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Abstract
Energy planning recently received more attention in Switzerland through the new strategy

phasing out nuclear energy by 2034. Often however the energy planning is only done from the

electrical side. This work takes a different angel and helps communities and energy utilities

planning tomorrows energy system from a heat based perspective.

After the data collection and structuring, the methodology presented here designs an energy

system. Based on the quality of the collected data, the approach to define the energy demand

should be chosen. In order to reduce calculation time, a data reduction approach is developed

to reduce the input data without loosing significant information and precision.

In particular, the methodology focuses on the integration of a stochastic resource, in this case

solar thermal heat production, in combination with thermal energy storage. The thermal

energy storage can be used as a short or long term thermal energy storage. The framework

compares design solutions for the two storage types considering either a total cost approach

or a life cycle assessment approach using the cumulative exergy demand (CExD).

The proposed mathematical programming framework is based on a mixed integer linear

programming (MILP) approach, that can work on different levels of detail between building

to community or city level. The optimization problem can also be further simplified to a

linear problem, increasing the size of problem that can be solved while reducing or keeping

a constant computation time. The discussed cases show an interest in further investigating

storage solution using both, the short and long term storage at once, because they allow to

reduce the system’s overall costs or CExD significantly.

The framework is then extended to consider buildings as an energy storage. The building’s

internal temperature can be raised from 20 °C up to 23 °C, giving a comfort temperature

range that can be used for storing heat. The integrating of both storage types, the thermal

energy storage and the building as an energy storage, show no significant impact on the energy

system design. However, costs or CExD can be reduced. In addition, the heat demand can be

modified through the decision of optimal energy retrofitting strategy for a group of buildings.

The framework decides which of the building to refurbish based the overall CExD including

CExD used for retrofitting the building.

Finally, a method is proposed to integrate uncertainty of the model’s input parameters into the

system design. A global sensitivity analysis evaluates the impact of each uncertain parameter

onto the system, allowing to focusing on the outputs of interest. Robust optimization is applied

with a simulation-based approach, the additional costs for a robust design are calculated, as

well as the different unit sizes.
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The low complexity of the developed models allows for an easy integration of new data

collected during the development of a project, which is often the case in urban energy planning

applications.

Key words: k-medoids clustering, mixed integer linear programming, thermal energy storage,

building energy storage, solar thermal energy integration, global sensitivity analysis, robust

optimization
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Zusammenfassung
Durch die Energiewende und die dadurch eingeleitete Abschaltung der Kernkraftwerke bis

2034 rückt die Energieplanung auch in der Schweiz wieder in den Vordergrund. Allerdings wird

dabei oft nur über die elektrische Seite der Energieplanung geredet. Die hier vorliegende Arbeit

wählt einen anderen Ansatz: Sie hilft Energieversorger und Gemeinden, die Energiesysteme

von morgen aus der Wärmeperspektive zu planen.

Nach dem Datensammeln und Strukturieren, wird eine Methode zum Energiesystemdesign

zu vorgestellt. Die Datenqualität beeinflusst die Wahl der Ansatzes zur Bestimmung der

Energienachfrage. Damit das Optimierungsproblem kleiner wird, aber die gleiche Lösung

hat, werden Clustering Methoden verwendet um die Eingangsdaten auf ein Minimum zu

reduzieren ohne wichtige Details zu verlieren.

Ins besondere der thermische Speicher und stochastischen Energiequellen wie die Solar-

thermie werden in das Energiesystem integriert. Es gibt einen kurz- und einen Langzeit

thermischen Energiespeicher. Das Optimierungsproblem vergleicht verschiedene Designs

ohne, mit einem der beiden oder beiden Speichern unter einem Gesamtkostengesichtspunkt

oder einem Lebenszyklusanalyse/Ökobilanz basierten auf der kumulierten Exergienachfrage.

Das vorgeschlagene Framework löst das Designproblem mit einem gemischt ganzzahligen

linearen Optimierungsansatz für kleine Nachbarschaften bis auf Gemeindeebene oder Städtee-

bene. Das Optimierungsproblem kann noch weiter zu einem linearen Optimierungsproblem

vereinfacht werden, wenn Parameter angepasst werden. Dadurch können größere Probleme

gelöst werden, während die Zeit zur Lösung konstant bleibt oder reduziert werden kann. Die

berechneten Fälle zeigen, dass sich gerade mit der Integration von lang und Kurzzeit Speichern

gleichzeitig, Kosten und CExD sparen lassen.

Das Optimierungsproblem wird dann um einen Gebäudewärmespeicher erweitert. Dieser

kann die Innentemperatur in der Komfortzone von 20 auf bis zu 23 °C heben, um zusätzliche

Energie in der Gebäudestruktur zu speichern. Durch das Gleichzeitige Benützen von dem

thermischen Gebäudespeicher und dem Kurzzeit Speicher können wieder Kosten eingespart

bzw. die CExD reduziert werden ohne das Design des Energiesystem zu verändern. Wieder

können Kosten eingespart oder CExD reduziert werden. Des Weiteren kann das Framework

über energetische Renovierung entscheiden: Aus einer Gebäudegruppe wird die Optimale

Menge an Gebäuden ausgewählt um die Systemkosten bzw. CExD zu reduzieren.

Im letzten Kapitel wird die Auswirkung von Unsicherheit im Energiesystemdesign untersucht.

Mit einer globalen Sensitivitätsanalyse werden zwischen wichtigen und unwichtigen Para-

metern entschieden, damit nur die wichtigen weiterhin betrachtet werden. Danach werden

v



Zusammenfassung

die Kosten und Auswirkungen einer robusten Optimierung auf das Energiesystem bestimmt.

Dafür werden Schrittweise mehr Parameter auf den schlimmsten Wert gesetzt in einem Si-

mulationsbasierten Ansatz. Die letztlich niedrige Komplexität der Modelle erlaubt nicht nur

die Sensitivitätsanalyse sondern auch neue Daten bzw. einen Kenntnisstand in das Projekt zu

integrieren. Gerade in urbanen Projekten kommt die häufig vor.

Stichwörter: k-medoids clustering, gemischte ganzzahlige Optimierung, thermischer Energie-

speicher, Gebäudeenergiespeicher, Integration von Solarthermie, globale Sensitivitätsanalyse,

robuste Optimierung
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Ė Technical mechanical power [kW]
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Ėq Heat exergy [kW]
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Ṙk Cascaded heat to lower interval k [kW]

fu Multiplication factor of unit u [-]

Mv,p,t Water content of storage tank v after period p and time step t [kg]

Mv,p=0,t=0 Initial water content of storage tank v [kg]

yu Integer variable representing the existence (1) or not (0) of unit u [-]

xviii



Nomenclature

Greek letters

ηCOP Carnot / Exergy efficiency [-]

ρ Mass density [kg/m3]

Θ Carnot Factor [-]

εel Electrical efficiency [-]

εth Thermal efficiency [-]

Indices

a Heat source at ambient temperature

c Cold stream

cog Cogeneration unit

h Hot stream

hp Heat pump

i n Inlet

lm Logarithmic

out Outlet

si nk Heat sink

sour ce Heat source

k Temperature interval / Quality interval

p Period (often a day type)

t Time step (often one hour)

u Index for unit

v Temperature level of storage tank

Superscripts

∗ Corrected temperature domain / Instantaneous loads

+ Entering the system

− Leaving the system

max Maximum value

xix



Nomenclature

mi n Minimum value

Acronyms

CHP Combined heat and power

COP Coefficient of performance for (h) heating or (c ) cooling

DV Decision variable

LP Linear programming

MER Minimum energy requirement

MILP Mixed integer linear programming

MINLP Mixed integer non-linear programming

Conventions

bold characters Optimization variables

xx



1 Introduction

The introduction links sustainable development to urban energy planning and describes the

aim of this work. The state of the art is reviewed to show shortcomings of currently existing

tools and methods to derive the goals of this work.

1.1 Context: Urban Energy System Design and Sustainability

In the framework of sustainable development, the concept of the 2000-Watt society has been

developed in Switzerland by the Board of the Swiss Federal Institutes of Technology [Jochem

et al., 2004]. The 2000-Watt society aims to reduce the consumption of the average Swiss

citizen to 48 kilowatt hours a day or 2 kW year /(cap year ) without lowering standard of

living by 2050. The 2000-Watt society picked this number because the total worldwide average

rate of primary energy use equals 2000 Watts year/year in the year 2000. However, currently

Switzerland is using 2.5 times more energy per person [Kemmler et al., 2012], requiring a

reduction to almost one third of the current consumption.

Haldi and Favrat [2006] review the challenges, finding that integrating new (renewable) energy

sources and a more rational use of energy are the most important ones. This implies studying

the energy or better exergy losses in the supply chain of the useful energy. The exergy losses

allow to calculate the thermodynamic quality or degree of perfection of an energy system

based on the Second Law of thermodynamics [see Borel and Favrat, 2010, p448]. Figure 1.1

shows the final energy to end-use services. Heat has the largest share. The heat share can be

further sub-divided into space heating of about 30 percent and hot water production with 6 %.

With around 75% of the Swiss people living in urban areas according to the World Bank [2015],

most of useful energy demand occurs in cities. Keirstead et al. [2012] state that world wide two

thirds of the energy consumption can be attributed to urban areas, which are responsible for

up to 71 % of the global direct energy related greenhouse gas emissions.

Lowering heating requirements with measures in the built environment such as retrofitting a

building or its energy conversion system can substantially impact the global emissions of the

1
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Heat 30.8%Hot Water 6.3%

Process Heat 12.6%

Rest 2.3%
Lights 3.5%
HVAC 2.8%

Mechanical Power 9.5%
Electronics 1.3% Mobility 30.8%

Source: Prognos, TEP, Infras 2011

Figure 1.1 – Switzerland’s final energy consumption in 2012

country. In order to find the best measure, all energy conversions including transport losses

should be studied to improve the energy conversion(s) at the place with the highest impact:

All energy conversions from the resource to the final energy use should be analyzed to choose

the measures at the place in the energy conversion chain that have the highest impact on the

overall energy conversion efficiency. Energy losses according to the official Swiss national

statistics are about 50%. Haldi and Favrat [2006] show that the losses are significantly higher

than the ones estimated, because the primary energy use is often underestimated. In addition,

the loss calculation does not consider the temperature levels for the heat requirements. An

accounting in terms of exergy could overcome this issue and show the usable energy or exergy

correctly. When a clear target on energy use such as 2 kW is defined, it should also clearly

distinguish between renewable and non-renewable primary energies. (Putting the same limit

on both types of primary energy raises the question from an environmental point of view: why

does the same limit apply to renewable primary energy?)

Switzerland decided to phase out its nuclear power plants in 2034. Therefore, choices have

to be made for the country’s electricity and more general energy strategy. Switzerland is

autonomous on a yearly electricity balance, but exports electricity in the summer and imports

in the winter. The new energy calculator Swiss EnergyScope [Moret et al., 2014b] is addressing

the Swiss energy transition on a national level. It shows that even if the nuclear power plants

are replaced by renewable ways of electricity production (which is ambitious), it will not solve

the problem of electricity imports in the winter. More measures need to be taken, one being

the introduction of efficient energy conversion systems to avoid using electricity for direct

heating. These kind plans need to include the communities and can be efficiently addressed

with a bottom up approach.

Energy related indicators such as the energy use per capita represent often a basic link between

sustainability and a energy consumption or emission reduction goal [International Atomic

2
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Energy Agency et al., 2005] as shown with the "2000W-society". Achieving sustainable develop-

ment means a "judicious use of resources, technologies, appropriate economic incentives and

strategic policy planning at the local and national level" [International Atomic Energy Agency

et al., 2005, p.1]. The Brundtland Commission of the United Nations states on March 20, 1987

[World Commission On Environment and Development, 1987]:

Sustainable development is development that meets the needs of the present

without compromising the ability of future generations to meet their own needs.

A sustainable urban energy system can be defined as an energy system that uses the available

resources efficiently. In addition, the system addresses the time gap between the energy

demand and the availability of renewable energy reducing non-renewable energy use. The

urban energy system considers its supply chain in terms of construction requirements and

resource flows while delivering the required services in the most efficient manner. This can be

measured with the help of an appropriate indicator such as an exergy indicator [Favrat et al.,

2008].

1.2 State of the Art

Energy system engineering in the field of urban energy systems is an interdisciplinary field

in contact when designing and managing them. Urban energy system engineering covers

different aspects:

• different simulation fields: especially building simulation, energy conversion technology

simulation, energy transportation and storage technologies,

• optimization techniques in order to find feasible and optimal solutions,

• computer science in a larger sense to treat data, to store data and to interface between

different tools,

• geographical information system for structuring and displaying data and

• life cycle considerations especially in the indicator design to compare solutions.

For the energy system design, finding optimal solutions means identifying the best energy con-

version and distribution system, their sizes and the way they will be operated. Optimization

techniques will be used to define the optimal strategy in operating and choice of equipment.

When choosing indicators, it is important to propose key performance indicators to com-

pare solutions. In addition, for the decision support methods in the field of urban energy

systems, not only engineers are implicated, but a lot of other stakeholders with very different

backgrounds and interests.

This literature review focuses on the use of optimization techniques in the context of the design

of urban energy systems design. In this work, the term urban energy system is used to describe

the build environment as a thermodynamic system. A key question in thermodynamics

(and in research) is defining the system boundaries, [Keirstead and Shah, 2013, p.15]. Once
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the boundaries are defined, a system performance can be calculated and different system

configurations can be compared with each other, because it is clear which components to take

into consideration. The boundaries are given through the perimeter of the urban environment

studied.

1.2.1 History of Heat Demand Mapping and Planning in Switzerland

In the field of heat planning, heat mapping started already in the early 70s with Jäckli [1970]

(see Figure 1.2). Heat planning links the planning of the heat infrastructure to the energy

debate mentioned in Section 1.1. The Plenar working group [Steiger, 1979] came up with

the proposal shown in Figure 1.3 to install Swiss wide district heating networks based on

cogeneration and waste incineration plants instead of nuclear power plants in Switzerland.

The working group already based their planning on recovering a maximum of heat from already

existing infrastructures such as waste incinerator plants and proposed to connect areas with a

high heat density demand. The Plenar work can be considered as a first nationwide integrated

heat planning in Switzerland. The proposal was never realized, only cities with existing district

heating networks still have a heat infrastructure today.

Similar ideas can be found in Denmark [Kerr, 2015], where energy planning and especially

heat energy planning became a national interest starting with the First Heat Supply Law of

1979. The heat supply law introduced a tax on heat produced only through fossil fuel. As

a consequence of the national heat planning, a growing share of people receive their heat

through district heating: According to Euroheat, 61 % of the population are heated through

district heating systems in 2011. In addition, about 600 000 m2 of solar collectors are connected

to district heating. More and more of the Danish installations include large solar thermal

collector fields and between several thousand to hundred thousand of cubic meters of thermal

energy storage.

In Switzerland, heat planning returned on local level after the proposal of Köhler and Hanke

[2012] in 1979, leaving decisions up to every community or city. About 5 % of the Swiss

population are connected to a district heating in 2011 (Euroheat). Neither large scale solar

thermal collector fields nor large thermal energy storages have been installed. Small co-

generation plants exist as well as a few heat pump driven district heating networks. Most of

the heat is produced individually for each building based on combustion of non-renewable

resources.

1.2.2 Stakeholder for Urban Energy System Planning and Model Classification

The stakeholder defines the criteria for the urban energy system design and realizes the design

afterwards. The stakeholder during this work are the concerned communities or cities that

provide one or multiple energy services via the urban energy system. Often the communities

4
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Figure 1.2 – Heat demand estimation from [Jäckli, 1970]
5



Chapter 1. Introduction

Figure 1.3 – Idea of a Swiss wide district heating networks based on cogeneration, waste heat
incineration plants and waste heat recovery as a result of the Plenar working group in 1979 replacing of

nuclear power plants from Köhler and Hanke [2012].

mandate a society that does that for them. In Switzerland, the utility companies are often still

owned by the community.

The urban energy system design defines the equipment used to supply the required energy

services in a given urban zone. It consists in defining the energy conversion units to be

used, their size and location and the way they are interconnected one with the others using

(urban) network infrastructures such as the electrical and/or gas grid, the district heating

and or cooling networks. The design also includes the storage equipment used for the energy

management. The design is based on different criteria such as the economic cost of the

system and its operation or the environmental impact. Integration means profiting from

synergies between the different units that are in the system allowing to share resources and

equipment. The integration of renewable energy resources is one of the most important

measures to mitigate the environmental impact. The design methodology should on the one

hand consider the stochastic nature of the energy demand and on the other hand measures

to integrate them with the stochastic and temporal variations of the different renewable

resources like the solar or wind.

Urban energy system design and planning is a multi-scale problem. Table 1.1 shows different,

quantitative levels of urban planning from the (inter) national level down to the construction

project. The following actions are possible (abbreviations in parenthesis): building refurbish-

ment (R), infrastructure construction (I), central utilities construction (CU), decentralized

utilities construction (DU) and limiting emissions (E). Typically, emission control is rather

6
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based on a top down approach, while other actions such as refurbishment are rather bottom-

up approaches. The network infrastructure planning is done on all planning and spatial

levels, the heat infrastructure is rather on the city to building level whereas the electricity

and gas grids are planned on all levels (but often through different actors). Most of the utility

planning is done on city or even smaller scale. Interestingly, efficiency could also be controlled

or required from a top down level ensuring a minimum conversion efficiency for example.

[Favrat et al., 2008] show how this can be introduced into a law. For this reason, this work

Table 1.1 – Definition of urban planning: R = Refurbishment, I = Infrastructure, CU = Central Utilities,
DU = Decentralized Utilities and E = Emission Control

Spatial Levels
(Inter)

National
Regional City Community Building

P
la

n
n

in
g

Le
ve

ls

(Inter)
National
Plan

I, E I, E E E E

City Wide
Plan

- I, E I, E, CU I, E, CU E (DU)

Community
Plan

- - - I, E, CU E, (DU)

Construction
Project

- - - I, CU, (DU) R, CU, DU

focuses on the city to community level planning.

Various works such as Libbe et al. [2010] take a broader approach, because they discuss

technical and social challenges of infrastructure and the options for their realization through

urban planning. These methods often fail in generating practical solutions since they are

typically made at higher levels and do not consider the local situation. Concerning energy

system planning, they predict a trend of more co- or tri-generation systems (with local district-

energy networks) and the increasing decentralization of the electrical energy conversion

systems. They also suggest a stronger collaboration between actors confronted with the

planning of thermal services to the ones with electrical services. In addition, they underline

the importance of urban planning to integrate the potential in renewable energies through the

use of storage mediums. These types of work provide general guidelines, however do not solve

concrete problems. During this work, the gap between theoretical approaches and concrete

solutions should be reduced.

Figure 1.4 shows Kemfert [2003]’s model classification for applied economic environmental

energy modeling. The Figure shows that system optimization models work on a local geograph-

ical scale with a rather short term planning horizon, such as one typical year representing

the lifetime of the system, using a bottum-up approach. In this thesis, system optimization

models are used, which are limited to a rather short term planning and a local impact. System
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Figure 1.4 – Kemfert’s model classification for applied economic environmental energy modeling
[Kemfert, 2003]

optimization models are used in combination with technical supply and demand models to

size the energy system. For the optimization, the objective function decides about the result.

1.2.3 Objectives of Energy System Design

The design of urban energy systems is not only a multi-scale problem but has also multiple

objectives. The multi-objective analysis exists for the reason that different and possibly

conflicting objectives arise during an optimization such as mitigation of the environmental

impact and cost minimization. Hugo and Pistikopoulos [2005] developed a framework for

supply chains based on a MILP formulation with different objectives. They combine the Eco-

Indicator 99, which is a Life Cycle Analysis impact assessment method indicator measuring the

potential environmental damages through multiple categories in cost minimization problem

on European scale. Gerber [2012] demonstrates that when integrating environmental impacts

into the decision making process, different system configuration based on the decision-maker

preferences can be chosen.

Compared to costs which have the drawback of only considering elements that have a price,

using a life cycle indicator has the advantage of extending towards a more environmentally

conscious development. Costs often do not include the recycling or decommissioning of

installations, neither are all emissions priced. In addition, the marginal price of a unit that is

produced at high quantities profits from important economies of scale. New technologies that

do not have yet a high market penetration, have a higher marginal price on the market, even

if they perform better from an efficiency and/or environmental point of view. For strategic
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planning, a single cost minimization objective might be a backwards oriented goal, that can

undermine future opportunities, because only technologies with high market penetration

are chosen due to their lower production costs. Many research applications try to avoid this

problem by using a multi-objective (optimization) approach to show the trade-off between

conflicting objectives such minimizing costs and minimizing environmental impact at the

same time. The review of Pohekar and Ramachandran [2004] demonstrates the shift towards

using multi-objective approaches from the early nineties on especially in renewable energy

planning. Gasparatos et al. [2008] add that not a single indicator exists that covers all aspects,

therefore working with a set of objectives is a valid option. This work is building up on the

previous works in the domain from Bürer [2003], Weber [2008], Gerber [2012] and Fazlollahi

[2014].

1.2.4 Optimization Techniques for Energy System Design

The energy field is of particular interest to researchers. Therefore a lot of different works with

different optimization approaches have been proposed. In urban energy system design, the

following problems need to be solved:

• superstructure level (also called synthesis level): A superstructure is used to include in a

single problem the possible options for the energy system design and to describe their

possible interactions. Solving the superstructure based optimization problem therefore

results in the equipment selection and in the definition of the system configuration (i.e.

how the units are interconnected),

• design level: sizing of the selected equipment,

• operation level: mass flows, temperature levels, pressures, part load behavior and ramp

up and down times leading to an operational strategy.

Frangopoulos et al. [2002] examine the first two: synthesis and design. They underline the

importance of optimization techniques for finding solutions, but also mention that solving all

of them at once is methodologically and computationally difficult.

Curti et al. [2000] have explored the optimal design of heat pumping based district heating

systems. Their approach mainly considers the design and the operational levels. They solve

the problem using a single objective optimization problem. Bürer [2003] has considered a

superstructure approach for the selection of the best configuration for the urban system using

a multi-objective optimization approach.

The relevant topics in the field of mathematical programming are reviewed by Grossmann

[2012], even though he restricts himself to enterprise-wide optimization where his paper is

also (or especially) valid for system engineering:

• Solving MINLP problems remains a non-trivial tasks even though progress has been

made and continues to be made in this area. Therefore a majority uses approximate

MILP solutions in combination with different strategies.

9
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• stochastic programming for the integration of uncertainty.

• Decomposition approaches use either a Lagrangean [Geoffrion, 1972], Benders [Benders,

1962], bi-level [Iyer and Grossmann, 1998] or rolling horizon approach[Sethi and Sorger,

1991].

• Multi-objective approaches are based on either transformation, non-pareto or pareto

approaches where the latter two depend often on meta-heuristics (but could also use

one of the decomposition approaches mentioned before).

Formulating a problem is generally easier than solving it. Grossmann [2012] review already

points out that solving MINLP is not trivial, using an approximate MILP instead can be solved

more easily.

The optimization problem can be solved either simultaneously or in a sequential way. The

sequential way is typically using an explicit or pre-defined description of the different options

extracted from the superstructure, the sizing is typically done by an heuristic algorithm and

the performances are calculated using simulation tools in which the operation strategy is

typically defined by a set of rules. The use of an optimization technique using a black box

approach is then typically used to calculate the optimal sizes of the equipment.

In the simultaneous approach, the difficulty comes from the size of the problem and its non

linear nature. A detailed review can be found in [Fazlollahi, 2014, Chapter 1].

Generally, a lot of different configurations (or scenarios) are possible, when choosing the

equipment for an energy system and therefore it is not possible to calculate them all by hand.

Often, the 3 problems listed above are solved in a step by step approach, which is practical but

does not guarantee to give optimal solutions.

Using optimization techniques in order to systematically find best solutions is an obvious

answer to theses problems. On the level of the synthesis, [Voll, 2013] proposes an automated

optimization framework. Compared to by hand selection of scenarios, the superstructure free

approach allows studying a high number of combination by defining who can be connected

to whom. Curti et al. [2000], Bürer [2003] and Weber [2008] pre-define them.

On the design level and operational level, pinch analysis [Linnhoff, 1997] with the design of

heat exchanger network is a proven methodology. Pinch analysis is generally solved with

MILP formulation [Papoulias and Grossmann, 1983] and [Maréchal and Kalitventzeff, 1998] at

relatively low cost in case of single period problems. The multi-period formulation [Iyer and

Grossmann, 1998] of the same problem multiplies the number of binary variables as a function

of number of periods. This formulation is therefore computationally heavy. [Marechal and

Kalitventzeff, 2003] extended the method for the integration of energy conversion systems.

For big models, decomposition algorithms can be an elegant solution. [Iyer and Grossmann,

1998] propose a bi-level decomposition to solve their multi-period problem.
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[Grossmann, 2012] does not mention the decomposition via genetic algorithm, described in

different articles [Yokoyama et al., 2002]. Proving optimality of this approach is difficult and

can not be done. Because the genetic algorithm uses a black-box approach for solving the

underlying steps, it can be slow in convergence. [Rios and Sahinidis, 2013] compares different

derivative free algorithms and shows that better algorithms exist than a genetic algorithm. If

the proof of optimality is not important, [Fazlollahi, 2014]’s multi-objective decomposition

approach can be used and has successfully been demonstrated.

For the goal of thermal storage integration, pinch analysis [Linnhoff, 1997] is a proven approach

[Fazlollahi et al., 2012, Varbanov and Klemeš, 2011]. Pinch analysis [Linnhoff, 1997] was initially

developed as a steady-state model for continuous industry processes. The introduction of a

"dynamic constraint", [Neumann and Morlock, 2002, p.594], where the state t +1 depends on

the state t , into a steady-state model allows for linking the heat cascades of different periods

over the storage model together. This so-called time slice model[Linnhoff, 1997] considers

variations as function of time. This enables to consider stochastically available resources such

as solar energy as well as energy storage options within one model. In a simulation based

approach, Angrisani et al. [2014] shows that considering the temperature levels is a key point

for calculating the system performance when integrating a thermal energy storage.

When comparing formulations of the same problem, Ommen et al. [2014] shows that when

using optimization of an energy system with storage in a dispatch problem, the LP can lead

to similar solutions with only linear constraints in terms of cost than the MILP formulation

with more constraints such as part load efficiency. However, the operating strategy changes

based on the optimization approach in his model, where the heat pumps are used more in the

MILP model than in the LP model. (Without knowledge of which solver settings are used for

the MILP problem, there is a chance that a smaller MILP gap changes solution and might be

closer to the one of the LP problem.) His MILP model solves in about a minute compared to

the detailed NLP problem with about 14 hours of calculation time giving very similar results.

Even though academics provide methodologies for solving these typical problems, they are

not very frequently used in industry or on a (local) energy utility level, because introducing all

constraints to get to feasible solutions is either judged to be impossible or too time consuming

[Klatt and Marquardt, 2009]. In addition decision makers often prefer a solution that they

understand compared to a solution that they don’t understand but that is better according to

an optimization model. Instead, engineers still rely on their experience and simple scenario

analysis with very few choices to identify the best solutions. When the problem is simple

enough, experienced engineers can find the optimal or a close to optimal solution.

From a practical point of view, the multi-objective analysis is often criticized, because it does

not give one solution but a Pareto-frontier of solutions. Therefore a multi-objective analysis

does not tell which of the proposed solution is the best one, it helps however to identify the

trade-off of the different objectives for the energy system. Additional methods are applied to

identify the best solution such as clustering the solutions in groups or the introducing weights
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for each objective. This means besides the fact that time needs to be spent on calculating

the Pareto frontier, another algorithm chooses one point out of all solutions. Often industry

partners have not been convinced about this approach even though they agree that conflicting

objectives exist, they prefer using a single objective approach using costs. When they see a

Pareto curve, they only look at the cost minimum. This implies for the results presentation

that a few well chosen points are enough. With a multi-objective optimization, the result for

each objective can be that point.

1.2.5 Exergy as Indicator

Exergy efficiency is used as an indicator to measure the thermodynamic degree of perfection

of a given system. Numerous authors link exergy to sustainable development: [Cornelissen,

1997], [Rosen and Dincer, 2001], [Wall and Gong, 2001], [Gong and Wall, 2001] and [Gasparatos

et al., 2008].

The Second Law of thermodynamics introduces irreversible transformations. Compared to an

energy approach, exergy can therefore be lost or destroyed. According to [Cornelissen, 1997],

minimizing the loss of exergy leads to sustainable development. Dincer and Rosen [2004] state

that the path from non-sustainable development to sustainable development passes by the

three major steps of:

1. increase exergy efficiency,

2. reduce the exergy-related environmental degradation and

3. use of sustainable exergy resources.

Rosen and Dincer [2001] consider exergy as the confluence of energy, environment and sus-

tainable development. Further, Rosen and Dincer [2001] state that systems with a high exergy

efficiency have a lower resource use and therefore are automatically more sustainable than a

similar system with a lower efficiency. Wall and Gong [2001] points out that the exergy can

measure the difference in the environment when emission and pollutants are injected. Gong

and Wall [2001] link exergy to an life cycle assessment approach based on Szargut [1987] and

Cornelissen [1997] to use exergy as a quality indicator.

Gasparatos et al. [2008] point out that exergy analysis is universally accepted because it is

based on thermodynamics. In an supply chain, the exergy efficiency of each step allows

to define the weakest point. However, the definition of the required reference conditions

introduce a relativity in the results. Torío et al. [2009] review reveals that different exergy

efficiency definitions and different definitions of renewable exergy flows lead to difficulties

when comparing studies and their results. Nevertheless, the stated authors conclude that

exergy is the framework to use, when linking sustainable development and thermodynamic

perfection. But the conclusion insist to standardized the exergy approach further to ensure

comparability of studies. Bösch et al. [2007] address the missing standardization through a
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consequent application of the exergy method on a whole database to ensure the best possible

comparability.

In times where humanity is looking forward to identifying environmental and sustainable

energy systems to reduce energy consumption, exergy analysis in combination with life cycle

assessment offers a key framework to consider: The life cycle assessment approach allows to

consider the path of the resources before entering the energy system. The equipment used

within the system is also evaluated based on the same life cycle assessment approach taking

into account the exergy used for their production and the decommissioning at the end of life

time. The operational exergy can be reduced when using the heat cascade because the heat

cascade allows to reduce the exergy used in each temperature interval.

An exergy based life cycle assessment framework can overcome the shortcomings of a simple

monetary framework to judge an urban energy system on efficiency, because the exergy use

throughout the whole supply chain and through the lifetime are considered. De Meester et al.

[2009] demonstrate the use of the cumulative exergy demand as a decision help for the choice

of a type of construction to perform.

Roosa [2010] connects exergy and sustainability in a larger framework going from buildings

to (urban) energy systems. He then also addresses the policy effects sustainable planning.

Exergy is mostly used in academia and rarely applied by practicing engineers. Dewulf et al.

[2008] point out that this is probably linked to the fact that the concepts of exergy are often

taught using the rather abstract entropy definition. Applying the concept of useful energy such

as presented in Haldi and Favrat [2006] helps as it is easier to access. In the field of process

engineering, it is an unopposed fact that exergy analysis is an effective tool to identify system

inefficiencies. Frameworks extending to other fields such as the built environment existent

but are rare. Schlueter and Thesseling [2009] developed a prototype tool for the integration of

exergy analysis in early design studies. Legal obligation in time of changing energy politics

could also become a driving force. The Canton of Geneva has included exergy evaluation

of energy systems in a law in 2010, based on Favrat et al. [2008]. In addition, this work

demonstrates a ready- and easy-to-use guide to the use of exergy efficiency as an indicator.

Rager et al. [2011] apply this framework in a case study and propose it for selecting priority

buildings for further investigation and energetic refurbishment, if the exergetic performance

is confirmed.

Other frameworks try to convert exergy to monetary units such as the substitution of capital

expenditures [Müller et al., 2011], in an accounting framework [Sciubba, 2001] or via for the

evaluation of a tax [see Szargut, 2005, Chapters 6 and especially 7]. The exact merits of the

cited frameworks is still a lively debated.
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1.2.6 Uncertainty in Urban Energy System Design

Dealing with energy system design (for planning on an urban scale) means taking uncertainty

into account. Besides the uncertainty of input data, the system itself is frequently altering

through changes in land use and/or energetically relevant changes to the existing building

stock. Hoffmann [2001] defines three types of uncertainty:

parameter uncertainty, model uncertainty, and decision rule uncertainty.

The parameter uncertainty in general can be accessed with the methods that Saltelli et al.

[2008] propose. These methods execute the model systematically over the pre-defined uncer-

tainty range of the parameter. The result is used among other for factor fixing, which means

identifying the non-important uncertain parameters and fixing them to a given value. Because

each model represents only a simplification of a real world phenomenon, each model contains

also model uncertainty. Model uncertainty can often only be accessed by experts ensuring that

the model is representing a phenomenon correctly and that the input-output combinations

are correct. Model uncertainty is not considered because energy models are non-validatable

and "doomed" to inaccuracy [Hodges et al., 1992]. Decision rule uncertainty is very difficult to

model as politics have a strong influence on it.

For this work, the parameter uncertainty is further considered, because perturbing a parame-

ter can change the result of an optimization remarkably leading to (highly) sub-optimal or

infeasible solution [Bertsimas and Sim, 2004]. Generally, parameter uncertainty can either be

accessed with an stochastic or robust approach. Stochastic programming approaches [Birge

and Louveaux, 2011] assume that the uncertainty has a probabilistic nature, e.g. a randomness

exists. Therefore a stochastic approach requires further knowledge of the type of randomness

and the distribution of the parameters. Through frequent model runs, an expected cost can

be minimized (in the case of a cost minimization). In contrast, robust optimization [Soyster,

1973] tries to find a solution that fits all cases, the design case but also the one with the worst

case parameters. Besides classifying the parameter’s uncertainty into sets, it tries to remain

computationally light.

In the field of energy system design, Dubuis and Maréchal [2012] use stochastic optimiza-

tion and discuss different methods and conclude that they are quickly computational heavy.

Keirstead and Shah [2013, Chapter 12] or also Keirstead and Calderon [2012] use a Monte

Carlo method proposed by Saltelli et al. [2008]: the study allows for identifying key factors

of the model that can be used for policy implications. Fazlollahi [2014] proposes a variance

based analysis on the points of the Pareto-frontier. Varying systematically the economic input

parameters create a wider Pareto-frontier allowing to choose the most reliable point defined

as point on the Pareto frontier of the design case using average parameter values. Tock [2013,

Chapter 8.3] uses a similar approach based on Monte Carlo simulations ranking the different

solutions according to the number of times they appear on the Pareto frontier.
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Urban energy system design studies often consider mean values for uncertain parameters

without the quantification of the relevance of an individual uncertain parameter. The system

might not perform as expected, because a key parameter might deviate during the project

decreasing a system’s performance. If the key parameters to energy system design are known,

they could at least be communicated to each actor during the project realization ensuring that

the importance is taken into consideration.

1.2.7 Existing Models and Tools for Urban Energy System Design

[Pfenninger et al., 2014] resume the challenges that every model (and every tool) in the field of

urban energy system modeling needs to address:

1. resolving time and space,

2. balance between uncertainty and transparency,

3. handle growing complexity of energy systems and

4. human behavior.

Keirstead et al. [2012] classify generally the existing urban energy models: they all try to find

a coherent model complexity, rely on a specific data quality and uncertainty, link models

more or less across different sectors (model integration) and might guide a policy makers.

[Klosterman, 2012] concludes that whether or not a complex or simple model is used, it is

most important to verify the model assumptions: when they are of poor quality, any model

will produce nonsense.

For the field of urban energy systems design, Keirstead et al. [2012] deduce from their study

that still a number of challenges remain to be tackled, especially the model complexity and

(input) data uncertainty. Kavgic et al. [2010] focus on bottom up energy demand models in

the UK. They stress the fact that only limited amount of input data is publicly available as well

as the fact that the models are not open enough. Results can not be reproduced. In addition,

not much information exists quantifying the importance of input data and its impact on the

outputs. More and more specific models exist addressing subfields of urban energy models.

In the more specific field of sustainable building design, Evins [2013] reviews methods for

sustainable building design. Kanters et al. [2012] study the niche for architects integrating

solar design.

Part of the models are used to create easy-to-use tools (for an audience also outside the

academic world). Each tool has its own niche with its specialization and target audience. A

comprehensive tool review is done by [Connolly et al., 2010]. This review can be used as a

guideline on how to choose the correct tool. Interestingly enough, the choice of temperature

levels is not addressed in this tool review. Manfren et al. [2011] completes this review with a

finer classification. Most tools on the market, commercial or free, offer system simulation but

only few tools offer optimization. In addition, the definition of the word "optimization" in a
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tool’s description often refers to comparison of scenarios instead of mathematical optimiza-

tion.

Linked to the fact that in an urban environment, a lot of different goals and actors, users and

interests exist, a wide variety of tools can be found. [Erhorn-Kluttig et al., 2011] propose a

model classification under three main points:

• in which planning phase can the tool be used?

• which is the specific field of application?

• who is the user?

For 6 tools, this classification is completed in Table 1.2 and extended with the 2 options: inte-

grate storage sizing and evaluate uncertainty. The 6 tools are: Citysim [Kämpf and Robinson,

2009] is an dynamic urban building simulator, TOPENERGY is an energy supply simulator,

EnerGis [Girardin et al., 2010] a static heating requirement estimator based on statistical

information, EnergyPlan is a simulator for national energy systems, MEU is a planning and

managing platform for communities and cities and the system design tool osmose.

Even though the classification is already detailed, it should be refined, because it is not possible

to distinguish between simulation and optimization based approach for different applications.

None of the tools proposes any ways to integrate uncertainty in the planning process besides

MEU: it has a meta data system that judges the quality of each data set, however does not not

aggregate it any further to a higher level. Also, the optimization methods are limited. When

looking at the field of application for the last 3 points, storage, uncertainty and optimal energy

system design, none if the existing tools can work on the 3 points at once. All tools need to be

adapted.

With the rising number of tools that are available, it is difficult to keep track of all the develop-

ments ensuring that the latest model and/or latest tool are known to deploy them. Already in

EPFL, 4 different commercial tools exist:

• CitySim [Kämpf and Robinson, 2009] for dynamic urban building simulations,

• MEU [Rager et al., 2013c] and [Capezzali et al., 2013] for the management of urban

energy systems and decision support for communities and utilities,

• lesosai [Lesosai, 2013] for building certification and thermal balances and

• epiqr [EPIQR and ESTIA, 2004] specialized on energetic building refurbishment.

Numerous research tools in the field exist, that are not commercially available. Three examples

from EPFL are stated here: Osmose is a system design tool, EnerGis [Girardin et al., 2010]

combines information on cities in a geographical information system and SIMAPE a multi-

agent simulation of urban energy planning for a decision support system.
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1.3. Conclusion

Table 1.2 – Characterization of energy models adapted from Erhorn-Kluttig et al. [2011, p.114] extended
with storage sizing and uncertainty evaluation
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Predimensioning - X X X - (X)
Detailed Planning X X - - - (X)
Monitoring - - - - X -
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Indiv. Building Energy Demand Estimation X - X - X -
Indiv. Energy Supply Technology Choice - X X X X X
Multiple Indiv. Building Energy Demand Estimation X - X X X -
Multiple Energy Supply Technology - X X X X X
Mixing Multiple Energy Supply Technology - X X X X X
DHN - X X X X X
Integrate Storage Sizing - X - X - X
Evaluate Uncertainty - - - - X (X)
Optimization (of the Energy System Design) - (X) - - - X

U
se

r

Urban Planner X - - X X -
Energy Utility - X - X X -
Construction Enterprise X - - - - -
Engineering Company X X - X - -
Architect X - - - X -
Scientist X X X X X X

1.3 Conclusion

Based on the past of heat planning, the current situation in Switzerland with regard to urban

energy system planning is discussed. To reach the nations goal fixed with a top down approach,

bottom-up models are needed that can propose energy system designs considering demand

and supply side options. This framework needs to work on a community to city level, because

these systems will be implemented on this spatial scale.

In order to avoid backwards oriented planning by only cost based optimization, a second

indicator should be used to judge the sustainability of the system. Exergy-based indicators

should be considered because they can judge quantity and quality of exergy conversion at

once.

Summarizing the current state of the art in optimization suggests that using an MILP problem

formulation, when functions can be sufficiently linearized, is a promising approach that
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guarantees optimal solutions (with respect to the hypotheses made for linearization). Energy

integration offers an existing MILP framework that can be used for thermal storage integration.

There is currently no tool proposing an integrated methodology for designing energy systems

under uncertainty. On the methodology side, enough independent methods exist to address

the discussed problems independently, but rarely together. This dissertation tries to close the

gap between the existing methods.

1.4 Objectives of this work

The following challenges are addressed in this work:

• energy demand modeling based on data availability, Chapter 3,

• deterministic data reduction with the help of clustering respecting sequences, if needed,

Chapter 4,

• integration of a stochastic renewable energy sources with the example of solar thermal

energy, Chapter 5,

• integration of (seasonal) storage, Chapter 5,

• combining stochastic renewable sources and storage sizing to a design method for

urban areas, Chapter 5,

• using a building’s mass as additional energy storage, Chapter 6,

• introducing retrofitting to the demand side management, Chapter 7 and

• a way of quantifying uncertainty, Chapter 8.
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2 Problem Formulation for Urban En-
ergy System Design Methodology

The second chapter describes the general optimization or mathematical programming ap-

proach chosen. The objective functions are explained as well as the additional constraints

that exist for the every of the following chapters.

According to [Keirstead and Shah, 2013], the large number of choices for urban energy system

design needs methodologies to systematically compare and evaluate different system con-

figurations. Modeling, simulation and optimization can do this. Finding the best solution

with the help of simulation can be very time consuming and is be limited to a certain number

of pre-selected combinations. Optimization or mathematical programming is therefore a

widespread tool.

2.1 Definition of Optimization Problem

In order to present real world phenomena such as heat exchanges correctly, the optimization

problem of an urban energy system can be formulated as a non-linear optimization problem.

However, nonlinear problems are generally harder to solve [Grossmann, 2012], especially if an

exact solution is required.

In the here presented framework, non-linear problems are consequently estimated with

the help of one linear function, if acceptable or a set of linear functions, if necessary. The

optimization problem is then transformed into a linear and/or mixed integer linear problem

which have the advantage of being generally easier to solve. The optimality for the solutions

found can be proofed compared to heuristic methods that are often used to resolve non-linear

problems. When a non-linear function is represented as a linear one, the error made through

the simplification is kept below the uncertainty of the underlying data set that is used to define

the non-linear function.

If one linear function is sufficient to estimate a non-linear function, the optimization problem

can be formulated as linear problem. The simplex algorithm solves linear problems.
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When one linear function is not sufficient for the estimation of a non-linear function, the form

of the non-linear function decides whether integers have to be introduced or not: A convex

non-linear function can be represented as a set of linear function with weights guaranteeing

that only one function is active. A non-convex non-linear function can only be represented

with a set of indicator integer variables leading to a mixed integer linear problem. Mixed

integer linear problems are generally solved with a branch and bound algorithm that uses

an implicit enumeration of all possible combinations of integer variables in a search tree.

Choosing the nodes of the search tree is called "branching." The upper (or lower) bound of a

branch can then help to avoid exploring further nodes in the same branch, when the bounds

indicate that only suboptimal nodes (and further subbranches) exist. A MILP problem can

be solved exactly in exponential time, heuristic approaches provide generally suboptimal

solutions in polynomial time.

As identified in Section 1.2.4, an existing approach using MILP formulation consists in using

energy integration with the heat cascade. A MILP model formulation is done in the following

way:

Objective: minimize cT x +d T y

Constraints: A1x + A2 y ≤ b

l ≥ x ≥ u, y ∈ 0,1

x represents the continuous decision variables, y the integer (or binary ) decision variable, c

and b are vector of known parameters and A is the coefficient matrix. l gives the lower and u

the upper bound for the continuous variable. For a linear problem (LP), only x exist in the

problem formulation. In a mixed integer linear problem (MILP) at least one y exists also.

The objective function for urban energy system design is typically written as a minimization of

utility investment and operation costs. The constraints in this work are of the following form:

• cost or life cycle based accounting,

• energy balance,

• heat cascade,

• time,

• technology availability and performance.

The following formatting rules are applied: Bold formatting indicates variables of the model,

parameters are in normal font style. The variable y is the only binary integer variable of

the model. All other variables described below are continuous ones, bigger or equal to zero,

when not indicated otherwise. Based on the notation used in Borel and Favrat [2010], flows

entering the system have the superscript +, the ones leaving the system a −, but a positive

value. Existing upper limits are indicated, otherwise the variable has no upper bound. The

lower bound is in general zero, but for the sake of completeness it is indicated. Total values are

written in upper case, specific values are written in lower case.

20



2.2. Objective Function

2.2 Objective Function

Two different formulations of the objective function are used: The first one minimizes the

annual costs. The specific investment costs i nvCu of unit u is multiplied with the installation

factor su and the annualization factor f A common for all units. The operating costs are

calculated through summation over all periods np and all time slices nt of the specific fuel

costs c f which are multiplied by the unit multiplication factor fu,p,t for each period p and

time slice t and the nominal heat Q̇u produced per unit. wp represents the weight or number

of repetitions of the current period, e.i. the number of times the day appears in a year. The

duration of the time slice t in p is given through dp,t . A certain quantity of electricity Ėel can

either be imported (Ė+
el ) at a price of c+el or exported (Ė−

el ) at a price of c−el .

Fob j ,cost s = mi n

(
f A ·

nu∑
u=1

i nvCu · su+
np∑

p=1
wp ·

nt∑
t=1

nu∑
u=1

(
c f ,u · fu,p,t ·Q̇+

u + c+el ,p,t · Ė+
el ,p,t − c−el ,p,t · Ė−

el ,p,t

)
·dp,t

) (2.1)

The second formulation considers a minimization of Cumulative Exergy Demand (CExD). The

formulation is the same, however the input values change. The construction and production

of a utility u has a specific CExD value i nvC E xDu . Each fuel has also a specific CExD content

cexd f ,u . The remaining parameters are the same as in (2.1).

Fob j ,cexd = mi n

(
f A ·

nu∑
u=1

i nvC E xDu · su+
np∑

p=1
wp ·

nt∑
t=1

nu∑
u=1

(
cexd f ,u · fu,p,t ·Q̇+

u+

cexd+
el ,p,t · Ė+

el ,p,t − cexd−
el ,p,t · Ė−

el ,p,t

) ·dp,t

) (2.2)

The annualization factor f A for n = 25 years and an interest rate of i = 6% has a value of 0.0782,

because the same life time as for the CExD values is used for the sake of an equal comparison.

The main stakeholders, cities or communities, can afford to calculate with such as a long term

horizon. The annualization factor is calculated in Equation (2.3):

f A = (1+ i )n · i

(1+ i )n −1
(2.3)

It is based on the hypothesis that each year the same amount of money has to be paid back

and that all units have the same lifetime. Both formulations guarantee the balance between

the unit investment costs or respectively the unit production CExD and the operating costs

or the fuel’s CExD content via the annualization factor: Multiplying the total investment cost

with this factor results into the annual investment costs that can be put in direct relation to

the annual operating costs. It is also applied to the CExD objective function ensuring that the
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same approach is used for both objective functions. As an alternative, one could divide the

CExD only by the lifetime in years.

2.3 From Exergy to the cumulative Exergy Demand (CExD)

The second law of thermodynamics implies that "all real process are irreversible" [Szargut,

2005, p.2]. [Szargut, 2005] further uses the exergy concept to measure thermal efficiency with

the exergy efficiency. Compared to the first law efficiency (and the related indicator cumulative

energy demand), it takes the quality of the transformation or irreversibility into account. It is

therefore an indicator that measures and combines quantity and quality of a conversion chain.

It does not cover toxicity, scarcity nor does it distinguish between basic energy needs or luxury

energy needs. Neither is it a good distinction between renewable and finite or non-renewable

resources. [Borel and Favrat, 2010, Chapter 10] define the exergy rate balance as follows:∑
k

[
Ė+

k

]+∑
i

[
Ė+

qi

]
+∑

n

[
Ė+

yn

]
= L̇ ≥ 0 (2.4)

Ė+
k as the work-power received by the system at the level of the engine k;

Ė+
qi as the heat exergy received from the reservoir at the temperature Ti ;

Ė+
yn as the received transformation exergy rate and

L̇ as the global exergy rate loss (always positive according to the Second Law).

The exergy linked to a transfer or a storage of energy is defined as the potential of maximum

work which could ideally be obtained from each energy unit being transferred or stored (using

reversible cycles with the atmosphere as one of the energy sources either hot or cold).

The exergy approach allows to quantify in a coherent way both the quantity and the quality of

the different forms of energy considered.

The overall system exergy efficiency is defined as:

η= Services delivered

Exergy received
=

∑
[Ė−]+∑

[Ė−
q ]+∑

[Ė−
y ]∑

[Ė+]+∑
[Ė+

q ]+∑
[Ė+

y ]
(2.5)

where all terms are positive, differentiating between the terms entering the system with "+"

sign and the positive terms (services) delivered by the system with a "-" sign.

• Mechanical and Electrical exergy: Ė ,

• Ėq represents the heat exergy with:

Ė−
q =

∫
θδQ̇− =

∫
(1− Ta

T
)δQ̇− (2.6)

Carnot Factor θ = (1− Ta
T ) and the heat transfer rate Q̇,
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• Ėy symbolizes the transformation exergy of the masses Ṁ being in the system or transit-

ing through the system:

Ė+
y =∑

j

[∫
kcz j Ṁ+

j

]
− d(Jcz )

d t
. (2.7)

kcz represents the total specific coenthalpy and Jcz the coenergy defined through the

sum of the total internal energy Ucz , the pressure volume work PaV and the entropy

creation −TaS.

In the field of Life Cycle Assessment, the ecoinvent database [Althaus et al., 2010] is used

because it offers standardized data sets especially for Switzerland. One of the indicators

proposed is the CExD proposed by Bösch et al. [2007]. It is similar to the concept of cumlative

consumption of exergy from Szargut [2005, Chapter 3] presented in [Szargut, 1987]: the

chain of production processes from natural resource to the finished product are considered.

However Szargut’s concept is only linked to the process itself, the operational exergy demand.

The CExD also includes construction and decommissioning exergy of the plant and looks at

the supply chains used for resources entering the plant. It is defined as:

C E xD =∑
i

Mi ∗excz,i +
∑

j
n j ∗ rex−e(k,p,n,r,t ), j . (2.8)

C E xD = cumulative exergy demand per unit of product or process (MJ-eq)

i , j = substance

Mi = mass of material resource i (kg)

excz,i = specific "embodied" exergy (MJ-eq/kg) = exergy used to produce and recycle a kg of

substance i (MJ-eq/kg)

n j = amount of energy from energy carrier j (MJ)

rex−e(k,p,n,r,i ), j = exergy to energy ratio of energy carrier j (MJ-eq/MJ) (based on Szargut [2005])

ch = chemical

k = kinetic

p = potential

n = nuclear

r = radiative

t = thermal exergy

The CExD is a method integrating the quality of the energy conversion during the production

and construction of a utility, the operating exergy used during equipment life time and the

recycling after end of use. The method is close to cumulative energy demand (CED), however

it is more complete because it measures not only quantity but also quality of conversion in the

supply chain.

Eight ecoinvent categories exist for CExD: fossil, nuclear, hydro power, biomass, other renew-

ables, water, minerals and metals. The CExD value of one kilowatt hour heat produced through

a gas boiler or a solar thermal panel have almost the same value. However the kilowatt-hour
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produced with solar energy is almost entirely produced through the use of renewable energy.

In order to minimize the use of non-renewable energy, only the non-renewables are consid-

ered. In the here presented work the non-renewable parts fossil, nuclear, minerals and metals

are considered. Choosing to use only the non-renewable CExD is inline with the guideline of

sustainable development suggested by [Haldi and Favrat, 2006].

When using CExD values directly from the data base, hypothesis about the electricity mix

within the supply chain of the used technologies are included into the analysis. For this work,

the database version 3.1 of ecoinvent is used.

2.3.1 Extrapolation of missing CExD Values

The CExD values for each technology are found with a specific size (and often in a specific

system configuration) in the ecoinvent data base. The actual size of the equipment is however

object of the optimization and most of the time the data is only available for one equipment.

A way for data extrapolating is found in Gerber et al. [2011] based on the equation:

Ei

Er e f
=

(
Ai

Ar e f

)k j ,r e f

∗ ci (2.9)

with E being the emission of the Life Cycle Impact of the elementary flow i or of the known

reference flow r e f respectively.

A is a functional parameter related to the size such as heat exchanger surface or power.

k is the exponent, the correction factor c can only be determined when more than 3 data sets

are available.

Otherwise, it is dropped.

Compared to the traditional LCIA, where extrapolation is done in a linear way, this approach

considers the fact that an equipment’s impact is measured proportional to the material used

as in the cost functions. The three cases found in this thesis are:

• Case 1: Two data sets i and j are available

k j ,i =
log E j − log Ei

log A j − log Ai
⇒ Ex =

(
Ax

Ar e f

)k j ,i

∗Er e f (2.10)

The subscript x indicates the unknown elementary flow. The subscript r e f indicates

the reference equipment, which is closer to Ax .

• Case 2: Only one data set is available, extrapolation via costs

Ex = Cx

Cr e f
∗Er e f (2.11)
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• Case 3: No data set is available, the value Ex is the sum of all individual equipment

components u:

Ex =
n∑

u=1
Eu (2.12)

This approach allows to extrapolate more precisely, however introducing the new costs values

into the MILP requires to linearize them again.

2.4 Constraints

The size su of the equipment u is given through the maximum usage of the unit during all

periods p and time steps t . The unit multiplication factor fu,p,t gives this information per unit

u for all periods p and time steps t .

fu,p,t ≤ su ∀u, p, t (2.13)

The binary unit variable yu links the operational limits with the minimal sizing factor f mi n
u,p,t

and the maximum one f max
u,p,t to the investment costs. It is yu = 1 when the unit is purchased.

yu · f mi n
u,p,t ≤ su ≤ yu · f max

u,p,t ∀u (2.14)

The general heat cascade for each temperature interval k is given by:

nhk∑
hk

fu ·Q̇h,k,u −
nck∑
ck

fu ·Q̇c,k,u + Ṙk+1 − Ṙk = 0 ∀k = 1, · · · ,nk

Ṙ1 = 0 Ṙnk+1 = 0 Ṙk ≥ 0 ∀k = 2, · · · ,nk

(2.15)

Q̇h,k,u and Q̇c,k,u are the nominal heat loads of the hot (h) and cold (c) streams, respectively,

which exist in temperature interval k for unit u in period p and time slice t ,

Ṙk+1 is cascaded heat from the higher temperature level entering the temperature level k,

Ṙk is heat leaving this temperature level.

This formulation is adapted for a multi-period problem with multiple time slices t in each

period p with the same restrictions on the cascaded heat Ṙ :

nhk∑
hk

fu,p,t ·Q̇h,k,u,p,t −
nck∑
ck

fu,p,t ·Q̇c,k,u,p,t + Ṙk+1,,p,t − Ṙk ,p,t = 0 ∀k, p, t (2.16)

The heat cascade is used in process integration. Process integration and pinch analysis

techniques minimize the energy consumption of industrial processes by maximizing the heat

recovery. From the beginning of the mathematical formulation of pinch analysis, examples
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show the relevance of pinch analysis to the field of urban energy system design [Linnhoff,

1997], [Weber, 2008] to [Girardin, 2012] and [Fazlollahi et al., 2014b].

In energy integration, two different basic units are defined: utilities and processes. The process

have utilization factor su fixed to 1 and represent the demand compared to utilities that are

limited between f mi n
u and f max

u offering the required service. As later shown in Chapter 6, the

utilization factor for a process can also be variable.

Each unit can have one or more streams attributed to it. A stream is either:

• a hot stream that requires cooling and therefore releases heat or

• a cold stream that requires heating and therefore absorbs heat.

Heat exchange between them ensures that the heating and cooling requirements are fulfilled.

Under the hypothesis of steady state conditions without heat losses to the atmosphere or

mechanical work, constant pressure and a constant specific heat capacity cp between the

temperatures Ti n and Tout for a real single phase fluid, the heat load Q̇+ is given by Equation

(2.17). The specific enthalpy difference of the fluid ∆h = hout −hi n is equal to the temperature

difference ∆T = Tout −Ti n multiplied by the specific heat capacity at constant pressure cp ,

when the mass flow Ṁ+ is constant.

Q̇+ = Ṁ+(hout −hi n) = Ṁ+ · cp (Tout −Ti n) (2.17)

Variation of kinetic and potential energies are not taken into account.

The quality of the heat exchange between a hot and a cold stream can be described with

the minimal temperature approach ∆Tmi n . This approach describes the trade-off between a

high quality heat exchange with a low ∆Tmi n requiring a high heat exchanger surface thus a

high investment cost but low external utility use. A high ∆Tmi n with a small heat exchanger

surface thus a lower investment has a high external utility requirements because less heat is

transferred. The value of ∆Tmi n/2 is then associated to each stream:

• for each hot stream, the corrected temperature is T ∗
h = T −∆Tmi n/2 and

• for each cold stream, the corrected temperature is T ∗
c = T +∆Tmi n/2.

Only the corrected temperatures are introduced into the heat cascade.

2.5 Basic Technology Models

Three basic technologies are considered in the framework:

1. boilers,

2. heat pumps and

3. cogeneration.
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With the heat cascade, additional technologies such as free-cooling or tri-generation can be

integrated as well. For each additional technology, temperature-power profiles for each time

step need to be known so that these profiles can be introduced into the heat cascade.

2.5.1 Boiler

The boiler can burn different fuel types: biomass, gas or fuel oil. A boiler can deliver heat at a

fixed temperature level between 90 to 75 °Celsius. As in reality, the boiler delivers heat at 75

°Celsius.

For the boilers, the power Q̇+
Boi l er provided to system is divided by the corresponding efficiency

ε to calculate the amount of resource Q̇+
Resour ce used.

Q̇+
Resour ce =

Q̇+
Boi ler

εBoi l er
(2.18)

The wood chips have a variable operating CExD value due to the origin of the wood chips: if

they come from a local forest, the lower value can be used. If they are left over of industrial

usage, the higher one should be used.

2.5.2 Heat Pump

The heat pump provides a range of temperature levels between 25 to 80 °Celsius to the urban

energy systen: higher temperatures lead to lower coefficient of performance (COP) and there-

fore more electricity consumption. The number of available temperature levels can either

be restricted to one so that only one temperature level at a time can be provided or is left

unrestricted so that several levels up to all existing levels are possibly active at once. The

optimization model decides which level(s) to consider based on the user’s choice of maximal

number of temperature levels at once allowed.

The COP is calculated according to Girardin et al. [2010] with the theoretical COP and the

efficiency ηCOP of the COP, a function of the resource and therefore of the technology. The

theoretical COP is defined as the ratio of the hot side’s logarithmic temperature difference

over the logarithmic temperature difference of the hot and cold side’s difference. ηCOP varies

according to the source used between 0.34 for an air/water heat pump, 0.43 for a water/water

with a ground water source and 0.55 for a waste water treatment plant or lake water. The heat
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delivered through the heat pump, Q̇+
HP , is divided through the COPHP to obtain the electricity

consumption of the heat pump.

COPHP = ηCOP · ∆T hot
lm

∆T hot
lm −∆T cold

lm︸ ︷︷ ︸
theoretical COP

(2.19)

Ė+
HP = Q̇+

HP

COPHP
(2.20)

With Equations (2.19) and (2.20) the operating costs or CExD of delivering heat at different

temperature levels can be calculated. The heat pump’s operating CExD value is directly

connected to the origin of the electricity. For the operating costs, the electricity costs of

0.25 C HF
kW h are divided by the heat pump’s COP in order to obtain the respective price per kilowatt

hour of delivered heat at a specific temperature level. For the operating CExD optimization,

local mini-hydro power has a value of almost 0 kW h−E q.
kW h , the Swiss production mix is at about

2.0 kW h−E q.
kW h and the imported German electricity is at 3.0 kW h−E q.

kW h .

2.5.3 Cogeneration

The cogeneration model provides heat at the same range as the boiler: 75 °Celsius. The cogen-

eration model is implemented as a heat driven cogeneration. The heat cascade defines how

much heat Q̇+
Cog en the cogeneration delivers. Dividing the heat Q̇+

Cog en by the heat production

efficiency εth,cog en of the cogeneration, provides the amount of a resource used. The resource

use divided by the electrical efficiency εel ,cog en results in the electricity production Ė−
el ,Cog en

of the cogeneration.

Q̇+
Resour ce =

Q̇+
Cog en

εth,cog en
(2.21)

Ė−
el ,Cog en = Q̇+

Resour ce

εel ,cog en
(2.22)

The bio-gas cogeneration engine has an operating value of 0.16 kW h−E q.
kW h , the diesel cogener-

ation engine of around 0.47 kW h−E q.
kW h . Both are implemented as a heat driven cogeneration,

where the heat demand defines the operation of the unit over the heat cascade:

Additional constraints limit the electricity production to the total annual electricity demand

of the concerned buildings Ėel ,demand . In every time step, the unit u can produce the quantity

fu,p,t · Ė−
el ,u of electricity, where f is the unit’s multiplication factor defined through the heat

cascade and Ėel ,u the amount of electricity produced for each unit of heat.

nu∑
u=1

np∑
p=1

nt∑
t=1

fu,p,t Ė−
el ,u ≤ Ėel ,demand (2.23)
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The cogeneration unit can therefore only produce for the local electricity demand avoiding

solutions where a cogeneration based system exists only for electricity export to the grid as a

infinite "virtual" client outside of the given system. The additional constraints (2.24) and (2.25)

are introduced to distinguish between the import and export price of electricity. Additional

electricity can be imported (Ė+
el ,p,t ) or exported (Ė−

el ,p,t ).

∀p, t :
nu∑

u=1
fu,p,t Ė−

el ,u + Ė+
el ,p,t − Ė−

el ,p,t ≥ 0 (2.24)

Ė+
el ,p,t ≥ 0 Ė−

el ,p,t ≥ 0 (2.25)

2.5.4 Technology Cost and CExD Overview

Summarizing the technology data for the use within the optimization model, two kind of data

are collected for each technology. Based on the ecoinvent database, the CExD value for each

technology are collected at all available sizes. For the here stated technologies only one size is

currently available. All CExD values in Table 2.1 are extrapolated according to [Gerber et al.,

2011] as shown in Section 2.3.1 except the gas boiler. Two data sets at different sizes exist for

the gas boiler. For the oil boiler, ecoinvent states that in terms of production CExD, gas and oil

boiler are to be treated as similar equipment.

The cost data is based on the CREM’s CostDBCREM [Poumadère et al., 2015] data base. The

data contains detailed costs for the investment based on realized projects in Switzerland, such

as the civil engineering and the material costs. The operating costs contain the resources

cost and the maintenance costs, also based on realized projects. Due to confidentiality, no

detailed cost break down can be provided. Only aggregated values can be shown. Just like

ecoinvent, the cost database does not contain oil boilers neither, therefore the investment

cost for gas boilers are used for them. All functions are non-linear. They are approximated

and represented in a peace-wise linear function that does not add an additional error to the

already existing uncertainty of the data set. Throughout this work, the gas boiler is used as an

example, its investment cost function is defined as: 379.42 · s−0.437
u C HF /kW .
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Table 2.1 – Non renewable CExD Dones et al. [2007] and cost data based on CostDBCREM [Poumadère
et al., 2015] for utilities for a reference size of 1 MW: all CExD values are extrapolations except the gas

boiler and in ecoinvent gas and oil boiler are equal

Utility
CExD Costs Efficiency

Operating Production Operating Investment εth εel
kW h−E q.

kW h
kW h−E q.

kW
C HF
kW h

kC HF
kW − −

Gas Boiler 1.14 47 0.14 500 0.98 −
Wood Chips
Boiler

0.1-0.2 242 0.07-0.12 1500 0.85 −

Heat Pump 0−3.0/COP 123 0.25/COP 746 3.5 −
Co-generation
(Biogas) Engine

0.16-0.47 544 0.24 6000 0.55 0.35
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3 From Data to Heat Demand of Urban
Areas

The optimization model requires input data for the design of an urban energy system. Charac-

terizing the heat demand is the first step. The heat demand of an urban area can be defined

through available data. It is the starting point to a typical bottom up problem for the design

of an urban energy system: For the sizing of an energy system, the energy demand needs to

be known. For an urban energy system, the buildings represent the demand: how can the

demand be estimated? Looking at the available data, the demand can only be estimated with

different approaches.

This chapter gives an overview over common modeling approaches first. Then the data for the

models is discussed, pointing towards the available data sources in Switzerland. A validation

study shows the difficulty to represent the reality with models.

3.1 Modeling Approaches

Defining the energy demand of any given building can be done based on different methods.

Based on the amount of knowledge about a building, models of different precision can be used.

This chapter will examine the data collection and structure phase in order to systematically

feed models with the necessary input data.

In modeling, Swan and Ugursal [2009] distinguish between the two general approaches: top-

down and bottom-up. The top-down approaches do not need much data and the data can

be given in aggregated form. They lack the possibility to model advances in technologies

or individual end-use of energy. The bottom-up modeling can either use an engineering

approach such as building simulation models that represent physically a building with a

certain level of detail or statistical models fitted on available data. Foucquier et al. [2013] take a

different angle by classifying approaches according to the three methods: physical (white-box),

statistical (black-box) and hybrid (grey-box). The grey-box model try to take advantage of

the both approaches, the statistical one and the physical one. It is the most recent approach

developed of the three.
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During this thesis, three different models with different input data requirements are used. First

and only in this chapter, the energy-signature is used. It is a statistical model that establishes

a correlation between the power requirement and the outdoor temperature. Hammarsten

[1987] explains the energy signature and critically reviews it: he concludes that when moving

from yearly towards hourly estimations of the heat load with the energy signature, the method

becomes very unreliable. Second, the dynamic building simulation software bSol, a tool

with a reduced physical building model, used in [Page et al., 2014] and described by [Bonvin,

2004] can calculate the heat requirements. It is not used for the case study of this chapter,

but for the case studies with Verbier in Chapters 4, 5, 7 and 8. Third, CitySim [Kämpf and

Robinson, 2009], a tool for urban energy simulations is used for a detailed urban building

simulation. Compared to bSol, CitYSim uses a more detailed physical building, that also

considers interactions between buildings especially through its own irradiation model.

Considering the interactions of buildings requires additional information that a building

simulation does not automatically considers such as the distance between buildings and their

individual horizon using a 3-D model based on the whole scene. CitySim is therefore the tool

that needs the most information in order to calculate an energy demand. bSol requires less

input data than CitySim on the physical building properties and also ignores the position of

the buildings to each other, the individual horizon. The energy signature uses a so-called

backwards oriented modeling approach. The energy signature fits the annual consumption

using the heating degree days to estimate the losses of the building, that are regrouped in

a single term. The power is a linear function of the outdoor temperature: heating power is

required when the outdoor temperature falls below the cut of temperature Tcut for heating. k1

represents the slope of the signature or the specific heat losses proportional to the external

temperature Text , k2 is the y-intercept or the power required at 0 °Celsius.

Q̇(t ) =
{

k1 ·Text +k2 if Text < Tcut

0 otherwise
(3.1)

3.2 Available Data and its Sources

All previously discussed tools that use one of the discussed modeling approaches in Chapter

3.1 need to be fed with information. For this, yet another set of tools exists that combines

available measurements and statistical data systematically on an urban scale. Based on the

knowledge gained from studying Geneva’s thermal energy strategy with EnerGIS [Girardin

et al., 2010], the tool Planeter [Blanc et al., 2013] was developed. It is an implementation of

EnerGis, helping to quickly gather data of a given urban environment through the combination

of available annual measurements and statistical data. Both tools use the energy signature. In

addition, the project MEU was launched mainly as an energy management platform for bigger

communities and their utilities, which can also monitor performance on an annual basis.

MEU contains a data model based on the input data for the dynamic building simulation

software CitySim [Perez, 2014]. Fuel consumption measurements of all available years can
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be introduced and shown on a map. The fuel consumptions over several years vary mostly

because of different meteorological conditions. Considering the meteorological conditions

with the heating heating degree days [Day, 2006], allows to compare the consumption of

different years with each other.

The previously described tools help to define the energy demand, because they gather, com-

bine and complete the collected data, which will be described in further detail now. A data

source is written in italics, when it is used during the validation case study.

The following data categories exist: data about the user, geometrical data, physical building

data and data about the technical installations. Table 3.1 shows the different data sets that are

necessary for the characterization of the energy demand on the building and city level. The

table does not claimed to be complete, but contains the key elements needed for the energy

demand definition. It shows the wide range of details, that can be available during a project

for which real data is used.

Starting with the building’s user or inhabitant, the building usage gives a static information

about the expected user. Measurements or presence profiles can help to refine the information.

On the aggregated level, the total numbers of people working and/or living in the building

are often known by the administration. The geometrical data is normally easy to obtain:

recent efforts of the Swiss Federal Office of Topology allow to recover very detailed geometrical

data of buildings leading to an accurate 3-D model. With the horizon for a given city and a

3-D model of the buildings including all other obstacles such as trees, an individual, precise

horizon for each building can be derived from it leading to a precise calculation of solar

irradiation. Heated surface per building is a minimum requirement for the heat demand

estimation. The physical building data is generally used to create archetype buildings. The

construction year refers to the norms in place at the time and thus to the material used to

provide an information about the potential energy demand. For building simulation, the exact

physical building characteristics help to find a precise result. The minimal information about

the technical installations of the energy system are the heating system type and the annual

fuel consumption for the archetype buildings. The more additional details are known, the

finer the distinction between fuel consumption and the building’s energy demand can be

made.

On an urban level, often the energy system consumption of the whole area in an aggregated

form is known. Through the advances in image and radar data processing, the geometrical

data can be considered as precise. The remaining categories, the user’s behavior and the

physical building characteristics, remain a large source of error. Often, only the minimal set is

available.

The infrastructure options are a key information for the planning of future infrastructure

while considering the existing ones. Infrastructure includes storage installations, i.e. for the

use of renewable energy integration or/and peak shaving options. If possible the energy bill

should be available per service, either for heating, hot water production, cooling or electricity.
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Table 3.1 – Required information to define the energy demand of a building in pre-dimensioning study.
The minimum information is contained in the maximum data set

spatial levels
building data requirement:

neighborhood to city
maximal minimal

data about
the user

presence, behavior (hot water needs)
building
usage

number of work-
places and inhabi-
tants

geometrical
data

2.5 to 3-D building model, (win-
dows’) orientation, horizon, shadows
of other obstacles

heated
surface

surface, horizon

physical
building
data

U and G-values of all parts, air tight-
ness, type and year of refurbishment

con-
struction
year

building stock
studies and pro-
grams

energy
system

gains of appliances, technical equip-
ment installed, distribution tempera-
ture, radiator type, power of heating
system, indoor temperature

heating
system
type,
annual
fuel con-
sump-
tions

aggregated (an-
nual) fuel con-
sumptions and
meteorological
data over the
same period,
infrastructure

Detailed information about the different energy services are in particular important if only

electricity is used to deliver all services, because it is difficult to separate the consumption per

service without additional knowledge.

With the available fuel consumption, the demand can be characterized when the efficiency of

the energy supply system is known. Table 3.2 shows the minimal and maximal information

needed for this analysis of energy supply systems at urban scale. For an individual building

in an urban energy study, at least the efficiency of the technical installations and their size

should be known.

The data for the use within the described models and the needed data sets can be found in

different sources. One basic source are norms, especially building construction norms, which

are evolving over the years. However, the norms are not always respected, neither are all the

buildings maintained to ensure a constant fuel consumption while aging during the same

meteorological conditions.

For and in Switzerland, different data sources for the different levels exist: The Swiss Statistical

Office provides the Federal Building Registry that provides the minimal data set of Table 3.1.

More and more efforts are made on obtaining a nation wide 3-D model with all buildings. On

cantonal level the same information exists with a different structure in the cantonal building

registry. Some communities and cities, especially the ones that own their own utilities, are the

ones with supplementary information: annual fuel consumption data can be found based on
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Table 3.2 – Required information level to define the energy supply side for a given urban area. The
minimum information is contained in the maximum data set.

spatial levels
building

neighborhood to city
maximal data minimal data

technical
installation

biomass, wind and
solar potential,
(seasonal) storage
installation

efficiency of
(existing) instal-
lation(s), size of
installations

potential of biomass, wind,
solar, (seasonal) storage
installation, heat pump ,
available power on existing
infrastructure, inventory
of thermal discharges,
source(s) of electricity,
political goals

the billing of it. On the technical and physical level, the construction permit can sometimes

be accessed to gain information that completes the maximal data set. Often however, this

information can not be accessed directly due to data protection laws. Interviews with the cities

or utility companies, for example the construction permit department, can complete the data

sets. The interviews with some of the utility companies revealed that often a low amount of

data is recorded (sometimes still manually) on how their installations are currently running

for the monitoring purposes. Others have already automated systems set up that give alarms,

when the efficiency is dropping below a certain threshold.

The chimney sweeper’s data can help for all installations requiring chimneys: the age of the

installation and the size is often noted. For solar installations, PV or thermal collectors, image

treatment of areal photos can help to get an idea of the size. Efficiency remains however

unknown and also information about the combination with a storage of any kind and size.

The Federal Commercial Registry shows the branch and the number of equivalent full time

jobs and the type of industry or businesses. Obtaining systematically more information about

the enterprises and their fuel or electricity consumption remains difficult.

In addition to the named sources, historical data sets might be available such as photos,

studies oriented towards fuel consumption, best practice construction guides from a city,

cantonal or federal office. Exploiting them can be useful, however is also very time consuming.

For the use of the heat cascade, Kemp [Chapter 9.6 2007, pp 369] suggests to create a list of

all services requiring heating or cooling. In urban environments, these are space heating, do-

mestic hot water production and (free) cooling. Sometimes refrigeration is also needed. Each

service should be defined with a temperature-power profile as a function of time. Available

resources are classified in the same way. However, no data set on the urban level exists that

systematically contains this information per building. Girardin [2012] derived the temperature

from a combination of factors, mainly the building’s heating system and the buildings age.
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3.3 Data Validation Case Study

For this study, all available data sets discussed in the previous section at urban scale for the

3 cities Neuchâtel, La Chaux-de-Fonds and Martigny are used. The data model structuring

the available data sets is based on an energy flow graph for the planning, monitoring and

evaluation of urban energy systems. It contains a spatial dimension for map creation and a

temporal dimension for monitoring over all available years.

Based on annual energy balances, the oriented graph traces all energy flows within the bound-

aries of the chosen district that concern the following three services: heating, hot water

production and electricity. From source nodes that represent resources, the energy flows

towards energy distribution or conversion system nodes. Each distribution network node

contains information about the physical connections and additional information about the

type of contract. From there on, further edges can either connect to network nodes, energy

conversion system nodes or directly to sinks that represent the building’s energy demand.

Each node has one or many input flow edges and output flow edges. Each flow-edge contains

a fraction equal to the amount of the start and stop node’s total transported energy. A network

node has a loss factor, therefore the input does not equal the output. Energy conversion system

nodes rely on a separate set of simple energy conversion models for different technologies.

When measurements and simulation values exist for the same node, the measurement value

is used. Perez [2014, Chapter 3] describes the conceptual data framework in detail.

With the help of this graph, about 50 percent of the final energy use within the system’s

boundaries can be traced. After the integration of the above stated data sets into the data base

of MEU, measurements and simulations can be systematically compared.

First, CitySim, the dynamic urban scale building simulator, estimates the heating needs

without the hot water requirements based on the geometrical and physical building data. The

only very accurate data set is the building footprint from the land registry office. With the

Swiss norm [Swiss Society of Engineers and Architects, 2006], which contains the standard use

of buildings and statistical presence data, presence profiles for each building type are created

and used during the simulation. The physical building data is already integrated into CitySim,

relying on past building studies made.

The efficiency of a given technology in a building is either contained as a measured value

in the data or estimated based on the Swiss norm [Swiss Society of Engineers and Architects,

2009a], which provides a conservative annual efficiency estimate. Most of the data concerning

the energy conversion systems is based on default values defined for each technology type.

During this case study, only technical data from central district heating facilities or public

buildings could be easily accessed. Therefore mainly the default values of Table 3.3 are used.

No data is available concerning solar thermal nor photovoltaics production, wood use in stoves

or installed energy storage. Because the data about renewable energy or storage systems is

missing, only rarely systems with multiple energy conversion systems, multi-energy system,

exist in the case study. If the energy produced with renewable resources is locally consumed,
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the overall energy bill will be reduced. As a consequence, buildings might be classified better

than they should be. In addition, a large difference between the estimated energy demand via

simulation might appear. In almost all cases, a combination of a wood boiler or stove with

another boiler lead to a much lower energy bill and are responsible for an inexplicable gap

between energy demand and energy delivered.

Table 3.3 – First Law annual technology efficiency

Technology Efficiency

Wood Boiler 0.65
Wood Pellets Boiler 0.70
Gas and Oil Boiler (condensing) 0.85
Gas and Oil Boiler 0.80
Electrical Boiler 0.93
Heat Exchanger 0.93
Heat Pump 3.4 (COP)

Measurements in form of the annual energy consumption are almost citywide available.

Most measurements are available as a sum of heating and hot water demand for residential

buildings. With the default values stated in Table 3.4, the fraction of the heating requirement

can be estimated and subtracted from the other services combined in the annual energy

consumption. The norm provides a guideline for the separation of the services. They do

not provide information about a combination of technologies that could offer this service

efficiently.

Measurements, namely the annual energy consumption Q, and simulations of the annual

heating demand Qsd can be compared to calculate the percentage error (PE) with Equation

(3.2). This allows to compare each service for each building in terms of annual energy demand.

Equation (3.2) can be applied to each building with an individual measured heating fuel con-

sumption Q that does not contain the hot water production: the annual energy consumption

Q is multiplied with the efficiency εtechnol og y of the installed technology to obtain the final

energy demand. The simulated heating demand by CitySim Qsd represents the estimation of

it.

PE = Qsd −Q ·εtechnol og y

Q ·εtechnol og y
·100% (3.2)

Equation (3.4) is used when a service needs to be excluded such as the hot water use Qhw .

The hot water use is estimated with the Swiss norm [Swiss Society of Engineers and Architects,
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Table 3.4 – Default values used based on [Swiss Society of Engineers and Architects, 2006] to derive
heating requirements from measurements which combine services such as electricity and/or hot water

need with heating requirements for different building types

Category
Electricity

Need
[M J/(m2an)]

Hot Water
Need

[M J/(m2an)]

T min set
point
[°C ]

apartment 100 75 21

building
individual home

80 50 21

administrative 80 25 21

schools 40 25 21

sales 120 25 21

restauration 120 200 21

meeting venues 60 50 21

hospitals 100 100 23

industry 60 25 18

stores 20 5 18

sports installations 20 300 18

indoor swimming pools 200 300 28

2009b] which is providing specific annual hot water demands qhw that only needs to be

multiplied by the heated surface Ah of building.

fheati ng = Q −Qhw

Q
Qhw = qhw ∗ Ah (3.3)

PE = Qsd −Q ·εtechnolog y · fheati ng

Q ·εtechnol og y · fheati ng
·100% (3.4)

When the technology is connected to several buildings, such as in a district heating system,

only the building’s fraction part fBui ldi ng is taken into account (Equation (3.5)).

PE = Qsd −Q ·εtechnolog y · fheati ng · fBui ldi ng

Q ·εtechnol og y · fheati ng · fBui ldi ng
·100% (3.5)

The fraction fBui ldi ng is the proportion of the heat demand for the given building over the

sum of all connected buildings.

fBui ldi ng = Building Heat Demand∑
Building Heat Demands

(3.6)
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The building’s heating demand is also estimated with the energy signature using the same

data and the meteorological weather data for the city of La Chaux-de-Fonds, Switzerland.

The calibration of the energy signature model is shown in detail in Girardin et al. [2010]: the

heating cut-off temperature is estimated based on experience or measurements allowing to

integrate the annual energy consumption with the outdoor temperature.

3.3.1 Results

−100 −50 0 50 100 150 200 250 300 350 400 450 500

< 1920 CS

< 1920 ES

=> 2000 CS

=> 2000 ES

[1920-1970) CS

[1920-1970) ES

[1970-2000) CS

[1970-2000) ES

Percentage Error [%]

Figure 3.1 – La Chaux-de-Fonds: boxplot with outlier, marked through +, and mean, marked through
vertical the red line in the box, of the error between measurement and estimation of the energy
demand with either the energy signature (ES) or CitySim (CS) for different construction periods

When studying Figure 3.1, both methods generally over-estimate the energy demand. Very old

buildings as well as very new residential buildings seem to be difficult to estimate correctly as

they are highly overestimated. New buildings represent only five percent of all available build-

ings, it is therefore difficult to evaluate these buildings in more detail. Residential buildings

constructed between 1920 to 2000 are in average correctly simulated, however high standard

deviations indicate that more knowledge of the building could help.

Comparing these results to other cities about provided data, show that high standard devia-

tions and high mean errors. More work on collecting the individual building data is needed.

For the moment, it is highly likely that the error between the real and the estimated demand for

the buildings that do not have been verified individually, show the same differences. Therefore

it is very likely to overestimate the total energy demand by about at least 20% with the energy

signature and 50% with the physical building simulation shown in table 3.5 for each city. No

systematic error was identified, so that the source leading to the gap between estimation and

simulation needs to be assessed with an individual building per building approach. If the
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Table 3.5 – Results across all cities for which measured data is available

City
Number of
measurements

Mean
consumption

PE error ± standard deviation
CitySim Energy signature

La Chaux-de-Fonds 237 of 307 126 kW h
year∗m2 50% ± 131 33% ± 75

Neuchatel 104 of 152 166 kW h
year∗m2 74% ± 97 19% ± 54

Martigny 69 of 76 78 kW h
year∗m2 103% ± 88 20% ± 48

physical building data base could be taken as a correct reference, MEU can systematically

identify faulty measurements or performance changes of buildings.

After the previous study, Perez et al. [2013] repeated the same effort on a bigger sample while

using a different error measure, the logarithmic discrepancy factor (DF):

f2 = log2

(
simulated value

adapted or measured value

)
(3.7)

The logarithmic error has the advantage of being a symmetrical error, 0 means it is a perfect

match. A result of −1 corresponds to a simulated value twice smaller than the adapted value, 1

means the opposite, a simulated value that is twice as big. The authors spent a considerable

amount of time searching for different default values than given by the stated norms to

find a better predictions for the dynamic building simulation and efficiences of the energy

conversion technologies. The results in Figure 3.2 shows that the situation is clearly improved

compared to the original version which only used default values.

The variance can not be improved in most cases, however the average can be centered closer

to 0, where it should be when the simulation correctly estimates the annual energy demand.

According to Perez et al. [2013] the most influential factor remains the behavior, which can not

be addressed within this framework. On an urban level, average buildings can be calculated,

whereas the individual building remain much less reliable. Additional energy systems such

as solar thermal systems or wood stoves were not studied, because no detailed information

about them exist concerning their existence, size and usage.

Nevertheless this approach prioritizes the order of buildings to study in more detail by com-

bining the error measure and the total energy demand of the buildings. The consumers with a

high energy demand that are not well understood yet should be studied first.

During the study, Perez et al. [2013] notes that each community has individual historical

architectural styles of buildings. Default data sets therefore cannot be transferred from one

community to another even though the geographical distance between them is with only

between 20 to 150 km rather small. The different environmental conditions, La Chaux-de-

Fonds is situated at 1000m altitude in the Jura mountain chain compared to Neuchâtel facing

south east on a lake at only 430−500m altitude and Martigny (470m) in the Rhone valley

surrounded by the Swiss Alps, can explain this.
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In addition, this study does not resolve the problem for individual buildings: it introduces for

all model input parameters a most likely value, therefore still high variations for individual

buildings are possible. Besides the high variation for an individual building, a second case

is possible: One might find no difference between an estimation and a measurement for an

annual energy consumption, but still not represent the reality, because several sets of input

parameters for the simulation can lead to the same result. Errors in the input parameters can

cancel each other out, when only looking at the annual energy consumption. For example,

in the case of a partial energetic retrofit, with the given data during this case study, it will be

difficult to distinguish between the heat losses through windows, walls and ventilation. A visit

of the building is still highly recommended to ensure that the best measure is chosen.

3.4 Conclusion

The results show that the model and the input data should both work on the same level of

detail. Here two models are compared: a detailed physical building model and a statistical

model.

On one side, the draw-back of a statistical model, the energy signature model, are evident

when going into detail, e.g. when using more detailed physical building data, when trying

to calculate hourly values or when the building’s thermal capacity should be addressed. On

the other side, very detailed models such as CitySim need a large quantity and high quality of

input data to explain annual fuel consumption. The results strongly depend on the presence

profile and a fixed internal temperature for the building besides the information about the

physical building properties. All information are rarely available at high precision. When

taking only default values, hardly no difference between the energy signature and detailed

building simulation appears in terms of result’s precision. Complex physical models can be

calibrated to fit to the data better based on additional physical information as shown during

the work of Perez et al. [2013]. The energy signature can only be calibrated, when the building’s

correlation between outdoor temperature and heat load remains linear. Either time is spend

on completing the input data on an urban level at the necessary detail or simpler models

should be considered.

Until now, most of the time only annual measurements exist. Therefore, the energy demand

can only be expressed as a function of the time with a more precise resolution through the

help of more detailed models. From the available models, only the physical models can pre-

dict based on the annual fuel consumption values an estimated hourly heat demand profile.

However the variation at urban scale remains large. Even though the data collection is very

detailed, the nominal power of installations cannot be addressed because of a lack of data:

When the nominal power of individual technologies remains unknown, it is difficult to address

the difference between the annual efficiency and the operating efficiency to provide a more

detailed energy system design suggestions. Frequent on-off switching of a technology is diag-

nosed as a low annual efficiency. Thermal energy storage integration into the energy system
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might already be able to address this issue, because it might reduce on-off switching. However

no information about existing storage could be found neither whether the given building has

the space to install one. For the successful integration from an exergetic or economic point

of view, the time dependent power-temperature profiles of the studied buildings should be

known.

After the heat demand characterization, when studying the available norms one can see an

additional problem: No information about the sizing of multiple technology systems is given

in the existing norms. For example, when integrating solar energy, energy storage and an

additional technology ensuring the desired services, need to be sized.

Finally, when looking back on this study and other similar studies at urban scale, it can be

concluded that often around 50% of the project’s time is spend on data collection, structuring,

understanding, verification and searching for complementary information. On one side, for

research in field of urban energy design using real data sets allows closing gaps in existing

methodologies. On the other side, it is also a lot of time spent on preliminary work not directly

related to developing urban energy design methodologies.

Based on the findings of this chapter, in the next ones the following questions are addressed:

• Based on building simulation, how can a time dependent power profile be integrated

into the system design while keeping a MILP problem solvable?

• How can the design of complex energy systems be addressed including thermal storage

and solar thermal panels?

• Finally, how can uncertainty be integrated in the design process?
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Figure 3.2 – Symmetric discrepancy factor La Chaux-de-Fonds, Martigny and Neuchatel from [Perez
et al., 2013]. The boxplots show the error between measurement and CitySim simulations for different

construction periods. Figures from [Perez et al., 2013]
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4 Reduction of the Input Data Set

“Humans are good at discerning subtle patterns that are really there, but

equally so at imagining them when they are altogether absent. ”
Carl Sagan

The motivation of this chapter is described by the following observation: when sizing equip-

ment of an energy system, practitioners identify extreme conditions in order to size their

energy systems (that contains often only one technology), despite the fact that these condi-

tions occure only several hours during a year. A security margin is often added to take into

consideration the aging of buildings and equipments. Furthermore, equipments are only

available in discrete sizes, meaning that the next available higher capacity is typically chosen.

As an advance, normal operating conditions are slowly starting to be taken into consideration.

For sizing more and more complex energy system, all conditions from extreme, whether

maximum or minimum load, to average conditions should be represented as input for the

sizing ensuring that the system can respond to them accordingly to the design ideas.

Commonly during the energy system design for buildings, the energy demand is defined for a

typical year. Often already the demand is increased: Porges [2001, p.91] states that the margin

added to the heat loss calculations are between zero to twenty percent for buildings (up to

50 % if not in daily use) that have exposed north surfaces. When the equipment is sized to

satisfy the demand, an additional safety margin of 10 to 15 % is included [Porges, 2001, p.119].

Because the buildings represent the energy demand in urban areas, the overestimate is highly

likely to be found in the urban energy system. Ensuring that not simply all safety margins are

added, so that the actual system might be over sized, is a responsibility of the energy design

process and implies to understand all steps of the design process.

Simplifying the 25 years of lifetime to an annual demand simplifies the approach. But it

neglects that the actual problem is a design problem over 25 years (or the lifetime of the energy
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system that can also be longer). However, the hypothesis of constant annual demand for

each year thanks to the typical year allows to only calculate one year reducing significantly

the overall problem size. The cyclic climatic conditions during the year, which are the main

driving force for the energy system, further encourage to use only one year. Using a typical

year ensures representing also the extreme events in their frequency of appearance.

This typical year contains a succession of typical days. Given the mathematical and compu-

tational complexity of the problem, a trade-off must be made between the amount of data

and the expected quality of the results. Through this approach, we are able to reduce the

overall amount of data while preserving its key elements in order to ensure the proper sizing of

equipment while significantly reducing the amount of data to be handled by in the model. This

is particular important for the use in an MILP problem, where integer variables are created as

a function of the number of periods. Then reducing the number of periods has a direct impact

on the problem size and also impacts the ability of being able to resolve it.

The here presented approach identifies representative days that can be used for sizing of

energy systems. Choosing representative days for the demand and supply when both vary

over time, impact the energy system design. The size of the input data set has an important

impact on the solving time (or solvability) of any optimization problem. Therefore redundant

data should be reduced to the minimum required data for the task to be performed. As the

input data for the design of urban energy systems contains spatial and temporal data sets,

different levels of reduction can be applied to obtain a smaller data set without changing the

overall result of the optimization.

Firstly, the hourly annual heat demand is reduced to several operating periods representing

the year with a deterministic approach. They can be reduced again if necessary. Secondly, the

composite curves of a group of buildings can be reduced limiting the amount of individual

streams considered in the heat cascade through aggregation on a district level without loosing

accuracy.

4.1 State of the Art

The goal of clustering is the reduction of input data, a numerical way of finding groups in

data. Tan et al. [2005, Chapter 8] states that clustering techniques can reduce the number of

data points significantly. Different clustering methods exist. The challenge is the identifica-

tion of the right number of clusters k, that is from the computationally point of view while

maintaining its critical information.

The technique was first proposed by Lloyd [1982] in 1957 even though he published it only

in 1982. The goal of clustering is an objective and stable classification of data into groups or

clusters [Everitt et al., 2011d, p.4]. A cluster is defined by its internal cohesion, or homogeneity,

and external isolation, or separation [Everitt et al., 2011d, p.7]. In the field of artificial intelli-
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gence, these techniques are used for machine learning. In other fields of research such as a

bio-medical research [Xu and Wunsch, 2010], they are also heavily used.

In the field of energy system engineering, Ortiga et al. [2011] uses k-means to demonstrate the

possibility of reducing an annual hourly data to several key days. k-means has the disadvantage

of being a heuristic approach that starts by randomly picking a k days out of the data and

grouping around them. Therefore, the clustering needs to be repeated often enough to ensure

that not only a local minimum is found but a global one. In addition, k-means creates new

data points, because a cluster is characterized through the mean value of all points within

the cluster. The authors use the cumulative energy demand curve to judge whether the

representation is meaningful. Peak load periods are often added manually because they do

not appear automatically within the mean values representing the data set. Rager et al. [2013a]

follow the same approach.

Fazlollahi et al. [2014b] builds up on this approach formalizing indicators that describe the

quality of the clustering. Most of the indicators are meaningful in the field of clustering,

however they are difficult to use for the energy system designer who is not that exposed to clus-

tering. For their first case study, two strongly correlated variables, outdoor temperature and

the heat demand calculated with the energy signature, are clustered. Testing for correlation

would probably show that it is efficient to work with one of the two variables.

Domínguez-Muñoz et al. [2011] works with k-medoids, a method from the same clustering

family. The major difference between k-medoids and k-means is that k-medoids selects cluster

centers from within the cluster points instead of using an average. They start by selecting

manually the peak load days and cluster the remaining days. With the help of scaling factors

on the cluster days, they ensure the annual energy balance remains correct.

Additional approaches using a genetic algorithm for the same problem are proposed by

Marechal and Kalitventzeff [2003] and Bungener et al. [2013]. For the case studies shown, they

provide good results, with the drawback of depending on a certain number of runs from the

genetic algorithm to ensure convergence to an acceptable solution.

The literature review reveals that the clustering methods used rely on repetition to ensure

finding an acceptable or even optimal solution of the clustering. It would be interesting to

study whether a deterministic method can get to the same result. All approaches add the

extreme periods manually to the clustering, are there ways to include it directly? Also, the

combination of indicators judging the quality of the clustering could be improved to a more

relevant combination for system design: it should rely on the combination of numerical and

graphical indicators at the same time. In addition, the number of day alternation in a sequence

is not addressed in the literature, because in the shown applications no storage unit with

temperature levels exist that interconnects the different typical days.
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4.2 Deterministic Selection of typical operating Periods

The clusters are judged with a set of measures ensuring that only meaningful clusters are

retained to guarantee a certain quality. This ensures to reduce the data points while keeping a

strong fit between the data and the created clusters.

In almost all clustering application, the number of groups or clusters that should be identified

in the data is an input variable of the clustering algorithm. This bears the risk that clusters

are created that may not represent a physical reality because the clustering algorithms always

provide an answer with the number of groups requested. The algorithms will output the

number of groups requested, even, if the request number of groups does not make sense.

Based on Everitt et al. [2011b, p.261-262], a typical cluster analysis contains the following

steps:

1. identification of variables (and with correlation tests between them)

2. choice of clustering method and algorithm

3. standardization of variables

4. choice of proximity measure

5. identification of the best number of clusters

6. interpretation of the results

These mentioned steps are developed in the following sections. There is also an interest in

defining outlier points in order to not include them in an optimization, though this is not done

in this work.

4.2.1 Variables

The input set considers two key values for the pre-design of energy systems:

1. Heat load (or outside temperature as they are highly correlated),

2. Production of heat with solar thermal panels (or irradiation on a given building).

More variables can be added, if the (pre-)design model can use more information. Examples

can be the electricity price or demand, if time dependent functions or measurements exist.

Furthermore, it should be assured that the variables are tested for correlation. If the variables

are correlated, the cluster analysis has a high chance of following this pattern. Therefore,

in some application it might be possible to eliminate variables from the analysis. Pearson’s

product-moment coefficient or Spearman’s rank correlation coefficient offer such tests based

on the covariance.

Applying this to energy system design means that either heat load or outside temperature

is chosen as a value to be clustered. Figure 4.1 shows that they are inversely proportionally

linked: When it is very cold outside, the heat load to be delivered to a building is increasing.
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Figure 4.1 is based on the dynamic simulation of a multi-family house by Dorer et al. [2005]

for the Norm 380/1 [Swiss Society of Engineers and Architects, 2009a]. The data has a Pearson

Coefficient of −0.90 and an adjusted r 2 values of 0.81. The test of correlation shows that one

variable can be used to explain the other one, when accepting the threshold found between

the outdoor temperature and the heating load. If the same observations are made for passive
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Figure 4.1 – Energy signature of multi-family-house used for the Norm Swiss Society of Engineers and
Architects [2009a] based on a TRYNSIS-model of Dorer et al. [2005]

house buildings, the relation between outside temperature and heat load show are lower value

of correlation.

Considering multiple variables, so called multi-dimensional data, often not all variables are

meaningful. Generally speaking with more variables the problem tends to get increasingly

sparse. The distance or dissimilarity measure such as the Euclidean distance becomes less

important as the volume between points in a multi-dimensional space increases a lot more[Tan

et al., 2005, p.572]:

49



Chapter 4. Reduction of the Input Data Set

“Consider that as the number of points increases, the volume increases

rapidly, and unless the number of (data) points grows exponentially with

the number of dimensions, the density tends to 0." ”Therefore keeping the number of dimensions as low as possible helps limiting this problem

and ensures a clearer interpretation of the clustering results.

The data needs to be arranged in rows representing the independent observations and columns

representing the variables. 24 hours are chosen to represent the daily variation of both

dimensions. It also represents the biological cycle of the building’s users. In other applications,

a different time interval may be chosen to represent the particularities of the problem. The

number of days of a year represent the number of N independent observations. The underlying

hypothesis is that the periods chosen are independent from each other. Each hour has

two variables, heat production from a solar panel and the heat load from the chosen urban

environment. Therefore a day contains 48 variables, 24 for each dimension.

Considering two dimensions, one for the hourly heat load q and one for the hourly solar

irradiation i with 8760 values each, the individual values are arranged into the clustering

matrix:


q1,1 q1,2 · · · q1,24 i1,1 i1,2 · · · i1,24

q2,1 q2,2 · · · q2,24 i2,1 i2,2 · · · i2,24
...

...
. . .

...
...

...
. . .

...

q365,1 q365,2 · · · q365,24 i365,1 i365,2 · · · i365,24

.

4.2.2 Clustering Algorithm Choice

Generally, the techniques can be divided into supervised and unsupervised (machine) learning.

As no result is known before the reduction, only unsupervised learning or so called clustering

can be used. Within this approach, the majority of time is therefore spent on the justification

of a solution found thanks to clustering techniques.

Everitt et al. [2011c] provides an overview of the field, while Xu and Wunsch [2010] review

common techniques used in biomedical research and compare them. The field is large, the

number of publications in the sciencedirect data base using the term "cluster analysis" has

been constantly over 15 000 over the last 20 years. Xu and Wunsch [2010] review 35 clustering

algorithm families and compares them under different criteria such as scalability, robustness

and user-dependent cluster number k as input. Each of these families has numerous different

implementations that can lead to different results.

The clustering field can be further divided into partitional or hierarchical clustering. Partition-

ing divides n objects in k classes. Hierarchical clustering goes a step further: It also considers

hierarchically-nested sets of such partitions[A. D. Gordon, 1999, p.69] showing the whole tree,

e.g. an object belonging to a species, a genus, a family instead of only showing the species.
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Other methods exist but are less frequently used and can be found in Everitt et al. [2011f] such

as density based methods, defining clusters as areas of high density. In this work partitional

clustering is used (as the hierarchy between the clusters is of no importance).

Vinod [1969] formulated the clustering algorithm as an optimization problem for example

minimizing the within group distance of all clusters. A. D. Gordon [1999, p.50] gives a resume

over mathematical programming formulations. This approach allows then to systematically

compare solutions with a different cluster number k, because for each k the best solution can

be calculated. When only considering algorithms that definitely assign a data point to one of

the k cluster centers, the three remaining techniques most frequently used distinguish each

other mainly in the way they define the cluster’s center:

1. k-means clustering [Lloyd, 1982] chooses from all data points assigned to one cluster

the center by calculating the algorithmic mean. Therefore new data points are created;

2. k-medians clustering takes the median instead of the mean to define the cluster center;

3. k-medoids clustering [Kaufman and Rousseeuw, 2005, Chapter 2] chooses data points

as the cluster center.

In this work, a specific implementation of the k-medoids is chosen: Partitioning Around

Medoids (PAM). k-medoids uses the same approach as k-means, choosing randomly start

clusters k. PAM uses a deterministic build phase to choose the starting points. According

to Reynolds et al. [2006], PAM always provides better results than k-medoids when the build

phase has enough time to finish.

The medoid element is an analogy to the centroid, a center element. It is less sensitive to

outliers and preserves the original profile as an original point from the chosen data set. The

k-medoid is not a heuristic approach, meaning that one execution with the same input data

set will always give the same result again.

According to Kaufman and Rousseeuw [2005, p.177], "k-medoids is more robust than the error

sum of squares in most methods" (such as k-means). Xu and Wunsch [2010] confirms this. R

Core Team [2014] and Reynolds et al. [2006] cite, that PAM has the advantage of providing a

graphical display, the silhouette plot, as well as numerical value for the silhouette with one

dimensional data sets. In Reynolds et al. [2006, Section 8.6], the quality of the clustering is

accessed showing that in most cases, PAM outperforms other partitional clustering techniques

with respect to the silhouette coefficient. The silhouette coefficient combines the measure

of cohesion within its cluster and separation to other clusters in 1 coefficient, definition in

Section 4.2.6. However, PAM often needs more time to find the result.

For speed considerations, Clustering for Large Applications (CLARA) [Kaufman and Rousseeuw,

2005, Chapter 3] can be used when the build phase of PAM [Kaufman and Rousseeuw, 2005,

Chapter 2] takes too long. This happens for big data sets and high k cluster numbers.
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4.2.3 Partitioning around Medoids

Since the k-medoids is not used as frequently as k-means, it is explained briefly.

For this work, the original version of PAM from [Kaufman and Rousseeuw, 2005, Chapter 2] in

the [R Core Team, 2014] package cluster is used. It works within two phases as described in

Data Mining Algorithms In R, based on [R Core Team, 2014] and [Kaufman and Rousseeuw,

2005, Chapter 2]:

“A greedy build phase:

1. choose k entities to become the medoids, or in case these entities

were provided use them as the medoids;

2. calculate the dissimilarity matrix if it was not informed(given);

3. assign every entity to its closest medoid;

swap phase:

4. for each cluster search if any of the entities of the cluster lower the

average dissimilarity coefficient; if it does select the entity that lower

the most this coefficient as the medoid for this cluster;

5. if at least the medoid from one cluster has changed go to (3), else end

the algorithm. ”Each data point is a member of one cluster. Each cluster does have at least one member. The

run is repeated if the cluster remains empty.

4.2.4 Standardization of a multi-dimensional Data Set

When several data sets are used, the data needs to be standardized. This avoids that one data

set determines the cluster choice when its numerical values are bigger than the ones of other

sets.

For this purpose, the standardized data can be multiplied with a weight. Depending on the

impacts of outliners in the data set, there might be a need to eliminate them. Especially

clusters based on the euclidean distances are sensible to this.

For the standardization of data, the data is whitened as proposed by Steinley [2004] and

Milligan and Cooper [1988] over the total range of the variable:

Z1 = X

max(X )−mi n(X )
,or (4.1)

Z2 = X −mi n(X )

max(X )−mi n(X )
. (4.2)
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Often the z-score is used, defined as:

Z3 = X −m

s
(4.3)

assuming that s, the mean absolute deviation of the variable X , is nonzero. m is the mean

value of the variable X .

Again, according to Steinley [2004] and Milligan and Cooper [1988], the methods Z1 (equation

4.1) and Z2 (equation 4.2) are in general the most promising one. Compared to the z-score

shown in equation 4.3, it avoids depending on a mean value that might be strongly affected by

an outlier.

Kaufman and Rousseeuw [2005, p11] continues with the following considerations:

“From a philosophical point of view, standardization does not really solve

the problem. Indeed, the choice of measurement units gives rise to relative

weights of the variables. Expressing a variable in smaller units will lead to

a larger range for that variable, which will then have a large effect on the

resulting structure. On the other hand, by standardizing one attempts to

give all variables an equal weight, in the hope of achieving objectivity. As

such, it may be used by a practitioner who possesses no prior knowledge.

However, it may well be that some variables are intrinsically more important

than others in a particular application, and then the assignment of weights

should be based on subject-matter knowledge (see, e.g., Abrahamowicz,

1985). On the other hand, there have been attempts to devise clustering

techniques that are independent of the scale of the variables (Friedman and

Rubin, 1967). The proposal of Hardy and Rasson (1982) is to search for a

partition that minimizes the total volume of the convex hulls of the clusters.

In principle such a method is invariant with respect to linear transformations

of the data, but unfortunately no algorithm exists for its implementation

(except for an approximation that is restricted to two dimensions). Therefore,

the dilemma of standardization appears unavoidable at present and the

programs described in this book leave the choice up to the user. ”Applying the standardization 4.2 to the same example as in 4.2.1 variables leads to

Z2(q) =



q1,1

q1,2
...

q365,24


−mi n(q)

max(q)−mi n(q) , Z2(i ) =



i1,1

i1,2
...

i365,24


−mi n(i )

max(i )−mi n(i ) :
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

q1,1 q1,2 · · · q1,24

q2,1 q2,2 · · · q2,24
...

...
. . .

...

q365,1 q365,2 · · · q365,24


−mi n(q)

max(q)−mi n(q)



i1,1 i1,2 · · · i1,24

i2,1 i2,2 · · · i2,24
...

...
. . .

...

i365,1 i365,2 · · · i365,24


−mi n(i )

max(i )−mi n(i ) .

4.2.5 Choice of Distance Function

The choice in literature is large [Everitt et al., 2011e, p50] for continuous data:

1. Euclidean Distance (D1)

2. Squared Euclidean Distance

3. City block or Manhattan Distance (D2)

4. Minkowski distance (D3)

5. Maximum Distance (D4)

6. Pearson correlation (D5)

7. Angular separation or cosine similarity (D6)

Other distance functions exist for qualitative (or also called discrete or categorical) data. In

this work the squared euclidean distance has been chosen as a dissimilarity measure between

clusters. The squared Euclidean distance does not use the physical distance but the squared

physical distance.

di , j = [
p∑

k=1
(xi k −x j k )2] (4.4)

It discriminates therefore data points that are further outside more than closer points.

This choice is justified with regard to the sizing of the energy system’s equipment: Maximum

load needs to be represented. The squared ensures higher penalties within the clustering

algorithm as the Euclidean distance does. Therefore, peaks are more likely to be represented

as cluster centers compared to the Euclidean distance. When this is not the case, either a

sizing hour can be added or the number of clusters k can be increased.

4.2.6 Optimal Cluster Number Choice: Clustering Validity Indicators for the De-
sign of Energy Systems

The goal to design an urban energy system is kept in mind when performing and especially

validating the clustering results. The indicators to validate the results are adapted to use a

comprehensive choice from of typical clustering quality indicators and a set of indicators

relevant to energy system design. Only internal and relative tests are performed and no

external validation criteria is used.
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The literature yields a lot of general methods that can be applied on data sets in order to define

the correct number of clusters to be chosen, [Milligan and Cooper, 1985], [Tibshirani et al.,

2001], [Liu et al., 2013]. Unfortunately none of them can deliver always the correct result for

temporal data sets. Therefore a mix of criteria is applied to identify the best compromise out

of the given indicators.

As mentioned, the number of clusters k to be found, needs to be specified before running

the algorithm. Therefore, a simple benchmark is implemented, comparing systematically

the results for different runs for number of k clusters. The results are compared using the

following indicators:

1. Silhouette Coefficient proposed by Rousseeuw [1987],

2. mean squared error and the mean absolute error,

3. sequence length,

4. overall and per dimension percentage error,

5. relative minimal and maximum (peak) load percentage per dimension and

6. a qualitative graphical validation.

The Silhouette Coefficient [Rousseeuw, 1987] combines the measure of cohesion within its

cluster and separation with the other clusters of each individual point i , which is a mem-

ber of a cluster a. ai represents the average distance to all other points within its cluster.

Then the average distance to all remaining points that are not in the same cluster, bi is calcu-

lated. Rousseeuw [1987], Tan et al. [2005, p.541] define the silhouette coefficient according to

equation 4.5:

si = (bi −ai )

max(ai ,bi )
. (4.5)

The range of si is between −1 and +1. Table 4.1 based on Kaufman and Rousseeuw [2005,

p.88] proposes an interpretation of the silhouette coefficient. Positive values towards one +1

indicate that the average distance to other clusters is bigger than the average distance between

the points of the same cluster. Small to negative values for si indicates meaningless clusters.

Table 4.1 – Subjective interpretation of the Silhouette Coefficient (SC) proposed by Kaufman and
Rousseeuw [2005, p.88] for two dimensional data sets

SC Proposed Interpretation
0.71-1.00 A Strong structure has been found
0.51-0.70 A reasonable structure has been found

0.26-0.50
The structure is weak and could be artificial; please
try additional methods on this data set

≤ 0.25 No substantial structure has been found

The mean squared error MSE is the second moment or variance of the error including the

bias. It is a key indicator to judge whether the clusters chosen predict well the original data
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set. When the chosen clusters represent well the original data, the values for the MSE and the

mean absolute error M AE will tend to be close to zero or zero if the fit is perfect. Practically

this will never happen, however solutions with values closer to zero represent better solutions.

When comparing two evaluations of PAM runs, the one with the lower scatter is preferred.

According to Tan et al. [2005, p.500], the sum of the squared error SSE is defined as

MSE = SSE

n −m
(4.6)

SSE =
K∑

i=1

∑
x∈Ci

di st (ci , x)2 (4.7)

SSE =
K∑

i=1

∑
x∈Ci

(ci −x)2 (4.8)

where

n refers to the sample size,

m refers to the number of parameters in the model,

K refers to the total number of clusters,

Ci refers to the cluster i ,

ci represents the cluster i ’s center point,

x represents the members of the cluster Ci ,

di st represents a distance measure.

In Equation (4.8), the distance measure is the squared euclidean distance instead of the general

formulation above. [Tan et al., 2005, p.514-515] shows that the minimum SSE is at least a local

minimum:

∂

∂ck
=

K∑
i=1

∑
x∈Ci

∂

∂ck
(ci −x)2 = ∑

x∈Ck

2∗ (ck −xk ) = 0 (4.9)

⇒ mk ∗ ck = ∑
x∈Ck

xk ⇒ ck = 1

mk

∑
x∈Ck

xk . (4.10)

mk represents the number of objects in the k cluster. In addition, the mean absolute error

(M AE) is calculated to avoid choosing a typical operating period that only in average rep-

resents well the original period. Therefore, an indicator measuring the absolute difference

between the representation of the cluster C ’s members x with the medoid ci is calculated.

M AE = 1

n

K∑
i=1

∑
x∈Ci

|ci −x| (4.11)

The third indicator measures the sequence length. Considering an example with a typical year

of 365 days that are assigned to 2 clusters: the indicator counts how many times the clusters

centers are alternating. If the sequence starts with 1,1,1,2,1, ..., the sequence length at this
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point is 3. For a daily storage model this is not of importance, however when considering long

term storage a way of respecting this series has to be found.

The fourth indicator, the relative minimal and maximal peak load percentage, is a key value to

energy systems. It links energy to (maximal) power. The input data should represent not only

the average period but also the ones representing the peak load. In addition, the peak load

curve shows whether a good representation has been found. When this is not the case, peak

loads can still be added to representative clusters manually.

PEk = k(Xpr edi cted )−k(Xor i g i nal )

k(Xor i g i nal )
with k: either max() or mi n() (4.12)

The percentage error as an indicator judges the overall energy balance. For each dimension

and overall, the percentage error PE is calculated:

PE =
∑

i=1 Xpr edi cted −∑
i=1 Xor i g i nal∑

i=1 Xor i g i nal
(4.13)

Xor i g i nal refers to the original data per dimension,

Xpr edi cted refers to the original data represented through the clustering per dimension. Com-

bined with the maximum and minimum percent error per dimension, one can get a quick

overview of the fit of the curve. All three values, minimum and maximum power as well as

the energy are a key indicator for the design of the energy system. Through the choice of data

point within the data set, the PE will almost never be exactly zero. k-means guarantees an

overall PE of zero.

[Everitt et al., 2011a, p15] underlines the fact that humans can quickly catch patterns, if the

data is well pre-processed. Studying the output as load curve plots and plots over the whole

year per dimension allows a graphical representation of the clustering quality compared to

the study of pure numbers. This is key point as it is difficult to identify errors only based

on their numerical value. It might be possible that the average error is very low: The errors

could cancel each other out with values higher and lower than the real data. The graphical

representation can capture these cases quicker than the proposed indicators do. Therefore we

suggest using them always in combination of each other.

4.2.7 Results: Selection Criteria for Key operating Periods

The data presented here during the application comes from the Verbier case study, presented

in more detail in Section 5.9 on page 90. The heat load is based on the dynamic building simu-

lation of Verbier through bSol. The solar irradiation data comes from the same meteorological

file that is used for the input of the dynamic building simulation.
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Table 4.2 – Proposed indicators judging the quality of the clustering and their use

Indicator Use

Silhouette Coefficient cluster meaningfulness

MSE
mean squared difference between

observation and prediction

MAE
mean absolute difference between

observation and prediction

Sequence Length alternation of typical days

Overall PE guarantee energy balance

Dimensional PE guarantee energy balance of each dimension

min. and max. relative Peak Load correct power representation

Graphical display
verification of indicator fit, mainly

with cumulative energy demand curve
and daily time -energy curve

With an increasing number of clusters k, the fit for almost all indicators improves. drops below

2%. Only the sequence length of day alternations increases and the silhouette coefficient

decreases. Table 4.3 shows the results for the annual data set.

On the one hand, the silhouette coefficient suggest further tests as the values quickly fall below

the threshold of 0.5 but they stay above the structure free 0.25 value. On the other hand, the

values are suggested for a two dimensional data set and not for a 48-dimensional one.

The other "Overall Indicators" show that even with few clusters such as two or three, the

data set can be represented well. Both the MSE, the MAE and the percent error are very low.

Logically, sequence length of different day alternations is increasing the more clusters are

introduced.

Studying the errors for the dimensions heat load and solar irradiation reveal however, that

the peak loads are not represented well. As the peaks especially for heating are important,

the first six results can be discarded. The "maximal Load Percent Error" changes in steps

for both dimensions. This is normal behavior, because PAM selects an existing day out of

all days within a cluster. Therefore it is possible that this medoid representing the group

remains the medoid even though it does not represent all indicators very well. It is still the best

compromise out of all points. Especially on the solar side, the peaks are not well represented

because they appear during one hour a day and not once during several hours of the same day.

Their weight is relatively small compared to the heating for example.

The close fit can be confirmed through the graphical representation of Figure 4.2 showing the

annual heat load curve and the annual solar load curve Figure 4.3. Only the solar peak is not
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Table 4.3 – Choosing seven clusters as a results of annual clustering

Overall Indicators Heat Demand Solar Heat Production

Clus-
ters

k

Sil-
hou-
ette

MSE MAE
Per-
cent
Error

Se-
quence
Length

Max.
Load

%
Error

Min.
Load

%
Error

%
Error

Max.
Load

%
Error

Min.
Load

%
Error

%
Error

2 0.59 0.02 0.08 -10.30 33 -46.56 0.04 -15.70 -42.73 0.00 0.51
3 0.48 0.01 0.07 -9.23 120 -46.56 0.03 -15.01 -24.97 0.00 2.35
4 0.42 0.01 0.07 -8.32 158 -31.54 0.03 -10.74 -24.97 0.00 -3.48
5 0.39 0.01 0.06 -3.21 164 -31.54 0.00 -4.71 -17.01 0.00 -0.20
6 0.38 0.01 0.06 -1.00 192 -10.97 0.02 -3.07 -16.28 0.00 3.15

7 0.36 0.01 0.06 -2.27 202 -2.79 0.06 -3.30 -16.28 0.00 -0.22

8 0.34 0.01 0.06 0.26 206 -1.35 0.02 -0.84 -16.28 0.00 2.46
9 0.33 0.01 0.06 -2.38 230 -1.35 0.02 -3.70 -16.28 0.00 0.25

10 0.30 0.01 0.05 -2.61 237 -1.35 0.02 -3.84 -16.28 0.00 -0.15
11 0.29 0.01 0.05 -0.26 239 -1.35 0.02 -1.11 -16.28 0.00 1.45
12 0.27 0.01 0.05 -2.89 251 -1.35 0.00 -3.48 -17.28 0.00 -1.71
13 0.26 0.01 0.05 -2.16 251 -1.35 0.00 -2.00 -17.28 0.00 -2.47
14 0.25 0.01 0.05 -1.90 258 -1.35 0.00 -2.01 -17.28 0.00 -1.70
15 0.25 0.01 0.05 -1.60 259 -1.35 0.00 -1.44 -17.28 0.00 -1.92

well represented, which is already evident after studying the results of the results overview

table. Looking at Figures 4.3 and 4.4 confirms the statement that the overall weight of the solar

peak is low and the fact that the peaks appear within different days during one hour only. They

can be neglected for the overall energy balance or a manually added day can represent it.

After the annual clustering, the same clustering procedure can be applied to the hours of each

day. The results for day 184 are shown in Table 4.4. Again, the number of hours is chosen

that offers the best trade off between the indicators. The threshold, is set to a 10% error per

dimension. With k = 6 clusters, the day can be represented using 6 typical hours that are in a

sequence containing 10 alternations between the typical hours. The figures 4.6 and 4.5 allow

to study the fit of the clustering algorithm.

During the second clustering, when the hours of the day are reduced, once again the quality

of the results must be compared to the original data set. Table 4.5 shows that these differences

are not significant.

4.2.8 Discussion of Results

As the number of clusters k increases, the quality of the yearly representation also increases.

The error indicator gives a quick overview about which cluster number to choose and what

will be the draw-back of the simplification in terms of the energy balance and the power.

When changing the number of clusters, steps especially in the maximal load error per dimen-

sion can be witnessed due to the fact that the cluster medoid representing the extreme values
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Figure 4.2 – Annual heat load curve of the heating and hot water demand. The black line represents the
original data, the colored lines represent the different typical days. For the heat demand, the quality of

the fit is very high as both lines are close to each other.

rarely changes. The clusters containing extreme points are rare and do not change frequently

due to the distance function’s heavy penalty of not using a maximal point. k-means, which

takes averages of the data leads to smoother changes when the cluster number is changed.

Changing the distance function to the squared euclidean distance has the effect of considering

peaks much better.

Choosing seven clusters allows to represent the heat load with a high degree and only very

little errors. For solar irradiation, is also well represented with an overall error of around

one percent on the annual energy balance. However the peak load value remains 15% lower

because the peak for solar has only very little weight compared to the rest. As the peak load

for solar appears generally during few hours throughout the year, one hour a day over several

different days of the year, the representation of the overall energy balance is more important.

In the case where peak loads are not taken into consideration (as would be shown by the peak

load indicator), these can be added manually. When the representation is good, the chosen

value comes very close to the original value, small differences can be tolerated: For example,

building simulations can be run without a realistic limit on the maximal available power to
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Figure 4.3 – Annual solar irradiation load curve: The black line represents the original data, the colored
lines represent the different typical days. The fit for the solar load curve does not reach the maximal

load and does not always follow very closely the original data. However the energy balance is still
represented without almost no error.

calculate the overall energy demand. Therefore, it is acceptable to choose a lower value within

the clustering. As a consequence, the building might not reach the internal temperature set

point instantly, but use more time. However, it should be verified, e.g. with the help of a

dynamic building simulation testing whether the set point can be reached.

The silhouette plot and coefficient are not more than indicators for multi-dimensional data

sets. The silhouette plot is intuitive to use for one dimensional data set, however the results do

not support the use of the silhouette coefficient on a multi-dimensional data set. Instead, the

silhouette coefficient indicates the quality of a solution, but it needs to be supported by other

indicators. According to the additional indicators, a lower value of the silhouette coefficient

than shown in Table 4.1 provides feasible solutions. Even relative low values of them give

acceptable results for the clustering. This might be due to the fact that the best practice values

are for the use of a one dimensional data set.

When creating the days that represent the year, they can be introduced in the optimization

problem either with respect of the sequence in which they appear or just counting the number

of their appearances disregarding the sequence. On one side for a cyclic daily storage, the
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Figure 4.4 – Results of annual clustering for solar thermal heat production: The black line represents
the original data, the colored lines represent the different typical days. The variations are well

represented, however the peak production of the estimate is about 15 % lower than the original one,
while almost perfectly respecting the energy produced.

sequence of days is not important. On the other side for long term storage integration, the

sequence directly influences whether or not a storage using the storage makes sense. However

the length of the sequence also directly impacts the size of the optimization problem. A

sequence of around 200 days is computational heavy. As long as only a daily storage is

required, this approach also works fine. When considering the long term storage, the proposed

approach is modified using the same clustering strategy over each month with the same

indicators to choose a representative day for each month. With this approach, the sequence of

the days is representing also the real sequence of their appearance in the year while reaming

short. When the indicators show an acceptable result for one day representing a month, the

day can be chosen. If not, the month has be split and two days should be chosen. In the case,

where the months are represented by similar days, they can be regrouped to one again.

Because this monthly approach has a lower change of well representing the maximum heat

or solar load day, the extreme conditions are manually added to the clustering ensuring the

correct sizing of the system.
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Table 4.4 – Selecting six clusters as the results of clustering hours of day 184

Overall Indicators Heat Demand Solar Irradiation

Clus-
ters

k

Sil-
hou-
ette

MSE MAE
Per-
cent
Error

Se-
quence
Length

Max.
Load

%
Error

Min.
Load

%
Error

%
Error

Max.
Load

%
Error

Min.
Load

%
Error

%
Error

4 0.58 0.00 0.03 7.62 7 0.00 2.30 12.87 -9.67 0.00 2.35
5 0.53 0.00 0.03 4.00 9 0.00 1.51 7.24 -6.07 0.00 0.74

6 0.34 0.00 0.02 3.05 10 0.00 1.51 6.87 -6.07 0.00 -0.80

7 0.36 0.00 0.02 -4.58 12 0.00 1.34 -8.46 -6.07 0.00 -0.69
8 0.29 0.00 0.02 -3.27 14 0.00 1.34 -4.77 -6.50 0.00 -1.76
9 0.18 0.00 0.02 4.03 15 0.00 1.51 9.80 -6.50 0.00 -1.76

10 0.24 0.00 0.02 5.05 15 0.00 1.51 10.88 -6.50 0.00 -0.81
11 0.27 0.00 0.01 3.78 15 0.00 1.51 7.47 -6.50 0.00 0.07
12 0.19 0.00 0.01 3.40 17 0.00 1.51 5.90 0.00 0.00 0.90
13 0.12 0.00 0.01 3.82 17 0.00 1.51 7.36 0.00 0.00 0.26
14 0.14 0.00 0.01 2.26 17 0.00 1.09 4.54 0.00 0.00 -0.03
15 0.06 0.00 0.01 1.82 18 0.00 1.09 3.70 0.00 0.00 -0.07
16 0.10 0.00 0.01 1.28 18 0.00 1.09 2.58 0.00 0.00 -0.01
17 0.11 0.00 0.00 2.78 18 0.00 1.09 5.55 0.00 0.00 0.00
18 -0.03 0.00 0.00 2.05 20 0.00 1.09 4.08 0.00 0.00 0.00
19 0.02 0.00 0.00 -0.41 21 0.00 0.00 -0.82 0.00 0.00 0.00
20 -0.03 0.00 0.00 -0.60 21 0.00 0.00 -1.20 0.00 0.00 0.00
21 -0.02 0.00 0.00 -0.25 21 0.00 0.00 -0.50 0.00 0.00 0.00
22 -0.01 0.00 0.00 0.75 22 0.00 0.00 1.50 0.00 0.00 0.00
23 -0.02 0.00 0.00 0.23 23 0.00 0.00 0.46 0.00 0.00 0.00

Contrary to remarks found in the literature, the deterministic PAM approach performs well

in the tested cases concerning computational time. Compared to k-means, where the right

number of clusters and the number of restarts has to be chosen, PAM delivers its results with a

single iteration.

4.2.9 Conclusion: Choice of k clusters

Choosing the correct number of cluster k remains subjective to the application. The proposed

indicators help for the energy system design together with the graphical representation of the

results. The acceptable threshold value should be chosen with an overall knowledge of the

decision process. Two key question for this are:

1. what is the uncertainty on the input data of the clustering?

2. what are the safety margins that are added at the end of the design process?

The answer to these questions should help to find the compromise between more precision

and more reduction.
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Figure 4.5 – 6 clusters representing the hourly solar irradiation for day 184, that alternate leading to a
sequence length of 10

During this work, the acceptable error is chosen to be ≤ 10%, because the uncertainty on the

input data is high and the knowledge of current practice in sizing is kept in mind. As stated in

the introduction, according to Porges [2001, p.119] a safety margin of 10 to 15% that is often

added for sizing of equipment after all calculations are made. Furthermore, Porges [2001,

p.91] states that the margin added to the heat loss calculations are between zero to twenty

percent (50 percent for buildings not in daily use) that have exposed north surfaces. However

it is important to communicate the chosen hypothesis to avoid that at every step within the

decision process, a security margin is added.

The buildings heat load can only be verified based on few annual measurements. As shown

in Chapter 3, the variation of the demand can even be bigger. This is a choice in favor of the

reduction at the cost of loosing minor precision, especially regarding the solar peak load. For

the presented example 7 days are chosen to represent the year. Another clustering on the

day, further reduces the data without loosing additional detail. In the example of day 184, 6

clusters are chosen. The same procedure is repeated for every day.
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Figure 4.6 – Representation of day 184 when using 6 clusters. The sequence length is also 10.

4.3 Point Reduction of the Composite Curve

When aggregating individual buildings to one zone and therefore one composite curve, a

composite curve with a lot of slope changes is created. Especially when using a dynamic

building simulation to deduce the heating needs, the buildings almost always have a slightly

different temperature level requirement. For large multi-period problems, it is of interest

to reduce the number of points within the curve per period to reduce the complexity of the

problem.

The composite curves for the heat requirement can be simplified with the help of the Ramer-

Douglas-Peucker algorithm [Ramer, 1972]. This algorithm is used to simplify coast lines, when

zooming out of a map. It tries to reduce the original curve to a new curve with fewer point

based on a maximum allowed error by testing systematically how many points can be excluded

between the starting and end point of the composite curve. It is of O(n log n) complexity.

Figure 4.7 shows the heat demand of Verbier in the winter during hour 8326. The 60 streams

from 60 building are reduced to 5 curve segments respecting the start and end points with a

predefined error (that is respecting the input data quality data).
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Table 4.5 – Compared to Table 4.3, only minor differences after reducing the hours of each typical day
to represent the year appear

Overall Indicators Heat Demand Solar Irradiation

Clus-
ters

k

Sil-
hou-
ette

MSE
Per-
cent
Error

Se-
quence
Length

Max.
Load

Percent
Error

Min.
Load

Percent
Error

Percent
Error

Max.
Load

Percent
Error

Min.
Load

Percent
Error

Percent
Error

Tab. 4.3 0.41 0.01 -0.07 202 -1.36 0.00 -0.86 -16.28 0.00 1.08
Reduced 0.41 0.01 -0.71 202 -1.36 0.02 -1.24 -19.72 0.00 0.05

4.4 Conclusion

The significant reduction of a two dimensional data set using a deterministic clustering

algorithm, PAM, has been demonstrated. The encountered problems and solutions to them

were discussed.

One big remaining challenge is the creation of a short sequence with the same high quality

output. A year represented by 8760 hourly heat load and solar heat production values can be

simplified to a much shorter sequence for the sizing of energy systems. Applying the procedure

twice, once for the year and then per day, allows to reduce the sequence length from 360 days

to around 200 days when respecting the order of days or between 7 to 10 days, when it is not

important. A comprise of monthly medoid days can be used with the same approach, because

the reduction respecting the order of days is not sufficiently short enough for the integration

of a long term thermal energy storage into an existing MILP framework. However, monthly

averages often require the manual addition of extreme periods.

Compared to the k-means approach that is mostly used in literature, this approach is deter-

ministic and thanks to the algorithm development and the increasing computational power,

feasible. With the change of the distance measure from the euclidean distance to the squared

euclidean distance, the k-medoids captures the peaks well. In addition, PAM chooses days

within the data where as k-means creates new mean centroids representing a cluster. If the re-

sults should be fed back to a building simulation for example, this approach has an advantage

of choosing a real point from the data rather than an average.

The here presented indicators are oriented towards the use through non clustering experts

and especially energy system designers while still ensuring a high quality result. Compared to

the existing indicators for judging the clustering results such as inter-cluster separation and

cluster cohesion or the ones proposed by [Fazlollahi et al., 2014b], they are easier to use. The

combination of numerical indicators and graphics allows a quick judgment about the result’s

quality.

For the energy system design, a recommendation for concerning the threshold or error is

made. Nevertheless, it remains subjective to a certain part. It depends on the relation between

precision and reduction size, which is linked to the input data quality and expected output
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Figure 4.7 – Composite versus reduced composite curve for hour 8326 of the heat demand

quality. When the output quality should be very high, the reduction will be less effective. A

high input data uncertainty might allows to accept a higher error.

In this work, the threshold values for an acceptable error is set to smaller than 10% on the

energy balance and heat power. For solar, the lowest possible number is chosen, because it

does not satisfy this criteria. Compared to a safety margin of 10 to 15% that is often added

for sizing of equipment according to [Porges, 2001, p.119] after all calculations are made, the

here produced quality of output is very high leading to fewer reductions. With this in mind the

margin can also be lifted if needed leading to shorter sequences.

This work intensively looks at clustering, especially k-means and PAM. With regard to the

vivid scientific interest in the clustering field, further development in clustering techniques to

better consider sequences would be of interest.
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5 Integration of renewable Energy into
Urban Energy Systems with thermal
Storage
The integration of renewable energy sources in the urban energy system is an important if not

the most important challenge. In addition to storable renewable energy sources like biomass or

geothermal that can be accessed when they are needed, it is important to consider renewable

sources that are only available stochastically and which present seasonable variations like the

sun or the wind.

In order to use renewables which are only stochastically available, the energy system can

include a storage system. Here, solar heat energy is used as an example for renewable energy.

On the roof surface of a building, the irradiation can be converted into electricity or into heat

in form of glycoled hot water. When demand and supply do not match, storage system can fill

the gap. On one side, Marc A. Rosen [2012, p.6] notes the advantages of energy storage:

“ • Increased operational performance, reliability and flexibility.

• Decreased mismatches between periods of energy supply and de-

mand.

• Enhanced opportunities for the use of renewable energy resources.

• Improved opportunities for distributed generation.

• Improved economics over energy system life time

• Increased system efficiency and, correspondingly, decreased utiliza-

tion of energy resources.

• Reduced space requirements due to smaller size of equipment and

overall system (possible).

• Decreased environmental impacts associated with the provision of

energy services.

• Enhanced energy sustainability. ”On the other side, energy storage has the following disadvantages [Marc A. Rosen, 2012, p.7]:
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“ • Loss of efficiency.

• Increased initial (investment) costs.

• Economics. The economics of energy storage are not advantageous in

all applications.

• Range of performance. Some energy storages are not able to perform

well at all operating conditions encountered in some applications. ”The attentive reader notices that the citation of Marc A. Rosen [2012, pp.6-7] contains a lot

of "ifs". This indicates that a careful case by case decision needs to be performed because it

depends on how the storage is implemented into the system, the energy system itself and the

(economical) boundary conditions.

5.1 State of the Art

For the urban system design, 3 types of elements are defined: on the one hand the harvesting

device, i.e. the solar panel type and its size and its operating conditions, i.e. the temperature

at which the heat will be harvested, and on the other hand, the size of the storage tanks,

its (their) insulation level that may depend on their location and its operating conditions,

i.e. temperatures profiles. It is worth to mention that the storage system will play the role

of an intermediate and will therefore be interconnected with the final service delivered, i.e.

the heat distribution system for supplying the heat to the building or the hot water supply.

The storage device will need in addition a control strategy that will decide when, what and

how much is stored, when, what and how much is distributed and when, what and how

much is received once it is installed. Such a control system has to be predictive since it has

to match the stochastic inputs considering what is known from the future inputs and the

future requirements. In this review only design methods are considered. They do not have

an implemented controller, they calculate an optimal choice in the definition of the storage

equipment.

Pinel et al. [2011] reviews different seasonal storage concepts for storing solar thermal heat

in residential applications. They conclude that only sensible heat storage is functioning and

available at interesting prices. Representing a sensible heat storage in a one dimensional

numerical formulation can be used to accurately describe the performance of it [Cruickshank

and Harrison, 2010]. Detailed simulation methods for different storage types and models are

discussed by Pinel et al. [2011], non of them directly includes optimization.

For the design of seasonal storages, especially in the eighties guidelines were published

([Hadorn, 1990], [Drew and Selvage, 1980], [Kovarik, 1981], [Lund, 1989]). All of the here cited

works use seasonal storage together with solar thermal panels. Normally a backup utility such

as a boiler or sometimes also a heat pump exist.
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They are a sequential approach to system design, taking one decision after another. However,

they are very complete in terms of demand and supply analysis for the time and oriented

towards practical usage even though only few realizations were done. The interest in the

field started again after 2000: [Tanaka et al., 2000] find that the use of a seasonal storage in a

district heating network generally increases the efficiency in their case studies. [Lindenberger

et al., 2000] publishes one of the few studies combining seasonal storage, solar heat and

optimization. A detailed problem description is missing, the use of the simplex method points

towards a linear model that however only optimizes operational strategy within each hour of

the year to compare a number of scenarios without sizing the system components.

The first return of experience from constructed thermal seasonal storage systems is available:

Schmidt et al. [2004] shows the cost functions, while Bauer et al. [2010] formulate a first

feedback for the cases in Germany. They still need more research on insulating the storage

tank in order to reach the planned performance, e.g. recover the amount of energy that was

planned. The more recent project of Drake Landing Solar Community on Okotoks, Canada,

however reached the planned performance according to Sibbitt et al. [2012].

Over the past 30 years the Danish installed more and more so called solar district heating

systems: A solar district heating system is a system with solar as the biggest energy resource.

Often biomass boilers ensure the rest of the energy demand. Especially smaller cities and

communities are installing bigger and bigger collector fields in the order of up to 75 000 m2

and seasonal storage tanks up to several 100 000 m3. Compared to the German approach that

is integrated into a research program with publications available, the Danish program did

not publish their advances. The Danish company PlanEnergi and the Danish District Heating

Association offer presentations of their advances in the field.

When looking at optimization approaches in the field of process integration, Grossmann and

Santibanez [1980] introduce a multi-period formulation, however without storage. Kemp

[2007] introduced the time slice model, based on the same principles. Kemp and MacDonald

[1987] conclude that time average approaches give too optimistic results. Working with time

slice approaches leads to a realistic integration of energy storage. In the field of batch processes,

Krummenacher [2002] identifies the minimum number of heat storage units for heat recovery

based on a heuristic targeting method.

A different approach is proposed by: Schütz et al. [2015] define a constant mass per layer and

estimate temperature variations within the storage tank. Such a model can not be integrated

into the heat cascade, because the temperature is a variable in their model whereas the heat

cascade requires it to be fixed.

Varbanov and Klemeš [2011] propose a framework using a total site approach for the inte-

gration of renewables with a heat storage. Nemet et al. [2012] use solar thermal energy in

combination with storage in a one-day case study showing that it is of interest to store solar

thermal energy when the demand is varying over the day. They do not discuss the problem

of temperature choice for the solar thermal panel, neither is the tank specified. Rager et al.
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[2013b] propose a method using a genetic algorithm for the optimal temperature choice of

the solar collectors, maximizing their use. This approach allows to compare PV and solar

thermal collectors, however the use of the genetic algorithm is time consuming. In [Rager

et al., 2013a], the solar temperatures were predefined as done by many, which is also rarely an

optimal solution. The buildings do not require heat at the same level except for the hot water

demand. This can lead to an inefficient integration of solar energy, when the temperatures are

not chosen correctly.

In the work of Collazos et al. [2009], a predictive method using a linear programming model

has been proposed to size the storage tanks of a cogeneration unit. The predictive control

algorithm has then been adapted to pilot the cogeneration unit. In the approach proposed,

the authors consider a cyclic constraint that allows to size the system with typical days without

depending on the initial and final conditions. It has to be mentioned, that, during the sizing

procedure, the future is estimated but is perfectly known which implies that the control

algorithm does not need any correction measures. The authors however mention that one

of the characteristics using the control algorithm is that the building inertia can also be

considered as a storage opportunity which implies for the building system to consider comfort

temperature ranges instead of the constant value typically used. The method proposed is

simplified since it does not consider temperature variations in the storage tank feed. Becker

[2012] models a thermal energy storage considering different temperature levels in the storage

tanks for the use in industrial processes. Fazlollahi et al. [2014a] applied and adapted Becker’s

model for the design of the energy conversion system of a district heating system. In addition,

the method has afterwards been adapted to integrate heat pumps and solar PV systems in

microgrids applications [Menon et al., 2013].

The discussed models use water as a storage medium. Especially in the building sector, phase

change materials are considered as an interesting alternative ([Tatsidjodoung et al., 2013],

[Sharma et al., 2009]) According to Hadorn [2008], water is still the medium that is the cheapest

and easiest to handle compared to other mediums and chemical or latent heat storage.

Numerous publication exist proposing the optimal energy system design including thermal

storage, however they rarely consider the temperature levels. Either the problem is limited to

one temperature level or the storage is often modeled using only an energy balance. Losses

are considered in a limited context, e.g. only as a function of the storage size ([Ren and Gao,

2010], [Lozano et al., 2010], [Heidari Tari and Söderström, 2002]). This bears the risk that the

potential is not correctly identified, because the heat storage might not be at the temperature

any more that is needed to fulfill the requirements.

5.1.1 Resume

The reviewed literature has a wide variety of simulation approaches concerning thermal energy

storage to offer. On the optimization side, few approaches exist. In the reviewed literature

for optimization, thermal energy storage is often modeled with an energy balance leading to
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inaccuracy, because the thermal losses can not be evaluated based on the temperature of the

storage.

Seasonal thermal storage appears often together with solar thermal panels in the literature.

Sizing of seasonal energy storage in an optimization based approach was not found, only

useful guidelines. The return of experience from the first monitored seasonal thermal energy

storage shows that the technology can work, but needs a careful planning and execution. The

current planning is however rather guided by idealism or political will than by a methodology

leading to an optimal result.

The method proposed here uses as a basis the approach developed by Becker [2012] that is

adapted to study the integration of solar heat in the system. This implies on the one hand to

consider the daily variations of the solar heat, on the other to also to consider the possibility

of the seasonal storage in order to use the harvested heat later in the year.

Based on the findings in the literature review, a sensible heat storage is modeled. Water is used

as a medium in the storage model.

[Angrisani et al., 2014] points out that the consideration of different temperature levels is

crucial. Especially, when integrating solar thermal collectors, the result can become very

different. [Angrisani et al., 2014] confirms these findings with a dynamic simulation showing

−32% in solar energy use and +15% percent in boiler usage, when the stratification is not

taken into account.

The following model will be developed based on the shortcomings found in the literature:

• a daily energy storage adapted to urban energy design,

• a seasonal energy storage and

• a solar thermal model maximizing the use of solar energy as an example for the integra-

tion of renewable energy.

5.2 Daily thermal Energy Storage Model

First, the daily storage model is explained: it can pass energy from one time slice to another

time slice of the same day.

The heat storage model is based on a set of virtual storages with fixed temperatures that

correspond to a discrete temperature range in which the storage tank can be operated. Water

can be transferred from one temperature level v to another one passing through a heat

exchange that is included in the heat cascade model. Heat can be delivered from the virtual

tank v of the storage system through a hot stream from the virtual tank’s temperature level Tv

to the temperature level Tv−1. The mass flow Ṁv,h,p,t is the decision variable that represents

the amount of water transferred from tank v in the time slice t of period p to the tank v −1.

Similarly a heat supply to level v is defined by a cold stream from level Tv−1 to Tv with a mass
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flow rate of Ṁv,c ,p,t . The corresponding heat loads are calculated, considering a constant cp

for the fluid used in the heat storage with Equations (5.3) and (5.4).

The heat loss in the virtual tank v with the temperature Tv is represented by a mass flow that

flows with the temperature Tv to the level v −1 with the temperature Tv−1. It exchanges its

heat with the environment cooling the stream down.

Each energy storage has nv discrete temperature levels. Between each temperature level, a

hot stream h and a cold stream c exist totaling to (nv −1) ·2 streams for each storage. Both

streams c and h belong to the same unit u. These units link the storage tank with their unit

multiplication factor fu,p,t to the heat cascade. They exist in every period p with time slice t .

The power that every stream can provide, depends on the temperature difference between the

two virtual tanks v and v −1, the specific heat cp of the medium and the nominal mass flow

rate of the Ṁv .

5.2.1 Mass Balance

The total mass Mmax of liquid contained in the storage is fixed. The sum of all virtual tanks

nv within the storage add up to the total mass. It is constant for each period p and time

slice t (Equation (5.1)) and only limited by the total mass Mmax . Additionally, non-negativity

constraints are required, ensuring that the mass can not not take negative values.

nv∑
v=1

Mv,p,t = Mmax (5.1)

Mv,p,t ≥ 0 (5.2)

For Equations (5.1) and (5.2) : {v ∈ [1,nv]}
{

p ∈ [0,np]
}

{t ∈ [0,nt ]}

The neighboring virtual tanks are interconnected via heat exchangers that can either absorb

heat for storing it or release heat fulfilling requirements of the system. The mass balance for

the time slice t in period p is used to calculate the size of the virtual storage tank v in the next

time slice t +1. Based on the already stored mass in the virtual tank v in the current period

p and time slice t , Mv,p,t , mass flows Ṁ from and to the next higher level v +1 as well as the

ones to and from the next lower level v −1 can exist during one time slice. They are calculated

to know the mass Mv,p,t+1 in the next time step t +1.

Figure 5.1 shows the energy storage. As illustrated in Figure 5.1, 5 virtual tanks exist however

only 4 mass flows linking them, because they are always connecting them. Excess heat received

can be stored through a mass flow from a lower to a higher level via an heat exchanger. Or heat

can be released from the storage tank, leading to a mass transfer of heat from a higher to a

lower level through the heat exchanger. The heat received or given is inserted into the system’s

heat cascade. The heat losses are calculated as a function of the virtual tank’s temperature and
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the ambient temperature of the tank’s surrounding environment leading to a mass flow from

the higher to the next lower level.

T5
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T2

T1

H
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H
EX 1

H
EX 2

H
EX 4

T4

Q Bottom Heat Loss
˙

Q̇Lid Heat Loss
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MHeat Loss 1
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˙

MHeat Loss 3
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MHeat Loss 4
˙

Q̇Heat Loss 1

Q̇Heat Loss 2

Q̇Heat Loss 3

Q̇Heat Loss 4
Q̇ c4,p, t

Q h1,p, t
˙

Figure 5.1 – The stratified thermal energy storage model used for the optimization of a daily and
seasonal thermal energy storage. Bottom lid losses appear only when the virtual tank at the bottom is
empty and therefore a virtual tank with a higher temperature Tv than the ambient temperature Ta is

filled.

The following convention has been applied: the subscript v = 1 for a mass flow Ṁv=1 connects

virtual tanks 1 to 2. No mass flow with the subscript nv exists, the highest one is nv − 1

connecting the level nv to nv −1.
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The mass flows are defined with the multiplication factor fu,p,t linking the nominal mass

flow Ṁv to the heat cascade. Both values are always positive. The multiplication factor

fu,p,t is limited by the maximal amount of mass that can be moved within one time slice

without destroying the stratification of the tank. The specific heat capacity cp is constant, the

temperature difference between 2 virtual tanks is defined as (Tv+1 −Tv ). The heat released

Q̇h,v,p,t or received Q̇c ,v,p,t from a virtual tank is then integrated in the heat cascade with its

power-temperature profile. Equations (5.3) and (5.4) are based on Equation (2.17), the same

restrictions apply

Equation (2.17): Ṁ = Q̇

cp ·∆T

Q̇c ,v,p,t = fu,p,t · Ṁv · cp · (Tv+1 −Tv ) (5.3)

Q̇h,v,p,t = fu,p,t · Ṁv · cp · (Tv −Tv−1) (5.4)

{c ∈ [1,nc]} {h ∈ [1,nh]} {u ∈ [1,nu]} {v ∈ [1,nv −1]}
{

p ∈ [0,np]
}

{t ∈ [0,nt ]} .

The nominal flow rate Ṁ is the same for all charging and discharging levels of a storage tank.

For the rest of the model description, the multiplication of the two terms fu,p,t and Ṁv are

regrouped to Ṁh,v,p,t referring to the hot stream with the subscript h and Ṁc ,v,p,t to the cold

one with c respectively.

The mass balance for the bottom virtual tank v = 1, shown in Equation (5.5), receives the mass

flow Ṁh,1,p,t with the subscript h for the link to the hot stream v = 1 coming from the level

v = 2 to level v = 1 providing heat to the system. The cold stream c is linked to the mass flow

with the same subscript, Ṁc ,1,p,t , and has a negative sign while absorbing heat. In addition

to the intended possibility of a controlled heat exchange, the heat losses hl are introduced,

which are going to the environment. They are represented in form of a mass flow Ṁhl ,v,p,t

reducing the next higher level’s mass through a transfer of heat to the environment. The first

level is set at ambient temperature (or lowest ambient temperature in the overall problem)

and therefore has no losses.

The mass balance of the virtual tanks in between the top and bottom tanks are described

in Equation (5.6). They can either receive or give the neighboring levels. Therefore the heat

losses appear twice, because the virtual tank receives the losses from the next higher level and
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has himself losses to the next lower level. The top level v = nv is described by Equation (5.7)

and is only connected to the level nv −1.

For {v = 1} :

M1,p,t+1 = M1,p,t +
nt∑

t=1
dp,t ·

(
Ṁh,1,p,t + Ṁhl ,1,p,t − Ṁc ,1,p,t

) (5.5)

For {v ∈ [2,nv −1]} :

Mv,p,t+1 = Mv,p,t +
[ nt∑

t=1
dp,t ·

(
Ṁc ,v−1,p,t + Ṁh,v,p,t + Ṁhl ,v,p,t

−Ṁc ,v,p,t − Ṁh,v−1,p,t − Ṁhl ,v−1,p,t
)] (5.6)

For {v = nv} :

Mnv,p,t+1 = Mnv,p,t +
nt∑

t=1
dp,t ·

(
Ṁc ,nv−1,p,t − Ṁh,nv−1,p,t − Ṁhl ,nv−1,p,t

) (5.7)

For Equations (5.5), (5.6) and (5.7)
{

p ∈ [0,np]
}

{t ∈ [0,nt ]}

5.2.2 Heat Loss Calculation

An energy flow from the hotter tank to the colder environment through the storage wall is

called heat loss. Energy heat losses are modeled as a mass flow from a higher to the next lower

level. They depend on the volume of the virtual tank calculated over the current mass Mv,p,t

divided by its density ρ and multiplied by the ratio of the diameter d to the surface (4/d) for

obtaining the surface area in contact with the environment.

Ast or ag e w al l ,v = Mv,p,t

ρ
· 4

d
(5.8)

The lid losses are neglected in this model, because no heat transfer is assumed to happen

between the virtual tanks. The top lid losses can be included in κhl , the tank specific heat loss

coefficient.

The heat losses to the environment for each temperature level are calculated by (5.9) with

the difference of the current temperature level Tv+1 to the ambient temperature Ta (which

is equal to Tv=1). The mass flow representing the heat losses v uses the same convention as

the mass flows in the mass balance: it comes from the level v +1 to the level v . Therefore the

temperature of the level v +1 is taken as reference.
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Ast or ag e w al l ,v represents the surface of storage of wall in contact with the ambient tempera-

ture Ta . The heat loss is related to a mass flow by Equation (5.10).

Q̇hl ,v,p,t = κhl · (Tv+1 −Ta) · Ast or ag e w al l ,v (5.9)

Ṁhl ,v,p,t =
Q̇hl ,v,p,t

cp · (Tv+1 −Tv )
(5.10)

{v ∈ [1,nv −1]}
{

p ∈ [1,np]
}

{t ∈ [1,nt ]}

As shown in Figure 5.1, the losses of tank level 5 are the energy flux Q̇hl ,4 and equal to the mass

flow Ṁhl ,4. The level v = 1 is considered to be at ambient temperature and therefore has no

losses.

The streams Q̇hl ,v,p,t do not appear as process streams within the heat cascade in order to

avoid that utilities are required at times of heat scarcity (e.g. during the winter). This is an

change compared to the existing model. In contrast to [Becker, 2012, pp.131-132]’s storage

model, the losses are modeled as a mass flow from a higher temperature level to the next lower

one instead of a cold stream into the heat cascade that needs to be heated. For an industrial

process, keeping the temperature level might be a requirement. In an urban energy system,

uncompensated losses are part of the storage use. Her approach has the drawback of requiring

heat power in every period compensating the losses, when losses appear. Losses appear,

when the virtual tanks that have a higher temperature than the surrounding environment are

filled. For example, an optimization of an only solar powered house with a storage would not

converge, because periods exist where no utility or no sun power is available compensating

the heat losses.

The heat loss factor κhl is estimated to be around 1 W /(m2 ·K ) by Becker [2012, p.131] and

1.3 W /(m2 ·K ) Angrisani et al. [2014] for daily storage. Angrisani et al. [2014] assume a higher

heat loss factor κhl , because they state that the insulation of tank is rarely bigger than 10 cm

and often the bottom is not insulated.

Exergy losses such as losses due to de-stratification are not considered. They can be neglected,

if charging and discharging of the storage are done avoiding turbulent flows through different

temperature levels in the storage tank. Cruickshank and Harrison [2010] confirm this finding

by stating that an average u-value for loss calculation can be used if it accurately represents

the unit as installed.

5.2.3 Cyclic Constraint

The cyclic constraints of the daily storage model optimizes the storage usage because it can

choose which level has how much initial mass. It imposes that the conditions in the virtual
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tanks at the beginning of the period p are identical to the conditions at the end of the period.

Therefore the energy balance is fulfilled. This is expressed by:

Mv,p,t=0 = Mv,p,t=nt (p) ∀v, ∀p (5.11)

Mv,p,t=0 ≥ 0 (5.12)

for (5.11) : {v ∈ [1,nv]}
{

p ∈ [0,np]
}

{t ∈ [0,nt ]}

The cyclic constraint (5.11) ensures that the storage returns into its initial state at p, t = 0 at

the end of each respective cycle: The storage’s discharge mass flows over time including the

heat losses equal the charge rate. The model sets the initial state Mv,0,0 leading to one more

degrees of freedom.

This formulation avoids fixing the initial levels while having an optimal storage usage. Fur-

thermore, the problem is independent of its starting point in time. The daily storage can not

pass energy to the next period. It works only over all of the time slices of one period.

5.2.4 Summarizing the daily Storage Model

With the adaptation of the storage to the requirements for the urban energy system design,

a new daily storage model has been developed. Compared to the existing model, losses are

modeled differently and it is an integer-free model ( Becker’s implementation contained

integers for every stream).

When addressing solar energy integration, the model should have the possibility to store

harvested energy longer than only a day to address seasonal load shifts. A second model,

based on the daily model, is now developed to fit the needs for estimating a long term storage

that can pass energy also from one period to another.

5.3 Long term thermal Energy Storage Model

Based on the clustering approach discussed in Chapter 4, a seasonal storage requires a se-

quence of typical days to pass energy from one period to another. The development of this

model is based on the daily storage model. Therefore in the following, the explanations of the

already presented equations is kept short, only differences to the daily model are described.

5.3.1 Mass Balance

A weighting factor ω for each period p is introduced, considering that each period repeats

itself a number of times. In order to transfer heat loads from one period to a another, the

periods must be in a sequence representing their appearance.
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Based on the previously discussed mass balance, a new mass balance for the seasonal storage

model is developed with ωp :

For {v = 1} :

M1,p+1,t = M1,p,t +
np∑

p=1
ωp

[ nt∑
t=1

dp,t ·
(
Ṁh,1,p,t + Ṁhl ,1,p,t − Ṁc ,1,p,t

)] (5.13)

For {v ∈ [2,nv −1]} :

Mv,p+1,t = Mv,p,t +
np∑

p=1
ωp

[ nt∑
t=1

dp,t ·
(
Ṁc ,v−1,p,t + Ṁh,v,p,t + Ṁhl ,v,p,t

−Ṁc ,v,p,t − Ṁh,v−1,p,t − Ṁhl ,v−1,p,t
)] (5.14)

For {v = nv} :

Mnv,p+1,t = Mnv,p,t +
np∑

p=1
ωp

[ nt∑
t=1

dp,t ·
(
Ṁc ,nv−1,p,t − Ṁh,nv−1,p,t − Ṁhl ,nv−1,p,t

)]
(5.15)

For Equations (5.5), (5.6) and (5.7)
{

p ∈ [0,np]
}

{t ∈ [0,nt ]} .

With the weighting factor ωp the weight of all periods, their number of appearances, is taken

into consideration to estimate a long term storage. When charging the storage in a given time

slice t of a period p, it is charged ωp times. The losses are calculated directly as a function of

the current mass reparation in the storage and storage losses appear. This can be interpreted

as a pessimistic estimate, because the losses appear directly. When taking the example of an

only solar powered house with a storage, the storage would be charged during the day and

loose a little bit over the night. During the harvesting period, the storage would then continue

to charge during the day again, however more or less from the level where it stopped the day

before. The temperature level rises slowly. With this rise of the maximal storage temperature,

the losses during the end of the charging period increases and not from the beginning on.

In this model this sequence of charging events is estimated with the weighting factor ωp .

5.3.2 Cyclic Constraint

The cyclic constraint imposes that the conditions in the tanks before the beginning of the

first period are identical to the conditions at the end of all periods pn. This is expressed by

Equation (5.16), which introduces a zeroth period before all other periods to choose the initial

conditions. Equation (5.17) ensures that this state cannot contain values smaller than zero.

Mv,p=0,t = Mv,p=np,t=nt ∀v (5.16)

Mv,p=0,t ≥ 0 (5.17)

for (5.16) : {v ∈ [1,nv]}
{

p ∈ [0,np]
}

{t ∈ [0,nt ]}
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Again, the optimal storage use is estimated through adding the initial state of the storage as a

variable to the optimization problem.

5.3.3 Heat Loss Calculation

The heat losses are also based on the approach used for the daily storage. It is however adapted

to represent the lid losses correctly.

An energy flow from the hotter tank to the colder environment is called heat loss. Energy

heat losses are modeled as a mass flow from a higher to the next lower level. The heat losses

to the environment for each temperature level are calculated by (5.18) with the difference

of the current temperature level Tv to the ambient temperature Ta . κhl is a tank specific

heat loss coefficient, Av represents the surface of storage of wall in contact with the ambient

temperature Ta . The heat loss is converted into a mass flow by Equation (5.10) assuming a

constant specific heat capacity for the given temperature interval.

Q̇hl ,v,p,t = κhl · (Tv+1 −Ta) · Av {v ∈ [1,nv −1]}
{

p ∈ [1,np]
}

{t ∈ [1,nt ]}

(5.18)

Ṁhl ,v,p,t =
Q̇hl ,v,p,t

cp · (Tv+1 −Tv )
{v ∈ [1,nv −1]}

{
p ∈ [1,np]

}
{t ∈ [1,nt ]} (5.19)

Recent seasonal storage using expanded glass granulate or foam glass gravel for insulation

material show heat loss coefficients that are well below the values of 1 W /(K ·m2) from the

daily storage. The change in insulation material compared to earlier installations ensures that

the thermal properties remain in an acceptable range when the maximal storage temperature

is reached or when water moistens the insulation with an humidity up to 30 %. [Ochs et al.,

2008] gives the effective thermal conductivity for temperature and humidity ranges, [Ochs and

Müller-Steinhagen, 2008, p.127, p.184] shows construction of typical seasonal storage. The

heat losses only depend on the average storage insulation thickness. With a mean thickness

of 0.75 m values between 0.15−0.6 W /(m2 ·K ) can be reached, when the insulation’s water

content is kept below 50 % and can dry off again. Alternatively, the heat loss coefficient κhl can

also be expressed as a time dependent heat loss κhl (t), when for example rain is integrated

into the model increasing the heat losses due to humid insulation.

It is important to notice that besides via the wall surface, heat can also be lost at the bottom

and the top of the storage depending on the charging level. Often the bottom is not considered

neither isolated ([Ochs, 2010, p.46] or [Angrisani et al., 2014]) leading to much higher losses

than estimated theoretically.

A set of binary variables y per level v activates the additional surface area of the storage at the

top ytop,v and the bottom ybot tom,v . This is particularly important for the seasonal storage
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due to the storage duration. For every time slice, the surface area of each virtual tank is

recalculated:

Ast or ag e w al l ,v = Mv,p,t ·4

ρ ·d
(5.20)

Al i d ,v = Atop,v = Abot tom,v = π ·d 2

4
(5.21)

Av = Ast or ag e w al l ,v +
(

yt op,v +++ ybot t om,v
) · Al i d (5.22)

{v ∈ [1,nv]}
{

p ∈ [1,np]
}

{t ∈ [1,nt ]} ytop∨bot tom ∈ {0,1}∀ v ≥ 2

Equation (5.22) adds two binary variables to each virtual tank with a temperature higher than

Ta . The additional surface should only considered once for whole storage tank and only if

heat is stored in it and the virtual tank’s temperature is higher than the ambient temperature

Ta . Additional constraints are required to ensure that only the lowest temperature level higher

than Ta from the bottom on filled with heat (Equation(5.24)) has active heat losses.. The same

is done for the top temperature level (Equation (5.23)).

yt op,v,p,t ≥
Mv,p,t

Mmax
−

(
nv∑

i=v+1
yt op,i ,p,t

)
(5.23)

ybot t om,v,p,t ≥
Mv,p,t

Mmax
−

(
v−1∑
i=1

ybot t om,i ,p,t

)
(5.24)∑

ybot t om,v,p,t = 1
∑

yt op,v,p,t = 1 (5.25)

{v ∈ [1,nv]}
{

p ∈ [1,np]
}

{t ∈ [1,nt ]} ytop∨bot tom ∈ {0,1}∀ v ≥ 2

The constraints (5.25) guarantees that only one binary heat loss variable ybot tom and ytop has

a value equal to one in every period and time slice.

The binary lid heat loss variables ybot tom and ytop are always equal to one in every period

and time slice. The equations (5.23) for the top lid and (5.24) for the bottom lid choose the

correct higher or lower level according to the current storage filling. Choosing the value Mmax

as divisor ensures that the divisor is a true upper bound of the equation. This division can at

maximum become equal to one. For the case where the two highest tanks contain each half of

the total mass, the sum of binaries ytop containing only the tanks with higher temperatures

than themselves ensures that only ytop for the highest temperature tank is one. A too high

value for the divisor creates numerical problems because the division produces always results

close to zero, e.g. when the maximal storage volume is very big and the content of the highest

filled virtual tank is close to zero. Then the constraints for all tanks are the same, making it

impossible to choose. Depending on the numerical precision used in the solver, this might

become a problem. [Klotz and Newman, 2013, Section 3.4] and [Williams, 2013, page 166]

confirm this. They suggest looking whether the modeling language and the solver support
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writing indicator variables directly as such instead of using "big M approach". If yes, the

advantage is that the branch and bound can use direct branching on the node avoiding the

potential numerical trouble from the "big M approach".

Through the modeling of the lid losses, the model is an MILP model. The losses introduce per

virtual tank two binary variable per time slice. When keeping the number of periods and time

slices low, this formulation does not pose any problem. Increasing the number of time slices

leads quickly to much longer computational times due to the increase of integer variables. Or

changing the data can have the same effect as described by [Fischetti and Monaci, 2014] due

to the fact that the solver starts with a heuristic at a different point. When a different point is

found as a starting point, the solution time of a large model might significantly change. The

model can also be simplified again to have the same loss calculation as the daily storage.

5.4 Storage Costs and Cumulative Exergy Demand LCIA Values
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Figure 5.2 – Cost function for seasonal storage based on CostDBCREM [Poumadère et al., 2015]

During this work, cost or Cumulative Exergy Demand (CExD) values are used in the objective

function. For the costs, the cost data base of the CREM, CostDBCREM1 [Poumadère et al., 2015],

is used: It provides capital and operational expenditures for technologies based on projects

realized in Switzerland. Figure 5.2 shows the exponential cost function for the seasonal storage.

With the total mass of the storage M , the specific investment costs can be calculated:

i nvstor ag e =−284.2 · log (M)+2771.2 . (5.26)

1A data base established by the CREM, a research institution on urban energy research, containing cost data
sets with various technologies of project realized in Switzerland.
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As a common hypothesis, the capital expenditure value has a yearly annuity of 0.078 based on

6 % interest rate and 25 equipment lifetime.

Invst or ag e = fst or ag e · i nvstor ag e (5.27)

Table 5.1 – Storage units added to the optimization problem and CExD of their construction (1 from
[Bösch et al., 2007], 2 extrapolation according to [Gerber et al., 2011])

Type Capacity
CExD
[kW h −E q./m3]

Inv. Costs
[C HF /m3]

domestic hot water storage, steel tank1 0.6 m3 2 004 2 300
hot water storage, steel tank2 200 m3 859 985
seasonal heat storage, pebble/water tank2 10 000 m3 289 332

For the optimization, a piece-wise linear function estimates the installation costs or CExD,

extrapolating from the closest data point. Hahne [1999] compares different large scale storage

technologies in terms of cumulative energy demand: he shows that in terms of accumulative

energy demand (predecessor of the cumulative energy demand) for large storage systems with

the size around 10 000 m3, the production impact for concrete compared to pebble/water

or vertical duct storage is up to a factor of 3 higher. The operational energy consumption is

estimated well below 1%, which means neglectable compared to the incertitude of the input

data.

5.5 Parameter Overview of the two Storage Models

Two storage formulations are proposed: the so-called daily storage is a LP model, well adapted

for storage integration over shorter time periods or for the use in big scale problems. The

seasonal storage is an MILP model using a more precise heat loss calculation at the price of

introducing integers into the formulation. When the storage size is known and well bounded

or the problem is of smaller scale, this formulation can be used. The values of Table 5.2 are

based on [Ochs, 2010, Appendix A11 and Chapter 3], when not indicated otherwise.

5.6 Conclusion of Storage Model Development

Based on [Becker, 2012, pp126]’s time slice model, a new storage model is implemented. The

same restrictions apply as cited by [Becker, 2012, pp128]:

• Only a sensible heat storage is considered. The temperature difference, the mass flow

and the specific heat capacity define therefore the heat load.
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Table 5.2 – Overview of key parameters for the storage model

Parameter
Storage Type

Si-Unit
Daily Seasonal

Storage Medium Water Water -
Medium Density 997.5 kg /m3

Heat Capacity of Medium 4.18 k J/(kg ·K )
Thermal Conductivity
of Storage Medium

0.63 W /(m ·K )

Specific Heat Loss Rate 1.3 [Angrisani et al., 2014] 0.65 W /(m2 ·K )
Insulation Thickness 0.1 ≥ 0.3 m
Size: Order of Magnitude from 1 up to 10 000 m3

Height Diameter Ratio 3 1 -
Annual Cycles 260−280 1.2−1.6 -

Geometry Cylindrical
Cylindrical to
inverse pyramids

-

Discrete Temperature Levels 9 9 -
∆T per Temperature Level 10 10 K
Temperature Range 10−95 10−95 °C
Investment Costs, Table 5.1 ≥ 1 m3: 2300 10 000 m3: 332 C HF /m3

Construction CExD, Table 5.1 2004 289 kW h −E q./m3

• Each temperature in the storage tank is discretized into a pre-defined number of tem-

perature levels or virtual storage tanks at a fixed temperature. These temperature levels

correspond to a virtual tank, that has its own mass balance and based on its temperature

level and the reference temperature level that is used to calculate its own losses.

• A maximal storage volume is defined as the sum over all virtual storage tanks.

• An initial level of the storage tank is considered and is treated using a cyclic constraints

in the model.

• The cost of the storage tank is considered using an exponential based formula based on

the size of the storage tank.

• The storage geometry of the storage are chosen to assure neglectable destratification

losses, the height is much bigger than the diameter [Ochs, 2010, p.25-28].

The differences to the Becker’s model are:

• In case of a daily storage, the difference between day p end of day storage filling level

and day p +1 starting level is neglected as the days are considered to be independent

and cyclic repetition of each day is high and therefore more important. (Transition

periods could be inserted to deal with this problem.)

• Heat losses are estimated as a function of the reference temperature. The storage lid

losses based on the current storage temperature are calculated.

• Heat losses are not integrated into the heat cascade.

• The daily storage is written as an linear problem with only one integer variable deciding

over the storage existence. Becker’s version has two integer variables per unit and time

slice.
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In contrast to [Becker, 2012, pp.131-132]’s storage model, the losses are modeled as a mass

flow from a higher temperature level to the next lower one instead of a cold stream into the

heat cascade that needs to be heated up from the utilities. The lowest level is at atmospheric

temperature leading to no further losses. For an industrial process, keeping the temperature

level is a requirement. In an urban energy system, uncompensated losses are part of the

storage use. Therefore her approach is modified to consider uncompensated losses.

The model could also integrate the heat losses in case they could be used for example to

heat up a building. The lowest temperature level of storage is always at ambient or reference

temperature level. It therefore has no losses anymore as the temperature difference is zero.

Furthermore, instead of using a simple factor for the lid losses, they are calculated as a function

of the currently highest temperature level for the upper and lower lid in case of the seasonal

storage. For a daily storage, these losses are simplified with a heat loss factor as in Becker’s

work.

Limiting the maximal storage mass Mmax bounds the variable and brings often important

performance improvements. Here, the ground surface of the storage is limited ensuring a

favorable geometry for neglecting the stratification losses. If the maximal height is given, the

ground surface of the storage tank can be calculated with an additional constraint ensuring a

favorable height to ground surface ratio. [Ochs, 2010, p.27] suggests a height diameter ratio for

short term (buffer) storage around 3.0 with a cylindrical geometry and for a seasonal storage

around 1.0 with geometries of cuboids, cylinders, inverse (and truncated) pyramids or cones.

5.7 Solar Thermal Collector Model

Renewable energy integration is a key challenge for today’s energy system design. With the

help of the previously discussed storage models, a stochastic resource such as solar energy

can be integrated into a system, because the storage allows to decouple demand and supply

by dephasing it.

For the integration of stochastically available renewable energy such as solar energy, a mixed

integer linear programming (MILP) model with different temperature levels is developed.

The literature review revealed that solar energy often used at an already fixed operating

temperature, e.g. for hot water production and sized by best practice rules. In commercial

software, only a simulation of different operational modes with different installation sizes is

possible: the user needs to guess the best use of the solar energy and how much to install. The

installation size and choice of an operating temperature have a major impact on the total solar

yield.

Based on the standard approach by [Duffie and Beckman, 2013, Chapter 6], the Institut für So-

lartechnik (SPF) created a database with available and tested collectors based on the method-

ology of [Brunold et al., 1994]. A simplified solar thermal collector is modeled considering the

following points:
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• Localization with horizon if given and therefore the local irradiation,

• the available roof area,

• the roof (or surface) orientation,

• optical and thermal efficiency of a given solar collector.

Estimating solar Heat Power

Based on Equation (6.17.7) in [Duffie and Beckman, 2013, Chapter 6.17], the efficiency of a

collector can be estimated with a small error as presented in Equation (5.28):

η= η0 −a1 · (Tm −Ta)

Gn
−a2 · (Tm −Ta)2

Gn
= ṁ · cp · (Tout f l ow −Ti n f l ow )

Ac ·Gn
(5.28)

The error comes from the fact that the temperature difference in the fluid is calculated as

an arithmetic mean, even though a logarithmic temperature difference should have been

used. According to [Duffie and Beckman, 2013, Chapter 6.17], Cooper and Dunkle (1975) state

that this approximation yields very small errors for the practical design of the collector. An

increasing temperature difference between the collector’s mean fluid temperature Tm and the

outside temperature Ta leads to higher losses. A higher mass flow leads to a lower temperature

increase of the fluid. The measurements of the SPF use the same approximation for measuring

the parameters η0, a1 and a2 that can be found in the SPF’s database together with an estimate

of the incident angle modifier IAM. The incident angle modifier IAM regroups all optical losses

and is usually given at an angleΘ= 50°. a represents the measured coefficient for the given

collector.

I AM = 1− t ana(
Θ

2
) (5.29)

Gn in Equation (5.28) is the global normal radiation on a surface, a sum of the beam, diffuse

and reflected radiation.

Gn = Ibeam,n + Idi f f ,n + Ir e f l ,n (5.30)

With the Equations (5.28), (5.29) and (5.30), the efficiency ηe f f for each time interval and

radiation type can be calculated:

ηe f f = η · I AM (5.31)

Based on ηe f f , the solar thermal heat production for different temperature levels can be

estimated:

qavai l . sol ar = Ibeam,n ·ηe f f ,beam + Idi f f ,n ·ηe f f ,di f f + Ir e f l ,n ·ηe f f ,r e f l (5.32)
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The result qavai l . sol ar of this model depends on the mass flow and the temperature differ-

ence of the collector’s fluid on given meteorological condition with a given outside ambient

temperature Ta and a global irradiation Gn on a roof top (or surface).

Integration of the solar Panel in the Energy System

The solar thermal panel introduces a hot stream to be considered to supply the heat to the

energy system. The solar collector is calculated considering a discretized temperature at which

the solar collector is operated. The temperature defines the initial and target temperature

for the operation of the solar collector. For these temperatures, the mean temperature TM is

calculated and the maximum production of the solar panel is calculated with respect to the

area of the panel. In our model, we allow for a by-pass of the solar panel if the heat available

is higher then the one that is needed by the system. This model chooses the optimal overall

solar thermal collector installation size and its operating temperature for each time slice using

mathematical programming.

Per time slice p, t , the solar power Q̇sol ar,p,t is calculated through the available specific solar

power q̇avai l . sol ar,p,t per square meter for each given temperature interval of collector in- and

out-flow temperatures using Equation (5.28) and the surface factor fsol ar,p,t limited between

zero and the maximal available surface. The total solar yield represents the sum over all active

solar streams 1, . . . , nsol ar (5.33), each representing a couple of one in- and one out-flow

temperature.

Q̇sol ar,p,t =
nsol ar∑

sol ar=1
fsol ar,p,t · q̇avai l . sol ar,p,t (5.33)

Two implementation are proposed: In the first one, only one temperature level can be activated

per time slice, constraining the number of factors fsol ar,p,t with a value bigger than zero

to 1. ysol ar,p,t is an integer variables that activates the temperature level (solar) is used

(ysol ar,p,t = 1) in the solar panel during the time slice t and the period p or not (ysol ar,p,t = 0),

where ysol ar,p,t is the fraction of the solar heat available that is used during the time slice t of

period p:

nsol ar∑
sol ar=1

ysol ar,p,t ≤ 1 (5.34)

∀p = 1..,np ∀t = 1..,nt

fsol ar,p,t ≤ Ar oo f · ysol ar,p,t (5.35)

∀sol ar = 1..,nsol ar ∀p = 1..,np ∀t = 1..,nt

The Equation (5.34) allows to activate at maximum one (or any other number of) temperature

level for the solar panel. (5.35) limits the production to the maximal available roof size.
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The second formulation does not use Equation (5.34) and omits ysol ar,p,t in Equation (5.35),

leading to reduction of binary variables by a factor of number of sol ar temperature levels

times total time slices p, t . If in addition, the solar module is available in all time steps, the

Equation (5.35) can be omitted by limiting the multiplication factor fsol ar,p,t directly and

limiting the overall solar sizing factor ssol ar to the maximal available roof size:

ssol ar ≥
nsol ar∑

sol ar=1
fsol ar,p,t (5.36)

with: 0 ≤ ssol ar ≤ Ar oo f .

The model produces heat at different temperatures during one time slice. The described

model simplifications can be made from an operational point of view of a solar collector field

when:

• different independent loops exist allowing to produce heat at different temperature

levels at the same time or

• the streams at different temperature level are interpreted as streams appearing at differ-

ent time intervals but within the same time slice.

From the mathematical programming point of view, the model becomes an LP model instead

of an MILP model.

Both formulations are linked to cost constraints by the overall sizing factor ssol ar which is the

maximum of the time dependent sizing factors fsol ar,p,t (Equation (5.37)):

ssol ar ≥ fsol ar,p,t (5.37)

I NVsol ar,t ot al = ssol ar · i nvsol ar (5.38)

OPsol ar,t ot al =
nsol ar∑

sol ar=1

np∑
p=1

nt∑
t=1

fsol ar,p,t ·opsol ar · q̇avai l . sol ar,p,t . (5.39)

The investment for the solar panels are considered as being proportional linearly to the area

of solar panels installed. The operating and installation CExD values of Table 5.3 are used in

Equations (5.38) and (5.39). The costing data in the same Table 5.3 is extracted from CostD-

BCREM2, a data base, containing costing data sets from projects realized and constructed

in Switzerland. The economic model developed enables to calculate capital expenditures

(CAPEX) and operational expenditures (OPEX) associated with each technology. It was de-

veloped based on the feedback from various industry partners such as heating technology

manufacturers, district heating network operators or engineering firms in Switzerland. As

much as possible, parameters are used to be able to have a flexible cost database.

2A data base established by the CREM, a research institution on urban energy research, containing cost data
sets with various technologies of project realized in Switzerland.
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Table 5.3 – Non renewable CExD Dones et al. [2007] and cost data based on CostDBCREM1 [Poumadère
et al., 2015] for solar thermal Collectors.

Mode CExD Costs

Operating 0.03 kW h−E q.
kW h 0 C HF

kW h

Investment (≥ 200m2) 290 kW h−E q.
m2 280 C HF

m2

The presented models for solar thermal panels can be used to size the solar thermal installation

together with storage. It finds the optimal operational strategy in terms of temperature level

and heat capture rate for thermal needs.

5.8 Connecting Storage to Utilities: Stratification and Choice of dis-

crete Temperature Levels

The developed models address the shortcoming found in the literature by taking the strati-

fication of thermal energy storage into account as well as the heat losses. The solar model

offers power at different discrete temperature levels. Therefore the temperature levels of the

storage and the solar thermal collectors are chosen together, ensuring that the solar energy

can be stored at the corresponding temperature level maximizing the solar yield. From the

computational point of view, the number of discrete levels should be kept as low as possible to

keep calculation time lower.

The solar model uses steps of 10 K over the range of 20 °C to 100 °C . All combinations are

introduced as well, e.g. 20−40, 20−60, 40−60 and so on. A heat pump uses then the same

intervals, but is limited to 80 K . The storage uses the same intervals of 10 K .

This definition avoids that one unit is chosen over another because a finer choice is available

that can adapt better to the demand. When a compromise is made between the number of

discrete temperature levels, besides the solar collector model, the uncertainty of the energy

demand temperature should be taken into consideration. Only very few measurements of the

distribution temperatures within heating systems exist.

5.9 Case Study

For this demonstration case study, the models previously discussed can help local munic-

ipalities, engineers and utility providers in finding optimal solutions addressing the new

nation-wide strategies. At a (pre-)design level, they proposes appropriate technologies and

energy infrastructure while showing the impacts on the existing infrastructure (if there is any).

The community of Verbier is constructing a new district heating system. In mountain resorts

such as Verbier, Switzerland, the population of people can raise up to 40 000 during the skiing
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Studied Area
Studied Area

Heat Density Map
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200 - 400 MWh/ha/an
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600 - 800 MWh/ha/an
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.

0 0.50.25
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Figure 5.3 – Heat density per block of 100 ∗ 100 m (1 hectare) for Verbier, Switzerland

holiday season around Christmas, in February break or during spring break. However, only

3 000 persons live in Verbier all year long [Commune de Bagne, 2014]. Buildings with only

seasonal occupation still may use a direct electrical heater, increasing the need for electricity

import during the winter.

The tool Planeter [Blanc et al., 2013] uses all available information about the buildings in the

area to give an overview about the current situation. Figure 5.3 is one of Planeter’s results. It

is based on [Girardin et al., 2010] extended with the feedback from the everyday usage with

clients. Building registry information is combined with consumption data from the local

utility. Together with the Swiss building regulation a complete picture of the each building can

be drawn. When no daily or monthly measurements are available, which so far has almost

always been the case; the tool provides the necessary input data to run dynamic simulation

software. Simulating building dynamically helps understanding the problem of the seasonality.

In addition to the building’s current energy demand, a refurbished state is estimated based on

current Swiss standards. The local available (renewable) energy sources are mapped. For heat

pumps the available sources are evaluated and mapped. Available surfaces for the installation

of solar thermal collectors are sorted with respect to their orientation to integrate the solar

potential of the area.
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A dynamic building simulation software, bSol [Page et al., 2014], fed with parameters from the

previous step, evaluates the heat load over a given meteorological year for each building with

an hourly resolution. Furthermore, retrofitting actions can be simulated to assess a scenario

for each building with decreased heat demand. bSol helps to evaluate the impact of hypothesis

such as temperature set-points or building envelope’s u-values that completed the data sets.

Thanks to increasing computational power and the simplicity of bSol, a lot of evaluations can

be run quickly allowing input parameters to be tested systematically, ensuring an appropriate

set of input parameters.

Verbier does not have a district heating system yet, a main branch for the district heating

system is being installed during 2015 as well as several wood fired or oil boilers. About 300

buildings, which are according to the community the most likely to be linked to the district

heating system, consume according to a dynamic building simulation about 24.4 GW h of heat

annually. The peak load is 13.3 MW in the winter.

The dynamic building simulation calculates the heat demand throughout the year. This input

is reduced to 12 key days representing the year, one for every month. A temporal k-medoids

clustering, see Chapter 4, is used to identify them, respecting the annual energy and power

balance. January and February are regrouped to one month, because they have a very similar

profile. Then an extreme period is inserted at the place of January.

For the operating conditions, the hydronic model from [Girardin et al., 2010] calculates the

supply and return temperature within the heating system using the design temperatures of the

building’s heating system provided by Planeter. It assumes a constant mass flow. The nominal

mass flow ṁ0 multiplied by the specific heat capacity cp equals the nominal heating power

Q̇0 divided by the nominal temperature difference between supply and return temperatures

Tsuppl y,0 and Tr etur n,0. The supply temperature Tsuppl y,p,t in the period p and time slice t

is then calculated as a function of the internal temperature Ti nt and the ratio of the current

heat load Q̇p,t over the nominal one, multiplied with the nominal temperature difference

Tsuppl y,0 −Tr etur n,0 and a factor representing the heat exchange. Subtracting the ration out of

current heat load Q̇p,t and product of nominal mass flow ṁ0 and specific heat capacity cp , the

supply temperature Tsuppl y,p,t is obtained.

ṁ0cp = Q̇0

Tsuppl y,0 −Tr etur n,0
(5.40)

Tsuppl y,p,t = Ti nt −
Q̇p,t

Q̇0
· (Tsuppl y,0 −Tr etur n,0) · α

1−α (5.41)

with α= Tsuppl y,0 −Ti nt

Tr etur n,0 −Ti nt
= exp(

U0 A0

ṁ0cp
)

Tr etur n,p,t = Tsuppl y,p,t −
Q̇p,t

ṁ0cp
(5.42)
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The solar thermal heat production is calculated for discrete collector temperatures with the

approach of 5.7 using data for a typical collector used in Switzerland. Figure 5.4 shows the

annual solar thermal potential of Verbier’s roofs.

Solar thermal
Potential per m2

< 400 kWh/m2
400 - 500 kWh/m2
500 - 600 kWh/m2
> 600 kWh/m2

µ

0 0.50.25
Kilometers

Figure 5.4 – Annual solar thermal production potential per m2 of roof.

The examples shown do not cover all superstructure combinations of technologies available

for the heat supply neither all possible integration possibilities. Here, the model is used a

screening tool on community level, that can quickly give an overview pointing towards the

interesting solutions. Energy integration can integrate more technologies and also integrate

with existing heat sources during a project while knowledge of the area is increasing. For the

superstructure choice existing algorithms such as [Voll, 2013] can be chosen.

For this case study, it is important to show the comparison of the different storage options for

the energy system design.

5.9.1 District Heating System

The piping of an district heating system connects the energy demand, (renewable) energy

resources and the large thermal heat storage. When using energy integration, either the

network streams can be introduced in between demand and supply with heat exchange

restriction [Becker and Maréchal, 2012] or a higher ∆Tmi n/2 can be chosen.
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This work tries to show and integrate the potential of storage and a stochastically available

resource into the energy system. Considering the limited knowledge about potential additional

restrictions such as already existing pipes, natural obstacles or property related restrictions,

decisions in practice are often not rational [Aringhieri and Malucelli, 2003]. Therefore the

network is not modeled.

In addition, a network model was tested using the different discrete temperature levels to

connect demand and supply. It has the advantage of providing network temperatures and

deciding between central and decentralized technology installation. The chosen formulation

contains a big-M approach similar to the storage, creating numerical instabilities in the

optimization. For small scale problems, such as around 20 demand streams in less than 50

periods results can be obtained. This module allows to further compare whether to work

with one or two supply temperature pipes. Studies of [Dalla Rosa et al., 2011, 2012] show the

interest of studying a two supply temperature piping system.

Taking the hypothesis of a large ∆Tmi n/2 = 5K avoids using this model, because the tempera-

ture difference between hot and cold streams are big enough to integrate a network with its

heat exchangers. Not modeling the network allows to keep the time steps of the storage model

at a higher resolution.

5.9.2 Results of Storage Option Comparison

The impact on the system design of the three storage options are compared under the two

objective functions: either a daily, a seasonal or both storage types can be chosen under one

of the objective functions, minimizing annual costs or the annual CExD.

It is assumed that the total size of the daily storage is 1 m3/bui ldi ng totaling to 300 m3,

because this size can be installed without any constructional building modification. It is also

the maximum steel tank size available, if bought as one single storage tank at the central

heating plant. For the seasonal storage, the limit is set to 12 000 m3, because one of the biggest

realized projects in Friedrichshafen, Germany, is of this size.

Table 5.4 – Storage comparison: sizing for the case study with a maximal load of 13.3 MW

Objective
Function

Storage
types

Boiler
Size

[MW ]

Solar
Panels

[103 m2]

Daily
Storage

[m3]

Seasonal
Storage

[m3]

CExD
both 10.5 29.2 254 10 500
daily 12.5 23.7 300 0
seasonal 12.5 22.8 0 8 200

Cost
both 10.6 15 169 2 900
daily 12.5 15.1 168 0
seasonal 12.5 14.7 0 4 600
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Table 5.4 shows the results for the comparison of storage options. The model chooses in all

cases to use storage, because it improves the objective function’s values by at least 7 to 15%

compared to a solution with no storage. With different objective functions, either CExD or

total annual costs, the results vary. The CExD objective lets the model choose more solar

panels and a bigger storage size in every scenario. When both storages are active, the peak load

can be significantly reduced, because the storages are also used during peak load. In addition,

the solar thermal panel installation size reaches almost 30 000 m2 when both storages are

active for the CExD case.

All values are converted into CExD in Table 5.5 and annualized as for costs with the factor

0.0782, equivalent of an annuity for 25 years at 6%. This is done to compare results on equal

basis. In the cases with CExD as minimization objective, the two storages are difficult to

differentiate because the objective values are very close. While the big size of the seasonal

storage has an impact on the construction value, the annualization used reduces this value.

The operating CExD are the same for both cases. In all scenarios, the seasonal storage scenario

is the most expensive one in terms of total annual CExD.

When the cost minimization are converted to CExD, they have a higher CExD for the cases

with only one storage type. Especially the operating CExD is a lot higher. For the case with

both storages, the operating value is similar to the one of the single storages in the CExD

minimization. Due to the lower construction value, it is closer to the CExD minimization with

both storages than to the individual storage cases.

Table 5.5 – Storage comparison: all costs are transformed to CExD values. Construction costs are
annualized with the factor 0.0782.

Objective
Function

Storage
types

non-renewable
Construction

CExD
[GW h/a]

Annual
Construction

Value
[GW h/a]

Operating
non-renewable

CExD
[GW h/a]

Total annual
non-renewable

CExD
[GW h/a]

non-
renewable
CExD

both 38.0 3.0 14.6 17.6
daily 28.6 2.2 17.2 19.4
seasonal 29.5 2.3 17.2 19.5

Cost
both 19.1 1.5 16.9 18.3
daily 18.4 1.4 18.7 20.2
seasonal 19.0 1.5 18.9 20.4

The results converted to costs are in Table 5.6. As before, the investment costs are annualized

and added to the annual operating costs to the total annual costs. The cost optimizations are

significantly less expensive than the CExD ones. The relative difference between the solution

with both storages is increasing, when they are converted to costs. For the daily storage, it is

exactly the opposite: the cost solutions are closer to each other than the CExD solutions.
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Table 5.6 – Storage comparison: all values in cost comparison, the investment costs are annualized
with the factor 0.0782 to calculate total annual costs.

Objective
Function

Storage
types

Investment
Cost

[MC HF /a]

Annual
Investment

Costs
[MC HF /a]

Operating
Costs

[MC HF /a]

Total annual
Costs

[MC HF /a]

non-
renewable
CExD

both 12.11 0.95 1.46 2.41
daily 7.51 0.59 1.74 2.33
seasonal 9.03 0.71 1.74 2.44

Cost
both 5.63 0.44 1.71 2.15
daily 4.78 0.37 1.90 2.28
seasonal 5.66 0.44 1.93 2.37

The overall CExD balance of Table 5.7 shows that the storage losses are higher for the seasonal

storage. The daily storage has a daily cycle which is repeated for each typical day the number

of times it appears in the given month compared to the seasonal one which is multiplied by

the weighting factor of each period.

Dividing the production of solar panels Qsol ar by the total heat demand QDemand is a standard

indicator of the solar fraction. The indicator does not consider the temperature level at which

the energy is provided.

f r act i onsol ar =
Qsol ar

QDemand
(5.43)

For the given case study with high temperature buildings and large consumers, the highest

solar fraction possible, defined as solar production over with the given choices, is almost 50%

in the combined storage CExD case. A second group of cases is around 35% of solar fraction.

This shows that the storages are used in the same way for both cases: the storage is charged

during the day when sun is available to replace if possible or delay the use of the boiler. The gas

boiler ensures the rest and uses the storage during the peak load day so that it does not have to

install a full power. Given the high temperature of the demand and the additional technologies

available, even it is a gas boiler, the model never chooses to install a fully solar and storage

powered system: only solar and storage based solutions a not economical neither from a

pure cost based approach nor from a CExD based approach in this case study. Nevertheless,

integrating storages in the existing system under the given conditions saves at least 15% of the

CExD or 7% of the costs.

5.9.3 Discussion

When the thermal storage is introduced, the size of the peak load equipment is decreasing.

This is an option that can be influenced through the maximum available power that the storage
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Table 5.7 – Storage comparison: the total energy demand is 24.4 GW h

Objective
Function

Storage
types

Boiler
Energy

[GW h/a]

Solar
Energy

[GW h/a]

Solar
Fraction

[%]

Storage
Losses

[MW h/a]

non-renewable
CExD

both 13.8 11.7 47.95 460
daily 15.8 8.7 35.66 13
seasonal 15.8 9.0 36.89 110

Cost
both 15.5 8.9 36.48 277
daily 17.5 7.0 28.69 27
seasonal 17.3 7.1 29.10 147

can use for charging or discharging. With the here chosen approach, the peak load period is

perfectly known in advance: the model uses a perfect horizon. The model charges the storage

with the peak load utility in the hours before the peak. During the peak hours, the peak load

utility and storage discharging ensure the heat requirement. From the functional side, this

behavior is correct. When installing such a system, this requires a predictive control otherwise

the available power is not sufficient. This bears a certain risk of not being able to fulfill the

heating requirements in all future situations and gives rise to include uncertainty into the

system design.

The solar fraction of 50% is relatively high for the case with both storages under a CExD

minimization when taking the relatively high heat losses into consideration. They are the

same number of magnitude than in Friedrichshafen, where the lower third of the tank is not

insulated and get compensated through the installation of more solar thermal collectors.

For the CExD approach, obtaining a coherent data set of CExD values remains the biggest

part of the work and the key challenge: the data sets available such as [Dones et al., 2007]

are gathered under a life cycle perspective and not for energy system design. The data sets

itself seems to be studied with great accuracy. However, the case studies used for defining the

CExD of a given technology do not always use the technology in the same way as in this work,

neither does a choice of different equipment sizes exist.

In addition, often the documentation already leaves a key question unanswered: which exact

technology is studied from which year and how did updated values get calculated? When

using the data, ideally the production site of technology should be known to estimate the

transportation impact as well. If these questions can not be answered precisely, the proposed

CExD values should be considered as an order of magnitude value rather than exact number.

In the case where the solutions are close to each other, the answers to these questions can

help to distinguish between them. CExD has the advantage of being a useful supplement to

energy integration considering the whole life cycle as shown for the refurbishment example.
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Mass production of a given technology significantly reduces its price. In a cost based opti-

mization, these technologies will be chosen primarily. The CExD suffers less from this effect

even though a mass production might also be more effective in terms of CExD as it might be

able to reduce the CExD as well. Comparing the solutions of CExD minimization to the cost

ones generally shows towards more infrastructure expenses than operating ones.

With this problem structure, additional indicators such as greenhouse gas emissions, envi-

ronmental impact points or primary (non-) renewable energy use can be integrated quickly,

which can help gaining a larger view on the solution. Compared to the CExD, the mentioned

indicators are in common use and more values can be more easily obtained.

5.9.4 Comparison of seasonal Storage Formulations

Figure 5.5 compares the different execution times of MILP and LP formulation of the seasonal

storage. For the LP model, the top and bottom losses are ignored. The MILP model uses the

top and bottom losses as described in 5.3.3. The difference in term of storage losses is around

10 % . The difference in terms of resolution however needs to be plotted on a logarithmic scale.

Especially when the time slices are increased, the MILP model depends more and more on

heuristics within the solver to find a solution quickly. Depending on how fast the heuristic

finds a feasible solution, the solution time varies between on and the same run. Measuring the

resolution time when the input data is changed, even if the change is only minor, also offers

the whole range of resolution time variability with at least the same order of magnitude shown

in the Figure 5.5.

In order to increase the solution time, the MILP gap can be lowered. The solution time

decreases, however the system configurations that are found with a low gap value of 0.01 %

are sometimes not found anymore. Instead a similar solution in terms of objective value is

found, that differs substantially in terms of system sizes. Reducing the gap leads therefore to

inconsistent solutions and is therefore not studied any further.

5.10 Conclusion

The developed LP and MILP models allow to propose energy system design while integrating

storage with a stochastic renewables. Compared to the previous works of [Fazlollahi et al.,

2012] using a MILP daily storage model with independent typical days in the slave optimization,

in this work it is possible to link the days to each other. A seasonal energy storage is possible at

the cost of creating a bigger model. Most projects with seasonal storage have a buffer storage

and a seasonal long term storage. The optimal solution proposed through the model also

propose a two storage type solution under two different objective functions.

Further, the comparison of the solutions obtained through two different objective functions

show that under a CExD objective more investment into storage and solar thermal panels is
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Figure 5.5 – Computation time comparison of LP and MILP models for the seasonal storage model

optimal. If a lower total CExD value is defined as a more sustainable solution, this indicator

points clearly towards more storage usage during this case study. However, the CExD values

have to be considered as an order of magnitude number rather than exact number because it

is very difficult to ensure that for all systems the same hypothesis are considered.

Compared to classical approach with cost functions, renewable penetration is favored, because

it is available as a quasi-free source within the system after the installation costs or CExD.

The CExD indicator is therefore a suitable combination for energy integration to gain a more

holistic overview of the system. Of course, the exergy indicator has known drawn backs such as

ignoring toxicity but neither does the cost indicator. Combining both approaches in an MILP

identifies the best solution under each objective, costs and CExD, directly with two separate

runs.

About 40 years after the first formulation of a multi-period problem for energy system design,

writing the problem remains fairly easy compared to solving it, when integrating storage.

Reducing the number of time slice dependent integer variables or reducing the time slice
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number remains a key aspect for obtaining a solution. The problem is easy to formulate, but

hard to solve.

5.11 Future Work

Introducing two detailed temporal scales with storage into an MILP model leads to large prob-

lems. For that reason, the problem needs either to be simplified leading to approximations.

Or a decomposition approach as presented in [You et al., 2011] should be used as it seems to

be the most promising one.
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6 Buildings as thermal Energy Storage

In this chapter, CitySim, a dynamic building simulation software is used to estimate EPFL’s

heating demand. For the chosen buildings of EFPL, the building’s active heat storage capacity

is estimated respecting the comfort temperature range. This capacity is integrated into the

energy system to show that the proposed models of Chapters 4 and 5 can also be used on

much more detailed level. The results show the potential savings, when using the building as

a thermal heat storage.

6.1 Introduction

The energy demand of EPFL is taken from Coccolo et al. [2015]. The model of the EPFL campus

is realized with the software CitySim, calculating the heating and cooling demand of the

campus and the electricity produced by the PV on the rooftop of buildings. The model was val-

idated with on-site monitoring, showing a good correlation factor between the measurements

and the model.

The optimization considers the impact of using the heat capacity of building’s envelope within

the indoor comfort temperature range; the best optimal operational mode for the building’s

capacity and the solar panels is identified, showing the variation of the internal temperature

using the building mass as energy storage. This approach allows shifting peak loads by several

hours, reducing the heating power demand.

This is called demand side management (DSM). The term DSM was introduced in the 1980’s

by the Electric Power Research Institute[Arteconi et al., 2012, Warren, 2014] and refers to the

ability of changing electric energy demand patters behind the meter that are mostly out of

(direct) control of the network operator, historically also known as load management. In most

cases, this is done through education and (financial) incentives. The importance of DSM is in

the increase of the network utilization rate: more consumers can be connected to the current

network without further investment, increasing the network’s cost-effectiveness. [Warren,

2014] defines it as reverse thinking: DSM tries to match demand with the available supply.
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Three categories of DSM exist: energy efficiency measures such as changing appliances, on-

site backup with additional generation and storage capacity and demand-side response using

incentive based approaches. Further, [Warren, 2014] points out that no unique definition

exists on whether to go further than only electricity. With the introduction of so-called smart

grids the definition is extended to all services (heating, cooling, electricity). only the use of

the building mass as a thermal energy storage is considered for the purpose of demand side

management.

The available operating temperature range, which is equivalent to the internal temperature

available to the DSM, is limited: It needs to be adapted to the comfort levels of people living or

working the building (or to the industrial requirements).

In the area of building physics, accessing the thermal mass or capacity impacting the heating

or cooling load is a widely discussed field. Experimental [Childs et al., 1983] and analytic [Ma

and Wang, 2012] studies demonstrate that most estimations of the buildings thermal capacity

are wrong due to the fact that heat convection is neglected or not correctly calculated.

[Reynders et al., 2013] uses a detailed approach for the modeling of the different heating

distribution systems. Then they evaluate different options concluding that DSM shows strong

peak shaving potential of up 94% for the heat pump’s electricity consumption. [Xue et al.,

2014] proposes a management system enabling the use of DSM. Through the use of HVAC

utilities the peak shaving and load shifting in the electric grid is demonstrated.

According to [Xue et al., 2014] an interactive building power demand management strategy for

the energy management of a building point is key driver for demand alternation potential. On

the one side [Reynders et al., 2013] use a detailed approach for the modeling of the different

heating distribution system than [Xue et al., 2014] to show the impact of different heating

systems and building structures. On the other side, [Xue et al., 2014] use a more detailed

approach to model the thermal mass of the building. The lumped method used by [Reynders

et al., 2013] has to be treated with caution as they did not show how they treat the heat

convection within the building’s structure. Both show promising results with varying reduction

potentials up 94% of the original demand. These results vary as they depend on the building

type, the state of the energy conversion system together with the application case.

The Danish Heat Atlas [Möller, 2012] identifies DSM as a key technology for networks in the

context of heat supply. But it does not provide any further ideas on how to reach this potential.

6.2 Method

For the purpose of using a building as an energy storage, first the thermal mass is calculated

with a simplified model considering heat convection based on [Ma and Wang, 2012] findings.

This result is implemented in an existing MILP model minimizing overall costs or costs while

fulfilling the heating requirements. Combining simulation to estimate the heat capacity and

102



6.2. Method

optimization its use allows to decide whether using the building as an energy storage is of

economic interest. Compared to an only simulation based approach requiring frequent runs

to find the optimum, the result can be presented after directly .

The gains through the sun, persons in the building or appliances are integrated into this

approach by the building simulation. When the gains increase, the heating demand decreases.

This means that they are not taken twice into consideration.

6.2.1 Effective thermal Capacity of a given Wall

Depending on the length of the storage period, different thermal masses should be considered.

Figure 6.1 represents a simplified thermal mass model estimating the heat capacity of the

wall. It is based on the hypothesis of one-dimensional heat conduction without internal heat

generation and a constant thermal conductivity. In our case, the internal air temperature acts

as an excitation source following a sinusoidal function and has a period of 24 hours as in [Ma

and Wang, 2012].

Outside
T=10°C

Inside
T=21.5°C

Figure 6.1 – Simplified illustration of the one dimensional heat flow Q̇ across i elements with a width of
∆x and a cross section surface Ai

No heat energy is created in the wall, nor do mass transfers happen. Equation 6.1 applies an

energy balance to a given wall section i with a cross section A. The change of internal energy

U over time t equals the difference of the incoming heat load Q̇i n and the outgoing heat load

Q̇out as the mass M and the specific heat capacity cp as well as the thermal conductivity λ

remain constant. This implies that the temperature change ∂T over time ∂t is proportional to

the temperature change over the distance ∂x.

dU

d t
= Q̇i n −Q̇out =⇒ Mcp · ∂T

∂t
= Aλ

∂T

∂x
(6.1)

∂T

∂t
− Aλ

Mcp

∂T

∂x
= 0 with:

∂T

∂t
= T t

i −T t−1
i

∆t
and

∂T

∂x
= T t

i −T t
i−1

2∆x
+ T t

i −T t
i+1

2∆x
(6.2)
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Equation (6.2) shows the discrete time derivative of ∂T
∂t using a first order implicit scheme and

the spatial derivative of ∂T
∂x with a centered finite difference scheme of second order along

the direction of x. ∆t represents the discrete time t and ∆x the discrete width of a slab. Mcp

depends on the mass M and the specific heat coefficient cp of the considered wall section.

Equation (6.2) can be transformed to Equation (6.3) that calculates the temperature T of the

i -th wall section in the time t −1 as function of the surrounding wall sections’ temperatures

(i +1 and i −1) and the temperature of the wall section i in the next time step t . λ represents

the heat conductivity of the material in wall section i .

T t−1
i = T t

i − Aiλi

Mi cp i

∆t

∆x

(
T t

i−1 −2 ·T t
i +T t

i+1

)
(6.3)

For the boundary conditions, the first element of the wall in contact with the air in the room is

calculated as follows:

Ui = 1
1

hi nt
+ x

2λi

(6.4)

T n
i −T t−1

i

∆t
= Ui Ai

Mi cp i

(T t
i nt −T t

i )

∆x
− (T t

i −T t
i+1)

∆x

Aiλi

Mi cp i

(6.5)

T t−1
i = T n

i − ∆t

∆x

1

Mi cp i

[
Ui Ai (T t

i nt︸ ︷︷ ︸
excitation vector~c

−T t
i )− Aiλi (T t

i −T t
i+1) ] . (6.6)

The indoor convection hi nt is fixed at 10 W
kg K . Replacing the indoor temperature Ti nt and the

convection hi nt with the external ones, allows to calculate the wall section temperature on

the external side. In order to obtain the thermal capacity of the wall a sinusoidal temperature

variation is applied:

Ti nt (t ) = 21.5+1.5 · si n(2π · t

24h
) . (6.7)

The indoor temperature varies within a defined comfort band of 3° Celsius over the duration

of a day based on [Swiss Society of Engineers and Architects, 2006].

All wall section temperatures over the whole 24 hours can be calculated at once using this

implicit linear Equation:

B~x(t ) +~c =~x(t−1) ↔~x(t ) = B−1B~x(t ) = B−1~x(t−1) −B−1~c . (6.8)

With Equation 6.8 based on the temperature vector of the previous time step ~x(t−1), the

temperature of each wall section at the current time step~x(t ) is expressed with the excitation

vector ~c and the coefficient matrix B . This approach is unconditionally stable and thanks

to the matrix with constant coefficients only a single matrix inversion is needed leading to

computationally inexpensive estimation of the wall’s behavior. Figure 6.2 shows the wall’s
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temperature after going through a cycle raising the internal temperature from 20°C to 23°C

and going back to 20°C .

The storage capacity can then be estimated as follows: Over the discharging cycle, when the

internal temperature Ti nt is falling, the effective wall thickness xe f f used for heat storage can

be estimated as a function of the first wall slab i = 1 in contact with the internal air:

xe f f =
∑Tmi n

Tmax
Q̇1 ∆t

A1 ρ1 cp 1 (T t=Tmax

i nt −T t=Tmi n

i nt )
. (6.9)

For concrete, this approach yield 10.5 cm, which is the same value as reported by [Ma and

Wang, 2012] with 10.5 cm. The total effective heat capacity for a building is calculated using

the total surface Atot in contact with the heated air within the building:

Ce f f = xe f f Atot ρ1 cp 1 . (6.10)
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Figure 6.2 – Temperature evolution within a type 2a wall of EPFL while in cooling down phase of sinus
with a duration of 24 hours going from 23° to 20°C . The layers from left to right are: brick (0−0.06m),

insulation (0.06−0.18m) and concrete (0.18−0.43m)
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6.2.2 Linear Optimization Model

The objective function of the MILP model minimizes the overall cumulative exergy demand,

the same formulation can be used to minimize the overall costs. The model uses the heat

cascade to size the equipment. For this work, two equipment types are available: a gas

boiler and a solar thermal collector. The solar thermal collector has the choice to deliver

heat at different discrete temperature levels according to the available irradiation calculated

by CitySim. Higher temperatures yield lower panel efficiencies. The boiler delivers heat at

constant high temperature.

The DSM model can be activated by two mechanisms: either different tariffs for resources are

introduced such as day and night tariffs or a stochastic free resource is available during the

certain hours of the day. The second option is chosen: the solar thermal panels operate for

free during the hours where sufficient irradiation is available. They can be combined with a

seasonal storage. The detailed model for the seasonal storage and the solar thermal collector

can be found in 5.

In simulation approaches, such as used in Coccolo et al. [2015], the internal temperature

is fixed to a specific value. In this work, the energy demand is introduced as a bounded

variable to show the potential of energy storage in a building’s wall. The bounds are the

comfort temperature range. More heat is used at a certain moment than the current heating

requirement to store it in the building’s wall.

All variables within the MILP are printed in bold. Equation (6.11) guarantees the thermal

comfort of the building: the room temperature ∆Tb +Tmi n should not be higher than the

maximal room temperature Tmax defined as being within the thermal comfort range by the

occupants neither lower than the minimum temperature Tmi n . The temperature bandwidth

variable ∆Tb can be set for each time step, according to occupation patterns, day and night

shifts or seasonal preferences for each building.

Tmi n ≤∆ Tb +Tr e f ≤ Tmax (6.11)

∆Qb =∆Tb Ce f f (6.12)

The heat stored in the building’s structure ∆Q is calculated via this temperature difference ∆T

and the effective heat capacity of the building Ce f f with Equation (6.12). The multiplication

of the overall heat transfer coefficient Utot , the building’s surface Atot and the temperature

difference provide the additional heat losses due to the temperature raise in Equation (6.13).

∆Qb =∆Qb,0 +
t=nt∑
t=1

dt ·
(
Q̇heating:t −Utot Atot ∆Tb

)
(6.13)
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The sum is only over the time slices and not the periods because the heat can not be stored

long enough in the building’s structures. (The subscript p is therefore omitted.)

Q̇heating:t =
(
fheating:t −1

) ·Q̇t (6.14)

They are linked to the reference heat load Qheati ng :t via the multiplication factor ft in Equation

(6.14): during charging, f is bigger than 1, during discharging it will be smaller than 1. A

value of 1 for f delivers only the current heating demand. The heat cascade links the energy

conversion technologies with the varying heat demand.

When heat should be stored in the building, the heat distribution temperature level Tl needs

to choose a stream with a higher temperature. In total, three levels are proposed, two with a

higher temperature. The level 0 is the lowest level that can only satisfy the demand without

lifting the temperature of the building’s wall. All levels have predefined temperature levels

but can be activated continuously through their multiplication factor ft . A combination out

of all three streams can be used to first supply the required heat and then heat the buildings’

walls leading to a continuously floating temperature of the wall. Equation (6.15) ensures that

the building is always heated with the lowest temperature level 0 plus the current building

temperature.

∀t and temperature levels l ∈ 0,1,2 :
nl∑

l=1
fl,t ·Tl ,t ≥

nl∑
l=1

fl,t ·Tmi n,t +∆Tb (6.15)

If only the heating requirement needs to be fulfilled, the current level is sufficient. When the

building should be heated to a higher internal temperature, also a higher heating level needs

to be used. A higher heating requirement leads to a higher demand of utilities that a certain

(CExD) price. Therefore the heating requirement will only be increased, if the overall costs can

be increased.

In order to run the optimization, the hourly input data, the heat load and the solar irradiation

calculated by CitySim, are clustered/reduced to 10 representative days with 13 time steps

per day. The method explained in Chapter 4 is applied to the data set. Compared to the

data of Verbier, more days are needed to represent the data, because EPFL has a different

usage pattern with university holidays and weekend versus week day load. The reduction of

input data makes running optimization model possible while respecting the power and energy

balance. Compared to 8760 hours only 113 time steps need to be taken into consideration. Two

buildings were analyzed, as they represent a light mass building (Polydome), and a massive

one (AAB). Their physical envelope’s characteristics are summarized in Table 6.1. The values of

the effective depth are a function of the first internal layer. The heat loss coefficient represents

the total weighted average U-value of the building.
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Table 6.1 – Effective thermal capacity of studying buildings: Polydom, the lightest building on campus
based on a wood structure and AAB, the massive building with a concrete structure.

Building

Total
Thermal
Capacity
[ M J

K ]

Effective
Thermal
Capacity
[ M J

K ]

Capacity
Percentage

[%]

Effective
Depth

[m]

Material

[-]

Total
Building
Surface
[m2]

Total
U-
Value
[ W

m2·K ]
Polydom 1583 490 25.6 0.12 Wood 3249 0.22
AAB 2450 627 31.0 0.09 Concrete 2564 0.38

6.3 Results

The Table 6.2 shows 7 calculations:

1. reference case with gas boiler and 201 m2 of solar thermal panels,

2. building heat storage is available with the same solar panel surface,

3. building heat storage is available with the optimal solar thermal panel size chosen by

the model,

4. a thermal heat storage of 100 m3 is added to the reference case with the gas boiler and

201 m2 of solar thermal panels,

5. the building heat storage, 100 m3 of thermal heat storage and 201 m2 of solar thermal

panels are available,

6. 100 m3 of thermal heat storage and optimal solar thermal panel size chosen by the

model,

7. building heat storage and 100 m3 of thermal heat storage are available and optimal solar

thermal panel size is chosen by the model.

When solar thermal energy is available during the day, generally a slight load shift can be

achieved starting the boiler later. The boiler also uses the building heat storage because its

peak power decreases slightly by about 3% or 4.5 kW .

Figure 6.3 shows the temperature variation of the indoor temperature over time for scenario 3.

In between the time slices 1 and 55, the building heat capacity is used when sun is available

during the day and a heat load at night is required. During the summer, represented by time

slice 55 to 90, no heat demand is present therefore this storage is not activated. Table 6.2

summarizes the different scenarios: using the building’s heat capacity plays an important role

on the overall cumulative exergy consumption and reduces the heating power for all scenarios.

With the same system configuration, but using the building’s heat capacity, the objective value

improves by at least 6 %. Introducing a seasonal energy storage of 100 m3 is only of significant

advantage when the building’s heat capacity is used as well. Without it, there is only a minimal

improvement.
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Figure 6.3 – The red line represents the AAB building, the yellow one the Polydom. Their internal
temperature changes over time are shown through the colored lines and the stored heat per building in

the bar plots for scenario 3

6.4 Discussion

The results show the interest in using the building as thermal energy storage. The simulation

model can be used to compare different wall compositions. For the estimating the capacity,

the knowledge of the wall’s composition is important. Otherwise big errors can be made, for

example if the building is isolated in the inside due to the fact that it is a historical building.

On one side, the information can not be accessed easily, because they are not found within the

available data bases nor do all the owner know how they walls are composed. During energetic

refurbishment, one might have the chance to get a detailed picture of the wall’s composition.

On the other side, with this approach different compositions can be tested and their capacity

can be compared so that the most realistic (or pessimistic) one can be chosen.

The shown behavior of the model is based on perfect knowledge of the future heat demand

(and therefore the occupation and the weather forecast). The boiler also uses the buildings

mass as a thermal storage, decreasing its size. Comparing the reference case and the cases

with no building heat storage to the ones where the building storage is additionally included,

shows savings up to 22 % .

The optimization results depend strongly on the configuration of the energy system: the

storage with twice as much solar thermal panels can save as much as the active building heat
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Table 6.2 – Results of all scenarios: The storage is always at indicated size, optimal solar panel size
indicates that the model chose the solar panel size to be installed.

#
Scenario
Description

Building
Heat
Storage

Improve-
ment to 1
[%]

Boiler
Size
[kW]

Solar
Panels
[m2]

Long term
Storage
[m3]

1 Reference Case No - 127.8 201 0
2 Solar as in 1 Yes 6.28% 123.3 201 0
3 Optimal Solar Panel Size Yes 16.90% 123.3 831 0
4 Solar as in 1 No 4.52% 127.8 201 100
5 Solar as in 1 Yes 8.58% 123.3 201 100
6 Optimal Solar Panel Size No 6.64% 127.8 449 100
7 Optimal Solar Panel Size Yes 22.01% 123.3 1098 100

storage. The highest savings result from a combination with a long term storage that is also

heated up during the time where no heat demand is present realizing the about 6% of CExD

economy shown in scenario 7. The results of scenario 3 and 6 add up to it.

6.5 Conclusion

The two-step approach allows to first estimate the effective thermal capacity of a building and

second optimize the overall energy system with this additional storage. Instead of searching

for an optimum internal building temperature through running simulations, the optimization

model uses the effective heat capacity to optimize the indoor temperature minimizing non-

renewable energy use. Through the optimization, the presented approach indicates operating

strategy for the energy system. A linear optimization model will not give the same result as

detailed building model, but it helps to identify which operating conditions should be studying

in more detail with a low computational effort.

Using the building structure as an additional heat storage within a comfort temperature

bandwidth shifts peak loads, reducing slightly the equipment size. Realizing the load shift can

be done using command predictive control. A final decision of which equipment to deploy at

which size requires a detailed study of the energy conversion system already available on site.

6.6 Future Work

A rolling horizon could be used instead of the perfect horizon to consider the uncertainty in

weather predictions and people’s presence. Comparing the two solutions, one with the design

model and the other one with the rolling horizon, would allow to get an idea on how well in

advance the weather and the demand need to be known to activate this potential.

Additionally, a Photovoltaic module with a heat pump should be added. The heat pump could

use the electricity of the PV module to either supply heat to satisfy the demand, store it in
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a thermal energy storage or in the building. This allows to compare two competing system

configurations and would allow to decide between solar thermal or PV installation for a given

roof top.
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7 Retrofitting as Decision Variable

The building stock in Switzerland is responsible for the biggest part in the final energy con-

sumption. Only using more renewable energy sources on the supply side is a step towards

reaching the actual political goals, however it will not be sufficient. The reducing the demand

is key challenge to a more sustainable overall energy system.

Therefore a trade-off exists between either investing into a more renewable energy supply

or reducing the energy requirements. The presented approach based on the CExD can help

finding a solution, because it considers a holistic view of the energy system including the

supply chain.

Jennings et al. [2014] present a similar concept using a MILP framework for retrofitting resi-

dential energy systems at urban scale. They use a spatial scale of 19 districts and an annual

time resolution to propose measures for the future design. In their case studies the centralized

solutions can be very interesting.

The here presented approach extends their framework by considering a more detailed energy

storage model and demand profiles in an hourly time resolution based on the typical days.

7.1 Model Extension for Demand Side Technology: energetic Build-

ing Renovation

When considering different supply options for the integration into the energy conversion

system, it is important to consider at the same time the options that allow buildings to be

refurbished.

In the model, we consider that the buildings can be in either a refurbished state or left at

original state. As in Chapter 5, Verbier is taken as a demonstration test case and the heat load

is modeled with a dynamic building simulation ([Page et al., 2014]). The heat load for both

cases is estimated with and without insulation.
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When the building is refurbished, the heat load is reduced as well as its distribution tempera-

ture: the new distribution temperatures are estimated using the model proposed in [Girardin

et al., 2010]. It assumes a constant mass flow in the heat distribution system. The nominal

mass flow ṁ0 multiplied by the specific heat capacity cp equals the nominal heating power

Q̇0 divided by the nominal temperature difference between supply and return temperatures

Tsuppl y,0 and Tr etur n,0. The supply temperature Tsuppl y,p,t in the period p and time slice t

is then calculated as a function of the internal temperature Ti nt and the ratio of the current

heat load Q̇p,t over the nominal one, multiplied with the nominal temperature difference

Tsuppl y,0 −Tr etur n,0 and a factor representing the heat exchange. Subtracting the ratio of the

current heat load Q̇p,t and the product of nominal mass flow ṁ0 and the specific heat capacity

cp , the supply temperature Tsuppl y,p,t is obtained.

ṁ0cp = Q̇0

Tsuppl y,0 −Tr etur n,0
(7.1)

Tsuppl y,p,t = Ti nt −
Q̇p,t

Q̇0
· (Tsuppl y,0 −Tr etur n,0) · α

1−α (7.2)

with α= Tsuppl y,0 −Ti nt

Tr etur n,0 −Ti nt
= exp(

U0 A0

ṁ0cp
)

Tr etur n,p,t = Tsuppl y,p,t −
Q̇p,t

ṁ0cp
(7.3)

The objective function is modified to take into account the additional CExD needed for

refurbishment. The new terms are:

Re fb represents the CExD for refurbishment of the building b

yr e f ur bi shed (b) is the binary variable activating refurbishment of building b

Fob j ,cexd = mi n

(
f A ·

(
nu∑

u=1
i nvC E xDu · su +∑

b
Re fb ∗ yr e f ur bi shed (b)

)
+

np∑
p=1

wp ·
nt∑

t=1

nu∑
u=1

(
cexd f ,u · fu,p,t ·Q̇+

u + c+el ,p,t · Ė+
el ,p,t − c−el ,p,t · Ė−

el ,p,t

)
·dp,t

)
(7.4)

Now the objective function includes the demand side: when it is optimal to refurbish a

building, the additional CExD is added to the objective function.

For the integration of the demand side technology energetic refurbishment, the model is

extended to ensure that it either contains the current state of the building ycur r ent or the

retrofitted state yr e f ur bi shed . The model modification introduces two indicator variables that
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activate either the current heat demand in the heat cascade or the refurbished one. Equation

(7.5) ensures that either the current heat demand or the refurbished one is used.

ycur r ent + yr e f ur bi shed = 1 ∀b . (7.5)

The CExD to retrofit a building is not available. Therefore the values shown in Table 7.1

are used to represent specific retrofitting CExD values. Triple glazed windows and 20 cm of

Table 7.1 – CExD values used for energetic refurbishment

Type CExD

thermal insulation 106 kW h −E q/kg
triple glazed windows 460 kW h −E q/m2

thermal insulation are added to each building. The corresponding specific CExD values can

be found in Table 7.1. The catalog of building parts [Marti, 2002] and [KBOB, 2014] regroup

more Life Cycle Assessment data for additional materials related information.

7.2 Case Study

24 houses from the community of Verbier are selected. The dynamic building simulation

estimates the energy demand after the retrofit and the current one. With the building’s data

available the material CExD use is estimated for the energetic refurbishment. For each building,

the CExD is estimated through multiplication of the building’s wall and window surface with

the specific CExD shown in Table 7.1. The result for each building can be found in Table 7.2:

the part of the isolation is much higher than the one for the windows. The 24 buildings are all

of different size with different heat loads.

The results of the two building simulations, the current state and the refurbished state, are

shown for 24 buildings in Table 7.3. For most buildings, the energy consumption is reduced

by a factor of around 4 and the power divided by a value of around 2. The new maximal

distribution temperature of each building is also reduced by up to 26° C . Building 1 for

example is exactly in this range. In contrast, building 11 is already a low energy building, the

additional measures have nearly no impact.

With the new input data, a holistic recommendation can be given regarding the best actions on

the demand and supply side. Two scenarios are calculated, both have a maximal solar panel

surface of 30 000 m2 and include both storages types with the limitation of 300 m3 for the daily

and 12 000 m3 for seasonal storage available. In scenario 1, only an additional gas boiler is

available. In scenario 2, a heat pump and also the gas boiler are available. The heat pump uses

the Swiss electricity mix. Therefore the heat production costs are 2.00/COP [kW h−E q./kW h].
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Table 7.2 – Overview of the energetic refurbishment CExD values for the 24 buildings

# ID
Isolation

CExD
[MW h −E q.]

Windows
CExD

[MW h −E q.]

Total
CExD

[MW h]

1 356 83.6 4.9 88.6
2 559 820.1 73.0 893.1
3 602 86.6 3.6 90.2
4 1104 120.4 6.0 126.4
5 1341 431.1 30.0 461.1
6 1525 3622.8 381.7 4004.6
7 1710 327.6 24.6 352.1
8 1722 114.4 5.8 120.1
9 1819 147.8 8.1 156.0
10 1901 213.5 10.9 224.3
11 2079 230.4 16.0 246.4
12 2082 165.1 9.2 174.3
13 2084 387.0 19.9 406.9
14 2454 108.1 7.2 115.3
15 2458 437.3 29.9 467.1
16 3424 692.9 43.1 735.9
17 3429 251.9 16.7 268.6
18 4323 290.9 17.0 307.9
19 5030 330.6 16.8 347.4
20 5357 231.2 10.6 241.9
21 5375 446.8 24.7 471.5
22 5769 110.2 5.2 115.4
23 6133 140.6 10.5 151.1
24 6867 632.5 42.9 675.4

7.3 Results

For scenario 1, 19 out of 24 building are refurbished. In scenario 2, 11 out of 24 are chosen. The

Table 7.4 shows the results. From the 11 buildings, 9 are refurbished in both scenarios. The

remaining two, number 3 and 14 are small buildings that are only refurbished in the retrofitted

scenario. They both have a high distribution temperature.

The buildings 1, 2, 5, 6, 7, 15-17, 20, 22, 24 are only refurbished in scenario 1. Almost all build-

ings that have a maximal distribution temperature at 70 °C are retrofitted. The 14 buildings

with the highest energy consumption out of the 24 are chosen to be retrofitted in this scenario.

For the heat pump, no strategy clear strategy is found: The refurbished buildings are rather

placed in the middle in terms of annual energy consumption.

Building 1 is refurbished, when the energy supply mix is a combination of solar and gas,

compared to scenario two with the heat pump where it is not retrofitted. The operational CExD
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Table 7.3 – The energy statistics for the 24 buildings

# ID
Energy

Demand
[MW h]

Ref. Energy
Demand
[MW h]

Power

[kW ]

Ref.
Power
[kW ]

T max
suppl y T max

r e f ,suppl y

1 356 21.5 5.4 5.8 3.3 70 45.9
2 559 362.4 93.6 149.7 78.2 70 44.4
3 602 37.0 9.5 6.3 3.6 70 45.9
4 1104 33.7 8.2 10.6 6.0 70 45.8
5 1341 49.7 32.1 60.5 40.3 54.6 40.6
6 1525 1744.0 1147.2 673.1 384.6 60.1 40.4
7 1710 91.4 23.0 43.3 24.8 70 45.8
8 1722 17.2 7.8 10.2 5.8 70 45.8
9 1819 41.7 10.1 14.3 8.2 70 45.9
10 1901 100.6 24.1 25.6 13.9 70 44.6
11 2079 29.4 29.4 17.1 17.1 40 38.3
12 2082 76.1 17.9 16.2 9.3 70 45.9
13 2084 115.2 29.2 58.6 33.5 70 45.8
14 2454 44.4 10.9 8.5 4.8 70 47.9
15 2458 69.5 32.5 70.2 40.1 59.7 40.6
16 3424 231.5 57.5 126.5 72.3 69.8 46.3
17 3429 62.2 27.2 26.2 16.8 55 41.1
18 4323 84.7 21.2 40.0 22.9 70 45.8
19 5030 156.8 37.8 49.4 25.4 70 43.3
20 5357 55.7 25.8 22.7 14.3 70 49.5
21 5375 132.5 34.0 72.7 41.6 69.8 45.8
22 5769 11.7 7.5 7.8 5.2 59.8 43.7
23 6133 24.4 14.6 10.6 7.1 55 40.8
24 6867 184.3 49.9 126.1 72.0 69.8 45.7∑

3777.6 1756.4 1652 951.1

for building 1 is too small to be refurbished for scenario 2 with respect to the refurbishment

CExD expenses required. Building 11 is never refurbished, because it is already a new building

with a low heat demand. The expenses for the refurbishment would be higher than the

economies over the estimated lifetime. Building 4’s heat losses are important enough to be a

candidate for refurbishment in any supply case.

Both scenarios use storage for peak shaving. And they also use the retrofitting option to reduce

the power and energy requirement. The heat pump based system needs a small supplementary

boiler whereas for scenario 1 the gas boiler ensures the highest share of energy to be delivered.

Through the efficient way of producing heat when the heat pump is available, less buildings

get refurbished. The energy demand is reduced by around 15% through retrofits. The solar

thermal energy plays a key role in the gas boiler scenario with a solar fraction of over 70%.

In the heat pump scenario, the share of solar is reduced to around 12%. The energy storage
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Table 7.4 – Overview of which building is refurbished (=1) based on two scenarios: in the first solar
thermal panels and a gas boiler can be used, in the second a central heat pump is available in addition

to the previously mentioned technologies. Both use a daily and seasonal storage.

# ID Scenario 1 Scenario 2

1 356 1 0
2 559 1 0
3 602 0 1
4 1104 1 1
5 1341 1 0
6 1525 1 0
7 1710 1 0
8 1722 0 0
9 1819 1 1
10 1901 1 1
11 2079 0 0
12 2082 1 1
13 2084 1 1
14 2454 0 1
15 2458 1 0
16 3424 1 0
17 3429 1 0
18 4323 1 1
19 5030 1 1
20 5357 1 0
21 5375 1 1
22 5769 1 0
23 6133 0 0
24 6867 1 1

Sum 19 11

follows the solar thermal collector installation size: when many panels are installed, also the

storage is big and vice versa.

7.4 Discussion and Conclusion

This model completes the urban energy design options. Introducing refurbishment is a key

point of bringing demand and supply together: as a function of the heat supply and the

buildings demand, buildings are energetically refurbished. Different ways are shown on how

to design an urban energy system with thermal storage and a stochastic renewable heat source:

the most complete one is considering demand and supply as a variable at the same time,

because they mutually influence each other. This approach shows directly which building
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Table 7.5 – Sizing and operating of the 24 example buildings

Technologies
Scenario

Heat Pump
Sizing

Gas and Solar
Sizing

Heat Pump
Energy

Gas and Solar
Energy

gas boiler 31 kW 417 kW 26 MW h 681 MW h
heat pump 446 kWel - 2 900 MW h - MW h
solar thermal panels 671 m2 5 100 m2 377 MW h 1 720 MW h
daily storage 15 m3 100 m3

seasonal storage 33 m3 6 000 m3

Energy Sum: 3 303 MW h 2 401 MW h

should be retrofitted. It is a very practical solution compared to the standard in other studies

that provide district level results such as in Jennings et al. [2014].

The model chooses the optimum to find the best way: for the heat pump case, rather the

medium energy consumption buildings are being refurbished, whereas in the other case a

clear selection from the most energy intensive buildings are chosen.

The long term thermal energy storage, however, is only interesting for very few scenarios: the

demand temperatures and overall heat power requirement must be low. As shown, existing

buildings, even after refurbishment do not have a low enough demand for an only renewable

powered system as an optimal solution.

Practically this model might run into the limitation of property rights, because it uses a

technocrat’s approach. However for a given community or/and a big property owner are

stakeholder of a district heating network project, the concerned buildings can be integrated in

the solution for finding the optimal energy system design. Alternatively, only buildings that

might eventually be retrofitted, for example the community owned ones, could be included.

7.5 Future Works

The current MILP formulation of this model could be changed to an LP formulation assuming

that the building could be retrofitted also in between the current and the completely retrofitted

state. One alternative can be to only change the windows. Then, an LP formulation could

replace the MILP one to reduce the number of binary variables and accelerate the search.

It would be also interesting to see whether an annual formulation instead of the typical day

approach lead to a similar result. If yes, a multi-stage problem could be written that can take

every year a new decision on refurbishing or not.
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8 Integrating Uncertainty into System
Design

"Uncertainty is not an accident of the scientific method, but its substance." [Saltelli et al.,

2008, p.3]

8.1 Introduction

The lifetime of the equipment used in district heating systems such as a boiler can be estimated

to be 15 or 20 years. The network delivering the heat to the consumer has a longer lifetime,

when used correctly. The pipes can survive the equipment by a factor of three or more times

more before the pipes themselves need to be exchanged. This gives a typical lifespan of a

district heating network between a minimum of 20 years to as long as 60-80 years1.

Giving such long planning horizons, normally a forecast is done to justify a decision of in-

stalling a district heating system. Often, only few scenarios are considered, each of them as-

suming that the future is known. Instead of choosing some scenarios (manually), [de Neufville,

2003] suggests integrating uncertainty into the system design. In our case, we want to evaluate

how we can protect ourselves against wort cases.

8.2 Defining Uncertainty

Two main uncertainties exist:

• model uncertainty or the fact of simplifying a phenomenon and

• parameter uncertainty or the fact that the phenomenon varies.

Each model represents a simplification of a real system. Each simplification can lead to

systematic or random errors in the model’s output. Model uncertainty can be identified

through model changes, model cross checking or through expert assessment. Further reading

1based on verbal communication with our industry partners
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on model uncertainty and how to cope with it can be found in [Cullen and Frey, 1999, Chapter

3]. Within this work, it is not further considered.

Models contain parameters. The actual value of a parameter might not be known or simply

differ from the one used in the model. Parameter uncertainty is therefore inherent to the

model. The effect of parameter uncertainty is addressed in this work.

8.2.1 Addressing Uncertainty

[Dubuis and Maréchal, 2012] propose sorting the model parameters into two groups: certain

parameters θc and uncertain parameters θu . Uncertain parameters are further separated into

short term θu,s and long term θu,l parameters. θu,s can be fixed during the detailed planning

or operation of the system (e.g. unit performance). The building occupancy is an example for

θu,l , because it will remain uncertain over the lifetime of the system.

[Saltelli et al., 2002] propose a scientific approach from the uncertainty classification to a

global sensitivity analysis. They explain the classical one parameter at a time sensitivity

analysis (OAT), which has limited explanatory power over to systematic OATs to variance

based methods.

During the factor fixing, where parameters are classified into important and non relevant

(that is: can be fixed at any value within the range without impacting the output), the method

of [Morris, 1991] estimates the output’s variation based on systematic input variation. The

number of run increase in as a linear function of the number of parameters. [Saltelli et al., 2010]

proposes a variance based method calculating the exact variation at higher computational

cost.

8.2.2 Applications in the Field of Urban Energy System Design

For the field of urban energy system design, [Keirstead and Shah, 2013] apply Saltelli’s approach

of uncertainty and sensitivity analysis. On city wide studies, few examples exist. [Kavgic et al.,

2013] identifies the parameters with the highest influence on Belgrad’s energy demand. In the

building simulation community, frequently only One-At-a-Time sensitivity analysis methods

are used. Few works use different approaches such as the one proposed by Saltelli: two

examples are [Hopfe and Hensen, 2011] or [Jaraminiene and Juodis, 2006] estimating the

building’s performance and its heat demand.

[Keirstead and Calderon, 2012] uses Saltelli’s approach with a quasi Sobol’s quasi random

sampling strategy to challenge current policy making. [Fazlollahi, 2014, Chapter 8] applies

a variance based sensitivity analysis to the Pareto frontier resulting from a multi-objective

optimization. Points behind the frontier are not considered and only economic parameters are

varied. [Moret et al., 2014a] use a simplified energy system model to address the lack of concep-
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tual frameworks integrating uncertainty into strategic planning. They classify uncertainties

and apply a global sensitivity analysis showing the total cost of a robust energy system.

8.3 Model Definition

The community of Verbier, a mountain ski resort in Switzerland with a fixed population of

about 8000 people is chosen for the case study, because they would like to install a new district

heating system as part of their energy strategy. The energy system is modeled in an MILP

framework with the following equipment:

• solar thermal panels,

• a seasonal thermal storage,

• gas boiler,

• heat demand from a planned neighborhood of Verbier, that is to be built and

• a central district heating system linking demand and supply.

The objective function is cost minimization, the annual operating costs are calculated as

well as the annualized investment costs. The annual investment costs are multiplied by the

annualization factor of 0.0782 considering a payback time of 25 years and an interest rate of

6%.

The hourly heat demand is modeled with a building simulation software [Page et al., 2014]

based on annual measurements, meteorological and physical building data. The production of

solar thermal panels is calculated with the same meteorological data for different temperature

levels (detailed description in Chapter 5). The seasonal storage is a detailed model with nine

discrete temperature levels of 10 Kelvin each between 10 and 95 °C. A k-medoids clustering,

partitioning around medoids according to[Kaufman and Rousseeuw, 2005, Chapter 2], reduces

the input data, heat load and solar irradiation, from 8760 hours to a data set of 12 representative

days, each day with 24 hours and one peak load period.

The result of the clustering is shown in Figure 8.1 for the heat load: the red line shows the

relative heat load, the blue one tries to fit this line with 12 typical day choices. Each typical

day is repeated according to the number of days in this month. An extreme day is introduced

ensuring that the maximum power appears. January and February are grouped together, they

are very similar in this data set. Each month is represented by the most representative day

repeated by the number of days in this month. This approach ensures that energy and the

power balance are fulfilled at the same time compared to normal averages. Not all trends can

be covered with this approach, however the input size reduction from 8760 to 288 allows the

optimization model to run. The same approach is used for the solar energy in parallel, so that

a typical day is chosen, when both data sets fit best.

123



Chapter 8. Integrating Uncertainty into System Design

0 1000 2000 3000 4000 5000 6000 7000 8000
Hours

0

20

40

60

80

100

R
el
at
iv
e
H
ea
tL
oa
d
%

RelativeHeat Load

12-Dayk-Medoids

Figure 8.1 – The original heat load and the clustered heat load using 12 typical days to represent the
year

8.4 Methodology

[Moret et al., 2014a] proposes the following four steps:

1. All parameters are identified and if possible grouped.

2. The uncertainty classification step classifies and assigns an uncertainty range to the

parameters or parameter groups.

3. A global sensitivity analysis [Saltelli et al., 2008, p.11] allows to classify the uncertain

parameters into influential and non-influential with regard to the output.

4. A robust optimization with influential parameters is run showing how to protect against

the worst case(s).

Each section is presented individually with a short methodology and its results.

8.4.1 Parameter Identification and Grouping

The complete list of parameters is studied. Parameters such as duration of a time slice or

number of repetition of key day within a year are assumed to have no uncertainty. Cost

values for an equipment need to be studied further, because their values vary. Parameters

that exist in every time slice are grouped to one factor, such as the hourly heat demand
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Q̇demand ,t to the heat demand Q̇demand . This significantly reduces the number of parameters

by the number of time slices (288) listed in Table 8.1 to be studied in detail. Their values

Table 8.1 – Model parameter list after identification and grouping

# Parameters Units Description
1 Ci nv (Boiler) C HF /kW Linear CAPEX
2 Ci nv (Solar) C HF /m2 Linear CAPEX
3 Ci nv (Storage) C HF /m3 Linear CAPEX
4 cnatur al g as C HF /kW h current Swiss Natural Gas Price
5 Tnom demand heati ng °C Nominal Space Heating Demand Temperature
6 Q̇demand kW Heat Load of Consumers
7 Q̇stor ag e heat loss W /(m2 ·K ) Heat Losses of thermal Energy Storage
8 εBoi l er - Thermal Efficiency of a Boiler
9 εSol ar - Thermal Efficiency of Solar Thermal Panels
10 Time Slice Duration h Time Slice Duration
11 cp J/(kg ·K ) Specific Heat Capacity of Storage Medium
12 TStor ag e Sur r oundi ng °C Temperature surrounding the Storage
13 Mmaxi mal Stor ag e kg Maximal Storage Mass

can be found in Table 8.2. The values "operating time" and specific heat capacity of water

cp are considered to be certain, fixed and eliminated from further analysis. The storage is

assumed to be placed in a construction adapted to its size with a constant TStor ag e Sur r oundi ng

and maximal storage size of Mmaxi mal Stor ag e . Both parameters are also not considered any

further. The nominal heating supply and return temperatures Tnom demand heati ng are taken

from current Swiss norms and validated or changed through expert’s experience. Supply and

return are considered together to be a set of temperatures, thus one of the two needs to be

included in the analysis.

The cost data base CostDBCREM2 [Poumadère et al., 2015] contains prices for realized Swiss

installations for different unit sizes. CAPEX includes equipment costs and installation, OPEX

operation and maintenance.

8.4.2 Parameter Classification

The remaining 9 parameters are : the investment costs of a boiler, solar thermal installations

and storage, the operating cost of the gas boiler with the gas price, the efficiency of the

boiler and solar thermal panels together with the storage losses and the heat demand and

temperature levels. They are classified according to the criteria defined in [Moret et al., 2014a]

(where additional information on the classification can be found):

C1: Does the parameter depend only on a choice made by the Decision Maker (DM)?

C2: Is it a here-and-now parameter?

2The cost data base CostDBCREM [Poumadère et al., 2015] is provided by the CREM and contains prices for
current Swiss installations for different unit sizes.
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Table 8.2 – Model parameter values after identification and grouping

# Parameters Value Comment/Source
1 Ci nv (Boiler) 139 kC HF /MW ≥ 10 MW Price from CostDBCREM2

2 Ci nv (Solar) 282 C HF /m2 ≥ 200 m2 Price from CostDBCREM2

3 Ci nv (Storage) 500 C HF /m3 ≥ 103 m3 Price from CostDBCREM2

and [Ochs and Müller-Steinhagen, 2008]
4 cnatur al g as 0.11 C HF /kW h Swiss Natural Gas Price

5 Tnom demand heati ng 35−70°C
Expert Estimation as a Function
of Building Age

6 Q̇demand kW Estimation via Simulation
7 Q̇stor ag e heat loss 0.6 W /(m2 ·K ) [Ochs, 2010, Chapter 3]
8 εBoi ler 0.9 Thermal Efficiency

9 εSol ar var i abl e
Panel data from SPF
(Institute for Solar Technology)

10 Time Slice Duration 1 h Time Slice Duration
11 cp 4.18 k J/(kg ·K ) Fixed for Water as Medium
12 TStor ag e Sur r oundi ng 10°C Constant Temperature assumed
13 Mmaxi mal Stor ag e 103 m3 Maximum available Storage Size

C3: Does the parameter depend on other parameters?

C4: Can forecasts be made based on historical data?

The result of this exercise is shown in Table 8.3.

The investment cost variation for boilers and solar thermal panel installations is calculated on

real data sets from realized projects in Switzerland. The data available in the cost data base

CostDBCREM [Poumadère et al., 2015] is fitted to a regression function(Figure 8.2). The point

with the maximal distance to the regression defines the range for the parameter. The storage

prize variation for tanks are based on realized studies in Germany. The data range for natural

gas is estimated using the past’s price variation3.

8.4.3 Global Sensitivity Analysis

The sensitivity analysis draws systematically parameters out of the set of all the possible

parameter values and runs the model with them. This allows closing the loop on the parameter

uncertainty, because various different input parameters allow to study the output of the

model. However, running the model with all input parameters often enough to quantify the

output uncertainty can be computational heavy or infeasible due to the model size and or

computational time. The current state of the art is presented by [Saltelli et al., 2008] in detail.

A sensitivity analysis can generally be divided into 4 steps:

3An exact range will be specified once the data for Switzerland has been delivered
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Figure 8.2 – The deviation is determined using the point the furthest away from the cost regression
created on realized projects to identify the variation of investment costs for a given technology i

1. Classification: select k uncertain parameters from all parameters, discussed in Sections

8.4.1 and 8.4.2.

2. Sampling: create a sample set containing a number N of input vectors containing

different values for the k uncertain parameters.

3. Computation: execute model for each sample to obtain Y 1, ...,Y N outputs.

4. Evaluation: calculate sensitivity of outputs.

For each step different approaches exist.

ST i = E(V (Y |X∼i ))

V (Y )
(8.1)

The total sensitivity ST i of the i -th input is defined as the ratio of the conditional expectation

E of the output variance V (Y ) while varying only Xi keeping all other parameters fixed and

V (Y ). ST i = 0 is a necessary and sufficient condition to consider that Xi is a non-influential

parameter [Saltelli et al., 2008, p.34]. During application this rarely happens. Therefore the

total sensitivity index is normalized and so that the impacts can be compared to each other.

Even for simple models with low values of k, the computation of the sensitivity effect can take

a long time.
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Table 8.3 – Application of [Moret et al., 2014a]’s uncertainty classification to MILP

# Parameters C1 C2 C3 C4 Range Comment

1 Ci nv (Boiler) X ±3.00%
Variation in the data based on realized
projects in Switzerland,
Here-and-now parameter

2 Ci nv (Solar) X ±3.00%
Variation in the data based on realized
projects in Switzerland,
Here-and-now parameter

3 Ci nv (Storage) X ±10.00%
Variation in the data from catalogs,
Here-and-now parameter

4 cnatur al g as X ±50.00% Forecast unreliable
5 Tdemand heati ng X X ±10.00% Norms and heating equipment used

6 Q̇demand X X ±10.00%
Only annual measurements available,
hourly values based on simulation

7 Q̇stor ag e heat l oss X ±20.00%
Thermodynamics sets boundaries,
long term studies exist

8 εBoi l er X ±5.00%
9 εSol ar X X ±5.00%

MILP Models and Sensitivity

For MILP models, [Williams, 2013, p.132] points out the importance of a sensitivity analysis:

"In many practical situations stable solutions are more valuable than optimal solutions." In

MILP models, such as the ones discussed in this work, a sensitivity analysis can lead to long

calculation times, because a variation of a parameter might lead to a different combination

of integer variable values being in an optimal solution. If only few constraints are leading to

changing integer values, a reformulation towards an LP problem is an option [Williams, 2013,

page 239]. A reformulation of the constraint with the changing integer variable by adding

a continuous surplus to it and also to the objective function, leads to a (semi-)continuous

formulation with an objective value that does not change suddenly anymore.

Method Choice

With Morris’s Elementary Effect (EE) method[Morris, 1991], ST i can be estimated as a linear

function of the number of parameters to be studied. Elementary Effect is a individually

randomized One-At-a-Time Global Sensitivity Analysis [Saltelli et al., 2002, p.94] with a discrete

sampling strategy: For each parameter k, r random trajectories are defined consisting of (k+1)

steps. The model is executed with only one input element at a time changing by the amount

of ±∆. ±∆ is calculated as a function of p-levels with ∆ = p
2 · (p − 1). Fixing p is an open

problem. [Saltelli et al., 2002, p.102] suggests fixing it according to its distribution. r and p are

to be chosen together to guarantee that all dimensions and their interactions are explored in

sufficient depth. [Saltelli et al., 2002] suggests p = 4 and r = 10, [Morris, 1991] sets r = 4.
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For j − th trajectory, the Elementary Effect of the i − th input is calculated with (8.2):

EE j
i =

[
Y (X1, ..., Xi−1, Xi +∆, Xi+1, ..., Xk )−Y (X1, ..., Xk )

]
∆

. (8.2)

After the calculation of the Elementary Effects for each parameter, the following statistics can

be calculated:

µi = 1

r

r∑
j=1

EE j
i (8.3)

µ∗
i = 1

r

r∑
j=1

|EE j
i | (8.4)

σ2
i =

1

r −1

r∑
j=1

(EE j
i −µ)2 (8.5)

µ∗
i contains the sum of all absolute values. Negative and positive EEi s are taken into consid-

eration without compensating each other. It is a suitable proxy for ST i . Here, the optimized

trajectory implementation of [Campolongo et al., 2007] ensuring a uniform distribution of the

trajectories is used within R [R Core Team, 2014].

In order to compare the effect of each inputs variation on different model outputs, the statistics

µ,σ and µ∗ are normalized using sigma-scaling of the EE (SEE) as proposed in [Sin et al., 2009]:

SEEi = EEi
σxi

σy
. (8.6)

Saltelli ([Saltelli et al., 2008, Chapter 4] and [Saltelli et al., 2010]) proposes an enhanced

variance method based method, from here on called Saltelli’s method. It is based on Monte

Carlo stimulation of the Sobol’s indices. The implementation of it by [Herman, 2015] is used

to verify the quality of the proxy found through the EE . (The R-package Sensitivity offers

additional implementation of similar methods.)

Results of the Elementary Effects

The EE method is applied to the k = 9 uncertain parameters (hereafter "inputs") of the MILP

model with p = 10 and r = 100 leading to 1000 model runs. For this example, a finer sampling

interval has been chosen to cover the interval better compared to the proposed values. The

monitored model outputs are:

1. Normalized Objective Value, the total annual cost,

2. Normalized Solar Panel Sizing,

3. Normalized Boiler Size,
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4. Normalized Storage Size.

The bars height gives the normalized value of µ for each input-output couple. The computed

statistics µ and σ are shown in Figure 8.3. The bars height gives the normalized value of µ for
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Figure 8.3 – Normalized µ for each input-output couple, inputs according to Table 8.3

each input-output couple. The brackets at the end of the bars gives the normalized statistic σ.

The normalized value of µ gives an idea of the effect of each input on each output in terms of

their respective standard deviation. Considering the set of all input vectors X = (X̄ 1, ..., X̄ m , ..., X̄ r (k+1))

and an arbitrary input vector composed by k input parameters X̄ m = (xm
1 , ..., xm

k ), σxi is the

standard deviation of xm
i for all m in [1,r (k+1)]. Similarly, considering the set of corresponding

output vectors Y = (Ȳ 1, ..., Ȳ m , ..., Ȳ r (k+1)) = (Y (X̄ 1), ...,Y (X̄ m), ...,Y (X̄ r (k+1))) and an arbitrary

output vector Ȳ m = (ym
1 , ..., ym

l ) composed by the l monitored outputs, σyi is the standard

deviation of ym
i for all m in [1,r (k +1)]. For a given input output couple, for instance (x1, y1), a

µ11 value of 1 means that if input x1 is increased byσx1 then output y1 will, in average, increase

by σy1 .

The computed statistic µ∗ are shown in Figure 8.4. The bars height gives the normalized value

of µ∗ for each input-output couple. The bracket at the end of the bars give the 95 % confidence

interval of the population.
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Figure 8.4 – The normalized µ∗ statistics with its confidence intervals for all 9 parameter and four
outputs, inputs according to Table 8.3

Results of Saltelli’s Method

In order to confirm the results of EE, Saltelli’s global sensitivity analysis [Saltelli et al., 2010]

method is applied to k = 8 uncertain inputs with p = 10 and N = 2 000, i.e. N (2k +2) = 36 000

model runs in order to compute second order effects. Input 5, the demand temperature level

uncertainty, was removed because the uncertainty range is too narrow to provoke a change

in the solution’s configuration and in order to reduce computational effort. The monitored

model outputs are the same. The computed statistics are the first order sensitivity index (S1i )

the second order sensitivity index (S2i j ) and the total sensitivity index (ST i ). They express

the share of the considered output’s variance that can be attributed to the considered input i

taken individually (S1i ), in conjunction with another input j (S2i j ) or considering all possible

combination (ST i ). They are shown in Figures 8.5, 8.6 and 8.7. The brackets at the end of the

bars give the 95 % confidence intervals.

8.4.4 Discussion of the Sensitivity Analysis

Figure 8.3 shows the general behavior of the model. As an example, the effect of the boiler

efficiency (input 8) on the objective value is negative which means that the higher the efficiency

of the boiler, the lower the total cost of the solution, whereas for the solar panel’s efficiency

the opposite is observed. The influence of the natural gas cost on the boiler’s size is negative
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Figure 8.5 – Saltelli’s first order sensitivity index for all 8 inputs and 4 outputs, inputs according to Table
8.3

whereas it is positive on all three other outputs. With an increasing price of gas, the boiler

size decreases. The total costs also increase, together with the solar and storage sizes and

that replace the part of the boiler’s energy. All these observation are consistent with the

problem physics and economics. Figure 8.3 and 8.4 show an important disparity in the input

respective influences. The cost of natural gas (input 4) has the strongest influence on the total

cost (highest µ and µ∗ values), and on the solar and storage sizing as well. This behavior is

consistent with both the high uncertainty range (±50 %) and the weight of this input in the

objective function. The natural gas price is likely to be a key factor and a good candidate

for robust optimization. On the contrary, solar investment costs uncertainty (input 2) has

little to no influence on the outputs (low µ and µ∗ values). This too, is consistent considering

these inputs’ narrower uncertainty range and reduced impact on the objective function due to

annualization factor.

Factor fixing consists in identifying non-influential input that can be fixed anywhere in their

uncertainty range without affecting the model’s outputs. According to [Saltelli et al., 2002,

p.108-109], EE method is suitable for identifying non-influential parameters and µ∗ = 0 is a

sufficient condition for a parameter to be considered non-influential. However, this condition

is hardly ever met in practice [Saltelli et al., 2002, p.108-109]. Figure 8.4 shows that only input

2 meets this condition for all outputs. Non-influential parameters can also be pointed out on
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Figure 8.6 – Second order sensitivity index for all 8 inputs and 4 outputs, inputs according to Table 8.3:
Two inputs are grouped together to show their combined effect on the output, such 3 and 4 together to

34 increase the storage size, while 4 and 7 together 47 have an impact on all outputs with a large
bandwidth in both directions
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Figure 8.7 – Saltelli’s total order sensitivity index of 4 outputs for the 8 inputs according to Table 8.3:
parameter 4 and 6 are clearly the most influential ones, followed by 3.

a plot by identifying the parameters that sits within the standard error of the mean (SEM) as

proprosed by [Morris, 1991] shown in the µ-σ plot Figure 8.8:

SE Mi =
σxip

r
=⇒ d̄i =±2SE Mi (8.7)

to determine whether the change of the i − th input has a significant impact on the considered

output. Figure 8.8 shows that no input except input 2 can be considered non-influential for all

four outputs based on this approach. This graphical plot confirms the previously discussed

results, however is a lot easier to read for the practitioner.

The results from Saltelli’s method confirm that the cost of gas uncertainty has the most

influence on all outputs, it accounts for more than 86 % of the total cost variance (Figure 8.7).

The demand uncertainty (input 6) comes in second for all outputs. The storage investment

cost uncertainty does not affect the total cost but it affects boiler, solar and storage size. Figure

8.9 shows the violin plot of the three most influential inputs (3, 4 and 6). The violin plots give

detailed information about the average for each interval with the dashed line, the quantiles

are indicated with by the dots. The width of each violin at a given y-axis value is proportional

to the frequency of this y-value. The representation are useful to grasp the type of dependency

between input and output. Compared to the boxplot, it is easier to see the frequency of all

y-values. Figure 8.9 confirms the effect of input 4, natural gas price, decreasing the boiler size
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Figure 8.8 – Morris EE: normalized µ and σ with the range of the standard error represented by the red
lines , inputs according to Table 8.3: parameter 4, 6 and 3 are the most influential parameters, whereas

2 can be discarded.
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Figure 8.9 – Violin scatter plots show the same information as a box plot with the additional
information for inputs 3, 4 and 6 and all outputs on the frequency of each input-output couple, inputs

according to Table 8.3
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while increasing solar and storage size. Based on the previous observation, one can infer that a

trade-off exists between a solution involving more solar and storage or more boiler depending

in a non-linear way on gas prices. The storage investment costs are on average non influential

on the 4 studied outputs. Increasing the heat demand leads to an almost linear increase in the

4 outputs.

8.4.5 Conclusion of the Global Sensitivity Analysis

The statistics computed with the elementary effects method are based on a limited number of

model runs and lead to qualitative assessment. They allow to identify tendencies, troubleshoot

or corroborate the model, tell whether an input’s uncertainty affects an output or not but

they do not give absolute measurement of the sensitivity with a high level of confidence.

Furthermore, due to the discrete levels, the input space is not covered entirely. However the

comparison between figures 8.4 and 8.7 shows a high degree of resemblance. This proves that

µ∗ is indeed a good proxy for ST i in this case. Saltelli’s method requires a higher number of

model runs but with Sobol’s low discrepancy sampling method, it allows to cover the input

space more thoroughly. Computed sensitivity indices allow to quantify the sensitivity of the

model to each inputs in terms of output variance with a high level of confidence. Depending

on the context in which the model is used this quantification can be necessary.

For instance if the variance of the objective value has to be reduced to match a level that is

acceptable for the stakeholders, robust optimization can be applied to the input with the

highest total sensitivity index. The robust optimization is done in the next step.

8.5 Robust Optimization

Firstly, Soyster [Soyster, 1973] proposed a robust formulation where all uncertain parameters

are at worst case. Comparing this result of Soyster’s approach to the deterministic case,

shows a highly suboptimal value (that is to say a much higher costs in a cost minimization

problem). Based on Soyster’s idea, Bertsimas and Sim [2004] proposed to put a varying number

of uncertain parameters at worst case taking into consideration that rarely all parameters

will be at their worst value at the same time. For this, Bertsimas and Sim introduced the

protection parameter Γi that oscillates between 0, the deterministic value, and 1, the worst

case value. When Γi is 1, the corresponding uncertain parameter i is put at worst case. The

number of uncertain parameters i at worst case is equal to sum of all Γi . A sum of Γ equal to

0 represents the deterministic case, a sum of Γ equal to the maximum number of uncertain

parameters is the worst case of Soyster. In between, the impact of uncertainty can be explored

in a probabilistic way, because calculating all possible permutations is too demanding. Each

time, the sum of Γi is fixed to a specific value and the uncertain parameters at worst case are

shuffled.
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After the identification of the key parameters, the model is reformulated to integrate a pro-

tection parameter Γ that ensures that a chosen number of uncertain parameters are at the

worst case. Γ is integrated into the objective function or in the constraints to choose the most

suboptimal combination out of all uncertain parameters. For parameters that are directly

linked to the objective function such as costs in an cost minimization problem, this approach

allows to calculate scenarios with a different amount of parameters at worst case as shown in

[Moret et al., 2014a].

Applying the approach of [Bertsimas and Sim, 2004] to an already existing model might

however lead to an significant amount of work, especially if the parameters do not enter

directly into the objective function but in several constraints at the same time. For natural gas

this is a trivial exercise, the parameter enters directly into the objective function. Efficiency of

a given utility is introduced as a change in the power of the utility. Through the heat cascade,

it is present in multiple constraints making it hard to implement the parameter. Usually one

Γi is introduced per uncertain parameter into one constraint. As we have here one parameter

entering into multiple constraints, we propose a random sampling that is shuffling the Γi s

equal to 1 among all Γs while keeping the sum of all Γi s equal to a value in between 0 and the

worst case of all protection parameters equal to 1. For each
∑
Γi value, this leads to uniform

distribution of samples.

For this approach, the parameters 4, the natural gas price, and 6, the heat demand, are

separated into a daily values allowing to change their value in finer steps. In total, this leads

to 27 parameters: 12 natural gas prices, 12 heat demands, the storage investment price, the

boiler efficiency and the solar collector’s efficiency.

For each parameter, the results between the robust formulation and manually changing the

parameter are the same. The permutation of picking a Γ, setting a specific number of the

27 parameters to their worst value, is large: For
∑

i Γ = 13 or
∑

i Γ = 14, 20058300 different

permutation without repetition exist. Therefore two sampling strategies are combined: Firstly,

100 permutations for each Γ are created, when possible e.g. for Γ= 1, only 27 permutations

are possible. This ensures that low or high Γ values are represented in the sample. Secondly,

20000 random integer samples based on a normal distribution are drawn over the whole range

of all
∑

i Γi at once, leading to more samples in the area where a high number of permutation

exists. The combination of both ensures that a minimum number of permutations per
∑

i Γi

exist for the simulation of robust optimization.

However, the sampling bears the risk of not covering the whole range of parameter variation

for all given Γ. When this happens, additional sample need to generated. Because the model

is not changed, the computational costs for an individual model execution stays within the

same range. This is not guaranteed for the robust reformulation because additional variables

are introduced leading in the best case to an equivalent model execution time. In our tests,

the execution time increased significantly.
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8.5. Robust Optimization

8.5.1 Results of simulated robust Optimization

With a sample size of as low as a maximum of 100 runs per
∑

i Γi already shows the trend

for the robust optimization. When we ran the model more often, more information on the

distribution and the extreme values for each output are found. The objective function, the
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Figure 8.10 – Violin plot for the 4 outputs the annual costs and boiler, storage and solar thermal panel
size with increasing Γ values after 25 000 runs

annual total costs, increase on average, when Γ increases. Compared to the increase in solar

thermal collectors, the increasing boiler size is not significant. The boiler delivers almost the

same amount of energy throughout all scenarios according to Figure 8.11. The increasing

energy demand is compensated by the solar collectors. The storage is used for peak shaving

during the winter and as a monthly energy storage for solar energy in the summer months.

8.5.2 Discussion of Results

When uncertainty is increased, e.g. the natural gas price and the heat load increases, more and

more solar thermal panels combined with an increasing thermal energy storage are installed.

This substantial increase in solar thermal panel and storage size can be seen (Figure 8.10). The

additional heat demand is covered by renewable energy, the amount of energy delivered by

the boiler remains on average constant (Figure 8.11). The operating cost increase comes from

the increase in gas price. Compared to the study of [Moret et al., 2014a], the investment to

operating cost ratio changes in the other direction: the increase in gas price is too strong and
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Figure 8.11 – 4 additional outputs of total investment and operating costs, the increasing energy
demand and the energy delivered by the boiler with increasing Γ values after 25 000 runs

the trade off to solar long-term thermal energy storage is too expensive. Only renewable energy

based solutions are proposed when the gas price goes over 0.20 C HF /kW h. Looking at long

time horizon as 25 years for this case study, such a value might not even be that unrealistic.

In [Moret et al., 2014a], the boiler disappears, here no alternative peak power technology is

available so that even with high gas prices, the boiler still delivers energy.

This approach can help to size the system while quantifying the additional costs of designing a

robust system. With only few samples, the convex hull around all Γs can already be estimated

around the violin plots, providing a first idea of how much variation to expect when increasing

uncertainty for each output.

8.6 Conclusion

In a nutshell, the contributions of this work are:

1. real data for uncertainty classification,

2. uses a high time resolution with storage integration,

3. two methods for a global sensitivity analysis and

4. the simulation of robust optimization.
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8.7. Future Works

The here presented approach uses and classifies field data to specify the uncertainty of the

inputs. With this approach, in a first step, the impact of each parameter on the system design

can be quantified. Rarely, coherent data sets for all parameters exist. This allows to focus on

the important ones for additional data collection or research, if possible. Simulating robust

optimization as proposed in Chapter 8.5.1 is not found in literature: during the simulation

of the robust optimization, the additional cost for a robust system can be determined. This

allows to replace current sizing rules where simply an experienced based factor is added on

the size of all equipment, especially the boilers. It can evolve into a methodology to design

energy system by systematically taking uncertainty into account.

The robust optimization shows a shift towards a system with increasing renewable energy

use and thermal energy storage. This simulation based approach to robust optimization can

quantify envelops such as the overall costs to give an idea of the what it costs to build a robust

energy system without having to reformulate the model.

8.7 Future Works

A more complex energy system should be analyzed with this approach. The sampling strategy

can refined, for example based on sensitivity analysis results: using the insight of the proxy

µ∗ calculated with the EE or Saltelli’s total sensitivity index ST i could significantly reduce the

sampling, e.g. a parameter with a x times higher ST i value should be changed x times more.

Further, a choice can be made to either put uncertain parameters in the objective function or

in the constraints.

For a more enterprise oriented approach, the uncertain parameters could be separated into

parameters that can be controlled by the enterprise such as efficiency of an installation

compared to the heat demand or the gas prize which can not be controlled. Fixing the

parameters that are out of the direct control at the worst case could provide insides on how

much risk exposure the enterprise has: with the presented approach, the controllable but

uncertain parameters can be varied to show from which Γ on losses are to be expected.
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9 Conclusion

This thesis deals with the application of mixed integer linear programming techniques for the

design urban energy systems with a special emphasis on the integration of heat storage in

the system. Several aspects have been studied: from the problem formulation to the results

analysis. Example from practical applications in Switzerland have been used to illustrate the

developed methods.

Available data sources in Switzerland were compared and different modeling approaches were

used to test the match between measurement and modeled estimate. In the current situation,

the data quality is not high enough to take advantage of a detailed physical building model at

urban scale. An energy signature model was as imprecise as the detailed physical building

model. However the physical building model can be more easily updated to use better data. It

is therefore worthwhile to use a building model that is at the same level of detail as the data

found. This ensures quicker calculation and avoids to fix more default parameters for the

model

The urban energy system design has been modeled as a mixed integer linear programming

problem that aims at defining the equipment to be used in the system, i.e. choosing the

technologies to be used, their sizes as well as their optimal operation. The definition of

the optimal sizes requires to incorporate in the problem on the one hand a measure of the

total costs over the life time of the equipment and on the other hand to define the size of

the equipment such that the extreme conditions of the service will be satisfied. A generic

framework using MILP formulation has been developed and several problem formulation

have been investigated with the aim of limiting the computing time and the problem size in

order to be able to solve problems compatible with the size of urban systems problems.

The problem has been formulated as a multi-period mixed integer linear programming prob-

lem. The multi-period problem represents the life time of the equipment by a set of successive

typical periods, each being represented by a sequence of time slices that reproduces a certain

number of times. In order to reduce the number of periods, data reduction techniques have

been investigated.
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Chapter 9. Conclusion

Data reduction techniques were used to reduce an annual hourly data set significantly. Com-

pared to the often used k-means approach, the k-medoids approach with PAM chooses from

existing data points instead of looking for an averaging of them. Changing the distance mea-

sure between the points of the data set ensures that extreme points are well represented. We

have demonstrated that the method allows one to represent both power and energy balance

with an error of less then 5%. In general, between 7 to 12 days are enough to represent con-

sistently a complete year including the seasonal and daily dynamics. These days, however

do not cover the sequence of real alternations. This sequence still has a length of around

180 to 200 days when completely written. Using monthly representative days can bypass this

problem. However, it is more difficult to represent a month with only one day, especially when

a multi-dimensional input data set is used. For seasonal storage integration, representing each

month with a single day is a compromise that has to be made in order to obtain a solution to

the optimization problem.

A mixed integer linear programming model is proposed for the integration of solar thermal

panels and the integration of 2 storage types: a daily and a seasonal storage. The model uses

an optimal strategy to maximize the use of the solar energy in the system. This model is an

alternative to the typical simulation approaches where the solar resources are investigated but

not sized optimally. The proposed model allows to consider simultaneously the integration of

solar heat with the use of advanced energy conversion technologies like heat pumps, revealing

therefore the synergies between those technologies. It is worth mentioning as well that the

integration of predictive control strategies is needed to make a better usage of the storage

capabilities.

Both stochastic resource integration and seasonal storage can be treated at an adequate time

resolution representing seasonal and daily variations. Instead of solar energy, other stochastic

resources such as an industrial waste heat source can be considered. It has been shown

that to be efficient, it is important to set up a storage system that has two dimensions: the

daily variations being considered with a smaller storage tank while the seasonal being treated

in a separate tanks. This allows to realize a better peak shaving during the daily variations

while still storing heat across seasons in a larger tank. The model does not consider part load

restrictions. In a first screening exercise in the pre-design phase, these solutions are justified

under the hypothesis that equipment can also be used at full load due to a sufficiently big

storage absorbing the excess heat.

A third storage type is proposed: when the building wall’s composition is known, the building’s

heat capacity can be quickly and accurately estimated based on the method presented in

Chapter 6. This capacity can be introduced as a heat storage into design of the energy system.

It does not have an impact on the sizing of the peak load equipment, but it can save non-

renewable energy by maximizing the use of renewable energy when available. When different

feed-in-tariffs exist, the same optimization model can be used to decrease the operating costs.

Because the model has almost no impact on the sizing of the peak load equipment, it can also

be run after fixing the equipment.
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In Chapter 5, different formulations have been investigated with the aim of reducing the size

of the problem without compromising the precision of the results. In particular, the use of

integer variables has been investigated and a linear programming that makes a limited use

of integer variables has been tested. The LP formulation always overtakes the MILP when it

comes to computing time which also indicates the possibility of formulating larger problems.

When the problem is well defined or reduced in (period-) size, the MILP formulation can be

used to provide a solution that is more precise representing, the storage lid losses, ramp up

and down times as well as part load efficiency by piecewise linearization. From a mechanical

point of view, when equipment has ramp up and down times, a storage must at least be able

to hold the ramp up and down times including the minimum run time for all equipment to

allow for the hypothesis of ignoring them to be valid.

From the numerical perspective, significant computing time can be saved by increasing the

MILP gap. However, the price of the reduced computing time is often high: solutions with

almost similar objective value but very different values for the equipment size can be obtained.

When the gap is lowered, they do not appear any more. It is therefore recommended to take

attention to the problem definition, especially the bounds for the problem in order to define

the list of competing solutions. With this respect to use of sensitivity analysis techniques as

described in Chapter 8 of this thesis will become very important. In addition, depending

on what input data is used, the MILP model shows very different resolution times. This is

often linked to the integer variable being activated and whether it is easy or not to distinguish

between their respective solutions. It is also be linked to the heuristics of the solver: when

solving the same problem multiple times, the starting point (when not provided) can change

because the solver heuristics chooses a different point leading to different resolution times.

The use of Cumulative Exergy Demand (CExD) as an objective function has been investigated

with the goal of a more holistic view of the energy system. The aim was to represent the trade-

off between the energy savings and the renewable energy integration and the grey energy

needed for the production of the equipment. Changing the objective function to the CExD

shows a higher penetration of renewables and bigger storage installations. Using CExD for the

energy system introduces a holistic view on the energy system able to identify shifting exergy

consumption from the consumption to construction or recycling. The case study of retrofitting

shows that it can be uses to reduce the overall impact of the energy system considering the

demand and the supply variable.

Solutions that perform poorly under the CExD criteria should be further studied to understand

the source of an under-performance. The problem might be linked to the data source of the

CExD values: Not many reference data sets exists up to now and on the few existing ones, often

questions remain unanswered on the way the data set created, leading to a potential source

of error when using it. When this source of error can be excluded, CExD solutions with poor

performance should be discarded.
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Chapter 9. Conclusion

It is advantage to be able to re-run a model frequently, because uncertainty on parameter

exists in addition to the fact that the build environment changes continuously. Fast and simple

but not simplistic models ensure that more possibilities can be exploited.

Uncertainty on the economic and technical conditions has been investigated to show the

importance of them on the decisions made for the design of the system. When introducing

uncertainty into the case study, the use of more renewable energy combined with storage

has been observed. The analysis of Morris was shown as an interesting proxy for a global

sensitivity analysis with the advantage of a relative low computing time. The method identifies

the key parameters of the solution. With the simulated robust optimization, the cost of a

robust system can be quantified. Sizing rules, that are often applied based on experience, can

be replaced by a systematic uncertainty classification approach. During the simulated robust

optimization, the additional equipment needed for a robust system design can be quantified.

Here it is a clear advantage (or even necessity) to have model with reduced integers or a LP

model so that the number of runs necessary can be performed.

For the tool development, a simple and extendable framework has been created. The im-

portant technologies have been modeled including the impact of a thermal storage with a

long sequence of time steps for optimization problems. When the data collection contains

an uncertainty classification, all the steps shown here can be performed. The used simplified

models are complementary to the existing simulation tools for heat planning. Besides the

optimization, where all technology choices are activated, a user can also manually introduce

them to show different scenarios. Both features are important to gain confidence in a tool. Of

course, the usability and the user interface need work to be independent of the authors.

9.1 Perspectives

The results depend on the data quality. Even though, data is collected and studied carefully, it is

difficult to ensure the quality. Compared to previous works, heat demand is based on dynamic

building simulation, that on the input side needs more data but should on the output side

provide a much higher accuracy than a linear signature. More detailed simulation requires

more data but will become mandatory when one wants to represent and profit from the

building’s dynamics to maximize the use of renewable energy in the buildings. This will also

be true when one wants to study the trade-off between building refurbishment and renewable

energy sources integration. Research will therefore be needed to better represents the demand

when buildings are becoming more efficient. However the question remains open how in this

part the input data uncertainty changes the result.

For large scale MILP problems, it might be worth exploring the solvers tuning features. Differ-

ent settings might increase the solving time. settings might increase the solving time while

others will decrease the computing time. It is also important to study carefully the problem

definition and the pertinence of the parameters used in the problem formulation in order to

frame the solutions towards the solutions that have engineering significance. In particular, it
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9.1. Perspectives

would be worth to study in more detail the definition of the objective function (cost) and the

bounds as well as the pertinence of the linearization techniques to avoid generating solutions

that at the end are not pertinent at the level of the decision variables. The risk, however, is that

this procedure might have to be repeated with new input data every time.

After having integrated the heat perspective with different levels of detail, the electricity side

would add the complementary part for a complete decision support on local level. With

electricity, the integration of renewable energy sources using heat pumps, solar photovoltaic

and co-generation technologies (including electrical storage) will take another dimension

and create trade-off between thermal and electrical storage that will be worth investigating.

Especially the PV model would allow to calculate the trade-off between solar thermal and PV.

For a case study of Verbier, it would also be useful to have the consumption of the ski-lifts.

It then needs to be tested again to show whether the model is still manageable in terms of

size and resolution time. When electricity is being included, transport might be next one to

integrate because it might be linked to the electric (or gas) network deping on the type of

engine used in the vehicle.

As mentioned the user-interface side should be developed ensuring intuitive usability and

bringing the use of the models to the practical level.
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