24)

where T i (◦C) and σi (◦C) correspond to the annual mean

and standard deviation of monthly mean stream tempera-

ture in catchment i, respectively. These two quantities are

estimated each year independently using multi-linear regres-

sion (MLR) models. Although more sophisticated techniques

could have been used, Wehrly et al. (2009) and Daigle et al.

(2010) showed that MLR performs at least as well as several

more complicated statistical methods for stream temperature

prediction. The MLR models were constructed using sim-

ilar predictor variables as in the physics-inspired statistical

model, namely the annual mean and standard deviation of

both air temperature and incoming short-wave radiation, the

riparian forest cover fraction, stream channel slope, stream

orientation, the difference in topographical shading between

summer and winter, the number of sources in the network

and the watershed area. All multi-linear models based on

any possible subset of these variables were tested, with a

maximum number of terms per model arbitrarily fixed to

six. This limitation was introduced in order to avoid over-

parametrization, but also to ensure that the number of pa-

rameters in the final standard regression model was about the

same as in the physics-inspired model, hereby guaranteeing

a more even comparison between the two. Multicollinearity

issues were avoided by discarding MLR models whose vari-

ance inflation factor (VIF) exceeded 5. Each predictor vari-

able was distance-averaged over the stream networks using

the operator
〈
·
〉
L, as in the case of the physics-inspired statis-

tical model. Different values of Lc were considered when ap-

plying this operator as per Eq. (21): 1, 2, 4, 8, 16 and 32 km.

The best predicting MLR models for T i and σi were selected

based on AICc.

In Eq. (24), the z scored stream temperature is computed

each month based on a non-linear relationship with air tem-

perature,

T̂ = µ+
α−µ

1+ exp
(
− κ

(
T̂a−β

)) , (25)

where µ (◦C), α (◦C), β (◦C) and κ (◦C−1) are coefficients

obtained through ordinary least squares regression, and T̂a (–)

denotes the mean z scored air temperature over Switzerland.

T̂a is obtained by averaging the z scored measurements of

the 14 MeteoSwiss reference meteorological stations (see

Sect. 2.3),

T̂a =
1

14

14∑
k=1

Ta,k − T a,k

σa,k

. (26)

In the above equation, Ta,k (◦C) denotes the monthly mean air

temperature measured at reference station k, and T a,k (◦C)

and σa,k (◦C) refer to the annual average and standard devia-

tion of Ta,k computed each year independently, respectively.

In summary, the standard regression model proceeds as

follows to estimate stream temperature in an ungauged basin:

(a) it first computes the mean z scored air temperature over

Switzerland according to Eq. (26), based on the measure-

ments of 14 meteorological stations, (b) it then uses T̂a to

estimate the z scored stream temperature in any catchment

as per Eq. (25), and finally (c) it converts T̂ to the actual

stream temperature using Eq. (24), where the scaling coeffi-

cients T i and σi are estimated for the catchment of interest

using MLR models. These different steps will be illustrated

in more detail in Sect. 4.4.

4 Model evaluation

In order to rigorously evaluate the performance of the two

models described in the previous section, 5 of the 26 selected

catchments were removed from the data set to create an in-

dependent validation set (watersheds 3, 6, 11, 13 and 27, dis-

played in orange in Fig. 1). Caution was given to single out

basins with different size, mean elevation and geographic lo-

cation. Among the four climatic regions of Switzerland, only

the Jura could not be represented in the validation set, given

that only 1 station (number 26) among the 26 available was

located in this area. A bootstrap on the validation stations was

not possible because of too high computational requirements.

Indeed, Burnham and Anderson (2002) recommend using at

least 10 000 bootstrap samples, which led to a prohibitively

high number of model evaluations in our case.

The measurement time period is also split into a calibra-

tion (2007–2012) and validation (all dates before and includ-

ing 2006) period. Only the measurements performed by the

calibration stations – whose drainage area is marked in green

in Fig. 1 – during the period 2007–2012 are used to calibrate

the models. Four different validation sets can be formed with

the remaining station months.

1. The data set containing the measurements of the valida-

tion stations during the calibration period. This set can

be used to evaluate the ability of the models to make

predictions in ungauged basins.

2. The data set containing the measurements of the calibra-

tion stations during the validation period. This set will

be used to evaluate the precision of the models when

predicting stream temperature in past or future years.

3. The data set formed by the measurements of the valida-

tion stations during the validation period. This set serves

to evaluate the performance of the models when predict-

ing stream temperature both in ungauged basins and in

ungauged years.
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4. The data set corresponding to the union of all three pre-

vious validation sets, which may be used to obtain a syn-

thetic evaluation of the precision of the models.

The complete data set is almost equally subdivided into its

calibration and validation parts, with the former containing

1223 station months and the validation sets 1–4 regrouping

360, 705, 204 and 1269 station months, respectively.

As mentioned in Sect. 3.1, the value of the characteris-

tic stream length Lc is expected to change over the course

of the year. In order to ease capturing of this variability,

the physics-inspired statistical model is calibrated over each

season separately. As such, the calibration and validation

data sets are each subdivided into four groups, correspond-

ing to winter (January–March), spring (April–June), summer

(July–September) and autumn (October–December), respec-

tively. Each one of these subgroups contains approximately

one-fourth of the station months originally belonging to the

parent group. The standard regression model is calibrated

over all seasons at once, but is evaluated in each season sep-

arately so as to investigate a potential effect of the period of

the year on its precision.

Since the physics-inspired model expresses stream tem-

perature as a linear function of air temperature, it cannot re-

produce the asymptotic behaviour of the former as the latter

drops below 0 ◦C. Consequently, data points associated with

negative air temperature values are removed from the data set

before calibration (Kelleher et al., 2012). When evaluating

the model over the validation sets, all stream temperatures

predicted to be negative are replaced with 0 ◦C values.

In the following, the best seasonal formulations of the

physics-inspired model are presented first. The precision of

this model is then evaluated, and the influence of the stream

network resolution on the model results investigated. Finally,

comparison is made with the standard regression model. All

the results presented in this section will be discussed and

analysed in Sect. 5.

4.1 Model formulations

As mentioned in Sect. 3.1.2, the different possible formu-

lations of the physics-inspired statistical model are ranked in

each season according to their respective AICc value. AICc is

preferred here over the classical definition of the Akaike in-

formation criterion (AIC) since it includes a correction term

for finite-sized data sets (Burnham and Anderson, 2002). It

should be mentioned that, following Burnham and Anderson

(2002), AICc is computed by calibrating the models not over

the calibration set only, but rather over the entire data set (i.e.

both the calibration set and validation set 4). Only in a sec-

ond time is each model calibrated over just the calibration

set, so as to evaluate its performances in terms of RMSE, R2

and bias.

Table 4 presents the best model formulations selected in

each season, ranked according to their respective Akaike

weights wi . The latter corresponds to the probability of each

model being a better descriptor of the observed data (accord-

ing to information theory) as compared to the model with

the minimum AICc value (Burnham and Anderson, 2002;

Wagenmakers and Farrell, 2004). Considering models with

wi ≤ 0.1 to be statistically insignificant, it can be observed

that only a few formulations were identified in each season as

being relevant for stream temperature prediction. The char-

acteristic stream length Lc is found to be consistent among

these formulations, with a value of 4 km in spring, summer

and autumn, and 8 km in winter, regardless of the formula-

tion.

The model selection reveals the radiation term γφr to be

preferentially expressed as a function of topographical shad-

ing fs and riparian forest cover fraction ff, or as a function

of fs alone. Among the tested buffer widths used to compute

ff, none of the three values 50, 100 or 200 m prevails sig-

nificantly over the others. The order in which they appear in

the ranked models varies depending on the season; for ex-

ample in winter, forest cover computed over a 100 m wide

buffer is expected to be a better predictor of γφr than forest

cover over a 50 m wide buffer, whereas the opposite is true

in spring. Focusing on each season separately, the linear co-

efficient associated with any given term is observed to have a

fairly constant value among the different expressions tested

for γφr. For example, the coefficient multiplying fs remains

within a narrow range (at most 1 ◦C large) in each season.

This behaviour is even more pronounced in the case of the

term associated with the source and lateral inflow tempera-

tures (Ts and T`). This term is expressed as a linear function

of air temperature, whose slope aw and intercept bw are con-

stant among the various model formulations in a given season

(see Table 4). The values of aw are observed to be rather low

independently of the period of the year, which indicates a

weak coupling between the stream source (or lateral inflow)

temperature and air temperature. Moreover, aw and bw differ

among the seasons in such a way that Ts and T` are the least

coupled to air temperature in winter and the most in summer.

The model ranking based on AICc also identified a sin-

gle expression for η in each season. This parameter is found

equal to 1 in summer and autumn, and 0 in winter. Its ex-

pression is slightly more complicated in spring, where the

selected formulation is the one based on the source drainage

area (see Sect. 3.1.2).

4.2 Model performance

The RMSE, R2 and bias of the best selected model formula-

tion in each season – i.e. the one withwi = 1 – are reported in

Table 5. Based on the results of the evaluation over validation

set 4, the model precision is observed to be rather satisfac-

tory. Its RMSE and R2 are relatively constant over the year

(about 1.3 ◦C and 0.87, respectively), except in winter where

the value of the coefficient of determination is much lower

(0.55). Similarly, the bias is small in all seasons (−0.11 to

0.14 ◦C) apart from winter (−0.47 ◦C).
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Table 4. Formulations of the physics-inspired statistical model selected in each season based on their corresponding AICc value. The Akaike

weights are denoted as wi . Only the model formulations with wi ≥ 0.1 are presented here. The widths of the buffers used to compute

the riparian vegetation cover are indicated as subscripts of the variable ff (the indicated values correspond to the total buffer widths, i.e.

accounting for both sides of the stream centre line).

Season wi Lc (km) Formulation of γφr Formulation of Ts and T` Formulation of η

Winter

1 8 γφr = aφ,sfs+ aφ,fff,100m+ bφ , Ts = awTa+ bw , η = 0 (constant)

with aφ,s = 18.2 ◦C, aφ,f =−2.9 ◦C and bφ =−12.1 ◦C with aw = 0.15 and bw = 3.1 ◦C

0.25 γφr = αφ,sfs+ bφ ,

with aφ,s = 19.4 ◦C and bφ =−14.1 ◦C

0.15 γφr = aφ,sfs+ aφ,fff,50m+ bφ ,

with aφ,s = 19.3 ◦C, aφ,f =−0.4 ◦C and bφ =−13.9 ◦C

Spring

1 4 γφr = aφ,sfs+ aφ,fff,50m+ bφ , Ts = awTa+ bw , η = 1− ns(As/Atot)
α ,

with aφ,s = 12.9 ◦C, aφ,f =−3.7 ◦C and bφ =−11.3 ◦C with aw = 0.27 and bw = 5.3 ◦C with As = 0.13 km2 and α = 1

0.86 γφr = aφ,sfs+ aφ,fff,200m+ bφ ,

with aφ,s = 13.1 ◦C, aφ,f =−3.4 ◦C and bφ =−11.6 ◦C

0.53 γφr = aφ,sfs+ bφ ,

with aφ,s = 13.1 ◦C and bφ =−12.7 ◦C

0.31 γφr = aφ,sfs+ aφ,fff,100m+ bφ ,

with aφ,s = 13.4 ◦C, aφ,f =−2.2 ◦C and bφ =−12.3 ◦C

Summer

1 4 γφr = aφ,sfs+ aφ,fff,100m+ bφ , Ts = awTa+ bw , η = 1 (constant)

with aφ,s = 13.4 ◦C, aφ,f =−0.3 ◦C and bφ =−13.0 ◦C with aw = 0.33 and bw = 6.6 ◦C

0.15 γφr = aφ,sfs+ bφ ,

with aφ,s = 13.4 ◦C and bφ =−13.1 ◦C

Autumn

1 4 γφr = aφ,sfs+ bφ , Ts = awTa+ bw , η = 1 (constant)

with aφ,s = 10.4 ◦C and bφ =−5.9 ◦C with aw = 0.25 and bw = 5.1 ◦C

0.54 γφr = aφ,sfs+ aφ,fff,100m+ bφ ,

with aφ,s = 10.0 ◦C, aφ,f =−2.8 ◦C and bφ =−4.7 ◦C

0.48 γφr = aφ,sfs+ aφ,fff,200m+ bφ ,

with aφ,s = 10.1 ◦C, aφ,f =−2.9 ◦C and bφ =−4.7 ◦C

0.4 γφr = aφ,sfs+ aφ,fff,50m+ bφ ,

with aφ,s = 10.2 ◦C, aφ,f =−2.2 ◦C and bφ =−5.1 ◦C

Regarding the different validation sets, it can be observed

in Table 5 that the model performs better when predicting

in ungauged catchments as compared to simulating past or

future years. Indeed, the RMSE values computed using val-

idation set 1 are smaller than those based on set 2, partic-

ularly in winter, autumn and summer. Similarly, the values

of R2 are higher over set 1 than over set 2, despite the fact

that the model bias is larger over the former set as com-

pared to the latter. As expected, the weakest model perfor-

mances are generally associated with validation set 3, which

contains the measurements performed by the validation sta-

tions during the validation period. The only noticeable ex-

ception is in summer, where the model evaluation over set 3

provides satisfactory results (RMSE= 1.13 ◦C, R2
= 0.90,

bias=−0.01 ◦C).

4.3 Influence of the stream network resolution

The results reported above are based on the stream net-

work geometries extracted from the land cover map at scale

1 : 25 000 (see Sect. 3.1.2). These geometries directly affect

the values of the distance-averaged predictor variables, since

the operator
〈
·
〉
L averages over the entire stream network. As

a consequence, modifying the network resolution is expected

to impact the model performance.

To test this hypothesis, two additional stream networks

with a coarser resolution than the original one were inves-

tigated. These networks were obtained by removing stream

segments with Strahler order 1, and those with Strahler or-

der 1 and 2, respectively. Through this procedure, the mean

drainage density of the 26 selected catchments decreased

from 2.1 kmkm−2 for the original network to 0.5 kmkm−2

for the coarsest one, passing through 1.0 kmkm−2 for the

intermediate-resolution network. The different model formu-

lations were evaluated over the two additional networks us-

ing the same procedure as described in the previous section.

Although the results are not reported here, it was essentially

observed that the network resolution had little influence on

the ranking of the model formulations based on AICc in each

season. Almost all selected models were associated with a

characteristic stream length Lc = 4 or 8 km, as in the case

of the original stream network. The parametrization of the

net radiation heat flux γφr was also similar to the one re-

ported in Table 4. Topographical shading and riparian forest

cover remained the two most statistically significant predic-

tors for this term, except during winter, where stream orienta-

tion appeared as a relevant variable. The values of the coeffi-

cients aw and bw were noted to vary little among the selected

model formulations in a given season. Finally, the parameter

η was preferentially expressed as a constant term. Its value
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Figure 3. Prediction error of the physics-inspired statistical model

for different resolutions of the stream network. The boxes extend

from the first to the third quartile of the error distribution. Outliers

are displayed as red dots. In each season, the network resolution

decreases from left to right: the left box corresponds to the network

with all stream reaches, whereas the central and right boxes contain

only the stream segments whose Strahler order is greater than or

equal to 2 and 3, respectively. The error values 0,−1 and+1 ◦C are

displayed as a solid grey line and two dashed grey lines.

was identified as being 0 in all seasons except summer in the

case of the intermediate-resolution stream network, whereas

its parametrization was close to the one described in Table 4

in the case of the coarser network.

As a consequence of the little influence of the network res-

olution on the model parametrization, few variations in the

model precision were observed between the three stream net-

works. As seen in Fig. 3, no clear tendency can be identified

among the residuals. At most, a small increase in the model

prediction error can be detected for the coarsest network as

compared to the first two, especially in autumn. The largest

absolute residuals are also observed to be generated by this

network. On the other hand, the strong bias previously noted

in winter is present in the case of the intermediate resolution

network, but less so in the case of the coarsest resolution one.

4.4 Comparison with the standard regression model

This section describes the characteristics of the calibrated

standard regression model first, before presenting the results

of its evaluation in a second step. Figure 4 pictures the ob-

served monthly mean stream temperature, z scored and av-

eraged over the 21 calibration stations, as a function of T̂a

over the period 2007–2012. As can be observed, the relation-

ship between these two quantities displays a small hystere-

sis effect, which can be explained by stream cooling due to

snowmelt in spring (Mohseni et al., 1998). The logistic equa-

tion introduced by Mohseni et al. (1998) is fitted to each one

of the hysteresis branches separately,

T̂ =−1.87+
4.88

1+ e−0.99·(T̂a−0.66)

(in January–June), (27)

2 1 0 1 2
T̂a [

◦ C]
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Figure 4. Non-linear relationship between the z scored stream tem-

perature T̂ and the z scored air temperature T̂a averaged over 14 ref-

erence meteorological stations. The values of T̂ are obtained by av-

eraging in each month the z scored stream temperatures measured at

the 21 calibration stations. Each point corresponds to a single month

of the calibration period 2007–2012. Months from January to July

are displayed as green crosses, and those from July to December as

blue dots. The two solid lines correspond to the respective fits of the

data points in the two year halves (see Eqs. 27–28).

T̂ =−1.86+
3.96

1+ e−1.16·(T̂a−0.06)

(in July–December). (28)

It should be noted that the parameters corresponding to the

lower and upper asymptotic values of the logistic curve are

particularly sensitive to the data points located at both ends

of the hysteresis. To limit inaccuracy errors, the temperatures

measured in January and July were used to fit both branches

of the hysteresis, as they usually correspond to the annual

extreme values. Equations (27)–(28) are those used in the

model to determine the z scored stream temperature T̂ at any

location based on T̂a (see Sect. 3.2).

The multi-linear regression models which were selected to

estimate the annual mean T i and the standard deviation σi of

stream temperature in a given year are presented in Table 6.

They correspond to the models associated with the lowest

AICc values among the tested formulations (see Sect. 3.2).

As observed in the table, the characteristic stream length used

by the operator
〈
·
〉
L to average the predictor variables over

the stream networks is significantly different in the two cases:

Lc = 4 km for the T i model, whereas Lc = 32 km for the σi
one.

Table 7 summarizes the prediction errors of the standard

stream temperature regression model when evaluated over

validation set 4 using the original stream network. Compari-

son with Table 5 reveals that its precision is greater than the

one of the physics-inspired model. Its RMSE is about 0.2 ◦C

lower, its R2 about 0.03 to 0.12 larger, and its absolute bias

0.05 to 0.20 ◦C smaller, depending on the season. However,
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Table 5. Performance of the best physics-inspired statistical model in each season (wi = 1) in terms of RMSE, R2 and bias, depending on

the validation set. The numbers between brackets refer to the different validation sets (see beginning of Sect. 4).

Season
RMSE (◦C) R2 (–) Bias (◦C)

1 2 3 4 1 2 3 4 1 2 3 4

Winter 1.34 1.34 1.58 1.38 0.68 0.40 0.52 0.55 −0.58 −0.30 −0.84 −0.47

Spring 1.51 1.29 1.57 1.40 0.87 0.90 0.86 0.88 0.24 0.02 0.36 0.14

Summer 1.07 1.47 1.13 1.31 0.91 0.84 0.90 0.87 −0.04 0.01 −0.01 −0.01

Autumn 1.16 1.22 1.47 1.25 0.89 0.87 0.84 0.87 −0.49 0.15 −0.34 −0.11

All year 1.28 1.33 1.45 1.34 0.94 0.94 0.93 0.94 −0.22 −0.03 −0.21 −0.11

Table 6. Best multi-linear regression models for the prediction of annual mean T i and standard deviation σi of the monthly mean stream

temperature in a given year. All predictor variables are averaged over the stream networks using the operator
〈
·
〉
L.

Predictand Predictors∗ (with coefficients) Lc (km)

T i (◦C) ff,25m (−1.86 ◦C), θ (0.60 ◦C), Atot (1.6× 10−3◦C km−2), 4

1fs (−4.90 ◦C), T a,i (0.75◦C ◦C−1), intercept (3.88 ◦C)

σi (◦C) |dz/dx| (6.03 ◦C), ff,25m (6.70 ◦C), θ (0.93 ◦C), 32

ns (1.6× 10−3 ◦C), 1fs (−12.8 ◦C), σa,i (0.39◦C ◦C−1),

intercept (0.34 ◦C)

∗ 1fs denotes the difference in topographical shading between summer and winter, T a,i and σa,i refer to the

annual mean value and standard deviation of air temperature in the year of interest, respectively, Atot denotes the

watershed area and |dz/dx| the channel slope. The other variables have been defined in the text.

Table 7. Performance of the standard regression model in terms of

RMSE, R2 and bias computed over the validation set 4 in each sea-

son. The stream network used to evaluate the model corresponds to

the original one derived from the map at scale 1 : 25 000.

Season RMSE (◦C) R2 Bias (◦C)

Winter 1.18 0.67 −0.27

Spring 1.06 0.93 −0.09

Summer 1.18 0.90 0.11

Autumn 1.03 0.91 0.02

All year 1.12 0.96 −0.06

its performance worsens when using the two stream networks

with coarser resolution: its yearly average RMSE increases

to 1.26 ◦C in the case of the intermediate resolution network,

and even 1.29 ◦C for the coarsest network, which is close to

the value obtained with the physics-inspired model.

5 Discussion

The formulations of the physics-inspired model selected by

AICc ranking are consistent among the different seasons. In

particular, topographical shading systematically appears to

be the strongest predictor of the net radiation heat flux γφr.

This observation is not particularly surprising in a mountain-

ous country like Switzerland, where some valleys are steep

enough for their bottom not to be illuminated by direct sun-

light for some period of the year. The basins referred to as

numbers 14 and 24 in Table 3 are examples of such water-

sheds, both having a mean catchment slope larger than 35 ◦.

Riparian forest cover fraction corresponds to the second most

important predictor for the net radiation heat flux term. It was

rather unexpected to identify this parameter as relevant dur-

ing autumn and winter, especially since more than half of

the selected catchments are mainly covered with deciduous

forests due to their relatively low mean elevation (< 1000 m).

This result has to be balanced with the fact that a given

fraction increase in riparian forest cover is predicted by the

model to have an effect on γφr about 4 to 6 times smaller

in magnitude than the same fraction increase in topographi-

cal shading. It should also be remembered that the precision

of the model is rather low in winter, hereby questioning the

validity of its parametrization in this season. Certainly more

unexpected is the absence of solar radiation among the pre-

dictors of γφr, which will be explained below. Regarding the

parametrization of the discharge fraction due to lateral water

inflow η, the model predicts the water in the stream channel

to originate principally from surface and subsurface runoff

during summer and autumn (η = 1). This partly matches

our expectations, since the fraction of discharge originating

from the sources is expected to decrease when moving down-

stream along a given network. The characteristic catchment

size defining the transition from source-water-dominated to

lateral-inflow-dominated discharge is controlled here by Lc,

which is equal to 4 km in summer and autumn. This value is
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smaller than the main channel length in more than 90 % of

the selected watersheds (not shown), hereby strengthening

our confidence in the parametrization of η during these two

seasons. On the other hand, a value of 1 for η in all catch-

ments may appear as a too simplified approach (see below).

The questioning of the parametrization of η is all the more

true in winter, where its value is predicted to be 0. Only

in spring did the model ranking select the more physically

based formulation for η, expressed as a function of the area

drained by each source. Concerning the parametrization of

the source and lateral inflow temperatures, it should be men-

tioned that the linear expression as a function of air tempera-

ture was systematically preferred over the constant term. This

certainly results from the large altitudinal range covered by

the selected catchments, which does not allow for a constant

inflow temperature to reflect the diversity of encountered cli-

matological conditions, and mainly air temperature.

As defined in Eq. (22), the physics-inspired model linearly

relates air temperature to stream temperature through the pro-

portionality coefficient ω3. The latter is compared in Fig. 5

with its actual observed value, namely the slope of the re-

gression line between the monthly mean temperature mea-

surements of the stream and air. As seen in the figure, the

model systematically overestimates the value of ω3, particu-

larly in winter and summer, where the mean bias equals 0.2.

Referring to Eq. (22), this implies that ω1 and ω2 are glob-

ally underestimated by the model, hereby indicating that the

parametrization of the factor η could possibly be improved.

As noted in Sect. 3.1.2, a more physically based expression

could be used to compute η, as long as a geomorphological

analysis of the river watersheds can be performed. This ap-

proach was not investigated here for the reasons mentioned

earlier.

The overestimation of ω3 is probably at the origin of the

fact that solar radiation is unexpectedly missing from the se-

lected expressions for the net radiation heat flux γφr (see

Table 4). Contrary to the standard regression model, the

physics-inspired model presents the advantage that the cal-

ibration range of most of its parameters can be restricted

based on physical considerations (see Table 2). An attempt

was made to remove these constraints, which resulted in in-

coming short-wave radiation being present in almost all mod-

els for γφr, but associated with a negative coefficient. It was

concluded that the unconstrained model takes advantage of

the fact that the annual cycles of air temperature and solar

radiation have a similar shape to artificially reduce the value

of air temperature by subtracting a fraction of solar radiation,

hereby compensating for the too large value of ω3. This ob-

servation argues once more in favour of a better parametriza-

tion of the factor η.

As mentioned in Sect. 4, the characteristic stream length

Lc is found to be of the order of 4–8 km regardless of the

season or the stream network resolution in the case of the

physics-inspired model. This range is in agreement with the

findings of Isaak et al. (2010) and Macedo et al. (2013). Hra-
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Figure 5. Comparison of modelled against measured slopes of the

regression line between stream and air temperatures. The panels

correspond to the different seasons: (a) January–March, (b) April–

June, (c) July–September, and (d) October–December. The bias b

corresponds to the average, in each season, of the difference be-

tween the modelled and measured regression slopes over all the se-

lected stations and years (i.e. belonging to both the calibration set

and validation set 4). The 1 : 1 line is indicated as a dashed grey

curve.

chowitz et al. (2010) and Chang and Psaris (2013) rather con-

cluded that Lc was around 1 km; however, they did not inves-

tigate values for Lc larger than 1 km. Contrary to our expec-

tations, we do not observe a marked variation of Lc across

seasons, probably due to the fact that we assumed a single

value for all the catchments. The annual cycle of Lc may

have been better captured by separately calibrating this pa-

rameter in each catchment individually, but this would have

contradicted our aim to derive a regional model. It should be

emphasized that the absence of an observed annual cycle for

Lc does not question the decision to calibrate the physics-

inspired model on a seasonal basis, since the source temper-

ature parametrization is observed to vary significantly over

the year (see Table 4).

Our model is rather equivocal regarding the width of the

riparian buffer which is relevant for the determination of

stream temperature at a given point. As a matter of fact, none

of the tested buffer widths appears to prevail over the other

ones in the retained parametrizations of γφr. This ambigu-

ity reflects the range of buffer widths used in the literature,

which extends from 30 m (e.g. Jones et al., 2006; Macedo

et al., 2013) to 200 m (e.g. Scott et al., 2002; Segura et al.,

2014). This also points to the difficulty in adequately ac-

counting for the effect of riparian vegetation using the avail-

able spatial data sets, which often lack important details such

as the distinction between deciduous and coniferous forest.

The precision of the physics-inspired model was reported

in the previous section to be rather low in January–March.

This can be explained by the fact that the non-linearity of

the stream–air temperature relationship at low air tempera-
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ture values is not captured by the model. The latter rather

simulates a sharp transition from the linear regime to a con-

stant one, since the stream temperature values predicted to be

negative are systematically replaced with 0 ◦C. This implies

a faster decrease towards 0 ◦C, which is at the origin of the

strong negative model bias in winter.

As is noticeable in Table 5, the model RMSE is larger in

spring as compared to the other seasons. This is attributable

to the fact that many of the selected watersheds are impacted

by snowmelt in spring. Since the snow cover conditions are

strongly variable both spatially and temporally, a large dis-

persion of the stream temperature values is typically ob-

served in spring. The model performs nonetheless relatively

well in this season, for its R2 value is of the same magnitude

in spring as during the rest of the year.

Advantage can be taken of the physics integrated into the

model structure to investigate some aspects of the stream

temperature dynamics. For example, Fig. 6 displays the re-

spective values of the factors ω1, ω2 and ω3 appearing in

Eq. (22) as a function of the season. These factors corre-

spond to the weights associated with the mean source tem-

perature T s, average lateral inflow temperature along the net-

work
〈
T`
〉
L and average equilibrium temperature along the

network
〈
Te

〉
L, respectively. As seen in the figure, ω3 is the

largest factor of the three in all seasons, with a value of about

0.6–0.8. This results from the fact that stream temperature is

primarily impacted by the atmospheric conditions. The other

two factors are nonetheless non-negligible, with ω1 being of

the order of 0.4 in winter and ω2 being approximately equal

to 0.2 from April to December. The value of ω1 has to be put

into perspective with respect to the fact that our confidence in

the model parametrization is relatively low in winter. More-

over, following the above discussion about the computation

of the factor η, the values reported here for ω2 should be

considered as a lower limit. It therefore appears that not only

the net total heat flux at the air–water interface is important

in determining stream temperature, but also the heat flux as-

sociated with the lateral inflow of water. This conclusion is

in agreement with the findings of Bogan et al. (2004), who

found that the precision of their stream temperature model

was improved by including a term accounting for the lateral

water inflow. Similarly, Herb and Stefan (2011) mention that

the heat input associated with groundwater infiltration may

be of the same order of magnitude as the heat flux due to

atmospheric forcing in some cases. This effect seems to be

largely underestimated in the literature, since the lateral in-

flow of water has often been neglected in previous stream

temperature models (e.g. Edinger et al., 1968; Bogan et al.,

2003; Caissie et al., 2005; Bustillo et al., 2014).

The simplifying assumptions (i)–(vi) reported in

Sect. 3.1.1 are likely to have limited the performance

of the physics-inspired model. In particular, the assumption

of a spatially homogeneous lateral inflow rate q` is expected

to fail in most catchments. For example, only the highest
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Figure 6. Seasonal values of the factors ω1, ω2 and ω3 weight-

ing the different terms in Eq. (8). The values of these weights are

evaluated over the entire data set, i.e. both the calibration set and

validation set 3. The error bars indicate the confidence interval cen-

tered around the mean and extending over 1 standard deviation on

each side.

regions of low-altitude catchments experience snowmelt

in spring. In higher-altitude catchments, snowmelt leads to

an increase in q` only at low altitudes at the beginning of

spring, and only at higher altitudes later in the season. These

mechanisms introduce an altitude dependence in q` which

contradicts our assumption and may partly explain the higher

RMSE of the model in spring. Similarly, assumption (v)

expresses stream width as a linear function of discharge.

As compared to the typical power-law relationship used

in fluvial geomorphology (Knighton, 1998), this simplifi-

cation may lead to an overestimation of stream width at

low discharge rates – i.e. in small catchments – and to an

underestimation of stream width at high discharge rates –

i.e. in large catchments. This may in turn decrease the ability

of the model to simulate catchments of various sizes, hereby

increasing its prediction error. Assumption (vi), stating that

all sources in a given catchment have the same discharge

rate, is also disputable. This is particularly true for small

catchments, where the short distance to the outlet and the

low number of sources do not allow the averaging effect to

be significant enough to compensate for the introduced error.

In addition to the simplifying assumptions discussed

above, the parametrizations of the unknown terms in the an-

alytical solution might also have impacted the model pre-

cision. Indeed, the estimation of the source and lateral in-

flow temperatures using only air temperature has recently

been questioned, particularly for the catchments impacted

by snowmelt or glacier melt (Leach and Moore, 2015). This

simplification may notably have contributed to increase the

model RMSE in spring. Regarding the parametrization of

the term accounting for the net radiation heat flux at the air–

water interface, the use of a linear expression may appear as

limiting. We actually tested a power-law function as well, but

did not succeed in calibrating the model due to convergence

issues. We also considered an alternative expression based

on an estimation of the incoming atmospheric radiation and

a first-order approximation of the long-wave radiation emit-

ted by the stream (not shown). Rather than an improvement,
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this parametrization actually led to a decrease in the model

precision, as a result of its inability to compensate for the

overestimation of ω3 (see above).

As opposed to the physics-inspired model, the parameter

values of the standard regression model could not be con-

strained using physical considerations. As a result, the sign

of some of the linear coefficients relating the predictor vari-

ables to T i and σi are in contradiction with our understand-

ing of stream temperature dynamics (see Table 6). For exam-

ple, the stream orientation θ , measured as the cosine of the

angle between north and the channel direction, is positively

related to the annual mean stream temperature T i . It was

rather expected that north-oriented catchments receive less

radiation from the sun, hereby implying lower stream tem-

peratures. The same observation is true for the riparian forest

cover fraction, which is positively associated in the model

with the annual standard deviation σi of stream temperature.

However, experimental observations tend to conclude that ri-

parian shading has a buffering effect on stream temperature,

therefore dampening the amplitude of the variations of the

latter (see e.g. Moore et al., 2005). Despite these inconsis-

tencies, the standard regression model performs better than

the physics-inspired one in terms of RMSE, R2 and bias.

This fact questions further the validity of the parametrization

of the physics-inspired model, which could certainly be im-

proved (see Sect. 6). On the other hand, the standard regres-

sion model appears to be much more sensitive to the stream

network resolution as compared to its counterpart, possibly

as a consequence of its lack of physical elements in its struc-

ture. This lack also does not allow for the investigation of the

physics governing stream temperature, as can be done with

the physics-inspired model (see Fig. 6).

6 Conclusions

This study aimed to present a new statistical model for the

prediction of monthly mean stream temperature in ungauged

basins. As opposed to the standard statistical methods, this

model is devised so as to incorporate physical considerations

into its structure. To this end, it is built upon the analytical so-

lution to a simplified version of the one-dimensional heat ad-

vection equation. Contrary to previously reported analytical

solutions, the present one is obtained by solving the equation

over an entire stream network instead of a single stream each.

Moreover, the various terms of the equation are not supposed

to be spatially homogeneous, which leads to the apparition of

a space averaging operator
〈
·
〉
L applied to most terms of the

solution. This operator uses a weight which decreases expo-

nentially with the distance to the catchment outlet, hereby

giving more emphasis to the points located near the gauging

station. Both the source and the lateral inflow terms – which

are usually neglected – are retained in the final solution to the

heat advection equation. This notably enables the model to be

applied in small watersheds, where the influence of source

temperature on the value of stream temperature measured at

the catchment outlet cannot be discarded.

While most terms of the analytical expression can be

evaluated using meteorological observations or topographic

maps, some require data which are not available. These terms

are replaced with approximations based on the spatial data

sets at hand. In particular, the net radiation heat flux at the

air–water interface is expressed as a linear combination of

several physiographic variables. Similarly, the source and lat-

eral inflow temperatures are approximated as a linear func-

tion of air temperature measured at the source location and

along the stream, respectively. Finally, the fraction η of dis-

charge at the catchment outlet originating from lateral water

inflow along the network is estimated based on the number

of sources in the watershed. As a consequence of these ap-

proximations, the resulting model is statistical in nature, but

nevertheless retains physical aspects due to its global struc-

ture being derived from the heat-balance equation.

The performance of the model is quite satisfactory, with a

root-mean-square error of about 1.3 ◦C and a coefficient of

determination R2 of 0.87 when used for stream temperature

prediction in “thermally climate-driven” catchments. These

catchments, which are by far the most abundant ones in

Switzerland, correspond to those with a glacier cover lower

than 50 % and whose stream is not impacted by groundwater

infiltration from a deep aquifer. Model precision is the low-

est in winter, due to the inability of the model to reproduce

the fact that stream temperature asymptotically tends towards

0 ◦C for negative air temperature values.

The precision of the model was also assessed by com-

paring it with a more standard regression model. The lat-

ter was observed to perform slightly better, with a RMSE

about 0.2 ◦C lower. However, its parameters could not be in-

terpreted from a physical point of view, hereby hindering

the restriction of their respective calibration ranges based

on physical considerations. This led the regression model to

simulate some aspects of the stream temperature dynamics

wrongly. For example, some physiographic variables known

to have a cooling effect on water temperature were modelled

as warming up the stream. The standard regression model

was also observed to be much more sensitive than its physics-

inspired counterpart with respect to the stream network reso-

lution. When discarding all stream segments with a Strahler

order equal to 1, the RMSE of the regression model increased

from 1.12 to 1.26 ◦C, whereas the one of the physics-inspired

model remained constant up to 0.01 ◦C.

Despite a few deficiencies, the physics-inspired statistical

model can be used to analyse some aspects of the physics

governing stream temperature. As an example, the relative

importance of each one of the stream heat sources could be

determined from the model. Climatic forcing was found to

be the major driver of water temperature, as expected (e.g.

Caissie, 2006). More interestingly, the lateral inflow of water

was identified as a non-negligible secondary heat flux. This

fact is confirmed by other studies (e.g. Bogan et al., 2004;

www.hydrol-earth-syst-sci.net/19/3727/2015/ Hydrol. Earth Syst. Sci., 19, 3727–3753, 2015
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Herb and Stefan, 2011), but nonetheless fails to be accounted

for in many stream temperature models (e.g. Caissie et al.,

2005; Bustillo et al., 2014). We therefore wish to emphasize

the role of lateral water inflow in stream temperature, even in

catchments – such as those used in this study – which are not

impacted by groundwater infiltration originating from a deep

aquifer.

Among the improvements that can be brought to the

physics-inspired model, a more accurate parametrization of

the discharge fraction originating from lateral water inflow η

appears as a promising enhancement. In particular, η could

be estimated from a geomorphological analysis of the catch-

ments. This approach was not retained here due to the dis-

crepancy between the stream networks predicted by the ge-

omorphological analysis and the observed ones. In case it

could be implemented, such a revision is expected to improve

the predicted slope of the stream–air temperature curve. A

geomorphological analysis could also positively influence

the modelling of the source and lateral inflow temperatures.

The parametrization of these two terms could be improved by

including predictor variables accounting for e.g. the glacier

cover fraction or the mean altitude of the area drained by each

source (or stream reach). The model could also be substan-

tially improved in case the characteristic stream length Lc,

which controls the extent of the spatial area over which the

operator
〈
·
〉
L acts, could be computed instead of calibrated.

Indeed, Lc does not only present a seasonal variation, but

also differs across the individual catchments, a fact which

was neglected in the present work. Finally, one might expect

the model precision to improve by using a more physically

based parametrization for the net radiation heat flux – instead

of the multi-linear model used here.

We expect the physics-inspired model to be easily transfer-

able to other regions of the globe. The parametrization of the

net radiation heat flux at the air–water interface might need

some adaptation in order to correctly reflect the dominant

physiographic controls on local stream climate. For exam-

ple, topographic shading is certainly not a relevant predictor

variable over flat regions. Similarly to the approach presented

in this work, the most appropriate set of predictor variables

for the net radiation heat flux over a particular region can be

obtained through AICc ranking. Once set, the stream temper-

ature model can be used to investigate e.g. the extent of the

stream network which is thermally suitable for sensitive fish

species at the regional scale (e.g. Isaak et al., 2010). This in-

vestigation can in turn serve as a basis for the introduction of

regulation policies or protection measures.
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Appendix A: Solution to the energy-balance equation

over a stream network

The analytical solution to Eqs. (5)–(6) is first derived for the

case of a simple stream reach of length L (see Fig. A1a). Let

the downstream distance be denoted as x, with x0 and x1 re-

ferring to the positions of the reach origin and end points,

respectively. The discharge Q(x1) and stream temperature

T (x1) can be easily computed by integrating Eqs. (5)–(6) be-

tween x0 and x1,

Q(x1)=Q(x0)+ q`L, (A1)

T (x1)=
Q(x0)

Q(x1)
e−d(x0)/LcT (x0)

+
1

Q(x1)

x1∫
x0

e−d(x)/Lc ψ(x) dx, (A2)

where

ψ(x)= q` T`(x)+Q(x)

(
γ φr(x)+ Ta(x)

Lc

−
g

cp

dz

dx

)
. (A3)

In Eq. (A2), d(x)= x1−x denotes the distance between any

point x and the downstream end point x1 (see Figure A1a).

The above equations require the values of discharge and

temperature at the upstream end of the reach to be known.

By applying them iteratively to all the reaches of a network,

starting from the most downstream one, the expressions for

discharge Qout and water temperature Tout at the network

outlet can be expressed as a function of the discharges and

temperatures of the sources. At the confluences, the dis-

charges Qu,1 and Qu,2 and the temperatures Tu,1 and Tu,2

of the two upstream reaches can be related to the discharge

Qd and temperature Td of the downstream reach using the

mass and energy-balance equations (Westhoff et al., 2007),

Qd =Qu,1+Qu,2, (A4)

Td =
Qu,1

Qd

Tu,1+
Qu,2

Qd

Tu,2. (A5)

Based on Eqs. (A1)–(A5), the derivation of the expressions

forQout and Tout is straightforward and leads to the following

relations:

Qout =

ns∑
i=1

Qs,i + q`Ltot, (A6)

Tout =

ns∑
i=1

Qs,i

Qout

e−ds,i/Lc Ts,i

+
1

Qout

∫
L

e−d(x)/Lc ψ(x) dx. (A7)

In the above equations, ns refers to the number of sources in

the network, Ltot denotes the total length of the stream net-

work, ds,i corresponds to the downstream distance of source

point xs,i to the network outlet, d(x) refers to the distance

between any point x along the network and the network out-

let, L corresponds to the geometrical union of all reaches

in the stream network, and Ts,i and Qs,i denote the stream

temperature and discharge at source point xs,i , respectively.

The reader is referred to Fig. A1b for a graphical illustration

of some of the variables. The integral over L is a shorthand

notation for the sum of the respective integrals over all the

reaches in the network.

Equations (A6)–(A7) can be written in a more convenient

form using space-averaging operators. Replacing ψ with its

expression defined in Eq. (A3), the integral on the right-hand

side of Eq. (A7) can be written as∫
L

e−d(x)/Lc ψ(x)dx = A1 q`
〈
T`
〉
L

+
A2

Lc

〈
γ φr+ Ta−Lc

g

cp

dz

dx

〉
Q, (A8)

where the two averaging operators
〈
·
〉
L and

〈
·
〉
Q are defined

as

〈
f
〉
L =

1

A1

∫
L

e−d(x)/Lc f (x) dx and (A9)

〈
f
〉
Q =

1

A2

∫
L

e−d(x)/Lc Q(x)f (x) dx, (A10)

for any integrable function f defined on L, with the normal-

izing factors A1 and A2 being defined as

A1 =

∫
L

e−d(x)/Lc dx,

=

nr∑
k=1

xk,1∫
xk,0

e−d(x)/Lc dx

=

nr∑
k=1

Lce
−dk/Lc

(
1− e−Lk/Lc

)
and (A11)

A2 =

∫
L

e−d(x)/Lc Q(x) dx

=

nr∑
k=1

xk,1∫
xk,0

e−d(x)/Lc Qk(x) dx. (A12)

In the above equations, nr denotes the number of reaches in

the network; xk,0, xk,1 and Lk refer to the upstream point,

downstream point and length of reach k, respectively; dk
refers to the distance along the stream network between xk,1
and the network outlet; and Qk(x) denotes the discharge

along reach k (see Fig. A1b). Based on Eq. (A1), Qk may
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Figure A1. Schematic representations of (a) a stream reach and (b–c) a stream network, illustrating the notation used in Appendix A to

derive the analytical solution to the stream energy balance.

be expressed as

Qk(x)=Q(xk,0)+ q`(x− xk,0)

=

∑
j∈5k

Qs,j + q`
∑
r∈0k

Lr + q`(x− xk,0), (A13)

where 5k and 0k denote the set of source points and reaches

draining into reach k, respectively, as illustrated in Fig. A1c.

Inserting the above equation into Eq. (A12) and re-arranging

the terms, A2 may be written as

A2 =

ns∑
i=1

Qs,i

∑
j∈�i

xj,1∫
xj,0

e−d(x)/Lc dx

+ q`

nr∑
k=1

Lk
∑
r∈1k

xr,1∫
xr,0

e−d(x)/Lc dx

+ q`

nr∑
k=1

xk,1∫
xk,0

e−d(x)/Lc x dx, (A14)

where �i refers to the set of reaches linking the ith source

point to the network outlet, and1k denotes the set of reaches

linking reach k to the network outlet, not including reach k

itself (see Fig. A1c). Assuming that all source points have

the same discharge Qs, and replacing the integrals along the

reaches with their respective values, Eq. (A14) can be written

more simply as

A2 = LcQs

ns∑
i=1

(
1− e−ds,i/Lc

)
+ q`Lc

nr∑
k=1

{
Lk −Lce

−dk/Lc
(
1− e−Lk/Lc

)}
= Lc

(
Qtot− q`Ltot

)(
1− δs

)
+ q`LcLtot

(
1− δ`

)
, (A15)

where Eq. (A6) has been used in the second step to replace

nsQs withQtot−q`Ltot, and the factors δs and δ` are defined

as

δs =
1

ns

ns∑
i=1

e−ds,i/Lc and (A16)

δ` =
Lc

Ltot

nr∑
k=1

e−dk/Lc
(
1− e−Lk/Lc

)
=
A1

Ltot

. (A17)

Combining Eqs. (A7), (A8), (A11) and (A15), the expression

for stream temperature at the network outlet can eventually

be written in a more convenient form,

Tout = (1− η)δsTs+ ηδ`
〈
T`
〉
L

+
[
1− (1− η)δs− ηδ`

]〈
γφr+ Ta−Lc

g

cp

dz

dx

〉
L, (A18)

where the averaging operator
〈
·
〉
Q has been approximated by〈

·
〉
L, and Ts corresponds to the distance-weighted source tem-

perature, averaged over all sources and weighted by a factor

decreasing exponentially with the respective distance of each

source to the network outlet,

Ts =
1

nsδs

ns∑
i=1

e−ds,i/Lc Ts,i . (A19)

The factor η appearing in Eq. (A18) denotes the ratio be-

tween the discharge originating from lateral inflow and the

total discharge at the network outlet,

η =
q`Ltot

Qtot

. (A20)
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