IMAGE TRANSMORPHING WITH JPEG

Lin Yuan and Touradj Ebrahimi

Multimedia Signal Processing Group, EPFL, Lausanne, Switzerland

ABSTRACT

Picture-related applications are extremely popular because
pictures present attractive and vivid information. Nowadays,
people record everyday life, communicate with each other,
and enjoy entertainment using various interesting imaging
applications. In many cases, processed images need to be re-
covered to their original versions. However, most approaches
require storage or transmission of both original and processed
images separately, which result in increased bandwidth and
storage resources to be used. In contrast, in this paper, we
present a JPEG transmorphing algorithm, which converts an
image to its processed version while preserving sufficient
information about the original image in the processed im-
age. It does this by inserting partial information about the
original image in the application markers of the processed
JPEG image file, so that the original image can be later re-
covered. Experiments are conducted and results show that the
proposed method offers a number of attractive features and a
good performance in many applications.

Index Terms— JPEG, Transmorphing, application marker,
image compression, data hiding, privacy protection, image
editing

1. INTRODUCTION

With the popularization of high-quality digital cameras, smart
mobile devices with high-resolution cameras, as well as user-
friendly imaging and social networking applications, taking
pictures, then editing and sharing, have become part of ev-
eryday life for many. Popular imaging applications include
Photoshop (professional graphics editor), Picasa (integrated
image organizer), Instagram (photo sharing), Snapchat (photo
messaging), and tons of image-related games.

The success of digital imaging applications is in part due
to the development of effective standards such as JPEG [1]
and JPEG 2000 [2]. JPEG is one of the early standards and
is de facto the most popular compression format to store or
transmit images thanks to its efficiency and low complexity.
JPEG 2000 is a more recent standard for still image coding,
offering efficient image compression, progressive transmis-
sion, seamless scalability, region of interest coding, and error

This work has been conducted in the framework of the Swiss SERI
C12.0081 and Eurostars ToFuTV.

resilience. However, even though JPEG 2000 outperforms
JPEG in terms of compression efficiency, JPEG has remained
the most popular format in a large variety of consumer imag-
ing applications.

JPEG also offers a solution to tag images. JPEG/Exif (Ex-
changeable image file format) [3] is a popular way for digital
cameras and other photographic capture devices to tag cap-
ture and location related metadata about photos. JPEG/JFIF
(JPEG File Interchange Format) [4] is the most popular for-
mat for storage and transmission of images on the World
Wide Web. The two formats are often not distinguished from
each other and are simply referred to as JPEG each with their
own application segments (APPO for JFIF, APP1 for Exif) in
the header of a JPEG file. Recently, a new standardization
activity called JPEG XT [5] has been initiated, addressing
the needs of photographers for higher dynamic range (HDR)
images [6, 7, 8] in both lossy and lossless coding [9, 10]
while retaining backward compatibility to the established
legacy JPEG decoders. The central idea underlying the back-
ward compatible coding of HDR content is to encode a low
dynamic range version of the HDR image generated by a
tone-mapping operator using a conventional JPEG encoder
and to insert the extra encoded information for HDR in an ap-
plication marker. Adopting this idea, any useful information
can be embedded in the application markers of a JPEG file.

In many situations, a modified image needs to be recov-
ered to its original version. The typical solution is to keep
both the original and the modified versions of the image, re-
sulting in an increase in needs for resources and careful man-
agement efforts. In this paper, we propose a more efficient so-
lution that preserves sufficient information about the original
image embedded in the modified version allowing its recov-
ery. Two experiments are conducted to assess the efficiency
and usability of the proposed algorithm.

The rest of the paper is structured as follows. Section 2
describes the proposed algorithm in detail. Then Section 3
describes the conducted experiments and the analysis of ex-
perimental results. Finally, Section 4 concludes the paper and
discusses potential future work.

Original image
p—

-

Processed image

~
g

Mask matrix
0000000000
000000 0o
) o]
o 0 >
('] 0 00
oo 000000
0000O0OO0OOOOO

Transcoder

Threshold t

Sub-image

JPEG | s @ | e

Reconstructed image
p—

Morphed JPEG image 2
p—

e

JPEG
y Transcoder |*

¥

Transcoder

o

Sub-image embedded II
in APPn Markers

Fig. 1. JPEG Transmorphing algorithm.

2. JPEG TRANSMORPHING: THE ALGORITHM

The architecture of the JPEG transmorphing algorithm is il-
lustrated in Fig. 1. The whole algorithm consists of two pro-
cesses: transmorphing and reconstruction.

Assume that a digital image has been processed by one
or a series of image editing tools applied either to the entire
image or on specific regions in it. A typical example could
be masking a human face in an image by replacing it with
a smiley face. We define a JPEG transmorphing algorithm
composed of the following operations:

Generation of mask matrix First, the difference between
pixel values of the original and modified images is computed,
and a binary image is generated by applying any adequate
threshold. The elements 1 in the binary image are dilated to
match 16 x 16 Minimum Coded Unit (MCU) blocks bound-
aries and then the binary image is subsampled by the factor
of 16 such that each element points to a corresponding MCU
block. The resulted binary image is referred to as mask ma-
trix, in which elements 1 denote the regions or MCU blocks
where the image is modified, noted as modified regions or
modified blocks. The generation of mask matrix is performed
for every color component in the image (e.g., RGB) followed
by merging their corresponding mask matrices with logical
OR operations. In many cases, calculation of mask matrix
can be much simplified as the applications may know exactly
the modified image regions. For instance, in a mobile appli-
cation, a user can select and modify certain image regions by
finger touch and the application can record the coordinates of
touched points and would be able to generate the mask matrix
easily.

Creation of sub-image Based on the mask matrix, a sub-
image of the original image corresponding to the modified
regions is created and encoded with JPEG, by assuming all
DCT coefficients outside of the modified regions as zero. If
the original image is in JPEG format, this can be done by
transcoding the modified regions of the original image to sub-
image. The sub-image contains the information about the
original image corresponding to the modified regions.

Writing data in APPn markers Finally, the byte-stream of
the JPEG sub-image, along with some metadata, is inserted
in one or several application segments (APPn Markers) of the
processed JPEG image. A security option has been added
in the design of the proposed JPEG transmorphing algorithm
to meet the needs for image security and privacy protection
applications. In cases where security is needed, a Secure
JPEG [11] framework can be applied on the sub-image with
an appropriate image security tool (AES or scrambling) by
means of a secret key. Hence, the inserted metadata con-
tains the following information: (i) size of the sub-image in
bytes, (ii) the method used to secure sub-image, and (iii) el-
ements of the mask matrix. We use eight bytes (a 1long in-
teger) in APPn data to record the file size of the sub-image,
and three bytes to represent the security measure (protection
type and parameters, without secret key) applied on the sub-
image. The elements of the mask matrix are encoded to a
bitstream which is then written to another few bytes in the
APPn marker. The overhead added to the transmorphed JPEG
image is mainly impacted by the size of the JPEG encoded
sub-image, while the metadata overhead is negligible.

Reconstruction process aims at recovering the original
image from the transmorphed image. This can be done by
reversing the transmorphing operations described above: ex-
tracting sub-image byte-stream and metadata from APPn
markers, creating the sub-image and mask matrix, and then
replacing the DCT coefficients corresponding to the modified
blocks of the morphed image with that of the sub-image.
In case the sub-image is protected, a secret key needs to be
provided to decrypt or descramble the extracted sub-image.

Such a transmorphing algorithm involves four inputs:
original image, processed image, mask matrix and secret key.
In practice, the input original and processed images can be in
any format but are assumed to have the same pixel resolution.
The output transmorphed image and the reconstructed image
are of course in JPEG format. Our algorithm is implemented
based on an open source JPEG library version 6b maintained
by the Independent JPEG Group (IJG)'.

Uhttp://www.ijg.org/

3. EXPERIMENT AND ANALYSIS

In the JPEG transmorphing algorithm, inserting additional in-
formation into a JPEG image file increases the storage or
bandwidth requirements. Besides, because image editing is
usually done in the pixel domain and the modified image is
re-encoded into JPEG, not all minor differences between the
original and the modified images due to JPEG re-encoding are
taken into account. Therefore, the reconstructed image is not
guaranteed to be exactly the same as the original image, un-
less threshold value is set to zero. In this section, we present
two experiments to assess (i) the relation between the size of
overhead and the size of modified regions, and (ii) the influ-
ence of thresholding on size of overhead and the quality of
reconstructed images.

3.1. Size of Overhead vs. Size of Modified Regions

In the first experiment, we used 1000 images from The Im-
ages of Groups Dataset [12]. The maximal length or width
of those images is 1024 pixels and their file sizes range from
100 KB to 329 KB, with 163 KB as the average size. For each
image, we detect the positions of human faces and insert the
face regions (rectangle shape) into the image itself using the
JPEG transmorphing algorithm. In this case, we assume that
those images have been modified in regions of people’s face
and that the processed images have the same file sizes as their
original version. Haar feature face detection from OpenCV
was used?. For each of the 1000 images, the increase of bi-
trate versus the size of modified regions (both in percentage)
is plotted as a dot in Fig. 2.

The result presents a linear trend between the increase
in image bitrate and the size of modified regions, though it
is not an exact linear relationship, due to the difference in
image content. Compared to keeping both original and pro-
cessed images, which introduces doubled overhead to storage
and bandwidth, this method requires relatively lower level of
overhead to bitrate, depending on the size of modified regions.
For some images, even though the number of modified blocks
is zero, the overhead to bitrate is non-zero. This is because
no face is detected in those images and therefore an “empty”
sub-image along with metadata is inserted, which still carries
a small volume of information, although the DCT coefficients
of the “empty” sub-image are all zero.

3.2. Size of Overhead vs. Reconstruction Quality

We then analyze the trade-off between size of overhead and
reconstruction quality, which is controlled mainly by the
threshold value. In this experiment, we used six images’
which are respectively processed by six different image pro-
cessing tools in Adobe Photoshop: masking, oil-painting,

Zhttp://docs.opencv.org/modules/objdetect/doc/cascade_classification.html
3Images ‘Family’ and ‘Cake’ are from Flickr Retrieval [13]

Bitrate Increase (%)
S
(=}

0 10 20 30 40 50 60 70
Percentage of modified blocks (%)

Fig. 2. Size of bitrate overhead vs. size of modified regions.

Table 1. Information of six images for the second experiment

Image Pixels Original Processed
name file size file size
Family 282 x 500 161 KB 155 KB
Cake 500 x 375 157 KB 157 KB
EEG Hat 960 x 1280 685 KB 507 KB
Christmas 3264 x 2448 | 3.8 MB 3.2MB
Castle 4000 x 2667 | 6.5 MB 6.1 MB
Bear 5000 x 3333 | 8.3 MB 8.0 MB

blurring, pixelation, inpainting, and thresholding. All the
original and processed images were decoded and re-encoded
to JPEG with a standard decoder and encoder from 1JG using
the same compression settings (100 quality factor and 4:2:0
chroma subsampling). Those images are shown in Fig. 3 and
their basic information is listed in Table 1. We ran JPEG
transmorphing and reconstruction on each pair of the original
and processed images using 10 different threshold values:
0,1,2,5,10,20, 30,40, 50, and 60. The increase in bitrate of
the transmorphed image compared to the processed image,
as well as the peak signal-to-noise ratio (PSNR) between
the reconstructed and original images are computed for each
threshold value. Experimental results of all six images are
presented in Fig. 4.

In general, as threshold value increases, size of overhead
and PSNR both decrease, which is because a lower thresh-
old can detect smaller differences between original and modi-
fied images and therefore ensures more information about the
original image to be preserved in the transmorphed JPEG file.
In case the threshold is set to zero, the sub-image is the same
as the original image so the complete information about the
original image is inserted, which enables a perfect reconstruc-
tion but maximal overhead size. On the other hand, if the
threshold is too high, some modified blocks will be ignored

Fig. 3. Six pairs of images for the second experiment. From left to right: Family, Cake, EEG Hat, Christmas, Castle and Bear,
respectively. Original images in the first row; Processed images in the second row.

150, 100 1 100 1 100
-~ Bitrate Increase -~ Bitrate Increase y & Bitrate Increase
—PSNR " —PSNR) % PSNR "
125 125 490 125
3 80 < 50 < 80
< 100] £ 100 £ 100
2 2 2 = 2 2
H 70 3 § 0 8 H 70 8
@ 60 & @ 60 @ @ 60 @
‘_é ~ g -4 E A~
= 50| = 50] = 50|
g 50 g R0 2 50
. 3 3 25\.\‘\— 40 25 40
¥ -
0 30 30 ” 30
0 10 20 30 40 50 60 (] 10 20 30 40 50 60 o 10 20 30 40 50 60
Threshold Threshold Threshold
(a) Family (b) Cake (c) EEG Hat
150 100 1 100 1 100
Bitrate Increase Bitrate Increase -5~ Bitrate Increase
¥ PSNR ¥ PSNR ¥ PSNR
125 . 0 125 - 490 125 - 90
s 80 s s
€ 100 S £ 100
2 z g = g =
£ = g s g s
in £ H £ v £
P 60 & P Z P Z
3 & 2 49 2 14
£ 50 = £ 50
& 50 & &
25 40 25
¥ 2
o 30 30
0 10 20 30 40 50 60 0 10 20 30 40 50 60 (] 10 20 30 40 50 60
Threshold Threshold Threshold
(d) Christmas (e) Castle (f) Bear

Fig. 4. Influence of threshold on overhead size and reconstruction quality.

(see Fig. 5 for illustration) so that the quality of the recon-
structed image is much reduced. In practice, a trade-off be-
tween bitrate and reconstruction quality can be archived by
using a proper threshold value. As shown in the results, for
all images, 10 is considered to be a good threshold value that
ensures a satisfactory PSNR above 40 dB while keeping a
small overhead size approximating to the actual size of mod-
ified regions (in percentage).

4. CONCLUSION

This paper presents a JPEG transmorphing algorithm that al-
lows for reverting back when modifying an image without
need to keep a copy of the original. Results have shown ac-
ceptable bitrate overhead and good quality of reconstruction.

Fig. 5. Sub-images created using different thresholds.

Future work lies in further analysis of the influence of other
parameters such as the quality factor of modified JPEG coded
image, and adaptation of the algorithm for image security and
privacy protection applications.

(1]

(2]

(3]

(4]

(5]

(6]

5. REFERENCES

G. K. Wallace, “The JPEG still picture compression
standard,” IEEE Transactions on Consumer Electron-
ics, vol. 38, no. 1, pp. xviii—xxxiv, Feb 1992.

A. Skodras, C. Christopoulos, and T. Ebrahimi, “The
JPEG 2000 still image compression standard,” IEEE

Signal Processing Magazine, vol. 18, no. 5, pp. 36-58,
Sep 2001.

“Exchangeable image file format for digital still cam-
eras: Exif Version 2.2,” 2002, Standard of Japan Elec-
tronics and Information Technology Industries Associa-
tion.

B. Brower, R. Clark, A. T. Hinds, D. T. Lee, and G. J.
Sullivan, “Information technology - Digital compres-
sion and coding of continuous-tone still images: JPEG
File Interchange Format (JFIF),” 2011, available on
www.jpeg.org as document WG1N5642, published by
ISO as 10918-5.

T. Richter, “On the standardization of the JPEG XT im-
age compression,” in Picture Coding Symposium (PCS),
2013, Dec 2013, pp. 37-40.

G. Ward and M. Simmons, “JPEG-HDR: A backwards-
compatible, high dynamic range extension to JPEG,” in
ACM SIGGRAPH 2006 Courses, New York, NY, USA,
2006, SIGGRAPH °06, ACM.

(7]

[9]

(10]

(11]

[12]

[13]

P. Korshunov and T. Ebrahimi, “A JPEG backward-
compatible HDR image compression,” in Proc. SPIE,
2012, vol. 8499, pp. 84990J-84990J-12.

T. Richter, “Backwards compatible coding of high dy-
namic range images with JPEG,” in Data Compression
Conference (DCC), 2013, March 2013, pp. 153-160.

T. Richter, “On the integer coding profile of JPEG XT,”
in Proc. SPIE, 2014, vol. 9217, pp. 921719-921719-19.

A. G. Pinheiro, K. Fliegel, P. Korshunov, L. Krasula,
M. V. Bernardo, M. Pereira, and T. Ebrahimi, ‘“Perfor-
mance evaluation of the emerging JPEG XT image com-
pression standard,” in IEEE 16th International Work-
shop on Multimedia Signal Processing, MMSP 2014,
Jakarta, Indonesia, September 2014, pp. 1-6.

F. Dufaux and T. Ebrahimi, ‘“Toward a Secure JPEG,”
in Proc. SPIE, 2006, vol. 6312.

A. Gallagher and T. Chen, “Understanding images of
groups of people,” in Proc. CVPR, 2009.

M. J. Huiskes and M. S. Lew, “The MIR Flickr re-
trieval evaluation,” in MIR "08: Proceedings of the 2008
ACM International Conference on Multimedia Informa-
tion Retrieval, New York, NY, USA, 2008, ACM.

