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Approaching the Rate-Distortion Limit With Spatial
Coupling, Belief Propagation, and Decimation

Vahid Aref, Nicolas Macris, Member, IEEE, and Marc Vuffray

Abstract— We investigate an encoding scheme for lossy
compression of a binary symmetric source based on simple
spatially coupled low-density generator-matrix codes. The degree
of the check nodes is regular and the one of code-bits is Poisson
distributed with an average depending on the compression rate.
The performance of a low complexity belief propagation guided
decimation algorithm is excellent. The algorithmic rate-distortion
curve approaches the optimal curve of the ensemble as the width
of the coupling window grows. Moreover, as the check degree
grows both curves approach the ultimate Shannon rate-distortion
limit. The belief propagation guided decimation encoder is based
on the posterior measure of a binary symmetric test-channel.
This measure can be interpreted as a random Gibbs measure at a
temperature directly related to the noise level of the test-channel.
We investigate the links between the algorithmic performance of
the belief propagation guided decimation encoder and the phase
diagram of this Gibbs measure. The phase diagram is investigated
thanks to the cavity method of spin glass theory which predicts a
number of phase transition thresholds. In particular, the dynam-
ical and condensation phase transition temperatures (equiva-
lently test-channel noise thresholds) are computed. We observe
that: 1) the dynamical temperature of the spatially coupled
construction saturates toward the condensation temperature and
2) for large degrees the condensation temperature approaches the
temperature (i.e., noise level) related to the information theoretic
Shannon test-channel noise parameter of rate-distortion theory.
This provides heuristic insight into the excellent performance of
the belief propagation guided decimation algorithm. This paper
contains an introduction to the cavity method.

Index Terms— Lossy source coding, rate-distortion bound,
low-density generator matrix codes, belief propagation, decima-
tion, spatial coupling, threshold saturation, spin glass, cavity
method, density evolution, dynamical and condensation phase
transitions.

I. INTRODUCTION

LOSSY source coding is one of the oldest and most
fundamental problems in communications. The objective

is to compress a given sequence so that it can be reconstructed
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up to some specified distortion. It was established long ago [1]
that Shannon’s rate distortion bound for binary sources
(under Hamming distance) can be achieved using linear codes.
However, it is of fundamental importance to find low com-
plexity encoding schemes that achieve the rate distortion limit.
An early attempt used trellis codes [2], for memoryless sources
and bounded distortion measures. It is possible to approach
the Shannon limit as the trellis constraint length increases,
but the complexity of this scheme, although linear in the
block length N , becomes exponential in the trellis constraint
length. In [3] an entirely different scheme is proposed (also
with linear complexity and diverging constants) based on the
concatenation of a small code and optimal encoding of it.
More recently, important progress was achieved thanks to polar
codes [4] which were shown to achieve the rate-distortion
bound with a successive cancellation encoder of complexity
O(N ln N) [5]. Further work on the efficient construction of
such codes followed [6].

Another interesting recent direction uses Low-Density
Generator-Matrix (LDGM) codes as first investigated in [7]
for binary erasure sources and in [8] for symmetric Bernoulli
sources. LDGM based codes with Poisson degrees for code-bit
nodes and regular degree for check nodes, achieve the ultimate
Shannon rate-distortion limit under optimal encoding when
the check degrees grow large. This conclusion was reached
(by non-rigorous means) from the replica [8] and cavity [9]
methods from statistical physics. This was later proved in [10]
by second moment methods. These studies also showed that
the gap to the rate-distortion bound vanishes exponentially in
the large check degree limit.

In [9] it was recognized that using a plain message
passing algorithm without decimation is not effective in
lossy compression. Indeed the estimated marginals are
either non-converging or non-biased because there exists
an exponentially large number of compressed words that
lead to roughly the same distortion. One has to supplement
Belief Propagation (BP) (or Survey Propagation (SP)) with a
decimation process. This yields and encoding scheme of low
complexity.1 In this respect the lossy compression schemes
based on random graphs are an incarnation of random
constraint satisfaction problems and, from this perspective
it is not too surprising that their analysis share common
features. The general idea of BP or SP guided-decimation
algorithms is to: i) Compute approximate marginals by
message passing; ii) Fix bits with the largest bias, and if
there is no biased bit take a random decision; iii) Decimate

1 O(N2) or O(N) depending on the exact implementation.
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the graph and repeat this process on the smaller graph
instance. For naive choices (say regular, or check-regular)
of degree distributions the Shannon rate-distortion limit is
not approached by such algorithms. However it has been
observed that it is approached for degree distributions
that have been optimized for channel LDPC
coding [10]–[12]. These observations are empirical: it is
not clear how to analyze the decimation process, and
there is no real principle for the choice of the degree
distribution.

In this contribution we investigate a simple spatially coupled
LDGM construction. The degree distributions that we consider
are regular on the check side and Poisson on the code-bit
side. The average of the Poisson distribution is adjusted to
achieve the desired compression rate. We explore a low
complexity Belief Propagation Guided Decimation (BPGD)
encoding algorithm, that takes advantage of spatial coupling,
and approaches the Shannon rate-distortion limit for large
check degrees and any compression rate. No optimization on
the degree distributions is needed. The algorithm is based
on the posterior measure of a test binary symmetric
channel (BSC). We interpret this posterior as a random
Gibbs measure with an inverse temperature parameter equal
to the half-log-likelihood parameter of the test-BSC. This
interpretation allows us to use the cavity method of spin
glass theory in order to investigate the phase diagram of the
random Gibbs measure. Although the cavity method is not
rigorous, it makes definite predictions about the phase diagram
of the measure. In particular it predicts the presence of phase
transitions that allow to gain insight into the reasons for the
excellent performance of the BPGD encoder on the spatially
coupled lossy compression scheme.

Spatially coupled codes were first introduced in the
context of channel coding in the form of convolutional LDPC
codes [13] and it is now well established that the performance
of such ensembles under BP decoding is consistently better
than the performance of the underlying ensembles [14]–[16].
This is also true for coupled LDGM ensembles in the context
of rateless codes [17]. The key observation is that the
BP threshold of a coupled ensemble saturates towards the max-
imum a posteriori MAP threshold of the underlying ensemble
as the width of the coupling window grows. A proof of this
threshold saturation phenomenon has been accomplished
in [18] and [19]. An important consequence is that spatially
coupled regular LDPC codes with large degrees universally
achieve capacity. Recently, more intuitive proofs based on
replica symmetric energy functionals have been given
in [20] and [21]. Spatial coupling has also been investigated
beyond coding theory in other models such as the Curie-Weiss
chain, random constraint satisfaction problems [22]–[24], and
compressed sensing [25]–[27].

Let us now describe in more details the main contents
of this paper. Summaries have appeared in [28] and [29].
In [28] we had investigated regular spatially coupled graph
constructions with constant degrees for both check and code-
bits. The performance of the BPGD algorithm are similar to
the case of Poisson degree for code-bit nodes, on which we
will concentrate here.

In section II we set up the framework for lossy source
coding with spatially coupled LDGM ensembles for a
binary symmetric Bernoulli source and Hamming distortion.
We investigate ensembles with regular check degrees and
Poisson code-bit node degrees. Important parameters of the
spatial constructions are the number of positions L, the number
of nodes n at each position, and the window width w over
which we couple the nodes. The infinite block length limit
investigated in this paper corresponds to limL→+∞ limn→+∞
in the specified order. Optimal encoding consists in finding
the compressed word that minimizes the Hamming distortion
between a given source realization and the reconstructed word.
Since we will use methods from statistical mechanics, we will
translate the problem in this language. Optimal encoding can
be viewed as the search for the minimum energy configurations
of a random spin Hamiltonian. Although the optimal encoder
is computationally impractical, it is important to determine
the optimal distortion of the ensemble in order to set a
limit on what cannot be achieved algorithmically for the
ensemble. In this respect, an important rigorous result that is
reviewed in section II is that, in the infinite block length limit
limL→+∞ limn→+∞, for any fixed w the optimal distortion for
a spatially coupled ensemble is equal to the optimal distortion
for the underlying uncoupled ensemble (and is therefore
independent of w). This result follows from an equivalent
one proved in [24] for the random XORSAT problem for
any values of the constraint density. There are various results
in the literature about the optimal encoder for the uncoupled
ensemble. So we can essentially transfer them directly to our
spatially coupled setting.

As explained in section II optimal encoding can be viewed
as the study of the zero temperature limit of the Gibbs measure
associated with a Hamiltonian. This Gibbs measure forms
the basis of the BP based algorithms that we use. This
Gibbs measure is nothing else than the posterior measure
of the dual test-channel problem, and that the inverse tem-
perature is the half-log-likelihood parameter of a test-BSC.2

The free energies of the spatially coupled and underlying
ensembles are the same [24] in the infinite block length limit
(fixed w) and therefore their static phase transition temperature
(the condensation temperature) is also the same (see below).

The Gibbs measure (or posterior measure of the dual
test-channel problem) is the basis for setting up the
BPGD algorithms. This is explained in detail in Section III.
The crucial point is the use of the spatial dimension of the
graphical construction. The main idea is that when the biases
are small a random bit from the boundary of the chain is fixed
to a random value, and as long as there exist bits with large
biases they are eliminated from the chain by fixing them and
decimating the graph. We consider two forms of BPGD. The
first one, which as it turns out performs slightly better, is based
on hard decisions. The second one uses a randomized rounding
rule for fixing the bits.

Section IV reviews the simulation results and discusses
the performance for the two versions of the BPGD encoders.

2More precisely, if p is the flip parameter of the BSC test-channel then the
inverse temperature is β = 1

2 ln( 1−p
p ).
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For both algorithms we observe that the rate-distortion curve
of the coupled ensemble approaches the Shannon limit when
n >> L >> w >> 1 and the node degrees get large.
We cannot assess if the Shannon limit is achieved based on
our numerical results. However we observe that in order to
avoid finite size effects the degrees have to become large only
after the other parameters grow large in the specified order.
In practice though n = 2000, L = 64, w = 3 and check
degrees equal to l = 3 yield good results for a compression
rate 1/2. The performance of the BPGD algorithms depend on
the inverse temperature parameter in the Gibbs measure, and
one can optimize with respect to this parameter. Interestingly,
for the coupled ensemble, we observe that for large degrees
(when Shannon’s rate-distortion limit is approached) the opti-
mal parameter corresponds to the information theoretic value
of the flip probability given by the Shannon distortion. This is
non-trivial: indeed it is not true for the uncoupled ensemble.

The behavior of BPGD algorithms is to some extent
controlled by the phase transitions in the phase diagram of
the Gibbs measure. In section V we review the predictions
of the cavity method, and in particular the predictions about
the dynamical and condensation phase transition temperatures.
At the condensation temperature the free energy displays
a singularity and is thus a thermodynamic or static phase
transition threshold. The dynamical temperature on the other
hand is not a singularity of the free energy. As we will
see in section V in the framework of the cavity method
it is defined via a “complexity function” which counts the
number of “pure states”. The dynamical temperature is the
value at which the complexity jumps to a non zero value.
For a number of models it is known that Markov Chain
Monte Carlo algorithms have an equilibration time which
diverges at (and below) this dynamical temperature. Simi-
larly, BPGD with randomized rounding correctly samples the
Gibbs measure down to temperatures slightly higher than
the dynamical threshold. We observe a threshold saturation
phenomenon for the spatially coupled construction. First as
said above, since the condensation threshold is a singularity
of the free energy it is the same for the uncoupled and coupled
ensembles for any w. Second, as the window width w grows
the dynamical threshold saturates towards the condensation
one. In practice we observe this saturation for values of w as
low as w = 3, 4, 5. Thus for spatially coupled codes the BPGD
algorithm is able to correctly sample the Gibbs measure down
to a temperature approximately equal to the condensation
threshold. This explains why the algorithm performs well,
indeed it is able to operate at much lower temperatures than
in the uncoupled case. A large degree analysis of the cavity
equations shows that the condensation temperature tends to
the information theoretic value corresponding to the flip para-
meter of the BSC test-channel given by Shannon’s distortion.
These facts, put together, provide insight as to the excellent
performance of the BPGD algorithm for the spatially coupled
ensemble.

Section VI presents the cavity equations for the coupled
ensemble on which the results of the previous paragraph are
based. These equations are solved by population dynamics
in Section VII. The cavity equations take the form of six fixed

point integral equations. However we observe by population
dynamics that two of them are satisfied by a trivial fixed point.
This is justified by a theoretical analysis in Section VIII. When
this trivial fixed point is used the remaining four equations
reduce to two fixed point integral equations which have the
form of usual density evolution equations for a BSC channel.
This simplification is interesting because although the original
Gibbs measure does not possess channel symmetry,3 this
symmetry emerges here as a solution of the cavity equations.
Within this framework the saturation of the dynamical temper-
ature towards the condensation one appears to be very similar
than threshold saturation in the context of channel coding with
LDPC codes. A proof of threshold saturation for the present
problem is beyond the scope of this paper, but we do give in
Section VIII a few insights on possible ways to attack it.

For an introduction to the cavity theory we refer the reader
to the book [30]. This theory is not easy to grasp both concep-
tually and technically. This paper contains a high level intro-
duction of the main concepts in Section V and a summary of
the main technical ideas in Appendix A. We hope that this will
be helpful for unfamiliar readers. The necessary derivations
and adaptations to the present setting of a spatially coupled
Gibbs measure are summarized in Appendices B and C. The
main sections II-V and the conclusion can be read without
explicitly going into the cavity formalism.

II. COUPLED LDGM ENSEMBLES FOR

LOSSY COMPRESSION

A. Lossy Compression of Symmetric Bernoulli Sources

Let X = {X1, X2, . . . , X N } represent a source of length N ,
where Xa , a = 1, . . . , N are i.i.d Bernoulli(1/2) random
variables. We compress a source word x by mapping it to one
of 2N R index words u ∈ {0, 1} N R , where R ∈ [0, 1] is the
compression rate. This is the encoding operation. The decod-
ing operation maps the stored sequence u to a reconstructed
sequence x̂(u) ∈ {0, 1}N .

For a given pair (x, x̂), we measure the distortion by the
relative Hamming distance

dN (x, x̂) = 1

N

N
∑

a=1

|xa − x̂a| . (1)

The quality of reconstruction is measured by the average
distortion

DN (R) = EX [dN (x, x̂)] (2)

where EX is the expectation with respect to the symmetric
Bernoulli source.

For the symmetric Bernoulli source considered here, it is
well-known that for any encoding-decoding scheme, the aver-
age distortion is lower bounded by Shannon’s rate-distortion
curve [31]

Dsh(R) = h−1
2 (1− R) (3)

where h2(x) = −x log2 x − (1 − x) log2(1 − x) is the
binary entropy function. The rate-distortion curve is convex
decreasing with Dsh(0) = 1/2 and Dsh(1) = 0.

3In the context of spin glass theory this is the Nishimori gauge symmetry.
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Fig. 1. A bipartite graph from the underlying LDGM (2, 0.5) ensemble.
Here n = 8, m = 4 and l = 2. Labels represent code-bits ui , reconstructed
bits x̂i and source bits xi .

B. Spatially Coupled Low-Density Generator
Matrix Constructions

Our lossy source coding scheme is based on a spatially cou-
pled LDGM code ensemble. We first describe the underlying
ensemble.

1) Underlying Poisson LDGM(l, R) Ensemble: These are
bipartite graphs with a set C of n check nodes of constant
degree l, a set V of m code-bit nodes of variable degree, and
a set E of edges connecting C and V . The ensemble of graphs
is generated as follows: each edge emanating from a check
node is connected uniformly at random to one of the code-bit
nodes. The degree of code-bit nodes is a random variable with
Binomial distribution Bi(ln, 1/m). In the asymptotic regime of
large n,m with m/n = R the code-bit node degrees are i.i.d
Poisson distributed with an average degree l/R. Note that this
construction allows the possibility to have multi-edges in the
graph.

2) Spatially Coupled LDGM(l, R, L, w, n) Ensemble: We
first lay out a set of positions indexed by integers z ∈ Z

on a one dimensional line. This line represents a “spatial
dimension”. We fix a “window size” which is an integer
w ≥ 1. Consider L sets of check nodes each having n nodes,
and locate the sets in positions 1 to L. Similarly, locate
L + w − 1 sets of m code-bit nodes each, in positions
1 to L+w−1. All checks have constant degree l, and each of
the l edges emanating from a check at position z ∈ {1, . . . , L}
is connected uniformly at random to code-bit nodes within
the range {z, . . . , z + w − 1}. It is easy to see that for
z ∈ {w, . . . , L − w + 1}, in the asymptotic limit n → +∞,
the code-bit nodes have Poisson degrees with average l/R.
For the remaining positions close to the boundary the average
degree is reduced. More precisely for positions on the left
side z ∈ {1, . . . , w − 1} the degree is asymptotically i.i.d
Poisson with average l/R × z/w. For positions on the
right side z ∈ {L + 1, . . . , L + w − 1} the degree is
asymptotically Poisson with average l/R × (L + w − z)/w.
Figures 1 and 2 give a schematic view of an underlying and
a spatially coupled graph.

3) Notation: Generic graphs from the ensembles will be
denoted by � or �(C, V , E). We will use letters a, b, c
for check nodes and letters i, j, k for code-bit nodes of a
given graph (from underlying or coupled ensembles). We will
often make use of the notation ∂a for the set of all code-
bit nodes connected to a ∈ C , i.e. ∂a = {i ∈ V | (i, a) ∈ E}.

Fig. 2. The “protograph” representation of the spatially coupled LDGM
(2, 0.5, L = 8, w = 2) ensemble. The code-bit nodes in boundary sets have
smaller degree than the code-bit nodes in the other sets.

Similarly, for i ∈ V , ∂i = {a ∈ C| (i, a) ∈ E}. For spatially
coupled graphs the sets of nodes at a specified position
z are Cz and Vz .

C. Decoding Rule and Optimal Encoding

We “attach” a code bit ui to each code-bit node i ∈ V .
To each check node a ∈ C we “attach” two type of bits: the
reconstructed bit x̂a and the source bit xa . By definition the
source sequence has length N . So we have n = N for
the underlying ensembles, and nL = N for the coupled ensem-
bles. A compressed word u has length m for the underlying
ensemble, and m(L +w− 1) for the coupled ensemble. Thus
the compression design rate is R = m/n for the underlying
ensemble, and it is Rcou = m(L+w−1)/nL = R(1+w−1

L ) for
the coupled ensemble. The compression design rate of the cou-
pled ensembles is slightly higher, due to the code-bit nodes at
the boundary, but in the asymptotic regime n,m >> L >> w
the difference between the design rate R of the underlying
ensemble vanishes.

1) Decoding Rule: The reconstruction mapping is given by
the linear operation (modulo 2 sum)

x̂a(u) = ⊕i∈∂aui . (4)

In this paper we do not investigate non-linear decoding rules,
although the whole analysis developed here can be adapted
to such rules. Source coding with such “non-linear check
nodes” have been investigated for underlying LDGM(l, R)
ensembles [32].

2) Optimal Encoding: Given a source word x , the optimal
encoder seeks to minimize the Hamming distortion (1), and
so searches among all u ∈ {0, 1}N R to find a configuration u∗
such that

u∗ = argminudN
(

x, x̂(u)
)

. (5)

The resulting minimal distortion is

dN,min(x) = min
u

dN
(

x, x̂(u)
)

. (6)

3) Optimal Distortion of the Ensemble: A performance
measure is given by the optimal distortion of the ensemble
(not to be confused with Shannon’s optimal distortion)

DN,opt = ELDGM,X [dN,min(x)] (7)

where ELDGM,X is an expectation over the graphical ensemble
at hand and the symmetric Bernoulli source X .
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Finding the minimizers in (5) by exhaustive search takes
exponential time in N ; and there is no known efficient
algorithmic procedure to solve the minimization problem.
Nevertheless, the cavity method proposes a formula for the
asymptotic value of (7) as N → +∞. It is conjectured that
this formula is exact. We come back to this point at the end
of paragraph II-D.

D. Statistical Mechanics Formulation

We equip the configuration space {0, 1}N R with the
conditional probability distribution (over u ∈ {0, 1}N R )

μβ(u | x) = 1

Zβ(x)
e−2βNdN (x ,̂x(u))

= 1

Zβ(x)

∏

a∈C

e−2β|xa−⊕i∈∂a ui | (8)

where β > 0 is a real number and

Zβ(x) =
∑

u

e−2βNdN (x ,̂x(u)) (9)

a normalizing factor. The expectation with respect to u is
denoted by the bracket 〈−〉. More precisely the average of
a function A(u) is

〈A(u)〉 = 1

Z

∑

u∈{−1,+1}N
A(u)e−2βNdN (x ,̂x(u)). (10)

An important function that we consider below is the distortion
of a pair (x, x̂(u)), A(u) = dN (x, x̂(u)).

Note that the minimizer u∗ in (5) maximizes this conditional
distribution,

u∗ = argmaxuμβ
(

u | x
)

. (11)

The source coding problem can thus be interpreted as an
estimation problem where x is an observation and u has to
be estimated.

In this paper we prefer the statistical mechanics
interpretation, because we use related methods and concepts.
Equation (8) defines the Gibbs distribution associated to a
“spin glass” Hamiltonian 2NdN (x, x̂(u)). This Hamiltonian
is a cost-function for assignments of “dynamical” variables,
the spins (or bits) ui ∈ {0, 1}. The Hamiltonian is random:
for each realization of the source sequence x and the graph
instance we have a different realization of the cost-function.
The source and graph instance are qualified as “quenched” or
“frozen” random variables, to distinguish them from dynam-
ical variables, because in physical systems - as well as in
algorithms - they fluctuate on vastly different time scales. The
parameter β is the “inverse temperature” in appropriate units,
and the normalizing factor (9) is the partition function.

Finding u∗ amounts to find the “minimum energy config-
uration”. The minimum energy per node is equal to 2dN,min,
and it is easy to check the identity (use 6 and 9)

2dN,min(x) = − lim
β→∞

1

βN
ln Zβ

(

x
)

. (12)

TABLE I

OPTIMAL DISTORTION FOR LDGM (l, R = 0.5) ENSEMBLES COMPUTED

IN [9]; SHANNON’S BOUND FOR R = 0.5 IS Dsh ≈ 0.1100

As this identity already shows, a fundamental role is played
by the average free energy

fN (β) = − 1

βN
ELDGM,X [ln Zβ(x)]. (13)

For example the average free energy allows to compute the
optimal distortion of the ensemble

2DN,opt = lim
β→+∞ fN (β). (14)

There exists also another useful relationship that we will
use between average distortion and free energy. Consider the
“internal energy” defined as

uN (β) = 2ELDGM,X [〈dN (x, x̂(u))〉] (15)

It is straightforward to check that the internal energy can be
computed from the free energy (use (9), (13), (15))

uN (β) = ∂

∂β
(β fN (β)) (16)

and that in the zero temperature limit it reduces to the average
minimum energy or optimal distortion (use (6), (7), (15))

2DN,opt = lim
β→+∞ uN (β). (17)

What is the relation between the quantities fN (β), uN (β),
and DN,opt for the underlying and coupled ensembles? The
following theorem states that they are equal in the infinite
block length limit. This limit is defined as

lim
N→+∞ = lim

n→+∞
with m/n fixed for the underlying ensemble; and as

lim
N→+∞ = lim

L→+∞ lim
n→+∞

with m/n fixed for the coupled ensemble. We stress that for
the coupled ensemble the order of limits is important.

Theorem 1: Consider the two ensembles LDGM(l, R, n)
and LDGM(l, R, L, w, n) for an even l and R. Then
the respective limits limN→+∞ fN (β), limN→+∞ uN (β) and
limN→+∞ DN,opt exist and have identical values for the two
ensembles.

This theorem is proved in [24] for the max-XORSAT
problem. The proof in [24] does not depend on the constraint
density, so that it applies verbatim to the present setting.
We conjecture that this theorem is valid for a wider class of
graph ensembles. In particular we expect that it is valid for
odd l and also for the regular LDGM ensembles (see [33] for
similar results concerning LDPC codes).

It is conjectured that the one-step-replica-symmetry-
breaking-formulas (1RSB), obtained from the cavity
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method [34], for the N → +∞ limit of the free, internal
and ground state energies are exact. Remarkably, it has
been proven [35], using an extension of the Guerra-Toninelli
interpolation bounds [36], that these formulas are upper
bounds. The 1RSB formulas allow to numerically compute [9],
using population dynamics, Dopt ≡ limN→+∞ DN,opt. As an
illustration, Table I reproduces Dopt for increasing check
degrees. Note that Dopt approaches Dsh as the degrees
increase. One observes that with increasing degrees the
optimal distortion of the ensemble attains Shannon’s rate-
distortion limit.

III. BELIEF PROPAGATION GUIDED DECIMATION

Since the optimal encoder (5) is intractable, we investigate
suboptimal low complexity encoders. In this contribution we
focus on two encoding algorithms based on the belief propaga-
tion (BP) equations supplemented with a decimation process.

1) Belief Propagation Equations: Instead of estimating the
block u (as in (5)) we would like to estimate bits ui with the
help of the marginals

μi (ui | x) =
∑

u\ui

μβ(u | x) (18)

where the sum is over u1, . . . uN with ui omitted. However
computing the exact marginals involves a sum with an expo-
nential number of terms and is also intractable. For sparse
random graphs, when the size of the graph is large, any finite
neighborhood of a node i is a tree with high probability. As is
well known, computing the marginals on a tree-graph can be
done exactly and leads to the BP equations. It may therefore
seem reasonable to compute the BP marginal distribution in
place of (18),

μBP
i (ui | x) = 1

2 cosh βηi
eβ(−1)ui ηi (19)

where the biases ηi are computed from solutions of the
BP equations. The later are a set of fixed point equations
involving 2 |E | real valued messages ηi→a and η̂a→i

associated to the edges (i, a) ∈ E of the graph. We have
{

η̂a→i = (−1)xaβ−1 tanh−1
(

tanh β
∏

j∈∂a\i tanh βη j→a
)

ηi→a =∑b∈∂i\a η̂b→i
(20)

and

ηi =
∑

a∈∂i

η̂a→i . (21)

The derivation of these equations can be worked out by
reducing the general BP equations (64) (Appendix A) with
the parameterization (86) (Appendix B).

For any solution of the BP equations one may consider the
estimator

û BP
i = argmaxui

μBP
i (ui | x)

=
{

1
2 (1− signηi ), if ηi �= 0

Bernoulli( 1
2), if ηi = 0

(22)

One may then use the decoding rule (4) to determine a
reconstructed word and the corresponding distortion.

To solve the BP equations one uses an iterative method.
A set of initial messages η(0)i→a are fixed at time t = 0 and
updated according to
{

η̂
(t)
a→i = (−1)xaβ−1 tanh−1

(

tanh β
∏

j∈∂a\i tanh βη (t)j→a

)

η
(t+1)
i→a =

∑

b∈∂i\a η̂
(t)
b→i

The bias at time t is simply given by η (t)i =
∑

a∈∂i η̂
(t)
a→i .

Unfortunately, even when the BP updates are converging
they are not always biased. This is because there exist an
exponentially large (in N) number of compressed words that
lead to roughly the same distortion. This has an undesirable
consequence: it is not possible to pick the relevant solution by
a plain iterative solution of the BP equations. To get around
this problem, the BP iterations are equipped with a heuristic
decimation process explained in the next paragraph. We note
that here BP always has to be equipped with a decimation
process for all values of parameters of the algorithm, whether
the BP fixed point is unique or non-unique. The problem here
is akin to the class of constraint satisfaction problems.

2) Decimation Process: We start with a description of the
first round of the decimation process. Let �, x be a graph and
source instance. Fix an initial set of messages η(0)i→a at time
t = 0. Iterate the BP equations (20) to get a set of messages
η
(t)
i→a and η̂

(t)
a→i at time t ≥ 0. Let ε > 0 be some small

positive number and T some large time. Define a decimation
instant tdec as follows:
• i) If the total variation of messages does not change

significantly in two successive iterations,

1

|E |
∑

(i,a)∈E

|̂η (t)a→i − η̂(t−1)
a→i | < ε (23)

for some t < T , then tdec = t .
• ii) If (23) does not occur for all t ≤ T then tdec = T .

At instant tdec each code-bit has a bias given by η(tdec)
i . Select

and fix one particular code-bit idec according to a decision
rule

(idec, uidec )← D(η(tdec)). (24)

The precise decision rules that we investigate are described
in the next paragraph. At this point, update xa ← xa ⊕ uidec

for all a ∈ ∂idec, and decimate the graph � ← � \ idec. This
defines a new graph and source instance, on which we repeat
a new round. The initial set of messages of the new round is
the one obtained at time tdec of the previous round.

3) Belief-Propagation Guided Decimation: The decision
rule (24) involves two choices. One has to choose idec and
then set uidec to some value. Let us first describe the choice
of idec.

We evaluate the maximum bias

Btdec = max
i∈V
|η(tdec)

i | (25)

at each decimation instant. If Btdec > 0, we consider the set of
nodes that maximize (25), we choose one of them uniformly at
random, and call it idec. If Btdec = 0 and we have a graph of the
underlying ensemble, we choose a node uniformly at random
from {1, . . .m}, and call it idec. If Btdec = 0 and we have a
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graph of the coupled ensemble, we choose a node uniformly at
random from the w left-most positions of the current graph,
and call it idec. Note that because the graph gets decimated
the w left-most positions of the current graph form a moving
boundary.

With the above choice of decimation node the encoding
process is seeded at the boundary each time the BP biases
fail to guide the decimation process. We have checked that if
we choose idec uniformly at random from the whole chain (for
coupled graphs) the performance is not improved by coupling.
In [28] we adopted periodic boundary conditions and the
seeding region was set to an arbitrary window of length w
at the beginning of the process, which then generated its own
boundary at a later stage of the iterations.

We now describe two decision rules for setting the value
of uidec in (24).

1) Hard Decision

uidec =
{

1
2 (1− signη(tdec)

idec
), if Btdec > 0

Bernoulli( 1
2 ), if Btdec = 0

(26)

where θ(.) is the Heaviside step function. We call this
rule and the associated algorithm BPGD-h.

2) Randomized Decision

uidec =
{

0, with prob 1
2 (1+ tanh βη(tdec)

idec
)

1, with prob 1
2 (1− tanh βη(tdec)

idec
).

(27)

In other words, we fix a code-bit randomly with a
probability given by its BP marginal (19). We call this
rule and the associated algorithm BPGD-r.

Algorithm 1 summarizes the BPGD algorithms for all
situations.

4) Initialization and Choice of Parameters ε, T : We initial-
ize η(0)i→a to zero just at the beginning of the algorithm. After
each decimation step, rather than resetting messages to zero
we continue with the previous messages. We have observed
that resetting the messages to zero does not lead to very good
results.

The parameters ε and T are in practice set to ε = 0.01
and T = 10. The simulation results do not seem to change
significantly when we take ε smaller and T larger.

5) Choice of β: Let us now clarify the role of β.
It may seem from the discussion of the statistical mechanical
formulation in section II that β should be taken to +∞.
This is the case for the computation of the optimal ensemble
performance. However for the BPGD algorithm this is not the
best choice for β. The reason being that for large values of β
the BP iterations do not converge and therefore one does not
obtain a reliable bias.

We indeed observe that the performance of the
BPGD algorithm does depend on the choice of β which enters
in the BP equations (20) and in the randomized decision
rule (27). It is possible to optimize on β. This is important in
order to approach (with coupled codes) the optimal distortion
of the ensemble, and furthermore to approach the Shannon
bound in the large degree limit.

While we do not have a first principle theory for the optimal
choice of β we provide empirical observations in section IV.

Algorithm 1 BP Guided Decimation Algorithm

1 Generate a graph instance �(C, V , E) from the
underlying or coupled ensembles. ;

2 Generate a Bernoulli symmetric source word x .;
3 Set η(0)i→a = 0 for all (i, a) ∈ E .;
4 while V �= ∅ do
5 Set t = 0.;
6 while Convergence (23) is not satisfied and t < T do
7 Update η̂ (t)a→i according to (20) for all (a, i) ∈ E .;
8 Update η(t+1)

i→a according to (20) for all (i, a) ∈ E .;
9 t ← t + 1.;

10 Compute bias η (t)i =
∑

a∈∂i η̂
(t)
a→i for all i ∈ V ;

11 Find B = maxi∈V |η (t)i |.;
12 if B = 0 then For an instance from the underlying

ensemble randomly pick a code-bit i from V . For a
graph from the coupled ensemble randomly pick a
code-bit from the w left-most positions of � and fix it
randomly to 0 or 1.;

13 else
14 Select i = arg maxi∈V |η (t)i |.;
15 Fix a value for ui according to rule (26) or (27).;

16 Update xa ← xa ⊕ ui for all a ∈ ∂i .;
17 Reduce the graph �← � \ {i}.;

We observe that knowing the dynamical and condensation
(inverse) temperatures predicted by the cavity method allows
to make an educated guess for an estimate of the optimal β.
Two results (discussed at more length in the next section) are
noteworthy: (i) for coupled instances we can take larger values
of β; and (ii) for coupled codes with large degrees the best β
approaches the information theoretic test-channel value.

6) Computational Complexity: It is not difficult to see that
the complexity of the plain BPGD algorithm 1 is O(N2), in
other words O(n2) for underlying and O(n2 L2) for coupled
ensembles. By employing window decoding [37], [38], one
can reduce the complexity of the coupled ensemble to O(n2 L)
with almost the same performance. This can be further reduced
to O(nL) by noticing that the BP messages do not change
significantly between two decimation steps. As a result, we
may decimate δn code-bits at each step for some small δ,
so that the complexity becomes O(nL/δ). To summarize,
it is possible to get linear in block length complexity without
significant loss in performance.

IV. SIMULATIONS

In this section we discuss the performance of the BPGD
algorithms. The comparison between underlying ensembles
LDGM(l, R, n), coupled ensembles LDGM(l, R, w, L, n) and
the Shannon rate-distortion curve is illustrated. The role played
by the parameter β is investigated.

A. BPGD Performance and Comparison to the Shannon Limit

Fig. 3 and 4 display the average distortion D BPGD(R)
obtained by the BPGD algorithms (with hard and randomized
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Fig. 3. The BPGD-h algorithmic distortion versus compression rate R compared to the Shannon rate-distortion curve at the bottom. Points are obtained by
optimizing over β and averaging over 50 instances. Left: spatially coupled LDGM (l, R, L = 64, w = 3, n = 2000) ensembles for l = 3, 4, 5 (top to bottom).
Right: LDGM (l, R, N = 128000) ensembles for l = 3, 4, 5 (bottom to top).

Fig. 4. The BPGD-r algorithmic distortion versus compression rate R compared to the Shannon rate-distortion curve at the bottom. Points are obtained by
choosing β = βsh = 1

2 log( 1−Dsh
Dsh

) and averaging over 50 instances. Continuous lines are a guide to the eye. Left: spatially coupled LDGM (l, R, L = 64,
w = 3, n = 2000) ensembles for l = 3, 4, 5 (top to bottom). Right: LDGM (l, R, N = 128000) ensembles for l = 3, 4, 5 (bottom to top).

decision rules) as a function of R, and compares it to the
Shannon limit Dsh(R) given by the lowest curve. The distor-
tion is computed for fixed R and for 50 instances, and the
empirical average is taken. This average is then optimized
over β, giving one dot on the curves (continuous curves are a
guide to the eye).

We recall that the design rate of a spatially-coupled
ensemble is slightly higher than the rate R of its corresponding
underlying ensemble due to the boundary nodes,
i.e. Rcou = R(1 + O(w−1

L )). The difference between
the design rates of both ensembles vanishes as L → ∞.
In order to disregard this finite size effect, we reported
the algorithmic distortion of the coupled ensembles with
respect to the rate R of their corresponding underlying
ensembles.

The plots on the right are for the underlying ensembles with
l = 3, 4, 5 and n = 128000. We observe that as the check
degree increases the BPGD performance gets worse. But recall
from Table I that with increasing degrees the optimal distortion
of the ensemble (not shown explicitly on the plots) gets better
and approaches the Shannon limit. Thus the situation is similar
to the case of LDPC codes where the BP threshold gets worse
with increasing degrees, while the MAP threshold approaches
Shannon capacity.

The plots on the left show the algorithmic performance for
the coupled ensembles with l = 3, 4, 5, n = 2000, w = 3, and
L = 64 (so again a total length of N = 128000). We see that
the BPGD performance approaches the Shannon limit as the
degrees increase. One obtains a good performance, for a range
of rates, without any optimization on the degree sequence of
the ensemble, and with simple BPGD schemes.

The simulations, suggest the following. Look at the regime
n >> L >> w >> 1. When these parameters go
to infinity in the specified order for the coupled ensemble
D BPGD(R) approaches Dopt(R). In words, the algorithmic
distortion approaches the optimal distortion of the ensemble.
When furthermore l → +∞ after the other parameters
D BPGD(R) approaches Dsh(R). At this point it is not possible
to assess from the simulations whether these limits are exactly
attained.

B. The Choice of the Parameter β

We discuss the empirical observations for the dependence
of the curves D BPGD(β, R) on β at fixed rate. We illus-
trate our results for R = 1/2 and with the underlying
LDGM(l = 5, R = 0.5, N = 128000) and coupled
LDGM(l = 5, R = 0.5, w = 3, L = 64, n = 2000)
ensembles.
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Fig. 5. The BPGD-h algorithmic distortion versus β. Results are
obtained for coupled LDGM (5, 0.5, L = 64, w = 3, n = 2000) and
LDGM (5, 0.5, 128000) ensemble. Results are averaged over 50 instances.
The minimum distortion occurs at β∗(5,0.5,64,3) ≈ 1.03 ± 0.01 and
β∗(5,0.5) ≈ 0.71 ± 0.01.

On Fig. 5 we plot the distortion D BPGD−h(β, R = 1/2)
of the hard decision rule. For all values of 0 < β < 3,
the algorithmic distortion D BPGD−h(β, R) of the coupled
ensemble is below the corresponding curve of the underlying
ensemble. The most important feature is a clear minimum at
a value β∗ which is rate dependent. The rate distortion curve
for the hard decision rule on Figure 3 is computed at this β∗
and is the result of the optimization

D BPGD−h(R) = min
β>0

D BPGD−h(β, R). (28)

We observe that the optimal value β∗cou for the coupled ensem-
ble is always larger than β∗un for the underlying ensemble.

An additional observation is the following. As the degree l
increases β∗un tends to zero, and β∗cou approaches βsh(R) where

βsh(R) ≡ 1

2
ln

(

1− Dsh(R)

Dsh(R)

)

. (29)

This is the information theoretic value corresponding to the
half-loglikelihood parameter of a test-BSC with the noise
tuned at capacity. This observation is interesting because it
shows that for large l, with the coupled ensemble, one does
not really need to optimize over β, but it suffices to fix
β = βsh(R). Theoretical motivation for this choice is discussed
in Section V.

On Figure 6 we plot the curve D BPGD−r(β, R = 1/2) for
the randomized algorithm. The behavior of the underlying and
coupled ensemble have the same flavor. The curves are first
decreasing with respect to β and then flatten. The minimum
is reached in the flattened region and as long as β is chosen
in the flat region, the optimized distortion is not very sensitive
to this choice. We take advantage of this feature, and compute
the rate distortion curve of the randomized decision rule at a
predetermined value of β. This has the advantage of avoiding
optimizing over β. Again, for the coupled case a good choice
is to take βsh(R) given by Equ. 29. With these considerations
the distortion curve on Figure 4 is

D BPGD−r(R) = D BPGD−r(βsh, R). (30)

Fig. 6. The BPGD-r algorithmic distortion versus β. Results are obtained
for coupled LDGM (5, 0.5, L = 64, w = 3, n = 2000) and LDGM
(5, 0.5, 128000) ensemble. Results are averaged over 50 instances. The values
β∗ of Figure 5 are reported for comparison.

Fig. 7. C0.01(β) versus β. Empirical convergence probability for underlying
LDGM (5, 0.5, 128000) and coupled LDGM (5, 0.5, L = 64, w = 3,
n = 2000) ensembles. Solid (resp. dashed) lines are for the hard
(resp. random) decision rule. Results are averaged over 50 instances.

C. Convergence

We have tested the convergence of the BPGD algorithms
for both decision rules. We compute an empirical probability
of convergence Cε,T (β) defined as the fraction of decima-
tion rounds that results from the convergence condition (23).
In other words Cε,T (β) = 1 means that at every round of the
decimation process the BP update rules converge in less than
T iterations to a fixed point of the BP equations (20) up to a
precision ε. Figure 7 shows Cε,T (β) at (ε, T ) = (0.01, 10) for
the underlying and coupled ensembles. The hard decision rule
is represented by solid lines and the random decision rule by
dashed lines. The first observation is that both decision rules
have identical behaviors. This is not a priori obvious since
the decimation rules are different, and as a result the graph
evolves differently for each rule during the decimation process.
This suggest that the convergence of the algorithms essentially
depends on the convergence of the plain BP algorithm. The
second observation is that the values of β where Cε,T (β)
drops below one are roughly comparable to the values where
D BPGD−r flattens and where D BPGD−h attains its minimum.
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V. THE PHASE DIAGRAM: PREDICTIONS OF

THE CAVITY METHOD

It is natural to expect that the behavior of belief propagation
based algorithms should be in a way or another related to
the phase diagram of the Gibbs distribution (8). The phase
diagram can be derived by using the cavity method. As this
is pretty involved, in the present section we provide a high
level picture. The cavity equations are presented in section VI.
We give a primer on the cavity method in appendix A and
the technical derivations for the present problem are given
in appendices B, C.

As we vary β the nature of the Gibbs measure and the
geometry of the space of its typical configurations changes
at special dynamical and condensation thresholds βd and βc.
In paragraph V-A we explain what these thresholds are and
what is their significance. We discuss how they are affected by
spatial coupling in paragraph V-B. Finally in paragraph V-E
we discuss some heuristic insights that allow to understand
why Shannon’s limit is approached with the BPGD algorithm
for coupled ensembles with large check degrees.

In this section f and u denote the limits limN→+∞ fN and
limN→+∞ uN .

A. Dynamical and Condensation Thresholds

The cavity method assumes that the random Gibbs distrib-
ution (8) can, in the limit of N → +∞, be decomposed into
a convex superposition of “extremal measures”

μβ(u | x) =
N
∑

p=1

wp μβ,p(u | x) (31)

each of which occurs with a weight wp = e−βN( f p− f ),
where f p is a free energy associated to the extremal
measure μβ,p. Since the weights wp have to sum to 1, we
have

e−βN f ≈
N
∑

p=1

e−βN f p ≈ e−βN minϕ(ϕ−β−1
(ϕ;β)) (32)

where eN
(ϕ;β) counts the number of extremal states μβ,p
with free energy f p ≈ ϕ.

Such convex decompositions of the Gibbs distribution into
bona fide extremal measures are under mathematical control
for “simple” models such as the (deterministic) Ising model
on a square grid [39]. But for spin glass models is it not
known how to construct or even precisely define the extremal
measures. One important conceptual difference with respect
to the Ising model, which has a small number of extremal
states, is that for spin glasses one envisions the possibility of
having an exponentially large in N number of terms in the
decomposition (31).

In the context of sparse graph models it is further assumed
that there are “extremal” Bethe measures which are a good
proxy for the “extremal measures”. The Bethe measures are
those measures that have marginals given by BP marginals.
When the BP equations have many fixed point solutions
there are many possible Bethe measures and one must have
a criterion to choose among them. This is provided by the

Fig. 8. Pictorial representation of the decomposition of the Gibbs distribution
into a convex superposition of extremal states. Balls represent extremal states
(their size represents their internal entropy). For β < βd there is one extremal
state. For βd < β < βc there are exponentially many extremal states (with the
same internal free energy ϕint ) that dominate to the convex superposition. For
β > βc there is a finite number of extremal states that dominate the convex
superposition.

Bethe free energy. The Bethe free energy is the functional
whose stationary point equations (gradient equal zero) yield
the BP equations. Heuristically, the extremal Bethe measures
correspond to the solutions of the BP equations that are
minima of the Bethe free energy.4 Similarly, it is assumed
that the Bethe free energies corresponding to solutions of
the BP equations are good proxy’s for the free energies f p .
Moreover one expects that the later concentrate.

Once one chooses to replace f p by the Bethe free energies,
the counting function 
(ϕ; β) and the free energy f can be
computed through a fairly technical procedure, and a number
of remarkable predictions about the decomposition (31)
emerge.

The cavity method predicts the existence of two sharply
defined thresholds βd and βc at which the nature of the
convex decomposition (31) changes drastically. Figure 8 gives
a pictorial view of the transitions associated with the decompo-
sition (31). For β < βd the measure μβ(u | x) is extremal, in
the sense that N = 1 in (31). For βd < β < βc the measure
is a convex superposition of an exponentially large number
of extremal states. The exponent ϕ − β−1
(ϕ; β) in (32) is
minimized at a value ϕint(β) such that 
(ϕint(β); β) > 0.
Then


(β) ≡ 
(ϕint(β); β) = β(ϕint(β)− f (β)) (33)

is strictly positive and gives the growth rate (as N → +∞)
of the number of extremal states that dominate the convex
superposition of pure states (31). This quantity is called the
complexity. It turns out that the complexity is a decreasing
function of β which becomes negative at βc where it looses
its meaning. To summarize, above βd and below βc an expo-
nentially large number of extremal states with the same free
energy ϕint contribute significantly to the Gibbs distribution.
For β > βc the number of extremal states that dominate the
measure is finite. One says that the measure is condensed over
a small number of extremal states. In fact, there may still
be an exponential number of extremal states but they do not
contribute significantly to the measure because their weight is
exponentially smaller than the dominant ones.

4Remarkably, it is not very important to be able to precisely select these
minima because at low temperatures one expects that they outnumber the
other ones.
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TABLE II

THE NUMERICAL VALUES OF βd AND βc FOR COUPLED POISSON

LDGM (l, R = 0.5, L ,w = 3) ENSEMBLES WITH l = 3, 4,

AND 5 AND DIFFERENT VALUES OF L . THE RESULTS

ARE OBTAINED BY POPULATION

DYNAMICS (SEE SECT. VII)

TABLE III

THE NUMERICAL VALUES OF βd AND βc FOR COUPLED POISSON

LDGM (5, R = 0.5, L , w) ENSEMBLES WITH DIFFERENT

VALUES OF L AND w. THE RESULTS ARE OBTAINED BY

POPULATION DYNAMICS (SEE SECT. VII)

There exist a mathematically more precise definition of
βd and βc in terms of correlation functions. When these
correlation functions are computed within the framework of
the cavity method the results for βd and βc agree with
those given by the complexity curve 
(β). Although these
definitions nicely complete the perspective, we refrain from
giving them here since we will not use them explicitly.

What is the significance of the transitions at βd and βc? The
condensation threshold is a thermodynamic phase transition
point: the free energy f (β) and internal energy u(β) are not
analytic at βc. At βd the free and internal energies have no
singularities: in particular their analytical expressions do not
change in the whole range 0 < β < βc. At βd the (phase)
transition is dynamical: Markov chain Monte Carlo algorithms
have an equilibration time that diverges when β ↑ βd , and are
unable to sample the Gibbs distribution for β > βd . For more
details we refer to [30].

B. Complexity and Thresholds of the Underlying
and Coupled Ensembles

We have computed the complexity and the thresholds from
the cavity theory. These have been computed both from the
full cavity equations of Section VI-A and from the simplified
ones of Section VI-C. Tables II and III illustrate the results.

Since the free energies of the coupled and underlying
ensembles are the same in the limit of infinite length
(known from theorem 1) and the condensation threshold is a
singularity of the free energy (known from the cavity method),
we can conclude on theoretical grounds that

lim
L→+∞ βc(L, w) = βc(w = 1). (34)

Table II shows that the condensation threshold βc(L, w) of
the coupled ensemble is higher than βc(w = 1) and decreases
as L increases. The finite size effects are still clearly visible
at lengths L = 128 and are more marked for larger w. This
is not surprising since we expect the finite size corrections to
be of order O(w/L).

Let us now discuss the behavior of the dynamical
threshold. Table III displays the results for the ensembles
LDGM(l = 5, R = 0.5) and LDGM(l = 5, R = 0.5, L, w).

The column w = 1 gives the dynamical and condensation
thresholds of the underlying ensemble, βd(w = 1) and
βc(w = 1). We see that for each fixed L the dynamical
threshold increases as a function of w. Closer inspection
suggests that

lim
w→+∞ lim

L→+∞ βd(L, w) = βc(w = 1). (35)

Equ. 35 indicates a threshold saturation phenomenon: for the
coupled ensemble the phase of non-zero complexity shrinks to
zero and the condensation point remains unchanged. This is
analogous to the saturation of the BP threshold of LDPC codes
towards the MAP threshold [19]. It is also analogous to the
saturation of spinodal points in the Curie-Weiss chain [23].
Similar observations have been discussed for constraint
satisfaction problems in [24].

C. Comparison of β∗ With βd

We systematically observe that the optimal algorithmic
value β∗ of the BPGD-h algorithm is always lower, but some-
what close to βd . For example for the uncoupled case l = 5
we have (β∗, βd) ≈ (0.71, 0.832). For the coupled ensembles
with (L = 64, w = 3) we have (β∗, βd ) ≈ (1.03, 1.038).
In fact, in the coupled case we observe β∗ ≈ βd ≈ βc. Thus
for the coupled ensemble BPGD-h operates well even close to
the condensation threshold.

This is also the case for BPGD-r as we explain in the next
paragraph. We use this fact in the next section to explain the
good performance of the algorithm for coupled instances.

D. Sampling of the Gibbs Distribution With BPGD-r

Threshold saturation, equation (35), indicates that for
L large, the phase of non-zero complexity, occupies a very
small portion of the phase diagram close to βc. This then
suggests that for coupled ensembles Markov chain Monte
Carlo dynamics, and BPGD-r algorithms are able to correctly
sample the Gibbs measure for values of β up to ≈ βc. Let us
discus in more detail this aspect of the BPGD-r algorithm.

By the Bayes rule:

μβ(u | x) =
m
∏

i=1

μβ(ui |x, u1, . . . , ui−1). (36)

Thus we can sample u by first sampling u1 from μβ(u1|x),
then u2 from μβ(u2|x, u1) and so on. Then, computing
xa = ⊕i∈∂aui and the resulting average distortion, yields
half the internal energy u(β)/2. With the BPGD-r algorithm
the average distortion is computed in the same way except
that the sampling is done with the BP marginals. So as long
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Fig. 9. The performance of the BPGD-r algorithm. The plot shows that the
algorithm can approximate average distortion quite precisely for β < β′ ≈ βd .
The black curve shows the average distortion u(β)/2 = (1 − tanh β)/2
for β < βc . The results are obtained for the the underlying
LDGM (5, 0.5, 128000) and coupled LDGM (5, 0.5, 64, 3, 2000) ensembles.
The results are averaged over 50 instances. Numerical values of various
thresholds are βd,un = 0.832, βd,cou = 1.030, βc = 1.032.

as the BP marginals are a good approximation of the true
marginals, the average distortion D BPGD−r(β) should be close
to u(β)/2. This can be conveniently tested because the cavity
method predicts the simple formula5 u(β)/2 = (1− tanh β)/2
for β < βc.

On Fig. 9 we observe D BPGD−r(β) ≈ (1 − tanh β)/2 for
β < β ′, with a value of β ′ lower but comparable to βd .
In particular for a coupled ensemble we observe β ′ ≈ βd ≈ βc.
So Fig. 9 strongly suggests that BPGD-r correctly samples the
Gibbs distribution of coupled instances all the way up to ≈ βc,
and that BP correctly computes marginals for the same range.

E. Large Degree Limit

According to the information theoretic approach to
rate-distortion theory, we can view the encoding problem, as a
decoding problem for a random linear code on a test-BSC(p)
test-channel with noise p = Dsh(R). Now, the Gibbs dis-
tribution (8) with β = 1

2 ln(1 − p)/p is a MAP-decoder
measure for a channel problem with the noise tuned to
the Shannon limit. Moreover, for large degrees the LDGM
ensemble is expected to be equivalent to the random linear
code ensemble. These two remarks suggest that, since in the
case of coupled ensembles with large degrees the BPGD-h
encoder with optimal β∗, approaches the rate-distortion limit,
we should have

β∗ ≈ 1

2
ln

1− p

p
≡ 1

2
ln

1− Dsh(R)

Dsh(R)
. (37)

In fact this is true. Indeed on the one hand, as explained above,
for coupled codes we find β∗ ≈ βd ≈ βc (even for finite
degrees). On the other hand an analytical large degree analysis
of the cavity equations in section VI-D allows to compute the
complexity and to show the remarkable relation

βc ≈ 1

2
ln

1− Dsh(R)

Dsh(R)
, for l >> 1. (38)

5For β > βc the formula is different. Indeed, βc is a static phase transition
point.

These remarks also show that the rate-distortion curve can
be interpreted as a line of condensation thresholds for
each R.

VI. CAVITY EQUATIONS FOR

LDGM COUPLED ENSEMBLES

We display the set of fixed point equations needed to
compute the complexity (33) of the coupled ensemble. To get
the equations for the underlying ensembles one sets w = 1
and drops the positional z dependence in all quantities.

In order to derive the fixed point equations one first writes
down the cavity equations for a single instance of the graph
and source word. These involve a set of messages on the
edges of the graph. These messages are random probabil-
ity distributions. If one assumes independence of messages
flowing into a node, it is possible to write down a set of
integral fixed point equations - the cavity equations - for the
probability distributions of the messages. It turns out that
the cavity equations are much harder to solve numerically
than usual density evolution equations because of “reweighting
factors”. Fortunately for β < βc it is possible to eliminate
the reweighting factor, thus obtaining a much simpler set of
six integral fixed point equations. This whole derivation is
quite complicated and for the benefit of the reader, we choose
to present it three stages in appendices A, B and C. The
calculations are adapted from the methods of [40] for the
K -SAT problem in the SAT phase.

Paragraphs VI-A and VI-B give the set of six integral
fixed point equations and the complexity (derived
in appendices A, B and C).

We will see that in the present problem for β < βc, not
only one can eliminate the reweighting factors, but there is a
further simplification of the cavity equations. With this extra
simplification the cavity equations reduce to standard density
evolution equations associated to a coupled LDGM code over
a test-BSC-channel. This is explained in paragraph VI-C.

A. Fixed Point Equations of the Cavity Method for β ≤ βc

Our fixed point equations involve six distributions qz(h),
q̂z(̂h), q σz (η|h) and q̂ σz (̂η|̂h) with σ = ±1. The subscript z
indicates that the distributions are position dependent,
z = 1, . . . , L +w − 1. A hat (resp. no hat) indicates that this
is the distribution associated to messages that emanate from
a check node (resp. code-bit node). All messages emanating
from a node have the same distribution. Thus the distributions
depend only on the position of the node and not on the
direction of the edge.

It is convenient to define two functions g and ĝ (see the
BP equations (20))
{

g(̂h1, . . .̂hr−1) =∑r−1
i=1

̂hi

ĝ (h1, . . . hl−1 | J ) = Jβ−1 tanh−1
(

tanh β
∏l−1

i=1 tanh βhi
)

where J ≡ (−1)x is the random variable representing the

source bits. Furthermore we set P(r) = (l/R)r

r ! e−l/R for the
Poisson degree distribution of code-bit nodes.
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Distributions qz (h), q̂z
(

̂h
)

satisfy a set of closed equations6

qz (h) =
∞
∑

r=0

P(r)

wr

w−1
∑

y1,...yk=0

∫ r
∏

a=1

d̂haq̂z−ya (̂ha)

× δ(h − g(̂h1, . . . ,̂hr )) (39)

and

q̂z(̂h) = 1

wl−1

w−1
∑

y1,...,yl−1=0

∫ l−1
∏

i=1

dhi qz+yi (hi )

×1

2

∑

J=±1

δ(̂h − ĝ(h1, . . . , hl−1 | J )). (40)

Let σi = ±1 denote auxiliary “spin” variables. We introduce
the conditional measure over σ1, . . . , σl−1,

ν1(σ1, . . . , σl−1|Jσ, h1, . . . , hl−1)

= 1+ Jσ tanh β
∏l−1

i=1 σi

1+ Jσ tanh β
∏l−1

i=1 tanh βhi

l−1
∏

i=1

1+ σi tanh βhi

2
. (41)

The equations for distributions q σz (η|h) and q̂ σz (̂η|̂h) are

q σz (η|h)qz(h) =
∞
∑

r=0

P(r)

wr

w−1
∑

y1,...,yr=0

×
∫ r
∏

a=1

d̂haq̂z−ya(̂ha)

× δ(h − g(̂h1, . . . ,̂hr ))

×
∫ r
∏

a=1

d η̂aq̂ σz−ya
(̂ηa |̂ha)× δ(η − g(̂η1, . . . , η̂r )) (42)

and

q̂ σz (̂η|̂h)̂qz(̂h) = 1

wl−1

w−1
∑

y1,...,yl−1=0

∫ l−1
∏

i=1

dhi qz+yi (hi )

× 1

2

∑

J=±1

∑

σ1,...,σl−1=±1

ν1(σ1, . . . , σl−1|Jσ, h1, . . . , hl−1)

× δ(̂h − ĝ(h1, . . . , hl−1 | J ))

×
∫ l−1
∏

i=1

dηi q
σi
z+yi

(ηi |hi )δ(̂η − ĝ(η1, . . . , ηl−1 | J )). (43)

Equations (39), (40), (42), (43) constitutes a closed set of fixed
point equations for six probability distributions.

Let us pause for a moment to give some information on
these distributions and an interpretation of the equations that
relate them.

When there is a proliferation of BP fixed points, usual
density evolution does not track correctly the average behavior
of the BP messages. In the formalism of the cavity method
(see Appendix A) one introduces new messages called cavity
messages which are random valued distributions over the space
of BP fixed points (for a fixed instance). They satisfy “cavity
message passing equations” (see equ. (82)). The fixed point
equations presented here (39), (40), (42), (43), describe the
behavior of the “distributions” of these cavity messages. More
precisely the averages of the cavity messages - themselves
random quantities - satisfy message passing BP equations

6We use the convention that if z is out of range the corresponding
distribution is a unit mass at zero.

(see equ. (97)). The quantities qz(h) and q̂z(̂h) are the distri-
butions of the averages of the cavity messages (see equ. (98))
and therefore satisfy the “usual” density evolution equations.
The quantities qσz (η|h) and q̂σz (η̂|̂h) are conditionnal averages
of the random cavity messages (see equ., (100)). The condi-
tioning corresponds to fix the average of the cavity message.

The equations (42) and (43) have an
interesting interpretation as a reconstruction problem on
a tree (see [41] where the case of coloring is treated in detail
and a brief discussion of more general models is presented).
Consider a rooted tree of depth t > 0 created at random
from a stochastic branching process where variable nodes
have r − 1 descendants with probability P(r) (except for the
root node which has r descendants) and check nodes have
l − 1 descendants. Each check node “broadcasts” the variable
σ that is immediately above it, to its l − 1 descendants
which receive the vector (σ1, · · · , σl−1) with probability
ν1(σ1, . . . , σl−1|Jσ, h1, . . . , hl−1). This broadcasting process
induces a probability distribution on the configurations of the
variables at the leaf nodes of the tree. The aim of the recon-
struction problem is to infer the value of the root node given
the configuration at the leafs at depth t . The analysis of the
reconstruction problem on a tree suggests that the equations
(42) and (43) possess non-trivial fixed points if and only if
the iterations of these equations with the initial condition7

q σi
z (η|h) = δ+∞(σiηi ), (44)

converges to a non-trivial fixed point. This has the advantage
of removing the ambiguity of the initial conditions in
order to solve iteratively the fix point equations for
q σz (η|h) and q̂ σz (̂η|̂h).
B. Complexity in Terms of Fixed Point Densities

Let
{

Z1(h1, . . . , hl | J ) = 1+ J (tanh β)
∏l

i=1 tanh βhi

Z2(̂h1, . . . ,̂hr ) = 1
2

∑

σ=±1
∏r

i=1(1+ σ tanh β̂hi ).

We are now ready to give the expression for the com-
plexity in terms of the densities qz(h), q̂z(̂h), q σz (η|h) and
q̂ σz (̂η|̂h). Recall formula (33) which expresses the complexity
as 
(β) = β(ϕint(β) − f (β)). In the formulas below it is
understood that n →+∞.

The expression of f is the simplest

−β f = ln(1+ e−2β)+ (R − 1) ln 2

− l − 1

L

L
∑

z=1

1

wl

w−1
∑

y1,...,yl=0

∫ l
∏

i=1

dhi qz+yi (hi )

×1

2

∑

J=±1

ln Z1(h1, . . . , hl | J )

+ R

L +w − 1

L+w−1
∑

z=1

∞
∑

r=0

P(r)

wr

×
w−1
∑

y1,...,yr=0

∫ r
∏

a=1

d̂haq̂z−ya (̂ha) ln Z2(̂h1, . . . ,̂hr ).

(45)

7Here we adopt the notation δ+∞ for a unit mass distribution at infinity.
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To express ϕint we first need to define the conditional measure
over σ = ±1

ν2(σ |̂h1, . . . ,̂hk)

=
∏k

a=1(1+ σ tanh β̂ha)
∏k

a=1(1+ tanh β̂ha)+∏k
a=1(1− tanh β̂ha)

.

We have

−βϕint = ln(1+ e−2β)+ (R − 1) ln 2

− l − 1

L

L
∑

z=1

1

wl

w−1
∑

y1,...,yl=0

∫ l
∏

i=1

dhi qz+yi (hi )

×1

2

∑

J=±1

∑

σ1,...,σl=±1

ν1(σ1, . . . , σl |J, h1, . . . , hl)

×
∫ l
∏

i=1

dηi q
σi
z+yi

(ηi |hi ) ln Z1(η1, . . . , ηl | J )

+ R

L +w − 1

L+w−1
∑

z=1

∞
∑

r=0

P(r)

wr

×
w−1
∑

y1,...,yr=0

∫ r
∏

a=1

d̂haq̂z−ya (̂ha)
∑

σ

ν2(σ |̂h1, . . . ,̂hr )

×
∫ r
∏

a=1

d η̂aq̂ σz−ya
(̂ηa |̂ha) ln Z2(̂η1, . . . , η̂r ). (46)

Thanks to (45), (46) the complexity 
(β; L, w) of the
coupled ensemble is computed, one reads off the dynamical
and condensation thresholds βd(L, w) and βc(L, w). The cor-
responding quantities for the underlying ensemble are obtained
by setting L = w = 1.

C. Further Simplications of Fixed Point
Equations and Complexity

It is immediate to check that qz(h) = δ(h) and
q̂z(̂h) = δ(̂h) is a trivial fixed point of (39), (40). When we
solve these equations by population dynamics with a uniform
initial condition over [−1,+1] for ̂h, we find that for fixed
degrees and β fixed in a finite range depending on the degrees,
the updates converge towards the trivial fixed point. Up to
numerical precision, the values of h,̂h are concentrated on 0.
It turns out that the range of β for which this is valid is
wider than the interval [0, βc]. At first sight this may seem
paradoxical, and one would have expected that this range of
β is equal to [0, βc]. In fact, one must recall that beyond βc the
equations of paragraph VI-A are not valid (see Appendix A),
so there is no paradox. Theorem 2 in section VIII shows that,
for a wide class of initial conditions and given β, for large
enough degree l the iterative solution of (39), (40) tends to
the trivial point. This theorem, together with the numerical
evidence, provides a strong justification for the following
simplification.

We assume that for β < βc, equations (39), (40) have
a unique solution qz(h) = δ(h) and q̂z(̂h) = δ(̂h). Note
that the initial condition (44) satisfies a symmetry qσ (η|0) =
q−σ (−η|0) = δ+∞(ησ) (even for h �= 0). Now for h = ĥ = 0
the iterations of (42) and (43) preserve this symmetry. In other

words the solutions of these equations (for h = ĥ = 0)
found from a symmetric initial condition satisfy q σ=1

z
(η|0) = q σ=−1

z (−η|0), q̂ σ=1
z (̂η|0) = q̂ σ=−1

z (−η̂|0).
Therefore we look only for symmetrical solutions, and set

q +z (η) = q σ=+1
z (η|0), and q̂ +z (̂η) = q̂ σ=+1

z (̂η|0)
Then the equations (42), (43) simplify drastically,

q +z (η) =
∞
∑

r=0

P(r)

wr

w−1
∑

y1,...,yr=0

×
∫ r
∏

a=1

d η̂aq̂ +z−ya
(̂ηa)δ(η − g(̂η1, . . . , η̂r )) (47)

q̂ +z (̂η) = 1

wl−1

w−1
∑

y1,...,yl−1=0

∫ l−1
∏

i=1

dηi q
+
z+yi

(ηi )

×
∑

J=±1

1+ J tanh β

2
δ(̂η − ĝ(η1, . . . ηl−1 | J )).

(48)

Remarkably, these are the standard density evolution equations
for an LDGM code over a test-BSC-channel with
half-log-likelihood parameter equal to β.

The free energy (45) now takes a very simple form

−β f = ln(1+ e−2β)+ (R − 1) ln 2. (49)

At this point let us note that this simple formula has been
proven by the interpolation method [42], for small enough β.
Since it is expected that there is no (static) thermodynamic
phase transition for β < βc, the free energy is expected
to be analytic for β < βc. Thus by analytic continuation,
formula (49) should hold for all β < βc. This also provides
justification for the triviality assumption made above for the
fixed point. Indeed, a non-trivial fixed point leading to the
same free energy would entail miraculous cancellations.

When we compute the complexity, expression (49) cancels
with the first line in ϕint (see equ. (46)). We find


(β; L, w) = l − 1

L

L
∑

z=1

1

w

w−1
∑

y=0


e[q +z+y, q̂ +z ]

− l

L

L
∑

z=1


v
[

q̂ +z
]+ R

L+w−1

L+w−1
∑

z=1


v
[

q +z
]

,

where


v [q+] =
∫

dη q+(η) ln(1+ tanh βη)


e[q+, q̂ +] =
∫

dηd η̂ q+(η)̂q + (̂η) ln(1+ tanh βη tanh β η̂ ).

For the underlying ensemble (L = w = 1) the complexity
reduces to


(β) = (l − 1)
e[q+, q̂ +] − l
v [̂q +] + R
v [q+]. (50)

The average distortion or internal energy (see (15), (16)) at
temperature β is obtained by differentiating (49), which yields
the simple formula (1 − tanh β)/2. This is nothing else than
the (bottom) curve plotted in Figure 9. It has to be noted that
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this expression is only valid for β < βc. To obtain the optimal
distortion of the ensemble Dopt (see table I) one needs to
recourse to the full cavity formulas in order to take the limit
β →+∞.

D. Large Degree Limit

Inspection of the fixed point equations (47) and (48) shows
that the distributions

q+(η) = δ+∞(η), and q̂ +(̂η) =
∑

J=±1

1+ J tanh β

2
δ(̂η − J )

(51)

are a fixed point solution for the underlying model (w = 1)
in the limit l → +∞, R fixed. This is (partially) justified
by theorem 3 in section VIII. The fixed point (51) leads to a
complexity for the underlying model for l → +∞,

lim
l→+∞
(β) = (R − 1) ln 2

−
∑

J=±1

1+ J tanh β

2
ln
(1+ J tanh β

2

)

.

On this expression one can read the large degree limit of
the dynamical and condensation thresholds for the underlying
ensemble. In this limit the complexity is non-zero all the
way up to β = 0 (infinite temperature) so one finds that
liml→+∞ βd = 0. The condensation threshold on the other
hand, liml→+∞ βc, is obtained by setting the complexity to
zero

1− R = lim
l→+∞ h2

(1+ tanh βc

2

)

, (52)

which is equivalent to

lim
l→+∞ βc = βsh ≡ 1

2
ln
(1− Dsh(R)

Dsh(R)

)

. (53)

In the large degree limit the condensation threshold is equal to
the half-log-likelihood of a BSC test-channel with probability
of error Dsh(R), i.e. tuned to capacity.

Notice that since the condensation thresholds for both the
underlying and the spatially-coupled ensembles are equal,
Equation (53) is also true for coupled ensembles. Moreover
the average distortion or internal energy is given for both
ensembles by

1

2
u(β) =

{ 1
2 (1− tanh β) β < βsh(R)
Dsh(R) β ≥ βsh(R)

(54)

The above equation is a consequence of the monotonicity of
u (β) and the saturation of the condensation threshold toward
the Shannon threshold. We conclude this section with a proof
of this fact.

Using (9), (10) and (13), it is not hard to show that the
derivative with respect to β of the internal energy for finite
size N has a sign opposite to the variance of the distortion

d

dβ
uN (β) = −4NELDGM,X [〈dN (x, x̂)〉2 − 〈dN (x, x̂)2〉].

(55)

This proves that for every N the internal energy uN (β) is a
non-increasing function with respect to β ∈ [0,∞[. It also
proves, thanks to Equation (16), that the free energy −β fN

is a convex function with respect to β ∈ [0,∞]. The cavity
method predicts that in the thermodynamic limit N → +∞
the quantity β fN converges to (49) for β ≤ βc. This prediction
combined with the fact that −β fN is convex implies that the
internal energy u (β) = limN→+∞ uN (β) converges8 to

u (β) = d

dβ
(β f ) = (1− tanh β), (56)

for β ≤ βc. Thus in the limit of large degree the internal
energy becomes equal to twice the Shannon distortion at the
condensation threshold

lim
l→+∞ u (βc) = u (βsh) = 2Dsh(R). (57)

But since 2Dsh(R) is a lower bound for lim infβ→+∞ u (β)
(thanks to the rate-distortion theorem) and u (β) is a non-
increasing function, we conclude that u (β) ≡ 2Dsh(R)
for β ≥ βsh.

VII. POPULATION DYNAMICS COMPUTATION

OF THE COMPLEXITY

In this section, we describe the population dynamics
solutions of the various fixed point equations.

Let us first discuss the solution of (39), (40), (42) and (43).
To represent the densities qz(h), q ±z (η|h), q̂z(̂h), and q̂ ±z (̂η|̂h)
we use two populations: a code-bit population and a check
population. The code-bit population is constituted of L+w−1
sets labeled by z ∈ [1, L + w − 1]. Each set, say z, has a
population of size n, constituted of triples: (h(z,i), η

+
(z,i), η

−
(z,i)),

1 ≤ i ≤ n. The total size of the code-bit population is
(L + w − 1)n. Similarly, we have a population of triples
with size Ln for check nodes, i.e. (̂h(z,a), η̂

+
(z,a), η̂

−
(z,a)),

z = 1, . . . , L, a = 1, . . . , n. As inputs, they require the popu-
lation size n, the maximum number of iterations tmax, and the
specifications of the coupled LDGM ensemble l, r, L, w. First
we solve the two equations (39) and (40) with Algorithm 2.

Then we solve (42) and (43) with the Algorithm9 3.
From the final populations obtained after tmax iterations it

is easy to compute the complexity and the thresholds βd , βc.
It is much simpler to solve the simplified fixed point

equations (47), (48). The population dynamics algorithm is
almost the same than in Table 2. The only difference is that
J is generated according to the p.d.f (1+ J tanh β)/2 instead
of Ber(1/2). The big advantage is that there is no need to
generate the 2r−1 configurations σ1, . . . , σr−1 which reduces
the complexity of each iteration.

As expected the complexity obtained in either way is
the same up to numerical precision. Numerical values of
the dynamical and condensation thresholds are presented
in tables II and III. Results are obtained with population sizes

8See for instance [43, p. 203] to understand why convexity enables us to
exchange the thermodynamical limit and the derivative.

9In the next to last line marked (*) the chosen index is not in a valid range.
In an instance of a coupled ensemble, this happens at the boundary, in which
the corresponding node has smaller degree. In the message passing equation
we discard these indices or equivalently assume that their triples are (0, 0, 0).
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Algorithm 2 Population Dynamics for (39) and (40)

1 for z = 1 to L + w − 1 do
2 for i = 1 to n do
3 Draw ̂h(z,i) uniformly from [−1,+1];
4 for t ∈ {1, . . . , tmax} do
5 for z = 1 to L +w − 1 do
6 for i = 1 to n do
7 Generate a new h(z,i);
8 Choose l − 1 pair indices a1, . . . , al−1

uniformly from nw pairs (y, j),
y ∈ [z −w + 1, z] and j ∈ {1, . . . , n};

9 if for some index k, ak = (y, j) and y < 1
then

10 Set ̂hak = 0;

11 Set h(z,i) =∑l−1
k=1

̂hak ;

12 for z = 1 to L do
13 for a = 1 to n do
14 Generate J randomly and generate a new ̂h(z,a);
15 Choose r − 1 indices i1, . . . , ir−1 uniformly

from nw pairs (y, j), y ∈ [z, z +w − 1] and
j ∈ {1, . . . , n};

16 Compute ̂h(z,a) according to (40);

n = 30000 (uncoupled), n = 500 − 1000 (coupled), and
iteration number tmax = 3000.

VIII. TWO THEOREMS AND DISCUSSION

OF THRESHOLD SATURATION

Theorem 2 provides theoretical support for the simplifica-
tions of the cavity equations discussed in section VI-C.

Theorem 2: Consider the fixed point equa-
tions (39) and (40) for the individual Poisson LDGM(l, R)
ensemble with a fixed β. Take any initial continuous density
q̂(0)(ĥ) and consider iterations q̂ (t)(ĥ). There exists l0 ∈ N

such that for l > l0, limt→∞̂h (t) = 0 almost surely.
The proof10 is presented in Appendix D. Note that l0

depends on β and R. However we expect that as long as
β < βc the result holds for all l ≥ 3 and R. This is
corroborated by the numerical observations. When we solve
equations (39) and (40) by population dynamics with q̂(0)(ĥ)
the uniform distribution, we observe that for a finite range
of β depending on (l, R), the densities q(t)(h), q̂ (t)(̂h) tend
to a Dirac distribution at the origin. The range of β for which
this occurs always contains the interval [0, βc] irrespective
of (l, R). These observations also hold for many other initial
distributions. We note that these observations break down for
β large enough.

Theorem 3 partially justifies (51) which is the basis for the
computation of the complexity in the large degree limit in
section VI-D.

10It can be extended to other irregular degree distributions.

Algorithm 3 Population Dynamics for (42) and (43)

1 for z = 1 to L do
2 for i = 1 to n do
3 Set η±(z,i) = ±∞ and draw h(z,i) from qz(h);

4 for t ∈ {1, . . . , tmax} do
5 for z = 1 to L do
6 for a = 1 to n do
7 Generate J randomly and generate a new triple

(̂h(z,a), η̂
+
(z,a), η̂

−
(z,a)):

8 Choose r − 1 indices i1, . . . , ir−1 uniformly
from nw pairs (y, j), y ∈ [z, z +w − 1] and
j ∈ {1, . . . , n};

9 Compute ̂h(z,a) according to (40);
10 Generate a configuration σ1, . . . , σr−1 from

ν1(. . . | + J, hi1 , . . . , hir−1 ) in (41);
11 Compute η̂+(z,a) by plugging η σ1

i1
, . . . , η

σr−1
ir−1

in
(43);

12 Generate a configuration σ1, . . . , σr−1 from
ν1(. . . | − J, hi1 , . . . , hir−1 ) in (41);

13 Compute η̂−(z,a) by plugging η σ1
i1
, . . . , η

σr−1
ir−1

in
(43);

14 for z = 1 to L + w − 1 do
15 for i = 1 to n do
16 Generate a new triple (h(z,i), η

+
(z,i), η

−
(z,i)):

17 Choose l − 1 pair indices a1, . . . , al−1
uniformly from nw pairs (y, j),
y ∈ [z − w + 1, z] and j ∈ {1, . . . , n};

18 if for some index k, ak = (y, j) and y < 1
then

19 Set (̂hak , η̂
+
ak
, η̂−ak

) = (0, 0, 0);(*)

20 Set h(z,i) =∑l−1
k=1

̂hak and η±(z,i) =
∑l−1

k=1 η̂
±
ak

;

Theorem 3: Consider the fixed point equa-
tions (47) and (48) associated to the individual Poisson
LDGM(l, R) ensemble for some l, R and β (w = 1 in
the equations). Let η̂ (t) be a random variable distributed
according to q̂ +(t)(̂η) at iteration t. Assume that the initial
density is

q̂ +(0)(η̂) =
∑

J=±1

1+ J tanh(β)

2
δ(η̂ − J ).

Then,
• i) For all t ,

q̂ +(t) (−η̂) = e−2β η̂q̂ +(t) (̂η), (58)

q+(t) (−η) = e−2βηq+(t) (η). (59)

• ii) For any δ > 0, ε > 0 and B > 0, there exits l1 such
that for l > l1 and all t .

P

{

1− ε ≤ η̂ (t) ≤ 1
}

>
e2β

1+ e2β (1− δ), (60)

P

{

−1 ≤ η̂ (t) ≤ −1+ ε
}

>
1

1+ e2β (1− δ). (61)

The proof is presented in Appendix E.
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We now wish to briefly discuss the issue of threshold
saturation. One of the main observations of this work is the
saturation of the dynamical inverse temperature
threshold towards the condensation threshold:
limw→+∞ limL→+∞ βd(L, w) = βc(w = 1). This is
analogous to threshold saturation in coding theory where the
Belief Propagation threshold of the coupled code ensemble
saturates towards the MAP threshold. In this latter case we
have proofs of this phenomenon for the rather general case
of irregular LDPC codes (with bounded degrees) and binary-
input memoryless-output symmetric channels [19], [21], [44].
The proof in [44] is based on the analysis of a potential
function given by the replica-symmetric formula (an average
form of the Bethe free energy) for the (infinite length)
conditional input-output entropy of the code ensemble.
We expect that, for the present problem, a proof of threshold
saturation could be based on a potential function given by the
complexity functional introduced in Section VI. Theorem 2
hints that the only solutions (for β in the range of interest)
of equations (39) and (40) is trivial. Then the complexity
functional reduces to a simplified form as explained in
Section VI-C. It is possible to check by explicit functional
differentiation that the stationary point equations for this
functional are precisely the fixed point equations (47), (48),
and as already pointed out these are the density evolution
relations for an LDGM code over a test-BSC-channel
with half-log-likelihood parameter β. A proof of threshold
saturation could eventually be achieved along these lines,
using the techniques of the recent paper [44], which also
addresses LDGM codes.

IX. CONCLUSION

Let us briefly summarize the main points of this paper.
We have investigated a simple spatially coupled LDGM code
ensemble for lossy source coding. No optimization on the
degree distribution is required: the check degree is regular
and the code-bit degree is Poisson. We have shown that the
algorithmic rate-distortion curve of a low complexity encoder
based on BPGD allows to approach the ultimate Shannon
rate-distortion curve, for all compression rates, when the
check degree grows large. The inverse temperature parameter
(or equivalently test-channel parameter) of the encoder may
be optimized. However we have observed numerically, and
have argued based on large degree calculations, that a good
universal choice is βsh(R), given by tuning the test channel
to capacity. We recall that for the underlying (uncoupled)
ensemble the same encoder does not perform well, indeed as
the degree grows large, the difference between the algorith-
mic rate-distortion and Shannon rate-distortion curves grows.
Insight into the excellent performance of the BPGD algorithm
for spatially coupled ensemble is gained by studying the phase
diagram of the Gibbs measure on which the BPGD encoder
is based. We have found, by applying the cavity method to
the spatially coupled ensemble, that the dynamical (inverse
temperature) threshold βd saturates towards the condensation
(inverse temperature) threshold βc. For this reason the BPGD
encoder can operate close to the condensation threshold βc,
which itself tends in the large degree limit to βsh(R),

the test channel parameter tuned at capacity. For the underlying
(uncoupled) ensemble the dynamical threshold moves in the
opposite direction in the large degree limit so that the BPGD
algorithm cannot operate close to the Shannon limit.

We mention some open questions that are left out by the
present study and which would deserve more investigations.

For fixed degrees the best value of the inverse
temperature β∗ of the BPGD algorithm is close to, but sys-
tematically lower, than the dynamical temperature βd . While
the value of βd can be calculated by the cavity theory,
here we determine β∗ by purely empirical means and it is
not clear what are the theoretical principles that allow to
determine its value. As the graph is decimated the degree
distribution changes and the effective dynamical temperature
of the decimated graphs should evolve to slightly different
values. It is tempting to conjecture that β∗ is the limit of such
a sequence of dynamical temperatures. A related phenomenon
has been observed for the dynamical threshold with respect to
clause density for random constraint satisfaction problems in
their SAT phase [45].

The decimation process used in this paper is hard to analyze
rigorously because it is not clear how to keep track of the
statistics of the decimated graph. As a consequence it is also
not clear how to compute the optimal value of the inverse
temperature along the decimation process (we fix this value
once for all). Progress on this problem could maybe be
achieved by redesigning the decimation process, however how
to achieve this is at the moment not clear. We would like to
point out that a related process has been investigated in recent
works [46] for the K -SAT problem in the large K limit up
to the dynamical threshold(in the SAT phase). These methods
could be of use also in the present case.

In this contribution we have investigated a linear decoding
rule. Source coding with non-linear rules are of interest and
have been studied in [32]. It is an open question to look at
the algorithmic performance of such codes in the framework
of spatial coupling.

Finally, while a rigorous control of the full cavity method is,
in general, beyond present mathematical technology, there are
sub-problems for which progress can presumably be made.
For example in the present case we have observed that
the cavity equations reduce (in the dynamical phase
βd < β < βc) to density evolution equations for an
LDGM code on a BSC. The saturation of the dynamical
temperature βd to the condensation temperature βc appears
to be very similar to the threshold saturation phenomenon of
channel coding theory. We have by now a host of mathematical
methods pertaining to this effect for LDPC on general binary
memoryless channels [19], [21]. We think that these methods
could be adapted to prove the saturation of βd towards βc.
One extra difficulty faced in the present problem is that the
“trivial” fixed point of density evolution equations of
LDPC codes is not always present in the LDGM case.

APPENDIX A
A PRIMER ON THE CAVITY METHOD

We give a brief introduction to the cavity method for general
spin systems on sparse graphs. As explained in Sect. V-A,
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turning this formalism into a rigorous mathematical theory
is a long standing open problem. However, it allows to
compute many quantities of interest. In appendices B and C
we specialize to the probability distribution (8).

The treatment given here applies to single instances. Let
� = (V ,C, E) a factor graph which is assumed to be locally
tree like. We attach spins σ j , j ∈ V to variable nodes,
and constraint functions ψa ({σi , i ∈ ∂a}), a ∈ C to check
nodes. We sometimes use the notation σ∂a = {σi , i ∈ ∂a}
as a shorthand. The formalism developed in this appendix is
valid for general spin variables belonging to a finite alphabet
σ j ∈ X . The constraint functions depend only on the set of
spins connected to a. We are interested in the thermodynamic
limit where |V | = N and |C| = M tend to infinity and the
ratio M/N is kept fixed. We consider the general class of
Gibbs distributions of the form

μ
(

σ
) = 1

Z

∏

a∈C

ψa ({σi , i ∈ ∂a}), (62)

where Z is the partition function. The free energy of an
instance is defined as usual

φ (β) = − 1

Nβ
ln Z (β) . (63)

One of the goals of the cavity method is to compute this free
energy in the limit N → +∞.

Let us first outline the general strategy. For locally tree like
graphs, one can compute the marginals for a given node by
restricting the measure to a tree. In the absence of long range
correlations11 the marginal does not depend on the boundary
conditions at the leaf nodes, and the BP equations have one
relevant solution. The BP marginals then constitute a good
description of the measure (62). In particular, the true free
energy is well approximated by replacing this solution in the
Bethe free energy functional. As the control parameters vary
long range correlations may appear. In such a situation the
marginals computed on a tree will depend on the boundary
conditions at the leaf nodes, and the BP equations will have
many relevant solutions yielding nearly the same Bethe free
energy. The cavity method assumes that the measure (62) is
then described by a convex superposition of “extremal mea-
sures”. There may be a large number of extremal measures.
A good proxy for the extremal measures is given by the
BP marginals. The convex superposition of extremal measures
yields a new statistical model on the same factor graph, the
so-called level-one model. Assuming that the level one model
does not display long range correlations, one can solve it using
BP equations and the Bethe free energy. Otherwise, the cavity
method iterates the previous considerations and constructs a
level-two model. However, this usually becomes bewildering
and one stops at the first level. In the following paragraphs
we give a concrete implementation of these ideas.

The BP equations are a set of fixed point equations satisfied
by messages {νi→a , ν̂a→i } = (ν, ν̂),
ν̂a→i = ĝBP

(

{

ν j→a
}

j∈∂a\i
)

, νi→a = gBP
({̂νb→i }b∈∂i\a

)

,

(64)

11More precisely point-to-set correlations [30].

where

ĝBP

(

{

ν j→a
}

j∈∂a\i
)

=
∑

σ∂a\i ψa
(

σ∂a

)∏

j∈∂a\i ν j→a
(

σ j
)

∑

σ∂a
ψa
(

σ∂a

)∏

j∈∂a\i ν j→a
(

σ j
)

gBP
({̂νb→i }b∈∂i\a

) =
∏

b∈∂i\a ν̂b→i (σi )
∑

σi

∏

b∈∂i\a ν̂b→i (σi )
.

When there is only one relevant solution, the BP marginal
for σ j is ν(σ j ) = ∏a∈∂ j νa→ j (σ j ). The set of messages is a
proxy for the measure (62) in the sense that in principle one
can “reconstruct” the measure from this set. The Bethe free
energy functional which approximates φ(β) is given by

φBethe (ν, ν̂
) = 1

N

{

∑

i∈V

φi +
∑

a∈C

φa −
∑

(i,a)∈E

φai

}

(65)

where

φi
({̂νb→i }b∈∂i

) = − 1

β
ln
∑

σi

∏

b∈∂i

ν̂b→i (σi )

φa

(

{

ν j→a
}

j∈∂a

)

= − 1

β
ln
∑

σ∂a

ψa
(

σ∂a

)
∏

j∈∂a

ν j→a
(

σ j
)

φai (νi→a , ν̂a→i ) = − 1

β
ln
∑

σi

νi→a (σi ) ν̂a→i (σi ).

As explained before, in the presence of long range corre-
lations this formalism is too simplistic. The cavity method
assumes that: (i) the Gibbs distribution (62) is a convex sum
of extremal measures; (ii) to leading exponential order, the
number of solutions of the BP equations is equal to the number
of extremal measures; (iii) the free energy of an extremal
measure is well approximated by the Bethe free energy of
the BP fixed point. These assumptions suggest that the Gibbs
distribution (62) is well approximated by the following convex
superposition

μ
(

σ
) ≈ 1

Z

∑

(ν,̂ν)∈BP

e−βNφBethe(ν,̂ν)μ(ν,̂ν)
(

σ
)

(66)

The measures μ(ν,̂ν) are the ones whose marginals are given
by the BP marginals computed from (ν, ν̂). They play the role
of the “extremal measures”. The sum is over solutions of the
BP equations. In principle one should sum only over stable
solutions, i.e. local minima of the Bethe free energy. However
at low temperatures these are expected to be exponentially
more numerous than the other critical points and it is assumed
to be a good approximation to sum over all BP solutions. The
normalization factor yields the partition function

Z ≈
∑

(ν,̂ν)∈BP

e−βNφBethe(ν,̂ν). (67)

In order to compute this partition function and uncover
the properties of the convex decomposition (66) we introduce
the level-one statistical mechanical model. The dynamical
variables of this model are the BP messages

(

ν, ν̂
)

. According
to (66), (67) the probability distribution over (ν, ν̂) is

μlevel−1
(

ν, ν̂
) = e−βNφBethe(ν,̂ν)

Z level−1
I
((

ν, ν̂
) ∈ BP

)

, (68)
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and

Z level−1 =
∑

(ν,̂ν)∈BP

e−βNφBethe(ν,̂ν), (69)

The level-one free energy is defined as usual,

φlevel−1(β) = − 1

βN
ln Z level−1. (70)

From (67) it should be clear that φ(β) ≈ φlevel−1(β).
The average Bethe free energy, or level-one internal energy,
is given by

ϕint(β) = 1

N
〈φBethe[ν, ν̂]〉level−1 (71)

Here the bracket denotes the average with respect to (68).
One also needs to compute the Shannon-Gibbs entropy


(β) of μlevel−1. An important “trick” is to replace the explicit
β dependence in (68), (69), (70) by βx where x is for the
moment an arbitrary parameter.12 This parameter turns out to
play a crucial role and is called the Parisi parameter. This gives
us an x-dependent level-one auxiliary model

μlevel−1
(

ν, ν̂; x) = e−βx NφBethe(ν,̂ν)

Z level−1(x)
I
((

ν, ν̂
) ∈ BP

)

, (72)

and

Z level−1(x) =
∑

(ν,̂ν)∈BP

e−βx NφBethe(ν,̂ν), (73)

and also

φlevel−1(β; x) = − 1

βx N
ln Z level−1(x). (74)

It is then a matter of simple algebra to check that the
Shannon-Gibbs entropy 
(β) is given by


(β) = 
(β; x) ≡ βx2 ∂

∂x
φlevel−1 (β; x) |x=1, (75)

and that


(β) = β(ϕint(β)− φlevel−1(β)). (76)

Considering formulas (69), (71) and (76), it is not hard to
argue that eN
(β) is (to leading exponential order) the number
of BP solutions with free energy ϕint(β) contributing to the
sum (69). The quantity 
(β) (a kind of entropy) is called the
complexity. It is the growth rate of the number of extremal
measures dominating the convex decomposition (66).

We explain later on how to concretely compute φlevel−1(β),
ϕint(β) and 
(β). Let us immediately describe how 
(β)
informs us about the convex decomposition of the Gibbs
distribution. For a large class of problems one finds that

(β) = 0 for β < βd , which signals that only one extremal
measure contributes to the Gibbs distribution. At βd the
complexity jumps to a non-zero value and then decreases as
a function of β till βc after which it takes negative values.
In the range βd < β < βc where 
(β) > 0 an exponentially
large (with respect to N) number of extremal measures with
the same internal free energy ϕint(β) contribute to the

12Note that there is also an implicit β dependence in φBethe[ν, ν̂ ].

Fig. 10. On the left, an example of an original graph �. On the right its
corresponding graph �1 for the level-one model.

Gibbs distribution. Beyond βc one finds a negative complexity:
this is inconsistent with the fact that it is an entropy. In order
to enforce this constraint correctly one is forced to take the
Parisi parameter 0 < x < 1 in (75). More precisely, one sets x
to the largest possible value (less than 1) such that 
(β) = 0.
With this prescription13 for the correct value of x when
β > βc, one computes the internal free energy and the free
energy and the complexity from the x-dependent level-one
model. The complexity is zero by construction which means
that there exist at most a sublinear (believed to be finite)
number of extremal measures contributing to the Gibbs distri-
bution. This phenomenon is called condensation.

The nature of the thresholds βd and βc has been discussed
in Sect. (V-A) and we do not come back to this issue here.

We now show how the (x-dependent) level-one model is
solved in practice. The main idea is to apply again the BP and
Bethe equations for this model. The first step is to recognize
that, if � = (V ,C, E) is the original factor graph, then
the level-one model has the factor graph �1 = (V1,C1, E1)
described on Fig. 10.

A variable node i ∈ V , becomes a function node i ∈ C1,
with the function

ψ
(1)
i =

∏

a∈∂i

I (νi→a = gBP) e−xβφi . (77)

A function node a ∈ C remains a function node a ∈ C1 with
factor

ψ(1)a =
∏

i∈∂a

I (̂νa→i = ĝBP) e−xβφa . (78)

An edge (a, i) ∈ E , becomes a variable node (a, i) ∈ V1.
The dynamical variables are now couples of distributions
(νa→i , ν̂a→i ). There is also an extra function node attached to
each variable node of the new graph, or equivalently attached
to each edge of the old graph. The corresponding function is

ψ
(1)
ai = exβφai . (79)

With these definitions, Equ. (72) can be written as

μlevel−1(ν, ν̂; x) = 1

Z level−1(x)

∏

i∈V

ψ
(1)
i

∏

a∈C

ψ
(1)
i

∏

ai∈E

ψ
(1)
ai .

(80)

For the distributions
(

ν, ν̂
)

that satisfy the BP equations (64),
some algebra leads to the useful formulas

{

e−xβ(φa−φai ) = ẑ x
a→i

e−xβ(φi−φai ) = zx
i→a

13One can argue that the Parisi parameter is a kind of “Lagrange multiplier”
that enforces the non-negativity of the complexity in the level-one model.
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Fig. 11. Messages are labeled by m if they are outgoing from a variable
node in V1 and by m̂ if they are outgoing from a function node in C1.

where
{

zi→a =∑σi

∏

b∈∂i\a ν̂b→i (σi )

ẑa→i =∑σ∂a
ψa (σ∂a)

∏

∂ j∈a\i ν̂ j→a (σi )

The BP equations for (80) involve four kind of messages as
shown on figure 11.

Messages from a (new) function node to a (new) variable
node satisfy

m̂a→ai �
∑

(ν,̂ν)\(νi→a ,̂νa→i )

ψ(1)a

∏

a j∈∂a\ai

maj→a

= e−xβφai
∑

ν\νi→a

I (̂νa→i = ĝBP) (̂za→i )
x

∏

a j∈∂a\ai

maj→a

and

m̂i→ai �
∑

(ν,̂ν)\(νi→a ,̂νa→i )

ψ
(1)
i

∏

bi∈∂i\ai

m̂bi→i

= e−xβφai
∑

ν̂\̂νa→i

I (νi→a = gBP) (zi→a)
x

∏

bi∈∂i\ai

m̂bi→i .

where the symbol � means equal up to a normalization factor.
Messages from a (new) function node to a (new) variable node
satisfy

{

mai→i � exβφai m̂a→ai

mai→a � exβφai m̂i→ai .
(81)

Notice that mai→i (resp. mai→a) becomes independent of
ν̂a→i (resp. νi→a ). This allows us to make a simplification
by defining the following distributions

{

Qi→a (νi→a ) = mai→a (νi→a , ν̂a→i )
̂Qa→i (̂νa→i ) = mai→i (νi→a , ν̂a→i ).

Distributions Q and ̂Q are called cavity messages, and live
on the edges of the original factor graph � = (V ,C, E).
From now on we can forget about the factor graph
�1 = (V1,C1, E1). The cavity messages satisfy

̂Qa→i (̂νa→i )�
∑

ν

I (̂νa→i = ĝBP) ẑ x
a→i

∏

j∈∂a\i
Q j→a

(

ν j→a
)

Qi→a (νi→a)�
∑

ν̂

I (νi→a = gBP) zx
i→a

∏

b∈∂i\a
̂Qb→i (̂νb→i ).

(82)

The Bethe free energy functional of the level-one model can
be expressed as a functional of the cavity messages (one way
to determine this functional is to write down the functional
whose critical points are given by Equ. (82)). This is an

approximation for the true free energy (70) of the level-one
model.

φBethe
level−1(Q, ̂Q; x) :=

1

N

{

∑

i∈V

Fi

+
∑

a∈C

FBethe
a −

∑

(i,a)∈E

Fai

}

(83)

where

Fi
({

̂Qb→i
}

b∈∂i

) = − 1

xβ
ln
∑

ν̂

e−xβφi
∏

b∈∂i

̂Qb→i

Fa

(

{

Q j→a
}

j∈∂a

)

= − 1

xβ
ln
∑

ν

e−xβφa
∏

j∈∂a

Q j→a

Fai
(

Qi→a , ̂Qa→i
) = − 1

xβ
ln
∑

ν,̂ν

e−xβφai Qi→a ̂Qa→i . (84)

In principle one has to solve the cavity equations (82) for
0 < x ≤ 1, and compute the x-dependent free energy φBethe

level−1.
From this free energy we obtain the complexity by computing
the derivative in equation (75). This allows to determine the
thresholds βd and βc. For β < βc the free energy is given by
φBethe

level−1|x=1. This function has no singularities, which means
that there are no static (thermodynamic) phase transitions for
β < βc. In this phase one has 
(β; x = 1) ≥ 0. For β > βc

one enforces a zero complexity by setting the Parisi parameter
to a value 0 < x∗ < 1 s.t. 
(β; x∗) = 0. The free energy is
not analytic at βc, due to the change of x parameter. This a
static phase transition threshold.

In practice, as long as we are interested only in the range
β < βc we can set x = 1. It is then possible to simplify the
cavity equations (82) and the level-1 free energy (83). In the
next appendix we perform these simplifications for the case at
hand.

APPENDIX B
APPLICATION OF THE CAVITY EQUATIONS

TO THE LOSSY SOURCE CODING

We apply the formalism of appendix A to the measure
μβ(u|x) (see Equ.(8)). Instead of working with the alphabet
{0, 1}, we find it convenient to use the mapping σi = (−1)ui

and Ja = (−1)xa to the alphabet {−1,+1}. The measure (8)
is of the form (62) with

ψa({σi , i ∈ ∂a}) = e−β(1−Ja
∏

i∈∂a σi ). (85)

The probability distributions νi→a (σi ) and ν̂a→i (σi ) are
entirely characterized by their means, tanh βηi→a and
tanh β η̂a→i , as follows (we drop the subscripts)

ν(σ ) = 1+ σ tanh βη

2
. (86)

With this parameterization, the BP equations (64) for the
model (8) become

{

η̂a→i = ĝBP({η j→a} j∈∂a\i | Ja)

ηi→a = gBP({̂ηb→i }b∈∂i\a),
(87)
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where

ĝBP

(

{

η j→a
}

j∈∂a\i | Ja

)

= Ja

β
atanh(tanh β

×
∏

j∈∂a\i
tanh βη j→a) (88)

and

gBP({̂ηb→i }b∈∂i\a) =
∑

b∈∂i\a
η̂bi . (89)

The Bethe free energy per variables (65) reads

φBethe
(

η, η̂
)

= −β−1(ln
(

1+ e−2β
)

+ (R − 1) ln 2)

− 1

βN

∑

a∈C

(1− |∂a|) ln Z1({η j→a} j∈∂a | Ja)

− R

βM

∑

i∈V

ln Z2({̂ηb→i }b∈∂i ), (90)

where
{

Z1({η j→a} j∈∂a | Ja) = 1+ Ja(tanh β)
∏

i∈∂a tanh βηi→a

Z2({̂ηa→i }a∈∂i) = 1
2

∑

s∈{−1,1}
∏

a∈∂i (1+ s tanh β η̂a→i ).

Since we have parameterized the BP messages by real num-
bers, the cavity messages Qi→a , ̂Qa→i become distributions
on ηi→a , η̂a→i . The cavity equations (82) reduce to

Qi→a (ηi→a) �
∫

∏

b∈∂i\a
d η̂b→i ̂Qb→i (̂ηb→i )

×Z x
2 ({̂ηb→i }b∈∂i\a)δ

(

ηi→a − gBP({̂ηb→i }b∈∂i\a)
)

(91)

and

̂Qa→i (̂ηa→i ) �
∫

∏

j∈∂a\i
dη j→a Q j→a(η j→a)

×Z x
1 ({η j→a}b∈∂i\a)δ

(

η̂a→i − ĝBP({η j→a} j∈∂a\i | Ja)

)

.

(92)

For the Bethe free energy of the level-one model one finds

φBethe
level−1

(

η, η̂; x
)

= −β−1(ln(1+ e−2β)+ (R − 1) ln 2)

− 1

βx N

∑

a∈C

(1− |∂a|) ln

{∫

∏

i∈∂a

dηi→a Qi→a (ηi→a)

× Z x
1 ({ηi→a}i∈∂a | Ja)

}

− R

βx M

∑

i∈V

ln

{∫

∏

a∈∂i

d η̂a→i ̂Qa→i (̂ηa→i )

× Z x
2 ({̂ηa→i }a∈∂i)

}

. (93)

We are interested in the range β < βc for which the Parisi
parameter is set to x = 1. In this case the above equations
greatly simplify. We first define average cavity messages

{

hi→a = Av[Qi→a ]
̂ha→i = Av[̂Qa→i ], (94)

where the functional Av[P] is

Av[P] = 1

β
atanh

{∫

dηP(η) tanh βη

}

. (95)

Thus tanh βhi→a and tanh β̂ha→i are real valued messages
and are averages of tanh βηi→a and tanh β η̂a→i with respect
to the cavity distributions Qi→a (ηi→a) and ̂Qa→i (̂ηa→i )
respectively. The free energy of the level-one model for x = 1
can be expressed in terms of these real valued messages, and
one finds

φBethe
level−1

(

h,̂h
) = −β−1(ln(1+ e−2β)+ (R − 1) ln 2)

− 1

βN

∑

a∈C

(1− |∂a|) ln Z1({h j→a} j∈∂a | Ja)

− R

βM

∑

i∈V

ln Z2({̂hb→i }b∈∂i). (96)

Remarkably, is the same than the original Bethe free energy
functional φBethe

(

η, η̂
)

defined in (90), but now evaluated for

the average fields hi→a and ̂ha→i . From the cavity equations
(91)-(92) for x = 1, one can deduce that the average fields
hi→a and ̂ha→i satisfy

{

̂ha→i = ĝBP({h j→a} j∈∂a\i | Ja)

hi→a = gBP({̂hb→i }b∈∂i\a).
(97)

Thus the average fields satisfy the BP equations (87).
To summarize, when x = 1, φBethe

level−1 equals φBethe computed
at a certain appropriate BP fixed point. This fixed point
corresponds to messages tanh βhi→a , tanh β̂ha→i which are
an average of the BP solutions tanh βηi→a , tanh β η̂a→i over
the cavity distributions Qi→a (ηi→a) and ̂Qa→i (̂ηa→i ). The
messages tanh βηi→a , tanh β η̂a→i describe the “extremal
states” whereas the messages tanh βhi→a , tanh β̂ha→i

describe their convex superposition.

APPENDIX C
DENSITY EVOLUTION FOR THE CAVITY EQUATIONS

OF LOSSY SOURCE CODING

The discussion in appendices A and B is valid for a single
instance. It is expected that the free energy, internal free
energy and complexity concentrate on their ensemble average,
and in practice one computes their ensemble average. The
ensemble average is performed over the graph ensemble and
the Bernoulli source. In the present context this leads to the
complicated set of fixed point equations (39)-(43) that links
six densities.

To perform the ensemble average we assume that the cavity
messages Qi→a(ηi→a) and ̂Qa→i (̂ηa→i ) can be considered
as i.i.d. realizations of random variables Qz(η) and ̂Qz (̂η).
The random variables depend only on the position z along
the spatial dimension and not on the direction of the edges
i → a and a→ i . The distributions of these random variables
are denoted Qz and ̂Qz . Note that the cavity messages are
already distributions over real numbers, so that Qz and ̂Qz

are distributions of distributions. From the cavity
equations (91), (92) it is easy to formally write down



AREF et al.: APPROACHING THE RATE-DISTORTION LIMIT WITH SPATIAL COUPLING, BELIEF PROPAGATION, AND DECIMATION 3975

the set of integral equations that these distributions of
distributions satisfy.

We can write down probability distributions for the average
fields hi→a and ha→i ,

{

qz(h) =
∫ DQz[Q]δ(h − Av[Q])

q̂z(̂h) =
∫ D̂Qz[̂Q]δ(̂h − Av[̂Q]). (98)

With the independence assumption on the cavity
messages, relations (97) imply that these distributions
satisfy (39) and (40). Furthermore from (96) we deduce
formula (45) for the average level-one free energy.

We define the conditional distributions qz(η|h) and q̂z (̂η|̂h)
{

qz(η|h)qz(h) =
∫ DQz[Q]Q(η)δ(h − Av[Q])

q̂z (̂η|̂h)̂qz(̂h) =
∫ D̂Qz[̂Q]̂Q(̂η)δ(̂h − Av[̂Q]), (99)

and for σ = ±1,
⎧

⎪

⎨

⎪

⎩

q σz (η|h) =
1+ σ tanh βη

1+ σ tanh βh
qz(η|h)

q̂ σz (̂η|̂h) =
1+ σ tanh β η̂

1+ σ tanh β̂h
qz (̂η|̂h).

(100)

These distributions satisfy (42)-(43).
With the six distributions qz(h), q̂z(̂h), q σ=±1

z (η|h) and
q̂ σ=±1

z (̂η|̂h) we can compute the complexity. We use (see (76))


(β) = β(ϕBethe
int (β)− φBethe

level−1(β)). (101)

Since we already know that φBethe
level−1(β) is given by (45),

it remains to compute the internal free energy in the
Bethe approximation. For this purpose we use

ϕBethe
int (β) = ∂

∂x
(xφBethe

level−1(β; x))|x=1. (102)

We compute the x-derivative on (93), and average over the cav-
ity distributions, the graph ensemble and the Bernoulli source.
After some algebra one finds that ϕBethe

int (β) is given by (46).

APPENDIX D
PROOF OF THEOREM 2

We first state two useful lemmas
Lemma 1: Let the random variable X is distributed accord-

ing to a Poisson distribution with mean λ.

P(X <
λt

2
) < exp(− λt

10
), t ≤ 1,

P(X >
3λt

2
) < exp(− λt

10
), t ≥ 1.

Proof: Use the Chernoff bound.
Lemma 2: Let

ε1 = β 3l

2R
(tanh ε0)

(l R3)1/4

δ1 = exp(− l

10R
)+ l

R
exp

(−ε0
√

Rl

β
√

3π

)

.

with ε0 = min(1/2, β/2). Consider the recursions for t ≥ 1

εt+1 = (t + 1)β
3l

2R
(tanh εt )

(l R3)1/4 ,

δt+1 = exp
(− l

10R
(t + 1)

)+ l

R
(2
√

δt )
l−1.

There exist an integer l0 (depending only on R and β) such
that for l ≥ l0,

• i) εt ≤ 1
2t+1 for t ≥ 0.

• ii) δt < 2 exp(− l
5R t) for t ≥ 2.

Proof: Consider (i). At t = 0, ε0 ≤ 1/2. Assume that
εt−1 ≤ 1

2t for t ≥ 1, then

εt = tβ
3l

2R
(tanh εt−1)

(l R3)1/4 ≤ tβ
3l

2R
(εt−1)

(l R3)1/4

≤ tβ
3l

2R
(

1

2t
)(l R3)1/4 = tβ 3l

R

2t ((l R3)1/4−1)
× 1

2t+1 .

The proof is complete if tβ 3l
R < 2t (

4√
l R3−1) for t ≥ 1. It is

clear that this is true for l large enough.
Now consider (ii). Clearly for l large enough such that

δ2 = exp

(

− l

5R

)

+ l

R
(2
√

δ1)
l−1 ≤ 2 exp

(

− l

5R

)

.

To complete the proof by induction, we remark that
δt < 2 exp

(− l
5R t)

)

< 1 implies

l

R
(2
√

δt )
l−1 < exp

(

− l

5R
(t + 1)

)

for l large enough independent of t .
We now turn to the proof of Theorem 2. It is organized in

three steps:
• 1) We first show that for any small δ1 and ε1, one can

find an integer l1 such that for l ≥ l1

p1 ≡ P

{

|h(1)| ≤ ε1

β

}

≥ 1− δ1.

• 2) We then show by induction on t ≥ 1 that

pt ≡ P

{

|h(t)| < εt

β

}

≥ 1− δt .

• 3) Finally using Lemma 2 we deduce that h(t) → 0
almost surely as t → +∞.

Proof: [Proof of Theorem 2]
We begin by noting that regardless of the initial distribu-
tion, q̂ (t)(̂h) has a symmetric density due to the symmetric
distribution of J . Moreover,

∣

∣̂h (t)
∣

∣ ≤ 1 from (40). Thus,
E q̂ (t) (̂h

(t)) = 0 and Var(̂h (t)) = E q̂ (t) (̂h
2) ≤ 1.

Step 1: We set P(r) = e−λ λr

r ! and λ = l/R. Let

h(r,t) = ∑r
a=1

̂h (t)a where ̂h (t)a are i.i.d random variables
with probability density q̂ (t)(̂h). Let σ 2

0 = E((̂h(0)a )2) ≤ 1.
According to [47, Th. 3.5.3] we have

lim
r→∞
√

rP

{

|h(r,0)| < ε0

β

}

= 2ε0

β
√

2πσ 2
0

,

for any ε0 > 0. Thus, there exists r ′(ε0, β) ∈ N such that for
r > r ′,

P

{

|h(r,0)| < ε0

β

}

≥ ε0

β
√

2πr
.
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Take l such that λ = l/R ≥ l ′/R = 2r ′, then

p0 = P

{

|h(0)| < ε0

β

}

=
∞
∑

r=0

P(r)P

{

|h(r,0)| < ε0

β

}

≥
3λ/2
∑

r=λ/2
P(r)P

{

|h(r,0)| < ε0

β

}

≥ ε0

β
√

3πλ

3λ/2
∑

r=λ/2
P(r)

>
ε0

β
√

3πλ
(1− 2e−

λ
10 ).

The last inequality follows from lemma 1. Thus for l large
enough

p0 = P

{

|h(0)| < ε0

β

}

>
ε0

2β
√

3πλ
≡ 1− δ0. (103)

Recall ̂h(t+1) = 1
β tanh−1

(

J tanh β
∏l−1

i=1 tanh βh (t)i

)

. From
tanh−1

(

a tanh β
) ≤ aβ for 0 < a < 1, we have

∣

∣

∣

̂h(t+1)
∣

∣

∣ ≤
l−1
∏

i=1

tanh
∣

∣

∣βh (t)i

∣

∣

∣ .

Define

Z (t)
l ≡ ln

(

l−1
∏

i=1

tanh
∣

∣

∣βh (t)i

∣

∣

∣

)

=
l−1
∑

i=1

ln
(

tanh
∣

∣

∣βh (t)i

∣

∣

∣

)

.

Note that Z (t)
l is always negative and if one of h (t)i tends to

zero, it diverges to −∞. Consider t = 0. We will show that
Z (0)l has a large negative value with high probability. Define

ui ≡
{

ui−1, if
∣

∣

∣h(0)i−1

∣

∣

∣ > ε0
β ,

ui−1 + ln tanh ε0, otherwise,

with u0 = 0. One can check for later use that Z (0)l ≤ ul .
Moreover, because of (103) one can consider ul as a random
walk (with negative jumps),

ui =
{

ui−1, with prob. 1− p0

ui−1 + ln tanh ε0, with prob. p0.

Let s = ln (tanh(ε0)). Using the Chernoff’s
theorem [48, p. 151],

P

{

1

l − 1

ul

s
< λ−3/4

}

< exp
(

−(l − 1)D(λ−3/4||p0)
)

,

where D(x ||y) = x ln( x
y )+ (1− x) ln( 1−x

1−y ). Now, since

x ln(
x

p0
) > x ln(x),

(1− x) ln

(

1− x

1− p0

)

> (1− x) ln

(

1− x

δ0

)

,

we have

D(λ−3/4||p0) > −H2(λ
−3/4) ln(2)− (1− λ−3/4) ln (δ0) ,

(104)

for δ0 defined in (103). By a large λ expansion of the right
hand side of (104):

−H2(λ
−3/4) ln 2− (1− λ−3/4) ln δ0

= ε0

2β
√

3πλ
+ o(

1√
λ
).

Thus, there exists l ′′ ∈ N depending on R, β and ε0 such that
for l > l ′′,

P

{

1

l − 1

ul

s
< λ−3/4

}

< exp

(

− ε0(l − 1)

4β
√

3πλ

)

. (105)

By replacing s = ln tanh ε0 and λ = l
R ≈ l−1

R for large
degrees,

P

{

ul > (l R3)1/4 ln tanh ε0)
}

< exp

(

− ε0
√

Rl

4β
√

3π

)

,

Note that the inequality in P(. . . ) is reversed since s < 0.
Now recall Z (0)l ≤ ul . Therefore,

P

{

Z (0)l ≤ (l R3)1/4 ln tanh ε0

}

≥ P

{

ul ≤ (l R3)1/4 ln tanh ε0

}

≥ 1− exp

(

− ε0
√

Rl

4β
√

3π

)

.

Consequently,

P

{∣

∣

∣

̂h(1)
∣

∣

∣ ≤ (tanh ε0)
(l R3)1/4

}

≥ P

{

Z (0)l ≤ (l R3)1/4 ln tanh ε0

}

≥ 1− exp

(

− ε0
√

Rl

4β
√

3π

)

.

From r ,
∣

∣h(r,1)
∣

∣ =
∣

∣

∣

∑r
a=1

̂h(1)a

∣

∣

∣ ≤∑r
a=1

∣

∣

∣

̂h(1)a

∣

∣

∣. we deduce

P

{∣

∣

∣h(r,1)
∣

∣

∣ ≤ r(tanh ε0)
(l R3)1/4

}

≥ P

{∣

∣

∣

̂h(1)
∣

∣

∣ ≤ (tanh ε0)
(l R3)1/4

}r

≥
{

1− exp

(

− ε0
√

Rl

4β
√

3π

)}r

≥ 1− r exp

(

− ε0
√

Rl

4β
√

3π

)

.

for l large enough. Therefore we have,

P

{

∣

∣

∣h(1)
∣

∣

∣ ≤ 3

2
λ(tanh ε0)

(l R3)1/4
}

=
∞
∑

r=0

P(r)P

{

∣

∣

∣h(r,1)
∣

∣

∣ ≤ 3

2
λ(tanh ε0)

(l R3)1/4
}

≥
3λ/2
∑

r=0

P(r)P

{

∣

∣

∣h(r,1)
∣

∣

∣ ≤ 3

2
λ(tanh ε0)

(l R3)1/4
}

≥
3λ/2
∑

r=0

P(r)P
{∣

∣

∣h(r,1)
∣

∣

∣ ≤ r(tanh ε0)
(l R3)1/4

}

≥
3λ/2
∑

r=0

P(r)

(

1− r exp

(

− ε0
√

Rl

4β
√

3π

))

≥ 1− exp(−0.1λ)− λ exp

(

− ε0
√

Rl

4β
√

3π

)

.
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To summarize, we have obtained

p1 = P

{

∣

∣

∣h(1)
∣

∣

∣ ≤ ε1

β

}

≥ 1− δ1. (106)

This completes step 1.
Step 2: The proof is by induction. Assume that

pt = P

{

|h(t)| ≤ εt

β

}

≥ 1− δt .

We prove that this holds also for t + 1. This mainly consists
in repeating the derivations (103) to (106) for pt , εt and δt .
We briefly repeat them here:

P

{∣

∣

∣

̂h(t+1)
∣

∣

∣ ≤ (tanh εt )
(l R3)1/4

}

≥ P

{

Z (t)
l ≤ (l R3)1/4 ln (tanh εt )

}

≥ 1− exp
(

−(l − 1)D(λ−3/4||pt)
)

.

Assume that δt � 1. From (104),

D(λ−3/4||pt) > −H2(λ
−3/4) ln(2)− (1− λ−3/4) ln (δt ) .

If λ−3/4 < 1
2 (equivalently, l > 24/3 R),

D(λ−3/4||pt) > − ln 2− 1

2
ln δt .

Thus,

P

{∣

∣

∣

̂h(t+1)
∣

∣

∣ ≤ (tanh εt )
(l R3)1/4

}

≥ 1− (2√δt )
l−1,

and finally,

P

{

∣

∣

∣

̂h(t+1)
∣

∣

∣ ≤ (t + 1)
3

2
λ(tanh εt )

(l R3)1/4
}

≥
3(t+1)λ/2
∑

r=0

P(r)P

{

∣

∣

∣h(r,t+1)
∣

∣

∣ ≤ (t + 1)
3

2
λ(tanh εt )

(l R3)1/4
}

≥
3(t+1)λ/2
∑

r=0

P(r)P
{∣

∣

∣h(r,t+1)
∣

∣

∣ ≤ r(tanh εt )
(l R3)1/4

}

≥
3(t+1)λ/2
∑

r=0

P(r)
(

1− r(2
√

δt )
l−1
)

≥ 1− exp(−(t + 1)
λ

10
)− λ(2√δt )

l−1.

Or equivalently,

pt+1 = P

{

|h(t+1)| < εt+1

β

}

≥ 1− δt+1.

This completes step 2.
Step 3: Using lemma 2, for l large enough (depending on

β and R, but independent of t)

P

{

∣

∣

∣h(t)
∣

∣

∣ >
1

β2(t+1)

}

≤ δt ≤ 2 exp

(

− l

5R
t

)

.

The Borel-Cantelli lemma [47, Th. 2.3.1] states that, h(t)→ 0
almost surely if for all α > 0,

∞
∑

t=1

P

{∣

∣

∣h(t)
∣

∣

∣ > α
}

< +∞.

Let us verify that h(t) has this property. For any α, there is τ
such that 1/2τ+1 < βα. Therefore, for t ≥ τ ,

P

{∣

∣

∣h(t)
∣

∣

∣ > ε
}

≤ P

{

∣

∣

∣h(t)
∣

∣

∣ >
1

2(t+1)β

}

< δt

and hence,
∞
∑

t=1

P

{∣

∣

∣h(t)
∣

∣

∣ > ε
}

≤ τ +
∞
∑

t=τ
P

{∣

∣

∣h(t)
∣

∣

∣ > ε
}

< τ +
∞
∑

t=τ
δt

< τ +
∞
∑

t=τ
2 exp

(

− l

10R
t

)

< +∞.

This completes step 3.

APPENDIX E
PROOF OF THEOREM 3

Proof: We first show the property (i). Note that it is
satisfied by q̂ +(0) and q+(0). The equations (47) and (48) are
density evolution equations an LDGM ensemble on the BSC.
In [49], It is known that (i) is preserved under density evolution
recursions (see [49] for similar properties in the case of
LDPC codes).
Let us turn to the proof of (ii). First note that (60) implies (61).
Indeed

P{̂η (t) < −1+ ε} =
∫ −1+ε

−1
q̂ +(t)(̂η)dη̂

=
∫ 1

1−ε
e−2β η̂q̂ +(t)(̂η)dη̂

≥ e−2β
P{̂η (t) > 1− ε}

≥ 1

1+ e2β (1− δ).
So we only have to prove (60). We will use induction. The
induction hypothesis is (60) for some δ > 0 and ε > 0 at
iteration t . It is obviously true at t = 0.

Let us first show that

E(η(t)) = λE(̂η (t)) ≥ 2λs. (107)

for s = 1
2 (1− δ)(1− ε)(1− e−2β(1−ε))/(1+ e−2β). We have

E(̂η (t)) =
∫ 1

−1
η̂q̂ +(t)(̂η)dη̂

=
∫ 0

−1
η̂q̂ +(t)(̂η)dη̂ +

∫ 1

0
η̂q̂ +(t)(̂η)dη̂

= −
∫ 1

0
η̂e−2β η̂q̂ +(t)(̂η)dη̂ +

∫ 1

0
η̂q̂ +(t)(̂η)dη̂

=
∫ 1

0
η̂(1− e−2β η̂)̂q +(t)(̂η)dη̂

≥
∫ 1

1−ε
η̂(1− e−2β η̂)̂q +(t)(̂η)dη̂

≥ (1− e−2β(1−ε))(1− ε)
∫ 1

1−ε
q̂ +(t)(̂η)dη̂

> (1− δ)(1− ε)1− e−2β(1−ε)

1+ e−2β .

This proves (107).
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By applying Hoeffding’s inequality [48] for
λ/2 < r < 3λ/2,

P

{

r
∑

a=1

η̂ (t)a < λ
s

2

}

= P

{

r
∑

a=1

(̂η (t)a − E(̂η (t))) < λ
s

2
− rE(̂η (t))

}

≤ P

{

r
∑

a=1

(̂η (t)a − E(̂η (t))) < λ
s

2
− 2rs

}

≤ P

{

r
∑

a=1

(̂η (t)a − E(̂η (t))) < −λ s

2

}

< exp(−λ
2s2

8r
)

< exp(−λ s2

12
).

From

P

{

η(t) < λ
s

2

}

=
∞
∑

r=0

P(r)P

{

r
∑

a=1

η̂ (t)a < λ
s

2

}

≤
λ/2
∑

r=0

P(r)+
3λ/2
∑

r=λ/2
P(r)P

{

r
∑

a=1

η̂ (t)a < λ
s

2

}

+
∞
∑

r=3λ/2

P(r).

and Lemma 1, we get

P

{

η(t) > λ
s

2

}

> 1− 2 exp

(

− λ
10

)

− exp(−λ s2

12
). (108)

Now consider the density evolution equation (48). We have

P

{

η̂(t+1) >
1

β
atanh

(

tanh(β)
[

tanh(βλ
s

2
)
]l−1

)}

≥ P

{

J = 1, η (t)1 >
λs

2
, . . . , η

(t)
l−1 >

λs

2

}

= 1+ tanh(β)

2

(

P

{

η(t) >
λs

2

})l−1

≥ 1+ tanh(β)

2

(

1− 2 exp

(

− λ
10

)

− exp(−λ s2

12
)

)l−1

≥ e2β

1+ e2β

(

1− (l − 1)

(

2 exp(− l

10R
)+ exp(− ls2

12R
)

))

Let

1− ε(l, R, β) = 1

β
atanh

(

tanh(β)

[

tanh(βs
l

2R
)

]l−1
)

,

�(l, R) = (l − 1)

(

2 exp(−0.1
l

R
)+ exp(− ls2

12R
)

)

.

Inequality (60) holds at t + 1 , if ε(l, R, β) ≤ ε and
�(l, R) ≤ δ. This is true for l > l1 large enough since
ε(l, R, β) and �(l, R) are decreasing functions of l (for large
values of l).
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