
Solving the Shortest Vector Problem in 2n Time via Discrete
Gaussian Sampling

Divesh Aggarwal∗ Daniel Dadush†

dadush@cwi.nl
Oded Regev‡ §

Noah Stephens-Davidowitz‡ ¶

noahsd@cs.nyu.edu

Abstract

We give a randomized 2n+o(n)-time and space algorithm for solving the Shortest Vector
Problem (SVP) on n-dimensional Euclidean lattices. This improves on the previous fastest al-
gorithm: the deterministic Õ(4n)-time and Õ(2n)-space algorithm of Micciancio and Voulgaris
(STOC 2010, SIAM J. Comp. 2013).

In fact, we give a conceptually simple algorithm that solves the (in our opinion, even more
interesting) problem of discrete Gaussian sampling (DGS). More specifically, we show how to
sample 2n/2 vectors from the discrete Gaussian distribution at any parameter in 2n+o(n) time and
space. (Prior work only solved DGS for very large parameters.) Our SVP result then follows
from a natural reduction from SVP to DGS. We also show that our DGS algorithm implies a
2n+o(n)-time algorithm that approximates the Closest Vector Problem to within a factor of 1.97.

In addition, we give a more refined algorithm for DGS above the so-called smoothing pa-
rameter of the lattice, which can generate 2n/2 discrete Gaussian samples in just 2n/2+o(n) time
and space. Among other things, this implies a 2n/2+o(n)-time and space algorithm for 1.93-
approximate decision SVP.

Keywords. Discrete Gaussian, Shortest Vector Problem, Lattice Problems.

∗Department of Computer Science, EPFL.
†Centrum Wiskunde & Informatica, Amsterdam.
‡Courant Institute of Mathematical Sciences, New York University.
§Supported by the Simons Collaboration on Algorithms and Geometry and by the National Science Foundation

(NSF) under Grant No. CCF-1320188. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the NSF.

¶This material is based upon work supported by the National Science Foundation under Grant No. CCF-1320188.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

ar
X

iv
:1

41
2.

79
94

v4
 [

cs
.D

S]
 2

0
M

ay
 2

01
5

1 Introduction

A lattice L is defined as the set of all integer combinations of some linearly independent vectors
b1, . . . , bn ∈ Rn. The matrix B = (b1, . . . , bn) is called a basis of L, and we write L(B) for the
lattice generated by B.

Perhaps the most central computational problem on lattices is the Shortest Vector Problem
(SVP). Given a basis for a lattice L ⊆ Rn, SVP is to compute a non-zero vector in L of minimum
Euclidean norm.

Starting in the ’80s, the use of approximate and exact solvers for SVP (and other lattice prob-
lems) gained prominence for their applications in algorithmic number theory [LLL82], coding
over Gaussian channels [dB89], cryptanalysis [Sha84, Bri85, LO85], combinatorial optimization
and integer programming [Len83, Kan87, FT87]. Over the past decade and a half, the study of lat-
tice problems greatly increased due to newly found applications in cryptography. Many powerful
cryptographic primitives, such as fully homomorphic encryption [Gen09, BV11, BV14], now have
their security based on the worst-case hardness of approximating the decision version of SVP (and
other lattice problems) to within polynomial factors [Ajt04, MR07, Reg09, BLP+13].

From the computational complexity perspective, much is known about SVP in both its ex-
act and approximate versions. On the hardness side, SVP was shown to be NP-hard to ap-
proximate within any constant factor (under randomized reductions) and hard to approximate
to within nc/ log log n for some constant c > 0 under reasonable complexity assumptions [Mic01,
Kho05, HR12]. From the perspective of polynomial-time algorithms, the celebrated LLL basis re-
duction gives a 2O(n) approximation algorithm for SVP [LLL82], and Schnorr’s block reduction
algorithm [Sch87], with subsequent refinements [AKS01, MV13], gives a rn/r approximation in
2O(r)poly(n) time allowing for a smooth tradeoff between time and approximation quality.

As one would expect from the hardness results above, all known algorithms for solving exact
SVP, including the ones we present here, require at least exponential time and sometimes also
exponential space (and the same is true even for polynomial approximation factors). We mention
in passing that despite running in exponential time, these algorithms have practical importance
in addition to the obvious theoretical importance. For instance, they are used for assessing the
practical security of lattice-based cryptographic primitives, they are used as subroutines in the
best current approximation algorithms (variants of block reduction), and they are used in some
applications where low-dimensional lattices naturally arise.

While the state of the art for polynomial-time approximation of lattice problems has remained
relatively static over the last two decades, the situation for exact algorithms has been markedly
different. Indeed, three major (and very different) classes of algorithms for SVP have been devel-
oped.

The first class, developed by Kannan [Kan87] and refined by many others [Hel85, HS07, MW15],
is based on combining strong basis reduction with exhaustive enumeration inside Euclidean balls.
The fastest current algorithm in this class solves SVP in Õ(nn/(2e)) time while using poly(n)
space [HS07].

The next landmark algorithm, developed by Ajtai, Kumar, and Sivakumar [AKS01] (hence-
forth AKS), is the most similar to this work. AKS devised a method based on “randomized siev-
ing,” whereby exponentially many randomly generated lattice vectors are iteratively combined to
create shorter and shorter vectors, to give the first 2O(n)-time (and space) randomized algorithm
for SVP. Many extensions and improvements of their sieving technique have been proposed, both

2

provable [AKS02, MV10, PS09, LWXZ11] and heuristic [NV08, WLTB11, ZPH14, BGJ14, Laa14],
where the fastest provable sieving algorithm [PS09] for exact SVP requires 22.465n+o(n) time and
21.233n+o(n) space. It was observed by [LWXZ11, Mic14, Ste14] that AKS can be modified to obtain
a 20.802n+o(n)-time and 20.401n+o(n)-space algorithm for approximating SVP to within some large
constant factor. Here 2.401n+o(n) corresponds to the best known upper bound on the n-dimensional
“kissing number” (the maximum number of points one can place on the unit sphere such that the
pairwise distances are ≥ 1) due to Kabatjanskiı̆ and Levenšteı̆n [KL78].

The most recent breakthrough, due to Micciancio and Voulgaris [MV13] (henceforth MV) and
built upon the approach of Sommer, Feder, and Shalvi [SFS09], is a deterministic Õ(4n)-time and
Õ(2n)-space algorithm for SVP. It uses the Voronoi cell of the lattice—the centrally symmetric
polytope corresponding to the points closer to the origin than to any other lattice point.

Main contribution. As our main result, we give a randomized 2n+o(n)-time and space algorithm
for exact SVP, improving on the Õ(4n) deterministic running time of MV. A second main result is
a much faster 2n/2+o(n)-time (and space) algorithm that approximates the decision version of SVP
to within a small constant factor.

Our 2n+o(n)-time algorithm actually solves a more difficult problem, namely, that of generating
many discrete Gaussian samples from a lattice with arbitrary parameter, as we describe below.
We feel that this is even more interesting than the improved running time for SVP, and it should
have further applications. As far as we are aware, outside of security reductions having access to
powerful oracles, this is the first provable algorithm to use the discrete Gaussian directly to solve
a classical lattice problem.

Discrete Gaussian samplers. Our first main technical contribution is a general discrete Gaussian
sampler, which will directly imply our SVP algorithm. Below, we give an informal description of
this result. (See Section 3 for the details.)

-10

0

10

-10

0

10

0.000

0.005

0.010

-10

0

10

-10

0

10

0.00

0.02

0.04

0.06

Figure 1: The discrete Gaussian distribution on Z2 with parameter s = 10 (left) and s = 4 (right)

Define ρs(x) = e−π‖x‖2
2/s2

and ρs(A) = ∑y∈A ρs(y) for any discrete set A ⊆ Rn. The discrete
Gaussian distribution DL,s over the lattice L ⊆ Rn with parameter s is the distribution satisfying

Pr
X∼DL,s

[X = x] = ρs(x)/ρs(L), ∀x ∈ L.

3

See Figure 1 for an illustration. The parameter s determines the “width” of the discrete Gaussian.
Note that as s becomes smaller, DL,s becomes more and more concentrated on short lattice vectors.
Hence it should not come as a surprise that being able to obtain sufficiently many samples from
DL,s for an arbitrary s leads to a solution to SVP. We will discuss this relatively natural reduction
below, but first let us describe our main technical contributions, the Gaussian samplers.

Theorem 1.1 (General discrete Gaussian Sampler, informal). There is an algorithm that takes as input
a lattice L ⊂ Rn and any parameter s > 0 and outputs 2n/2 i.i.d. samples from DL,s using 2n+o(n) time
and space.

Notice the amortized aspect of the algorithm: we obtain 2n/2 vectors in about 2n time. We
do not know how to reduce the time to 2(1−ε)n —even if all we want is just one vector! (But see
below for a faster algorithm that works for large parameters.) Improving the running time of
the algorithm (while still outputting a sufficiently large number of samples) would immediately
translate into an improved SVP algorithm.

As we explain below, a closer inspection of the technique used in our algorithm suggests that
with some refinement it might be able to achieve a running time of 2n/2. Indeed, we actually
do achieve this, but only for sufficiently large parameters s. This is our second main technical
contribution.

Theorem 1.2 (Smooth discrete Gaussian sampler, informal). There is an algorithm that takes as input
a lattice L ⊂ Rn and a parameter s above the smoothing parameter of L and outputs 2n/2 i.i.d. samples
from DL,s using 2n/2+o(n) time and space.

The smoothing parameter is the value of s above which DL,s “looks like” a continuous Gaus-
sian in a certain precise mathematical sense. (See Definition 2.5.) While sampling above smoothing
is apparently not enough to solve exact lattice problems, it is enough to solve major lattice prob-
lems approximately. Indeed, we show how this is sufficient to approximate the decision version
of SVP to within a constant factor in time 2n/2+o(n) (with the constant being roughly 1.93). This
holds the record for the fastest provable running time of a hard lattice problem.

1.1 Comparison with prior work

The task of discrete Gaussian sampling is by no means new. It by now has a long history within
cryptography [MR07, GPV08, Reg09, Pei09, MP13]. By analyzing an algorithm of Klein [Kle00],
Gentry, Peikert, and Vaikuntanathan [GPV08] first showed how to solve DGS in polynomial time
for large parameters. (We remark that Klein analyzed this algorithm for very small parameters and
used it to solve the BDD problem. For such parameters, the algorithm does not produce samples
distributed according to the discrete Gaussian distribution.) DGS has been used extensively to
improve reductions from worst-case lattice problems (such as approximate decisional SVP) to the
average-case Short Integer Solution (SIS) and Learning with Errors (LWE) problems [MR07, Reg09,
Pei09, MP13], and as a core subroutine for instantiating certain cryptographic primitives [GPV08].
In all previous works, the DGS procedure either samples at very high parameters or requires
a priori knowledge of a relatively short lattice basis—typically only available when a user is able to
generate the lattice themselves, such as in certain trapdoor schemes—or access to powerful oracles,
such as SIS or LWE oracles.

Furthermore, even with oracles and a short basis, none of the algorithms from prior work
could be used to sample below the smoothing parameter of the lattice. The reason that we are able

4

to achieve this is because of our observation that, if we allow ourselves exponential time, we
can carefully combine vectors sampled from a discrete Gaussian together to obtain vectors whose
distribution is exactly a discrete Gaussian with a smaller parameter. (See Lemma 3.4 and the proof
overview below.) All prior work only obtained a distribution that is statistically close to the discrete
Gaussian, with error that is unbounded below the smoothing parameter.

We note that our approach is similar to that of the AKS algorithm at a high level. In particular,
like AKS, we use a sieve algorithm that starts with a large collection of randomly selected vectors
and proceeds to combine them together in pairs to find short lattice vectors. The major important
difference between our approach and that of the AKS algorithm and its derivatives is that we
maintain complete control over the distribution of the lattice points that we generate at each step.
While prior work is focused (quite naturally) on controlling the lengths of the vectors after each
step, our algorithm actually completely ignores their lengths—choosing whether to combine two
vectors based only on their coset mod a sublattice.

Indeed, we view our 2n+o(n)-time algorithm as an efficient discrete Gaussian sampler that con-
sequently yields an efficient solution to SVP, rather than as a sieve algorithm for SVP. It is the
simplicity and elegance of the discrete Gaussian distribution that allows us to side-step many of
the complications that arise with other sieve algorithms (such as the “perturbation” step). Indeed,
the 2n+o(n)-time algorithm is quite simple; the most technical tool that it uses is a simple subroutine
that we call the “square sampler” (described below).

One negative aspect of our approach is that it has a clear lower bound. It seems that we can-
not use this approach to find any algorithm that runs in time less than 2n/2. And, the quoted
running time of each algorithm (2n+o(n) and 2n/2+o(n) respectively) is essentially tight in both the-
ory and practice—for large (and relevant) parameters, our sieves yield essentially nothing when
their input consists of fewer than 2n or 2n/2 vectors respectively. This is in contrast to AKS-style
algorithms, which seem to perform well heuristically [NV08, WLTB11, ZPH14, Laa14].

1.2 Proof overview

We now include a high-level description of our proofs, first that of Theorem 1.1 and then that of
the more refined Theorem 1.2. We end with a brief discussion of how to use Gaussian samples to
solve SVP as well as other applications.

A 2n+o(n)-time combiner for DGS. Recall that efficient algorithms are known for sampling from
the discrete Gaussian at very high parameters [GPV08]. It therefore suffices to find a way to
efficiently convert samples from the discrete Gaussian with a high parameter to samples with a
parameter lowered by a constant factor. By repeating this “conversion” many times, we can obtain
samples with much lower parameters.

Note that this is trivial to do for the continuous Gaussian: if we divide a vector sampled from
the continuous Gaussian distribution by 2, the result is distributed as a continuous Gaussian with
half the width. Of course, half of a lattice vector is not typically in the lattice, so this method fails
spectacularly when applied to the discrete Gaussian. But, we can try to fix this by conditioning on
the result staying in the lattice. I.e., we can sample many vectors from DL,s, keep those that are
in the “doubled lattice” 2L, and divide them by two. This method does work, but it is terribly
inefficient—there are 2n cosets of 2L, and for some typical parameters, a sample from DL,s will
land in 2L with probability as small as 2−n. I.e., our “loss factor,” the ratio of the number of

5

output vectors to the number of input vectors, can be as bad as 2−n for a single step. If we wish
to iterate this k times, we could need 2kn input vectors for each output vector, resulting in a very
slow algorithm!

We can be much more efficient, however, if we instead look for pairs of vectors sampled from
DL,s whose sum is in 2L, or equivalently pairs of vectors that lie in the same coset c mod 2L. Taking
our intuition from the continuous Gaussian, we might hope that the average of two such vectors
will be distributed as DL,s/

√
2. This suggests an amortized algorithm, in which we sample many

vectors from DL,s, place them in “buckets” according to their coset mod 2L, and then take the
average of disjoint pairs of elements in the same bucket. We call such an algorithm a “combiner.”
The most natural combiner to consider is the “greedy combiner,” which simply pairs as many
vectors in each bucket as it can, leaving at most one unpaired vector per bucket. Since there are 2n

cosets, if we take, say, Ω(2n) samples from DL,s, almost all of the resulting vectors will be paired.
A lemma due to Peikert ([Pei10]) shows that the resulting distribution will be statistically close to
the desired distribution, DL,s/

√
2, provided that the parameter s is above the smoothing parameter.

At this point, we can already build a roughly 2n-time algorithm for DGS that works for such
parameters. (Namely, use prior work to sample at some very high parameter and iteratively apply
the combiner described above.) While this is not our main result (it is strictly weaker), we note that
we have not seen this observation mentioned elsewhere.1 But, in order to move below smoothing
(which is necessary, e.g., for solving SVP), we need to do something else.

● Even

◆ Odd

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

-4 -2 2 4

-4

-2

2

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

-4 -2 2 4

-4

-2

2

4

Figure 2: The rotation mapping L = {(z1, z2) ∈ Z2 : z1 = z2 mod 2} to (
√

2Z)2, (z1, z2) 7→
(z1 + z2, z1 − z2)/

√
2. Our algorithm effectively creates samples from DL,s and then outputs the

first coordinate of the rotated result scaled down by a factor of
√

2, (z1 + z2)/2. The resulting
distribution is exactly D

Z,s/
√

2.

1One can likely also obtain a 2O(n)-time algorithm for DGS above the smoothing parameter by instantiating the
oracles in [MP13].

6

● ●

●

● ●◆

◆

◆

◆

◆■
■

■

■
■▲

▲

▲

▲
▲

-2 -1 1 2
z

0.2

0.4

0.6

0.8

1.0

Pr(z)

● Even

◆ Odd

■ Greedy Combination

▲ Correct Distribution

Figure 3: The distribution of averages of pairs of integers sampled from D
Z,
√

2 resulting from
taking (1) only even pairs; (2) only odd pairs; (3) even and odd pairs with “greedy” weights
proportional to ρ√2(2Z) and ρ√2(2Z+ 1) respectively; and (4) even and odd pairs with “squared”
weights proportional to ρ√2(2Z)2 and ρ√2(2Z+ 1)2 respectively. The fourth distribution is exactly
DZ.

In particular, below the smoothing parameter, combining discrete Gaussian vectors “greed-
ily” as above will not typically give a result that is statistically close to a Gaussian distribution.
However, all is not lost. Recall that our algorithm works by picking pairs of vectors sampled
independently from DL,s that are in the same coset c mod 2L, and then taking the average of
each pair. So, the algorithm effectively samples a vector (X1, X2) from some distribution over the
2n-dimensional lattice of pairs of vectors from L that are in the same coset mod 2L,

L := {(X1, X2) ∈ L2 : X1 = X2 mod 2L} =
⋃

c∈L/(2L)
c× c ,

and then outputs (X1 +X2)/2. We claim that assuming that that distribution is DL,s, the output (X1 +
X2)/2 is distributed exactly as DL,s/

√
2. This fact, shown in Lemma 3.4, has a straightforward proof,

yet we have not seen this observation before. (It is closely related to Riemann’s theta relations, as
described in [Mum07, Chapter 1, Section 5]; see also [RS15]) The idea is the following. It is not
difficult to show that if we apply the 45◦ rotation given by

(X1, X2) 7→
(X1 + X2√

2
,

X1 − X2√
2

)
to L, we obtain the product lattice (

√
2L)2 = {(

√
2X1,
√

2X2) | X1, X2 ∈ L}. (Figure 2 shows the
one-dimensional case.) Note that the rotation of a discrete Gaussian is again a discrete Gaussian,
and the discrete Gaussian over a product lattice is a product distribution. Therefore, if (X1, X2) is
distributed according to DL,s, the distribution of (X1 + X2, X1 − X2)/

√
2 is according to D(

√
2L)2,s

which is a product distribution, and hence (X1 + X2)/
√

2 is distributed according to D√2L,s, as
claimed.

7

However, note that if the combiner just greedily paired as many vectors from each coset as pos-
sible, it would not yield samples from DL,s. In particular, the probability that a sample from DL,s
will land in c× c for some coset c is proportional to the “squared weight” of the coset ρs(c)2. But,
the greedy approach pairs vectors from c with probability roughly proportional to ρs(c). (Figure 3
shows how the resulting distributions differ in the one-dimensional case.) For parameters above
smoothing, these distributions are roughly the same, but to go below smoothing (and to avoid
the statistical error resulting from the greedy approach), we need a way to sample pairs from this
“squared distribution” directly.

This mismatch between the “squared distribution” that we want and the “unsquared” distri-
bution that we get is the primary technical challenge that we must overcome to build our gen-
eral discrete Gaussian combiner. To solve it, we present a generic solution for “converting any
probability distribution to its square” relatively efficiently, which we call the “square sampler.”
Informally, the square sampler is given access to samples from some probability distribution that
assigns respective (unknown) probabilities (p1, . . . , pN) to the elements in some (large) finite set
{1, . . . , N}. It uses this to efficiently sample a large collection of independent coin flips bi,j such that
bi,j = 1 with probability proportional to pi. Then, using these coins, it applies rejection sampling
to the input samples (accepting the jth instance of input value i if bi,j = 1) in order to obtain the
desired “squared distribution.” If Pr[bi,j = 1] = Tpi for some proportionality factor T, it is not
hard to see that the expected “loss factor” of this process is T ∑ p2

i . We therefore take T to be as
large as possible by setting T ≈ 1/ max pi (if we took T to be any larger, we would need a coin that
lands on heads with probability greater than one!), making the loss factor of the square sampler
approximately ∑ p2

i / max pi. (See Section 3.1 and Theorem 3.3 in particular.)
In particular, when combining discrete Gaussian vectors, the loss factor is approximately the

collision probability over the cosets c of 2L, ∑ ρs(c)2/ρs(L)2, divided by the maximal probability of
a single coset. As a result, if one coset has a 2−n/2 fraction of the total weight and the other cosets
split the remaining weight roughly evenly, then the loss factor is roughly 2−n/2 for a single step of
the combiner. This looks terrible for us, as it could be the case that k applications of the combiner
could yield a loss factor of 2−kn/2! Surprisingly, we show that the product of all loss factors for
an arbitrarily long sequence of applications of the combiner is at worst 2−n/2 (ignoring loss due
to other factors). I.e., the accumulated loss factor can be no worse than essentially the worst-case
loss factor in a single step!2 As a result, our general combiner always returns 2n/2 vectors when
its input is 2n+o(n) vectors sampled from the discrete Gaussian. (See Corollary 3.6 for the formal
analysis of repeated application of our combiner.)

A 2n/2+o(n)-time combiner for DGS above smoothing. Recall that the general combiner de-
scribed above starts with many vectors and then repeatedly takes the average of pairs of vectors
that lie in the same coset of 2L. We observed that this combiner necessarily needs over 2n vectors
“just to get started” because it works over the 2n cosets of 2L. To get a faster combiner, we there-
fore try pairing vectors according to the cosets of some sublattice L′ that “lies between” L and
2L such that 2L ⊆ L′ ⊂ L. If we simply take many samples from DL,s, group them according to
their cosets mod L′, and sum them together (taking averages is a bit less natural in this context),
analogy with the continuous Gaussian suggests that the resulting vectors will be distributed as
roughly DL′,

√
2s. Note that the parameter has increased, which is not what we wanted, but we are

2While the purely algebraic proof of this fact is quite simple (see the proof of Corollary 3.6), we do not yet have good
intuitive understanding of it. Indeed, we have found ourselves referring to it as the “magic cancellation.”

8

now sampling from a sparser lattice. In particular, suppose that we apply this combiner twice,
so that in the second step we obtain vectors from some sublattice L′′. We then expect to obtain
samples from roughly DL′′,2s. So, intuitively, if we take L′′ to be a sublattice of 2L, we have “made
progress,” even though we have doubled the parameter. Our running time will be proportional
to the index of L′ over L (assuming that the index of L′′ over L′ is the same), so we should take
the index of L′ over L to be as small as possible. More specifically, we can build a “tower” of
progressively sparser lattices (L0, . . . ,L`) with the index of Li over Li−1 taken to be slightly larger
than 2n/2.3 If we take L` to be the lattice from which we wish to obtain samples with parameter s
and L0 to be a dense lattice from which we can sample efficiently with parameter 2−`/2s, we can
hope that iteratively applying such a combiner “up the tower” will yield a sampling algorithm.

As in the description of our 2n-time combiner, the lemma from [Pei10] shows that the above
approach, when instantiated with the “greedy combiner,” will yield an algorithm that can output
vectors whose distribution is statistically close to the discrete Gaussian for parameters s that are
above the smoothing parameter. Though this statistical distance can be made small, it is large
enough to break applications such as our approximation algorithm for decision SVP.

To avoid this error, the natural hope is that the same combiner used in the 2n-time algorithm
above (the one with the “square sampler”) will suffice. Unfortunately, this gives the wrong distri-
bution. In particular, we obtain a distribution in which the cosets of L′ over 2L have weight that
is proportional to the square of their weights over the discrete Gaussian. (See Lemma 5.6. Note
that when L′ = 2L there is only one such coset, which is why our 2n-time combiner does not run
into this problem.) In some sense, this is the “inverse” of the problem that the square sampler
solves. And, indeed, we solve it by building a “square-root sampler”—based on a clever trick
(used implicitly in [MP05] and discussed in [Did12]) that allows one to flip a coin with probability√

p given black-box access to a coin with unknown probability p. (See Claim 5.2 for the trick and
Theorem 5.4 for the square-root sampler.) So, our combiner works by “squaring the weights” of
the cosets mod L′ of input vectors; pairing them according to these squared weights and summing
the pairs; and then “taking the square root of the weights” of the cosets mod 2L of the resulting
output vectors.

This completes the description of the proof of Theorem 1.2. The above only works above the
smoothing parameter because the required size of the input to the square-root sampler depends
on 1/pmin, where pmin is the probability of landing in the coset with minimal weight. We therefore
only know how to use the square-root sampler to efficiently sample above the smoothing param-
eter, where the minimal weight is roughly equal to the maximal weight. Indeed, in this regime,
both the square-root sampler and the square sampler incur “almost no loss,” so that we obtain an
algorithm that runs in time 2n/2+o(n) and returns 2n/2 samples from the discrete Gaussian. But,
below this, 1/pmin can be arbitrarily large. (Intuitively, some sort of dependence on 1/pmin is nec-
essary for a square-root sampler because a coset whose weight is negligible could have significant
weight after we “take the square root.” So, we should expect that any square-root sampler would
need at least enough samples to “see” such a coset.)

However, we again stress that our techniques do not incur error that depends on “how smooth
the distribution is.” This leaves open the possibility that our algorithm might be modified to work
even below smoothing. The only bottleneck is that the square-root sampler requires very large in-
put in such cases. But, we note that the way that we currently use the square-root sampler might
not be optimal. More specifically, we observe the rather strange behavior of our current algo-

3We note that Becker et al. [BGJ14] also use a tower of lattices in their heuristic algorithm.

9

rithm: when the algorithm “takes the square root” of some coset weights, it typically “squares”
the weights of some (different!) cosets immediately afterwards. So, while the second step is not
the exact inverse of the first, it does still seem that the square-root step is a bit counterproduc-
tive. This suggests that there is room for improvement in this algorithm, and we have made some
progress to that end by proving a correlation inequality that we believe should play a central role
in such an improved algorithm [RS15].

Reduction from SVP to DGS. As mentioned above, if we could efficiently sample from DL,s at
the right parameter, we can hope that a DL,s sample will hit a shortest non-zero vector of L with
reasonable probability. One can quickly see here that there is an important trade-off in the choice
of s. For s too small, the discrete Gaussian becomes completely concentrated on 0, whereas for
s too large, the distribution becomes too diffuse over L and will rarely hit a shortest vector. By
properly choosing s, we show that the discrete Gaussian yields a shortest non-zero lattice vector
with probability 2−0.465n−o(n). (In Section 4.1, we note that the optimal parameter has a nice inter-
pretation in terms of the smoothing parameter.) Since our DGS algorithm returns 2n/2 vectors in
time 2n+o(n), we obtain a 2n+o(n)-time algorithm for SVP.

In order to obtain this bound, we use the result of Kabatjanskiı̆ and Levenšteı̆n that achieves
the current best upper bound on the kissing number [KL78]. (The kissing number bounds from
above the maximal number of shortest non-zero vectors in a lattice. Note that the reciprocal of the
latter is a natural upper bound on the above probability.) At a high level, this is essentially the
same problem faced by the randomized sieving algorithms, and our techniques are very similar
to those developed there (in particular those in [PS09, MV10]).

Reduction from decision SVP to DGS above smoothing. In order to approximate the length
of the shortest non-zero lattice vector to within a constant factor, we note (in Lemma 6.1) that
it suffices to approximate the smoothing parameter of the dual lattice (for exponentially small
ε) to within a constant factor. Of course, if we had a 2n/2-time discrete Gaussian sampler that
worked above smoothing and always failed below smoothing, then it would be trivial to use this
to approximate the smoothing parameter. However, while our 2n/2+o(n)-time sampler does in
fact always work above smoothing, it is not a priori clear how it behaves when asked to provide
samples below smoothing.

We handle this problem as follows. First, while we cannot guarantee that our sampler always
fails below smoothing, we show (with a bit more work) that it always either fails or outputs valid
discrete Gaussian samples. We call such a sampler “honest.” (See Definition 5.1.) Second, we
show a simple test that can distinguish between the discrete Gaussian distribution with param-
eter slightly above smoothing and the discrete Gaussian with parameter below smoothing. (See
Lemma 6.3.) With this, we obtain an O(1)-approximation algorithm for the smoothing parameter
that runs in 2n/2+o(n) time.

Further applications. Another fundamental problem on lattices is the Closest Vector Problem
(CVP), in which we must find a closest lattice vector to some target vector t. CVP is known to be
at least as hard as SVP, as there is a polynomial-time approximation-preserving reduction from
SVP to CVP [GMSS99]. Furthermore, almost all of the major lattice problems reduce to CVP in
this way [Mic08].

10

The fastest exact algorithm for CVP is again the Õ(4n)-time and Õ(2n)-space algorithm due
to Micciancio and Voulgaris [MV13] (which in fact more directly solves CVP than SVP). For ap-
proximation factor γ = 1 + r for r > 0, randomized sieving techniques have been shown capable
of solving γ-approximate CVP in 2O(n)(1 + 1/r)O(n) time and space [AKS02, BN09], though little
effort has been made to optimize the constant in the exponent.

Based on an embedding trick of Kannan [Kan87] and standard concentration bounds on the
discrete Gaussian, we show how to use our sampler to solve 1.97-approximate CVP in time 2n+o(n).
As mentioned above, the reductions of [Mic08] show that this yields the same approximation
factor and running time for almost all lattice problems.

Also, our algorithm from Theorem 1.2 gives 2n/2+o(n)-time algorithms for .422-BDD (Corol-
lary 7.4) and O(

√
n log n)-approximate SIVP (Corollary 7.6).

1.3 Conclusions and open problems

Our work raises many questions and potential avenues for improvement. Firstly, we suspect that
the algorithm from Theorem 1.2 can be modified to work for an arbitrary parameter s with the
same running time of roughly 2n/2 (at least to sample a single vector). Such a result would sub-
sume Theorem 1.1 and would lead to an improved algorithm for SVP, as well as other problems.
We have made some modest progress towards proving this, but a solution still seems far.

Another central open problem is whether SVP can be solved in singly exponential time but
only polynomial space. The best running time known for polynomial-space algorithms is the
nO(n) obtained by enumeration-based methods [Kan87, Hel85, HS07, MW15].

Finally, this work shows that Discrete Gaussian Sampling is a lattice problem of central im-
portance. However, DGS for parameters below smoothing is not nearly as well-understood as
many other lattice problems, and many natural questions remain open. For example, is there a
dimension-preserving reduction from DGS to CVP? Is DGS NP-hard?

Follow-up work. In a follow-up work by three of us [ADS15] we generalize Theorem 1.1 by
presenting a 2n+o(n)-time algorithm to sample from the shifted discrete Gaussian DL−t,s for any
t ∈ Rn and s > 0. As an application of that algorithm, we show in [ADS15] how to obtain a
2n+o(n)-time algorithm for exact CVP (which is a harder problem than SVP, as follows from the
dimension-preserving reduction in [GMSS99]). While those results are stronger than some of the
results presented in this paper, the proofs in [ADS15] are also significantly more involved.

Organization. In Section 2, we overview the necessary background material and give the basic
definitions used throughout the paper. In Section 3, we give our general 2n+o(n)-time DGS sam-
pler (Theorem 3.7). In Section 4, we prove our bound on the number of discrete Gaussian samples
needed for SVP (Lemma 4.2 and Proposition 4.3) and give our reduction from SVP to DGS (The-
orem 4.4). In Section 5, we give our 2n/2+o(n)-time DGS sampler for parameters above smoothing
(Theorem 5.11). In Section 6, we show our reduction from GapSVP to DGS above smoothing (The-
orem 6.5). Finally, in Section 7, we show our 2n+o(n)-time algorithm for 1.97-approximate CVP
(Theorem 7.1) and our 2n/2+o(n)-time algorithms for .422-BDD (Corollary 7.4) and O(

√
n log n)-

approximate SIVP (Corollary 7.6).

11

2 Preliminaries

Let N = {0, 1, . . . , }. Except where we specify otherwise, we use C, C1, and C2 to denote universal
positive constants, which might differ from one occurrence to the next. We use bold letters x for
vectors and denote a vector’s coordinates with indices xi. Throughout the paper, n will always be
the dimension of the ambient space Rn.

2.1 Lattices

A rank d lattice L ⊂ Rn is the set of all integer linear combinations of d linearly independent
vectors B = (b1, . . . , bd). B is called a basis of the lattice and is not unique. Formally, a lattice is
represented by a basis B for computational purposes, though for simplicity we often do not make
this explicit. If n = d, we say that the lattice has full rank, and we often assume this as results for
full-rank lattices naturally imply results for arbitrary lattices.

Given a basis, (b1, . . . , bd), we write L(b1, . . . , bd) to denote the lattice with basis (b1, . . . , bd).
The length of a shortest non-zero vector in the lattice is written λ1(L). For a vector t ∈ Rn, we
write dist(t,L) to denote the distance between t and the lattice, miny∈L(‖t− y‖).

For a lattice L ⊂ Rn, the dual lattice, denoted L∗, is defined as the set of all points in span(L)
that have integer inner products with all lattice points,

L∗ = {w ∈ span(L) : ∀y ∈ L, 〈w, y〉 ∈ Z} .

Similarly, for a lattice basis B = (b1, . . . , bd), we define the dual basis B∗ = (b∗1 , . . . , b∗d) to be the
unique set of vectors in span(L) satisfying 〈b∗i , bj〉 = δi,j. It is easy to show that L∗ is itself a rank
d lattice and B∗ is a basis of L∗.

Definition 2.1. For a lattice L, the ith successive minimum of L is

λi(L) = inf{r : dim(span(L ∩ B(0, r))) ≥ i} .

In other words, the ith successive minimum of L is the smallest value r such that there are i
linearly independent vectors in L of length at most r.

2.2 The discrete Gaussian distribution

For any s > 0, we define the function ρs : Rn → R as ρs(t) = exp(−π‖t‖2/s2). When s = 1, we
simply write ρ(t). For a discrete set A ⊂ Rn we define ρs(A) = ∑x∈A ρs(x).

Definition 2.2. For a lattice L ⊂ Rn and a vector t ∈ Rn, let DL+t,s be the probability distribution over
L + t such that the probability of drawing x ∈ L + t is proportional to ρs(x). We call this the discrete
Gaussian distribution over L+ t with parameter s.

We make frequent use of the discrete Gaussian over the cosets of a sublattice. If L′ ⊆ L is
a sublattice of L, then the set of cosets, L/L′ is the set of translations of L′ by lattice vectors,
c = L′ + y for some y ∈ L. It is easily seen from the Poisson summation formula that for any
c ∈ L/L′, ρs(L′) ≥ ρs(c), i.e., the zero coset has maximal weight (see, e.g., [Ban93]). We use this
fact throughout the paper. In particular, it follows that ρs(L)/ρs(L′) ≤ |L/L′|.

Banaszczyk proved the following two bounds on the discrete Gaussian [Ban93].

12

Lemma 2.3 ([Ban93, Lemma 1.4]). For any lattice L ⊂ Rn and s > 1,

ρs(L) ≤ snρ(L) .

Lemma 2.4 ([DRS14, Lemma 2.13]). For any lattice L ⊂ Rn, s > 0, u ∈ Rn, and t ≥ 1/
√

2π,

Pr
X∼DL+u,s

[‖X‖ > ts
√

n] <
ρs(L)

ρs(L+ u)
(√

2πet2 exp(−πt2)
)n .

Definition 2.5. For a lattice L ⊂ Rn and ε > 0, we define the smoothing parameter ηε(L) as the unique
value satisfying ρ1/ηε(L)(L∗ \ {0}) = ε.

We note that if L′ ⊆ L, then ηε(L) ≤ ηε(L′), and we have ηε(sL) = sηε(L). The name
smoothing parameter comes from the following fact.

Claim 2.6. For any lattice L ⊂ Rn and ε ∈ (0, 1), if s ≥ ηε(L), then for all t ∈ Rn,

ρs(L+ t)
ρs(L)

≥ 1− ε

1 + ε
.

Finally, we will need the following basic bounds on the smoothing parameter, the first of which
is essentially the same as [CDLP13, Lemma 2.4].

Lemma 2.7. For any lattice L ⊂ Rn, ε ∈ (0, 1), and k > 1, we have kηε(L) > η
εk2 (L).

Proof. Suppose without loss of generality that ηε(L) = 1. Then,

ρ1/k(L∗ \ {0}) = ∑
y∈L∗\{0}

ρ(L)k2
<
(

∑
y∈L∗\{0}

ρ(L)
)k2

= εk2
.

Lemma 2.8. For any lattice L ⊂ Rn and ε = 0.99,

ηε(L) ≥ C
λn(L)√

n
.

Proof. Suppose λn(L) > 500
√

nηε(L). Then there exists a u ∈ Rn such that dist(u,L) > 250
√

nηε(L).
Then, using Lemma 2.4,

ρηε(L)(L+ u) = ρηε(L)((L+ u) \ B(0, 250
√

nηε(L))) ≤ 200−nρηε(L)(L).

Using Claim 2.6, this gives

ηε(L)n det(L∗)(1− ε) ≤ 200−nηε(L)n det(L∗)(1 + ε),

which is a contradiction.

2.3 The Gram-Schmidt orthogonalization

Given a basis, B = (b1, . . . , bn), we define its Gram-Schmidt orthogonalization (b̃1, . . . , b̃n) by

b̃i = π{b1,...,bi−1}⊥(bi) .

Here, πA is the orthogonal projection on the subspace A and {b1, . . . , bi−1}⊥ denotes the subspace
orthogonal to b1, . . . , bi−1.

13

2.4 Lattice problems

The following problem plays a central role in this paper.

Definition 2.9. For ε ≥ 0, σ a function that maps lattices to non-negative real numbers, and m ∈ N,
ε-DGSm

σ (the Discrete Gaussian Sampling problem) is defined as follows: The input is a basis B for a lattice
L ⊂ Rn and a parameter s > σ(L). The goal is to output a sequence of m vectors whose joint distribution
is ε-close to Dm

L,s.

We omit the parameter ε if ε = 0, the parameter σ if σ = 0, and the parameter m if m = 1. We
stress that ε bounds the statistical distance between the joint distribution of the output vectors and
m independent samples of DL,s.

For our applications, we consider the following lattice problems.

Definition 2.10. The search problem SVP (Shortest Vector Problem) is defined as follows: The input is a
basis B for a lattice L ⊂ Rn. The goal is to output a vector y ∈ L with ‖y‖ = λ1(L).

Definition 2.11. For γ = γ(n) ≥ 1 (the approximation factor), the decision problem γ-GapSVP is defined
as follows: The input is a basis B for a lattice L ⊂ Rn and a number d > 0. The goal is to output yes if
λ1(L) < d and no if λ1(L) ≥ γ · d.

Definition 2.12. For γ = γ(n) ≥ 1 (the approximation factor), the search problem γ-CVP (Closest Vector
Problem) is defined as follows: The input is a basis B for a lattice L ⊂ Rn and a target vector t ∈ Rn. The
goal is to output a vector y ∈ L with ‖y− t‖ ≤ γ · dist(t,L).

Definition 2.13. For α = α(n) < 1/2 (the approximation factor), the search problem α-BDD (Bounded
Distance Decoding) is defined as follows: The input is a basis B for a lattice L ⊂ Rn and a target vector
t ∈ Rn with dist(t,L) ≤ α · λ1(L). The goal is to output a closest lattice vector to t.

Note that, while our other problems become more difficult as the approximation factor γ be-
comes smaller, α-BDD becomes more difficult as α gets larger. For convenience, when we discuss
the running time of algorithms solving the above problems, we ignore polynomial factors in the
bit-length of the individual input basis vectors. (I.e., we consider only the dependence on the
ambient dimension n.)

2.5 Some lattice algorithms

The following theorem was proven by Ajtai, Kumar, and Sivakumar [AKS01], building on work
of Schnorr [Sch87]. (While we use the AKS algorithm repeatedly in the sequel for convenience,
we note that we could instead use the conceptually simpler algorithm from [Sch87] to obtain
asymptotically identical results.)

Theorem 2.14. There is an algorithm that takes as input a lattice L ⊂ Rn and r ≥ 2 and outputs an
rn/r-reduced basis of L in time exp(O(r)) · poly(n), where we say that a basis B = (b1, . . . , bn) of a
lattice L is γ-reduced for some γ ≥ 1 if

1. ‖b1‖ ≤ γ · λ1(L); and

2. π{b1}⊥(b2), . . . , π{b1}⊥(bn) is a γ-reduced basis of π{b1}⊥(L).

14

In order to initialize our algorithm, we will need to use a Gaussian sampler such as the one
given by Gentry, Peikert, and Vaikuntanathan [GPV08]. For convenience, we use the following
modest strengthening of this result, which provides exact samples and gives slightly better bounds
on the parameter s.

Theorem 2.15 ([BLP+13, Lemma 2.3]). There is a probabilistic polynomial-time algorithm that takes as
input a basis B for a lattice L ⊂ Rn and s > ‖B̃‖

√
C log n and outputs a vector that is distributed exactly

as DL,s, where ‖B̃‖ := max‖b̃i‖.

Ideally, we would like to use Theorem 2.14 and Theorem 2.15 to solve DGSσ for σ = λ1(L) · rn/r

in time ≈ exp(O(r)). Unfortunately, this does not work. The problem is that Theorem 2.15 only
allows us to sample from DL,s if all of the Gram-Schmidt vectors are smaller than ≈ s. We cannot
hope to achieve this even for s ≈ λ1(L) · rn/r. Indeed, there may not even be such a basis! Instead,
we show that we can sample from a sublattice for which we can find such a basis, and we show
that this sublattice contains all of the “short” lattice points.

Proposition 2.16. There is an algorithm that takes as input a lattice L ⊂ Rn with n ≥ 2, 2 ≤ r ≤ O(n),
M ∈N (the desired number of output vectors), and s > 0 and outputs a sublattice L′ and M independent
samples from DL′,s in time (2O(r) + M) · poly(n). The sublattice L′ contains all vectors in L of length at
most r−n/rs. Furthermore, if

s ≥ (Cr)n/r ·
√

n log n · η0.99(L) ,

then L′ = L.

Proof. On input L the algorithm first runs the procedure from Theorem 2.14 on L with parameter
C1r, receiving output B = (b1, . . . , bn). Let b̃1, . . . , b̃n be the corresponding Gram-Schmidt vectors,
and let k be maximal such that ‖b̃i‖ ≤ s/

√
C2 log n for all i ≤ k. The algorithm then runs the

procedure from Theorem 2.15 M times on input (b1, . . . , bk) and s and outputs the result together
with L′ = L(b1, . . . , bk).

The running time is clear. It follows immediately from Theorem 2.15 that the output has the
correct distribution. If k = n, then we are done. Otherwise, let K = πL′⊥(L). By Theorem 2.14, we
have that

λ1(K) ≥ (C1r)−n/(C1r)‖b̃k+1‖ > (C1r)−n/(C1r)s/
√

C2 log n > r−n/rs .

The main result follows by noting that y ∈ L \ L′ implies that ‖y‖ ≥ λ1(K) > r−n/rs.
Finally, we note that ‖b̃i‖ ≤ (C1r)n/(C1r) · λn(L) for all i. It follows that, if s ≥ (Cr)n/r

√
log n ·

λn(L), then k = n, and therefore L′ = L. The second statement then follows from Lemma 2.8.

2.6 Probability distributions

Definition 2.17 (Poisson distribution). The Poisson distribution with parameter λ > 0 is the distribu-
tion defined by

Pr
X∼Pois(λ)

[X = r] =
λr

r!
· e−λ

for all m ∈N.

Intuitively, the Poisson distribution is the distribution obtained by, e.g., counting the number
of decay events over some fixed time period in some large, homogenous radioactive source. The
parameter λ is just the expected count.

15

Lemma 2.18 (Poisson tail bounds [Gly87]). For λ > 0 let X be a Pois(λ) random variable. Then,

• for any 0 ≤ m < λ,

Pr(X ≤ m) ≤ exp(−λ)λm

m!(1− (m/λ))
,

• and for any m > λ− 1,

Pr(X ≥ m) ≤ exp(−λ)λm

m!(1− (λ/(m + 1)))
.

Corollary 2.19. For any α > 0, there exist C1, C2 > 0 such that the following holds for all m ≥ 1. If X is
a Pois(λ) random variable for some λ < (1− α)m then

Pr(X ≥ m) ≤ C1 exp(−C2m) ,

and similarly, if λ > (1 + α)m then

Pr(X ≤ m) ≤ C1 exp(−C2m) .

Proof. Stirling’s approximation implies the inequality m! ≥ (m/e)m valid for all m ≥ 1, which
together with Lemma 2.18 implies in both cases the upper bound

C exp(−m(λ/m− log(λ/m) + 1)) .

The function x− log x + 1 is non-negative and strictly convex on x > 0 and obtains its minimum
of 0 at x = 1. As a result, it is uniformly bounded away from 0 for all x satisfying |x− 1| ≥ α.

We will also need the Chernoff-Hoeffding bound [Hoe63].

Lemma 2.20 (Chernoff-Hoeffding bound). Let X1, . . . , XN be independent and identically distributed
random variables with 0 ≤ Xi ≤ a and expectation µ. Then, for any δ > 0,

Pr
[1

N
·∑ Xi ≥ (1 + δ)µ

]
≤ exp(−Cδ2Nµ/a) ,

and
Pr
[1

N
·∑ Xi ≤ (1− δ)µ

]
≤ exp(−Cδ2Nµ/a) .

Lemma 2.21 (Multinomial to independent Poisson). Let λ > 0 and p ∈ [0, 1]N with ∑ pi = 1.
Consider the process that first samples r ∼ Pois(λ) and then samples X1, . . . , Xr independently with
Pr[Xj = i] = pi. For each i, let Yi be the number of occurrences of i in the sequence X1, . . . , Xr. Then, Yi is
distributed as Pois(λpi) independently of the other Yj.

Proof. Considering the joint distribution, we have

Pr[Y = a] = Pr[r = ‖a‖1] · Pr[Y = a|r = ‖a‖1]

= λ‖a‖1 e−λ ∏
i

pai
i

ai!

= ∏
i

(
(λpi)

ai

ai!
· e−λpi

)
,

as needed.

16

Claim 2.22 (Poisson to Bernoulli). For λ ≤ 1 and κ ≥ 2, consider the procedure obtained by sampling
r from Pois(λ) and then outputting 1 with probability min{1, r/κ} and 0 otherwise. The output of this
procedure is within statistical distance 1/(bκc!) of the Bernoulli distribution B(λ/κ).

Proof. If X is distributed like Pois(λ), the statistical distance is given by

E[X/κ −min{1, X/κ}] = E[max{0, X/κ − 1}]
≤ κ−1 E[1X>κ · X]

= κ−1
∞

∑
r=bκc+1

rλr exp(−λ)/r!

= κ−1λ
∞

∑
r=bκc

λr exp(−λ)/r! ,

which is at most 1/(bκc!) by Lemma 2.18 and our choice of parameters.

3 Sampling from the discrete Gaussian

3.1 Sampling from the square

Recall that a naive bucketing procedure does not weight cosets in the way that we would like. In
particular, the resulting number of vectors in the cosets is distributed with probabilities propor-
tional to ρs(c), while we would like the probabilities to be proportional to ρs(c)2. Theorem 3.3
shows how to use samples from any multinomial distribution to sample from the “squared distri-
bution” (with small error).

The “square sampler” that we present in Theorem 3.3 needs to compute an estimate of the
maximal probability max pi, given samples from some probability distribution with respective
probabilities (p1, . . . , pN). The following proposition shows that there is a relatively efficient way
of estimating max pi. The proposition is included here for completeness. In our application, we
will know which of the elements 1, . . . , N has maximal probability, so we could instead simply
estimate max pi directly.

Proposition 3.1 (Estimating pmax). There is an algorithm that takes as input κ ≥ 1 (the confidence
parameter) and a sequence of M elements from {1, . . . , N} and outputs a value p̃max such that, if the input
consists of M ≥ κ/pmax independent samples from the distribution that assigns probability pi to element
i, then

pmax ≤ p̃max ≤ 4pmax

except with probability at most C1N log N exp(−C2κ), where pmax = max pi . The algorithm runs in
time M · poly(log κ, log N).

Proof. The algorithm is the following. Initialize p = 1. Sample r from Pois(κ/p) and read the next
r elements in the input sequence (or fail if there are not enough elements remaining). Count how
many times each i ∈ {1, . . . , N} appears in this subsequence. If there exists an i appearing at least
κ/3 times, output p and stop. Otherwise, divide p by 2 and repeat.

The running time is clear. By Lemma 2.21, at each iteration the number of times i appears is
distributed like Pois(κpi/p) independently of everything else. Consider now the iterations with

17

p > 4pmax. Since pmax > 1/N, there are at most O(log N) such iterations, and in each there
are N possible values of i. Therefore, by Corollary 2.19 and a union bound, the probability that
there exists an iteration with p > 4pmax and an i that appears there at least κ/3 times is at most
C1N log N · exp(−C2κ). Finally, consider the iteration in which pmax < p ≤ 2pmax, and let i be the
index achieving pmax. Then by Corollary 2.19 again, with all but probability C1 exp(−C2κ), the
item i appears at least κ/3 times. To summarize, assuming none of the bad events happens, the
output satisfies pmax < p̃max ≤ 4pmax as desired.

Definition 3.2. For a vector p ∈ [0, 1]N with ∑ pi = 1, let p2 = (p2
1/pcol, . . . , p2

N/pcol) where pcol :=
∑ p2

i .

Theorem 3.3 (Square sampler). There is an algorithm that takes as input κ ≥ 2 (the confidence parame-
ter) and M elements from {1, . . . , N} and outputs a sequence of elements from the same set such that

1. the running time is M · poly(log κ, log N);

2. each i ∈ {1, . . . , N} appears at least twice as often in the input as in the output; and

3. if the input consists of M ≥ 10κ2/ max pi independent samples from the distribution that assigns
probability pi to element i, then the output is within statistical distance C1MN log N exp(−C2κ)
of m independent samples with respective probabilities p2 where m ≥ M · ∑ p2

i /(32κ max pi) is a
random variable.

Proof. The algorithm first runs the procedure from Proposition 3.1 on the first M/2 elements from
its input sequence, receiving as output p̃max. The algorithm then reads the remaining elements
in sequence. If it ever reads the last element of the input, it fails. For j = 1, . . . , Mp̃max/4, the
algorithm samples r according to Pois(1/ p̃max) and takes the next r unused elements in the input.
For i = 1, . . . , N, let ai,j be the number of times element i appears in the jth such subsequence.
For each i, j let bi,j be 1 with probability min{1, ai,j/κ} and 0 otherwise. (To achieve the correct
running time, we do not actually explicitly store these values when ai,j = bi,j = 0.)

Finally, the algorithm looks through the next M/6 elements, one element at a time (or it fails
if there are not M/6 elements remaining). When it sees element i, it adds it to its output if bi,j = 1
where j ≥ 1 is the smallest index such that bi,j is unused (or it fails if there is no unused bi,j).

The running time of the algorithm is clear. We first prove that the output elements have the
correct distribution, ignoring failure. By Proposition 3.1, we can assume that max pi ≤ p̃max ≤
4 max pi, introducing statistical distance at most C1N log N exp(−C2κ). Then, by Lemma 2.21,
the ai,j are distributed independently as Pois(pi/ p̃max). By Claim 2.22, each bi,j is within statistical
distance C1 exp(−C2κ) of B(pi/(κ p̃max)). So, we assume that the bi,j are independently distributed
exactly as B(pi/(κ p̃max)), introducing statistical distance that is at most C1NM exp(−C2κ). Then,
in the final stage of the algorithm, the probability of outputting i at each step is p2

i /(κ p̃max). Hence,
the individual output samples have the correct distribution. By the Chernoff-Hoeffding bound
(Lemma 2.20), the size of the output will be at least M ∑ p2

i /(8κ p̃max) ≥ M ∑ p2
i /(32κ max pi)

except with probability at most exp(−Cκ).
We now prove that the algorithm rarely fails. The number of inputs used in the first stage is

distributed as Pois(M/4), which by Corollary 2.19 is at most M/2 except with probability at most
C1 exp(−C2κ). Applying the Chernoff-Hoeffding bound again, we have that the number of coins
bi,j used for a fixed i is at most Mpi/4 ≤ Mp̃max/4 except with probability at most exp(−Cκ). So,
the algorithm fails with probability at most C1N exp(−C2κ).

18

Finally, we note that each i appearing in the output corresponds to two copies of i appearing
in the input: one corresponding to some value ai,j > 0 and another sampled in the final stage.

3.2 A discrete Gaussian combiner

Ideally, we would like the average of two vectors sampled from DL,s to be distributed as DL,s′ for
some s′ < s. Unfortunately, this is false for the simple reason that the average of two lattice vectors
may not be in the lattice! The following lemma shows that we do obtain the desired distribution
if we condition on the result being in the lattice. The number of vectors that we output will
depend on the expression ∑ ρs(c)2 where c ranges over all cosets of 2L over L, so we analyze this
expression as well. (Note that, for two lattice vectors X1 and X2, we have (X1 + X2)/2 ∈ L if and
only if X1 and X2 are in the same coset over 2L. So, the cosets of 2L arise naturally in this context.)

Lemma 3.4. Let L ⊂ Rn and s > 0. Then for all y ∈ L,

Pr
(X1,X2)∼D2

L,s

[(X1 + X2)/2 = y | X1 + X2 ∈ 2L] = Pr
X∼DL,s/

√
2

[X = y] . (1)

Furthermore,
∑

c∈L/(2L)
ρs(c)2 = ρs/

√
2(L)

2 .

Proof. Multiplying the left-hand side of (1) by Pr(X1,X2)∼D2
L,s
[X1 +X2 ∈ 2L] = ρs(L)−2 ∑c∈L/(2L) ρs(c)2

we get for any y ∈ L,

Pr
(X1,X2)∼D2

L,s

[(X1 + X2)/2 = y] =
1

ρs(L)2 · ∑
x∈L

ρs(x)ρs(2y− x)

=
ρs/
√

2(y)
ρs(L)2 · ∑

x∈L
ρs/
√

2(x− y)

=
ρs/
√

2(y)
ρs(L)2 · ρs/

√
2(L)

= ρs(L)−2 · ρs/
√

2(L)
2 Pr

X∼DL,s/
√

2

[X = y] .

Hence both sides of (1) are proportional to each other. Since they are probabilities, they are actually
equal. In particular, the ratio between them, ∑c∈L/(2L) ρs(c)2/ρs/

√
2(L)2, is one.

Proposition 3.5. There is an algorithm that takes as input a lattice L ⊂ Rn, κ ≥ 2 (the confidence
parameter), and a sequence of vectors from L, and outputs a sequence of vectors from L such that, if the
input consists of M ≥ 10κ2 · ρs(L)/ρs(2L) independent samples from DL,s for some s > 0, then the
output is within statistical distance M exp(C1n− C2κ) of m independent samples from DL,s/

√
2 where m

is a random variable with

m ≥ M · 1
32κ
·

ρs/
√

2(L)2

ρs(L)ρs(2L)
.

The running time of the algorithm is at most M · poly(n, log κ).

19

Proof. Let (X1, . . . , XM) be the input vectors. For each i, let ci ∈ L/(2L) be the coset of Xi. The
combiner runs the algorithm from Theorem 3.3 with input κ and (c1, . . . , cM), receiving output
(c′1, . . . , c′m). (Formally, we must encode the cosets as integers in {1, . . . , 2n}.) Finally, for each c′i, it
chooses a pair of unpaired vectors Xj, Xk with cj = ck = c′i and outputs Yi = (Xj + Xk)/2.

The running time of the algorithm follows from Item 1 of Theorem 3.3. Furthermore, we note
that by Item 2 of the same theorem, there will always be a pair of indices j, k for each i as above.

To prove correctness, we observe that for c ∈ L/(2L) and y ∈ c,

Pr[Xi = y] =
ρs(c)
ρs(L)

· Pr
X∼Dc,s

[X = y] .

In particular, we have that Pr[ci = c] = ρs(c)/ρs(L), and 2L is the coset with the highest proba-
bility. Then, the cosets (c1, . . . , cM) satisfy the conditions necessary for Item 3 of Theorem 3.3 with
max pi = ρs(2L)/ρs(L).

Applying the theorem, up to statistical distance M exp(C1n − C2κ), we have that the output
vectors are independent, and

m ≥ M · 1
32κ
·

∑c∈L/(2L) ρs(c)2

ρs(L)ρs(2L)
= M · 1

32κ
·

ρs/
√

2(L)2

ρs(L)ρs(2L)
,

where the equality follows from Lemma 3.4. Furthermore, we have Pr[c′i = c] = ρs(c)2/ ∑c′ ρs(c′)2

for any coset c ∈ L/(2L). Therefore, for any y ∈ L,

Pr[Yi = y] =
1

∑ ρs(c)2 · ∑
c∈L/(2L)

ρs(c)2 · Pr
(Xj,Xk)∼D2

c,s

[(Xj + Xk)/2 = y]

= Pr
(X1,X2)∼D2

L,s

[(X1 + X2)/2 = y | X1 + X2 ∈ 2L] .

The result then follows from Lemma 3.4.

By calling the algorithm from Proposition 3.5 repeatedly, we obtain a general discrete Gaussian
combiner.

Corollary 3.6. There is an algorithm that takes as input a lattice L ⊂ Rn, ` ∈ N (the step parameter),
κ ≥ 2 (the confidence parameter), and M = (32κ)`+12n vectors in L such that, if the input vectors are
distributed as DL,s for some s > 0, then the output is a sequence of 2n/2 vectors whose distribution is
within statistical distance `M exp(C1n−C2κ) of independent samples from DL,2−`/2s. The algorithm runs
in time `M · poly(n, log κ).

Proof. Let X0 = (X1, . . . , XM) be the sequence of input vectors. For i = 0, . . . , `− 1, the algorithm
calls the procedure from Proposition 3.5 with input L, κ, and Xi, receiving an output sequence
Xi+1 of some length Mi+1. Finally, the algorithm outputs the first 2n/2 vectors of X` (or fails if
there are not enough vectors).

The running time is clear. Fix L, s, and `. For convenience, let ψ(i) := ρ2−i/2s(L). Note that by
Lemma 2.3 we have that 1 ≤ ψ(i)/ψ(i + 1) ≤ 2n/2 for all i, a fact that we use repeatedly below.
We wish to prove by induction that Xi is within statistical distance iM exp(C1n− C2κ) of DMi

L,2−i/2s
with

Mi ≥ (32κ)`−i+1 · 2n/2 ψ(i)
ψ(i + 1)

(2)

20

for all i.
Since M0 = M = (32κ)`+12n and ψ(0)/ψ(1) ≤ 2n/2, it follows that (2) holds when i = 0.

Suppose thatXi has the correct distribution and (2) holds for some i with 0 ≤ i < `. Notice that the
right-hand side of (2) is at least 10κ2ψ(i)/ψ(i + 2) and that the latter is precisely the lower bound
on Mi appearing in Proposition 3.5. We can therefore apply the proposition and the induction
hypothesis, and obtain that (up to statistical distance at most (i + 1)M exp(C1n− C2κ)), Xi+1 has
the correct distribution with

Mi+1 ≥ Mi ·
1

32κ
· ψ(i + 1)2

ψ(i)ψ(i + 2)
≥ (32κ)`−i · 2n/2 ψ(i + 1)

ψ(i + 2)
,

as needed.
The result follows by noting that M` ≥ 2n/2ψ(`)/ψ(`+ 1) ≥ 2n/2.

3.3 A general discrete Gaussian sampler

Theorem 3.7. There is an algorithm that solves exp(−Ω(κ))-DGS2n/2
in time 2n+polylog(κ)+o(n) for any

κ ≥ Ω(n).

Proof. On input L ⊂ Rn a lattice, s > 0, and κ ≥ Ω(n), the algorithm behaves as follows. First,
it runs the sampler from Proposition 2.16 on L with parameters r, ŝ = 2`/2s, and M = (32κ)`+2 ·
2n, with r and ` to be set in the analysis. It receives as output a sublattice L′ ⊆ L and vectors
X1, . . . , XM ∈ L′. It then runs the combiner from Corollary 3.6 with input L′, `, κ, and X1, . . . , XM
and outputs the result.

The running time of the first stage of the algorithm is (2O(r) + M) ·poly(n) by Proposition 2.16,
and by Corollary 3.6, the running time of the second stage is M` · poly(n, log κ). Setting ` =
4dlog κ + log2 ne and r = n/ log n, it follows that the running time is as claimed. Applying the
proposition and corollary again, we have that the output is within statistical distance exp(−Ω(κ))

of D2n/2

L′,s . Furthermore, we have that L′ contains all vectors of length at most r−n/r ŝ >
√

κs.
It remains to prove that DL′,s is within statistical distance exp(−Ω(κ)) of DL,s. Notice that

DL′,s is a restriction of the distribution DL,s to L′ and hence the statistical distance between these
two distributions is

Pr
X∼DL,s

[X ∈ L \ L′] < Pr
X∼DL,s

[‖X‖ >
√

κs] < exp(−Ω(κ)) ,

as needed, where we used Lemma 2.4.

4 Solving SVP in 2n+o(n) time

4.1 A bound on the Gaussian mass

In this section, we prove a bound on the Gaussian mass of a lattice that follows from an upper
bound on the kissing number due to Kabatjanskiı̆ and Levenšteı̆n [KL78]. In particular, we use
the following lemma from [PS09] based on [KL78]. For convenience, we define β := 20.401, and we
use this notation throughout this section.

Lemma 4.1 ([PS09, Lemma 3]). Let L ⊆ Rn be a lattice with λ1(L) = 1. Then for any r ≥ 1, the
number of lattice vectors of length at most r is at most βn+o(n)rn.

21

We now use Lemma 4.1 to bound ρs(L).
Lemma 4.2. Let L ⊂ Rn be a lattice of rank at least one. Then for any s >

√
2π/n · λ1(L),

ρs(L) ≤ 1 +
(

β2s2n
2πe · λ1(L)2

)n/2+1

2o(n) , (3)

and for s ≤
√

2π/n · λ1(L), we have

ρs(L) ≤ 1 + e−πλ1(L)2/s2 · βn+o(n) . (4)

We note that an easy calculation shows that the right-hand side of Eq. (3) is never smaller than
the right-hand side of Eq. (4). In particular, this means that Eq. (3) actually applies for all s.

Proof of Lemma 4.2. We assume without loss of generality that L is normalized so that λ1(L) = 1.
Let t := 1 + 1/n. For r ≥ 1, define Tr := {x ∈ Rn : r ≤ ‖x‖ < tr}. By Lemma 4.1, |L ∩ Tr| ≤
βn+o(n)rn, and, for any vector y ∈ L ∩ Tr, ρs(y) ≤ e−πr2/s2

. Therefore,

ρs(L ∩ Tr) ≤ e−πr2/s2 · βn+o(n) · rn .

So, we have

ρs(L) = 1 +
∞

∑
i=0

ρs(L ∩ Tti)

≤ 1 + βn+o(n) ·
∞

∑
i=0

e−πt2i/s2
tin

≤ 1 + (1 + s)βn+o(n) ·max
r≥1

e−πr2/s2
rn ,

where we have used the fact that e−πt2i/s2
tin decays geometrically when i is at least, say, (1 + s) ·

poly(n), and so the sum up to that point is the same as the infinite sum up to a constant factor. Note
that for any a, b > 0, the maximum of e−ar2

rb over the interval r ≥ 1 is obtained at r =
√

b/(2a) if
this value is at least 1 or at r = 1 otherwise. The result follows.

Proposition 4.3. Let L ⊂ Rn be a lattice of rank at least one. Let

s =

√
2πe
β2n
· λ1(L) .

Then,
Pr

X∼DL,s
[‖X‖ = λ1(L)] ≥ e−β2n/(2e)−o(n) ≈ 1.38−n−o(n) .

Proof. By Lemma 4.2, we have that ρs(L) = 2o(n). Therefore,

Pr
X∼DL,s

[‖X‖ = λ1(L)] ≥ e−π/s2
/ρs(L) ≥ e−π/s2−o(n) = e−β2n/(2e)−o(n) ,

as needed.

An easy calculation shows that the probability in Proposition 4.3 is maximized to within a
factor of two when s = 1/η1(L∗). I.e., for any shortest non-zero vector y ∈ L,

max
s

Pr
X∼DL,s

[X = y] ≤ 2 Pr
X∼DL,1/η1(L∗)

[X = y] = exp(−πη1(L∗)2 · λ1(L)2) .

22

4.2 A reduction from SVP to DGS

Theorem 4.4. There is a reduction from SVP to 1
2 -DGS2n/2

. The reduction makes O(n) calls to the DGS
oracle, preserves the dimension of the lattice, and runs in time 2n/2 · poly(n).

Proof. Let D be an oracle solving 1
2 -DGS2n/2

. We construct an algorithm solving SVP as follows. It
first runs the procedure from Theorem 2.14 on L with r = 2. Let d be the length of the first basis
vector in the output. For i = 0, . . . , 100n, the algorithm calls D on Lwith parameter si = 1.01−i · d.
Let xi be a shortest non-zero vector in the output. Finally, the algorithm outputs a shortest vector
among the xi.

The running time of the algorithm is clear. By Theorem 2.14, we have d ≤ 2n/2λ1(L). It
follows that there exists some i such that ŝ ≤ si ≤ 1.01ŝ where ŝ =

√
πe/n · 20.099 · λ1(L) (i.e., ŝ is

the parameter from Proposition 4.3). We assume that the output of D is exactly D2n/2

L,si
when called

on si, incurring statistical distance at most 1/2. For such i, by Lemma 2.3 we have

Pr
X∼DL,si

[‖X‖ = λ1(L)] ≥ 1.01−n · Pr
X∼DL,ŝ

[‖X‖ = λ1(L)]

≥ 1.4−n−o(n) (Proposition 4.3) .

The result follows by noting that 1.4 <
√

2, so 2n/2 samples from DL,si will contain a shortest
vector with probability at least 1− exp(−Ω(n)).

Corollary 4.5. There is an algorithm that solves SVP in time 2n+o(n).

Proof. Combine the reduction from Theorem 4.4 with the algorithm from Theorem 3.7.

5 Sampling 2n/2 vectors above smoothing in 2n/2 time

In this section we present a 2n/2-time algorithm for DGSσ with σ approximately the smoothing
parameter. For our applications (in particular for solving O(1)-GapSVP) we will need a slightly
stronger guarantee from the algorithm. Namely, when asked to produce samples with too small
a parameter s ≤ σ, the output should still consist of discrete Gaussian samples of the desired
parameter, but potentially less of them (or even none at all). We make this property formal in the
following slight modification of Definition 2.9.

Definition 5.1. For ε ≥ 0, σ a function that maps lattices to non-negative real numbers, and m ∈ N,
ε-hDGSm

σ (the honest Discrete Gaussian Sampling problem) is defined as follows: The input is a basis B
for a lattice L ⊂ Rn and a parameter s > 0. The goal is for the output distribution to be ε-close to Dm′

L,s for
some independent random variable m′ ≥ 0. If s > σ(L), then m′ must equal m.

5.1 Sampling from the square root

Claim 5.2. There is an algorithm that, given black-box access to the Bernoulli distribution B(p) for un-
known 0 < p ≤ 1, outputs b ∈ {0, 1} such that the distribution of b is exactly B(

√
p). The expected

running time of the algorithm is O(1/p). Furthermore, if the algorithm’s input is restricted to τ ∈ N

independent samples from the Bernoulli distribution B(p) for unknown 0 ≤ p ≤ 1, then the distribution
of b is within statistical distance (1− p)τ of B(

√
p), and the algorithm runs in time O(τ).

23

Proof. The algorithm repeatedly samples from B(p) until the first time that it sees a 1. Let k be the
number of times that zero appears before this first one. (E.g., if the input sequence is (0, 0, 0, 1, . . .),
k = 3.) Then, the algorithm tosses 2k unbiased coins and outputs 1 if exactly half of them are
heads and 0 otherwise. (In the case when the algorithm’s input length is restricted, it outputs 0 if
there are no ones in its input sequence.)

Correctness is immediate from the following identity, which can be obtained by taking the
Taylor expansion of p−1/2 around p = 1 and then multiplying by p,

√
p =

∞

∑
k=0

(
2k
k

)
2−2k(1− p)k p .

The expected running time is clearly proportional to ∑(1− p)k = 1/p.

Definition 5.3. For a vector p ∈ [0, 1]N with ∑ pi = 1, let
√

p = (
√

p1/psqrt, . . . ,
√

pN/psqrt) where
psqrt = ∑

√
pi.

Theorem 5.4 (Square-root sampler). There is an algorithm that takes as input κ ≥ 2 (the confidence
parameter), t ≥ 1 (an upper bound on the ratio maxi,j pi/pj), and M elements from {1, . . . , N} and
outputs a sequence of elements from the same set such that

1. the running time is M · poly(log N, κ, t);

2. each i ∈ {1, . . . , N} appears at least as often in the input as in the output; and

3. if the input consists of M ≥ 4κ4t2/ max pi independent samples from the distribution that assigns
probability pi > 0 to element i with t ≥ maxi,j pi/pj, then the output is within statistical distance
C1MN log N exp(−C2κ) of m independent samples with respective probabilities

√
p where m =

M/(16κ3t3/2).

Proof. The algorithm first runs the procedure from Proposition 3.1 on the first M/2 elements
from its input sequence, receiving as output p̃max. If p̃max > 4t/N, it fails. Otherwise, for
j = 1, . . . , Mp̃max/3, the algorithm samples r from Pois(1/ p̃max) and takes the next r unused
elements in the input (or fails if there are not r unused elements remaining). For i = 1, . . . , N,
let ai,j be the number of times element i appears in the jth such subsequence. For each i, j let
bi,j be 1 with probability min{1, ai,j/κ} and 0 otherwise. Let τ = dκ2te. Then, for i = 1, . . . , N
and k = 0, . . . , Mp̃max/(3τ) − 1, let b∗i,k be the output of the procedure from Claim 5.2 on input
(bi,τk+1, . . . , bi,τ(k+1)).

Finally, the algorithm repeats the following at most M/(5τ) times: it samples i ∈ {1, . . . , N}
uniformly at random, and adds it to its output if b∗i,k = 1 where k ≥ 1 is the smallest index such
that b∗i,k is unused (or it fails if there is no unused b∗i,k). The algorithm stops as soon as its output
contains m samples. It fails if the output contains fewer than m samples when the loop ends.

Note that the number of coins bi,j and b∗i,k is less than MNp̃max ≤ 4Mt. It follows that the
running time is as claimed. Note also that each i appearing in the output corresponds to some
ai,j > 0, which in turn corresponds to at least one element i in the input.

We first prove that the output elements have the correct distribution, ignoring failure. By
Proposition 3.1, we can assume that max pi ≤ p̃max ≤ 4 max pi, introducing statistical distance
at most C1N log N exp(−C2κ). By Lemma 2.21 and Claim 2.22, we can further assume that bi,j
are independent and distributed exactly as B(pi/(κ p̃max)), introducing statistical distance that is

24

at most C1NM exp(−C2κ). Applying Claim 5.2, we have that b∗i,k is within statistical distance
(1− pi/(κ p̃max))τ ≤ exp(−Cκ) of B(

√
pi/(κ p̃max)). So, the outputs have the correct distribution.

We now prove that the algorithm rarely fails. The number of inputs used in the second stage is
distributed as Pois(M/3), which by Corollary 2.19 is at most M/2 except with probability at most
C1 exp(−C2κ). Applying the Chernoff-Hoeffding bound (Lemma 2.20), we have that the number
of coins b∗i,k used for a fixed i is at most M/(3τN) ≤ Mp̃max/(3τ) except with probability at most
exp(−Cκ) (where we have used the fact that M/(3τN) ≥ κ). Finally, applying the Chernoff-
Hoeffding bound again, we have that after M/(5τ) steps, the size of the output will be at least
M/(8τ) ·

√
min pi/(κ p̃max) ≥ m except with probability at most exp(−Cκ). So, the algorithm fails

with probability at most C1N exp(−C2κ).

In order to create an “honest” discrete Gaussian sampler as in Definition 5.1 that uses the
square-root sampler, we will need a way to “check t,” so that we only use the square-root sampler
when we can be sure that Item 3 applies. We achieve this with the following simple claim.

Claim 5.5. There is an algorithm that takes as input a number t ≥ 1 and M independent samples
from the distribution that assigns probability pi > 0 to each element i ∈ {1, . . . , N}, runs in time
M · polylog(N, M, t), and satisfies

1. if t < max pi/pj, then the algorithm outputs no with probability at least 1− 2 exp(−CM/(tN));
and

2. if t ≥ 4 max pi/pj, then the algorithm outputs yes with probability at least 1−N exp(−CM/(tN)).

Proof. The algorithm is quite simple. On input X1, . . . , XM, let Tmax := maxi |{j : Xj = i}| and
Tmin := mini |{j : Xj = i}|. The algorithm outputs no if t · Tmin < 2Tmax and yes otherwise.

The running time of the algorithm is clear. Let pmax = max pi and pmin = min pi. Suppose t <
pmax/pmin. Then, by the Chernoff-Hoeffding bound (Lemma 2.20), we have Tmax > pmaxM/

√
2

except with probability at most exp(−CpmaxM) ≤ exp(−CM/(tN)). Similarly, we have that
Tmin <

√
2pmaxM/t except with probability at most exp(−CpmaxM/t) ≤ exp(−CM/(tN)). Item 1

follows.
Now, suppose t ≥ 4 max pi/pj. Then, for any i, by the Chernoff-Hoeffding bound we have

pminM/
√

2 < |{j : Xj = i}| <
√

2pmaxM except with probability at most 2 exp(−CM/(tN)).
Item 2 then follows by union bound.

5.2 A more efficient combiner that works above smoothing

The following lemma generalizes the first part of Lemma 3.4. In particular, we recover Lemma 3.4
when L′ = 2L. (Note that, since we require that 2L ⊆ L′, we have that the sum of two lattice
vectors X1 + X2 is in L′ if and only if X1 and X2 are in the same coset of L′ over L.)

Lemma 5.6. Let L ⊂ Rn be a lattice, and let L′ ⊆ L be a sublattice with 2L ⊆ L′. Then for any y ∈ L′
and s > 0, we have

Pr
(X1,X2)∼D2

L,s

[X1 + X2 = y | X1 + X2 ∈ L′] =
ρ√2s(2L+ y)2

pcol
· Pr

X∼D2L+y,
√

2s

[X = y] ,

where pcol = ∑d∈L′/(2L) ρ√2s(d)
2.

25

Proof. It suffices to show that the probability on the left-hand side is proportional to ρ√2s(2L +
y)ρ√2s(y). Indeed,

Pr
(X1,X2)∼D2

L,s

[X1 + X2 = y] =
1

ρs(L)2 · ∑
x∈L

ρs(x)ρs(y− x)

=
ρ√2s(y)
ρs(L)2 · ∑

x∈L
ρ√2s(2x− y)

=
ρ√2s(y)
ρs(L)2 · ρ√2s(2L+ y) .

Proposition 5.7. There is an algorithm that takes as input a lattice L ⊂ Rn, a sublattice L′ ⊆ L of index
2a ≥ 2n/2 with 2L ⊆ L′, κ ≥ 2 (the confidence parameter), and a sequence of vectors from L such that, if
the input consists of M ≥ Cκ52a independent samples from DL,s for some s > 0, then

1. the running time of the algorithm is M · poly(n, κ);

2. the output distribution is M exp(C1n − C2κ)-close to m independent samples from DL′,
√

2s where
m ∈ {0, M/(Cκ4)} is an independent random variable; and

3. if s ≥ ηε(L′) and s ≥
√

2ηε(L), then m = M/(Cκ4) where ε := 3/4.

Proof. Let (X1, . . . , XM) be the input vectors, and for each i, let ci ∈ L/L′ be the coset of Xi.
The algorithm first applies the square sampler in a manner similar to that of the algorithm from
Proposition 3.5. Namely, the algorithm runs the procedure from Theorem 3.3 with input κ and
(c1, . . . , cM), receiving output (c′1, . . . , c′q). For each i = 1, . . . , q, it chooses a pair of unpaired
vectors Xj, Xk with cj = ck = c′i and sets Yi = Xj + Xk ∈ L′.

Let t := (1+ ε)2/(1− ε)2 = C. The algorithm now applies two tests to “check that the distribu-
tion is sufficiently smooth.” First, it checks if q ≥ M/(32κ

√
t). If not, it halts and outputs nothing.

Next, let di ∈ L′/(2L) be the coset of Yi. The algorithm runs the procedure from Claim 5.5 on
the first bq/2c such cosets with parameter t′ := 4t. It halts and outputs nothing if this procedure
outputs no.

The algorithm now applies the square-root sampler to the remaining cosets. Namely, it runs
the procedure from Theorem 5.4 with input κ, t′, and (dbq/2c+1, . . . , dq), receiving output (d′1, . . . , d′L).
If L < M/(Cκ4), it halts and outputs nothing. Otherwise, for each i ≤ M/(Cκ4), it chooses an
unused vector Yj with j > q/2 and dj = d′i and adds it to its output.

The running time of the algorithm follows from Item 1 of Theorem 3.3 and the corresponding
Item 1 of Theorem 5.4. Furthermore, we note that by Item 2 of Theorem 3.3, the first step of the
above algorithm will always be able to find unused j, k satisfying cj = ck = c′i, and by Item 2 of
Theorem 5.4, the second step will always be able to find an unused j satisfying dj = d′i.

We now prove Item 2. Note that, since the index of L′ over L is 2a, the maximal probability of
a coset must be at least 2−a. It follows that (c1, . . . , cM) satisfy the conditions necessary for Item 3
of Theorem 3.3. Applying the theorem, we have that (up to statistical distance M exp(C1n− C2κ))
the output vectors (Y1, . . . , Yq) are independent and

q ≥ M · 1
32κ
· ∑c∈L/L′ ρs(c)2

ρs(L)ρs(L′)
. (5)

26

Furthermore, they assign to each y ∈ L′ the probability

Pr[Yi = y] =
1

∑c∈L/L′ ρs(c)2 · ∑
c∈L/L′

ρs(c)2 · Pr
(X1,X2)∼D2

c,s

[X1 + X2 = y]

= Pr
(X1,X2)∼D2

L,s

[X1 + X2 = y | X1 + X2 ∈ L′]

=
ρ√2s(2L+ y)2

∑d∈L′/(2L) ρ√2s(d)
2 · Pr

X∼D2L+y,
√

2s

[X = y] ,

where we have used Lemma 5.6. In particular, the distribution of each di is given by

Pr[di = d] =
ρ√2s(d)

2

∑d′∈L′/(2L) ρ√2s(d
′)2 ,

for d ∈ L′/(2L). The highest probability is obtained at d = 2L, and we denote it by pmax.
Since the algorithm outputs nothing otherwise (in which case Item 2 trivially holds), we only

need to consider the case when
q ≥ M

32κ
√

t
, (6)

so we assume this below. In addition, by Item 1 of Claim 5.5, the algorithm will halt after the
second “smoothness test” with probability at least 1− 2 exp(Cκ) unless

t′ ≥
ρ√2s(2L)2

mind∈L′/(2L) ρ√2s(d)
2 . (7)

So, we can also assume that Eq. (7) holds. Using Eq. (6) and the fact that the index of L′ over 2L is
2n−a ≤ 2a, we see that q/2 ≥ 4κ4t′2/pmax. Combining this with Eq. (7), we see that the conditions
for Item 3 of Theorem 5.4 are satisfied. Let W1, . . . , WL be the vectors “chosen by the square-root
sampler.” Applying the theorem, up to statistical distance M exp(C1n−C2κ), we have that the Wi
are independently distributed, and

L =
q

32κ3t′3/2 ≥ M · 1
Cκ4 ,

as needed, where we have used Eq. (6). Furthermore, we have that for any coset d ∈ L′/(2L),

Pr[d′i = d] =
ρ√2s(d)

∑d′∈L′/(2L) ρ√2s(d
′)

=
ρ√2s(d)
ρ√2s(L′)

.

Therefore, for any y ∈ L′, we have

Pr[Wi = y] =
ρ√2s(2L+ y)

ρ√2s(L′)
· Pr

X∼D2L+y,
√

2s

[X = y] = Pr
X∼DL′ ,

√
2s

[X = y] ,

as needed.

27

Finally, we prove Item 3. Suppose that s satisfies s ≥ ηε(L′) and s ≥
√

2ηε(L). Note that by
Claim 2.6, we have that

ρs(L′)ρs(L)
∑c∈L/L′ ρs(c)2 ≤

1 + ε

1− ε
· ρs(L)

∑c∈L/L′ ρs(c)
=
√

t .

Combining this with Eq. (5) shows that the algorithm will not halt after the first “smoothness test”
except with probability at most M exp(C1n− C2κ). Similarly, since

√
2s ≥ ηε(2L),

ρ√2s(2L)2

mind∈L′/(2L) ρ√2s(d)
2 ≤ t .

By applying Item 2 of Claim 5.5, we see that the algorithm also will not halt after the second
“smoothness test” except with negligible probability. Therefore, Item 3 holds.

We are going to apply Proposition 5.7 repeatedly, to a “tower” of lattices (L0, . . . ,L`), as de-
fined next.

Definition 5.8. For an integer a satisfying n/2 ≤ a ≤ n, we say that (L0, . . . ,L`) is a tower of lattices
in Rn of index 2a if for all i we have 2Li−1 ⊆ Li ⊂ Li−1, Li/2 ⊆ Li−2, and the index of Li in Li−1 is 2a.

We next observe that it is easy to construct a tower with any desired final lattice L`. In fact,
one can even choose L`−1, the second-to-last lattice in the tower.

Claim 5.9. There is a polynomial-time algorithm that given integers ` ≥ 1 and n/2 ≤ a ≤ n, as well as
two lattices L and L′ in Rn satisfying L ⊆ L′ ⊆ L/2 with the index of L in L′ being 2a, outputs a tower
of lattices (L0, . . . ,L`) of index 2a with L` = L, L`−1 = L′, and L0 ⊇ 2−b`a/ncL.

Proof. Let b1, . . . , bn be a basis of L chosen so that b1/2, . . . , ba/2, ba+1, . . . , bn is a basis of L′.
It is not difficult to see that such a basis exists. Then define the tower by “cyclically halving a
coordinates,” namely,

L` = L(b1, . . . , bn),
L`−1 = L(b1/2, . . . , ba/2, ba+1, . . . , bn),
L`−2 = L(b1/4, . . . , b2a−n/4, b2a−n+1/2, . . . , bn/2),

etc. It is easy to check that this satisfies all the required properties.

Corollary 5.10. There is an algorithm that takes as input a tower of lattices (L0, . . . ,L`) in Rn of index
2a ≥ 2n/2, κ ≥ 2 (the confidence parameter), and M = (Cκ4)`+1 · 2a vectors in L0 such that,

1. the algorithm runs in time M · poly(n, κ, `);

2. if the input vectors are distributed as DL0,s for some s, then the output is M` exp(C1n− C2κ)-close
to m independent samples from DL`,2`/2s where m ∈ {0, 2n/2} is an independent random variable;
and

3. if 2`/2s ≥ 2η3/4(L`−1) and 2`/2s ≥
√

2η3/4(L`), then m = 2n/2.

28

Proof. Let X0 = (X1, . . . , XM) be the sequence of input vectors. For i = 0, . . . , `− 1, the algorithm
calls the procedure from Proposition 5.7 with input Li, Li+1, κ, and Xi, receiving output Xi+1. If
Xi+1 is empty, it halts and outputs nothing. Finally, the algorithm outputs the first 2n/2 vectors in
X`.

The running time is clear. Define Mi = M/(Cκ4)i. Since Mi ≥ Cκ52a for 0 ≤ i ≤ `− 1, we
have by induction using Item 2 of Proposition 5.7 that for i = 0, . . . , `, up to statistical distance
iM exp(C1n − C2κ), Xi is distributed like mi independent random samples from DLi ,2i/2s where
mi ∈ {0, Mi} is an independent random variable. Here for convenience, if the algorithm aborts at
some stage j, we define Xi for i > j as the empty set. Since M` > 2n/2, Item 2 follows.

Finally, suppose 2`/2s ≥ max{2η3/4(L`−1),
√

2η3/4(L`)}. Since Li/2 ⊆ Li−2, we have that
η3/4(Li−2) ≤ η3/4(Li)/2. It follows that 2i/2s ≥ max{

√
2η3/4(Li), η3/4(Li+1)} for all i = 0, . . . , `−

1. Item 3 then follows immediately from Item 3 of Proposition 5.7.

5.3 Sampling above smoothing in time 2n/2

Theorem 5.11. Let σ be the function that maps a lattice L to
√

2 · η1/2(L). Then, there is an algorithm
that solves exp(−Ω(κ))-hDGS2n/2

σ in time 2n/2+polylog(κ)+o(n) for any κ ≥ Ω(n).

Proof. We first present an algorithm that works for σ(L) = 2η3/4(L) and then modify it to achieve
the desired σ(L) =

√
2 · η1/2(L). On input L ⊂ Rn a lattice of rank n and s > 0, the algorithm

behaves as follows. It first applies the algorithm from Claim 5.9 with parameters a > n/2 and
` ≥ 1 to be set in the analysis, the lattice L, and an arbitrary choice of L′ satisfying the properties
there. It obtained a tower of lattices (L0, . . . ,L`) of index 2a such that L` = L and L0 ⊇ 2−b`a/ncL.

The algorithm then runs the sampler from Proposition 2.16 on L0 with parameters r (to be
set in the analysis), ŝ = 2−`/2s, and M = (Cκ4)`+12a. It receives as output a sublattice L′0 ⊆ L0
and vectors X1, . . . , XM ∈ L′0. If L′0 6= L0, it outputs nothing and halts. Otherwise, it runs the
procedure from Corollary 5.10 with input (L0, . . . ,L`), κ, and (X1, . . . , XM) and outputs the result.

Let a = dn/2 + Cn/ log ne, ` = Cdlog4 ne, and r = Cn/ log n. Applying Proposition 2.16 and
Item 2 of Corollary 5.10, we have that the output will be distributed as Dm

L,s for some m ∈ {0, 2n/2}
up to statistical distance exp(−Ω(κ)), as needed. We wish to show that, if s > 2η3/4(L), then we
have m = 2n/2. Note that

ŝ > 2−`/2+1η3/4(L) ≥ 2`(a/n−1/2)η3/4(L0) ≥ (Cr)n/r
√

n log n · η3/4(L0) .

Therefore, by Proposition 2.16, we have that L′0 = L0, so that the algorithm will not halt after
running the sampler from Proposition 2.16. Furthermore, since s > 2η3/4(L) = 2η3/4(L`), we
have 2`/2ŝ >

√
2η3/4(L`), and since L`−1 ⊃ L`, we obviously also have

2`/2 ŝ > 2η3/4(L`−1) . (8)

Therefore, by Item 3 of Corollary 5.10, we have that m = 2n/2 as needed.
Now, consider the running time. The tower of lattices can be built in polynomial time. The

procedure from Proposition 2.16 runs in time (2O(r) + M) ·poly(n), and the procedure from Corol-
lary 5.10 runs in time M · poly(n, κ, `). It follows that the running time is as claimed.

We now show how to modify the above algorithm to work for σ(L) =
√

2 · η1/2(L). The
bottleneck in the above proof is the condition in Eq. (8) needed for Item 3 of Corollary 5.10 to
apply. The trouble is that we used the trivial inequality η3/4(L`−1) ≤ η3/4(L`) in order to show

29

that this holds, even though L`−1 is a superlattice of L` of index greater than 2n/2, and so one
might expect a gap of about

√
2 between these two quantities. Indeed, Lemma 5.12 below shows

how to randomly choose such a superlattice L`−1 such that η3/4(L`−1) ≤ η1/2(L`)/
√

2 holds
with constant positive probability. So we now use the same procedure as above, except we apply
the algorithm in Claim 5.9 with that choice of L`−1. Assuming L`−1 satisfies this constraint, the
constraint (8) holds, whenever s >

√
2η1/2(L) and hence the algorithm would be successful.

This almost completes the proof, except for one minor caveat: as described above, our algorithm
successfully outputs 2n/2 vectors (in the “good” case of s >

√
2η1/2(L)) only with some constant

positive probability, whereas our goal is to be successful with probability 1− exp(−κ). This can
easily be mended by repeating the algorithm κ times, each time choosing an independent L`−1.

Lemma 5.12. There is a probabilistic polynomial-time algorithm that takes as input a lattice L ⊂ Rn

of rank n and an integer a with n/2 ≤ a < n and returns a superlattice L′ ⊃ L of index 2a with
L′ ⊆ L/2 such that for any ε ∈ (0, 1), we have ηε′(L′) ≤ ηε(L)/

√
2 with probability at least 1/2, where

ε′ := 2ε2 + 2n/2+1−a(1 + ε).

Proof. The algorithm simply selects a superlattice L′ ⊃ L of index 2a with L′ ⊆ L/2 uniformly
at random. It will be convenient to equivalently work in the dual and to instead pick L′∗ ⊂ L∗
of index 2a with 2L∗ ⊆ L′∗. In more detail, let (b∗1 , . . . , b∗n) be a basis of the dual lattice L∗.
This defines a group isomorphism h : Fn

2 → L∗/(2L∗) given by h(a) = ∑i aib∗i mod 2L∗. The
algorithm picks a random subspace V ⊆ Fn

2 of dimension n − a and sets L′∗ = h(V) to be the
union of the cosets corresponding to the points in V. (It can do this efficiently by, e.g., taking a
basis v1, . . . , vn−a of V, and taking the lattice generated by (2b∗1 , . . . , 2b∗n, y1, . . . , yn−a) where yi is
any coset representative of h(vi).) It then returns the primal lattice L′.

It is clear that the algorithm runs in polynomial time and that L has index 2a over L′ with L ⊂
L′ ⊆ L/2 as needed. Note that all vectors in Fn

2 \ {0} have equal probability (2n−a − 1)/(2n − 1)
of being in the subspace V. Therefore, for any dual coset c∗ ∈ L∗/(2L∗) with c∗ 6= 2L∗, we have
Pr[c∗ ∈ L′∗] = (2n−a − 1)/(2n − 1). Then, assuming without loss of generality that ηε(L) = 1, we
have

E
[
ρ√2(L

′∗)
]
= ∑

c∗∈L∗/(2L∗)
Pr[c∗ ∈ L′∗]ρ√2(c

∗)

= ρ√2(2L
∗) +

2n−a − 1
2n − 1

· ∑
c∗∈L∗/(2L∗)\{2L∗}

ρ√2(c
∗)

< 1 + ε2 + 2−aρ√2(L
∗) (Lemma 2.7)

≤ 1 + ε2 + 2n/2−a(1 + ε) (Lemma 2.3) .

By Markov’s inequality, ρ√2(L′∗ \ {0}) < 2ε2 + 2n/2+1−a(1 + ε) with probability at least 1/2, and
the result follows.

6 Solving O(1)-GapSVP in 2n/2+o(n) time

In this section we present our GapSVP algorithm. The main idea is to approximate the smoothing
parameter of L∗ and then use Lemma 6.1 to relate it to λ1(L). To distinguish a parameter above

30

smoothing from a parameter below smoothing, we call the hDGS oracle with the given parameter.
It is below smoothing if the oracle does not produce enough samples or if a statistical test on the
output (Lemma 6.3) fails.

Lemma 6.1. For any lattice L ⊂ Rn and ε ∈ (0, 1), if ε > (e/β2 + o(1))−n/2, we have√
log(1/ε)

π
< λ1(L)ηε(L∗) <

√
β2n
2πe
· ε−1/n · (1 + o(1)) , (9)

and if ε ≤ (e/β2 + o(1))−n/2, we have√
log(1/ε)

π
< λ1(L)ηε(L∗) <

√
log(1/ε) + n log β + o(n)

π
, (10)

where β := 20.401.

As will be apparent from the proof and the remark after Lemma 4.2, Eq. (9) actually holds for
all ε ∈ (0, 1).

Proof of Lemma 6.1. Throughout the proof we assume without loss of generality that λ1(L) = 1.
For the lower bound in both cases, let s ≤

√
log(1/ε)/π. Then, ρ1/s(L \ {0}) > e−πs2 ≥ ε, as

needed.
Let ε > (e/β2 + o(1))−n/2, and let s be the expression in the right-hand side of (9). Then, noting

that s <
√

n/(2π), by Eq. (3) in Lemma 4.2, we have

ρ1/s(L \ {0}) ≤
(

β2n
2πes2

)n/2+1

2o(n) < ε ,

as needed.
Now, let ε ≤ (e/β2 + o(1))−n/2, and let s be the expression in the right-hand side of (10). Then,

noting that s ≥
√

n/(2π), by Eq. (4) in Lemma 4.2, we have

ρ1/s(L \ {0}) < e−πs2 · βn+o(n) ≤ ε ,

as needed.

Definition 6.2. For a matrix M ∈ Rn×n, the spectral norm of M is defined as

‖M‖ := sup
‖x‖=1

‖Mx‖ .

For a symmetric matrix M (the only case that interests us), ‖M‖ is equivalently the largest
absolute value of an eigenvalue of M.

Lemma 6.3. For any lattice L ⊂ Rn and ε ∈ (0, 1),

ε

2πn
· log(1/ε) ≤

∥∥∥ 1
ηε(L)2 · E

X∼DL,ηε(L)
[XXT]− 1

2π
· In

∥∥∥ ≤ ε

π
·
(

log
2(1 + ε)

ε
+ 1
)

,

where In is the n× n identity matrix.

31

Proof. For the upper bound, see [DRS14, Lemma 4.4].
For the lower bound, from the same source, we have that for any s > 0,

1
s2 · E

X∼DL,s
[XXT]− 1

2π
· In = s2 · E

Y∼DL∗ ,1/s

[YYT] .

Note that for any positive semidefinite matrix A ∈ Rn×n, we have ‖A‖ ≥ Tr(A)/n. Therefore,

ηε(L)2 ·
∥∥∥ E

Y∼DL∗ ,1/ηε(L)
[YYT]

∥∥∥ ≥ ηε(L)2

n
· Tr
(

E
Y∼DL∗ ,1/ηε(L)

[YYT]
)

≥ ηε(L)2

n
· ελ1(L∗)2

1 + ε

≥ ε

2πn
· log(1/ε) ,

where we have used the lower bound in Lemma 6.1.

We will also need a form of the matrix Chernoff bound. In particular, we use a less general
version of [Ver12, Theorem 5.29].

Lemma 6.4 (Matrix Chernoff bound). Let A1, . . . , AN be independent and identically distributed ran-
dom symmetric matrices in Rn×n with ‖Ai‖ ≤ a and expectation µ. Then, for any t ∈ (0, a),

Pr
[∥∥∥ 1

N ∑ Ai − µ
∥∥∥ ≥ t

]
≤ 2n exp(−CNt2/a2) .

Theorem 6.5. For any ε ∈ [2−n/2, 1/e], there is a probabilistic polynomial-time reduction from γ-GapSVP
to 1

4 -hDGSm√
2η1/2

where m := n5/ε2 and

γ :=

√
β2n + o(n)
e log(1/ε)

·
(

1 +
2 log n

log(1/ε)

)
,

where β := 20.401. The reduction preserves dimension, makes a single call to the hDGS oracle, and runs in
time m · poly(n).

Proof. On input a lattice L ⊂ Rn and d > 0, the reduction calls the hDGS oracle with input L∗ and
parameter s > 0 to be set in the analysis. If the oracle outputs fewer than m vectors, the reduction
immediately outputs yes (i.e., the reduction guesses that λ1(L) < d). Otherwise, it receives as
output X1, . . . , Xm ∈ L∗. Let Σ := 1

m ·∑ XiXT
i be the sample covariance. If∥∥∥ 1

s2 · Σ−
1

2π
· In

∥∥∥ <
ε

10n
· log(1/ε) ,

the reduction outputs no (i.e., the reduction guesses that λ1(L) ≥ γ · d). Otherwise, it outputs yes.
The running time is clear. Let

s :=

√
log(1/ε)

π
· 1

d
.

Suppose λ1(L) < d. Then, by the lower bound in Lemma 6.1, we have s < ηε(L∗). By the
definition of hDGS, we have that the output of the oracle is statistically close to Dm′

L∗,s for some

32

independent random variable 0 ≤ m′ ≤ m. So, we assume that the oracle outputs exactly this
distribution, introducing statistical distance at most 1/4. If m′ < m, then the reduction correctly
outputs yes. Conditioning on m′ = m and using Lemma 6.3, we have∥∥∥ 1

s2 ·E[Σ]− 1
2π
· In

∥∥∥ ≥ ε

2πn
· log(1/ε) ,

where we have used the fact that ε log(1/ε) is monotonically increasing for ε ≤ 1/e. So, in order to
show that the reduction will output yes, it suffices to show that Σ is concentrated around its mean.
By Lemma 2.3 and union bound, we can assume that ‖Xi‖ ≤ 100

√
ns, introducing only negligible

statistical distance. Assuming that this is the case, we can apply Lemma 6.4 with a = 1002n and
t = ε/(1000n), and we have that

Pr
[∥∥∥ 1

s2 Σ− 1
s2 E[Σ]

∥∥∥ ≥ t
]
≤ 2n exp(−Cmt2/a2) ≤ exp(−Cn) ,

where we have used the fact that mt2/a2 ≥ Cn. It follows that the reduction correctly outputs yes
with all but negligible probability.

Now, suppose λ1(L) ≥ γ · d. Then, by Eq. (9) of Lemma 6.1 with ε there taken to be 1/2, we
have s >

√
2η1/2(L∗). In this regime, by the definition of hDGS, we have that the output of the

oracle is within statistical distance 1/4 of Dm
L∗,s. So, we can assume that the output is exactly Dm

L∗,s,
introducing statistical distance at most 1/4. Applying Lemma 6.1 again, we have

s > (1 + 2 log n/ log(1/ε))ηε(L∗) > ηε/n2(L∗) ,

where we have used Lemma 2.7, the fact that ε > 2−n/2 and the observation that Eq. (9) applies
for all ε ∈ (0, 1). And, applying Lemma 6.3, we have that∥∥∥ 1

s2 ·E[Σ]− 1
2π
· In

∥∥∥ <
ε

πn2 ·
(

log
2(n2 + ε)

ε
+ 1
)
<

ε

20n
· log(1/ε) ,

for sufficiently large n (where we have used the fact that the upper bound in Lemma 6.3 is mono-
tonically increasing). Finally, applying Lemma 6.4 as above shows that the oracle correctly outputs
no with all but negligible probability.

Corollary 6.6. There is a randomized algorithm that solves γ-GapSVP for γ := 1.93 + o(1) in time
2n/2+o(n).

Proof. Combine the algorithm from Theorem 5.11 with the reduction from Theorem 6.5 with ε =
2−n/4.

7 Other applications

7.1 Approximating CVP in 2n+o(n) time

Theorem 7.1. For γ = 1.97, there is a reduction from γ-CVP to 1
2 -DGS2n/2

. The reduction makes O(n2)

calls to the DGS oracle on an (n + 1)-dimensional lattice and runs in time 2n/2 · poly(n).

33

Proof. On input L = L(b1, . . . , bn) ⊂ Rn and t ∈ Rn, the reduction behaves as follows. It first
uses Babai’s nearest plane algorithm [Bab86] to approximate the distance to the lattice dist(t,L),
receiving as output d̃. Fix δ := 1/n. Then for j = 1, . . . , 10n2, let sj = d̃/(1 + δ)j, and let Lj be
the (n + 1)-dimensional lattice generated by (bi, 0) for i ∈ [n], and the additional basis vector
(−t, sj). The reduction calls the DGS oracle on Lj with parameter sj, and let xj be the shortest
vector among the returned vectors whose last coordinate is sj. Finally, the reduction outputs the
first n coordinates of xj − (−t, sj) where j is such that xj is shortest.

The running time of the algorithm is clear. As was shown in [Bab86], we have d ≤ d̃ ≤ 2n/2d.
Thus, there exists a j such that αd/

√
n ≤ sj ≤ (1 + δ)αd/

√
n, where α :=

√
2π/ log 2. Let

A = {y ∈ Lj : 〈y, en+1〉 = sj} be the set of vectors from which we choose xj. We note that it suffices
to show that a sample from DLj,sj will land in A and have length at most γd with probability at
least 2−n/2−O(1). Indeed, if this is the case, then the algorithm will find a vector in A of length at
most γd with constant probability, and its output will be a γ-approximate closest vector.

We first consider the probability that a vector lands in A, ρsj(A)/ρsj(Lj). For the denominator,
using the fact that ρs(L) ≥ ρs(L+ w) for any w, we have

ρsj(Lj) =
∞

∑
k=−∞

ρsj(ksj)ρsj(L+ kt)

≤ ρsj(L)
∞

∑
k=−∞

e−πk2

≤ 2ρsj(L) .

Turning to the numerator,

ρsj(A) ≥ e−π(d2+s2
j)/s2

j · ρsj(L) ≥ e−π(n/α2+1) · ρsj(L) .

Thus, we have
Pr

X∼DLj ,sj

[X ∈ A] ≥ e−πn/α2
/100 . (11)

Set t = γ/((1 + δ)α). Recall from Lemma 2.4 that

Pr
X∼DLj ,sj

[
‖X‖ > sjt

√
n
]
≤
(√

2πet2 exp(−πt2)
)n . (12)

Then, combining (11) and (12), plugging in the values for α, t, and γ, and assuming n is sufficiently
large, gives

Pr
X∼DLj ,sj

[
X ∈ A, ‖X‖ ≤ sjt

√
n
]
≥ e−πn/α2

/100− (2πet2)n/2 · e−πt2n

≥ 2−n/2−O(1) ,

where we have used the fact that e−π/α2
= 1/

√
2 and

√
2πet2 · e−πt2

< 1/
√

2. The result follows
from the fact that sjt

√
n ≤ (1 + δ)αtd = γd.

34

We note that the above proof actually yields a more general statement. In particular, for any
t > 1/

√
2π, there is a reduction from γ-CVP to ε-DGSM where

γ =

√
2πt2

2πt2 − log(2πt2)− 1
,

and
M ≈ exp(πt2n/γ2) = exp(πnt2)/(2πet2)n/2 .

We recover Theorem 7.1 by setting t ≈ 0.654.

Corollary 7.2. There is a randomized algorithm that solves 1.97-CVP in time 2n+o(n).

Proof. Combine the reduction from Theorem 7.1 with the algorithm from Theorem 3.7.

7.2 Solving O(1)-BDD in 2n/2+o(n) time

Lyubashevsky and Micciancio show a polynomial-time reduction from 1
2γ -BDD to γ-GapSVP [LM09].

By combining this with Theorem 6.5, we immediately get a solution to α-BDD for α ≈ 1/4. But,
we can improve this to α ≈ .422 by using the following (slightly modified) theorem from [DRS14]
that shows how to solve a variant of BDD directly using discrete Gaussian samples.

Theorem 7.3 ([DRS14, Theorem 3.1]). For any ε ∈ (0, 1/200), let

φ(L) :=

√
log(1/ε)/π − o(1)

2ηε(L∗)
.

Then, there exists a reduction from CVPφ to 1
2 -DGSm

ηε
where m = O(n log(1/ε)/

√
ε) and CVPφ is the

problem of solving CVP for target vectors that are guaranteed to be within a distance φ(L) of the lattice.
The reduction preserves the dimension, makes a single call to the DGS oracle, and runs in time m ·poly(n).

Corollary 7.4. There is a randomized algorithm that solves α-BDD in time 2n/2+o(n) for α := .422− o(1).

Proof. Let ε := 2−n, and let φ(L) :=
√

log(1/ε)/π − o(1)/(2ηε(L∗)) as above. By Eq. (10) of
Lemma 6.1, any algorithm that solves CVPφ is also a solution to α-BDD with

α :=
1
2
·

√
log(1/ε)

log(1/ε) + n log β + o(n)
> .422− o(1) .

Applying Theorem 7.3 gives a reduction from α-BDD to 1
2 -DGSm

ηε
with m = O(n log(1/ε)/

√
ε) =

2n/2+o(n) that runs in time m · poly(n). Finally, we note that Lemma 6.1 implies that,
√

2η1/2(L) <
ηε(L) for sufficiently large n. Therefore, Theorem 5.11 gives a solution to exp(−Ω(n))-DGSm

ε with
the desired running time.

35

7.3 Approximating SIVP in 2n/2+o(n) time

We use the following lemma, which is a slight variant of [Reg09, Lemma 3.17] combined with
Lemma 2.12 there.

Lemma 7.5. There is a polynomial-time reduction from γ-SIVP to 1
2 -DGS2ηε

where γ := O(
√

n log n)
and ε := 1/10.

Corollary 7.6. There is a randomized algorithm that solves γ-SIVP in time 2n/2+o(n) where γ := O(
√

n log n).

Proof. Combine the reduction from Lemma 7.5 with the algorithm from Theorem 5.11.

References

[ADS15] Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the Clos-
est Vector Problem in 2n time— the discrete Gaussian strikes again!, 2015. http:
//arxiv.org/abs/1409.8063.

[Ajt04] Miklós Ajtai. Generating hard instances of lattice problems. In Complexity of compu-
tations and proofs, volume 13 of Quad. Mat., pages 1–32. Dept. Math., Seconda Univ.
Napoli, Caserta, 2004. Preliminary version in STOC’96.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In STOC, pages 601–610, 2001.

[AKS02] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. Sampling short lattice vectors and the
closest lattice vector problem. In CCC, pages 41–45, 2002.

[Bab86] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combina-
torica, 6(1):1–13, 1986.

[Ban93] W. Banaszczyk. New bounds in some transference theorems in the geometry of num-
bers. Mathematische Annalen, 296(4):625–635, 1993.

[BGJ14] Anja Becker, Nicolas Gama, and Antoine Joux. A sieve algorithm based on overlattices.
LMS Journal of Computation and Mathematics, 17(A):49–70, 2014.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, pages 575–584, 2013.

[BN09] Johannes Blömer and Stefanie Naewe. Sampling methods for shortest vectors, closest
vectors and successive minima. Theoret. Comput. Sci., 410(18):1648–1665, 2009.

[Bri85] Ernest F. Brickell. Breaking iterated knapsacks. In Advances in cryptology (Santa Barbara,
Calif., 1984), volume 196 of Lecture Notes in Comput. Sci., pages 342–358. Springer, Berlin,
1985.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In FOCS, pages 97–106. IEEE, 2011.

36

http://arxiv.org/abs/1409.8063
http://arxiv.org/abs/1409.8063

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In
ITCS, pages 1–12, 2014.

[CDLP13] Kai-Min Chung, Daniel Dadush, Feng-Hao Liu, and Chris Peikert. On the lattice
smoothing parameter problem. In IEEE 28th Conference on Computational Complexity,
pages 230–241, 2013.

[dB89] R. de Buda. Some optimal codes have structure. Selected Areas in Communications, IEEE
Journal on, 7(6):893–899, Aug 1989.

[Did12] Did (http://math.stackexchange.com/users/6179/did). Understanding what
√

p
means for an event of probability p. Mathematics Stack Exchange, 2012. http:
//math.stackexchange.com/q/182821 (version: 2012-08-15).

[DRS14] Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. On the closest vector
problem with a distance guarantee. In IEEE 29th Conference on Computational Complex-
ity, pages 98–109, 2014. Full version available at http://arxiv.org/abs/1409.
8063.

[FT87] András Frank and Éva Tardos. An application of simultaneous Diophantine approxi-
mation in combinatorial optimization. Combinatorica, 7(1):49–65, 1987.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC’09—
Proceedings of the 2009 ACM International Symposium on Theory of Computing, pages 169–
178. ACM, New York, 2009.

[Gly87] Peter W. Glynn. Upper bounds on Poisson tail probabilities. Oper. Res. Lett., 6(1):9–14,
1987.

[GMSS99] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest lattice
vectors is not harder than approximating closest lattice vectors. Information Processing
Letters, 71(2):55 – 61, 1999.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

[Hel85] Bettina Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced
lattice bases. Theoret. Comput. Sci., 41(2-3):125–139 (1986), 1985.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58:13–30, 1963.

[HR12] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem
to within almost polynomial factors. Theory of Computing, 8(23):513–531, 2012. Prelim-
inary version in STOC’07.

[HS07] Guillaume Hanrot and Damien Stehlé. Improved analysis of Kannan’s shortest lattice
vector algorithm (extended abstract). In Advances in cryptology—CRYPTO 2007, volume
4622 of Lecture Notes in Comput. Sci., pages 170–186. Springer, Berlin, 2007.

37

http://math.stackexchange.com/q/182821
http://math.stackexchange.com/q/182821
http://arxiv.org/abs/1409.8063
http://arxiv.org/abs/1409.8063

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math.
Oper. Res., 12(3):415–440, 1987.

[Kho05] Subhash Khot. Hardness of approximating the shortest vector problem in lattices. Jour-
nal of the ACM, 52(5):789–808, September 2005. Preliminary version in FOCS’04.

[KL78] G. A. Kabatjanskiı̆ and V. I. Levenšteı̆n. Bounds for packings on the sphere and in
space. Problemy Peredači Informacii, 14(1):3–25, 1978.

[Kle00] Philip Klein. Finding the closest lattice vector when it’s unusually close. In SODA,
pages 937–941, 2000.

[Laa14] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. IACR Cryptology ePrint Archive, 2014:744, 2014.

[Len83] H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Math. Oper.
Res., 8(4):538–548, 1983.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261(4):515–534, 1982.

[LM09] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique
shortest vectors, and the minimum distance problem. In Advances in Cryptology-
CRYPTO 2009, pages 577–594. Springer, 2009.

[LO85] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. J. Assoc.
Comput. Mach., 32(1):229–246, 1985.

[LWXZ11] Mingjie Liu, Xiaoyun Wang, Guangwu Xu, and Xuexin Zheng. Shortest lattice vectors
in the presence of gaps. IACR Cryptology ePrint Archive, 2011:139, 2011.

[Mic01] Daniele Micciancio. The shortest vector problem is NP-hard to approximate to within
some constant. SIAM Journal on Computing, 30(6):2008–2035, March 2001. Preliminary
version in FOCS 1998.

[Mic08] Daniele Micciancio. Efficient reductions among lattice problems. In Proceedings of the
Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 84–93. ACM,
New York, 2008.

[Mic14] Daniele Micciancio. Private communication, 2014.

[MP05] Elchanan Mossel and Yuval Peres. New coins from old: Computing with unknown
bias. Combinatorica, 25(6):707–724, 2005.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters.
In CRYPTO, volume 8042 of Lecture Notes in Computer Science, pages 21–39. Springer,
2013.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput., 37(1):267–302 (electronic), 2007.

38

[Mum07] David Mumford. Tata lectures on theta. I. Modern Birkhäuser Classics. Birkhäuser
Boston, Inc., Boston, MA, 2007. With the collaboration of C. Musili, M. Nori, E. Previato
and M. Stillman, Reprint of the 1983 edition.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for
the shortest vector problem. In SODA, pages 1468–1480, 2010.

[MV13] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time
algorithm for most lattice problems based on Voronoi cell computations. SIAM Journal
on Computing, 42(3):1364–1391, 2013.

[MW15] Daniele Micciancio and Michael Walter. Fast lattice point enumeration with minimal
overhead. In SODA, 2015.

[NV08] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector problem
are practical. J. Math. Cryptol., 2(2):181–207, 2008.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC, pages 333–342. ACM, 2009.

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Advances in
cryptology—CRYPTO 2010, volume 6223 of Lecture Notes in Comput. Sci., pages 80–97.
Springer, Berlin, 2010.

[PS09] Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector problem in time
22.465n. IACR Cryptology ePrint Archive, 2009:605, 2009.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM, 56(6):Art. 34, 40, 2009.

[RS15] Oded Regev and Noah Stephens-Davidowitz. An inequality for Gaussians on lattices,
2015.

[Sch87] C.P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theo-
retical Computer Science, 53(23):201 – 224, 1987.

[SFS09] Naftali Sommer, Meir Feder, and Ofir Shalvi. Finding the closest lattice point by itera-
tive slicing. SIAM J. Discrete Math., 23(2):715–731, 2009.

[Sha84] Adi Shamir. A polynomial-time algorithm for breaking the basic Merkle-Hellman cryp-
tosystem. IEEE Trans. Inform. Theory, 30(5):699–704, 1984.

[Ste14] Damien Stehlé. Private communication, 2014.

[Ver12] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. In
Y.C. Eldar and G. Kutyniok, editors, Compressed Sensing: Theory and Applications, pages
210–268. Cambridge Univ Press, 2012.

[WLTB11] Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi. Improved Nguyen-
Vidick heuristic sieve algorithm for shortest vector problem. In Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security, ASIACCS ’11,
pages 1–9, New York, NY, USA, 2011. ACM.

39

[ZPH14] Feng Zhang, Yanbin Pan, and Gengran Hu. A three-level sieve algorithm for the short-
est vector problem. In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, Selected
Areas in Cryptography – SAC 2013, Lecture Notes in Computer Science, pages 29–47.
Springer Berlin Heidelberg, 2014.

40

	1 Introduction
	1.1 Comparison with prior work
	1.2 Proof overview
	1.3 Conclusions and open problems

	2 Preliminaries
	2.1 Lattices
	2.2 The discrete Gaussian distribution
	2.3 The Gram-Schmidt orthogonalization
	2.4 Lattice problems
	2.5 Some lattice algorithms
	2.6 Probability distributions

	3 Sampling from the discrete Gaussian
	3.1 Sampling from the square
	3.2 A discrete Gaussian combiner
	3.3 A general discrete Gaussian sampler

	4 Solving SVP in 2(n+o(n)) time
	4.1 A bound on the Gaussian mass
	4.2 A reduction from SVP to DGS

	5 Sampling 2(n/2) vectors above smoothing in 2(n/2) time
	5.1 Sampling from the square root
	5.2 A more efficient combiner that works above smoothing
	5.3 Sampling above smoothing in time 2(n/2)

	6 Solving O(1)-GapSVP in 2(n/2)+o(n) time
	7 Other applications
	7.1 Approximating CVP in 2 (n+o(n)) time
	7.2 Solving O(1)-BDD in 2 (n/2+o(n)) time
	7.3 Approximating SIVP in 2 (n/2+o(n)) time

