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Abstract

H
umans demonstrate an impressive capability to manipulate fragile objects

without damaging them, graciously controlling the force and position of

hands or tools. Traditionally, robotics has favored position control over force

control to produce fast, accurate and repeatable motion. For extending the ap-

plicability of robotic manipulators outside the strictly controlled environments

of industrial work cells, position control is inadequate. Tasks that involve con-

tact with objects whose positions are not known with perfect certainty require

a controller that regulates the relationship between positional deviations and

forces on the robot. This problem is formalized in the impedance control frame-

work, which focuses the robot control problem on the interaction between the

robot and its environment. By adjusting the impedance, the behavior of the

robot can be adapted to the need of the task. However, it is often difficult to

specify formally how the impedance should vary for best performance. Further-

more, fast it can be shown that careless variation of the impedance can lead to

unstable regulation or tracking even in free motion.

In the first part of the thesis, the problem of how to define a varying

impedance for a task is addressed. A haptic human-robot interface that allows a

human supervisor to teach impedance variations by physically interacting with

the robot during task execution is introduced. It is shown that the interface

can be used to enhance the performance in several manipulation tasks. Then,

the problem of stable control with varying impedance is addressed. Along with

a theoretical discussion on this topic, a sufficient condition for stable varying

stiffness and damping is provided.

In the second part of the thesis, we explore more complex manipulation

scenarios via online generation of the robot trajectory. This is done along two

axes 1) learning how to react to contact forces in insertion tasks which are crucial

for assembly operations and 2) autonomous Dynamical Systems (DS) for motion

representation with the capability to encode a family of trajectories rather than

a fixed, time-dependent reference. A novel framework for task representation

using DS is introduced, termed Locally Modulated Dynamical Systems (LMDS).

LMDS differs from existing DS estimation algorithms in that it supports non-

parametric and incremental learning while guaranteeing that the resulting DS is

globally stable at an attractor point. To combine the advantages of DS motion
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generation with impedance control, a novel controller for tasks described by first

order DS is proposed. The controller is passive, and has the properties of an

impedance controller with the added flexibility of a DS motion representation

instead of a time-indexed trajectory.

Keywords: Varying Impedance Control, Manipulation, Dynamical Systems
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Résumé

L
es humains font preuve d’une capacité impressionnante à manipuler des ob-

jets sans les endommager, en contrôlant la force et la position de leurs

mains ou outils. Traditionnellement, la robotique a favorisé la commande en

position par rapport à la commande en force pour produire des mouvements

rapides, précis et reproductibles. Pour élargir l’applicabilité des robots manip-

ulateurs en dehors des environnements strictement structurés des cellules de

travail industrielles, la commande en position est insuffisante. Les tâches qui

impliquent un contact physique avec des objets dont les positions ne sont pas

connues avec parfaite certitude exigent un système qui contrôle la relation entre

les déviations en position et les forces. Ce problème est formalisé dans le cadre

de la commande d’impédance, qui met l’accent sur l’interaction entre le robot et

l’environnement. En adaptant les paramètres de l’impédance, le comportement

du robot peut être adapté aux besoins de la tâche. Cependant, il est souvent

difficile de préciser comment l’impédance devrait varier pour mieux convenir à

ces besoins. En outre, une variation d’impédance imprudente peut impliquer un

comportement instable même en l’absence de forces d’interaction.

Dans la première partie de cette thèse, nous nous penchons sur la probléma-

tique de comment choisir un mode de control en impédance variable adéquat,

et ce pour chaque tâche donnée. Pour ce faire, nous developpons une interface

homme-robot permettant à un superviseur humain d’enseigner des variations

d’impédance en interagissant physiquement avec le robot pendant l’exécution de

la tâche. Un set d’expérimentations robotique démontrent comment l’interface

peut être utilisée pour améliorer la performance de plusieurs tâches de manipu-

lation. Ensuite, nous nous penchons sur le problème de stabilité dans le contexte

de la commande en impédance variable. Une discussion théorique sur ce sujet

est présentée, ainsi que des conditions garantissant un comportement stable avec

des profils variables de rigidité et d’amortissement.

Dans la deuxième partie de cette thèse, des scenarios de manipulation plus

complexes sont explorés via la génération de trajectoires pendant l’exécution

de la tâche. Cela se fait selon deux axes 1) apprendre à réagir aux forces

d’interaction dans les tâches d’insertion qui sont essentielles pour des opérations

d’assemblage et 2) représentation du mouvement par des systèmes dynamiques

autonomes avec la capacité de décrire une famille de trajectoires en lieu d’une
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seule trajectoire fixe. Un nouveau cadre pour la représentation des tâches par

des systèmes dynamiques est introduit, qui permet de modifier un système dy-

namique existant par l’introduction de modulations locales dans l’espace d’état.

Cette méthode porte l’acronyme LMDS (en anglais Locally Modulated Dynam-

ical Systems). LMDS se distingue des autres systèmes d’apprentissage de sys-

tèmes dynamiques en ce que l’apprentissage non-paramétrique et incrémental

est possible tout en garantissant que le système dynamique reste globalement

stable à un point d’attraction. Finalement, pour combiner les avantages de la

représentation de mouvement par des systèmes dynamiques et la commande

en impédance, un nouveau régulateur pour des tâches décrites par des sys-

tèmes dynamiques est proposé. Ce régulateur est passif, et possède certaines

propriétés avantageuses des régulateurs d’impédance avec la flexibilité supplé-

mentaire d’une représentation de mouvement d’un système dynamique au lieu

d’une trajectoire fixe et dépendante de temps.

Mots Clé: Commande en impedance variable, Manipulation, Systèmes Dy-

namiques
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Chapter 1

Introduction

1.1 Motivation

Decades of research and development in robotic manipulation has led to

an incredible impact scientifically, socially and economically. Large manipu-

lators move with sub millimeter accuracy at daunting speeds and have since

long begun to relieve the human workforce from repetitive, non-ergonomic and

dangerous tasks. The cost and the capabilities of robotic manipulators have so

far limited their use to large-scale industrial production facilities, e.g. the auto

manufacturing industry. Most such applications are characterized by a precise

and deterministic task description and accurate position control which aims at

rejecting any external forces applied on the robot.

In stark contrast, humans are capable of manipulation in uncertain environ-

ments, and exhibit physical compliance when subjected to perturbing forces.

This compliance is realized by elasticity in the muscles that drive our limbs.

We can vary the compliance by co-contraction of opposing muscle pairs. In this

way, the compliance can be varied between different tasks and also during tasks.

Human studies show that learning impedance variations are an important part

of mastering a manipulation task (Burdet et al., 2001; Selen et al., 2009).

While traditional robot manipulators are inherently stiff due to their drive-

trains, there is currently a strong trend toward torque-controlled, light-weight

robots. These robots have been developed for quite some time and have now

reached the level of maturity required for real applications. The availability of

this class of robots opens a wealth of new possible applications, both in the

industrial sector but perhaps even more so in the service robotics sector which

involves health care and assistance applications. However, without suitable

control these arms are no more useful than their caged predecessors. Indeed,

for a robot to perform useful work, the controller and the task model is at least

as important as the hardware.

This thesis is concerned with task modeling and control for compliant ma-

nipulation tasks. The contributions are anchored in the larger Learning from

Demonstration (LfD) paradigm, which formalizes the acquisition of skills based

on demonstrations of the task rather than explicit programming. There has

been active research in LfD for decades (Billard et al., 2008; Argall et al., 2009),
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mostly addressing how tasks are learned in terms of kinematic constraints. In

this thesis, we explore how in addition to demonstration kinematic information

for a task, the expert also teaches the robot how to vary its compliance. In this

part of the thesis, the impedance control framework (Hogan, 1985b) is used.

While this allows a certain amount of adaptability and robustness through the

specification of task-based impedance variations, the task execution is sensitive

to temporal perturbations that result in the robot and task model being out of

sync. This issue can be addressed by using feedback of the robot state in the

task progression. The task description is thus turned into a Dynamical System

(DS), and a host of potential issues as well as possibilities arise. DS have been

used for modeling human motions for decades (Bullock and Grossberg, 1988;

Schöner and Kelso, 1988). In robotics, DS are becoming increasingly popular to

model tasks, thanks to their capability of compactly encoding rich interactive

behavior (Beer, 1995; Schaal et al., 2003). In the second part of this thesis a

novel formulation for DS, particularly well-suited for incremental learning, is in-

troduced. Finally, a controller that combines the advantages of the impedance

control framework and task specification with DS is devised.

1.2 Approach

The contributions of this thesis can be categorized broadly in task-based varying

impedance control and dynamical systems. These areas are introduced with

detail below.

1.2.1 Varying Impedance Control

Try extending your arm and hitting it with your other arm. You will notice that

your extended arm ’gives in’ as it is impacted. This phenomenon is referred to

as physical compliance. Compliance has an important functional role in our

daily lives. For example, it helps to protect us from unexpected impacts, which

are smoothly absorbed rather than rejected with a high intensity impact. But

perhaps more interestingly, compliance is a crucial aspect of many manipulation

tasks. The reader is here invited to pause for another personal experiment. Try

inserting a key into a door — it should be easy as it is a task that you have likely

been performing regularly for years. Now try the same task while making your

arm as stiff as possible. You will notice that it is considerably more difficult.

This is an example where the chosen compliance has an impact on the task

performance. Numerous studies show that learning how to vary the compliance

constitutes an important part of learning many manipulation tasks (Burdet

et al., 2001; Franklin et al., 2008).

Robots can be controlled to be compliant by using an impedance controller.

In impedance control, the goal of the controller is not to minimize a feedback

error as is the case e.g. in pure position or force control. Instead, the goal is

to maintain a certain dynamic relationship, termed mechanical impedance or
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simply impedance, between external forces and resulting velocity of the ma-

nipulator (Hogan, 1985b). In general terms, a high impedance means that the

robot tries to insist on its position and will tend to reject external forces. A low

impedance means a compliant behavior and the robot will tend to give in to ex-

ternal perturbations. Developments of hardware platforms on which impedance

control can be easily implemented has lead to a renewed interest in the topic in

recent years, with the hope that compliance can be as useful for robots as it is

for humans.

Most applications if impedance control model the robot as a mass-spring-

damper system attached to a moving reference point, called the virtual tra-

jectory1. The virtual trajectory is the path that the robot follows if it is left

unperturbed. When robot encounters external forces or obstacles blocking its

path, it will depart from the virtual trajectory and will be pulled back toward

depending on the value of the inertia, damping and stiffness parameters which

define the impedance of the robot. On an impedance controller implemented

in software, it is straightforward to vary the impedance over time. Even some

inherently compliant actuation system allow variation of the impedance (Albu-

Schaffer et al., 2008). The question then rises how to exploit this capability, i.e.

how to choose the impedance profile for a task. Humans are good at figuring out

how to do tasks but rather bad at describing them in a way that is understand-

able to a robot. This fact is the motivation of the LfD paradigm, which aims

to endow robots with the capability to learn tasks merely by observing demon-

strations of it (Schaal et al., 2003)(Billard et al., 2008). In this thesis, LfD

is extended to include compliant manipulation tasks. This is achieved by the

introduction of a haptic teaching interface that allows the human to teach the

robot stiffness variations by physically interacting with it during task execution.

It is shown that this interface allows to teach robots stiffness variations that in-

crease performance in several tasks. Furthermore, a user study confirms that

lay users are capable of determining correct impedance and that the interface

intuitively allows them to transfer this insight to the robot.

This thesis and numerous other works have shown the benefit of varying

impedance according to the need of the task and devise various ways to define

this varying impedance. However, it is possible to create impedance profiles

that yield an unstable behavior of the robot. While this is rare in practice, it

is important to better understand to what extent the impedance can be varied

without risk of instability. This thesis addresses this problem by deriving bounds

for variation of stiffness and damping. It is shown that if the stiffness and

damping are varied within those bounds, the system can not go unstable in the

contact free case nor in interaction with any passive environments.

As mentioned previously, the behavior of a robot under impedance control is

determined by the impedance parameters and the virtual trajectory. In the lit-

1Impedance control is not limited to this particular second order model, but this particular
choice makes it easy to implement on robots and is for many applications sufficiently flexible.
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erature, the virtual trajectory is often assumed to be a predefined trajectory —

often numerically represented using splines (Lin et al., 1982) — that is replayed

each time the task is executed. Perhaps surprisingly, this approach in practice

often works well even for tasks with perturbations, as long as the perturbations

don’t significantly delay the progression of the task. However, the use of a pre-

determined movement trajectory is by definition very limiting. More intelligent

behavior can be achieved by online generation of the virtual trajectory. This

thesis explores two directions that adapts the virtual trajectory during interac-

tion control. First, the challenging insertion type of tasks are considered. The

problem of inserting a peg into a hole is tackled by generating the virtual tra-

jectory online, as a function of the forces experienced by the robot when trying

to insert the peg. Second, Dynamical Systems (DS), are explored for use in

compliant manipulation tasks.

1.2.2 Motion Modeling with Dynamical Systems

DS for motion modeling are a longstanding research topic in robotics and human

motor science (Bullock and Grossberg, 1988; Schöner and Kelso, 1988; Schoner,

1990; Beer, 1995). The use of DS for representing motion has the advantage

that the trajectory for the robot unfolds during the task, and can be defined as

a function of different variables, e.g. the robot position, measured forces and

time. Of particular interest are autonomous DS. An autonomous DS takes as

input a state variable, e.g. the robot position, and returns a rate of change

of that variable (velocity for the example of position as input). It has been

demonstrated that many DS representations lend themselves well to learning,

in supervised settings (learning from demonstration) as well as reinforcement

learning. Furthermore, in some cases qualitative properties such as stable limit

cycles or stability can be guaranteed by the formulation itself (Schaal, 2003),

or by constrained optimization (Khansari-Zadeh and Billard, 2011; Neumann

et al., 2013). Hence, these properties which are often easy to determine if they

are desired in a task, can be ensured regardless of the type of data that is

then provided to respective learning algorithm, as long as the constraints are

respected. However, stability constraints have the side-effect of restricting the

range of motions that can be modeled. If complex trajectories are given as

demonstrations, the DS is often not capable of reproducing such motions. In

this thesis, a novel DS representation is introduced which unlike previous meth-

ods for learning autonomous dynamical systems does not use constraint based

optimization for learning. Instead, the DS is represented on a form that makes it

impossible by construction to represent unstable systems. This formulation al-

lows incremental learning, i.e. it can gradually learn from continuously arriving

data points.

To illustrate the importance of DS for manipulation in uncertain environ-

ments, consider an example where a robot is moving its arm along a prede-
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termined, time-dependent path using an impedance controller. If the robot

is obstructed along the path, the virtual trajectory keeps advancing while the

robot stays put. The impedance controller tries to pull the robot toward the

virtual trajectory, creating an increasing contact force between the robot and

the blocking obstacle. This force can become a hazard for the robot or blocking

object, and can result in a violent release of energy if the obstacle is suddenly

removed. If the virtual trajectory was generated by an autonomous DS, there

would be no increase in contact force since the progression of the virtual tra-

jectory would depend only on the actual position of the robot. The idea of

combining these two paradigms hence seems promising. The last chapter of

this thesis introduces a novel controller that combines the advantages of the

DS as a motion representation and impedance control for managing interaction

with the environment. The controller is passive, which means that in addition

to being stable in free motion, it is also stable in interaction with any passive

environment (van der Schaft, 2000; Ortega et al., 1998).

1.3 Main Contributions and Thesis Outline

A brief list of the main contributions in the order that they appear in the thesis

is given here. In Chapter 3, we introduce a novel teaching interface for

varying impedance allowing users to interactively update the impedance of

the robot during task execution and with haptic feedback. With the possibility

of teaching and using varying impedance in the task model, it is important to

ensure that the impedance variations do not yield unstable behavior. This topic

is treated in Chapter 4 which introduces sufficient conditions for stability

for varying stiffness and damping profiles.

While Chapter 3 and 4 focus on impedance control with time-dependent vir-

tual trajectories, the Chapter 5 introduces online trajectory modification based

on sensed forces for insertion tasks. Chapter 5 uses existing methods and does

not contain any algorithmic novelty, but rather innovates in the way that exist-

ing tools in compliant control and learning from demonstration can be used in

combination for insertion tasks.

Chapter 6 introduces a novel DS formulation especially well suited for incre-

mental learning, termed Locally Modulated Dynamical Systems (LMDS).

A learning algorithm based on Gaussian Processes is also presented. Chapter 7

is focused on devising a controller that can incorporate LMDS and similar DS

motion representations into an interaction control framework. A novel controller

named Passive Interaction Control with Dynamical Systems (PICDS)

is introduced, formalized and evaluated. The final chapter provides a summary

and recap of limitations and possible future directions of research.

1.4 Publications
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Large portions of this thesis have been published in peer-reviewed conferences

and journals. The contents of Chapter 3 has been published in (Kronander

and Billard, 2012) and (Kronander and Billard, 2013). The work on stability

conditions for varying impedance in Chapter 4 is at the time of this writing under

review for publication in a robotics journal. The LMDS formulation of Chapter

6 is published in (Kronander et al., 2015). Chapter 5 has not been published,

nor has Chapter 7. The latter is at the time of this writing in preparation for

submission in a robotics journal.

The author has also authored/coauthored a number of publications which

are not part of the thesis. In the authors master thesis, the application of DS

models for hitting motions in mini-golf was explored (Kronander et al., 2011).

Among our efforts at a closed loop DS formulation (the topic of Chapter 7) was

a constraint based approach presented in (Khansari-Zadeh et al., 2014), which

uses a constrained second order DS in an effort to unify impedance control and

motion generation. Recently, an internship project supervised by the author

was published in (Cha et al., 2015). In that paper, the DS approach of Chapter

6 of this thesis was used in a HRI study investigating interfaces for teaching

motions to robots.
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Chapter 2

Background

2.1 Related work

In this section, I review relevant literature organized along three main axes:

Impedance control, LfD and DS. The first part of the thesis is concerned with

developing methods for teaching robots varying impedance information. Hence,

it is related to and builds upon works from both impedance control and LfD. A

general overview of these fields are given in Sections 2.1.1 and 2.1.3. A focused

review related to the challenges addressed in Chapters 3 and 4 are given in

Sections 2.1.4 and 2.1.2. Discussion on related works for the peg-in-hole problem

treated in Chapter 5 is given in Section 2.1.5. A general overview and historical

perspective on DS is given in Section 2.1.6, and Sections 2.1.7 and 2.1.8 zoom

in on the topics of Chapters 6 and 7.

2.1.1 Force and Impedance Control: Overview and

historical perspective

Controlling robotic manipulators in physical contact with the world remains a

difficult problem. Researchers have tackled this problem for decades, with a

wide spectrum of control algorithms and even specialized hardware design as a

result. The motion control problem — which deals with controlling a robot with-

out contact — is today largely considered a solved problem where the research is

focused on optimizing the well-established frameworks of inverse dynamics con-

trol, adaptive motion control and independent joint PID control (Slotine, 1987).

In contrast, only in the last decade has the research started to converge to a

particular class of control in the complementary field of control with physical

contacts. This class is impedance control (Hogan, 1985b), which has emerged

as suitable control architecture to improve performance of robotic manipulation

in many situations where traditional control paradigms are prone to failure.

Examples include tasks with uncertain pose estimates of manipulated objects,

physical contact and tasks in which it is important to respond appropriately to

unforeseen perturbations (Villani and De Schutter, 2008). Before going further,

it is worth briefly reviewing the state of compliant control algorithms at the time

of Hogans introduction of impedance control. Adaptation of robot trajectories

based on force feedback had been investigated (Whitney, 1977). The conflict be-
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tween simultaneous control of position and force inspired (Mason, 1981) which

introduced the idea of separating the work-space in orthogonal position- and

force-controlled sub-spaces. The hybrid control approach (Raibert and Craig,

1982) belongs to the same category of control. While these approaches could

be successfully applied in many scenarios, they have issues in terms of perfor-

mance mainly stemming from non-consideration of the manipulator dynamics

(An and Hollerbach, 1989; Whitney, 1985). This is addressed in the operational

space formalism (Khatib, 1987), but the geometric task specification still needs

high accuracy and is tedious to establish. It has later been shown that the

classical hybrid control is not well posed when considering motions including

change of orientation (Brockett, 1993; Lipkin and Duffy, 1988). The parallel

approach to position and force control (Chiaverini and Sciavicco, 1993) was in-

troduced to overcome the shortcomings of the hybrid controllers, in this case by

effectuating simultaneous feedback control of position and force on all axes but

giving priority to force control by integral control action. Instead of trying to

control forces explicitly, the stiffness control method (Salisbury, 1980) allowed

the task designer to specify a desired trajectory and a corresponding desired

stiffness. This technique did not require the orthogonal task spaces and can be

implemented without a force sensor on torque-controlled mechanisms. Desired

contact forces can be achieved by deliberately offsetting the reference trajectory

inside the object to contact. In the quasi-static case, the relationship between

external forces and the deflection of the end-effector is given by the stiffness

value. Hogan generalized this idea and modeled the relationship between phys-

ical effort(force) and flow(velocity) as a second order linear dynamical system,

parameterized by a virtual inertia, damping and stiffness (Hogan, 1985b). Fig.

2.1 gives a simple illustration of the differences between the hybrid, parallel and

impedance control paradigms.

Rather than a particular control implementation, impedance control should

be viewed as a concept that can be implemented in various ways. The im-

plementation scheme suggested in (Hogan, 1985a) applies to torque-controlled

manipulators and reassembles the work of (Salisbury, 1980). For manipulators

with high gear ratios, e.g. most available industrial manipulators, it is not pos-

sible to implement impedance control in this manner. Instead, the causality

of the impedance can be reversed by using force measurements to simulate a

trajectory according to the desired impedance model. This trajectory is then

fed to a high performance position controller. These two alternatives of imple-

mentation are usually referred to as impedance control and admittance control

respectively. The impedance causality implementation has better robustness

in rigid contact, but the admittance control scheme is more widely applicable

and has better nominal performance in free motion (Ott et al., 2010). For the

implementation with impedance causality, the ability to command the torques

to the robot joints is necessary. In the 80’s and 90’s, platforms on which this

was possible only existed as custom built prototypes in universities around the
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Virtual trajectory

Position controlled direction

Hybrid control Parallel control Impedance control

Force controlled direction

Contact force arising due to impedance

Figure 2.1: Conceptual illustration of the hybrid, parallel and impedance con-
trol approaches.

world. Since then, a number of robotic manipulators that allow accurate torque

control have been introduced. A notable example is the work of Albu-Schaffer

et al. which exploited the use of link side torque sensors to allow high perfor-

mance torque control which could then be used to implement impedance control

(Ott et al., 2004; Albu-Schaffer et al., 2007b,a). This research resulted in the

development of the KUKA LWR family of robots which are now widespread in

the academic community and also increasingly in industrial applications.

A challenging alternative to implementation of impedance control through

control as described above, is to physically design the robot such that it obeys

the dynamics of the target impedance model. Ideas of exploiting passive com-

pliance in the kinematic structure have been present for a long time, including

e.g. the remote center of compliance (Drake, 1977; Whitney and Nevins, 1979;

Loncaric, 1987; Brockett, 1993). In recent years, compliant actuation has been

an extremely active field of research, pioneered by (Pratt and Williamson, 1995)

who introduced the series elastic actuator (SEA) which has seen numerous com-

mercial applications. While the SEA has a fixed compliance, various designs that

allow adjustment of the compliance have emerged in the last decade (Migliore

et al., 2005; Tonietti et al., 2005; Bicchi et al., 2005; Ham et al., 2009). Compli-

ant actuation offers many of the promised benefits of impedance control — shock

resistance, stable contact with stiff environments and safe human-robot inter-

action to name a few — in a more robust and safe version than can be offered

by the active impedance control algorithms reviewed previously (Albu-Schaffer

et al., 2008). However, there are also a number of drawbacks, the most impor-

tant being that the control problem becomes considerably more difficult (Palli

et al., 2008) and the range of impedances that can be rendered are usually very

limited. Furthermore, with few exceptions (Catalano et al., 2012; Laffranchi

et al., 2011), soft actuator design has focused on implementing variable stiffness

but fixed damping. In practice this generally results in significantly under- or

over-damped systems with poor tracking performance as a consequence. For a

recent review on research in variable impedance actuation, the reader is referred

to (Vanderborght et al., 2013).

2.1.2 Variable Impedance Control
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While impedance control with constant impedance parameters is already an

adequate solution in some cases, varying the impedance parameters during the

task gives more flexibility and can drastically impact performance in many tasks.

The match-lighting task in Section 3.3.3 of this thesis is a good example of a

task that could not successfully be executed without varying the impedance. In

biological motor control, it is known that humans use varying impedance in a

task-dependent manner (Burdet et al., 2001; Gomi and Osu, 1998). As reviewed

separately in Section 2.1.4, significant research efforts have dealt with and are

still dealing with the assignment of varying impedance to achieve various goals,

e.g. better performance, higher safety or lower energy consumption. A topic

that has been largely ignored by this community are the stability implications of

letting the impedance parameters vary. Exceptions include works that propose

impedance variation according to specific adaptation laws. A notable example is

(Yang et al., 2011), in which a biologically inspired varying impedance controller

was proposed and its stability rigorously proven. For the general case where the

impedance can be considered time-varying, it is easy to show that the standard

energy-based stability analysis (Takegaki and Arimoto, 1981) is no longer valid

in the case of an arbitrarily varying stiffness matrix (this is done in Section 4.2

of this thesis).

Variable impedance control can be seen as a particular case of gain schedul-

ing, which is a common technique in control for applying linear control design

techniques to nonlinear systems1. In gain scheduling, it is generally not possi-

ble to theoretically guarantee stability. Instead, the approach usually involves

practical rules-of-thumb and extensive numerical simulations for assessment of

stability (Rugh and Shamma, 2000). Typically, stability can be ensured only lo-

cally and under rather vague conditions such as “slowly varying” gains (Shamma

and Athans, 1992). The success that variable impedance control has already had

in numerous applications is an indication that reasonable impedance variations

are sufficiently small/slow for a wide range of tasks. Nonetheless, these notions

are of limited use when designing varying impedance profiles since there is no

way of knowing how slow or how small the variations need to be.

Time-domain passivity is based on computing energy quantities online and

injecting damping as necessary to ensure stability. The concept was used in

(Hannaford and Ryu, 2002) for haptic interfaces, in (Ryu et al., 2004a) for tele-

manipulation and generalized to more control scenarios in (Ryu et al., 2004b).

This approach is based on a passivity observer providing information to a passiv-

ity controller responsible for injecting damping whenever the passivity observer

reports positive energy generation. The passivity layer (PL) approach intro-

duced in (Franken et al., 2011) also uses time-domain passivity for dealing with

interactivity and delay in bilateral tele-manipulation. It is based on the pos-

1Essentially, the approach of gain scheduling consists in 1) linearizing the nonlinear system
around a set of operating points, 2) Designing feedback controllers for each of the linearizations
using linear control tools and 3) Controlling the nonlinear system by interpolating between
the feedback gains found for the linearizations.
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sibility to compute exactly the energy exchange between an environment and

a robot, which as was shown in (Stramigioli et al., 2005) is possible even for

sampled system provided the robot has impedance causality (velocity in, force

out).

An approach similar to the time-domain passivity ideas discussed above was

introduced specifically for the case of varying stiffness matrix in impedance con-

trol in (Ferraguti et al., 2013). Their controller also monitors online the energy

of the system but stabilization is based on falling back to a constant stiffness

component rather than introducing additional damping. As is shown in Chapter

4 of this thesis, the approach of (Ferraguti et al., 2013) yields discontinuities in

the stiffness profile which is usually not desirable for control of real robots.

While the methods discussed above could theoretically stabilize a system un-

der impedance control with an arbitrary varying stiffness profile, the way that it

achieves this is by either injecting damping (Ryu et al., 2004b) or by modifying

the stiffness profile (Ferraguti et al., 2013) depending on the state trajectory ob-

served during task execution. It is hence impossible to determine the impedance

profile that the robot will use before task execution. Consequently, an engineer

carefully having crafted a task-specific impedance profile could end up watching

in frustration as the robot exhibits a totally different behavior than intended as

it performs the task.

Chapter 4 of this thesis derives sufficient conditions for stability for varying

stiffness and damping profiles. In contrast to the approaches reviewed above,

these conditions are state-independent and can hence be evaluated before task

execution. A comparison to the approach of (Ferraguti et al., 2013) is also

provided.

2.1.3 Learning from Demonstration: Overview and

historical perspective

The idea of endowing robots with the capability to learn from task demon-

strations has existed for decades. Early developments in the 80’s focused on

developing methods to automatically synthesize robot programs from demon-

strations (Lozano-Perez, 1983; Levas and Selfridge, 1984; Dufay and Latombe,

1984; Segre and DeJong, 1985). At this stage, the field was focused on reducing

a task into a symbolic graph-like structure that could be traversed using simple

if-then rules (Billard et al., 2008; Schaal, 1999).

While the symbolic approach was successful in many tasks and is still an

ongoing research topic, the those early works synthesized programs with limited

flexibility. Enter the trajectory-based approach to LfD, which by applying pow-

erful tools from statistical learning theory and artificial neural networks allows

to capture tasks in a more detailed way. Many works have focused on encoding

trajectories as time-dependent functions using e.g. splines (Ude, 1993; Delson
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and West, 1996; Ude et al., 2004) or nonlinear regression techniques (Calinon

et al., 2007; Shon et al., 2005). One of the central concepts in trajectory-based

learning from demonstrations is consolidation of multiple demonstrations that

may be corrupted by a large amount of noise and that can generally not be ex-

pected to be synchronized. The latter problem is often handled using Dynamic

Time Warping. As an alternative, Hidden Markov Models (HMM) were adopted

for dealing with multiple demonstrations without the need of a preparatory syn-

chronization step (Tso and Liu, 1996; Lee and Xu, 1996). Task representation

using Dynamical Systems (DS) was identified early as a powerful means of deal-

ing with the same difficulties, and at the same time providing a number of

advantages at task execution time. The DS approaches are reviewed separately

in Section 2.1.6.

While the majority of works in Learning from Demonstration have focused

on learning kinematic information only, forces to apply to the environment can

be equally important. Asada and Izumi were very early in addressing compliant

manipulation tasks for LfD in (Asada and Izumi, 1989). At the time, the control

algorithm that was best understood and most widespread for contact tasks was

the hybrid force/position controller (refer to Section 2.1.1). The authors use

position and force data to automatically program the position and force set

points and in addition piece-wise static selection matrices required in the hybrid

control framework. The approach naturally inherits all the problems of the

explicitly programmed hybrid approach and in addition needs to deal with task

segmentation and hard control switching. More recent works force-based LfD

belong to the trajectory-based family of approaches include (Rozo et al., 2011;

Kormushev et al., 2011; Koropouli et al., 2012). Simultaneous control of force

and position is physically impossible (Stramigioli, 2001), and therefore these

approaches all have to make compromises at execution time. An alternative is

to instead focus the learning on the impedance of the robot, which is reviewed

separately in Section 2.1.4.

Teaching interfaces in LfD have ranged from tediously moving robot via

set points, vision (Kuniyoshi et al., 1994; Kang and Ikeuchi, 1995; Tung and

Kak, 1995) to haptic devices (Kormushev et al., 2011) and kinesthetic teach-

ing (Calinon et al., 2006), see Fig. 2.2. The latter is possible on backdrivable

robots and is today probably the most popular interface for providing demon-

strations. It can be used to capture kinematic trajectories and if force-sensors

are mounted between the point of contact with the teacher and the tool, contact

forces can also be captured in this manner. The situation is different when we

wish to transfer impedance information from the teacher. Unlike position or

force, impedance is not something directly measurable that can be easily cap-

tured by demonstration. A number of solutions have been proposed to resolve

this issue, and these are reviewed separately in Section 2.1.4.
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Figure 2.2: An example of kinesthetic teaching. The robot is gravity compen-
sated, allowing the teacher to effortlessly guide it through the motion.

2.1.4 Learning and Adaptation of Impedance

Parameters

Learning from Demonstration

Until a few years ago, LfD was with few exceptions (Asada and Izumi, 1989;

Asada, 1993; Sikka and McCarragher, 1997) focused on the representation and

learning of kinematic tasks. Hence, task parameters such as desired motion tra-

jectories were learned, and for executing the task autonomously after learning,

the robot typically relied on low level position controller. For tasks involving

free motion and simpler tasks involving contact, this is a proven approach which

has been employed in industrial robotics for decades. However, for tasks requir-

ing specific forces to be exerted on the environment, or tasks involving contact

as important elements, such an approach is prone to failure. Impedance control

(see Section 2.1.1) can handle such situations, but require additional task-related

information: the specification of the impedance. This is even more important if

the impedance should be allowed to vary, which is generally required to achieve

best task performance. This fact is the motivation for a number of recent works

in LfD and for Chapter 3 in this thesis.

In (Sikka and McCarragher, 1997), it was proposed to use human demon-

strations to derive data for the stiffness control framework (Salisbury, 1980).

The authors realized that trajectory information is insufficient to capture the

human manipulation skills, and propose a set of constraints aimed at facilitating

the identification of desired trajectory and stiffness parameters from recordings

of positing and force of human manipulation tasks. However even with these

constraints the desired trajectory and stiffness are not uniquely identifiable and

strong heuristics are used in the identification procedure.

More recently, Calinon et al. proposed to derive stiffness variations for a

compliant controller from the kinematic demonstrations of the position trajec-

tories in (Calinon et al., 2010). A probabilistic model is fit to the demonstrated

trajectories, and the stiffness profile is shaped so that the robot adopts a high

stiffness in directions of low variance. In (Kormushev et al., 2011), the same
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approach for setting the stiffness as in (Calinon et al., 2010) was used. Fur-

thermore, the robot learned a model of the contact forces that should arise in

correct manipulation. First, the positional profile of the task was taught us-

ing kinesthetic teaching. When the positional profile for the task was learned,

the teacher demonstrated the interaction forces using a haptic device while the

robot was executing the learned motion. A model describing the desired con-

tact forces was then built, and used by the robot to determine the desired force

during task execution. The robot was then controlled by adding the desired

contact force to the output of the compliant position controller. The approach

for deriving the impedance profiles in (Calinon et al., 2010) and (Kormushev

et al., 2011) is based on the assumption that the user conveys impedance infor-

mation through variability of the demonstrated motion. The compelling aspect

of the approach is that impedance information is derived from kinematic data,

which is necessary anyway, and the user is hence not required to demonstrate

also the impedance information. The main disadvantage is that the assumption

that impedance is directly related to kinematic variability in the demonstrations

may not always be true, and the user may end up with a robot using impedance

variations that he/she did not wish to convey.

In (Medina et al., 2013), a risk-sensitive Linear Quadratic Regulator (LQR)

control strategy is proposed for position and force trajectories encoded with

covariance information. Demonstrations are taken into account in computing

the optimal control, by employing the inverse covariance of the demonstrated

trajectory data as metrics when computing the cost. The activity of a force feed-

back controller is considered as process noise to a trajectory tracking controller,

which results in stiffness reduction during significant force correction. Addi-

tionally, the force control is facilitated by an online adaptation of the reference

trajectory depending on the force feedback error. A similar technique has been

used for haptic assistance in human robot collaboration scenarios in (Medina

et al., 2015). The derivation of a varying stiffness and damping matrices from

kinematic data has also been formalized in the context of minimal intervention

control via finite horizon LQR in (Calinon et al., 2014). Much like these ap-

proaches (Lee et al., 2015) uses demonstration data for deriving a time varying

stiffness and damping matrices. In that case, each dof is considered separately

(corresponding to a stiffness matrix that is constrained to be diagonal), and

priors are assigned to the stiffness and damping matrices which are estimated in

Bayesian framework. A similar technique, without priors on the stiffness matrix

and instead a post-estimation projection onto the admissible space of symmetric

positive definite matrices was proposed in (Rozo et al., 2013).

In Chapter 3, we take a different approach and develop a user interface that

allows the teacher to communicate the desired stiffness variations explicitly.

The system is based on interpreting physical perturbations by the teacher on

the robot as an indication to locally reduce the stiffness. Our approach maps

variability in the interaction to reduced stiffness in our teaching interface and
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is in that aspect similar to (Calinon et al., 2010) and (Kormushev et al., 2011).

The stiffness profile is however learned independently and does not depend on

the positional demonstrations. An important difference is that in our approach,

the user gets haptic feedback during teaching, since the robot adapts its stiffness

online. Not having this feedback would be comparable to providing kinematic

demonstrations without visual feedback. The approach of demonstrating stiff-

ness in this way has later been applied in the context of object level impedance

control for in-hand manipulation in (Li et al., 2014).

Reinforcement Learning and Optimal Control

Learning variable impedance control policies has been formulated as an optimal

control problem (Mitrovic et al., 2011),(Braun et al., 2012). These works specify

the task constraints as a cost function and optimize the control actions subject

to the dynamics of the robot. This has the advantage that the impedance profile

is tailored to each robotic platform. Solutions based on optimal control theory

for varying the stiffness to maximize link velocity of VSA systems have been

reported by (Garabini et al., 2011) and (Haddadin et al., 2011). The optimal

control approach is especially well-suited for highly dynamic tasks that need

to exploit the passive dynamics of compliantly actuated systems (Braun et al.,

2013).

Closely related to optimal control is reinforcement learning (RL), which was

first used for learning variable impedance policies in (Buchli et al., 2010) and

(Buchli et al., 2011). The approach is based on formulating the varying stiffness

as a differential equation that becomes an additional state in the Dynamic Motor

Primitive (DMP) framework (refer to Sections 2.1.6 and 2.1.7). Model-free

reinforcement learning (Theodorou et al., 2010) is subsequently used to learn

all the parameters of the extended DMP, hence simultaneously obtaining the

reference trajectory and the stiffness profile. Interestingly, the approach has

been able to qualitatively reproduce patterns of impedance learning observed in

humans (Stulp et al., 2012).

Kormushev et al. used a control policy similar to DMP but where the non-

linear forcing terms are replaced by a set of spring damper systems centered on

points along the path of the task (Kormushev et al., 2011). It differs from (Buchli

et al., 2011) in that the acceleration output from the DMP is directly used as a

control command via inverse dynamics, without a separate PD controller. An

EM-based reinforcement learning algorithm initialized by human demonstra-

tions is presented, which was demonstrated in a pancake flipping task refined

through trial-and-error. Improvement of the EM-based reinforcement learning

algorithms allowing multi-optima search were presented in (Calinon et al., 2013).

All works in reinforcement learning and optimal control rely on a well de-

signed cost function that is able to capture quantitatively the performance of

a trial of the task. With well designed cost functions, the works cited in this

section have had formidable success at learning very challenging tasks. The spec-
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ification of a cost function for general tasks is however a daunting task, even for

experts (Schaal et al., 2003). Important research is being done to facilitate the

procedure by estimating a cost function from demonstrations through inverse

reinforcement learning (Abbeel and Ng, 2004). In particular, this approach has

been used in the context of transferring impedance modulation strategies be-

tween heterogeneous systems in (Howard et al., 2013). So far, these algorithms

rely on predetermined feature selection, and are hence limited in their applica-

bility for lay users. RL and LfD hence continues to coexist as complementary

approaches to task acquisition, with an increasing amount of cross-breed as

exemplified by (Calinon et al., 2013).

Biologically inspired approaches

Humans and other animals are great examples of control systems that leverage

strongly on compliance. A large body of research — to vast for complete cover-

age here — seeks to understand how humans vary impedance. Mechanically, the

stiffness of a human arm is determined by the level of co-contraction of oppos-

ing muscle pairs (Won and Hogan, 1995; Rosenbaum, 2009). An apparatus for

measuring human limb stiffness was presented in (Gomi and Kawato, 1996) and

used for examining hypothesis regarding human arm movement control. Similar

setups have since then been used in a number of experiments, including (Gomi

and Osu, 1998) which discusses task-dependent stiffness in humans, and (Bur-

det et al., 2001) which reports that humans modulate stiffness to deal unstable

task dynamics. Similar evidence for task-based adaptation of impedance in hu-

mans have been reported in a number of works (Franklin et al., 2008; Takahashi

et al., 2001; Wang et al., 2001). A controller that adapts position trajectory,

feed-forward force and impedance according the principles derived from those

human studies was presented in (Yang et al., 2011). The adaptive behavior of

this controller is to use feed-forward force to compensate for predictable pertur-

bations, whereas unpredictable perturbations are tackled by learning to selec-

tively increase stiffness in directions where stochastic perturbations are applied.

An extension to this controller including reference adaptation for allowing force

control and haptic exploration was presented in (Ganesh et al., 2012).

The works cited above aims at understanding how humans modulate impedance

and in some cases uses results from these studies to develop robot controllers.

In contrast, our work does not aim at modeling the impedance variations that

the human would use if he did the task with his own arm, but rather uses the

human as a teacher who is assumed capable of teaching an impedance profile

that is suitable for the robot and the task at hand. Among the reasons for

impedance modulation in humans are readiness to reject perturbations (Burdet

et al., 2001), dealing with sensorimotor noise (Selen et al., 2009) and gradual

stiffness decrease to reduce energy expenditure (due to muscle fatigue). In place

of replicating the process that humans use to modulate impedance, we aim at

modeling solely the aspect that is related to the task, which may be different
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for the robot and the human due to different structure and mass properties of

the arm etc.

Among the tools in studying human impedance modulation is surface EMG

(Osu and Gomi, 1999). This has been exploited to implement “tele-impedance”

in (Ajoudani et al., 2012). On the master side, the hand position of the operator

is tracked with a visual marker system, and an online estimation of the stiffness

using surface EMG is performed simultaneously. The hand position along with

the estimated stiffness is then send to the slave side, where the robot under

impedance control updates its reference position as well as its stiffness to that

values send from the master. With the user only receiving visual feedback from

the slave side, the question rises whether the user uses the same stiffness she

would if she was doing the task directly, or if she rather uses the system as an

interface to select a stiffness that seems appropriate for the robot. While the

authors do not answer that question in (Ajoudani et al., 2012), they do report

several example tasks where tele-operation using their system outperformed

tele-operation with constant low or constant high stiffness on the slave side.

Depending on the role the user takes with the system proposed in (Ajoudani

et al., 2012) this may be the work which is most closely related to Chapter 3 of

this thesis as it uses an interface to set the stiffness explicitly.

2.1.5 Control Strategies for Peg-in-hole insertion

tasks

Insertion tasks are a major difficulty for automatizing manufacturing processes.

The bench-mark problem in this category, peg-in-hole, has been studied for

decades and is representative of the challenges that arise in uncertain assem-

bly operations. The difficulty of the peg-in-hole task and its importance for

assembly operations in the manufacturing industry are well documented in the

literature (Hannaford et al., 1991). If the pose of the parts can be tracked

with negligible inaccuracy, the problem can be solved by generating trajectories

based on the geometry of the parts (Lozano-Perez et al., 1984). Here, we review

research related to Chapter 5, which considers the more difficult case were the

uncertainty of the pose estimate or accuracy of control is significantly larger

than the clearance. Insertion operations were also the motivation behind the

development of the Remote Center of Compliance RCC device (Drake, 1977).

For the RCC to work well, the center of compliance should be placed near the

tip of the peg (Whitney, 1982), which may require a different device for differ-

ent objects. RCC that allow to control the location of the center of compliance

have been proposed Cutkosky and Wright (1986). Here, we instead solve the

insertion problem not with an auxiliary device but rather via actively actuating

the robot to complete the insertion.

In (Asada, 1990, 1993), it was proposed to use multilayer neural nets map-

ping sensed end-effector force to desired velocity as a representation of non-linear
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compliance. The neural nets were trained by minimizing the Mean Square Er-

ror (MSE) of a set of training data consisting of pairs of force and corrective

velocity. The availability of a sufficiently large set of noise-free training data

was assumed.

Reinforcement learning has been employed in (Burdet and Nuttin, 1999;

Gullapalli et al., 1994) for gradually acquiring a map from sensed force to cor-

rective velocity for peg-in-hole insertion. In reinforcement learning, the robot is

evaluating its own attempts at the task using a task-specific cost function. A

general problem with applying reinforcement learning to real robots is that a

large amount of trials is usually needed for learning the task. Both (Burdet and

Nuttin, 1999) and (Gullapalli et al., 1994) reported hundreds of trials before

the task had been successfully learned. For interaction tasks, this is especially

problematic since hazardous contact forces can arise during the trials (Burdet

and Nuttin, 1999).

Our solution for learning how to adapt the reference trajectory based on

the sensed wrench is similar to the works discussed above in how we model

the reactivity: sensed wrench in, velocity out. However, in contrast to (Asada,

1993) we use a probabilistic model of the demonstrated data and propose a viable

means for collecting such data (which was absent from (Asada, 1993)). We differ

from (Burdet and Nuttin, 1999) and (Gullapalli et al., 1994) in that we use LfD

rather than reinforcement learning, which are to be considered complementary

approaches that are suitable in different situations (see also discussion in Section

2.1.4).

An easily implementable approach to peg-in-hole is to use slight random

movements or oscillations of the reference trajectory (Badano et al., 1991). With

this approach, the idea is that the misalignment will eventually be compensated

by pseudo-random movements applied to the end-effector. To limit the contact

forces that will obviously arise when the reference is adapted in the wrong

direction, it is necessary to combine this approach with a lower level compliance.

Our approach in Chapter 5 should be seen as an intelligent variant of such a

scheme: randomization is used but it depends on the sensed wrench.

Passive compliance has been exploited for peg-in-hole in (Balletti et al.,

2012). A hand-crafted search strategy was used, completing the insertion via

aggressive thrusts. This work investigates how to compliantly actuated systems

can be exploited for such aggressive search. However, the approach results

in comparatively high contact forces and the insertion strategy is fully hand-

coded. A related work is (Park et al., 2013), which also presented a hand-

coded search strategy for peg-in-hole insertion. Predefined oscillatory motions

were used which combined with lower level compliance eventually performed the

insertion successfully in all reported experiments. No report on the contact force

experienced during is given, and the program is hand-coded for a specific peg-in-

hole insertion. In that aspect it is more similar to industrial practice where there

are numerous examples of assembly applications in the same range of tolerance
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or smaller, with close perfect performance in terms of success rate and with

significantly lower completion times. These applications are always carefully

hand-crafted for a specific application, often with task-specific tools and always

with a very low amount of uncertainty about the location and orientation of the

hole. Our approach in Chapter 5 is more generic in that a new insertion tasks

can easily be learned via demonstration of a few insertions, and only a coarse

estimate of the hole orientation is required at task execution time.

A recent work that also uses measured force to adapt the reference trajectory

is (Abu-Dakka et al., 2014). In that work, an insertion is assumed to follow a

certain position and force profile, which are learned from demonstration. The

approach uses proportional feedback of the contact force and Iterative Learning

Control respectively for online and long term adaptation of the reference position

to achieve the desired contact force.

2.1.6 Dynamical Systems: Overview and historical

perspective

Dynamical Systems have emerged as one of the most general and flexible ways

of representing motion plans for robotic applications. As reviewed below, nu-

merous DS formulations with different properties have been introduced in the

literature. What they all have in common is that motion is represented by a

set of differential equations and hence technically allow to encode rich behavior

including correct response to perturbations, generalization of a learned task etc.

Motion generation with dynamical systems is a long-standing research topic

with important early approaches including the Vector Integration To End-point

(VITE) model(Bullock and Grossberg, 1988) which was introduced to model

human reaching motions. Recurrent Neural Networks (RNN) have been suc-

cessfully used for modeling dynamics in various applications (Pearlmutter, 1989;

Ito, 2004; Lin et al., 1995). However, neural network approaches typically suffer

from long training times and more importantly difficulty to ensure basic desired

properties such as stability or convergence to a limit cycle, which are the two

most important topologies when using DS for robot motion representation.

A large body of work has been concerned with specifying a task-specific

potential function and using its gradient as control (Khatib, 1986; Koditschek,

1988). The concept of navigation functions free from local minima builds on the

same concept (Rimon and Koditschek, 1992). These approaches can be seen

as DS approaches with a DS that is implicitly specified via a scalar potential

function. It is straightforward to specify such functions for simple tasks without

complex motion patterns, but these methods are limited in the range of motions

that they can encode.

More recently, the Dynamic Motor Primitives (DMP) framework (Schaal,

2003; Ijspeert et al., 2002) and variants (Calinon et al., 2012) have gained popu-

larity both in imitation learning (Schaal et al., 2003) and reinforcement learning
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(Kober and Peters, 2010; Kormushev et al., 2010; Buchli et al., 2011). The DMP

has essentially three components, 1) a canonical system yielding the evolution

of the behavioral phase variable 2) a nonlinear forcing term, which is a function

of the phase variable and 3) the transformation system, which is the sum of a

simple linear attractor system and the nonlinear forcing term. The canonical

system is defined as a linear system (first or second order) that converges to

zero. The influence of the nonlinear forcing term is controlled by the phase vari-

able and decays to zero along with the phase variable. Hence, after convergence

of the phase variable, one is left with a simple linear system with well-known

stability properties. Multiple dofs can be synchronized by sharing the canonical

phase variable. DMPs have been shown to be an incredibly powerful tool for

modeling both rhythmic and discrete motions. The learning in DMP consists

in estimation of the nonlinear forcing term. This is usually done by linear re-

gression on feature vectors that are predetermined kernel functions in the phase

space, allowing fast and reliable learning even in high dimensions. Considering

a state-vector including the controlled kinematic variable (e.g. joint positions)

and the canonical phase, the DMP equations form an autonomous dynamical

system. It is important to note that the kinematic variable is not autonomous

in isolation. The DMP does not depend on time explicitly, however it does

so implicitly because the phase variable evolves purely as a function of time.

To deal with this issue, it has been suggested to introduce coupling from the

controlled state back to the differential equation governing the evolution of the

phase variable (Ijspeert et al., 2002). While such feedback coupling from the

controlled state to the phase can be very useful in particular situations (Pastor

et al., 2011), it is generally no longer possible to guarantee stability when such

coupling is introduced. This is because the stability analysis of DMP relies on

the phase decaying to zero, which is no longer guaranteed in the presence of

coupling from the controlled state. In Chapter 7, we show that coupling on the

form proposed in (Ijspeert et al., 2013) can result in problematic behavior un-

less carefully tuned. A detailed description of the DMP framework along with

a recent review on developments in DMP research is given in, (Ijspeert et al.,

2013).

Another class of DS representations define DS purely as a function of the

controlled state, and are in contrast to DMP autonomous when considering

as state vector the kinematic variable of interest (e.g. joint positions) (Gri-

bovskaya et al., 2011). In recent years, significant research in our group2 has

been directed to the development of DS formulations of this type. The method

suggested in (Gribovskaya et al., 2011) was based on using GMM for modeling

demonstrations of position and velocity of a task. An autonomous DS is then

obtained through GMR, considering the position as input and the velocity as

output. A significant improvement was introduced with the Stable Estimator of

Dynamical Systems (SEDS) in (Khansari-Zadeh and Billard, 2011), which adds

2The Learning Algorithms and Systems Laboratory, EPFL
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constraints to the learning that ensures global asymptotic stability of the re-

sulting DS. SEDS has since been adapted for hitting motions (Kronander et al.,

2011), coordinated reach-grasp motions (Shukla and Billard, 2011) and fast reac-

tive motion generation for catching flying objects (Kim et al., 2014). A notable

difference to the DMP framework is that the nonlinearities are encoded in the

position space and not in an auxiliary phase space as in DMP. This increases the

robustness to perturbations, allows better generalization and furthermore gives

the possibility to encode completely different behaviors in different parts of the

state space (Gribovskaya et al., 2011). However, learning from demonstrations

with a GMM and especially with SEDS is a considerably more difficult problem

than one-shot least squares fit possible in DMP. GMM fitting is subject to local

minima and relies on good initialization, which is not the case for DMP.

Extreme Learning Machines (ELM) (Huang et al., 2006) have been applied

to learning DS from data in (Lemme et al., 2013). Stability is ensured locally by

evaluating a quadratic Lyapunov function on a set of cleverly selected points in

the workspace. Improvements including automatic choice of the most appropri-

ate quadratic Lyapunov function candidate were recently published in (Lemme

et al., 2014).

The power of using a DS for representing robot motion lies in the capability

of encoding not only nominal motion from each starting point but also an ap-

propriate response to perturbations. This is in stark contrast to the traditional

way of modeling robot tasks which is typically a two step approach 1) plan a

trajectory 2) execute trajectory with fixed controller. In this case, arbitrarily

complex trajectories can be encoded in 1) but the response to perturbations is

always the same and determined solely by 2). A branch of motion planning deals

with this shortcoming by using feedback in the planning stage LaValle (2006)

and continuously re-planning the motion during task execution, taking state

measurements into account. While this can lead to increased robustness, most

motion planning algorithms require significant time to re-plan a path, which

means that these approaches can react to perturbations to some degree but not

in the continuous manner that the DS approach does. In essence, this is due to

the fact that the feedback motion planning approach optimizes an entire path

while the DS approach requires simply the evaluation of a known function at

each time step.

2.1.7 Incremental learning in Dynamical Systems

Incremental learning from demonstration can alleviate the difficulty of si-

multaneously demonstrating desired behavior in multiple degrees of freedom.

Furthermore, it can allow refinement and reuse of a learned model for a different

task. Various methodologies have been used. In (Ogata et al., 2005), a neural

network based approach inspired by how humans consolidate existing knowl-
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edge is presented. Gaussian Mixture Modeling (GMM) usually in combination

with Gaussian Mixture Regression (GMR) is a well-established framework in the

RLfD community (Calinon et al., 2007). GMM are usually trained offline with

the EM algorithm (Dempster et al., 1977), but incremental variants exist (Neal

and Hinton, 1998; Song and Wang, 2005), allowing incremental RLfD based

on GMM (Calinon and Billard, 2007; Cederborg et al., 2010). To deal with

synchronization and clustering of motion data, Hidden Markov Models (HMM)

have been extensively used. In (Kulic et al., 2008), a system based on HMM

that incrementally learns whole body motion primitives from motion capture

data. In (Lee and Ott, 2011), a specialized impedance control law designed to

facilitate incremental kinesthetic teaching was used together with a HMM for

representing the incoming data, allowing to elegantly rid the system of synchro-

nization problems between demonstrations. Similarly to HMM, an autonomous

DS representation does not have issues with synchronization, in this case be-

cause no temporal information is encoded in the model. In general, autonomous

DS models seem particularly well-suited for incremental learning settings, but

sofar there has been little research in this direction.

The DMP framework with locally weighted learning in the phase space can

use recursive least squares to incrementally update the parameters of the non-

linear forcing term. However, DMP is designed to learn from a single demon-

stration, since it is encodes one stereotypical motion (Ijspeert et al., 2013) as

opposed to a family of possible trajectories like e.g. SEDS (Khansari-Zadeh and

Billard, 2011) or ELM-based approaches (Lemme et al., 2014).

The optimization under constraints of SEDS (Khansari-Zadeh and Billard,

2011) makes it difficult to learn incrementally in this formulation. A more gen-

erally applicable method was proposed in (Khansari-Zadeh and Billard, 2014),

which presents an approach that can stabilize any DS by online generation of an

auxiliary command that ensures monotonic decay of a task-based energy func-

tion which is learned from demonstrations. This method allows more complex

motions than stability constraints based on a quadratic energy function, which

is used e.g. in (Khansari-Zadeh and Billard, 2011), but is still limited by the

energy function used as a basis for the stabilization mechanism. Task-based Lya-

punov functions have also been explored in the ELM framework in (Neumann

et al., 2013; Lemme et al., 2014), although in that case on a more restricted

quadratic form. All of these methods are based on using a parameterized Lya-

punov function for ensuring asymptotic stability of the dynamics. In each case,

this has consequences on the accuracy at which trajectories can be represented.

In addition, these approaches only admit to learn incrementally insofar that the

incrementally arriving data are consistent with the energy function, which is

learned offline.

In chapter 6, we introduce a novel DS representation termed Locally Modu-

lated Dynamical Systems (LMDS). This formulation is based on an existing DS

which is locally transformed by training data, which can be arriving incremen-
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Figure 2.3: Illustration of open loop and closed loop control configurations with
DS. In the open loop configuration, the DS is updated with the desired position
resulting from integration of the desired velocity. The actual position of the
robot is only used for initializing the integration at the beginning of the motion.
In contrast, the feedback configuration continuously updates the DS with the
actual position and realizes a control on the velocity error.

tally or in batches. The stability analysis is not based on a known Lyapunov

function, and instead the formulation is 1) inherently incapable of introducing

spurious attractors and 2) guaranteed to generate bounded trajectories. These

are weaker properties than asymptotic stability, with the consequence that our

dynamics can converge to limit cycles or orbits (but not spurious attractors). In

exchange, we can directly incorporate incremental demonstrations, which need

not comply with an energy function. As is shown in Chapter 6, asymptotic

stability is for all practical purposes an unnecessary restriction in the LMDS

framework, since it is not violated unless the demonstrations explicitly indicate

orbital behavior.

2.1.8 Control of Tasks described by Dynamical

Systems

The DS approaches reviewed in Sections 2.1.6 and 2.1.7 describe the desired

behavior of the robot. The output of the DS task models during task execu-

tion is desired velocity or acceleration (which can be integrated to find a de-

sired position). The most common architecture is to track the DS output using

e.g. position controller3 (Kronander et al., 2011), parallel position/force control

(Kalakrishnan et al., 2011) or impedance control (Buchli et al., 2011; Kronan-

der and Billard, 2013). Unfortunately, in such a configuration, the possibility

of the DS to intelligently respond to a perturbation is partially lost. While it

can still respond appropriately to perceptive perturbations, such as a moving

goal position or obstacle, it can not react to perturbations on the robot body

because the DS is agnostic to the state of the robot, see Fig. 2.3.

Motivated by the need to develop control laws that render the robot passive

w.r.t to external forces applied to it, Li and Horowitz introduced Passive Velocity

3The position trajectory can be integrated from the starting position of the motion.
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Field Control (PVFC) in (Li and Horowitz, 1999). The authors highlighted the

fact that time-dependent trajectory tracking controllers are generally not passive

when considering the external forces and velocity of the robot as input-output

pair. To remedy this issue, the authors advocated modeling of tasks in terms of

velocity fields. No attention was given to the acquisition of such vector fields.

As it happens, velocity field is just another word for what we refer to as DS in

the preceding sections. But the approach of Li and Horowitz as well as related

work by Duindam et al. has previously not been applied in the control of tasks

learned and encoded by DS as reviewed in Sections 2.1.6 and 2.1.7.

The PVFC introduced in (Li and Horowitz, 1999) is strongly based around

skew-symmetric velocity feedback terms, which have the effect of redirecting

kinetic energy along the desired directions of the velocity field. A virtual fly-

wheel is used to store energy internally in the system. It is shown that the

robot under PVFC will converge to a multiple of the desired DS. It is hence

possible to traverse the integral curves of the DS in positive or negative direction.

This, as well as the speed of the robot, is determined by the initial conditions.

An extension including adaptive parameter estimation was presented in (Li,

1999). Applications of PVFC include smart exercise machines (Li and Horowitz,

1997a,b) and rehabilitation devices (Erdogan et al., 2011; Erdogan and Patoglu,

2012).

A strongly related work to PVFC is (Duindam et al., 2004). In this case,

the authors focus on the curve tracking problem and assumes the availability of

a potential field with a valley along the desired curve. The tangent space of the

desired curve is used to generalize desired directions of movement points that

lie outside the desired curve. Similarly to PVFC, power-continuous controls are

then applied for redirecting kinetic energy along the desired direction while con-

vergence to the desired curve is achieved by potential energy shaping using the

potential field associated with the desired curve. A coordinate-free derivation

of the controller was also presented in (Duindam and Stramigioli, 2004). An

notable contribution of this work is the possibility to passively compensate for

the robot non-linearities along a desired direction of motion.

The controllers proposed in (Li and Horowitz, 1999) and (Duindam et al.,

2004) have sound theoretical foundations and a number of interesting proper-

ties, the most important being passivity with respect to external force and robot

velocity as input-output pair. This means that the robot will be stable in free

motion but more importantly in contact with any passive environment (van der

Schaft, 2000; Stramigioli, 2001). While these developments allow high perfor-

mance tracking, neither gives much attention to the behavior of the system when

interacting with an environment. On the other hand, the classical approach of

a reference trajectory feeding an impedance controller yields a behavior in con-

tact that is well understood. So far, we have discussed two possible routes for

using DS in control: 1) the open-loop approach with impedance control and 2)

closed-loop approach with a velocity field controller. The former allows us to
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use existing intuition about appropriately setting control parameters for achiev-

ing desired interactive behavior, while the latter allows us to fully exploit the

potential of a DS motion representation and in addition can guarantee passivity.

Is it possible to combine these two approaches to get the best of both worlds?

In chapter 7 we attempt to answer this question and propose a new controller

which similar to (Li and Horowitz, 1999) and (Duindam et al., 2004) is passive

but in contrast to these uses dissipation as an important part of the controller.

2.2 Technical preliminaries

This section briefly review some the most important technical tools that are

used in this thesis. All material presented here is standard textbook material or

previously published results. Sections 2.2.1 and 2.2.2 reviews DS and stability

analysis. As a comprehensive introduction to this vast topic would require far

more space than can be accommodated in this thesis, the material rather con-

sists of cherry-picked definitions and stability theorems that are used later in

the thesis. Sections 2.2.3 and 2.2.4 zoom in to a particular case of DS, namely

dynamics of a robot manipulator and the various controllers that are used in

the thesis. Lastly, Section 2.2.5 provides a short introduction to Gaussian Mix-

ture Regression (GMR) and Gaussian Process Regression (GPR), two nonlinear

regression algorithms that are used at several places in the thesis.

2.2.1 Dynamical Systems

Dynamical Systems (DS) will be used in one form or another in every chapter of

this thesis. Here, we summarize some definitions and properties related to this

topic. The material presented in sections consists of cherry-picked items that

can be found in any textbook on Dynamical Systems. For further details on

this fascinating topic, the reader is referred (Slotine and Li, 1991) and (Khalil,

2002).

Let ξ ∈ Rd denote a state vector of dimension d ∈ N. Generally, ξ could be

an arbitrarily rich description of a system. In this thesis, it will always represent

the position and/or velocity of a robot manipulator in some coordinates. The

DS that are relevant for this thesis are formulated as:

ξ̇ = f(t, ξ,u) (2.1)

where t represents time and u is an input vector of some dimensionality. The

input vector u can be used to manipulate the evolution of the state of the system.

In feedback control, the input is defined as a function of the state, u = u(ξ).

Hence, the closed loop dynamics becomes a function only of time and the state

vector:

ξ̇ = f(t, ξ,u(ξ)) = f ′(t, ξ) (2.2)
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DS of this form are often referred to as unforced, stemming from Eq. (2.1) with

u ≡ 0. The term unforced is slightly misleading, since the same form can be

used to describe a system that is actively controlled with feedback, as in Eq.

(2.2).

A DS without dependency on any variables but the internal state is said to

be autonomous. In this case, the evolution of the state vector can be written as:

ξ̇ = f(ξ) (2.3)

In this thesis, f will always be a continuous, real valued function. Below, we

list a set of important definitions related to the boundedness and equilibrium

points of a DS:

Definition 2.1 (Boundedness). A DS on the form given by Eq. (2.2) is bounded

if for each δ > 0, there exists ε > 0 such that:

‖ξ(t0)‖ < δ ⇒ ‖ξ(t)‖ < ε,∀ t > t0

A DS may have points which attract or repulse system trajectories. Natu-

rally, these are of great importance and are formally defined as follows:

Definition 2.2 (Equilibrium point). A point ξ∗ ∈ RN such that f(ξ∗, t) ≡
0 ∀t > t0 is an equilibrium point of f .

We can now introduce the formal definition of stability4.

Definition 2.3 (Lyapunov stability). An equilibrium point ξ∗ is said to be

stable in the sense of Lyapunov or simply stable if for each ε > 0 there exists

δ = δ(ε, t0) > 0 such that:

‖ξ(t0)− ξ∗‖ < δ ⇒ ‖ξ(t)− ξ∗‖ < ε, ∀t > t0

The interpretation of this definition is that an equilibrium point is stable,

if and only if it is possible to remain arbitrarily close to it provided that the

trajectory starts close enough. If trajectories in addition approach the equilib-

rium point over time, the equilibrium point is said to be asymptotically stable,

defined below:

Definition 2.4 (Asymptotic stability). An equilibrium point ξ∗ is called asymp-

totically stable if it is stable and, if in addition there exists R(t0) > 0 such that:

‖ξ(t0)− ξ∗‖ < R⇒ ‖ξ(t)− ξ∗‖ → 0, t→∞

If R can be arbitrarily large, the equilibrium point is globally asymptotically

stable.

4Stability and the alternative term Lyapunov stability are used interchangeably in this
thesis.
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These definitions are valid for autonomous and non-autonomous DS. Note,

that in the case of autonomous DS, the dependency of δ and R on t0 disappear.

Although Definitions 2.3 and 2.4 are properties associated to an equilibrium

point, we will refer to a DS with a single equilibrium point that is stable as a

stable DS.

For non-autonomous DS, the stability or instability of an equilibrium point

may well depend on the time at which the trajectory started t0. In order to

characterize stability that is independent on the initial time t0, the concept of

uniform stability is used:

Definition 2.5 (Uniform (asymptotic) stability). An equilibrium point ξ∗ is

said to be uniformly (asymptotically) stable if it is (asymptotically) stable and

if the scalar δ and R in Definitions 2.3 and 2.4 can be chosen independently of

t0.

The stability definitions listed above deals with the behavior of an unforced

DS in vicinity of its equilibria. They can be used to classify the behavior of

a DS with known and modeled inputs, by first deriving the closed-loop system

and then using the tools above.

If unknown inputs are present, for example if the system interacts with

another system, the passivity formalism provides an extremely useful set of

tools. Consider now a system with inputs u ∈ RM and outputs y ∈ RM :

ξ̇ = f(ξ) + g(u) (2.4a)

y = h(ξ,u) (2.4b)

Passivity states that the system can never store more energy than is supplied

to it.

Definition 2.6 (Passivity). A system on the form (2.4) is passive if there exists

a lower bounded storage function V : RN 7→ R≥0 such that:

V (ξ(t))− V (ξ(0)) ≤
∫ t

0

u(s)Ty(s)ds

is satisfied for all t ≥ 0, all input functions u and all initial conditions ξ(0) ∈ RN .

With restriction to continuously differentiable storage functions (which are

exclusively used in this thesis), an alternative definition which is often more

convenient can be used:

Definition 2.7 (Alt. Passivity). A system on the form (2.4) is passive if there

exists a continuously differentiable lower bounded storage function V : RN 7→
R≥0 such that along the trajectories of (2.4):

V̇ (t) ≤ u(t)Ty(t)
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for all t > 0 and for all input functions u(t).

2.2.2 Stability Analysis of Dynamical Systems

This section, like the preceding one, consists of standard textbook material.

Further details, examples and explanations can be found in (Slotine and Li,

1991) and (Khalil, 2002).

A particularly pleasant class of DS are linear DS. In the unforced or closed-

loop case, these take the form:

ξ̇ = Aξ (2.5)

where A is a constant matrix. Note that this representation can be used without

loss of generality for describing autonomous linear systems, since equilibrium

points other than the origin can be achieved through a change of variables. The

stability of a linear system is characterized by the eigenvalues of the matrix A:

Theorem 2.1. A system on the form given by Eq. (2.5) is globally asymptoti-

cally stable at the origin if and only if the real part of all eigenvalues λi, i = 1 . . . d

of A are strictly negative:

re(λi) < 0 ∀i = 1 . . . d

For non-linear systems there exists no such generic method for determin-

ing stability. The century old results of Lyapunov’s studies of DS still feature

prominently in control theory and in nonlinear stability analysis in particular. In

this thesis, we primarily make use of Lyapunov’s direct method, which involves

searching for a scalar function that can be used to characterize the stability

properties of a particular nonlinear system.

Theorem 2.2 (Stability of equilibrium point in autonomous nonlinear DS).

Let ξ = 0 be an equilibrium point of a dynamical system on the form ξ̇ =

f(ξ). Let D ⊆ Rd be a region including the origin. Let V (ξ) be a continuously

differentiable function such that:

(1) V is positive definite in D:

V (0) = 0 and V (ξ) > 0 ∀ξ ∈ D \ 0

(2) V̇ is negative semidefinite in D:

V̇ (ξ) ≤ 0 ∀ξ ∈ D \ 0

Then, ξ = 0 is a stable. If, in addition:

(3) V̇ is strictly negative definite in D:

V̇ (ξ) < 0 ∀ξ ∈ D \ 0

Then ξ = 0 is locally asymptotically stable.
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Note that Theorem 2.2 generalizes readily to equilibrium points located any-

where in Rd through a change of variables. The local asymptotic stability prop-

erty implies that any trajectory starting in D will converge to the origin. The

following important theorem of global asymptotic stability require some addi-

tional properties of V :

Theorem 2.3 (Global asymptotic stability of equilibrium point in autonomous

nonlinear DS). Let ξ = 0 be an equilibrium point for a system on the form

ξ̇ = f(ξ). Let V be a continuously differentiable scalar function such that:

(1) V is positive definite:

V (0) = 0 and V (ξ) > 0 ∀ξ 6= 0

(2) V̇ is negative definite:

V̇ (ξ) < 0 ∀ξ 6= 0

(3) V̇ is radially unbounded:

‖ξ‖ → ∞ ⇒ V (ξ)→∞

Then, ξ = 0 is globally asymptotically stable.

Slight variations are required for proving uniform stability in non-autonomous

systems:

Theorem 2.4 (Stability of equilibrium point in non-autonomous nonlinear

DS.). Let the origin be an equilibrium point for a system on the form given

by Eq. (2.2). Let V (ξ, t) be a continuously differentiable scalar function such

that:

(1) V is positive definite:

V (ξ, t) > 0 ∀ξ 6= 0, ∀t ≥ 0 and V (0, t) = 0, ∀t ≥ 0

(2) V̇ is negative semidefinite:

V̇ (ξ, t) ≤ 0,∀ξ 6= 0, ∀t ≥ 0 and V̇ (0, t) = 0, ∀t ≥ 0

(3) V is decrescent:

∃ V ′(ξ) > 0,∀ξ 6= 0 : V (ξ, t) ≤ V ′(ξ), ∀t ≥ 0

Then, the origin is uniformly stable. If, in addition:

(4) V̇ is negative definite:

V̇ (ξ, t) < 0,∀ξ 6= 0, ∀t ≥ 0 and V̇ (0, t) = 0, ∀t ≥ 0

(5) V is radially unbounded in ξ:

‖ξ‖ → ∞⇒ V (ξ, t)→∞

Then, the origin is globally uniformly asymptotically stable.

The passivity theorem characterizes interconnection between passive sub-

systems. Let G1 and G2 be two passive as Eq. (2.4b), satisfying passivity

(Definition 2.6), connected in feedback configuration as follows:
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u2 = y1 + e2 (2.6a)

u1 = u1 − y2 (2.6b)

y
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Theorem 2.5. Suppose G1 and G2 are passive. Then their feedback connection

given by Eq. (2.6) with input e = [eT1 , e
T
2 ]T and output y = [yT1 ,y

T
2 ]T is also

passive. In particular, if e2 ≡ 0, the feedback connection is passive with the

input-output pair e1,y1.

It should be noted that this is a simplified state-space version adapted to

the needs of this thesis. For the more general passivity theorem and extensions

to output-strict passivity the reader is referred to (van der Schaft, 2000).

2.2.3 Rigid Body Dynamics

The dynamics of a robot manipulator with revolute joints can be modeled as:

M(q)q̈ + C(q̇,q)q̇ + g(q) = τ c + τ e (2.7)

where q, q̇, q̈ ∈ RN denote the position, velocity and acceleration of N joints

of the robot, M(q) ∈ RN×N the symmetric and positive definite joint space

inertia matrix, C(q̇,q) ∈ RN×N the coriolis/centrifugal matrix and g(q) ∈ RN

the torque due to gravity. The control torques and external torques are denoted

by τ c ∈ RN and τ e ∈ RN respectively.

The RBD can equivalently be described in Cartesian coordinates, using the

manipulator Jacobian J(q) ∈ R6×N defined so that the Cartesian velocity cor-

responding to a joint velocity is given by ẋ = J(q)q̇. Let φ ∈ R6 denote

a wrench vector acting on the end-effector of the robot. This wrench is dis-

tributed as torque in the joints of the robot according to the well-known relation

τ = JT (q)φ. This relation can be used to implement a desired control wrench

on the end-effector via the joint torques. The Cartesian RBD equations are

written as:

Mx(q)ẍ + Cx(q̇,q)ẋ + gx(q) = φc + φe (2.8)

where φc,φe ∈ R6 denote the control and external wrench respectively, Mx(q) ∈
R6×6 and Cx(q̇,q) denote the Cartesian inertia and coriolis/centrifugal matrices

respectively and where gx(q) ∈ R6 denotes the Cartesian gravity vector. Note

that the latter three cannot be described as functions solely of the variables ẋ,x,

since a redundant robot has several possible joint configurations corresponding

to the same Cartesian pose.

Consider an uncontrolled (τ c = 0) manipulator. We can write the total

energy of this system as the sum of the kinetic energy and the potential energy
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due to gravity, denoted Vg(q):

V (t) =
1

2
q̇TMq̇ + Vg(q) (2.9)

Differentiating yields:

V̇ (t) =
1

2
q̇TṀq̇ + q̇TMq̈ +

∂Vg
∂q

q̇ (2.10)

Substituting Eq. (2.7) and
∂Vg

∂q = g(q) yields:

V̇ (t) =
1

2
q̇T (Ṁ− 2C)q̇ + τTe q̇ (2.11)

The first term is identical to zero due to the skew-symmetry property of Ṁ−2C,

yielding:

V̇ (t) = τTe q̇ (2.12)

which proves passivity of the uncontrolled manipulator. This result was first

exploited by the seminal paper (Takegaki and Arimoto, 1981) to prove stable

regulation at a set point by simple modification of the manipulators potential

energy.

2.2.4 Impedance Control

Although most applications seem to focus on Cartesian impedance control, an

impedance can be defined in any choice of coordinates. Let ξ ∈ Rd represent

the position of the robot in a suitable coordinate system (e.g. Cartesian space

or joint space). Let ξr denote a virtual target configuration for the robot.

Usually5, the goal of impedance control is to control the robot such that external

generalized forces F ∈ Rd interact with it according to the following dynamics:

H
¨̃
ξ + D

˙̃
ξ + Kξ̃ = F (2.13)

where H,D,K ∈ Rd×d are the target inertia6, damping and stiffness matrices

respectively. As detailed below, the simplest implementations of impedance

control restrict the choices of theses parameters, notably the inertia matrix

becomes a function of the configuration of the robot. The matrices H,D,K are

written without arguments here, but they may be functions of the robot state,

time or variables depending on 1) the choice of control implementation which

restricts the choice of parameters and 2) task-based design, which may require

or benefit from varying the impedance over time or as a function of some other

variable.

5Impedance control is not limited to this second order system, but it is the most common
form and there is good reason for it — it can be implemented with limited model knowledge
of the robot.

6Strictly speaking, this system does not have a physical equivalent because inertias are not
nodic elements, however this form is commonly used in robotics via inverse dynamics control.
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Joint PD regulation

The control algorithm presented here predates the whole concept of impedance

control and represented a major breakthrough when it was published as it was

one of the first position controllers with a rigorous stability analysis (Takegaki

and Arimoto, 1981). Nonetheless, I choose to categorize it as an impedance

control algorithm as the closed-loop behavior is a special case of Eq. (2.13).

Let q,qr ∈ RN denote the actual and desired configuration for an N-joint

robot manipulator. Let q̃ = q− qr Consider the control vector given by:

τ c = g(q)−Kq̃−Dq̇ (2.14)

where feedforward compensation of gravity is used with g(q) and where feedback

is used to proportionally act on the configuration error with the symmetric

positive definite stiffness matrix K. In addition, velocities are damped through

feedback of velocity acted upon by the positive definite damping matrix D.

Substitution of Eq. (2.14) in Eq. (2.7) yields the closed loop behavior:

M(q)q̈ + D(q, q̇)q̇ + Kq̃ = τ e (2.15)

where D(q, q̇) = D + C(q, q̇) had been introduced. Equation (2.15) corre-

sponds to Eq. (2.13) with a stationary virtual point, with a target inertia equal

to the inherent configuration-dependent inertia and with a damping term that

is nonlinear due to the influence of coupled inertial effects. This is the simplest

possible implementation of impedance control and is surprisingly effective, es-

pecially in quasi-static cases. Note that strictly speaking, this controller is only

valid for regulation. However, in practice it can work very well with a slowly

moving reference configuration.

Joint space impedance control with dynamic decoupling

Now consider a more general scenario where the virtual trajectory is not a fixed

point, but is defined at each time instance by vectors q̈r, q̇r,qr ∈ RN . Let τ c

be an inverse dynamics command:

τ c = M(q)ν + C(q̇,q)q̇ + g(q)− τ e (2.16)

Define the new control input ν as:

ν = q̈rt + H−1(−D ˙̃q−Kq̃ + τ e) (2.17)

Substituting Equations (2.16) and (2.17) in Eq. (2.7) yields the closed loop

dynamics:

H¨̃q + D ˙̃q + Kq̃ = τ e (2.18)

which corresponds exactly to the generic impedance model in Eq. (2.13) without
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any constraints on the impedance parameters or virtual trajectory.

Simple Cartesian Impedance Control

The name ’simple’ impedance control was coined in (Hogan, 1985a), and referred

to a controller with properties like the joint PD regulator described previously,

but defined in a Cartesian work space. The version used in this thesis is a slightly

refined version which improves upon the original implementation through the use

of more robust, and physically consistent orientation error representation using

axis/angle representation rather than the more commonly used Euler angles

(Khatib, 1987) which suffers from representational singularities. The controller

was originally proposed in (Caccavale et al., 1999).

Consider a controller given by:

φc = gx(q)−Dẋ−K(x− xr)) (2.19)

Substitution in the Cartesian RBD Equations yield:

Mx(q)ẍ + D(q, q̇)ẋ + Kx̃ = φe (2.20)

with D(q̇,q) = Cx(q̇,q)+D. This is a regulator, and can strictly speaking only

be used with a fixed desired reference point. The Cartesian error representation

x̃ ∈ R6 is discussed separately below.

Cartesian Impedance Control

The ’real’ Cartesian impedance controller that allows free specification of desired

inertia, damping and stiffness is described here. Similarly to the joint space case,

it requires force feedback and model knowledge for implementing the necessary

inverse dynamics command:

φc = Mx(q)νx + C(q, q̇)ẋ + gx(q)− φe (2.21)

with new control input νx ∈ R6 defined as:

νx = ẍr + H−1(−D ˙̃x−Kx̃ + φe) (2.22)

Substitution in Eq. (2.8) yields the following closed loop dynamics:

H¨̃x + D ˙̃x + Kx̃ = φe (2.23)

which correspond exactly to the target impedance model in Eq. (2.13) replacing

ξ for x.

Cartesian error representation

The Cartesian controllers described above have in common that they rely on
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the Cartesian error signal denoted as x̃ ∈ R6. It consists of two parts:

x̃ =

[
p̃

η̃

]
(2.24)

with p̃ ∈ R3 is simply the translational error computed as p̃ = p − pr, where

p,pr ∈ R3 have been introduced to denote the actual and reference position

of the end-effector respectively. The representation of the orientation error has

historically been a topic of some debate. Despite the well-known problems

of singularities, a minimal representation using Euler angles is often used for

representing the error. This can be done in two ways. The traditional way

is to first compute an Euler angle representations e, er corresponding to the

actual and reference orientation R,Rr ∈ R3×3 respectively, and then simply

setting η̃ = e − er (Khatib, 1987). A more robust way of using Euler angles

is to first compute the orientation difference R̂ = RTRr and then extract the

corresponding Euler angles ê, and using this as the orientation error η̃ = ê

(Caccavale et al., 1999). The latter avoids singularities for small errors and

can hence be used successfully in applications with high rotational impedance

that hinders significant orientation errors to occur (Ott, 2008). Remarkably,

Euler angles are still commonly used for error representation despite well known

problems and alternative formulations Caccavale et al. (1999); Stramigioli (2001)

In this thesis, the orientation error is always computed using the angle/axis

representation. This has several advantages, the two most important being 1) No

singularities and 2) physical consistency between the orientation error and the

torque part of the control wrench (Caccavale et al., 1999). This technique can

easily be used with the reference orientation specified either as a unit quaternion

or a full rotation matrix. For the latter case, the rotation difference R̂ = RTRr

is first computed, and the corresponding angle/axis representation ζ̂ ∈ R3 is

extracted from R̂. This then used as orientation error in Eq. (2.24), setting

η̃ = ζ̂. The procedure is analogous for the quaternion case, using quaternion

algebra to compute the orientation difference and then computing the angle/axis

representation of the resulting quaternion.

Design of the impedance parameters

The behavior of an impedance controller in contact can change dramatically

depending on the structure of the impedance parameters. A 6 × 6 Cartesian

stiffness matrix K can be decomposed as:

K =

[
KP KPR

KRP KR

]
(2.25)

with KP ∈ R3×3 relating forces to positional errors, KPR ∈ R3×3 relating

forces to rotational errors, KRP ∈ R3×3 relating torques to positional errors

and KR ∈ R3×3 relating torques to rotational errors. In this thesis, the Carte-
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sian controllers that are used impose a certain structure so that translational

errors only result in force response and rotational errors only result in torque re-

sponse. This is achieved by choosing KPR = KRP = 0. These decomposition is

physically possible close to the equilibrium of the stiffness term (Loncaric, 1987;

Zefran and Kumar, 2002). Furthermore, the rotational part of the stiffness is

assigned a diagonal structure KR = diag([kxR, k
y
R, k

z
R]T ), where the elements on

the diagonal represent the rotational stiffness around the three axes of the end-

effector frame of reference. In this thesis, the translational stiffness Kp will often

be allowed to vary, while KR will always be constant. The damping matrix will

always be designed so as to achieve a constant damping ratio of the system:

D =

[
DP 0

0 DR

]
(2.26a)

Consider the eigen decomposition of the symmetric and positive definite trans-

lational stiffness7 KP = QΛQT . The translational damping is constructed

around the same eigenvectors, and with eigenvalues that are proportional with

constant ν > 0 to the square-root of the corresponding eigenvalues of KP :

DP = Q(νΛ
1
2 )QT (2.26b)

The rotational damping is designed similarly as a function of the rotational

damping, resulting in a diagonal rotational damping:

DR = νK
1
2

R (2.26c)

The constant ν can be tuned to adjust the damping of the system. In this

thesis, the damping will always designed according to Eq. (2.26) with ν = 2

unless otherwise stated.

2.2.5 Nonlinear Regression

In several places, this thesis makes use of nonlinear regression techniques for var-

ious purposes. Especially, Gaussian Mixture Regression (GMR) and Gaussian

Process Regression (GPR) are used extensively in the thesis. Below I briefly

describe these techniques.

Gaussian Mixture Regression

The Gaussian Mixture Model (GMM) is a powerful tool with countless appli-

cations in signal processing, speech processing, nonlinear regression and pattern

recognition etc. While a single Gaussian function is often too limited to de-

scribe complex distributions, a combination of Gaussian distributions is much

7Q ∈ R3×3 contains the orthonormal eigenvectors of the stiffness matrix in its columns,
and Λ ∈ R3×3 is a diagonal matrix that contains the eigenvalues on its diagonal.
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more powerful. A GMM with K modeling the joint probability distribution of

a multi-dimensional variable ξ ∈ RM has probability density function given by:

p(ξ) =

K∑
k=1

πkN (ξ; mk,Ck) (2.27)

where πk > 0,mk ∈ RM ,Ck ∈ RM×M for k = 1 . . .K are the priors, means and

covariances of the Gaussians in the GMM. If ξ is partially observed, i.e. some

entries of ξ are known whereas the remaining are unknown, we can condition

Eq. (2.27) on the part of ξ that is observed. Therefore, let ξ = [ξI , ξO]T , where

ξI denotes an“input”, i.e. the part of ξ that is observable and ξO is the“output”,

i.e. the part of ξ whose p.d.f. we wish to find. The distribution of the output

conditioned on the input can then be written:

p(ξO|ξI) =

K∑
k=1

p(k|ξI)pk(ξO|ξI) (2.28)

where

pk(ξO|ξI) = N (ξO|ξI ; mk
O|I ,C

k
O|I) (2.29a)

mk
O|I = mk

O + Ck
OI(C

k
I )−1(ξI −mk

I ) (2.29b)

Ck
O|I = Ck

O −Ck
OI(C

k
I )−1Ck

IO (2.29c)

with

mk =

[
mk
I

mk
O

]
, Ck =

[
Ck
I Ck

IO

Ck
OI Ck

O

]
(2.29d)

The probability of Gaussian k being responsible for ξ given ξI is usually defined

as:

p(k|ξI) =
πkN (ξI ; m

k
I ,C

k
I )∑K

i=1 π
iN (ξI ; m

i
I ,C

i
I)

(2.30)

GMR is a functional relationship between the input ξI and the output ξO, which

is achieved by taking the mean of the conditional distribution in Eq. (2.28):

E{ξO|ξI} =

K∑
k=1

p(k|ξI)mk
O|I (2.31)

GMR is a convex sum of linear models, weighted non-linearly across the input

space. The normalization of the mixing weights in Eq. (2.30) means that at

least one of the linear models will always have a significant contribution to the

regression signal. The practical effect of this normalization is generalization,

i.e. that the relationships found locally in training data are used in inferring

outputs for inputs which lie far from the training data in input space. This is

often a desirable effect, since it can reduce the amount of training data needed

for good inference. However, sometimes it is inappropriate to generalize in this

manner. In appendix A.1, we propose a novel regression strategy for GMM,
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(a) (b)

Figure 2.4: The figure shows regression with unidimensional input and output
on a toy data set with GMR and GPR. The regression line is the central line
and the enveloping lines indicates a confidence envelope corresponding to two
standard deviations. Left: GMM with three components, fitted using the EM
algorithm. Right: GPR with a squared exponential covariance function. Note
that in contrast to GMR there is limited extrapolation outside the regions where
training data is provided.

which preserves the advantages of the standard GMM/GMR formulation while

it allows to control the degree of generalization with a single scalar parameter.

An example of standard GMR on toy data is given in Fig. 2.4.

Gaussian Process Regression

Let ξO ∈ RL be a vector containing L scalar observations of some process.

Let ξ1I , . . . , ξ
L
I ∈ RD be the associated D-dimensional input locations. In GPR,

the goal is to make predictions of an unknown function f , which is assumed to

underly the observed data. It is assumed that the observed outputs are noisy

samples of this function:

ξlO = f(ξlI) + εl, l = 1 . . . L

where ε is i.i.d Gaussian noise with variance σ2
n. The joint distribution of the L

training points, ξO = [ξ1O, . . . , ξ
L
O]T and the output ξ∗O at some query point ξ∗I

is then fully determined by a covariance function k(·, ·):[
ξO

ξ∗O

]
∼ N

(
0,

[
K + σ2

nI k∗

k∗T k(ξ∗I , ξ
∗
I)

])

where

k∗ = [k(ξ1I , ξ
∗
I), . . . , k(ξLI , ξ

∗
I)]T

and where K is a L× L matrix whose element at row i, column j is given by:

[K]ij = k(ξiI , ξ
j
I)
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Predictions are made by conditioning the joint distribution over training points

and the query point:

ξ∗O|ξO ∼ N
(
µξ∗O|ξO , σ

2
ξ∗O|ξO

)
The mean of the resulting distribution is used as estimator:

µξ∗O|ξO = k∗T [K + σ2
nI]−1ξO (2.33a)

with predictive variance:

σ2
ξ∗O|ξO

= k(ξ∗I , ξ
∗
I)− k∗T [K + σ2

nI]−1k∗ (2.33b)

Unlike GMR, GPR supports only scalar outputs. If multple variables are to

be predicted this is done with a separate GP per output (although they can,

of course, share the input locations). The performance of GPR as estimator is

largely determined by the choice of covariance-function k. In this thesis, we use

the standard squared exponential covariance function:

k(ξI , ξ
′
I) = σs exp

(
−1

l2
‖ξI − ξ

′
I‖2
)

(2.34)

where σs > 0 is signal variance scaling parameter l > 0 is the lengthscale

determining tradeoff between detail and generalization. An example of GPR is

shown in Fig. 2.4.

42



43



44



Chapter 3

Interaction Interface for
Compliant Skill Transfer

3.1 Introduction

As reviewed in Section 2.1.1, the specification of task-based impedance profiles

is a difficulty when using impedance control and varying impedance control

in particular. Hand-tuning impedance profiles is tedious and requires expert

knowledge. On the other hand, LfD has emerged as an incredibly efficient

means of intuitively transferring skills to robots (refer to Section 2.1.3). An

important question, hence, is how to incorporate varying impedance control

into LfD. Basically, two components are needed: 1) A way of intuitively and

efficiently transferring the desired impedance variations to the robot and 2) The

possibility of augmenting the task model with impedance information. While

the second of these problems is rather straightforward, the first represents a

major challenge in LfD for compliant manipulation. This chapter introduces a

novel human-robot interface that allows a human to teach a robot how it should

vary its stiffness during the task.

As the motivation of LfD is to make it easy for users without knowledge

of programming to teach tasks to their robots, any interface which is used in

the teaching process for LfD should be intuitive. With this in mind, the de-

veloped teaching interface for variable stiffness is inspired by the way humans

convey such information between each other. In dance and other sports, when

the teacher wishes to convey to the student that she should relax, she may say

’relax’ and at the same time wiggle the limb that is too stiff. Similarly, if the

teacher wants to insist on the importance of a particular posture, this may be

indicated by physically guiding the arm of the student into the desired posture

and indicating the importance by a firm grip on the students arm. Our mech-

anism for decreasing and increasing the stiffness are based on these ideas. The

robot is initially set to move along a desired trajectory with a default stiffness.

The teacher intervenes along the trajectory to decrease or increase stiffness when

needed. This is done by wiggling the robot’s end effector around its equilibrium

position, and following the robots movement with a firm grasp pressure, which

is registered using an artificial skin module mounted on the robot. These inter-

actions are illustrated in Fig. 3.1. The stiffness is updated online, so that the

teacher can immediately feel the effect of the interaction. This is very impor-

tant, since it is the only way that the teacher can know if the desired behavior
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Stiffness decrease Stiffness increase 

Detected 

pressure 

Figure 3.1: The figure shows the principles behind the proposed interface. The
teacher interacts with the robot as it is moving to alter its stiffness. To decrease
the stiffness the teacher wiggles the robot around its current position (left fig-
ure). To increase the stiffness, the teacher increases the grip force with which
he holds the robot (right figure). The robot responds online to these stimuli, so
that the teacher gets immediate haptic feedback on the new stiffness.

has been learned by the robot. The varying impedance profile can be associated

to the task either temporally or spatially, and are naturally synchronized with

the trajectory since the demonstrations are given during execution of the latter.

This chapter is organized as follows. Section 3.2 describes the Online Learn-

ing of Varying Stiffness (OLVS) algorithm which is the initial version of our

interaction interface. It is limited to locally decreasing the singular values of

the stiffness matrix and works with a time-indexed task description. This is then

extended in Section 3.3 to include the grasp pressure modality for increasing the

stiffness, as well as several other improvements. These sections correspond to

the publications (Kronander and Billard, 2012) and (Kronander and Billard,

2013) respectively. A literature review on the topic treated in this chapter is

given in Section 2.1.4.

3.2 Online Learning of Varying Stiffness

There exists already a large body of work for dealing with task transfer of kine-

matic tasks. Here, we hence assume the availability of a Cartesian reference

trajectory that describes a task, and focus on how the user can augment this

trajectory with varying impedance information. Our proposed solution is based

on having the robot move along its trajectory using a high default stiffness. In

the parts of the task where the teacher wants to reduce or change the principal

axes of the stiffness matrix, he/she intervenes by wiggling the robot end-effector

around its path. Note that the interface is concerned with adaptation of the

translational stiffness component (refer to Section 2.2.4). The rotational com-

ponents of the stiffness matrix are kept constant at a high value.

3.2.1 Stiffness Adjustment Based on Interactions
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E    Control input
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Figure 3.2: Overview of the interface. The stiffness is updated by observing
the position deviations from the desired reference point due to the teachers
interactions. The robot adapts its stiffness online, so the teacher gets direct
haptic feedback of the effect of his interaction.

The way that the robot interprets spatial perturbations for adjusting shares sim-

ilarities with how variability of a demonstration data set is used to set stiffness in

Calinon et al. (2010). The basic idea is that if the teacher imposes perturbations

with high variance in a direction, the robot should reduce its stiffness in that

direction. The symmetric and positive definite stiffness matrix is built around

the principal directions of the covariance matrix of the perturbation data, with

stiffness along each direction set to be inversely proportional to the square root

of the corresponding singular value of the covariance of the perturbations.

Let x,xd ∈ R3 denote the position of the end-effector of the robot in a

Cartesian work-space. We introduce the notation x̃ = x − xd for representing

a perturbation data point. Let Ξ = {x̃j , tj)}Jj=0 denote the set of observed

perturbations with their corresponding time stamps, where J is the number

of provided perturbation data. At time t, a stiffness matrix is assigned based

on the data in Ξ with time stamps in the range [t − S, t]. Thus, the stiffness

assignment is based on a sliding temporal window-view of length S over the

observed perturbation data. Let Lt and Ut define the lower and upper bounds

for the indices of data points inside the temporal window:

Lt = max{j ∈ [1, 2 . . . J ] : tj < t− S} (3.1a)

Ut = min{j ∈ [1, 2 . . . J ] : t ≤ tj} (3.1b)

We denote by Nt = Ut −Lt the number of data points in the sliding window at

time t. Let M1
t and M2

t denote the first and second empirical moments of the
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spatial data in the window:

M1
t =

1

Nt

Ut∑
j=Lt

x̃j (3.2a)

M2
t =

1

Nt

Ut∑
j=Lt

x̃jx̃
T
j (3.2b)

then, the covariance matrix is given by:

Σt = M2
t −M1

t (M
1
t )
T (3.2c)

This covariance matrix is what determines the stiffness commanded to the robot

at time t. The covariance matrix is symmetric and positive definite, so it can

be decomposed as Σt = QΛQT , where Λ is a diagonal matrix composed of the

singular values λit > 0, i = 1, 2, 3, and Q is a matrix containing the orthonormal

principal directions in its columns. The standard deviation of the data along

each direction is given by σit =
√
λit, i = 1, 2, 3. The stiffness matrix Kt is

constructed using the same principal directions as the covariance matrix :

Kt = QΓQT (3.3a)

with

Γ =

 γ(σ1
t ) 0 0

0 γ(σ2
t ) 0

0 0 γ(σ3
t )

 (3.3b)

where the singular values are set negatively proportional to the square root of

the corresponding singular value of the covariance matrix:

γ(σi) =


k σ < σit

k − (k − k)
σi
t−σ
σ−σ σ ≤ σit ≤ σ

k σit < σ

(3.3c)

for i = 1, 2, 3. The admissible values for the stiffness in any direction is bounded

below by k and above by k. These, along with the σ and σ are tunable param-

eters of the system.

The teaching process consists of perturbing the robot while it is performing

task, i.e. providing a stream of data points which are added to Ξ. The data

set is sorted in order by increasing time, and new data is simply inserted in the

place corresponding to the time at which the perturbation was perceived. The

algorithm involves computing empirical covariance of a potentially very large

data set. Incremental update of the covariance matrix from time t′ to time t
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Table 3.1: Online Learning of Variable Stiffness

Input: xdt ∀t ∈ [0, Tf ], S, k, k, σ, σ
1: for t < Tf do
2: sense x̃ = x− g(t)
3: if teaching then
4: add deviation to data set: Ξ← Ξ ∪ {x̃, t}
5: sort Ξ in order of increasing time
6: end if
7: update Lt and Ut (Eq. 3.1)
8: update moments based on previous values (Eq. 3.4)
9: compute Σt and its SVD Q,Λ

10: compute Γ← diag([γ(σ1
t ), γ(σ2

t ), γ(σ3
t )]) (Eq. 3.3)

11: compute translational stiffness matrix Kt ← QΓQ
12: compute damping Dt according to Eq. (2.26)
13: end for

follows directly from the additive form of the first and second moments:

M1
t =

Nt′

Nt
M1

t′ +
1

Nt

 Ut∑
i=Ut′

x̃i −
Lt∑

i=Lt′

x̃i

 (3.4a)

M2
t =

Nt′

Nt
M2

t′ +
1

Nt

 Ut∑
i=Ut′

x̃ix̃
T
i −

Lt∑
i=Lt′

x̃ix̃
T
i

 (3.4b)

and

Σt = M2
t −M1

t (M
1
t )
T (3.4c)

Pseudo-code for the learning procedure is given in Algorithm 3.1. In lines

3-6 the update of the data used for stiffness assignment is performed. It is vital

that data points are only added to Ξ if teaching is performed, as the covariance

would otherwise gradually decrease in the absence of perturbations, with the

effect that the robot ’forgets’ what it has been taught. In this work, we used no

detection of teaching but let the teacher switch between two modes: teaching or

not teaching. Lines 7-12 computes the the stiffness matrix based on the current

window view of Ξ. A fixed rotational stiffness and critical damping (See Section

2.2.4) is used. A flow-chart illustrating how the perturbations are used during

the control of the robot is shown in Fig. 3.2

3.2.2 Experiments

Two experiments were conducted to evaluate the proposed system. The first is

designed to demonstrate that the system can learn stiffness variations both in

direction and magnitude, as instructed by the teacher. In the second experiment,

we illustrate the usefulness of the system by teaching a stiffness profile for a task

of pouring a drink into a glass.
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(a) (b)

(c) (d)

Figure 3.3: Top-left: The figure shows the layout of the via points for the first
task. The points should be taken from left to right, with selective compliance in
z-direction at the blue points and in x-direction at the green point, as indicated
by the arrows. Figure top-right shows the graphical aid provided to the teacher
while teaching. The simulator mirrors the robot motions while drawing a graph-
ical representation of the current stiffness (the red ellipsoid). Figure bottom-left
and bottom-right shows a snapshots of the robot pouring task during teaching
and task reproduction.

Setup

The system for learning stiffness through interaction as described in sec-

tion 3.2.1 was implemented in a control module for a 7-dof Barrett WAM, us-

ing the RobotToolKit (RKT) and ROS software frameworks1. The Cartesian

impedance controller without inertia shaping described in Section 2.2.4 was

used.

The rotational stiffness was set to a diagonal matrix with a constant ro-

tational stiffness of 6 Nm/rad around all three axes. The lower and upper

bounds for stiffness k and k were set to 50 and 350 N/m respectively. Empir-

ically, 50 N/m is what the used setup needs to overcome static friction. The

upper bound was set as a safety precaution. The parameters σ and σ were set

to 0.005 and 0.05 respectively. These parameters control the values at which the

the stiffness saturate and were set experimentally. The length S of the sliding

temporal window was set to 1 second. The teacher could at the beginning of

1RobotToolKit is an open source collection of tools for robot simulation and control de-
veloped by Eric Sauser. ROS (Robot Operating System) is open source robot middle-ware
developed by Willow Garage
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Figure 3.4: The figures show the reference trajectory with the trajectories re-
sulting from the teachers interactions overlaid in the xy-plane and xz-plane
respectively.

each task reproduction choose if teaching was to be performed or not (cf. line

3 in Alg. 3.1) by pressing a key on the keyboard.

As the focus of this work is not learning the kinematic task profile, simple

record-and-replay was used for generating the desired pose trajectories. To this

end, the robot was put in gravity compensation mode, and guided through the

different motions by the teacher while the pose trajectory was recorded.

The translational stiffness was fed to the controller at a rate of 10 Hz. The

reference point xd was updated at each iteration of the inner control loop, which

runs at 500 Hz.

A RKT simulator was set up to provide graphical aid to the teacher while

performing demonstrations by mirroring the robot movement on a screen and

drawing a graphical representation of the current stiffness as an ellipsoid, see

Fig. 3.3b. The ellipsoid is shaped inversely to the stiffness, so low stiffness in a

direction is represented by the ellipsoid being elongated in that direction.

Task 1: Via-point Trajectory

The purpose of this experiment is to illustrate the claim that the proposed

system can learn stiffness variations in selective directions. The task consists

in following a trajectory passing through three via points. Fig. 3.3 shows the

via points in the robot’s work-space. The robot should be maximally compliant

in the z-direction at the blue via-points, and maximally compliant in the x-

direction in the other directions. This is a quantitative requirement in that the

task constraints state specifically that the robot should assume its minimum

allowed stiffness k for one and one only of the singular value at each of the via-

points. Furthermore, the directions of compliance at each via-point are specified

to be aligned approximately2 with the z-axis for the blue via-points and the x-

2This requirement is only approximate since it can not be expected by a human teacher to
provide perturbations exactly aligned with a given direction.
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Figure 3.5: The figures show the reference trajectory with the trajectories re-
sulting from the teachers interactions in each dimension over time. Note the
variance near the via points.

axis for the green via-point. In between the via-points, the robot should stiffen

up as quickly as possible3 to its maximal stiffness in all directions. The reference

trajectory moves through the points with approximately constant speed. The

total duration of the task is 12 seconds.

The robot executed the task three times while the teacher was providing in-

put. Fig. 3.4a shows trajectory followed without interaction in the XY-plane of

the base coordinate system, with the trajectories resulting from the teachers in-

teraction overlaid. As is clear from the figure, the teacher imposed perturbations

in the x-direction at the green via-point. Note also the small amount of variance

imposed in y-direction at the blue via-points. These small perturbations are an

unintended bi-effect of the larger perturbations imposed in z-direction at the

same points, as can be seen in figure 3.4b. Fig. 3.5 shows the trajectories fol-

lowed along each direction x,y,z of the base coordinate system over time. Even

though the via-points were originally defined by space coordinates, they are im-

plicitly anchored in time since the trajectories are time dependent. The times

3The rate at which the stiffness can change is limited as an effect of the sliding temporal
window, refer to section 3.2.1
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Figure 3.6: The figures show the stiffness trajectories resulting from the teachers
interaction showed in Figures 3.4 and 3.5. Left: The singular values of the
stiffness matrix over time. Right: The stiffness matrix visualized using
compliance ellipsoids, with elongated direction corresponding to low stiffness.

at which the via-points are marked are simply the times at which the reference

trajectory pass through these points. As can be seen in these figures, the trajec-

tory from the teaching rounds generally has a bias error when compared to the

reference trajectory. This is bias is due to the teacher holding the end-effector

and following along even when not imposing perturbations. Note that this bias

does not affect the stiffness as only the covariance of the perturbations is used

for determining the stiffness (cf. Alg. 3.1).

In Fig. 3.6a, the stiffness singular values resulting from the teaching is

plotted over time. The plot clearly shows that maximum compliance is only

reached in one direction at each of the via points. In Fig. 3.6a, the stiffness

matrix is plotted as an ellipsoid at a series of points along the motion trajectory.

The ellipsoids are built around the principal directions of the stiffness matrix,

with low stiffness along a direction illustrated by the ellipsoid being elongated

in that direction. As can be seen in this figure, the direction corresponding

to the lowest singular value is approximately z-direction at the blue via-points

and approximately x-direction at the green via-point. The human teacher being

unable to impose perturbations exactly along the desired directions is the reason

for the directions being only approximately correct.

Task 2: Pouring a drink

This task was chosen to show how the proposed system can be used to teach a

realistic task that benefits from a varying stiffness profile. The task consists first

transporting a bottle full of soda toward a glass. Once above the glass, the robot

was to pour the drink. We state the following desired qualitative characteristics

for this task:

1. During the reaching phase, the robot should be compliant in all directions,

as position errors are not crucial and correcting for position errors with

high stiffness can result in high accelerations of the end-effector which
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Figure 3.7: Figures (a)-(c) shows the trajectory followed by the robot when un-
perturbed along with the trajectory followed during two teaching rounds over-
laid. Note that no perturbations were provided along the x-direction.
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Figure 3.8: Figures (d) and (e) show the stiffness resulting from these teaching
rounds. Note that all singular values reach their maximum during the pouring
phase which takes place at second 10 to second 16. As is seen in figure (e),
the principal directions in which the robot has reduced stiffness in the reaching
phase lies in the yz-plane, while it remains fairly stiff along the x-axis.
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spills the drink out of the bottle.

2. In the pouring phase, the robot should stiffen up in all directions, since

the drink should be poured into the glass, even if moderately strong per-

turbations are encountered.

3. In the third stage, when the robot is reaching away from the glass, it is

again desirable that a low stiffness is used, for the same reason as men-

tioned for the reaching stage.

The reference trajectory was acquired using record and replay. The total

duration of the task is 25 seconds, and the critical pouring phase starts 10

seconds into the task and ends 6 seconds later.

The refinement of the pouring task consisted in decreasing stiffness in all

directions in the reaching phase, letting the robot be stiff while pouring, and

again decreasing the stiffness after the pouring phase. Since the stiffness was to

be decreased in several directions at each point along the reaching phases, three

rounds of teaching were performed. During each round, the teacher concentrated

on introducing variance in along the three coordinate-axes x,y and z of the base

coordinate system. The x,y,z components of the trajectories from the teaching

rounds are shown in figures 3.7a, 3.7b and 3.7c. Note that the teacher did not

impose as high variations in x-direction as in y, and z-direction. The reason for

this is that the motion of the task was approximately aligned with the x-axis

throughout the entire reaching phase. Perturbing the robot heavily along the

planned direction of motion makes it hard for the teacher to respect the intrinsic

time dependency of the task, thus risking to anchor the teaching in a part of

the motion where this was not intended. Respecting the time dependency along

other directions, especially those that are orthogonal to the direction of motion,

is easier as the teacher can feel the robots desired motion and follow it while

perturbing in other directions.

The result of the relatively smaller perturbations in the x-directions are

directly visible in Fig. 3.8a, which shows the stiffness singular values resulting

from the three teaching rounds. Clearly, all three values drop during the reaching

phases, while two of them drop much more than the first. Fig. 3.8b shows the

ellipsoid representation of the stiffness matrices for a subset of the points along

the followed trajectory, again making it clear that the stiffness was principally

reduced in the XZ-plane. As expected, the robot assumed a high stiffness at the

beginning of the task and in the pouring phase, since the teacher provided no

interaction there.

3.2.3 Discussion

An online, incremental algorithm for learning variable stiffness has been intro-

duced. The algorithm sets the stiffness negatively proportional to the covariance

of perturbation data imposed by the teacher. The data taken into account for
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determining the stiffness is taken from a sliding temporal window over the set

of all provided data.

It has been assumed that the robot already knows a kinematic profile for

the task. No assumptions have been made as to how this kinematic profile is

generated. This means that the system can be used as an add-on to any other

system learning robot motions. The single requirement is time-dependency, as

this is a feature of the system presented in this work. Thus, both the position

command and the stiffness command are explicitly anchored in time. This is

limiting for tasks in which major perturbations from an unknown environment

can be expected, e.g. manipulation tasks that involve significant contact forces.

In Section 3.2.1 it was explained that the presented system is data driven.

The empirical covariance matrix of subset of the collected data is computed at

each iteration. For our experimental setup, the computation required was well

within the requirements of the 10Hz update frequency used for the stiffness.

The real drawback of the data-driven approach is rather that all data points

have to be saved in memory.
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3.3 Learning Compliant Manipulation through

Kinesthetic and Tactile HRI

This section reports on significant extensions and improvements of the inter-

face presented in Section 3.2. The contents here are adapted from (Kronander

and Billard, 2013). The first improvement is the introduction of a frequency

domain separation of the measured interaction, where only interaction in a se-

lected band have an effect on the stiffness. This has the benefits of reducing the

effect of interaction components which arise from contact with the environment

and that it allows the teacher to use slow interaction to feel the stiffness of the

robot without actively changing it. In this work, we also generalize the interface

so that it can be used for stiffness modulation both in Cartesian and joint space.

We further introduce a new mode of interaction for increasing the stiffness. To

this end, the robot monitors the pressure with which the teacher grasps the

robot arm, and uses high grasping force as an indication to increase the stiff-

ness, see Fig. 3.1. In Section 3.2, the position command came from prerecorded

reference trajectories. Both the desired trajectory and stiffness variations were

time-dependent. In this work, we show that our techniques for teaching stiff-

ness variations can be used together with autonomous dynamical systems for

modeling the positional aspects of the task, while encoding the stiffness vari-

ations as a function of the position of the robot rather than time. Which of

the time-dependent or time-independent encodings to use depends on the task.

Specifically, for tasks that require stiffness variations to occur in certain physical

configurations, a time-independent encoding is advantageous since it is robust

to perturbations delaying the execution of the task.

We demonstrate the proposed approach for learning compliant manipula-

tion in two tasks. In the first experiment we revisit the pouring task from

the previous section, but with a time-independent task representation. The

proposed system for decreasing and increasing stiffness in Cartesian space is

demonstrated. The second experiment demonstrates the system for teaching

joint space stiffness variations in a match-lighting task. The results show that

by teaching a varying stiffness profile, the success-rate when lighting a match

is greatly increased compared to both fixed low and fixed high stiffness. Fi-

nally, the efficiency of the proposed teaching interfaces is evaluated in a user

study, where subjects were asked to teach the robot a stiffness for improving

the performance of a drawing task.

The addition of the filtering step, the option of choosing the interaction

signal and the new modality for increasing the stiffness are illustrated Fig. 3.9,

which highlights the differences between the interface presented here and OLVS

in Section 3.2 as depicted in Fig. 3.2.

3.3.1 Filtering the interaction signal
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Figure 3.9: Flowchart highlighting the difference with the simpler version de-
picted in Fig. 3.2. The robot is controlled with either Cartesian or joint
impedance control. The stiffness used by the controller is adapted online ac-
cording to the interaction provided by the teacher. The interaction signal may
be either position feedback error or measured interaction force/torque.

In Section 3.2, the position feedback error was used to monitor the interac-

tion between the teacher and the robot. Alternatively, for robots equipped with

joint torque sensors, e.g. the KUKA LWR, the sensed interaction torques can

be used as interaction signal. This is often preferable to using the positional

feedback signal as it allows interaction to be detected even if it does not result

in movement of the robot away from its equilibrium position. This is important

for applications in which the maximum stiffness is so high that humans will

find it difficult to move the robot off its path. Here, we hence consider a more

general abstraction called interaction signal. How this is measured is implemen-

tation dependent, and it will be clarified for each experiment exactly how the

interaction is measured.

In OLVS (Section 3.2.1), perturbations in a time-window of a predetermined

length are used to update the stiffness. Here, we incorporate a preparatory band-

pass filtering step before proceeding to computing the stiffness using the filtered

signal. The role of this filter is two-fold. First, it serves to remove high-frequency

content from the interaction. This is desirable, as the raw signal is typically

corrupted by high frequency sensory noise, and because interaction other than

teaching (e.g. contact with environment) may contribute to the interaction

signal. While separating the interaction signal in the frequency domain does

not guarantee that such effects are avoided, it does make them less probable.

Secondly, the lower frequency bound on the filter gives the teacher the possibility

to use slow (low frequency) perturbations to feel how stiff the robot is without

actively changing the stiffness. Choosing the lower cutoff frequency to f ≈
0.5 Hz allows the teacher to comfortably perform slow perturbations to feel
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Figure 3.10: Top: An example of interaction signal and resulting stiffness tra-
jectory. This is a sinusoidal interaction with a frequency that starts at 3 Hz,
climbs to 12 Hz, drops to 6Hz and finally drops to 1Hz. Note how the interac-
tion signal does not affect the stiffness for the frequencies outside the band-pass,
chosen to [2Hz-10Hz] in this example. Middle: 2d examples of covariance of the
interaction, Bottom: Stiffness ellipsoids resulting from the interaction examples.

the stiffness of the robot. The upper cutoff frequency f should be set to a

value slightly above the frequency that we can expect that a human teacher can

be responsible for. There have been physiological studies on this topic, with

reports of peak frequency for voluntary manipulation involving hand and arm

movements in the range 4-8 Hz (Kunesch et al., 1989) and 2-5 Hz (Cathers et al.,

1996) (Jones, 2000). To have some margin, the upper cut-off frequency was set

to f = 10 Hz in all experiments reported herein.

After the filtering step, the covariance for of the interaction signal is com-

puted as in Eq. (3.2), considering x̃ as the general interaction signal and not

specifically the feedback error. Fig. 3.10 illustrates the effect of the filter as well

as the relation between the covariance of the interaction signal and the stiffness.

3.3.2 Stiffness Increase Based on Grasp Pressure

With the perturbation-based interface, the teacher has the possibility to locally
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reshape the stiffness matrix as well as decreasing its magnitude along one or

more directions. High stiffness could only be achieved in the absence of inter-

action, which means that the default stiffness has to be equal to upper stiffness

threshold. This is problematic, especially if the feedback position error is used as

interaction signal, since a high default stiffness will require a significant physical

work by the teacher for the robot to depart from its reference. To improve this

aspect, we add a new interaction modality that allows to increase the stiffness.

The teacher indicates increase in stiffness by increasing the grasp pressure with

which he holds the robot. This way, the default stiffness can be chosen to a

moderately compliant level, and increased or decreased locally as required.

Depending on the sensing available for detecting the grasp pressure, one can

envision different ways to map the pressure to a selective increase in stiffness.

For example, on a manipulator where several links are covered with artificial

skin, the detected pressure on a link could be mapped to a stiffness increase

selectively to its parent joint. Below, we describe the grasp pressure used in our

CS implementation. For CS, we propose to map the perceived pressure from any

part of the body to a uniform increase of all the singular values of the stiffness

matrix. This allows to use the two interactive modes in conjunction to vary the

stiffness at the end-effector, using perturbations to shape and decrease the stiff-

ness, while using pressure to uniformly increase stiffness. To avoid interpreting

skin pressure signals arising from collisions or other disturbances, approximately

equal pressure on antagonistic parts of the arm is required for the stiffness to be

changed. Let Ψa
t and Ψb

t denote the vectors of pressure detected on the agonist

and antagonist parts of one part of the arm. Furthermore, let ψt denote a scalar

which represents the grasp pressure of the arm at time t, defined by:

ψt = h(Ψa
t ,Ψ

b
t)

max{Ψa
t }+ max{Ψb

t}
2

(3.5a)

h(Ψa
t ,Ψ

b
t) =

1 if |max{Ψa
t } −max{Ψb

t}| < ε

0 otherwise
(3.5b)

The stiffness matrix is then shaped according to Eq. (3.3a), with singular

values:

kit = kd +
k − kd
ψ − ψ

max(ψt − ψ, 0)− kd − k
λ− λ

max(λit − λ, 0) (3.6)

The first term is the default stiffness, which can be set to some value in the

lower allowed stiffness range. The second term is the linear increase of stiffness

from the default value kd to the maximum allowed value k when the pressure

changes from its lower threshold ψ to its upper threshold ψ. The lower threshold

is important since without it, a normal grasp force used e.g. for wiggling the

robot could unintentionally make the robot stiffen up. The upper threshold

should be a value which is close to the maximum pressure a human teacher can
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be expected to exert on the robot. Both these thresholds are easily tunable

parameters. The third term is the decrease from kd to k as λi goes from its

minimum threshold λ to its upper threshold λ.

3.3.3 Task Learning

The interfaces presented in Section 3.3.1 allow the teacher to modify the stiffness

of the robot online. To learn from this interaction for subsequent autonomous

task executions, a learning algorithm must be used. As for learning positional

profiles, there are a wide range of algorithms in machine learning that can be

used to learn a model based on demonstrations. In Section 3.2, we presented the

Online Learning of Varying Stiffness (OLVS) algorithm for incrementally learn-

ing time-dependent stiffness variations using the perturbation-based interface

for decreasing the stiffness. That approach did not learn the stiffness variations

directly, but instead saved all the perturbations imposed by the teacher dur-

ing the demonstration phase. These perturbations where then replayed during

subsequent task executions, to achieve incremental refinement of the stiffness

profile. In this work, we revisit the task of pouring a drink from Section 3.2.2,

but instead learn the stiffness variations as a function of the position of the

robot.

Task: Pouring a drink

This learning scenario illustrates how the interfaces described in Section 3.3.1

can be used in real world task. The task consists in first transporting a bottle

full of soda toward a glass, and pour the soda into the glass when it has been

reached. In this task, it is preferable to be very compliant in the reaching phase,

where position is not important and stiff behavior may cause aggressive response

to perturbations which result in spilling. However, when pouring, it is preferable

to be stiff, since the robot should attempt to reject any external perturbations

which may move the bottle from the glass. The robot used for this task is the

7 DoF Barrett WAM. The forearm of the robot is covered with artificial skin of

the type presented in (Cannata et al., 2008), see Figures 3.1 and 3.13.

Our previous treatment of this task in Section 3.2.2 used fixed reference

trajectory for the position and orientation, and OLVS for learning the stiffness

variations. The reference trajectories as well as the learned stiffness profile were

thus time dependent, which meant that perturbations that significantly delayed

the task would result in failure such as the drink being poured before the glass

was reached. Below, we revisit the pouring task and address these shortcomings

by using autonomous dynamical systems for modeling the kinematics of the

task. Furthermore, the stiffness is learned as a function of the robot position,

which ensures that the stiffness variations happen when the task requires it

rather than at a specific time.
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Figure 3.11: The figure shows the demonstrations provided by the teacher (red
dotted line) and the DS trajectories generated from the same starting positions
(blue). Two trajectories from other starting positions (black) illustrate that
similar motion is reproduced, with convergence to the target.

Position profile

To learn a generalized model of the kinematics of the task, we model the

position profile as an autonomous Dynamical System (DS). The DS is modeled

by a Gaussian Mixture Model, trained with the Stable Estimator of Dynamical

Systems (SEDS) (Khansari-Zadeh and Billard, 2011) algorithm to guarantee

that the motion converges to the glass regardless of starting position. This

approach uses a set of demonstrations to optimize the parameters of a GMM

(refer to Section 2.2.5) encoding an estimate of the joint probability of the

position and the velocity of the robot. The velocity then becomes a function

of position via GMR on the learned GMM. The representation of the desired

position profile as a DS is illustrated in Fig. 3.11.

Note that during task execution, we do not use continuous feedback of the

actual position to the DS as this would yield a system completely without any

apparent stiffness. Instead, we define an internal state variable y ∈ R3 which

will be updated using the DS and which is related to the reference trajectory as

follows. At the onset of motion, the position of the end-effector, x0 ∈ R3 with

respect to the target position x∗0 ∈ R3 is computed:

y0 = x′0 − x∗0 (3.7a)

The desired velocity w.r.t the target is then computed using the DS, which

maps the current relative position to the desired relative velocity through the

non-linear function f : R3 7→ R3:

ẏt = f(yt) (3.7b)

To find a set point xrt+1 for the controller, we integrate the previous relative

position and change coordinates to the robot reference frame via addition of the
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current target position:

xrt+1 = yt + ∆tẏt + x∗t (3.7c)

Above, ∆t denotes the length of one iteration of the control loop (δt = 0.002 in

our implementation). The target position is updated from its actual position4,

while the robot’s position is integrated open loop:

yt+1 = xrt+1 − x∗t+1 (3.7d)

This allows to use the robustness of the DS w.r.t to a moving target, but pertur-

bations on the robot state are completely handled by the impedance controller.

Orientation Profile

When pouring a drink, the bottle should ideally remain vertically oriented

everywhere except when it is correctly positioned above the glass. Having a time

dependent orientation profile will cause the robot to pour the drink outside

the glass if the robot is unable to reach the glass in the planned time. The

control of the orientation should therefore depend on the state of the reaching

motion, and exhibit coupling so that if the end-effector is moved away from the

glass, the orientation of the bottle immediately gets corrected. In (Shukla and

Billard, 2011), such coupling between reach- and grasp motions was observed

in human subjects. In this work, we use a simple such scheme, which couples

the orientation of the end-effector to the state of the reaching motion by using

distance between the end-effector and the glass as coupling variable.

We adopt the unit quaternion representation for the orientation of the end-

effector. Let ra and rb denote the quaternions corresponding to the default

and pouring orientation respectively. These orientations where captured by

moving the robot to the desired orientations and recording their quaternions.

To compute the desired orientation at time t, rdt , we interpolate between ra and

rb using spherical linear interpolation:

rdt =
sin(Ω(1− w))ra + sin(Ωw)rb

sin(Ω)
(3.8a)

where Ω satisfies cos(Ω) = ra · rb, and w ∈ [0, 1] is the interpolation parameter,

which we define as function of the difference of the current position of the end-

effector xt and the position of the glass x∗t :

w(xrt ,x
∗
t ) = exp(−κ(xrt − x∗t )

T (xrt − x∗t )) (3.8b)

Here, κ is a parameter that controls how quickly the rotation is changed as a

function of movements to and from the glass. This parameter was set experi-

mentally to κ = 0.06.

4The position of the glass is tracked at 200 Hz by a marker-based vision system.
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Stiffness Profile

The desired stiffness profile in the pouring task is to be compliant during

transport and stiff when pouring. As in the choice of end-effector orientation,

the stiffness should thus depend on the state of the reaching motion rather than

time. This is a common situation for manipulation tasks, i.e. that there is some

kind of free motion where it is generally preferable to use a low stiffness, and

a manipulation step that may involve contact that requires a specific stiffness

to be used locally. Therefore, it is natural to learn the stiffness variations as a

function of the relative position between the robot and the object of interest.

Furthermore, the teaching process can be simplified by first demonstrating the

general stiffness that the robot should use as its default, and in a secondary

step demonstrating the local changes from this default stiffness as the robot is

performing the task.

We used the combined perturbation and pressure based interface described

by Eq. (3.6). First, the default stiffness kd was set to the value in the middle

of the allowed stiffness range [k, k]. In our implementation, this corresponds to

k = 1000 N/m, k = 70 N/m and kd = 535 N/m. For demonstrating the default

stiffness, the robot was set to hold a constant position while the teacher was

interacting with it to find a satisfactory default behavior. Since a uniformly low

default stiffness was desirable, the teacher provided spherical perturbations with

increasing amplitude until a sufficiently low stiffness was achieved. Once the

interaction stopped, the resulting stiffness matrix was saved as default stiffness.

The trace of the end-effector and the final stiffness at the end of the first teaching

step are shown in Fig. 3.12.

The robot then executed the task with the combined perturbation and

pressure-based interface (Section 3.3.2), but now with kidef , i = 1, 2, 3 accord-

ing to the default stiffness learned in the preceding step. The orientation of

the default stiffness matrix is described Qdef . To preserve this orientation, the

computation of the perturbation covariance matrix, Eq. (3.2), is preceded by

rotation of the perturbation data points onto the basis given by the columns of

Qdef . During task execution, the teacher grasped the forearm of the robot and

applied pressure as the robot approached the glass, see Fig. 3.13. Three such

demonstrations where provided, and the stiffness trace was recorded when inter-

action was detected together with the relative position between the end-effector

and the glass x = xr − x∗.

Based on the recorded data set, we seek a functional relationship that allows

the robot to choose its stiffness based on the current relative position to the

glass. To minimize the amount of parameters used for the modeling of this

relationship while ensuring that the resulting stiffness is always symmetric and

positive definite, we represent the stiffness matrix by its Cholesky vector l =
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Figure 3.12: Top: the end-effector trajectory (left: XY, middle: XZ, right
YZ) during interaction for determining the default stiffness. Bottom: resulting
stiffness ellipses (left: XY, middle: XZ, right YZ)

Figure 3.13: Teaching the stiffness variations for the pouring task. Here, the
robot uses the default, low stiffness learned in the preceding step, and stiffens
up locally when the teacher applies pressure on the skin.
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(a)

Force excerted on end-effector,
the robot resists perturbation. 

(b)

Force applied,
robot compliantly
follows perturbation.

(c)

Figure 3.14: a): Illustration of online motion adaptation as the glass is moved.
b): The robot resists the perturbation when pouring and stiffly remains in
position. c): The robot is compliant when it is far from the glass.

[L1, . . . , L6]T , defined by5:

K = LTL, L =

L1 L2 L3

0 L4 L5

0 0 L6

 (3.9)

To represent the demonstrated data in a compact model, we chose to use a

GMM. Since the complexity of the data is expected to be low, we set the number

of Gaussians to two only. The GMM was then trained using the standard Ex-

pectation Maximization (EM) algorithm (Dempster et al., 1977). The resulting

GMM is a joint density estimate of the vector ξ ∈ R9 concatenating the relative

position between the end-effector and the glass and the Cholesky vector:

p(ξ) =

K∑
k=1

πkN (ξ; mk,Ck) (3.10)

During task execution the robot should use this model to choose its stiffness

Cholesky vector as a function of the relative position to the glass. This can be

done by GMR, which computes the conditional expectation E{l|x} based on the

GMM. One of the properties of standard GMR is generalization, which means

that relationships found locally in the training data can be used when inferring

distant points in the input space. For many applications, this is a desirable effect

since it can reduce the quantity of training data. However, in some situations it

5Note that K here represents the translational part of the stiffness matrix.
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Figure 3.15: Left: The plot shows a 3d plot of the maximum singular value of
the stiffness matrix as a function of the distance to the glass in the xy-plane.
Right: Same data as in the left plot, with a color-map for visualizing variations
of the maximum singular value of the stiffness matrix.

is inappropriate to generalize in this manner. The case of inferring stiffness is an

example of such a situation. Generalizing a locally linear relationship to regions

outside the training range would mean that the inferred stiffness could grow

unbounded. To prevent this, we propose a novel regression strategy in which

the generalization can be controlled with a single parameter. This regression

method is described in detail in Appendix A.1. In addition to the GMM, this

method makes use of a basic conditional distribution pb(l|x) that describes the

desired relationship between inputs and outputs in regions poorly covered by

the training data. As explained in Appendix A.1, for regression it is sufficient

to define the mean of this basic distribution. In this particular application, the

mean of the basic distribution is the Cholesky vector of the default stiffness from

the first demonstration phase.

As the robot performs the task autonomously, the Cholesky vector l = l(x)

is found with the regression method described in Appendix A.1. The output

from the regression is then used to reconstruct the Cholesky matrix which is

finally used to compute the stiffness according to Eq. (3.9). Fig. 3.15 shows

how the maximum singular value of the stiffness matrix varies as a function of

the distance to the glass in the xy-plane. Clearly, the desired behavior of the

stiffness increasing only locally when the robot is close to the glass is fulfilled.

We plotted only one of the singular value, since the pattern is similar for all

three6.

Task: Lighting a match

Lighting matches is a typical example of a task that humans perform with

6In this task, a uniform increase was desired, and the pressure-based interface increases
the stiffness uniformly.
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ease, whereas a position controlled robot will either break the match or ap-

ply too little force if the matchbox is not exactly in the programmed position.

One solution would be to control the contact force between the match and the

matchbox directly. This would, however, require very accurate force sensing at

the wrist and a more complicated control system, with more parameters to be

tuned. We hypothesized that decreasing the stiffness as the robot strikes the

match is sufficient to limit the contact force in this task.

Position profile

A JS control architecture was chosen for this task. The primary reason for this

choice was to exemplify how our system can be used in JS7. One demonstra-

tion of a joint space trajectory was given using kinesthetic teaching. To get a

smoothed version of the demonstrated trajectory that is able to reproduce the

trajectory with high precision, we employed a Gaussian Process (GP) to encode

the demonstrated motion. For reproducing the motion, the reference position

q̂it of each joint i at time t is retrieved through Gaussian Process Regression

(GPR), see Section 2.2.5.

Stiffness profile

In order to showcase the need for varying stiffness, we first carried out a series

of trials with fixed stiffness values. In the first series of trials, the joint stiffness

was set to a high, constant value of 1000 Nm/rad for all joints. This stiffness

is similar to position control, as the robot is very stiff and effectively rejects

most external forces. 20 trials were carried out, and most common outcome

of these attempts was that contact was established but the match broke. In a

second set of trials, the stiffness of the elbow joint was set to a constant value of

50 Nm/rad. Motion around the elbow corresponds in this case to approximately

perpendicular motion between the match and the matchbox, hence reducing this

stiffness reduces the contact force between the match and the matchbox8. The

lower the stiffness in this joint is set, the lower the contact force, and 50 Nm/rad

is the minimum value that was considered acceptable from the perspective of

maintaining the possibility to track the position trajectory. Again, 20 trials were

carried out, with the most common outcome being that the match was struck

through thin air, due to inadequate precision in positioning the match before

the striking motion.

To achieve high precision in positioning while ensuring compliant motion

when striking, the stiffness should be decreased only locally in the striking phase.

A JS stiffness profile was taught using the output from the joint torque sensors

of the KUKA LWR as interaction signal. This experiment did not make use of

the pressure-based interaction modality for increasing the stiffness, as no skin

7This task could also have been encoded in CS.
8The contact force arises from the controller trying to reject the perturbation of the planned

trajectory of the match as it comes in contact with the matchbox. The lower the stiffness, the
lower the controller effort and hence the contact force.
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Figure 3.16: Left: The demonstration of stiffness variations. The teacher
indicates decrease of stiffness of the elbow joint (encircled) during the striking
motion. The red arrow indicates the direction of wiggling. Note that the demon-
stration was carried out without a match mounted on the robot. Right: The
stiffness profile for the elbow joint in the match-lighting task. The shaded area
indicates the striking phase. The remaining 6 joints of the robot had a constant
stiffness of 1000 Nm/rad.

Figure 3.17: Snapshots from task execution where the robot successfully lights
the match using the learned stiffness profile.

modules were available for the platform. While the robot executed the motion,

the teacher intervened in the striking phase by wiggling the elbow joint around

its reference trajectory, see Fig. 3.16a. The resulting stiffness was recorded with

corresponding time stamps. For smooth reproduction of the stiffness profile, we

used a GP similarly to the joint position trajectory. The resulting stiffness

profile can be seen in Fig. 3.16b.

The result was accurate positioning before establishing contact with the

matchbox, and a compliant motion through the striking phase. While this

controller still occasionally breaks the matches, the success rate is significantly

higher (refer to Table 3.2) than for the two settings with fixed stiffness values.

Large variability in the quality of the matches as well as small positioning errors

of the matchbox are believed to be the most important reasons of failure.
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Table 3.2: Rates of success the match lighting task with constant high stiffness,
constant low stiffness in the elbow joint and learned varying stiffness in the
elbow joint. A total of 20 trials was carried out for each case.

Broke
Broke and

was lit
Not
lit

Lit
Rate of
success

const.
high stiff.

4 11 2 3 15%

const.
low stiff.

1 3 14 3 15%

learned
var. stiff.

0 2 1 17 85%
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3.3.4 User Study

In the previous Section, we described and exemplified how our interfaces can be

used for learning the stiffness for different tasks. A crucial aspect of any LfD

method is how convenient it is for non-roboticists to use it. Indeed, the whole

motivation of LfD is to allow people without technical knowledge in robotics to

transfer skills to the robot. In this section, we address this by evaluating our

approach through a user study. To provide a simple alternative to our system,

we developed a Graphical User Interface (GUI) with which the user can change

the stiffness along the three Cartesian axes using sliders.

Subjects

Two groups of 14 participants took part in the study. The participants in

one group were asked to select the stiffness using the GUI. The participants in

the second group used our proposed approach, combining wiggling motions for

selectively decreasing the stiffness with grasp force for uniformly increasing it

as described in Sections 3.3.1 and 3.3.2. In the following, the two groups will be

referred to as the GUI group and the PHRI (Physical Human-Robot Interface)

group. The subjects were mainly recruited on campus at EPFL. They were

naive to robotics with an age-range of 19-35. 10 out of the 28 participants were

female, with equal gender distribution in each group.

Task

The task considered was chosen specifically such that there are different stiffness

requirements along different directions in task space. The task consisted in

drawing a straight line on a white-board. While the robot was drawing, a series

of impulses were added to the control output, acting equivalently to external

perturbations. When such an impulse was applied, the robot departed from its

straight line trajectory. Furthermore, the reference trajectory was deliberately

placed behind the contact surface, such that a contact force was established

between the pen and the board, see Fig. 3.18. For safety reasons, the robot was

programmed to abort the task whenever the contact force exceeded 15N. For

maximum performance in this task, the stiffness along the x-axis (see Fig. 3.18)

should be high, so that the robot can counteract the force impulses. To ensure

a low contact force, the stiffness along the z-axis should be low. The stiffness

along the y-axis has no influence on the task performance and could hence take

arbitrary values. The stiffness was set to be constant throughout the task.

Experiment Protocol

Each subject was given a description of the task, and the instruction to choose

the stiffness of the robot so as to minimize the contact force and the departure

from the straight line. The instructions did not reveal the correct task stiffness

described above. Subjects were also given a description of the interface (GUI or
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Contact force 

Perturbations 

Reference trajectory 

Starting point 

Figure 3.18: The figure illustrates the drawing task. Force impulses along the x-
axis cause the robot to depart from the desired, straight trajectory. The dashed
line represents the part of the reference trajectory that lies below the contact
surface, giving rise to a contact force along the z-axis. The teachers role is to
change the stiffness of the robot, such that the perturbations are rejected while
the contact force remains small.

PHRI depending on the group). After reading the description, the subjects were

allowed to familiarize themselves with the interface during a practice period of

two minutes. During this time, the robot maintained a static reference position

while the participants were allowed to use the interface and interact with the

robot to understand how their input affected the stiffness of the robot. The

subjects were also allowed to ask the experiment supervisor interface-related

questions during this time.

After the two minutes of practice, the subjects were asked to improve the

performance of the drawing task by changing the stiffness of the robot. During

the teaching process, they could at any time ask the experiment supervisor to

start a new trial of the task. Subjects were allowed to change the stiffness while

the robot was stationary between trials, or during the trials. They were also

allowed to temporarily remove the pen if they wished to do so. Questions relat-

ing to the task (e.g. what effect could be expected by increasing or decreasing

the stiffness) were not answered, while questions regarding safety (e.g. where to

hold the robot) were.

A successful trajectory was defined as follows:

1. The contact force never exceeded 15N, i.e. the robot did not abort the

drawing before reaching the end of the line.

2. The standard deviation of the trajectory along the x-axis was below a

predefined threshold value.

72



Table 3.3: Objective and Subjective results from the user study. The table
entries are formatted as mean (standard deviation) for each of the performance
measures.

Teaching
time

Number
of trials

SUS TLX

PHRI 239.8 (100.1) 5.4 (2.2) 68.2 (16.7) 34.4 (16.9)
GUI 467.9 (260.7) 11.0 (6.9) 69.4 (15.6) 43.92 (17.3)
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Figure 3.19: The figures show the mean and standard deviation of the perfor-
mance measures for the two groups.

The subjects were informed about their progress only once they had managed

to tune the stiffness such that a successful trajectory had been completed.

After completing the teaching, the subjects were asked to fill out a digital

questionnaire containing the NASA Task Load Index (TLX) (Hart and Stave-

land, 1988) and the System Usability Scale (SUS) (Brooke, 1996) forms. The

NASA Task Load Index is a commonly used evaluation method for the workload

of a task. The evaluation consists in a series of workloads (e.g. physical, men-

tal and temporal demand) which are rated using a 20-point Likert-scale. The

System Usability Index is based on 5-point Likert-scale agreement response to

statements about the user-friendliness of a system, e.g. ‘I thought that the sys-

tem was easy to use’. More details about SUS and TLX are given in appendices

A.2 and A.3 respectively.

3.3.5 Results

Our main hypothesis was that teaching stiffness variations using the PHRI

would be more efficient than using the GUI, which does not provide the imme-

diate haptic feedback that the PHRI does. We could observe that subjects in

the GUI group needed haptic feedback to understand the effect of a change in

stiffness value. Indeed, the vast majority of the subjects in the GUI group con-

ducted their teaching by changing a value on the GUI and subsequently pushing

or pulling the end-effector in different directions to get an idea of the effect that
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the change in stiffness brought.

As quantitative measures of teaching efficiency, we used the total amount

of trials and the total teaching time9 before the subjects had completed a suc-

cessful trajectory. These measures are presented in Table 3.3 along with the

subjective results from the TLX and SUS questionnaires. The mean and stan-

dard deviation for each measure is also plotted in Fig. 3.19. The PHRI is

clearly advantageous in terms of the time it took the participants to teach the

task (One-way ANOVA: p=0.006; Welsh: p=0.004; Mann-Whitney: p=0.02).

It also required fewer trials (One-way ANOVA: p=0.01; Welsh: p=0.007; Mann-

Whitney: p=0.03). Regarding usability, the GUI and the PHRI are on par with

no statistically significant difference between the SUS-scores of the two groups

(One-way ANOVA: p=0.84, Welsh: p=0.42, Mann-Whitney: 0.47). While the

PHRI achieved a lower value of TLX than the GUI (the lower the TLX, the bet-

ter; range 0-100), this difference is not enough to give a statistically significant

advantage to the PHRI (One-way ANOVA: p=0.16; Welsh: p=0.08; Mann-

Whitney: p=0.08). A pairwise comparison for each of the factors underlying

the SUS and TLX scores was also carried out, but no statistically significant

difference was found.

From the results of the user study, we draw three conclusions:

1. All subjects, while being naive to robotics, were able to very rapidly figure

out how to use each interface and to determine the appropriate stiffness

for the task.

2. Both interfaces were perceived as user-friendly (An interface with a SUS-

score above 65 is generally considered user-friendly).

3. The PHRI was the most efficient of the two interfaces, as it allowed the

users to teach the task faster and with fewer trials.

3.3.6 Discussion

We have addressed the problem of teaching tasks that require or can benefit

from task-based varying stiffness. We proposed two modes of interaction and

presented interfaces that adapt the robot stiffness based on these interactions.

To make the robot more compliant, the teacher wiggles the robot around its

planned trajectory as it is performing the task. To make the robot more stiff,

the teacher increases the pressure with which he holds the robot. The robot

responds online by adapting the stiffness based on this interaction, providing

the teacher with instant haptic feedback on the effect of the teaching. We have

exemplified and demonstrated the usefulness of our approach in both CS and

JS, and validated the efficiency of the proposed interface through a user study.

9The total teaching time included the trials and the time for adjusting the stiffness while
stationary in between trials.
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In the second task (Section 3.3.3), we exemplified the system for teaching

joint-space stiffness variations in the challenging task of lighting a match with

the KUKA LWR. We showed that the rate of success for lighting matches was

significantly increased by varying the stiffness compared to both constant high

and constant low stiffness. None of the task coordinates CS and JS are uni-

versally better than the other. Which one to use depends on the task and the

robot at hand.

As opposed to other approaches to tuning the compliance parameters in

manipulation, our approach does not use a model of the environment, nor does it

require to optimize over a cost-function describing the task. Instead, it assumes

that the teacher is capable of demonstrating appropriate stiffness variations to

the robot. For slow manipulation tasks, it is easy for a human to determine when

the robot is too stiff or too compliant. This was shown by the results of our

user study, in which all subjects were able to figure out how the stiffness should

be adapted to increase the task performance, regardless of the interface (GUI or

PHRI) that was used for teaching. For tasks that involve high speed motion, it

can be difficult for the teacher to have the time to achieve the desired stiffness

variations along the trajectory. A straightforward remedy to this is to slow down

or pause the motion during the teaching process. The use of incremental learning

can also make it easier for the user to gradually transfer the appropriate stiffness

profile. However, our interface (or any other instruction-based interface) is likely

not applicable to highly dynamic tasks where varying stiffness is required to

achieve explosive motions10, such as kicking a ball. For such tasks, the optimal

stiffness control involves fast switching between saturation levels (Garabini et al.,

2012), which is problematic to demonstrate with the proposed interfaces as the

possible rate of change is limited. Furthermore, it is unlikely that even an expert

would be able to determine near-optimal stiffness variations for such tasks.

Varying stiffness is often important in tasks involving tools in physical con-

tact. For such tasks, the wiggling motions to decrease the stiffness may not be

possible. One solution to this difficulty is to let the robot execute the task with-

out contact during the teaching phase. This can be achieved in several ways,

e.g. by adding an offset to the reference trajectory or simply by removing the

tool during teaching (as we did in the match-lighting task in Section 3.3.3).

3.4 Conclusion

In this chapter, we have highlighted that many tasks require or can benefit

from being executed with a varying stiffness profile. We proposed two interaction

modalities that allows lay users teach a varying stiffness profile easily. The

usability was confirmed through a user study.

10This type of motions can be achieved with passively compliant joints, which have the
possibility to store energy.
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We have focused on acquiring the stiffness profile for a task. However, vary-

ing stiffness profiles can potentially destabilize the closed loop control system.

This issue has been largely ignored in related work as well as in this chapter.

The next chapter addresses this stability issue.
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Chapter 4

Stability Issues in Varying
Impedance Control

4.1 Introduction

As detailed in Sections 2.1.3 and 2.1.1, there are several open issues related to

the link between learning from demonstration and impedance control. It is clear

that many tasks require varying stiffness, and many others can certainly benefit

from it. However, a critical open issue in this regard is the stability analysis of

a system controlled with a varying stiffness. This chapter provides a new, state-

independent stability condition relating the stiffness and damping and their time

derivatives. The stability condition applies widely in impedance control with

constant inertia and varying stiffness and damping and is not limited to any

particular means of defining that impedance profile. The work presented in this

chapter is at the time of this writing under review for publication in a robotics

journal.

Variable impedance control can be seen as a special case of gain scheduling,

which is a common technique in control for applying linear control design tech-

niques to nonlinear systems. In gain scheduling, it is generally difficult to theo-

retically guarantee stability, and loose statements regarding stability with suffi-

ciently small or slow gain variations are commonplace in the literature (Shamma

and Athans, 1992). The success that variable impedance control has already had

in numerous applications is an indication that reasonable impedance variations

are sufficiently small/slow for a wide range of tasks. Nonetheless, these notions

are of limited use when designing varying impedance profiles since there is no

way of knowing how slow or how small the variations need to be.

There is hence a need for analysis or control methods that can guarantee

stable execution of variable impedance tasks. This issue has been recently ad-

dressed in (Ferraguti et al., 2013), wherein a tank-based approach to passive

varying stiffness was proposed. Their system uses the total energy of the ma-

nipulator (kinetic plus virtual potential energy coming from stiffness term), but

does not constrain this function to strictly decrease. Instead, any dissipated en-

ergy is added to a virtual energy tank, a concept originating from (Duindam and

Stramigioli, 2004; Stramigioli et al., 2005), from which energy can be extracted

in order to implement stiffness variations. The tank is given an initial level of

energy and a maximum allowed level of energy. These levels determine to what

extent the system will accept stiffness variations. This is an elegant approach
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Robot

Online stabilization

Task Model Impedance Controller

Model verification

A

B

C
D

D

A    Desired trajectory

B    Desired impedance 

C    Stabilizing impedance modification

D    Robot state feedback

Figure 4.1: The block diagram illustrates two different approaches to guar-
anteed stability of varying impedance systems. Our proposed method consists
of an state independent task model verification that can be carried out offline.
The alternative approach involves online computation of an energy function and
limitation of the impedance variations so as to ensure monotonic decline.

based on a sound energy-based idea. However, it has two important shortcom-

ings: 1) It depends on the state of the robot, with the consequence that one can

not guarantee beforehand the execution of a desired impedance profile 2) The

performance depends strongly on the initial and threshold levels of energy in

the tank1. Our aim with this work is to provide a stability condition for varying

stiffness and damping that is state independent. The most important practical

advantage of such a constraint is that it can be verified offline, before execution

of the task. Any standard impedance control architecture can subsequently be

used for task execution, with a reassuring guarantee that the system can not go

unstable. The two different approaches are illustrated in Fig. 4.1.

We focus on variable stiffness and damping, which are the impedance pa-

rameters that are most commonly varied for performance enhancement. We

then propose a stability condition that relates the stiffness, damping and their

rates of change. The constraint arises from the choice of a Lyapunov candi-

date function in which mixed position and velocity terms appear in the time

derivative.

Related work for this chapter is reviewed in Section 2.1.2. This chapter is

structured as follows. Section 4.2 provides some technical detail to the problem

statement. In Section 4.3, we present our main result, a stability constraint

for variable stiffness and damping control. The method is compared with the

state-of-the art tank-based method (Ferraguti et al., 2013) two task simulations

in Section 4.4.1. We then use our result to validate real impedance profiles in

Section 4.4.2. We conclude with a discussion and outlook into future directions

1For example, practically unstable behavior can emerge by setting the levels very high
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of research in Section 4.5.

4.2 Problem Statement

The stability analysis in this Section applies to JS and CS controllers with

dynamic decoupling described in Section 2.2.4. To keep the presentation general,

the stability analysis will use the general notation from Section 2.2.4.

We assume the most common form of impedance control, which is to control

the robot so that the following dynamic relationship is established between the

generalized position error ξ̃ ∈ Rd and generalized force F ∈ Rd:

H
¨̃
ξ + D

˙̃
ξ + Kξ̃ = F (4.1)

Where H ∈ RN×N , D ∈ RN×N and K ∈ RN×N denote a desired inertia,

damping and stiffness respectively. H,D and K are positive definite and H,K

are symmetric. The user-defined virtual inertia H, damping D and stiffness

K determine the behavior of the robot when subjected to external torque. If

these parameters are constant, the system will be asymptotically stable for any

symmetric positive definite choice of matrices H, D and K. In this work, we

are concerned with varying impedance control. Specifically, we will assume that

H remains constant while D = D(t) and K = K(t) are considered time varying

functions.

To analyze the stability properties of Eq. (4.1), consider the standard Lya-

punov candidate function consisting of kinetic energy with respect to the velocity

error and the virtual potential energy stored by the stiffness:

V1(ξ̃,
˙̃
ξ, t) =

1

2
˙̃
ξTH

˙̃
ξ +

1

2
ξ̃
T
K(t)ξ̃ (4.2)

For compactness of notation, we will in the following refer to V1(
˙̃
ξ, ξ̃, t) as simply

V1. Differentiating V1 along the trajectories of Eq. (4.1) with F = 0 and H

constant yields:

V̇1 =
˙̃
ξH

¨̃
ξ + ξ̃

T
K(t)

˙̃
ξ +

1

2
ξ̃
T
K̇(t)ξ̃

=
˙̃
ξT (−D(t)

˙̃
ξ −K(t)ξ̃) +

˙̃
ξTK(t)ξ̃ +

1

2
ξ̃
T
K̇(t)ξ̃

where symmetry of the stiffness matrix has been used. The mixed term with
˙̃
ξ

and ξ̃ is hence cancelled but the potentially positive term with K̇ remains:

V̇1 = − ˙̃
ξTD(t)

˙̃
ξ +

1

2
ξ̃
T
K̇(t)ξ̃ (4.3)

Eq. (4.3) is negative semidefinite for a negative semi-definite K̇(t). Hence, we

can conclude stability at the origin only if the stiffness is constant or decreasing.

Assuming a ξ̃ 6= 0, increasing the stiffness entails an injection of potential energy
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into the system, and it is hence intuitively clear that this practice can cause

unstable behavior.

4.3 Ensuring Stability

As seen from Eq. (4.3), the classical energy function does not allow us to

conclude stability with a varying stiffness profile. By inspection of the expression

in Eq. (4.3), the obvious solution to the problem would be to design a controller

that tries to follow the desired stiffness profile as well as possible, but limiting

it when Eq. (4.3) becomes positive. It is soon realized, however, that such an

approach has several disadvantages, the most important being 1) the admissible

stiffness profile depends on the state of the robot and can hence not be known

beforehand and 2) there are no guarantees in terms of capability of following

the desired stiffness profile. By introducing the concept of an energy tank as in

(Ferraguti et al., 2013), the second of these drawbacks can be somewhat relaxed.

4.3.1 Stability Conditions on Stiffness and Damping

Profiles

Experience of varying stiffness control suggests that in general, reasonable vary-

ing stiffness profiles show no destabilization tendencies. This motivates the

search for a less conservative Lyapunov candidate function than Eq. (4.2). In

adaptive control, it is common to construct energy functions of weighted sums

of the velocity error and the position error. The same approach can be used

for varying stiffness control to establish state-independent stability conditions

relating the stiffness and damping profiles. Consider the following Lyapunov

candidate function:

V2(ξ̃,
˙̃
ξ, t) =

(
˙̃
ξ + αξ̃)TH(

˙̃
ξ + αξ̃)

2
+
ξ̃
T
β(t)ξ̃

2
(4.4)

where

β(t) = K(t) + αD(t)− α2H (4.5)

with α > 0 is some positive constant chosen such that β(t) ≥ 0 for all t > 0.

This candidate function is a generalized version of a Lyapunov function which

is used for the analysis of time-varying scalar systems in (Slotine and Li, 1991).

Note that α → 0 ⇒ V2 → V1. In contrast to V1 however, this function allows

to establish sufficient constraints for stability that are independent of the state.

This is formalized in the following theorem:

Theorem 4.1 (Stability conditions under dynamic decoupling). Let H be a con-

stant, symmetric and positive definite matrix. Let K(t) and D(t) be symmetric,

positive definite and continuously differentiable varying stiffness and damping

profiles. Then, the system in Eq. (4.1) with F = 0 is globally uniformly stable

if there exists an α > 0 such that ∀ t ≥ 0:
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1. αH−D(t) is negative semi-definite

2. K̇(t) + αḊ(t)− 2αK(t) is negative semi-definite

If in 2) semi-definiteness is replaced with definiteness, the stability property is

in addition asymptotic.

Proof. The proof is given in Appendix B.

It is perhaps not intuitively clear why the derivative of the damping appears

in the second condition of Theorem 4.1. In the analysis in Section 4.2, Ḋ does

not appear in V̇1 (Eq. (4.3)). This means that for a constant stiffness, stability

would be ensured by any positive definite D, without any direct constraints2 on

Ḋ. Increasing the damping too fast however, can make the system converge at

points with
˙̃
ξ = 0 but ξ̃ 6= 0 (Slotine and Li, 1991). The presence of Ḋ in second

condition in Theorem 4.1 prevents this from happening, since both K̇ and Ḋ

are in effect bounded by this constraint. Note that for robotic applications,

this condition will typically be simplified to a form that has a more intuitive

interpretation. We illustrate this point with two examples below, with a 1d-

system given by:

mq̈ + d(t)q̇ + k(t)q = 0 (4.6)

Example 4.1 (Constant damping). Consider the system in Eq. (4.6) with con-

stant damping d(t) = d0 > α > 0, implying ḋ(t) = 0. The stability conditions

from Theorem 4.1 then reduce to:

d0 > αm (4.6a)

k̇(t) < 2αk(t) (4.6b)

Here, the second condition is an upper bound for the stiffness derivative that is

proportional to the current stiffness and the level of damping.

Example 4.2 (Constant damping ratio). Consider the system in Eq. (4.6) with

the damping chosen as d(t) = 2ζ
√
mk(t), where ζ > 0 is a constant damping

ratio.

Substituting ḋ(t) = ζ
√
m√
k(t)

k̇(t) into the second condition yields the following

upper bound for the stiffness time-derivative:

k̇(t) <
2α
√
k(t)

3√
k(t) + ζα

√
m

(4.7)

4.3.2 Validating impedance profiles

The stability conditions presented in the previous section are constraints only

2There are constraints that follow from positive definiteness of D.
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on the stiffness and damping profiles. This means that it can be directly in-

corporated in an optimization or learning procedure, which is often utilized to

generate impedance profiles. The outcome of these algorithms can hence be

guaranteed to result in stable control.

In practice, the impedance parameter that has the most significant impact on

task performance is the stiffness. Hence, it is often reasonable to give priority

to the stiffness design. The damping can then be chosen to guarantee that

the desired stiffness profile can be stably executed, typically by using critical

damping. Inspection of the constraints of Theorem 4.1 reveals that the least

conservative constraints are given by αH−D(t) = 0. Hence, to have the least

conservative constraints, α should be chosen as:

α = min
t

λ(D(t))

λ(H)
(4.8)

where λ(.) and λ(.) denote the largest and smallest eigenvalue respectively.

With this choice, the first condition of Theorem 1 is by construction satisfied

for all t. Hence, what remains to be verified is the second condition of Theorem

4.1. A simple verification procedure is as follows:

1. Given some ideal desired D(t) and H, determine α according to Eq. (4.8).

2. Verify that K̇(t) + αḊ(t)− 2αK(t) is negative semi-definite for all t > 0.

3. If not verified, modify stiffness and/or damping profile3.

Below, we show how the constraints in Theorem 4.1 relate to the eigenvalues

of the matrices in the general case. Consider A = −D+αH. This matrix needs

to be negative definite for negative definiteness of V̇2. H and D are symmetric,

which implies A is symmetric and its negative definiteness is hence equivalent all

its eigenvalues being negative. In particular, its largest eigenvalue λ(A) should

be negative.

λ(A) = sup
‖v‖=1

vTAv ≤ sup
‖v‖=1

vT (−D)v︸ ︷︷ ︸
=λ(−D)

+ sup
‖v‖=1

vT (αH)v︸ ︷︷ ︸
αλ(H)

(4.9)

Above, the triangle inequality for the supremum norm has been used. Thus, we

have:

λ(A) ≤ −λ(D) + αλ(H) (4.10)

since λ(−D) = −λ(D). Consequently, we have that negative definiteness of A

is implied by the following bound on the smallest eigenvalue of D:

λ(D) > αλ(H) (4.11)

3E.g. increase constant damping or increase the damping ratio for the common case that
the damping is varying with the stiffness to ensure a constant damping ratio.
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Figure 4.2: a) Trajectory and the Lyapunov candidates V1 and V2 during a
simulation of a single d.o.f with mass 10 Kg, damping 1 Ns/m and desired
trajectory and stiffness given by Equations (4.15a) and (4.15b) respectively. b)
The same system with modified impedance profile that is validated according
to procedure in Section 4.3.2. c) Trajectory and stiffness during the first 30
seconds simulated with the tank-based controller from (Ferraguti et al., 2013).
d) The tank-based energy function and the tank level during the 10 seconds of
simulation.

Hence, α defines a lower bound for the minimum eigenvalue of D as a multiple

of the maximum eigenvalue of H.

Now consider the second condition, which bounds the rate of change in

stiffness. The following matrix should be negative definite:

C = K̇ + αḊ− 2αK (4.12)

As above, we use the triangle inequality to bound the largest eigenvalue of C:

λ(C) ≤ λ(K̇) + αλ(Ḋ)− 2αλ(K) (4.13)

It follows that a sufficient condition for negative definiteness of C is given by:

λ(K̇) < 2αλ(K)− αλ(Ḋ) (4.14)
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4.4 Evaluation

4.4.1 Simulations

To illustrate the properties of the proposed approach, we present a set of simu-

lations comparing the stability analysis tools from Section 4.3 with the recently

proposed tank-based approach to varying stiffness control (Ferraguti et al.,

2013).

Tracking task

First we shall consider an example of 1 dof system that is unstable due to a

varying stiffness profile. This is a reproduction of the simulation in (Ferraguti

et al., 2013). The reference trajectory and the desired stiffness profile are given

by:

xdt = 10sin(0.1t) (4.15a)

kdt = k0 + 10sin(0.1t) (4.15b)

with k0 = 12. The system is simulated with a mass of 10 Kg and a damping

of 1 Ns/m. Fig. 4.2a shows a simulation of 100 seconds of this system. As

was shown in (Ferraguti et al., 2013), the tank-based method can stabilize the

system. Figures 4.2c and 4.2d show the results from the first 10 seconds of

simulation with the tank-based controller. As can be seen, when the minimum

tank level is reached, there are discontinuities in the stiffness profile. This

effect is a direct result of the formulation, which will fall back to a predefined

constant component of stiffness when the tank is empty. When and to what

extent this effect occurs depends on the choice of the open tank parameters and

more importantly the state of the robot as the stiffness variations take place.

As can be seen in the energy plot in Fig. 4.2a, V1 as well as V2 are non-

monotonic and increasing. According to the design procedure described in Sec-

tion 4.3.2, the impedance profile should be modified so that k̇ − 2αk remains

negative. To achieve this, the damping and base stiffness were increased to d = 4

and k0 = 18 respectively. Fig. 4.2b shows the results of simulating this modified

system during 100 seconds. As expected, the system is now stable. Note that

the classical energy function, V1, is still locally increasing, which depending on

the chosen tank parameters would still require limitation of the stiffness profile

with the tank-based controller.

Regulation with perturbations

The advantage of ensuring stability of a varying impedance profile without de-

pendency on state measurements is most clear in situations where perturbations

are to be expected during task executions and a reliable trajectory prediction
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(a) (b)

Figure 4.3: a) Trajectory, stiffness and evolution of the classical Lyapunov
function as well as the one used in this work. The data comes from a 100 s
simulation of a regulation task. The system is perturbed by the application of a
constant force during the shaded areas. Here, the standard impedance controller
is used since the desired stiffness profile is guaranteed to be stable. This fact
is confirmed here by the monotonic decrease of V2 outside the shaded regions.
b) Same as a) but system controlled with tank-based approach from (Ferraguti
et al., 2013). The bottom plot shows the time series of the tank-based energy
function. Note that it is in particular during perturbations that the system is
unable to use the desired stiffness.

is not possible. By inspection of Eq. (4.3), it is clear that it is particularly in

the presence of a large position error ξ̃ that energy is injected into the system if

the stiffness is increased. Any method relying on observing this energy function

by state measurements can hence be expected to be significantly active during

perturbations. To illustrate this, we simulated a one d.o.f regulation task with

a varying stiffness profile given by:

k = 12 + 10 sin
( π

10
t
)

(4.16)

and a constant damping 4 Ns/m and a mass of 10 Kg. Fig. 4.3a shows that the

impedance profile is validated by Theorem 4.1 and the trajectory resulting from

the simulation. A constant, positive perturbation force was applied in intervals

shaded gray in the plots. Fig. 4.3b shows the results of the tank-based method.

Note that it is in particular when the system is perturbed that the tank con-

troller has to fall back to the constant stiffness value. We wish to emphasize

that this is not a problem particularly related to the tank-based stabilization

method, but rather a general problem of any stabilization method relying on

state measurements during task execution.

4.4.2 Validation of real impedance profiles

Although it has been shown that varying stiffness can lead to unstable behavior,

experience shows that this is a rare occurrence in practice. There exists already
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several works that have used varying stiffness controllers which have not resulted

in unstable behavior. However, stability has only been proven in special cases

where the stiffness is varied according to an adaptive control law such as (Yang

et al., 2011) or with a particular parametric model as in our previous work

(Khansari-Zadeh et al., 2014). For the more general case, were the stiffness

can be considered a time varying function just like the trajectory, Theorem 4.1

can be used to validate or reject stiffness profiles. Since our stability condition

is conservative4, it is important to investigate if in practice it can be used to

validate stiffness trajectories. Therefore, we gathered data from three previous

works by ourselves and others, and tested to see if our stability condition could

validate these impedance profiles. In each case, a control scheme with inverse

dynamics and damping varying as a function of the stiffness so as to ensure a

critically damped system was assumed. First, for each case a value of α was

selected according to Eq. (4.8). Then, the following time-varying matrix was

computed:

K̇(t) + αḊ(t)− 2αK(t) (4.17)

The stability according to Theorem 4.1 is then confirmed if all eigenvalues of Eq.

(4.17) remain negative. The first data set is a match-lighting task from Section

3.3.3. This experiment was carried out on the KUKA LWR, see Fig. 4.4b. A

stiffness profile was taught to the robot using a physical human-robot interface

designed for this purpose. The resulting stiffness profile is a constant, high

stiffness for all joints except the elbow joint (encircled in Fig. 4.4b), in which

the stiffness is reduced as the robot strikes the match on the matchbox. The

stiffness profile for the elbow joint is shown in Fig. 4.4a, top. Fig. 4.4a, bottom

shows the evolution of the largest eigenvalue of Eq. (4.17). Note that only one

of the eigenvalues are plotted since the other 6 remain constant throughout the

task.

The second data set comes from Calinon et al. (Calinon et al., 2014). The

task is a 2D reaching task where the final part of the trajectory passes through

a narrow path leading to the target. The trajectory and varying stiffness are

generated online by Gaussian Mixture Regression (GMR) and minimum inter-

vention control scheme using the covariance from GMR to find a stiffness profile.

Fig. 4.4c shows the eigenvalues of the stiffness matrix and Eq. (4.17). As can

be seen, both eigenvalues remain negative throughout the time series and the

impedance profile is hence validated as stable.

The third data set comes from Buchli et al. (Buchli et al., 2011), who applied

the reinforcement learning algorithm PI2 to simultaneously learn the trajectory

and stiffness profile repeated task trials evaluated by a given cost function. The

task is a via-point task in a 6d joint space implemented on a KUKA LWR robot

(the last joint was ignored). The cost function was designed to favor a compliant

behavior when accuracy is not needed. This resulted in a stiffness profile with

4In the sense that there are stable impedance profiles that do not satisfy Theorem 4.1.
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Figure 4.4: a) Stiffness profile and evolution of stability condition given by for
the match-lighting task. Bottom: The evolution of the maximum eigenvalue
of Eq. 22
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a low stiffness that locally increases when the robot passes near the via point.

Fig. 4.4d shows the time series of the eigenvalues of the stiffness matrix and Eq.

(4.17) respectively. As in the previous examples, all eigenvalues clearly remain

negative.

4.5 Discussion and conclusion

The most fundamental property that should be required from a control system

is stability. This is especially important in applications of robots near humans,

in which variable impedance control is particularly interesting to use. While

experience tells us that unstable behavior arising from variable impedance is

quite rare in practice, it is important to understand this issue better and it is

crucial to subject the impedance variations to constraints so that stability is

guaranteed. We have proposed a novel, state-independent stability condition

for varying stiffness and damping profiles.

Impedance control commonly used in situations where significant departure

from the reference trajectory can be expected by either temporary perturba-

tions or physical constraints in the environment. For this reason, the reference

trajectory is often renamed virtual trajectory in impedance control literature,

highlighting the fact that perfect tracking of the reference may not be possible

or even desired. As shown by the simulation in Section 4.4.1, using the classical

Lyapunov function as a stability observer will make it impossible to increase the

stiffness in the presence of significant position errors. A clear advantage must

be ascribed do the proposed method (Section 4.3) in this regard.

The main limitation of the proposed approach is that it requires the inertia

matrix H to be constant. This in turn requires model knowledge and dynamic

decoupling as described in Section 2.2.4. Our method is not applicable to the

simpler impedance controllers that use the inherent inertia of the robot, since

the latter is configuration dependent and hence not constant when the robot is

moving. The state-dependent tank based method proposed in (Ferraguti et al.,

2013) does not have this limitation.

It is possible to construct variable impedance profiles that yield qualitatively

stable behavior but that are not validated by Theorem 4.1. This is because

Theorem 4.1 is a conservative guarantee of stability. Our experience is that it

will validate reasonably chosen impedance profiles, as shown in Section 4.4.2.

The control architecture in Chapter 3 and in this chapter has been focused

on a time dependent reference trajectory and a varying impedance profile. This

gives ample flexibility for many tasks, but not all. One very important of class

of tasks which can generally not be solved using this architecture is insertion

tasks. We address this in the next chapter by introducing online generation of

the reference trajectory based on sensed interaction forces.
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Chapter 5

Haptic Reference
Adaptation for Insertion

Tasks

5.1 Introduction

In Chapter 3, we assumed that we had at our disposal a reference trajectory and

focused on how acquire a varying impedance in a task specific manner. Inser-

tion tasks constitute an interesting class of tasks which generally requires active

adaptation of the reference trajectory in response to sensed forces (Asada, 1993),

which was not present in Chapters 3 and 4. The difficulty of the peg-in-hole

task and its importance for assembly operations in the manufacturing industry

are well documented in literature Hannaford et al. (1991). If the pose of the

parts can be tracked with negligible inaccuracy, the problem can be solved by

generating trajectories based on the geometry of the parts Lozano-Perez et al.

(1984). This method fails in the common case where the uncertainty of the pose

estimate or the inaccuracy of control is significantly larger than the clearance.

Humans can carry out the peg-in-hole task with or without visual feedback by

relying on haptic feedback for completing the task. By feeling the interaction

between the peg and the hole, humans are able to instantly adapt the pose of the

peg to complete the task. It would be highly desirable to transfer this skill to

robots. In this chapter, we take a step in this direction and propose a method-

ology for transferring task-specific insertion-skills to robots. The approach is

based on LfD and uses data recorded from collaborative task executions, see

Fig. 5.5, to learn a model allowing to adapt the reference orientation based on

the sensed wrench. Some background and a review of related works is given in

Section 2.1.5.

5.2 Problem Statement

As mentioned in the introduction, the peg-in-hole problem in which the

clearance is larger than the uncertainty of the precision of position sensing and

control can be solved using traditional kinematic planning and position or ve-

locity control. We consider the more challenging case where the uncertainty in

position sensing and control is significantly larger than the clearance.

Assuming that the peg is grasped by the robot, the peg-in-hole task can be

decomposed as illustrated in Fig. 5.2. During the development of this work, we
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Figure 5.1: Left: The robot has found the hole but the peg is jammed due to
incorrect orientation. The teacher grasps the robot to correct the orientation.
Middle: The teacher has corrected the orientation. Right: As the teacher
releases the robot, it automatically completes the insertion.

Figure 5.2: The three phases of the insertion problem illustrated in 2D. Left:
Moving towards the surface on which the hole is located. Middle: Searching
for the hole along the surface. Right: Insertion phase consisting of guiding the
head of the peg into the hole and aligning the orientation with the hole.
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found that the first two steps, i.e. finding the hole surface and the hole position

can be completed with simple sequencing as described in Section 5.5. In this

chapter, we focus on the last (and technically most challenging) part: correcting

the orientation of the peg such that its head falls completely into the hole, and

subsequent realignment of the peg to the natural constraints of the hole. If the

clearance is tight, even a slight misalignment gives rise to jamming in this phase.

We posit that for peg-in-hole insertion, the sensed wrench is sufficient infor-

mation to guide the insertion of the peg. Our goal with this work is to use the

human reactivity in the insertion phase as a model for developing a non-linear

model that can be used by the robot to successfully perform the task on its

own. This model will monitor the sensed contact wrench φ ∈ R6 and select an

appropriate angular velocity ω ∈ R3 depending on φ.

5.3 Learning Haptic Reference Adaptation

from Human Demonstrations

As discussed in Section 5.2, we focus on the orientation alignment phase of

the peg-in-hole task. In the orientation alignment phase, we posit that sensing

the contact wrench provides sufficient information for realigning the peg until

insertion is completed. This corresponds to choosing an angular velocity for the

reference trajectory that will move the peg such that it slides into the hole. Hu-

mans clearly perform the insertion with ease, with the peg in hand or by guiding

the robot kinesthetically. By measuring the sensed wrench and corresponding

angular velocity when a teacher is helping the robot to complete the insertion,

we can acquire a training data set {φn,ωn}Nn=1 consisting of N training points

with a sensed wrench and corresponding corrective velocity.

Our approach uses a GMM (described in Section 2.2.5) to represent the

joint probability distribution of the sensed wrench and the corrective angular

velocity using a limited set of parameters. The model is trained offline, using

the standard EM algorithm (Dempster et al., 1977).

It is straightforward to condition a GMM on part of the vector whose prob-

ability distribution it encodes. The GMR procedure involves conditioning the

GMM on an input vector (in this chapter the sensed wrench), and using the

mean of the resulting distribution — which is again Gaussian — as an estimate

for the corresponding output (in this chapter the corrective angular velocity).

The conditional distribution can also be used for sampling, resulting in a ran-

dom search which is guided by the sensed wrench. As will be shown later, this

procedure proved better suited than GMR for the peg-in-hole task. We omit

details of the GMM equations here (refer to Section 2.2.5), but recall that the

GMM can be conditioned on the sensed wrench, resulting in a distribution over

angular velocities:
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p(ω|φ) =

K∑
k=1

p(k|φ)pk(ω|φ) (5.1)

where p(k|φ) is defined by Eq. (2.30) and where the local conditioned models

pk(φ|ω) is given by Eq. (2.29), in each case replacing ξI and ξO by the sensed

wrench φ and the angular velocity ω respectively. From this distribution, one

can acquire a functional relationship from φ to ω by taking the expectation of

the conditional:

ω̂ = E{p(ω|φ)} =

K∑
k=1

p(k|φ)mk
ω|φ (5.2)

where mk
ω|φ is given by Eq. (2.29b).

5.4 Trajectory Generation and Robot Control

When the robot has initialized the final stage of the insertion, the peg has

partially fallen into the hole and there is an interaction wrench between the

surface and the peg. A reference orientation is the generated by integrating

the reference orientation at a discrete rate of 1/T , which is a predetermined

update rate. Let Rk denote the reference orientation at one such update time.

The reference next reference orientation Rk+1 is then updated by the corrective

angular velocity ωk as:

1. Find the rotation corresponding to applying ωk constant during the update

period T :

ψk+1 = Tωk (5.3)

2. Find the corresponding rotation matrix ∆Rk+1 using the standard Ro-

driguez rotation formula:

∆Rk+1 = cos(a)I3×3 + sin(a)[b]× + (1− cos(a))b⊗ b (5.4)

with a = ‖ψk+1‖ and b =
ψk+1

a and where [ · ]× and ⊗ denote the

cross-product matrix and tensor product respectively.

3. Update the reference orientation:

Rk+1 = ∆Rk+1Rk (5.5)

The reference orientation is initialized with the actual orientation at the be-

ginning of the insertion phase. The reference orientation is hence piece-wise

constant during the period T . Note that the above procedure is not numerical

integration of the angular velocity — rather it should be seen as a series of

rotations around piece-wise fixed rotation axes.

Our approach for deriving a reactive behavior mapping sensed wrench to
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corrective angular velocity is based on noisy training data. It is hence unavoid-

able — regardless if sampling or regression is used — that incorrect angular

velocities will sometimes be chosen. To avoid hazardous build up of contact

forces when incorrect velocities are applied, it is therefore necessary to use a

compliant controller for executing the reference trajectory resulting from apply-

ing the corrective angular velocity. To this end, we use the Cartesian impedance

controller without inertia shaping described in Section 2.2.4.

5.5 Experimental Setup

To evaluate the proposed system, several experiments with different adap-

tation schemes were carried out on a 7-degree-of-freedom Barrett WAM for

inserting a peg into a hole. The primary setup consisted of a steel peg with a

diameter of 15.84 mm and a steel hole with a diameter of 15.98 mm. A sec-

ondary setup consisting of a wooden peg with diameter 16.5 mm and a rubber

hole with diameter 18 mm was used for evaluating the generalization capabilities

of the proposed approach.

5.5.1 Preparing for Insertion

As discussed in Section 5.2, we found that approaching the hole surface and

finding the position of the hole was easy to achieve through task sequencing using

transients in the wrist mounted force-sensor to indicate partial goal achievement.

The procedure can be summarized as follows:

1. Place the peg above the hole surface.

2. Move vertically until a transient is detected on the z-axis of the force

sensor, see Fig. 5.3 left.

3. Move in an expanding spiral until a transient in the x-y plane of the force

sensor is detected, see Fig. 5.3 middle.

These motion patterns were fully hand-coded, since we focus on the last phase

of the insertion problem.

5.5.2 Data Collection and Model Learning

Before each demonstration, a random reference orientation Rr = RfRh was

chosen, with a perturbation by the rotation Rf of the true orientation of the

hole Rh. Rf is a uniformly distributed random rotation with angles around

x and y axes in [−20◦, 20◦]. With this reference orientation, the robot then

prepared for insertion as described in Section 5.5.1.

Once the robot had found the hole, the stiffness was reduced to kp = 100

N/m and ko = 0.5 Nm/rad, enabling the user to move the robot with little effort
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Figure 5.3: Left: The robot moving vertically towards the surface until contact
is detected. Middle: An expanding spiral is used to search for the hole on the
surface. Right: The robot stops searching when an increase of the measured
force in the horizontal plane is detected. At this stage, some part of the peg has
fallen into the hole and the insertion begins.
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Figure 5.4: Block diagram of the experimental setup. The robot is controlled
with Cartesian impedance control. The reference position and orientation are
computed according to the sequencing described in Section 5.5.1 for the prepara-
tory step, constant when collecting demonstrations (Section 5.5.2) and updated
as described in Section 5.5.3 during autonomous task execution. The Cartesian
impedance controller and error computation are described in Section 2.2.4.

98



Figure 5.5: Left: The robot has found the hole but the peg is jammed due
to incorrect orientation. The teacher grasps the robot to correct the orienta-
tion. Middle: The teacher has corrected the orientation. Right: As the teacher
releases the robot, it automatically completes the insertion.

during the demonstrations. The teacher performed demonstrations by helping

the robot to insert the peg by physically guiding it, see Fig. 5.5. During this

time, the sensed wrench and the corrective angular velocity were continuously

recorded. 8 corrective demonstrations were given from different initial rotation

error configurations, yielding a total of 2478 data points.

GMMs with numbers of Gaussians ranging from 1 to 20 were then trained

using EM on the collected data set. Evaluation using BIC on the trained models

favored a GMM with 6 components, which was therefore selected as the model

for experimental evaluation.

To compare our approach with random search that does not take the sensed

wrench into account, we used two controllers, sampling either from a Gaussian

or uniform distribution. To make the comparison fair, we ensured that the two

random search controllers were somewhat informed about the task by adapting

their parameters according to the observed data. The mean of the Gaussian

was chosen to µNω = 0 and the covariance matrix ΣNω was computed as the

empirical covariance matrix of the collected samples of angular velocities.

ΣNω =
1

N

N∑
i=1

(ωi − c)(ωi − c)T (5.6)

where c denotes the empirical mean of the angular velocities in the training set:

c =
1

N

N∑
i=1

ωi

The uniform distribution was independent in each component j = 1, 2, 3 of

ω = [ω1, ω2, ω3]T . Bounds aj and bj for each component ωj were selected as

the minimum and maximum value of that component in the centered training

data. We denote the joint distribution of the three components by:

U(a,b) = U(a1, b1)U(a2, b2)U(a3, b3). (5.7)
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A
ω̂ = 0

B
ω̂ ∼ N (0,ΣNω )

Eq. (5.6)

C
ω̂ ∼ U(a,b)

Eq. (5.7)

D
ω̂ ∼ p(ω|φ)

Eq. (5.1)

E
ω̂ = E {p(ω|φ)}

Eq. (5.2)

ω̂

Update reference orientation
Section 5.4

Update time step
∆T

φ φ

Rr

Figure 5.6: Block diagram detailing the autonomous task execution. The dif-
ferent reference adaptation schemes A-E are described in Section 5.5.3.

5.5.3 Autonomous Task Execution

Autonomous task execution for evaluating the performance of the proposed sys-

tem was preceded by preparation for insertion as described in Section 5.5.1. For

insertion, the controller maintained its reference position pr, while the refer-

ence orientation Rr was adapted with the angular velocity ω̂ as described in

Section 5.4. An update period of 10ms was used. Constant diagonal stiffness

and damping matrices were used. The translational stiffness was chosen iden-

tical for the three axes to kp = 400 N/m. The rotational stiffness was chosen

identical around the three axes to ko = 2 Nm/rad. The damping was designed

based on the stiffness as described in Section 2.2.4. The stiffness value was cho-

sen empirically to limit the contact forces to a safe range. Five different setups

were used, which differ in the way the angular velocity is computed:

A. No orientation correction, ω̂ = 0.

B. Random orientation correction not considering sensed wrench, Gaussian

distribution ω̂ ∼ N (0,ΣNω ), refer to Eq. (5.6).

C. Random orientation correction not considering sensed wrench, uniform

distribution, refer to Eq. (5.7).

D. Orientation correction drawn from conditional derived from the GMM,

Eq. (5.1).

E. Orientation correction acquired through GMR, Eq. (5.2).

A block diagram describing the update for the different adaptation schemes

can be seen in Fig. 5.6.

5.6 Results

100



(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.7: a-c) Autonomous insertion of the steel peg and hole. d-f) Au-
tonomous execution using the model learned on the steel peg and hole for in-
sertion of the wooden peg into a rubber hole.
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Two sets of experiments were carried out. The first one aims at comparing

the adaptation controllers A-E on the same peg and hole. The second set of

experiments was carried out to investigate the generalization capabilities of the

best performing control scheme.

5.6.1 Comparison of Adaptation Schemes

To compare the different adaptation schemes, 50 insertion attempts with

the steel peg and hole (see Fig. 5.7a) were carried out for each controller A-E.

For each trial, an initial reference orientation was chosen from a grid of equally

spaced orientations with rotations from the true hole orientation around the x-

and y-axes bounded in [−20◦, 20◦].

Several aspects can be considered for evaluating a peg-in-hole insertion. The

first aspect is the rate of success. It was observed that if the insertion had not

been completed within 20 seconds, the robot was typically locked in a static

position. Therefore, a trial was considered successful if it fully inserted the

peg in less than 20 seconds. Another point of comparison is speed of insertion,

which was computed as the average completion time for successful results. In

many possible applications for peg-in-hole, e.g. assembly of fragile parts, it is

important that the contact wrench is kept low during insertion. Therefore, the

amplitude of the contact force and torque during insertion were also used as

points for comparison.

The results from 50 trials of each of the reference adaptation methods A-E is

given in Table 5.1. Unsurprisingly, the worst performing controller is A, which

does not adapt the orientation. This controller only succeeds when the initial

reference orientation (refer to Section 5.5.3 for details) is close enough to the

true orientation of the hole. Note that the completion time for this controller

is much lower than for the others since the only successful trials are those in

which the peg slides directly into the hole without correction.

Controller B is randomly sampling angular velocities from a Gaussian dis-

tribution as described in Section 5.5.3. This distribution is visualized in Fig.

5.8a. The random search can only aid the insertion if an angular velocity of the

correct direction is sampled. Naturally, the majority of the sampled velocities

are incorrect, leading to low rate of success and high completion time as seen

in Table 5.1. Controller C samples from a uniform distribution and achieves

a higher rate of success than B. This could possibly be explained by the fact

that the samples in C are more dispersed from zero than the samples in B. A

common outcome of the trials in both B and C were a sideways collapse of the

peg as seen in Fig. 5.7g due to an incorrect angular velocity with a high speed

in the wrong direction being chosen. In these cases, the peg has left the hole

and the task can no longer be completed through orientation adaptation.

Controller D is sampling angular velocities from a distribution that depends
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(a) (b)

(c) (d)

Figure 5.8: Probability densities for corrective angular velocity around the
x- and y-axes. a) The figure shows the Gaussian distribution described in
Eq. (5.6), which does not take into account the sensed wrench. b,c, and
d) Examples of conditioning the learned GMM on three different instances of
sensed wrench.
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Figure 5.9: The figures show the contact force during an example of a successful
insertion using adaptation with GMR (controller D) and sampling from the
conditional of the learned model (controller E).
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Table 5.1: Experimental results based on 50 trials for each of the five reference
adaptation methods described in Section 5.5.3. The initial reference orientation
was chosen from a grid as described in Section 5.5.3. Statistics are given as:
mean(standard deviation).

Rate of
success, %

Completion time,
s

Norm of contact
force, N

Norm of contact
torque, Nm

A 8 0.5 (0.7) 1.4 (0.7) 0.19 (0.15)
B 12 9.7 (7.0) 2.9 (1.4) 0.35 (0.24)
C 22 12.7 (4.2) 2.7 (1.5) 0.35 (0.21)
D 72 8.7 (5.6) 4.4 (2.6) 0.55 (0.36)
E 36 9.3 (5.1) 4.2 (1.9) 0.50 (0.23)

on the sensed wrench. This distribution is very different from the one used by

controllers B and C, as can be seen in Fig. 5.8. Importantly, the mean of the

conditional is in most cases far away from the origin, reflecting the fact that the

human teacher generally did not ignore the presence of a contact wrench in the

demonstration data. The higher completion time compared to controllers A, B

and C is due to the fact that controller D can complete insertion in difficult

cases that fail (and are hence not considered for the average completion time)

with A,B or C.

Controller E uses GMR to choose an angular velocity based on the sensed

wrench. We observed during the trials that this controller often gets stuck in

static jamming conditions that it is unable to resolve. This is explained by biased

noise in the wrench sensing and by errors in the trained model. Controller D

does not suffer from this effect since even if it is presented with the same stimuli

several times, it will output specific correction velocities each time. It should

be noted that for the situations where controller E does manage the insertion,

it does so very elegantly without much wiggling back and forth. This can be

seen in Fig. 5.9 which plots the contact force over time during two successful

insertions, one with controller D and one with controller E.

5.6.2 Generalization

To see if the model learned on the steel peg and hole could generalize to

insertion with other properties, we evaluated the performance of the best per-

forming method, D, on the wooden peg and rubber hole, see Fig. 5.7d. The

friction properties between these materials are significantly different from the

steel peg and hole, as was tested manually. Two sets of 20 trials were performed.

In the first set of trials, the model trained on data from the steel peg and hole

was used. This was contrasted to the performance of a model that was learned

with training data from the wooden peg and rubber hole. The results from these

experiments are shown in Table 5.2. While the model learned from the steel peg

and hole was not as good as the one learned from data on the wooden peg and

104



Table 5.2: Results from generalization experiment. 20 trials were carried out
using adaptation scheme D on the peg and hole in Fig. 5.7d. In this table, D1
represents the model learned from the steel peg and hole, and D2 represents the
model learned on the wooden peg and rubber covered hole. Statistics are given
as: mean(standard deviation).

Rate of
success, %

Completion
time, s

Norm of contact
force, N

Norm of contact
torque, Nm

D1 55 4.65 4.79 (3.03) 0.46 (0.28)
D2 85 4.42 5.21 (4.56) 0.59 (0.31)

−5 0 5 10−10

−5

0

5

10

Force, x

Fo
rc

e,
 y

−2 −1 0 1−2

−1

0

1

Torque, x

To
rq

ue
, y

Start of insertion
End of insertion

Sensor readings during insertion
Sensor readings in training data

Figure 5.10: The figures show the sensor states visited in training and the
sensor traces from two successful executions on the wooden peg with rubber
hole. As can be seen, parts of the sensor traces lie quite far from the sensor
inputs visited in the training data.Left: The sensed force in x and y directions.
Right: The sensed torque around x and y axes.

hole, the success rate of 55% still indicates some degree of generalization. Fig.

5.10 shows the sensor trace from two successful insertions on the wooden peg

and rubber hole using the model learned on the steel peg and hole. Clearly,

the sensory inputs experienced during insertion on the second setup lie at least

partially outside of the range that was covered during training.

5.7 Discussion and conclusion

In this chapter, we have investigated transfer of task-specific reactive behav-

ior for insertion tasks from humans to robots. We modeled the joint distribution

of sensed wrench and corrective angular velocity, and use the distribution over

angular velocities conditioned on sensed wrench for autonomously executing the

insertion after learning. We compared regression and sampling from this condi-

tional with random corrections not taking the sensed wrench into account. The

results indicate a strong advantage to using the learned model, and in particular
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to use sampling from the conditional probability rather than regression. This

can be seen as a form of guided random search, where not only the mean of the

distribution but also its covariance is influenced by the current sensed wrench

and depend on the variability of the demonstrations.

Our results show that the proposed approach can generalize to some degree

to other insertion tasks. In our view, the ability to generalize to new situations

is a crucial aspect of any learning system. In general, one can not expect the

learned model to perform as well on a new situation as for that which it was

trained. One can, however leverage from a model learned on a different situation

by using it as a baseline for a new situation, and adapting it as necessary.

Peg-in-hole is a benchmark problem in robotics and has been tackled by

numerous previous works. Comparisons are difficult, because different assump-

tions are made in different works, different clearance ranges are considered etc.

A very early approach that proposed to use recordings of wrench and correc-

tive motion was proposed in (Asada, 1993), which proposed the use of neural

networks to model the non-linear map between contact wrench and corrective

motion command. However, it is never detailed how the data would be ac-

quired and importantly the proposed method does not allow to use sampling

in an informed way — an aspect that in our case significantly increased the

performance.

More recent related work exploit passive compliance in combination with

hand-coded search patterns for similar problem setup as ours (Balletti et al.,

2012; Park et al., 2013). While these works do not need to use a force sensor,

however the predetermined search strategy may lead to very high contact forces

depending on how the lower level compliance is tuned (Balletti et al., 2012).

Also, none of these works show that the hand-coded search strategies can gener-

alize to new insertion tasks. If the programmed search pattern must be adjusted

to each task, it is a time consuming process which is certainly counter-intuitive

to non-expert robot operators. Our approach is in this sense more user friendly

since all that is required for performing a new insertion tasks is that a few

demonstrations are provided. Also, monitoring of contact wrenches allows to

protect the parts in fragile assembly operations. While our method does not

guarantee low contact wrench, our contact wrenches are lower than those re-

ported in (Balletti et al., 2012) and a safety mechanism to abort the insertion

and start a new attempt in the event of an excessive contact wrench could easily

be added to our system if necessary.

In (Abu-Dakka et al., 2014), a system for learning peg-in-hole in terms of

desired pose and wrench profiles is proposed. Trajectories are modeled with

DMP, and a coupling terms are used 1) to slow down the system in the absence of

significant deviations from the expected value and the desired value 2) to adapt

the position so as to achieve the desired contact force. The latter is also done

iteratively using an ILC scheme. In our experiments, we have found that the

jamming condition that invariably appears with small enough clearance results
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in contact forces that are generally not repeatable. Hence, approaches such as

that offered in (Abu-Dakka et al., 2014) are useful for generalizing the initial

part assembly to new configurations etc, but it is unclear if they can resolve

the type of jamming problem that we addressed in this chapter. An interesting

approach would be a combination where the system like that in (Abu-Dakka

et al., 2014) replaces the hand-coded approach phase (Section 5.5.1) while our

system can be used in the final insertion phase.

In this work, the human was used as a teacher for showing how the robot

should react to readings on its force sensor. This allowed us to learn a controller

that performs reasonably well, but it is still far behind the performance of the

human on the same insertion setup. Ongoing research in our group1 studies

human search and insertion behaviors when deprived of auditory and visual

sensory input. We expect that this study will shed light on what it is that

allows the human to outperform robots so strongly in these tasks, as well as

outline how the present control scheme can be further improved, perhaps with

varying stiffness or search strategies that are more generic than the task-specific

ones we presented here. Furthermore, considering corrections of translational

motion as well as orientation corrections could increase the flexibility of the

proposed approach.

This chapter was focused on a specific type of compliant manipulation tasks,

which require active adaptation of the motion in response to the contact wrench.

It differed from the architecture in Chapters 3 and 4 in the reference trajectory

is updated online in response to sensory input. In general, the idea of online

modification of the reference trajectory generation or modification is a necessity

for many manipulation tasks in unstructured environments. The next chapter

continues in the same spirit of online responsiveness of the reference trajectory

but instead of adaptation to externally sensed information the internal state of

the robot is used to generate the trajectory.

1Learning Algorithms and Systems Laboratory, Swiss Federal Institute of Technology, Lau-
sanne, Switzerland
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Chapter 6

Incremental Motion
Learning with Locally
Modulated Dynamical

Systems
6.1 Introduction

In Chapters 3 and 4, the availability of a trajectory for the task was assumed.

The trajectory was generally represented by time-indexed trajectories. In chap-

ter 5 the reference trajectory was generated online in response to experienced

contact forces. In this chapter, we explore online motion generation but instead

generating a desired velocity as a function of the current position. Such motion

representation was already used in Section 3.3.3, using the SEDS algorithm for

batch learning of a DS representation via GMR. In this chapter we turn to the

problem of incrementally learning a DS representation of a task using LfD.

In order to successfully model a robot motion, demonstrations should be

provided such that they include the generic characteristics of the motion. This

is however very difficult when dealing with complex and/or high dimensional

motions. Incremental Learning, whereby the robot successively learns the task

through several demonstrations, can alleviate this difficulty. Furthermore, in-

cremental learning can allow task refinement (incremental adaptation of task

model to improve task performance) and reuse (use of an existing task model

for a completely different task) (Sauser et al., 2011). A general work-flow of an

incremental learning setting is described in Fig. 6.1. While numerous advances

have been made for incremental motion learning for time-indexed trajectories,

incremental learning in DS representations is still a largely unexplored area of

research.

In this work, we address this by proposing a novel DS representation, called

Locally Modulated Dynamical Systems (LMDS), that allows to reshape a DS

while preserving stability properties of the original system. As hinted by the

name, this is done by locally applying transformations (e.g. rotations), to the

original dynamics. It is shown that this way of reshaping dynamics is suitable for

robot motion modeling, since complex motions can be modeled without risking

the introduction of spurious attractor points or unstable behavior. The LMDS

representation is not constrained to a particular form of original dynamics or

learning method (any local regression method can in principle be used, together

with any representation of a first order autonomous dynamical system). We fur-

ther propose the Gaussian Process Modulated Dynamical Systems (GP-MDS)
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Figure 6.1: The figure illustrates the incremental process of acquiring a new
skill by reshaping dynamics using the proposed framework. The system can be
reshaped repeatedly until satisfactory task performance has been achieved.

110



algorithm, which uses Gaussian Process Regression (GPR) to learn reshaped

dynamics. The contents of this chapter have been published in (Kronander

et al., 2015).

Related work to this chapter is reviewed in Section 2.1.7. The remainder of

this chapter is organized as follows. In Section 6.2 we detail the LMDS formal-

ism, and propose a particular parameterized form of the modulation function

which is used in this work. In Section 6.3, we then address the problem of

how to learn LMDS, introducing the GP-MDS algorithm. Experimental vali-

dation is presented in Section 6.4, with a 2d example of warping dynamics for

handwriting letters, and one periodic as well as one discrete manipulation task

on the KUKA LWR and Barret WAM arms. The chapter is concluded with a

discussion in Section 6.5.

6.2 Locally Modulated Dynamical Systems

In this work, we assume the availability of an autonomous DS which serves

as a coarse map of desired trajectories of a robotic task. We will refer to this DS

as the original dynamics. In this work, we will exclusively use original dynamics

that are asymptotically stable at a single attractor point.

6.2.1 Formulation and properties

Let ξ ∈ RN represent a N -dimensional kinematic variable, e.g. a Cartesian

position vector. Let a continuous function f : RN 7→ RN represent the original

dynamics:

ξ̇ = f(ξ) (6.1)

These dynamics are reshaped by a continuous matrix-valued function M(ξ) that

modulates the original dynamics:

ξ̇ = g(ξ) = M(ξ)f(ξ) (6.2)

As will be shown later, this seemingly simple representation is highly flexible and

can model very complex motions. We will only consider modulation functions

that vary smoothly across the state-space, i.e. no abrupt changes that could

affect the resulting system in a counter-intuitive manner are allowed. If the

modulation is local and full rank, several important properties are inherited

from the original to the reshaped dynamical system. Before listing some key

properties of the LMDS formulation, we introduce the concept of a locally active

matrix function.

Definition 6.1 (Locally active). A matrix-valued function M(ξ) ∈ RN×N is

said to be acting locally or to be locally active if there exists a compact subset

χ ⊂ RN such that M(ξ) = IN×N for all ξ ∈ RN \ χ.
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Proposition 6.1 (Equilibrium points). If M(ξ) has full rank for all ξ, the

reshaped dynamics, Eq, (6.2) has the same equilibrium point(s) as the original

dynamics, Eq. (6.1).

If M(ξ) has full rank, it has an empty null-space, and hence Eq. (6.2) is

zero iff f(ξ) = 0. This simple result is of tremendous importance for using

DS for motion representation. The introduction of spurious attractors is one of

the main problems in using regression methods to learn dynamics (Khansari-

Zadeh and Billard, 2011). Here, we make such spurious attractors impossible

by construction.

Proposition 6.2 (Boundedness). Assume that the original dynamics is bounded

(see Def. 2.1). Assume further that M(ξ) is locally active in a compact subset

χ ⊂ RN (see Def. 6.1). Then, the reshaped dynamics is bounded.

Proof. Let BR be a ball centered at the origin of radius R in RN . Let R be

chosen such that χ lies entirely in BR. Since χ is a compact set in RN , it is always

possible to find such a R. For each δ > 0, let ε(δ) > 0 be an associated boundary

for the original dynamics (refer to Def. 2.1). Define ε′(δ) as a boundary for the

reshaped dynamics as follows: ε′ = ε(R) for δ < R and ε′ = ε(δ) for δ ≥ R.

Boundedness follows from Def. 2.1.

DS that have a single attractor are useful for representing generic motions to

a fixed point, e.g. reach-and-grasp type motions. For such systems, in addition

to equilibrium points and boundedness, the stronger stability property is also

inherited, and locally the stability is asymptotic.

χ

Br

BR

r

R

Figure 6.2: Left: Illustration of the introduction of the balls Br and BR.
Br is the ball centered at the origin with the largest possible r so that there
are no points of χ in Br. BR is a ball with radius R, which is chosen as the
smallest possible number so that BR fully contains χ. Right: An example of a
2D reshaped system where the original asymptotically stable (linear) dynamics
are reshaped to a system that converges to a either a limit cycle or the origin
depending on starting position. The reshaped system is globally stable but not
asymptotically stable.

Proposition 6.3 (Lyapunov stability). Consider a system ξ̇ = f(ξ) that has a

single equilibrium point. Without loss of generality, let this equilibrium point be

placed at the origin. Assume further that the equilibrium point is stable. Assume
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that the criteria for Propositions 1 and 2 are satisfied. If in addition, χ does

not include the origin, the reshaped system is stable at the origin.

Proof. According to Proposition 1, the reshaped dynamics has a single equilib-

rium point at the origin. Let Br be a ball centered at the origin with a radius

r small enough that Br does not include any point in χ. Hence, inside Br, we

have g(ξ) = f(ξ). By the stability of f , there exists for all 0 < ε < r a δ(ε) such

that ‖ξ(0)‖ < δ(ε)⇒ ‖ξ(t)‖ < ε, ∀t > 0. For any ε > r, let δ(ε) = δ(r). Then,

by the stability of f , ‖ξ(0)‖ < δ(ε) = δ(r)⇒ ‖ξ(t)‖ < r < ε.

Note that the above proposition does not ensure asymptotic stability, which

would mean that all trajectories are guaranteed to converge to the origin. In-

stead, Prop. 6.3 says that trajectories can be kept arbitrarily close to the origin,

if they start close enough. Since stability is necessary for asymptotic stability,

the result is important because it represents a minimum requirement, but not a

guarantee, for trajectories to converge to attractor of the original system. Un-

surprisingly, the precondition that there is a region around the origin which is

not reshaped also implies local asymptotic stability.

Proposition 6.4 (Local asymptotic stability). Consider a system ξ̇ = f(ξ) that

has a single equilibrium point. Assume that the conditions of Propositions 1,2

and 3 are satisfied. Then, the reshaped system is locally asymptotically stable at

the origin.

Proof. The original dynamics are globally asymptotically stable, which implies

the existence of a Lyapunov function V : RN 7→ R+ such that:

V (ξ) > 0, ∀ξ 6= 0 and V (0) = 0 (6.3)

V̇ =
∂V

∂ξ
f(ξ) < 0, ∀ξ 6= 0 and V̇ (0) = 0 (6.4)

Let Br be defined as in the proof of Proposition 6.3. Let S ⊂ Br denote the

largest level set of V that lies entirely inside Br. For any ξ0 ∈ S, the reshaped

dynamics is exactly equal to the original dynamics ξ̇ = f(ξ). Hence, V (ξ) > 0

and V̇ (ξ) < 0 holds for all ξ ∈ S, which proves that the system is locally

asymptotically stable at the origin with region of attraction given by S.

If demonstrations are given that clearly contradict the asymptotic stability

property of the original dynamics, it will not be retained. A simple example is

given in Fig. 6.2, which illustrates a reshaped asymptotically stable linear sys-

tem. As can be seen, the resulting topology after reshaping is a half-stable1 limit

cycle. The non-inheritance of global asymptotic stability is both an advantage

and a disadvantage. It is an advantage because it allows to represent repetitive

1 The term half-stable refers to the property that trajectories may converge to the limit
cycle or an attractor point depending on the starting location.
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motions such as shaking or polishing, as will be shown in Section 6.4.3. It is a

disadvantage because for discrete motions, it would be preferable to rigorously

ensure that the target point will be reached under all circumstances. However,

we conjuncture that limit cycles are not introduced unless they are explicitly

demonstrated, as will be exemplified in Section 6.4.2.

6.2.2 Illustrative Examples

Here, we give set of illustrative 2d examples of some types of transformations

that can be achieved in the LMDS formulation. Consider the following linear

original dynamics:

ξ̇ = −

[
10 0

0 10

]
ξ (6.5)

The following function will be used to control the influence of the modulations,

i.e. in what region of the state-space they influence the dynamics.

h(ξ) = exp(−50‖ξ − c‖2) (6.6)

Let the center point of the influence function be placed at c = [50, 50]T . This

function is used to impose the locally active property2, see Def. 6.1.

Local Modulation by Random Matrix

For illustrative purposes, we construct here a LMDS which will locally modu-

late the original dynamics with a random matrix, A ∈ R2×2. We define the

modulation as follows:

Ma(ξ) = (1− h(ξ))I2 + h(ξ)A (6.7)

This modulation is locally active3, but does not have full rank everywhere.

Consequently, the modulation can introduce spurious attractors, as is illustrated

in Figures 6.3a- 6.3c.

Locally Rotating Dynamics

One particularly interesting class of local modulations are rotations of the origi-

nal dynamics. Let φ(ξ) = h(ξ)φc denote a state-dependent rotation angle. This

results in a smoothly decaying rotation which will fully rotate the dynamics by

the angle φc only at ξ = c. The modulation function is then defined as the

associated rotation matrix:

Mr(ξ) =

[
cos(φ(ξ)) − sin(φ(ξ))

sin(φ(ξ)) cos(φ(ξ))

]
(6.8)

2Strictly speaking, for the modulation to be locally active, Eq. (6.6) should be set to zero
at a small value, as described in Section 6.3.3. This is, however, for illustrative purposes not
necessary here.

3See previous footnote.
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: Top: Examples of local modulation of linear dynamics with three
different random matrices. Note that in the second example (top-middle), a
spurious attractor point has been introduced due to rank-deficiency of the mod-
ulating function. Bottom: Examples of local rotation of linear dynamics with
three different rotation angles.

In this case, Mr(ξ) is guaranteed to have full rank for all ξ. Furthermore, the

modulation is locally active4. This means that local rotations can be applied

without introducing spurious attractors, regardless of the form of the original

dynamics. This very useful property will be exploited to apply non-parametric

learning without constraints, as is detailed in Section 6.3. Examples of locally

rotating the linear dynamics in Eq. (6.5) with a few different values of φc are

given in Figures 6.3d- 6.3f

6.2.3 Modulation by Rotation and Norm-scaling

In this section, we describe a particular choice of modulation function which is

used in the remainder of this chapter. As seen in Section 6.2.2, rotations (or

any other orthogonal transformations) always have full rank. It is possible to

define and parameterize rotations in any dimension, but we will focus mainly

on 2d and 3d systems in the remainder of this work.

For increased flexibility, a scaling of the speed in the DS can be achieved by

multiplying the rotation matrix by a scalar. Let R(ξ) denote a state-dependent

rotation matrix, and let κ(ξ) denote a state-dependent scalar function strictly

larger than −1. We then construct a modulation function that can locally rotate

and speed up or slow down dynamics as follows:

M(ξ) = (1 + κ(ξ))R(ξ) (6.9)

4Strictly speaking, for the modulation to be locally active, Eq. (6.6) should be set to zero
at a small value, as described in Section 6.3.3.

115



Table 6.1: Procedure for converting 2d or 3d trajectory data to modulation
data.

Input: Trajectory data {ξm, ξ̇m}Mm=1

1: for m = 1 to M do
2: Compute original velocity: ξ̇

o

m = f(ξm)

3: Compute rotation vector (3d only): µm =
ξ̇m×ξ̇

o
m

‖ξ̇m‖‖ξ̇
o
m‖

4: Compute rotation angle: φm = arccos
ξ̇
T
mξ̇

o
m

‖ξ̇m‖‖ξ̇
o
m‖

5: Compute scaling κm = ‖ξ̇m‖
‖ξ̇om‖

− 1

6: 3d: θm = [φmµm, κm] 2d: θm = [φm, κm]
7: end for
8: return Modulation data {ξm,θm}Mm=1

Both κ and R should vary in a continuous manner across the state-space. In

a continuous system, the inclusion of a speed-scaling does not influence the

stability properties, although it may do so in discrete implementations, so care

should be used to not allow κ(ξ) to take large values. Also, note that κ has

been given an offset of 1 so that with κ(ξ) = 0 the original speed is retained.

This is useful when modeling κ with local regression techniques such as GPR,

as will be done in Section 6.3.2.

Rotations in arbitrary dimension can be defined by means of a two-dimensional

rotation set and a rotation angle φ. In 2d, the fact that the rotation set is the en-

tire R2 means that a rotation is fully defined by the rotation angle only. Hence,

the parameterization in that case is simply θ2d = [φ, κ]. In 3d, the rotation

plane can be compactly parameterized by its normal vector. Hence, the param-

eterization in 3d is θ3d = [φµR, κ], where µR is the rotation vector (the normal

of the rotation set). Parameterizations in higher dimensions are possible, but

require additional parameters for describing the rotation set.

6.3 Learning Locally Modulated Dynamical

Systems

In the previous section, we described how the dynamics can be reshaped in the

LMDS framework. We now turn to the problem of how to learn from data in

LMDS. The procedure for generating training data for LMDS from trajectory

data is described in Section 6.3.1. After this step, one can in principle use any

local regression technique to learn an LMDS system.

6.3.1 Training Data

Assume that a training set ofM observations of ξ and ξ̇ is available: {ξm, ξ̇m}Mm=1.

To exploit this data for learning, it is first converted to a data set consisting of

input locations and corresponding modulation vectors: {ξm,θm}Mm=1. To com-

pute the modulation data, the first step is to compute the original velocities,
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denoted by ξ̇
o

m,m = 1 . . .M . These are computed by evaluating the original

dynamics function at all ξm,m = 1 . . .M in the trajectory data set. Each

pair {ξ̇
o

m, ξ̇m} then corresponds to a modulation parameter vector θm. How

this parameter vector is computed depends on the structure and parameteri-

zation chosen for the modulation function. The procedure for computing the

modulation parameters for the particular choice of modulation function used

in this work (rotation and norm scaling) is described in Table 6.1. Parameter

vectors for each collected data point are computed this way and in pairs with

the corresponding state-observations constitute a new data set: {ξm,θm}Mm=1.

Regression can now be applied to learn θ(ξ) as a state-dependent function.

6.3.2 Gaussian Process Modulated Dynamical Systems

Gaussian Process Regression (GPR), is a state-of-the-art regression technique

which in its standard form can model functions with input of arbitrary dimension

and scalar outputs. Some background on GPR is provided in Section 2.2.5.

The behavior of GPR depends on the choice of covariance function k(·, ·).
In this work, we use the squared exponential covariance function, defined by:

k(ξ, ξ′) = σf exp

(
−‖ξ − ξ

′‖2

2l

)
where l, σf > 0 are scalar hyper-parameters. In this work, these parameters are

set to predetermined values. Alternatively, they could be optimized to maximize

the likelihood of the training data (Rasmussen and Williams, 2006).

GP-MDS is based on encoding the parameter vector of the modulation func-

tion with Gaussian Processes. The data set from Section 6.3.1 is used as training

set for the GP, where the positions ξm are considered as inputs and the corre-

sponding modulation parameters θm are considered as outputs. Note that since

θ is multidimensional, one GP per parameter is needed. This can be done at

little computational cost if the same hyper-parameters are used in each GP, as is

clear by inspecting Eq. (2.33). A vector of scalar weights can be pre-computed:

α(ξ∗) =
(
k∗[K + σ2

nI]−1
)T

(6.10)

Prediction of each entry of θ then only requires computing a dot-product:

θ̂j(ξ∗) = α(ξ∗)
TΘj , where Θj is a vector stacking all the training samples

of the jth parameter of θ.

6.3.3 Enforcing Local Modulation

The particular choice of GP prior with zero mean and with the squared expo-

nential covariance function results all elements of θ going to zero in regions far

from any training data. Hence, for the modulation to be local, it should be

parameterized such that M → I as θ → 0. This is the case for the rotated
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α

α + ρ

original
truncated

Figure 6.4: The figure illustrates the smooth truncation function in Eq. (6.11)
on an Gaussian kernel. For clarity of illustration, the threshold has been set to
a relatively high value.

and speed-scaled modulation that are used in this work, which as described in

Section 6.3.1 encode the rotation angle in the norm of a sub-vector of θ. Also,

when the speed factor κ goes to zero, the speed of the reshaped dynamics ap-

proaches the original speed. Consequently, the modulation function does go to

identity, but there is no strict boundary outside of which M is exactly equal to

I. To make the modulation locally active in the strict sense, the entries of a(ξ∗)

(Eq. (6.10)) should be smoothly truncated at some small value. To this end,

we used a sinusoid computing the truncated weights α′(ξ∗) as follows:

α′(ξ∗) =


0 α(ξ∗) < α

1
2

(
1 + sin

(
2π(α(ξ∗)−α)

2ρ − π
2

))
α(ξ∗) α ≤ α(ξ∗) ≤ α+ ρ

α(ξ∗) α+ ρ < α(ξ∗)

(6.11)

This function is illustrated in Fig. 6.4. Throughout this work, we used the

weighting function above with values α = 0.01 and ρ = 0.01. It should be

noted that this particular choice of truncation function is not critical, and could

surely be replaced by other methods without any perceivable impact on the

resulting dynamics. The computation of the reshaping parameters θ̂j(ξ∗) at a

query location ξ∗ can hence be summarized as follows:

1. compute α(ξ∗) according to Eq. (6.10)

2. compute the truncated weights according to Eq. (6.11)

3. compute the predicted parameters θ̂j(ξ∗) = α′(ξ∗)
TΘj

6.3.4 Trajectory-based Sparsity Criteria
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If fixed hyper parameters are considered as in this work, incremental learning

can be achieved simply by expanding the training set used for GPR. To deal with

the increased complexity of having to recompute a M ×M matrix inverse each

time a new data point is added, it is useful to sparsely represent the incoming

data. This is often referred to as selecting an active set of training points.

The GP literature is rich in sparse approximations. As complete coverage of

all proposed sparse GP methods lies outside the scope of this work, we refer

the reader to (Quiñonero Candela et al., 2005) which provides an excellent

review and unifying view of most sparse approximations. What most previous

methods have in common is that they define sparsity criteria that are based on

the input patterns of the data. This is natural in the GP framework, since the

inputs implicitly define the covariance of the outputs and hence allow to use

information-theoretic principles for selecting the data to use for regression. In

contrast, we define a sparsity criterion based on the outputs, similarly to e.g. the

LWPR algorithm (Vijayakumar et al., 2005). This criterion is designed to select

training points not to maximize information gain, but to maximize performance

metrics that are important for the specific application of trajectory encoding

with DS.

Assume that there is already M training data points in the GP training set.

In order to determine if a new data point {ξM+1,θM+1} should be included in

the GP training set, we introduce two functions:

J1
M+1 =

|κM+1 − κ̂(ξM+1)|
1 + κM+1

(6.12a)

J2
L+1 = min

k∈N
(|φM+1 − φ̂(ξM+1) + 2kπ|) (6.12b)

where κ̂(ξM+1) and φ̂(ξM+1) denote the predicted speed scaling and rotation

angle at the new input points, using the existing GP training data {ξm, θm}Mm=1.

Eq. (6.12a) is a relative measure of the speed error, and (6.12b) is an absolute

measure of the error in rotation angle. The data point is added to the training

set if either of J1
M+1 or J2

M+1 exceed predetermined threshold values J
1
, J

2
. E.g.

by setting J
1

= 0.1 and J
2

= 0.1π, speed errors of less than 10% and error in

rotation angle below 0.1π are considered acceptable. Note that these thresholds

relate directly to the trajectory and are hence easily tuned to a desirable trade-

off between sparsity and accurate trajectory representation.

An illustrative example of GP-MDS on toy 3d data is given in Fig. 6.5.

6.4 Evaluation

In this section, we present simulations and experiments to evaluate the pro-

posed approach. First, GP-MDS is applied for refining handwriting motions in

2d. We then provide a set of simulations with artificially generated data illus-
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Training data

Training points used by GP-MDS

Influence region of the GP
Example trajectories from
reshaped dynamical system

Example trajectories from
original dynamical system

Figure 6.5: Left: Example of reshaped dynamics using GP-MDS in a 3d sys-
tem. The colored stream-tapes represent example trajectories of the reshaped
dynamics. The stream-tapes colored in black represent trajectories that do
not pass through the reshaped region of the state space, and hence retain the
straight-line characteristics of the linear system that is used as original dynam-
ics here. The green stream-tube are artificially generated data representing an
expanding spiral. Points in magenta represent the subset of this data that was
selected as training set. The gray surface illustrates the region in which the
dynamics are significantly altered (corresponding to a level set of the predictive
variance in the GP). The colored stream-tapes are example trajectories that
pass through the reshaped region. Right: Same as left but zoomed in and the
influence surface has been sliced to improve visibility of the training points and
the trajectories.
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trate 1) that GP-MDS can represent cyclic motions and 2) cyclic behavior needs

to be explicitly demonstrated in order to occur. Lastly, we apply GP-MDS on

a real-world task consisting in teaching a robot to put plates in the slots of a

dishwasher rack.

6.4.1 Handwriting Motions

The LASA handwriting data set (Khansari-Zadeh and Billard, 2011) is com-

monly used for benchmarking for learning in autonomous DS (Neumann et al.,

2013; Lemme et al., 2013). It consists of a series of demonstrated 2d trajectories

of handwriting letters. Here, we will not present a comparative evaluation of

GP-MDS versus other methods for learning these motions, but focus instead on

illustrating an interesting application scenario of GP-MDS for reshaping existing

DS with additional demonstrations.

The first column of Fig. 6.6 shows training data for four letters from the

LASA handwriting set, along with streamlines from SEDS models trained on

this data. Note that these models already do a good job at modeling the data.

GP-MDS was applied to refine these dynamics using additional demonstrations.

The middle column of Fig. 6.6 shows GP-MDS being applied for modifying

the SEDS dynamics. In the case of the S-Shape, starting the trajectory from

some points result in a letter with disproportionate features as illustrated by the

black trajectory in Fig. 6.6a. In Fig. 6.6b, the dynamics have been reshaped

such that trajectories starting in one problematic region are deviated toward a

region of the state-space from which they produce a good letter. This results in

a trajectory that produces a good letter S after it has been deviated toward the

region were the original demonstrations start. For letter N, starting trajectories

left of the demonstrated starting location is problematic, as illustrated by the

black example trajectory in Fig. 6.6d. In Fig. 6.6e, this is again remedied with

a very simple corrective demonstration. For letters W and Z, one additional

demonstration (different from the demonstrations used for the SEDS model)

was given. The goal here is to sharpen the corners, which are overly smooth

both in the original demonstrations and the resulting SEDS model (Figures

6.6g and 6.6j). In order to favor detail over generalization, a fine lengthscale

was selected, resulting in the sharpened letters in Figures 6.6h and 6.6k.

The right column of Fig. 6.6 shows streamlines from GP-MDS applied to a

linear system in place of an SEDS model. In these cases, the original training

data (the same that was used for training the SEDS models) was used training

GP-MDS. A medium scale lengthscale was chosen to trade-off generalization and

detail. As is seen, in most cases GP-MDS reproduce the shape of the letters,

although using considerably more parameters than the SEDS models. While we

can conclude that relatively complex motions can be learned even without any

knowledge of the task in the original dynamics, the performance of GP-MDS
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is better if the original dynamics can already provide a rough estimate of the

trajectory.

Note the sparse selection of training data in Fig. 6.6, middle column. In

areas of the state-space were the original dynamics have the same direction as the

corrective demonstration, it is not necessary to add training data5. The sparse

data selection is also clearly visible near the end of the letters in Figures 6.6b and

6.6i, since the demonstrations there are roughly aligned with the trajectories of

the linear system which is used as original dynamics in these cases.

6.4.2 Non-convergence in reshaped systems

Recall from Section 6.2.1 that starting from an asymptotically stable DS, re-

shaping the system with full rank and locally active modulation function (e.g.

GP-MDS) only guarantees that the system remains stable. Hence, it is theoret-

ically possible that trajectories could end up in orbits (open or closed) instead

of converging to the attractor point of the original system. We argue that this

is not a problem, because in practice GP-MDS converges unless it is presented

with data that explicitly indicates orbital behavior. In this section, we support

this statement by providing GP-MDS with data that is artificially generated to

be at risk of generating such behavior in the reshaped system.

Fig. 6.7a shows a GP-MDS reshaping a linear system explicitly trying to

create a repetitive pattern. The resulting system converges either to a limit cycle

or the origin, depending on the starting point of the trajectory. In Fig. 6.7b,

additional data has been provided that changes the characteristic of the origin

from a sink to a source, resulting in a system in which all trajectories converge

to the stable limit cycle. Note that the system in Fig. 6.7b is not stable at

the origin, and violates a condition of Prop. 6.3, because the reshaped region

includes the origin. In planar systems, any closed orbits necessarily enclose

an equilibrium point, which is illustrated in Fig. 6.7c where similar data has

presented in a different part of the plane. The resulting system is asymptotically

stable at the origin, although it exhibits characteristics that are undesirable

for any practical application. We retain from this that closed orbits in the

demonstrations should generally be avoided.

In higher dimension orbits can in principle occur anywhere in the state-

space. We have found that it is quite difficult to produce data that causes orbital

behavior, although it is possible. Fig. 6.8 shows GP-MDS used to reshape a

linear system in 3d with artificial data from a spiral shaped motion. Even with

a very tight spiral as in Fig. 6.8a, it seems that trajectories do not get stuck

but would eventually converge to the origin. Only when translating the data so

that the spiral has the origin in its center, and by significantly increasing the

lengthscale of the GP were we able to clearly produce a system in which the

5In these experiments, J
1

was set to a very high value, since speed was not considered
important for this task. Hence, selection criteria is in practice only depending on the direc-
tionality of the vector field.
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Original training data
Highlighted trajectories
Streamlines of dynamics

Collected corrective data
Selected GP data

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.6: Left column: Demonstrated trajectories and resulting SEDS mod-
els for the letters S,N,Z and W. Middle column: GP-MDS is used to improve
various aspects of the SEDS models. In the case of letters S and N the favorable
starting region of the state space is achieved with very simple data being pro-
vided to GP-MDS with a crude length-scale. In the case of Z and W, GP-MDS
with a fine length-scale is used to sharpen the corners of the letters. Right
column: The original training data is provided to GP-MDS, with a simple
linear system replacing SEDS as original dynamics.
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(a) (b) (c)

Figure 6.7: a) A demonstration of a closed repetitive pattern is used for reshap-
ing a linear 2d system with GP-MDS. b) An additional demonstration aimed
at destabilizing the origin results in a system in which all trajectories converge
to a stable limit cycle. c) A demonstrated closed curve not containing an
equilibrium point.

Training data

Training points used by GP-MDS

Influence region of the GP

Example trajectories from
reshaped dynamical system

(a) (b)

Figure 6.8: Left: An artificially generated spiral-shaped trajectory is used to
reshape a linear 3d system. Right: Reshaping that leads to loss of asymptotic
stability. Here, an artificially generated planar circular trajectory centered at
the origin is used with GP-MDS with a very large lengthscale.
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tested trajectories did not converge to the origin, see Fig. 6.8b.

These are examples of particular systems with particular demonstrations

and parameter settings that can not be used to draw any certain conclusions

regarding asymptotic stability. What we can see though, is that unless repetitive

behavior is explicitly demonstrated, the equilibrium point of the system seems

to remain asymptotically stable. Planar systems are the only case in which it is

easy to achieve closed orbits. With artificial data perfectly centered around the

origin and with extreme parameter settings for the GP we were able to produce

a system that was clearly not asymptotically stable. We conclude that in no

case will orbital behavior occur unless the demonstrations explicitly include

repetitive patterns, and even with such demonstrations the resulting system

will only produce closed orbits in special cases. However, it is advisable to

avoid repetitive patterns in the demonstrations, as they can lead to unnatural

motions as in Fig. 6.7c.

6.4.3 Polishing Task Using Planar Periodic Motion

From Section 6.4.2, it is clear that periodic motion is generally quite difficult to

achieve with GP-MDS. In the special case of planar systems, however, periodic

motion can be achieved by reshaping the dynamics into a limit cycle which can

be half stable (Fig. 6.7a) or stable (Fig. 6.7b). Note that in planar systems, limit

cycles can only occur if they encircle an equilibrium point. Since we consider

with original dynamics that have a single stable equilibrium point, the location

of the limit cycle is constrained to include this point. By reshaping at the origin,

the latter can be turned from a sink to a source, resulting in system in which

all trajectories converge to a limit cycle as in Fig. 6.7b. Note that to achieve

this, Propositions 6.3 and 6.4 are violated and the origin is no longer stable.

Periodic motions that can be parameterized in the plane can hence be mod-

eled using the proposed system. To exemplify this, we consider a robotic polish-

ing task. The polishing task mimics the final brightening step of watches with

a major Swiss watchmaker. This task is currently done manually at this com-

pany. Our implementation is a prototype meant to showcase a robotic system

that could potentially ease the repetitive work of the polisher.

The motion is parameterized in 2d by one translational component and

one rotational component. These were chosen as the z-coordinate and rotation

around the y-axis in the reference frame of the polishing center. The remaining

degrees of freedom remain constant during the task. As original dynamics, a

linear system bringing the robot in a straight line to the polishing center was

used. By starting the demonstration when the robot is on the equilibrium point

of the DS, the latter is naturally destabilized. This effect can be seen in Fig.

6.9a, which shows the demonstrated data and the resulting reshaped system.

When polishing objects of different shapes, sizes and materials, it is important

to adapt the polishing motion accordingly. GP-MDS is a suitable modeling tool
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(a) (b)

Figure 6.9: Left: The plot shows the initial demonstrated data and result-
ing limit cycle system. Right: For polishing of differently shaped objects,
the polishing motion has to be adapted. Here, additional demonstrations were
provided until a new satisfactory shape, highlighted by the black line, had been
established.

for such tasks, since new data can be incorporated incrementally while retaining

the periodic motion. The demonstrations seen in Fig. 6.9b were aimed at estab-

lishing a more pronounced orientation change before the work-piece is stroked

in a linear motion over polishing wheel. Corrective data was provided until a

satisfactory new limit cycle had been shaped.

6.4.4 Cartesian Trajectory Modeling for Stacking

Plates

The task considered is to insert plates into slots in a dish rack, see Fig. 6.10b.

To perform this task, the robot needs to grasp the plates and transport them

from an arbitrary starting location to the slot, and insert them with the correct

orientation. We focus on using the proposed methodology to learn a model

for the translational motion of the end-effector. While general treatment of the

grasping and orientation control aspects also present interesting problems per se,

these are outside the scope of this work. We hence achieve proper orientation by

keeping the end-effector orientation fixed. The grasping is completed by manual

control of the Barrett Hand by a human operator.

As original dynamics, a Cartesian SEDS model corresponding to a standard

place-type motion trained from trajectories recorded from humans was used.

Example trajectories from this system are illustrated in Fig. 6.11a. As can be

seen, the general motion pattern is appropriate for the task, but trajectories

starting close to the dish rack tend to go to straight toward the target, colliding

with the rack on its path. This model can be improved by locally reshaping the
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(a) (b)

Figure 6.10: Left: The KUKA LWR robot performing the polishing task.
The green arrows illustrate the planar polishing motion. Right: The Barrett
WAM performing the Cartesian plate stacking task.

system in the problematic region.

For controlling the robot, we use a Cartesian impedance controller without

inertia shaping (refer to Section 2.2.4) to follow the trajectory generated by

the DS. The trajectory was integrated from the DS in the same way as for

the pouring task described in Section 3.3.3. Since the teaching procedure takes

place iteratively as the robot is performing the task, it is necessary to inform

the system when a corrective demonstration is being delivered. We achieve this

through the use of an artificial skin module mounted on the robot. The idea

is to achieve accurate tracking in combination with compliant motion when

necessary for corrective demonstrations. This is achieved by multiplying the

feedback-component of the controller with a positive scalar which is inversely

proportional to pressure detected on the artificial skin. Let τPD ∈ R7 denote the

vector of joint torques coming from the Cartesian impedance controller, τG ∈ R7

denote the gravity compensation torques. The control torque τ commanded to

the robot joints is then:

τ = ψτPD + τG (6.13)

where ψ ∈ [0, 1] is a truncated linear function which is equal to one when there

is no pressure on the skin, and equal to zero when the detected pressure exceeds

a predetermined threshold value. As an effect of Eq. (6.13), the resistance to

perturbations is decreased when the teacher pushes the arm in order to devi-

ate its trajectory during a corrective demonstration. Note that in contrast to

Chapter 3, where the artificial skin was used to teach stiffness increase, the use

here is just a practical means to combine accurate tracking with compliant mo-

tion when needed to give corrective demonstrations. This implementation was

chosen as we focus in this chapter on the kinematic aspects of the task, and

therefore wish to follow the DS trajectory with high accuracy.

The teaching procedure was initialized by starting the robot in a problematic
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Trajectories from original dynamics

Corrective demonstrations

Training points used for reshaping dynamics

Trajectories from reshaped dynamics

Influence region of the GP

(a) (b)

(c)

Figure 6.11: a) Trajectories resulting from the original dynamics from a set of
starting points. Note that the overall motion seems well suited for the task, but
trajectories starting close to the rack tend to collide with it. Provided corrective
training data delivered through physical guiding of the robot is shown in green.
b) Resulting reshaped system. The gray shaded region illustrates the region of
influence of the GP and is computed as a level set of the predictive variance.c)
Reshaped system from different point of view. Note the sparse selection of the
training data.
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starting point (one that would result in collision with the rack if the teacher does

not intervene). The teacher then physically guided the robot during its motion

so as to prevent collision with the rack. The data was recorded and used by GP-

MDS to reshape the dynamics according to the incoming data. This procedure

was repeated from a few problematic points in order to expand the reshaped

region of the state space. Corrective demonstrations were provided during four

trajectories starting in the problematic region, resulting in the training data

visible in Figures 6.11b and 6.11c. A total of 1395 data points were collected.

With lengthscale l = 0.07, signal variance σf = 1 and signal noise σn = 0.4

and with selection parameter values J
1

= 0.1, J
2

= 0.2, only 22 training points

needed to be saved in the training set. The region in which the dynamics are

reshaped is illustrated as a gray surface in Fig. 6.11b. As can be seen in Figures

6.11b and 6.11c, the dynamics were successfully reshaped to avoid collision with

the edge of the rack. The total computational time (GP prediction followed by

reshaping) took about 0.04ms, two orders of magnitude faster than required for

our control frequency of 500Hz. The program was written in C++ and executed

on an average desktop with a quad-core Intel Xeon processor. On this particular

machine, the maximum number of training points compatible with our control

frequency is just over 2000.

6.5 Discussion and conclusion

We have proposed a novel framework for incremental learning in dynamical

systems. Desired behavior is achieved by locally applying transformations to an

existing dynamical system. As such, this work is strongly related to previous

work in our group (Khansari-Zadeh and Billard, 2012), which also uses full-

rank modulations (but on a different form) in the context of dynamic obstacle

avoidance. Here, we exploit such modulations not for obstacle avoidance but to

learn the task itself.

The LMDS framework can be used with various forms of modulation function

and learning algorithms. In this work, we have proposed a particular modula-

tion function, based on locally scaling the speed and rotating the direction of

the velocity. This modulation function proved very useful to locally make the

streamlines of the DS match demonstrated trajectories. We would like to em-

phasize that this is one particular example of a possible modulation function,

and a wealth of interesting behaviors could be implemented by a different choice

of modulation function. For example, it would be straightforward to implement

attraction or repulsion from an arbitrary axis in the work-space. The former

could be very useful for locally encoding convergence of trajectories to a narrow

path.

We proposed a particular algorithm, GP-MDS, which modulates the original

dynamics by locally rotating and scaling it and learning the parameters of the

modulation function with GPR. There exists numerous other regression tech-
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niques that could be used instead of GPR, if desirable. The required property

is that the regression must be local, so that the parameter vector approaches

zero in regions remote from the demonstrations. Possible algorithms include

Support Vector Regression (Drucker et al., 1997) which can achieve this by en-

forcing zero bias, Locally Weighted Learning (Atkeson et al., 1997) with radial

basis functions and perhaps of particular interest for large data sets Locally

Weighted Projection Regression (Vijayakumar et al., 2005).

The three hyper parameters of the GP (lengthscale, signal variance and

noise variance) were selected by hand in this work. These parameters are easy

to tune, and for a wide range of applications the signal and noise variance could

be fixed and the lengthscale can be varied achieve the desired trade-off between

generalization and local accuracy. Further open parameters are the thresholds

J1 and J2 which determine the sparsity of the data used for GPR. Because

of the form of the sparsity criteria, the thresholds represents quantities that

have an interpretation in a trajectory context: they are the acceptable levels

of error in speed and direction respectively. Note that there is no cap on the

amount of data points used in GP-MDS, and problematic data set sizes could

be reached despite the sparsity criteria if very rich and varying data is provided.

This aspect could be improved by incorporating a maximum number of allowed

training points and a matching strategy for pruning old data from the training

set when necessary. Other directions for future research include Using a non-

stationary covariance function, which would increase the flexibility by allowing

the generalization/detail trade-off to vary across the state-space. Furthermore,

using multiple GP:s with different lengthscales would potentially remove the

need to compromise between generalization and local accuracy.

Generic methods that use task-based energy functions can allow incremental

learning in DS, but these methods are always limited by the form of the task

energy function. There are methods to deal with this difficulty, (Khansari-Zadeh

and Billard, 2014; Lemme et al., 2014) which learns task-based energy functions

based on the demonstrated data. These systems first build an estimate of a

task-based Lyapunov function from demonstrations, and subsequently allows

incremental adjustments only if they respect descent of the learned Lyapunov

function. LMDS, which is not based on an energy function, in contrast supports

unconstrained incremental learning.

Our experimentation indicates that with asymptotically stable original dy-

namics, systems reshaped with GP-MDS will retain convergence of all trajecto-

ries to the origin unless orbital behavior was explicitly demonstrated (Section

6.4.2). There are possible avenues for verifying the asymptotic stability property

of a reshaped system. For planar systems, it is possible to conclude asymptotic

stability by precluding the existence of limit cycles6. This can be done by invok-

ing Bendixon’s criterion, which gives a sufficient condition for the non-existence

of limit cycles depending on the Jacobian of the system (Slotine and Li, 1991).

6Limit cycles must enclose an equilibrium point
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Generalizations of Bendixon’s criterion to higher dimensions, notably Smiths

autonomous convergence theorem (Smith, 1986) and extensions (Li and Mul-

downey, 1995), further allows to ensure asymptotic stability in any dimension.

Depending on the form of the original dynamics, numerical evaluation across

the state-space would generally be required to ensure asymptotic stability using

such an approach.

In this chapter, we have focused on kinematic modeling of tasks. The system

proposed here as well as any other DS representation relies on a controller

to convert the output from the DS to motor commands for the robot. With

conventional controllers, such as position control or impedance control, this

requires integration of trajectories from the DS to yield a reference trajectory.

Unfortunately, this practice is problematic for several reasons, which are detailed

in the next chapter, where we also address this by introducing a new controller

for execution of tasks described with a DS representation.
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Chapter 7

Passive Interaction
Control with Dynamical

Systems

7.1 Introduction

Chapters 3 and 4 assumed the availability of a time-dependent trajectory

describing the kinematic aspects of the task. The DS that was used in Section

3.3.3 was integrated open loop, without feedback from the robot state after the

onset of motion. The same approach has also been used in previous works from

our group (Kronander et al., 2011; Khansari-Zadeh and Billard, 2014, 2011; Kim

et al., 2014). The open-loop integration results in a position trajectory which

can hence be used in conventional control frameworks. Theoretically, trajectory

generation with DS guarantees robustness in the sense that the trajectory is

generated online and hence allows to take any unplanned perturbations into

account. When the DS is integrated open-loop as described in Section 3.3.3, part

of this robustness is lost. While the robustness with respect to perturbations

such as moving target point can still be ensured, perturbations on the robot

itself cannot be handled since the DS is agnostic to the actual state of the

robot, see Fig. 7.1. This chapter is entirely devoted to the development of

a control method that allow to make full use of the DS, specifically to allow

feedback of the actual robot state to the DS, hence allowing the DS to handle

intrinsic as well as extrinsic perturbations.

An important property of impedance control is the passivity property, which

guarantees not only asymptotically stable regulation in the absence of perturba-

tions, but also stable interaction with any passive environment. It is important

to note that the latter is true when passivity is ensured with external force as

input and velocity as output. From now on, when we refer to passivity without

specifying the input and output, it should understood as passivity with respect

to external force as input and robot velocity as output. In this sense, classic

impedance control is only passive in the regulation case (Section 2.2.4), and the

passivity property is lost if the desired velocity is non-zero. The loss of passivity

during tracking is a drawback of impedance control and a problem that arises

in any controller driven by time-indexed reference trajectories. While many

passivity based trajectory tracking controllers have been developed, e.g. (Slo-

tine, 1987), these works typically ensure passive mapping from external force

to a tracking error variable. As has been pointed out e.g. in (Li and Horowitz,
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Figure 7.1: Illustration of open loop and closed loop control configurations with
DS. In the open loop configuration, the DS is updated with the desired position
resulting from integration of the desired velocity. The actual position of the
robot is only used for initializing the integration at the beginning of the motion.
In contrast, the feedback configuration continuously updates the DS with the
actual position and realizes a control on the velocity error.

1999; Duindam et al., 2004), that passivity mapping can ensure stability in free

motion but not in contact. In this work, it is shown how this problem can be

remedied by replacing the reference trajectory by an DS that defines the desired

velocity as a function only of the current state of the robot.We propose a passive

DS controller which is based on a variable damping matrix designed to dissipate

selectively in directions perpendicular to the desired direction of motion. Tuning

the singular values of this damping matrix allows to vary the dynamic relation-

ship between external force and velocity (impedance). The application of such

a damping matrix results in a system whose natural behavior is to follow the

streamlines of the DS describing the task. Driving control is then provided by

exploiting a decomposition of the DS into a conservative and non-conservative

part, and by introducing an auxiliary state variable that can temporarily store

a bounded amount of energy.

7.2 Problem Statement

Let f(ξ) be a Dynamical System describing the nominal motion plan for

a robotic task. The variable ξ represents a generalized state variable, which

could be e.g. robot joint angles or Cartesian position. Any integral curve of

f represents the desired motion of the robot in the absence of perturbations.

Consider a dynamics of a RBD with the generalized state variable ξ:

M(ξ)ξ̈ + C(ξ, ξ̇)ξ̇ + g(ξ) = τ c + τ e (7.1)

As in Section 2.2.3, M(ξ) and C(ξ, ξ̇) denote the state dependent inertia and

centrifugal/Coriolis matrices. The goal of this work is to design a controller τ c

guiding the system along the nominal motion specified by a given f(ξ) so that
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Eq. (7.1) has the following properties:

1. Passivity (τ e, ξ̇) should be preserved for the controlled system.

2. The controller should dissipate kinetic energy in directions not relevant

for the task.

3. It should be possible to vary task-based impedance of the manipulator,

e.g. how dynamics defining how external forces τ e affect the velocity ξ̇.

7.3 Proposed Approach

7.3.1 Selective energy dissipation with task varying

damping

Consider a feedback controller consisting solely of a damping term and a gravity

cancellation term:

τ c = g(ξ)−Dξ̇ (7.2)

where D ∈ RN×N is some positive semi-definite matrix. Obviously, since the

nominal model f(ξ) does nor appear in Eq. (7.2), we do not expect that the

system would converge to the desired velocity under this simple control. How-

ever, as we shall see we are able to address other design goals listed in Section

7.2.

It is easy to show that a the controller in (7.2) renders the system (7.1)

passive with respect to the input τ e, output ξ̇ with the kinetic energy as storage

function. This is true for an arbitrarily varying damping, as long as it remains

positive semi-definite. We will exploit this fact and construct a varying damping

term that dissipates selectively in directions orthogonal to the desired direction

of motion given by f(ξ). Let e1, . . . , eN be an orthonormal basis for RN with

e1 pointing in the desired direction of motion. Hence, let e1 = f(ξ)
‖f(ξ)‖ , and let

e2, . . . eN a be an arbitrary set of mutually orthogonal and normalized vectors.

Let the matrix Q(ξ) ∈ RN×N be a matrix whose columns are e1, . . . , eN . This

matrix is a function of the state ξ, since the vectors e1 and hence all e1, . . . eN

depend on ξ via f(ξ). We then define the state-varying damping matrix D(ξ)

as follows:

D(ξ) = Q(ξ)ΛQ(ξ)T (7.3)

where Λ is a diagonal matrix with non-negative values on the diagonal λ1, . . . , λN ≥
0.

By adjusting these damping values, different dissipation behaviors can be

achieved. For example, setting λ1 = 0 and λ2, . . . , λN > 0 results in a system

that selectively dissipates energy in directions perpendicular to the desired mo-
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tion. Hence, external work in irrelevant directions is opposed while along the

integral curves of f(ξ) the system is free to move.

7.3.2 Tracking in conservative DS

While the selective damping in Section 7.3.1 allowed selective energy dissipa-

tion, it can not drive the robot forward along the integral curves of f . In order

to achieve this, we have to add some driving control to Eq. (7.2). This can be

achieved through rather simple means, provided that the nominal task model f

is the negative gradient of an associate potential function. This is a restricted

class of DS will be referred to as conservative vector fields in the remainder of

this chapter.

Definition 7.1 (Conservative DS). An autonomous dynamical system f(ξ) is

conservative if and only if there exists a scalar potential function such that:

f(ξ) = −∇Vf (ξ) (7.4)

Consider now a modified controller with negative velocity error feedback:

τ c = g(ξ)−D(ξ)(ξ̇ − f(ξ)) = g(ξ)−D(ξ)ξ̇ + λ1f(ξ) (7.5)

The last equality is due to the fact that f(ξ) is an eigenvector of D(ξ) as de-

scribed in Section 7.3.1.

Proposition 7.1. Let f(ξ) be a conservative system with an associated potential

function Vf (ξ). Then, the system (7.1) under control given by (7.5) is passive

with respect to the input output pair τ e, ξ̇ with the storage function W (ξ, ξ̇) =
1
2 ξ̇
T
M(ξ)ξ̇ + λ1Vf (ξ)

Proof. The proof is given in Appendix C.2.

It is important to remark that it is never necessary to evaluate the potential

function, what is important is its existence and that its negative gradient is

given by f(ξ). The controller derived in this section is strongly related to a class

of controllers based on energy-shaping, pioneered by (Takegaki and Arimoto,

1981). If all DS of interest were conservative vector fields, the controller in Eq.

(7.5) would already satisfy at least two points from the list of desired properties

in Section 7.2. Unfortunately, most interesting DS models are not conservative.

In particular, LMDS systems (Chapter 6) are generally not conservative.

7.3.3 Extension to non-conservative DS

The restriction to conservative systems previously was necessary to cancel the

term λ1ξ̇
T
f(ξ) in the rate of change of the kinetic energy in the system. However,
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that term only has to be canceled for ξ̇
T
f(ξ) > 0. If ξ̇

T
f(ξ) ≤ 0, the control

is contributing to the decrease of kinetic energy. Consider at time t0 that the

system has a particular energy level W (t0). Now assume that at t1 > t0 energy

has been dissipated so that W (t1) < W (t0). This dissipated energy provides in a

sense a passivity margin — the system would be passive even if W (t1) = W (t0).

This fact can be exploited by augmenting the state vector with a virtual state

that is capable of storing energy that would otherwise be lost in dissipation. This

stored energy can then be released in order to implement control actions that

would be non-passive in the original system without the storage element. This

concept, sometimes referred to as energy tanks, feature prominently bilateral

tele-manipulation (Franken et al., 2011; Lee and Huang, 2010; Stramigioli et al.,

2005) and has also been applied to variable stiffness control (Ferraguti et al.,

2013) which is discussed in detail in Chapter 4.

Let f(ξ) be decomposed into a conservative part and a non-conservative part:

f(ξ) = fC(ξ) + fR(ξ) (7.6)

where f c denotes the conservative part which has an associated potential func-

tion, and fR denotes the non-conservative part. Note that any system can be

written on this form, e.g. for divergence-free systems f c ≡ 0. In particular, a

LMDS system (Chapter 6) have a known decomposition if the original dynamics

is a conservative vector field. In the following, the symbol VC will be used to

denote the potential function associated to the conservative part of the DS.

We shall consider an additional state variable s ∈ R that represents stored

energy. It is a virtual state to which we can assign arbitrary dynamics. We shall

consider dynamics coupled with the robot state variables ξ, ξ̇ as follows:

ṡ = α(s)ξ̇
T
Dξ̇ − βs(z, s)λ1z (7.7)

where z = ξ̇
T
fR(ξ). The scalar functions α : R 7→ R and β : R × R 7→ R

control the flow of energy between the virtual storage s and the robot, and will

be defined in the following. It is necessary to put an upper bound on the virtual

storage, such that it can only store a finite amount of energy. Let s > 0 denote

this upper bound. Then, α(s) should satisfy:0 ≤ α(s) ≤ 1 s < s

α(s) = 0 s ≥ s
(7.8)

Disregarding for the moment the second term in Eq. (7.7), it is clear that the

first term (energy that would otherwise be dissipated) only adds to the virtual

storage as long as the latter remains below its upper bound, s < s. Now turning
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to the second term of Eq. (7.7), βs(z, s) should satisfy:
βs(z, s) = 0 s ≤ 0 and z ≥ 0

βs(z, s) = 0 s ≥ s and z ≤ 0

0 ≤ β(z, s) ≤ 1 elsewhere

(7.9)

Considering the second term in Eq. (7.7), it is clear that with βs satisfying Eq.

(7.9), transfer to the virtual storage (z < 0) is only possible as long as s < s.

Conversely, extraction of energy from the storage (z > 0) is only possible as long

as s > 0. When the storage is depleted, the controller can no longer be allowed

to drive the system along fR if this results in increasing the kinetic energy of

the system. Therefore, we introduce the scalar function βR(z, s) whose role is

to modify the control signal if the storage is depleted.

τ c = g(ξ)−Dξ̇ + λ1f c(ξ) + βR(z, s)λ1fR(ξ) (7.10)

where βR : R× R 7→ R is a scalar function that should satisfy:βR(z, s) = βs(z, s) z ≥ 0

βR(z, s) ≥ βs(z, s) z < 0
(7.11)

We are now ready to state the main result of this section:

Theorem 7.1. Let the nominal task model f(ξ) be composed of conservative

and non-conservative parts according to Eq. (7.6). Let the system (7.1) be

controlled by Eq. (7.10) and assume the functions α, βs, βR satisfy the conditions

in Equations (7.8), (7.9) and (7.11) respectively. Let 0 < s(0) ≤ s. The resulting

closed loop system is passive with respect to the input-output pair τ e, ξ̇.

Proof. The proof is given in Appendix C.3.

The specifications of the functions α, βs, βR allow some freedom in the de-

sign. In this work, we use compositions of smooth step functions as detailed in

appendix C.1.

7.3.4 Impedance Adjustment

The architecture used in this chapter differs fundamentally from the classical

impedance control framework in that there is no notion of reference position.

Instead, there is only a reference velocity, which is generated online as a func-

tion of the robot position. While in general, an impedance is by no means

restricted to the classical spring-damper relationship, it is useful to analyze the

link between the impedance rendered by the proposed controller and the classi-

cal spring-damper setting.
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To aid the discussion, we write the closed loop dynamics of the system (7.1)

under control τ c = g(ξ)−Dξ̇+λ1f(ξ). Note that the passive controller derived

in Section 7.3.3 yields the same closed loop behavior in the ideal case that the

virtual storage is never depleted.

M(ξ)ξ̈ + (D(ξ) + C(ξ, ξ̇))ξ̇ − λ1f(ξ) = τ e (7.12)

Hence, as is the case of the ’simple’ impedance controllers without inertia

shaping in Section 2.2.4, we are unable to alter the inherent inertia of the robot.

We have control of the damping in directions orthogonal to the desired motion

via the damping values λ2 . . . λN which are allowed to vary with time, state or

any other variable (see Section 7.3.1). The stiffness term is replaced by λ1f(ξ)

which can be interpreted as a nonlinear stiffness term. This interpretation is

evident when considering the behavior of Eq. (7.12) close to a stable equilibrium

point of f . For simplicity, consider the robot in steady state (ξ̇ = ξ̈ = 0)

near an equilibrium point ξ∗ such that f(ξ∗) = 0. Accounting for steady state

and approximating the left-hand side of Eq. (7.12) with a first order Taylor

expansion around ξ∗ then yields:

− λ1
∂f

∂ξ

∣∣∣
ξ=ξ∗

(ξ − ξ∗) = τ e (7.13)

corresponding to a steady-state stiffness equal to the Jacobian of f at the equi-

librium point scaled by the value of λ1. Globally, the term λ1f(ξ) can be in-

terpreted as a nonlinear stiffness term centered on the equilibrium point(s) of

f .

While the classical notion of stiffness manifests itself in vicinity of the equi-

librium points if f , it is not generally possible to generalize this to stiffness

around general points in the work-space. To see this, consider again the steady-

state linearization of the left-hand side of Eq. (7.12), but this time around an

arbitrary point ξ′ with f(ξ′) 6= 0:

− λ1f(ξ′)− λ1
∂f

∂ξ

∣∣∣
ξ=ξ′

(ξ − ξ′) = τ e (7.14)

A key observation is that a ’stiffness behavior’ includes symmetry, where

perturbations around a point on the desired trajectory are opposed uniformly

around the reference trajectory. The DS task model, on the other hand, encodes

infinitely many desired trajectories, given by the integral curves of f . Hence, if

the classical behavior of symmetrically converging toward a fixed trajectory is

desired, this should be encoded in the task model f . An example of a DS that

locally encodes this spring-like behavior is given in Fig. 7.2.

An interesting perspective of the proposed controller is that the resistance to

a perturbation can be tuned independently of the recovery from a perturbation.

In impedance control, both of these are essentially determined by the stiffness
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Figure 7.2: A 2d illustration of a task model that will locally yield stiffness in
the classical sense around a fixed trajectory.

term and are hence identical: if a force tries to push the robot off its reference

trajectory it will be opposed, and when the perturbing force is released the

robot will return to the reference trajectory. This behavior is just a special case

of what is possible with the proposed controller. For example, the proposed

controller would also oppose a force that moves the robot perpendicular to its

desired velocity. But after the force is released, the robot may resume the task

along a different path.

7.3.5 Choosing s

In this chapter, we assume that there is a DS available that represents the

motion of a robotic task. If we furthermore assume that the desired parameters

λ1, . . . , λD are available, there is one open parameter left that is crucial for

correct operation of the controller. Choosing s too small will result in poor

tracking performance in strongly non-conservative systems, since the system will

have to fall back on the conservative part of the DS when the virtual storage

is depleted. Conversely, allowing storage of a high amount of energy may be a

safety concern. In this section, we provide a simple heuristic that can be used

to get an estimate of an appropriate s for being able to follow a given integral

curve of the DS.

Consider the case of perfect following of the desired DS (no external forces).

The role of the virtual storage is to ensure energy balancing, so that for all

t2 > t1:

U(t2) + s(t2) ≤ U(t1) + s(t1) (7.15)

where

U(t) = V dK(t) + λ1VC(t) (7.16)

Where VC(t) denotes the potential function associated with the conservative

part of the DS, fC . Here, we have introduced the desired kinetic energy, defined

as:

V dK(t) =
1

2
f(ξ)TM(ξ)f(ξ) (7.17)
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Regrouping the difference in virtual storage on the right-hand side, we get:

U(t2)− U(t1) ≤ s(t1)− s(t2) (7.18)

Note that unless U(t) has a local maximum at t > 0 there is no need for any

virtual storage at all. Therefore, we can proceed by identifying the largest local

maximum of U , for t > 0. Therefore, now let t2 denote the time of the largest

local maxima of U with t2 > 0. Assuming that t2 has been identified, we set s

as:

s = U(t2)− min
0<t<t2

U(t) (7.19)

To evaluate this expression we just need to be able to compute U . To simplify

this, we introduce an upper-bound for the desired kinetic energy:

V̂ dK(t) =
m

2
f(ξ)T f(ξ) (7.20)

where m is a scalar that is larger than the maximum eigenvalue of M(ξ) over all

possible configurations. Let c(t) be a solution to ξ̇ = f(ξ) with some given initial

state ξ0. The solution curve is given by integrating the desired DS either for a

predetermined time or until an attractive equilibrium point has been reached.

We can immediately compute V̂ dK along the solution trajectory c(t). To compute

the second term of Eq. (7.16), we need not be able to compute VC(t) directly

as it can be integrated from the conservative part of the dynamics:

VC(t) = −
∫
c

fC(ξ) · dc + VC(0) = −
∫ t

0

fC(ξ(t))T f(ξ(t))dt+ VC(0) (7.21)

Excluding the offset term VC(0) which affects neither location of the extrema

nor Eq. (7.19) we can easily evaluate this integral numerically.

Computing s as described here is merely a heuristic that can be used to

get a rough estimate of an appropriate value. Neither the robot dynamics nor

the environment interaction has been taken into account, so there can be no

guarantee that the computed value will be sufficiently high for the task. We

have found, however, that this method works well in simulation 7.4.1 as well as

on our real implementation

7.4 Simulations

This section presents a series of simulations aimed at highlighting various aspects

of the proposed controller.

7.4.1 Planar free motion

This simulation is aimed at illustrating how the virtual storage is affected by

the DS and accuracy of control. We consider a two-link robot, without friction

and with link length of 1.2m and a mass of 3kg evenly distributed in the link.
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The Robotics Toolbox (Corke, 2011) was used to simulate the dynamics of this

robot.

Task Description and Simulated Controllers

The DS is GP-MDS model, with an encoded curve as can be seen in Fig. 7.3.

We considered two setups:

A. Standard PICDS according to Eq. (7.10)

B. An additional nominal control term, which has the effect of conserving

kinetic energy in directions aligned with the desired DS:

τ c = g(ξ)−D(ξ)ξ̇ + λ1f c(ξ) + βR(z, s)λ1fR(ξ) + τn (7.22)

where the nominal control is given by:

τn =
〈ξ̇, ξ̇r〉2

〈ξ̇r, ξ̇r〉2
M(ξ)(〈ξ̇, ξ̇r〉ξ̈d − 〈ξ̇, ξ̈d〉ξ̇d) (7.23)

where the inner product is with respect to the metric defined by M(ξ),

〈a,b〉 = aTM(ξ)b. This command was proposed in (Duindam et al.,

2004), and has the effect of keeping kinetic energy separated in desired

and undesired directions. It can be shown that τn is power-continuous,

i.e. unlike other inverse dynamics approaches such as computed torque

control it does not destroy the passivity of the system. Importantly, τn is

power continuous even in the presence of model error (incorrect M). In

this case, the performance will suffer but not passivity.

Both controllers were started at the same joint configuration (see Fig. 7.3),

and 5 seconds were simulated. In both cases, λ1 = 5 and λ2 = 30 were used as

damping parameters.

Results

At the beginning of the trajectory, the robot is moving in a direction roughly

aligned with the linear original dynamics, see Fig. 7.3. This results in the

associated potential function initially decreasing (Fig. 7.4b, bottom). Around

one second into the simulation, the robot reaches the reshaped region and starts

to move in an increasing direction of the quadratic potential function. To keep

the sum of kinetic, potential and virtual constant, the virtual energy therefore

has to decrease. This can be seen in Fig. 7.4b, top.

As expected, the tracking performance is clearly better when the nominal

control is active (Simulation B). This can be seen in the integrated trajectory

(Fig. 7.3) as well as the velocity error (Fig. 7.4a). Note especially the sharp

increase in velocity error around 3.5 seconds into the simulation. This happens

as the robot should ’U-turn’ after moving against the original dynamics. Using
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Figure 7.3: Open loop integrated trajectory (magenta dashed) and actual fol-
lowed trajectory (black solid) for the two simulations. The two-link robot is
shown at a series of points along the trajectory. Left: Simulation A, without
nominal control. Right: Simulation B, with nominal control.
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Figure 7.4: Left: Norm of velocity error for the simulations. As expected, bet-
ter performance is achieved using the nominal control. Right: Virtual energy
storage and potential function of original dynamics over time. As the poten-
tial function increases, the virtual storage decreases so that their sum with the
kinetic energy remains non-increasing.

the nominal control here allows reuse the built up kinetic energy, while simula-

tion A has to dissipate all the that energy and at the same time accelerate the

robot in the new direction. This results in a big local velocity error which when

integrated results in a significant departure from the open-loop trajectory (see

Fig. 7.3, left).

7.4.2 Behavior in unexpected contact

An important advantage of the proposed control scheme with a DS and a feed-

back velocity command is that there will be no temporal ramp-up of the contact

force in the event of an unexpected obstacle (or human) interfering with the

movement. If such an event occurs with PICDS, the contact force is determined

by the DS and the value of λ1. Depending on these, the contact force may be

high but it will remain constant. We believe this is a crucial feature for safe

HRI.

The DMP framework was designed to learn and generate desired trajectories.

For converting the trajectories into control commands, it relies on a lower level

controller, e.g. a position controller or impedance controller. In its standard
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formulation, the phase variable of the DMP is an autonomous system acting as

a clock for the motion. Hence, the DMP appears susceptible to the same type

of problems as a time-dependent reference trajectory and impedance controller.

However, it was proposed already in (Ijspeert et al., 2002) and recently reviewed

in (Ijspeert et al., 2013) to introduce coupling control in the DMP, affecting the

transformation dynamics, canonical dynamics or both. As recently emphasized

in (Gams et al., 2014) however, when such coupling is used the guarantee of

stability of the DMP is lost. Despite this, several works have demonstrated

that coupling terms can be used e.g. to adapt motion according to an expected

sensation during a task (Pastor et al., 2011), cooperative manipulation (Kul-

vicius et al., 2013) and reference adaptation for accurate force control through

iterative learning control (Gams et al., 2014). These works make use of force

feedback in the coupling terms. Coupling from the position error as exemplified

in (Ijspeert et al., 2013) is a mechanism most relevant in comparison to feed-

back of robot position in PICDS. We conducted a simulation to elucidate the

differences between these approaches.

Task Description

As in (Ijspeert et al., 2013), we consider a uni-dimensional task for illustrating

the behavior in unexpected contact. A fifth order polynomial fitted to have zero

first and second derivatives at t=0 and t=1 is used as a reference trajectory.

Let xr(t) ∈ R denote the reference trajectory, defined as:

xr =

6t5 − 15t4 + 10t3 0 ≤ t < 1

1 t ≥ 1
(7.24)

Since this is monotonic function for t ≥ 0, the derivative ẋr can be written as a

function of x, ẋr = f(x).

When we simulate the system, the actual velocity is artificially frozen in the

time interval [0.3, 0.9]. With the exception of the reference trajectory, which

we have slightly modified to make it monotonic so that it can be described as

an autonomous DS in the uni-dimensional case, these simulation conditions are

identical to the example for position error coupling in (Ijspeert et al., 2013).

Controllers

Three setups are simulated. The first uses the time-dependent reference trajec-

tory and PD control law:

A. Time-dependent reference trajectory and PD control:

ẍ = −K(x− xr)−D(ẋ− ẋr) (7.25)

with K = 1000 and D = 2
√
K.
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B. DMP with coupling terms:

Canonical phase phase system:

τ ṡ = −αss (7.26a)

Forcing term:

φ =

∑20
n=1 ψn(s)wn∑20
n=1 ψn(s)

s (7.26b)

ψn(s) = exp(−h(s− cn)2)

where h = 0.01 and c1 . . . c20 are dis-

tributed uniformly in [0, 1].

Position error filter:

ė = αe(x− xr − e) (7.26c)

Coupling terms:

CT = kT e (7.26d)

τ = 1 + kCe
2 (7.26e)

Transformation system:

τz = αz(βz(g − xr)− z) + φ+ CT (7.26f)

τẋr = z (7.26g)

To fit the open parameters of the DMP, xr, ẋr, ẍr were simulated for t ∈
[0, 1] and used as training data for a DMP with 20 receptive fields. The

reference is then taken from the DMP and tracked identically as Eq. (7.25).

The open coupling gains were set to kT = 103 and the time constant

coupling gain kC = 104. The setup with exception for the training data

provided to the DMP is identical to the coupling example in (Ijspeert

et al., 2013).

C. The proposed controller:

ẍ = −λ1(ẋ− f(x)) (7.27)

with λ1 = D for fairness of comparison with (7.25).

Results

The resulting position, velocity and force traces for all three simulations are

shown in Fig. 7.6. As expected, setup A with a time-dependent trajectory yields

an increasing contact force. A violent conversion from potential to kinetic energy

takes place at the end of the blocked period. It is easy to see the adaptation

of the reference trajectory for setup B, and how this affects the contact force,

which remains quasi-stable at a significantly lower value than setup A. Finally

setup C has again a lower contact force which remains stable during the contact.

This is an illustrative example that is not show all effects that would occur

in a real scenario. Nonetheless, it shows that timed trajectory controllers can

yield hazardous behavior in situations where unexpected contact may occur.

Secondly, the behavior of DMP with coupling terms is similar to the PICDS

while needing considerably more design effort.

Indeed, the coupling parameters in DMP must be chosen carefully. Fig. 7.6c

plots simulation of setup B but where the gains are changed to kT = 104 and
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(a) (b) (c)

Figure 7.5: Simulation results from setup A,B and C (left to right). The gray
area indicates the time that the system was blocked. Nominal positions and
velocities are plotted with dashed line. For setup B (middle) the DMP output
is plotted with dash-dot line. For setup C (right) the dash-dot line plots the
desired velocity, f(x).

kC = 102. As can be seen, the behavior in contact is now unpredictable and

causing very high contact forces. Another potential pitfall is that if too high

kC is used, position errors occurring without contact could already be enough

to slow down the dynamics considerably. As a matter of fact, simply removing

the blocking period from the simulation immediately reveals this problem, see

Fig. 7.6a. The reason for the coupling terms being active even without the

artificial obstacle is clear from Fig. 7.6b, which plots the simulation of setup

B without the coupling terms. Because no feedforward acceleration is given in

Eq. (7.25), the whole control is driven by feedback errors which also means the

coupling becomes active. These problems arise because of the complex cascade

of linear and nonlinear systems in (7.26). While it is possible to achieve good

performance using these coupling ideas, it must be concluded that tuning the

necessary parameters is non-intuitive and may cause hazardous behavior if not

set correctly. With PICDS, there is no need to modify the controls. The stan-

dard behavior in unexpected contact is already predictable and safe (provided

that λ1f(x) is not a very high value, of course). In this one dimensional sim-

ulation we have not used the virtual storage mechanism. Note however, that

the only effect it can have on the behavior in contact is to make it safer, since

the desired velocity will gradually be slowed down toward zero as the storage

becomes depleted.

7.5 Robot Experiment
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Figure 7.6: Left: Simulation of DMP with kT = 103, kC = 104 but with virtual
obstacle removed. The position error occurring due to missing feedforward
control is sufficient to activate the coupling and destroy the following of the
original trajectory. Middle: Tracking performance with DMP without coupling
(kT = kC = 0). Right: Simulation with virtual obstacle present. Coupling
gains were set to kT = 104, kC = 103.

In the experiment in Section 6.4.4, we showed how reshaping the dynamics

could improve the task model for putting plates into a dish rack. An open-loop

integrated reference trajectory from the starting point was used in conjunction

with an impedance controller to control the robot during task execution. This

controller was hence not passive, and in addition can cause high contact forces

in the event of unexpected contact with objects in the environment as shown

in Section 7.4. Here, we revisit the same task in a comparative study between

the open-loop approach and the passive controller described Section 7.3.3. The

experiments in this section use the task model and the same task set up as in

Section 6.4.4. The experiments are this time conducted on the KUKA LWR

4+ arm in lieu of the Barrett WAM used in Section 6.4.4. We do not decouple

the dynamics nor use nominal control. Instead we investigate how the control

methods compare when only a gravity model of the robot is available.

Experimental setup

In Section 6.4.4 the attractor of the task DS was placed correctly, so that

as the robot reached the attractor, the plate slid into a slot with negligible

contact force. In real scenarios, mismatch between environment state and the

expected state is unavoidable. To account for this, we conducted three sets of

task executions, in each of which the target location of the task DS was offset

in different locations behind the real location of the dish rack, see Fig. 7.7. In

each set of experiments, 5 task executions were carried out using two different

controllers described below.

A. The controller from Section 7.3.3 with s = s(0) = 10, λ1 = 20 and λ2 =
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Desired reaching motion

Starting region

Perturbed target 

locations of the DS

Figure 7.7: The figure shows the experiment setup for the plate insertion task.
The motion starts somewhere in the encircled region. The DS is describing a
parabolic motion that has an attractor in one of three different perturbed target
locations whose approximate position is shown with red dots.

λ2 = 200 is used. The value of λ1 was chosen to the minimal value capable

of overcoming static joint friction at the point of departure.

B. Openloop trajectory integrated from the initial position of the robot in

combination with the impedance controller without inertia shaping de-

scribed in Section 2.2.4. The stiffness was set to K = kI3×3 with k = 100,

the minimum value capable of reaching the final point of the task in free

motion.

All task executions were started somewhere in a small region shown in Fig.

7.7. Rotational motion of the end-effector was in both cases simply damped by

a high amount (4 Ns/rad) which effectively kept the orientation constant during

the task execution.

During the task executions, the Cartesian pose and an estimate of the ex-

ternal force was recorded. The estimate of the external force was computed

internally in the KUKA controller using the joint torque sensors of the LWR4+

arm. This estimate is available along with position measurements of the joints

via the Fast Research Interface(FRI)(Schreiber et al., 2010). A kinematic model

was continuously updated in our C++ software implementation of the two con-

trollers, allowing to convert the Cartesian control force to joint torques using

Jacobian transpose control (refer to Section 2.2.4). The FRI was also used to

command torques to the robot at a frequency of 1 kHz.

Results

Since very low gains were used, and no inverse dynamics control was applied,

it is not expected that either controller would be able to track the nominal
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Figure 7.8: a) Typical trial with the setup A. The shortcut effect here leads
to the plate being stuck under the dish rack. b) Typical trial with setup B.
The robot follows more accurately the desired motion and yields a low contact
force on impact. c-d) Examples of final configuration with setup A. e) Final
configuration with setup B.

motion given by f with good accuracy. This is confirmed in Fig. 7.9 which plots

the nominal and actual trajectories for each setup for each perturbed location

of the dish rack. Especially the ‘shortcut‘ tendency of the impedance controller,

which is also consistently obvious in Fig. 7.10, which plots the estimated contact

force during the trials. Setup B consistently impacts the dish rack before setup

A, due to the shortcut effect. PICDS has a clear advantage in terms of respecting

shape of the desired reaching motion.

In this particular task, the shortcut effect meant that the robot was ap-

proaching the rack from the wrong direction, which sometimes lead to interest-

ing final configurations as depicted in Figures 7.8a, 7.8c and 7.8d. In each of the

three perturbed scenarios, simulation A consistently placed the plate correctly

because the pattern of approach was respected, see Figures 7.8b and 7.8e.

As is clear from Fig. 7.10, setup A also has an advantage over setup B in

terms of contact force after impact. At the time of impact, the reference point

for setup B has already reached its final point, which is why there is no gradual

ramp-up of the contact force as would normally be expected in contact with a

timed trajectory. In the second perturbed location (middle plots in Figures 7.9

and 7.10) setup B resulted in some of the trials landing in a final configuration

on the rack and some of the trials landed in a configuration under the rack.

This is visible in the divergence of the trajectories near the end-point in Fig.

7.9b right, and also the high variance in the final contact force in Fig. 7.10b

right. It should be emphasized that both controllers have been chosen to be as
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compliant as possible for this task, but the low stiffness is not enough to ensure

a low contact force for positioning errors of this magnitude.

7.6 Discussion and conclusion

We have proposed a novel control system for torque-controlled manipulators

for tasks specified by first order dynamical system. We have exemplified it on a

particular class of DS, namely LMDS proposed in this thesis, but its applicability

extends more generally to autonomous DS models such as SEDS (Khansari-

Zadeh and Billard, 2011) and ELM (Lemme et al., 2014).

The proposed approach is related to Passive Velocity Field Control (PVFC)

(Li and Horowitz, 1999), which to the best of our knowledge were the first to use

velocity fields to achieve the natural passivity relationship (external effort - ve-

locity) that allows to conclude passive interaction with any passive environment

as per the passivity theorem. Their approach is based on power-continuous con-

trols achieved via skew-symmetric feedback matrices that depend on the robot

dynamics and the desired velocity field. Driving the robot forward along the

desired dynamics is achieved by a coupling control with a virtual fly wheel which

similarly to our virtual storage provides flexibility by allowing to temporarily

store energy in the system. The virtual flywheel is assigned dynamics and a

virtual desired velocity filed, whose effect on the system performance is non-

intuitive. More importantly, the PVFC formulation does not allow to specify

the mechanical impedance in an intuitive manner.

Also strongly related is the work of Duindam and Stramigioli presented in

(Duindam and Stramigioli, 2003, 2004; Duindam et al., 2004), which much like

(Li and Horowitz, 1999) is extensively based on power-continuous controls, but

differs from the latter significantly in the way that the robot is driven for-

ward along the desired integral curves. The authors make a somewhat limiting

assumption and by considering a single desired, time-independent curve in the

work-space, and then use a potential function with a minimum along the desired

curve as driving control. Similarly to the PVFC framework, there is no spec-

ification of interactive dynamics and the method seems mostly well-conceived

for non-contact situations, although limited exchange of energy is ensured if

contact should occur. This is possible due to the very clever power continuous

inverse dynamics mechanism in the form of a skew-symmetric velocity feedback

term in (Duindam et al., 2004). We also demonstrated that the nominal control

command derived in (Duindam et al., 2004) can be added to PICDS to improve

tracking performance in free motion.

In contrast to both (Duindam et al., 2004) and (Li and Horowitz, 1999) which

both actively redirect any energy in the system along the desired vector field, our

approach uses dissipation as an important part of the control structure. Note

that a completely power-continuous controller will keep any energy provided
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Figure 7.9: Actual (solid lines) and nominal (dotted lines) trajectories for the
dish rack experiment. The motion in the YZ-plane is shown since the position in
X direction remains almost constant during the motion. Each row shows data
from the three different perturbed locations of the dish rack. Left column:
Setup A. Right column: Setup B.
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Figure 7.10: The plots show the norm of the estimated external force over time.
The raw data are plotted in gray and a temporal average is plotted in black.
Each row shows data from the three different perturbed locations of the dish
rack. Left column: Setup A. Right column: Setup B.
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too it by the environment, hence the robot may accelerate sharply and change

its direction of movement drastically if an strong external force is applied to

it. Dissipation is a simpler, safer and more intuitive manner of dealing with

undesired energy, albeit more wasteful.

In (Kishi et al., 2003), the non-intuitiveness of tuning the mechanical impedance

with the approaches proposed in (Li and Horowitz, 1999) and (Duindam et al.,

2004) was already pointed out. An alternative formulation based on standard

impedance control was introduced. The speed along the desired curve was then

regulated so as to achieve passivity. Their approach offers the possibility to pas-

sive tracking in contact, but lacks the flexibility of our approach since a single

trajectory is used as reference.

The virtual storage concept used in this chapter is not a novel idea but has

been used by several works before us (Stramigioli et al., 2005; Franken et al.,

2011). The approach to varying stiffness proposed (Ferraguti et al., 2013) (dis-

cussed in detail in Chapter 4) also uses the same general idea of introducing a

virtual state variable for implementing temporary and bounded energy storage.

Any method based on the concept of a limited virtual energy storage is suscep-

tible to perturbations and may not be able to control the system as desired,

depending on external perturbations that are unknown prior to task execution.

This is also a potential problem of the PICDS controller proposed in this chap-

ter, which may be forced to fall-back to following the conservative part of the

desired dynamics if the virtual storage is depleted. While this may be better

than stopping completely, it will generally be detrimental to task performance

and the starting level of the virtual storage hence needs to be chosen according

to the task, as discussed in Section 7.3.5.
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Chapter 8

Conclusions

In this final chapter of the thesis I summarize the main contributions of this the-

sis. The most important limitations and identified directions for future research

are also summarized here.

8.1 Contributions

It is clear that LfD would benefit from having an interface that allows the

user to teach the robot impedance information. We are not the only ones to

have identified this need (a survey of related works is given in Section 2.1.4),

but the approach in Chapter 3 is the first to have provided an interface that

allow to teach stiffness variations specifically rather than inferring it implicitly.

The work on stability analysis of variable impedance systems in Chapter 4

was a need that was identified during the development of the methods for teach-

ing and learning varying stiffness in Chapter 3. It was clear that the field had

embraced the possibility to improve task performance by varying performance

but it had done so without much consideration to the stability implications of

varying impedance. The stability conditions derived in Chapter 4 can help to

verify that a varying stiffness and damping profile, no matter how it is obtained

(e.g. by learning or optimization) will not lead to unstable behavior and as such

represent an important first step toward more generally applicable variants of

these stability conditions.

Chapters 3 and 4 were focused on impedance control with time-dependent

reference trajectories1. Chapter 5 expanded on this via the use of online ref-

erence adaptation based on sensed wrench in a task-specific manner learned

from demonstration. More flexibility and intelligent behavior can be encoded if

instead an autonomous DS is used to represent the nominal motion. Stability-

constrained learning of autonomous DS models is rather complicated and ill-

suited for incremental learning. The Locally Modulated Dynamical Systems

(LMDS) framework introduced in Chapter 6 allows to reshape attractor land-

scapes with an arbitrary local learning algorithm. Previous DS representations

use a parameterized Lyapunov function to ensure stability. The key novelty

1Although a DS is used in the pouring experiment of Section 3.3.3, it is used in open-loop
configuration (see Fig. 2.3) in Chapter 2) and without any incremental refinement
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here is that instead of Lyapunov-based stability constraints, we ensure bound-

edness and non-introduction of spurious attractor points in the choice of DS

representation.

The final contribution of this thesis is the development of Passive Interac-

tion Control with Dynamical Systems (PICDS) of Chapter 6. This is a first step

toward maximally exploiting the modeling potential of DS models and at the

same time leverage on the advantages of impedance control. It should be noted

that the stability condition of Chapter 4 is valid in the case of free motion or

temporary, bounded perturbations. If an external force that interacts dynam-

ically is admitted in the closed-loop dynamics, the stability proof is (similarly

to most other tracking stability proofs) invalidated. The use of an autonomous

DS model allows more complex behavior to be modeled but arguably more im-

portantly when used with the PICDS controller of Chapter 7 it ensures stable

interaction with any passive environment.

8.2 Limitations and future work

Teaching impedance in contact with the environment

The teaching interface developed in Chapter 3 is partially based on physically

imposing perturbations on the robot to communicate desired stiffness variations.

It can be difficult to use this modality for in-contact tasks, since it may not be

possible to wiggle the robot freely if it is in contact or close to being in contact.

Least squares estimation procedures using measurement of force and position

deviations do not have this limitation (Rozo et al., 2013; Lee et al., 2015).

However, these works have the limitation that they can only estimate stiffness

in the presence of an interaction force and in addition the estimation is done

after the demonstrations. However, least squares estimators are straight forward

to implement recursively. It would hence be interesting to explore a combination

of the interface we proposed in Chapter 3 with a least squares estimation for

stiffness estimation when there is a non-zero contact force.

Ensuring stability with varying stiffness, damping and inertia

The stability conditions of Chapter 4 are restricted in that they require the

inertial effects of the manipulator to be compensated. This is the case for

the impedance shaping impedance controllers but only if the desired inertia is

constant. The method is not applicable to the simpler and more commonly used

impedance controllers without inertia shaping. Generalization of the conditions

to the case of varying inertia is an interesting challenge for future research.
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Better understanding of human manipulation skill in search and

insertion tasks

The performance of the peg-in-hole controller proposed in Chapter 5 lags far

behind that of a blindfolded human on the same setup. It is important to better

understand what capability it is that serves humans so well in this type of tasks,

and to transfer these to robots either in a generic or task-specific fashion. A

study on human search and insert behavior is at the time of this writing being

conducted in the LASA lab.

LMDS in High Dimensions

The LMDS framework of chapter 6 is based on local full-rank multiplication of

an original DS. In particular, we focused on locally scaling and rotating the dy-

namics. This choice of local transformation makes it straightforward to uniquely

determine the parameters for the modulation function corresponding to trajec-

tory training data. This is important since continuous trajectory could otherwise

generate a discontinuous parameter evolution which would cause problems for

the local regression technique modeling the modulation parameters. In higher

dimensions (>3), it is also possible to define rotations but there are several dif-

ferent parameterizations of the rotation possible. A challenge for future work

hence, is how to bias the step that translates demonstrated data to modulation

parameters so that discontinuous parameter evolutions are avoided.

Learning Cyclic Tasks with LMDS

Chapter 6 was focused mainly on modeling discrete motion tasks, i.e. those

that have a point where the motion ends. It was shown that cyclic tasks could

be encoded if explicitly demonstrated, but it is only possible to reliably achieve

a limit cycle in a 2d task representation. Generally, encoding cyclic tasks require

to take this fact into account in the choice of representation. For example, in

DMP, cyclic motion is achieved by oscillating the phase variable that drives

the non-linearities of the system. In LMDS, we do not have this possibility

because we have made the design choice to have a DS that is autonomous in

the controlled state. Instead, using original dynamics that are cyclic instead of

converging to a single attractor seems like a promising route to explore to allow

better representation of Cyclic tasks in LMDS.

Parametric LMDS

We proposed only one learning algorithm for LMDS — GP-MDS based on GPR.

While non-parametric regression models like GPR give a scalable capability to

model almost arbitrarily complex motions, computationally they typically do

not scale very well. This is especially true for GPR. An alternative approach

is to prime the system to a level of allowed complexity by determining the
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number of parameters beforehand. GMR is an example of such an approach.

But GMR is not local in the sense that is required by LMDS. The modified

GMR presented in appendix A.1 could however be used. An interesting future

direction of research is to formalize and characterize LMDS with a parametric

learning algorithm, be it with the modified version of GMR in appendix A.1 or

some other method.

Learning Task-Based Energy Storage

A difficulty of using the PICDS controller is to appropriately choose s, the max-

imum allowed level of virtually stored energy. This can have a very big impact

on the task performance and should hence be chosen carefully. In Section 7.3.5,

we proposed a simple heuristic which may be used to get a rough estimate of an

appropriate s, and we showed that this method worked well for all our simula-

tions and experiments. However, it is not a universally applicable method and

especially with a high amount of perturbations that stops the robot and lets it

accelerate can potentially deplete the energy storage, resulting in the controller

falling back the conservative part of the desired DS. One might argue that s

could simply be set to an extremely high value — the passivity holds for any

finite s. However, the implication of allowing the system to store a high amount

of energy is that an equally high amount of energy can be hazardously released

to the environment. Hence, it is important to set the value of s correctly. An in-

teresting direction to explore is if an appropriate level can be estimated through

learning, either with a human assistant in an active learning arrangement or by

repeated task trials that monitoring the level of virtual storage and adjusting

between trials accordingly.
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Appendix A

Appendices for Chapter 3

A.1 Gaussian Mixture Regression with

Parameterized Generalization

This appendix describes a slighly modified version of Gaussian Mixture Re-

gression, which can limit the generalisation in regions poorly covered by the

training data and instead fall back on an a priori defined basic distribution

in these regions. Consider a GMM with K components that models the joint

probability distribution of the variable ξ ∈ RM :

p(ξ) =

K∑
k=1

πkN (ξ; mk,Ck) (A.1)

where πk > 0,mk ∈ RM ,Ck ∈ RM×M for k = 1 . . .K are the priors, means and

covariances of the Gaussians in the GMM. Assume that the modeled variable

has an input part and an output part ξ = [ξI , ξO]T . The distribution of the

output conditioned on the input can then be written:

p(ξO|ξI) =

K∑
k=1

p(k|ξI)N (ξO|ξI ; mk
O|I ,C

k
O|I) (A.2)

where

mk
O|I = mk

O + Ck
OI(C

k
I )−1(ξI −mk

I ) (A.3a)

Ck
O|I = Ck

O −Ck
OI(C

k
I )−1Ck

IO (A.3b)

with

mk =

[
mk
I

mk
O

]
, Ck =

[
Ck
I Ck

IO

Ck
OI Ck

O

]
(A.3c)

The weighting function p(k|ξI) represents the probability of ξ being generated

by component k. In standard GMR, this weighting function is defined as:

p(k|ξI) =
πkN (ξI ; m

k
I ,C

k
I )∑K

i=1 π
iN (ξI ; m

i
I ,C

i
I)

(A.4)

GMR is a functional relationship between the input ξI and the output ξO, which

163



is achieved by taking the mean of the conditional distribution in Eq. (A.2):

E{ξO|ξI} =

K∑
k=1

p(k|ξI)mk
O|I (A.5)

GMR is a convex sum of linear models, weighted non-linearly across the input

space. The normalization of the mixing weights in Eq. (A.4) means that at

least one of the linear models will always have a significant contribution to the

regression signal. The practical effect of this normalization is generalization,

i.e. that the relationships found locally in training data are used in inferring

outputs for inputs which lie far from the training data in input space. This is

often a desirable effect, since it can reduce the amount of training data needed

for good inference. However, sometimes it is inappropriate to generalize in this

manner. We propose a novel regression strategy for GMM, which preserves the

advantages of the standard GMM/GMR formulation while it allows to control

the degree of generalization. We introduce a basic distribution, which describes

the default relationship between the input and the output, pb(ξO|ξI). We define

the global conditional distribution as:

p′(ξO|ξI) =

K∑
k=1

p′(k|ξI)N (ξO|ξI ; mk
O|I ,C

k
O|I) · · ·

+

(
1−

K∑
k=1

p′(k|ξI)

)
pb(ξO|ξI) (A.6)

We have put prime on the quantities that are different compared to the stan-

dard GMR formulation. In contrast to Eq. (A.2), the mixing weights for the

components of the GMM does not sum to 1. Instead,
∑K
k=1 p

′(k|ξI) can take

any value in the interval ]0, 1[. The second term describes the contribution from

the basic distribution pb(ξO|ξI). The key to controlling the generalization are

the mixing weights of the components in the GMM, p′(k|ξI), which we define

as:

p′(k|ξI) =
πkN (ξI ; m

k
I ,C

k
I )∑K

i=1 π
iN (x; mi

I ,C
i
I) + (1− g(ξI))

(A.7a)

where

g(ξI) = max
k

exp

(
−1

2
((ξI −mk

I )T (cCk
I )−1(ξI −mk

I )

)
(A.7b)

where c > 0 is a constant. Compared to the mixing weights in standard GMR

in Eq. (A.4), our formulation adds a second term in the denominator. This

term describes how distant ξI is to the closest Gaussian in the GMM. Note

that the distance to each Gaussian is computed with the inverse covariance

of the Gaussian as metric. For this computation, the covariance is scaled by

c > 0. The added term in the denominator will cause the mixing weights for

the Gaussians in the GMM to go to zero as the input moves far away from
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the Gaussians, while the weight for the default distribution tends to one. The

amount of generalisation is controlled with the parameter c, and as can be

seen from Eq. (A.7), c → ∞ leads to full generalization (as in the standard

formulation of GMR) while c→ 0 gives weights that drop quickly as the query

input moves away from the Gaussians. To move between these two extremes,

one can for example control c via a map φ : [0, 1[ 7→ [0,∞[:

c = c(z) = exp

(
z

1− z

)
− 1 (A.8)

where moving z in [0, 1[ corresponds to going from minimal to full generalization.

To perform regression using this model, we proceed as in standard GMR and

take the mean of the distribution in Eq. (A.6), which yields:

E{ξO|ξI} =
K∑
k=1

p′(k|ξI)mk
I|O +

(
1−

K∑
k=1

p′(k|ξI)

)
mb (A.9)

where mb is the mean of the basic distribution pb(ξO|ξI). The basic distribution

pb is a key element of this regression technique. It should represent the basic re-

lationship between the input and the output variable. The conceptual difference

to standard GMR is that in regions poorly covered in the demonstrations, and

hence in the GMM, we infer from the basic distribution instead of insisting that

the GMM should generalize globally. Note that for the regression it is sufficient

to define the mean of the basic distribution.

A.2 System Usability Scale

The System Usability Scale (SUS) is a method for evaluating the usability of

a system. It was introduced in (Brooke, 1996) and has become a widespread

method for evaluating user interfaces, including Human-Robot Interaction ap-

plications. It consists of a series of the 10 statements listed in Table A.1. For

each statement, the user rates his level of agreement on a 5 point Likert scale

where 1 corresponds to ’strongly disagree’ and 5 corresponds to ’strongly agree’.

Each items contribution to the SUS score ranges from 0 to 4. Each odd

numbered statement contributes with the level of agreement minus 1. Each

even numbered statement contributes with 5 minus the level of agreement. The

SUS score is then obtained by summing the contributions for all items and

multiplying by 2.5, yielding a score range of 0 to 100.

A.3 NASA Task Load Index

The NASA Task Load Index (TLX) is a widely used method for evaluating the

workload of a task (Hart and Staveland, 1988). It consits of two parts, one

of which is aimed at determining how the users experienced the workload, and
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Table A.1: The SUS statements

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

Table A.2: The TLX subscales for workload evaluation.

Label Description Min. Rating Max. Rating

Mental
Demand

How mentally demanding was the task? Very Low Very High

Physical
Demand

How physically demanding was the task? Very Low Very High

Temporal
Demand

How hurried or rushed was the pace of
the task?

Very Low Very High

Performance
How successful were you in accomplishing
what you were asked to do?

Perfect Failure

Effort
How hard did you have to work to
accomplish your level of performance?

Very Low Very High

Frustration
How insecure, discouraged, irritated,
stressed, and annoyed were you?

Very Low Very High

a second part which is aimed at defining an individual weighting scheme for

combining the answers from the first part to a total workload score.

The first part consists of rating the workload of the task according to six

subscales given in Table A.2. The users rate each subscale on a 20 point Likert

scale with minimum and maximum value corresponding the phrases listed in

Table A.2.

The second part consists of a pairwise presentation of the labels from Table

A.2, and for each pair the user is asked to select which one is more important to

the workload. For example, if the user is presented with ’mental’ and ’physical’

she thinks that ’physical’ is more important to the workload, she would select

the physical label. The number of times each label is chosen is then used to

compute a weighted sum of the label scores from the first part, resulting in a

workload score ranging from 0 to 100.
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Appendix B

Proof of Theorem 4.1

Consider the following Lyapunov candidate function:

V2(q̃, ˙̃q, t) =
( ˙̃q + αq̃)TH( ˙̃q + αq̃)

2
+

q̃Tβ(t)q̃

2
(B.1)

where β(t) is a symmetric, positive definite and continuously differentiable func-

tion. Differentiating yields:

V̇2(q̃, ˙̃q, t) = ( ˙̃q + αq̃)TH(¨̃q + α ˙̃q) + q̃Tβ(t) ˙̃q +
1

2
q̃T β̇(t)q̃ (B.2)

Substituting the closed loop dynamics from Eq. (2.18) and rearranging yields:

V̇2(q̃, ˙̃q, t) = ˙̃qT {αH−D(t)} ˙̃q

+ ˙̃qT
{
β(t) + α2H−K(t)− αD(t)

}
q̃

+ q̃T
{

1

2
β̇(t)− αK(t)

}
q̃ (B.3)

In order to eliminate the cross-term between q̃ and ˙̃q, define β(t) as:

β(t) = K(t) + αD(t)− α2H ⇒ β̇(t) = K̇(t) + αḊ(t) (B.4)

Substituting β(t) and β̇(t) into Eq. (B.3) then yields:

V̇2(q̃, ˙̃q, t) = ˙̃qT {αH−D(t)} ˙̃q + q̃T
{

1

2
K̇(t) +

α

2
Ḋ(t)− αK(t)

}
q̃ (B.5)

Note that β(t) is positive definite (Substitute condition 1 from Theorem 4.1 in

Eq. (B.4)), which implies that V2 is positive definite. V2 is also decrescent, since

it is dominated e.g. by: V2 < ( ˙̃q+αq̃)TH( ˙̃q+αq̃)+‖q̃‖2 max
t
λ(β(t)). Further-

more, V2 is radially unbounded, and substituting condition 2 from Theorem 1

in Eq. (B.5) confirms V2 < 0 for all q̃, ˙̃q 6= 0, which concludes the proof.
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Appendix C

Appendices for Chapter 7

C.1 Smooth coupling functions

In Section 7.3.3, the scalar functions α, βs and βR were introduced. In this

appendix, we describe how these functions were chosen in this thesis. We restate

the specifications of α, βs and βR from Section 7.3.3:0 ≤ α(s) ≤ 1 s < s

α(s) = 0 s ≥ s
(C.1a)


βs(s, z) = 0 s ≤ 0 and z ≥ 0

βs(s, z) = 0 s ≥ s and z ≤ 0

0 ≤ β(s, z) ≤ 1 elsewhere

(C.1b)

βR(s, z) = βs(s, z) z ≥ 0

βR(s, z) ≥ βs(s, z) z < 0
(C.1c)

These criteria allow a considerable amount of freedom. Note that it is not

necessary that the functions be continuous in z or s. However, to avoid sharp

changes in control if the storage is depleted, we will make use of smooth step

functions for defining these coupling functions. To this end, we introduce the

functions Ha,b and H−a,b denoting smooth step functions defined as:
Ha,b(x) = 0 x < a

Ha,b(x) = 6(x−ab−a )5 − 15(x−ab−a )4 + 10(x−ab−a )3 a ≤ x ≤ b

Ha,b(x) = 1 x > b

(C.2a)

{
H−a,b(x) = 1−Ha,b(x) (C.2b)

The fifth order polynomial has the role of transitioning smoothly from 0 to 1,

while matching first and second order derivatives (=0) at x = a and x = b. Fig.

C.1 illustrates these functions.

Starting by α(s), this function has the role of limiting the harvest of damping

work which would otherwise be dissipated. This harvest (first term in Eq. (7.7)),

is only allowed as long as there is still space in the virtual storage, i.e. s < s.
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Figure C.1: The figure shows the smooth step functions used to compose α, βs
and βR.

(a) (b) (c)

Figure C.2: The figure shows the β-functions and their difference over their
2d domain. Relatively high values of δs, δz are used for illustrations purposes.
Left: βr Middle: βs Right: βr − βs

We define α simply as an inverted smooth step function:

α(s) = H−s−δs,s(s) (C.3)

where δs is a smoothness parameter determining the length of the transition

from 1 to 0.In this work, δs = 0.1s was always used.

The βs function is defined as:

βs(s, z) = 1−H−δz,0(z)H−s,s+δs(s)−H−0,δz (z)Hs−δs,s(s) (C.4)

where δz > 0 is a smoothness parameter. The function is plotted in Fig. C.2b.

Finally, the βR function is defined as:

βR(s, z) =
(

1−H−δz,0(z)H−s,s+δs(s)
)(

1−H−δz,0(z)H−0,δz (z)Hs−δs,s(s)
)

(C.5)

Fig. C.2a plots βR. To avoid unnecessarily scaling the non-conservative velocity

component, δz should be chosen small. In this work, we have always used

δz = 0.01.

Note that the functions specified here are just examples of functions that
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meet the criteria in Eq. (C.1). There are of course many other possibilities, but

these functions have worked well in this work.

C.2 Proof of Proposition 7.1

The rate of change of W is:

Ẇ (ξ, ξ̇) = ξ̇
T
M(ξ)ξ̈ +

1

2
ξ̇
T
Ṁ(ξ)ξ̇ + λ1∇V Tf ξ̇ (C.6)

Substituting Mξ̈ from Eq. (7.1) with τ c given by Eq. (7.5) yields:

Ẇ (ξ, ξ̇) =
1

2
ξ̇
T

(Ṁ− 2C)ξ̇ − ξ̇
T
Dξ̇ + ξ̇

T
τ e + λ1ξ̇

T
f(ξ) + λ1∇V Tf ξ̇ (C.7)

where dependencies of M,D on ξ and C of ξ̇ has been omitted for cleanliness

of notation. In Eq. (C.12) the first term is null due to the skew-symmetry of

the matrix Ṁ− 2C (refer to Section 2.2.3) and the last to terms cancel because

f(ξ) = −∇Vf . Hence, we have:

Ẇ (ξ, ξ̇) = −ξ̇
T
Dξ̇ + ξ̇

T
τ e (C.8)

which proves passivity according to Def. 2.7.

C.3 Proof of Theorem 7.1

First, note that 0 < s(0) ≤ s ⇒ 0 ≤ s(t) ≤ s,∀t > t0, trivially from Equations

(7.7), (7.8)and (7.9). Consider the storage function W (ξ, ξ̇, s) = 1
2 ξ̇
T
Mξ̇ +

λ1Vc(ξ) + s, where Vc(ξ) is the potential function associated with f c(ξ). The

rate of change of W is:

Ẇ (ξ, ξ̇) = ξ̇
T
Mξ̈ +

1

2
ξ̇
T
Ṁξ̇ + λ1∇V Tc ξ̇ + ṡ (C.9)

Substituting Mξ̈ from Eq. (7.1) with τ c given by Eq. (7.10) and using the

skew-symmetry of Ṁ− 2C as in Proposition 7.1 yields:

Ẇ (ξ, ξ̇) = −ξ̇
T
Dξ̇ + ξ̇

T
τ e + βR(z, s)λ1z + λ1ξ̇

T
f c(ξ) + λ1∇V Tc ξ̇ + ṡ (C.10)

The second-to-last two terms cancel because f c(ξ) = −∇Vc(ξ). Substituting ṡ

from Eq. (7.7) then yields:

Ẇ (ξ, ξ̇) = −{1− α(s)}︸ ︷︷ ︸
≥0

ξ̇
T
Dξ̇ + ζ(z, s)λ1z + ξ̇

T
τ e (C.11)

where ζ(z, s) = βR(z, s) − βs(z, s) has been introduced to ease the notation.

Note that by Eq. (7.8) we have 1−α(s) ≥ 0. By Equations (7.9) and (7.11) we
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have that ζ(z, s) = 0 for all z > 0 and ζ(z, s) ≥ 0 for z < 0. Hence, we have:

Ẇ (ξ, ξ̇) ≤ ξ̇
T
τ e (C.12)

which concludes the proof.

172



References

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforce-
ment learning. Proceedings of the 21st International Conference on Machine
Learning (ICML), pages 1–8, 2004. doi: 10.1145/1015330.1015430. 2.1.4

Fares J. Abu-Dakka, Bojan Nemec, Aljaž Kramberger, Anders Glent Buch, Nor-
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G Hirzinger. The DLR lightweight robot: design and control concepts for
robots in human environments. Industrial Robot: An International Journal,
34(5):376–385, 2007a. 2.1.1

A. Albu-Schaffer, C. Ott, and G. Hirzinger. A Unified Passivity-based Control
Framework for Position, Torque and Impedance Control of Flexible Joint
Robots. The International Journal of Robotics Research, 26(1):23–39, January
2007b. ISSN 0278-3649. doi: 10.1177/0278364907073776. 2.1.1

A. Albu-Schaffer, Oliver Eiberger, Markus Grebenstein, S. Haddadin, Christian
Ott, T. Wimbock, Sebastian Wolf, G. Hirzinger, and Thomas Wimb Ock.
Soft robotics. Robotics & Automation Magazine, IEEE, 15(3):20–30, 2008.
1.2.1, 2.1.1

C. H. An and J. M. Hollerbach. The Role of Dynamic Models in Cartesian Force
Control of Manipulators. The International Journal of Robotics Research, 8:
51–72, 1989. ISSN 0278-3649. doi: 10.1177/027836498900800403. 2.1.1

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A
Survey of Robot Learning from Demonstration. Robotics and Autonomous
Systems, 57(5):469–483, May 2009. ISSN 09218890. doi: 10.1016/j.robot.
2008.10.024. 1.1

H Asada. Teaching and learning of compliance using neural nets: Representation
and generation of nonlinear compliance. In IEEE International Conference
on Robotics and Automation, pages 1237–1244, 1990. 2.1.5

H. Asada and H. Izumi. Automatic program generation from teaching data for
the hybrid control of robots. IEEE Transactions on Robotics and Automation,
5(2):166–173, April 1989. ISSN 1042296X. doi: 10.1109/70.88037. 2.1.3, 2.1.4

173



Haruhiko Asada. Representation and learning of nonlinear compliance using
neural nets. IEEE Transactions on Robotics and Automation, 9(6):863–867,
1993. 2.1.4, 2.1.5, 5.1, 5.7

Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally
Weighted Learning. Artificial Intelligence Review, 11:11–73, 1997. ISSN
00070912. doi: 10.1093/bja/ael290. 6.5

F Badano, A Jutard, and M Betemps. Chamferless robotic assembly using
random search. In Fifth International Conference on Advanced Robotics, 1991.
ISBN 0780300785. doi: 10.1109/ICAR.1991.240501. 2.1.5

Leonardo Balletti, Alessio Rocchi, Felipe Belo, Manuel Catalano, Manolo Gara-
bini, Giorgio Grioli, and Antonio Bicchi. Towards variable impedance assem-
bly: The VSA peg-in-hole. In 2012 12th IEEE-RAS International Conference
on Humanoid Robots (Humanoids 2012), pages 402–408. Ieee, November 2012.
ISBN 978-1-4673-1369-8. doi: 10.1109/HUMANOIDS.2012.6651551. 2.1.5,
5.7

Randall D. Beer. A dynamical systems perspective on agent-environment in-
teraction. Artificial Intelligence, 72(1-2):173–215, 1995. ISSN 00043702. doi:
10.1016/0004-3702(94)00005-L. 1.1, 1.2.2

Antonio Bicchi, Giovanni Tonietti, Michele Bavaro, and Marco Piccigallo. Vari-
able Stiffness Actuators for Fast and Safe Motion Control. In The Eleventh
International Symposium on Robotics Research, volume 15, pages 527–536.
Springer, 2005. ISBN 978-3-540-23214-8. doi: 10.1007/11008941\ 56. 2.1.1

Aude Billard, Sylvain Calinon, R. Dillmann, and S. Schaal. Handbook of
Robotics Chapter 59: Robot Programming by Demonstration. In Handbook
of Robotics. Springer, 2008. ISBN 978-1-4244-2057-5. doi: 10.1109/IROS.
2008.4650593. 1.1, 1.2.1, 2.1.3

David Braun, Matthew Howard, and Sethu Vijayakumar. Optimal variable
stiffness control: formulation and application to explosive movement tasks.
Autonomous Robots, 1(17):237–253, 2012. ISSN 0929-5593. doi: 10.1007/
s10514-012-9302-3. 2.1.4

David J Braun, Florian Petit, Felix Huber, Sami Haddadin, Patrick Van
Der Smagt, Alin Albu-Schaffer, and Sethu Vijayakumar. Robots driven by
compliant actuators: Optimal control under actuation constraints. IEEE
Transactions on Robotics, 29(5):1085–1101, 2013. ISSN 15523098. doi:
10.1109/TRO.2013.2271099. 2.1.4

R W Brockett. Hybrid Models for Motion Control Systems. Essays on Control:
Perspectives in the Theory and its Applications, page 29, 1993. 2.1.1, 2.1.1

J Brooke. SUS - A quick and dirty usability scale. Usability Evaluation in
Industry, 189(194):6–7, 1996. 3.3.4, A.2

J. Buchli, E. Theodorou, F. Stulp, and S. Schaal. Variable Impedance Control-
A Reinforcement Learning Approach. Robotics: Science and Systems, 2010.
2.1.4

J. Buchli, F. Stulp, E. Theodorou, and S. Schaal. Learning variable impedance
control. The International Journal of Robotics Research, 30(7):820–833, 2011.
ISSN 0278-3649. doi: 10.1177/0278364911402527. 2.1.4, 2.1.6, 2.1.8, 4.4.2

174



D Bullock and S Grossberg. The Vite Model: A Neural Command Circuit for
Generating Arm and Articulator Trajectories. Dynamic patterns in complex
systems, pages 305–326, 1988. 1.1, 1.2.2, 2.1.6

E Burdet and M Nuttin. Learning complex tasks using a stepwise approach.
Journal of Intelligent and Robotic Systems, 24(1):43–68, 1999. 2.1.5

E Burdet, R Osu, D W Franklin, T E Milner, and M Kawato. The central
nervous system stabilizes unstable dynamics by learning optimal impedance.
Nature, 414(6862):446–9, November 2001. ISSN 0028-0836. doi: 10.1038/
35106566. 1.1, 1.2.1, 2.1.2, 2.1.4

F. Caccavale, C. Natale, B. Siciliano, and L. Villani. Six-DOF impedance control
based on angle/axis representations. IEEE Transactions on Robotics and
Automation, 15(2):289–300, April 1999. ISSN 1042296X. doi: 10.1109/70.
760350. 2.2.4, 2.2.4

Sylvain Calinon and Aude Billard. Incremental learning of gestures by imita-
tion in a humanoid robot. In Proceedings of the ACM/IEEE international
conference on Human-robot interaction, pages 255–262. ACM, 2007. ISBN
9781595936172. 2.1.7

Sylvain Calinon, Florent Guenter, and Aude Billard. On learning the statistical
representation of a task and generalizing it to various contexts. Proceedings
- IEEE International Conference on Robotics and Automation, 2006(Icra):
2978–2983, 2006. ISSN 10504729. doi: 10.1109/ROBOT.2006.1642154. 2.1.3

Sylvain Calinon, Florent Guenter, and Aude Billard. On learning, representing,
and generalizing a task in a humanoid robot. IEEE transactions on sys-
tems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE
Systems, Man, and Cybernetics Society, 37(2):286–98, April 2007. ISSN 1083-
4419. 2.1.3, 2.1.7

Sylvain Calinon, Irene Sardellitti, and D.G. Caldwell. Learning-based control
strategy for safe human-robot interaction exploiting task and robot redun-
dancies. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 249–254, 2010. 2.1.4, 3.2.1

Sylvain Calinon, Zhibin Li, Tohid Alizadeh, Nikos G Tsargarakis, and DG Cald-
well. Statistical dynamical systems for skills acquisition in humanoids. Inter-
national Conference on Humanoid Robots, 2012. 2.1.6

Sylvain Calinon, Petar Kormushev, and Darwin G. Caldwell. Compliant skills
acquisition and multi-optima policy search with EM-based reinforcement
learning. Robotics and Autonomous Systems, 61(4):369–379, 2013. ISSN
09218890. doi: 10.1016/j.robot.2012.09.012. 2.1.4

Sylvain Calinon, Danilo Bruno, and Darwin G. Caldwell. A task-parameterized
probabilistic model with minimal intervention control. 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3339–3344,
May 2014. doi: 10.1109/ICRA.2014.6907339. 2.1.4, 4.4.2

Giorgio Cannata, Marco Maggiali, Giorgio Metta, and Giulio Sandini. An em-
bedded artificial skin for humanoid robots. IEEE International Conference
on Multisensor Fusion and Integration for Intelligent Systems, pages 434–438,
2008. doi: 10.1109/MFI.2008.4648033. 3.3.3

175



Manuel Catalano, Giorgio Grioli, Manolo Garabini, Felipe Weilemann Belo, An-
drea Di Basco, Nikos Tsagarakis, and Antonio Bicchi. A Variable Damping
module for Variable Impedance Actuation. In Proceedings - IEEE Interna-
tional Conference on Robotics and Automation, pages 2666–2672, 2012. ISBN
9781467314039. doi: 10.1109/ICRA.2012.6224938. 2.1.1

I Cathers, N O’Dwyer, and P Neilson. Tracking performance with sinusoidal
and irregular targets under different conditions of peripheral feedback. Exper-
imental brain research, 111(3):437–46, October 1996. ISSN 0014-4819. 3.3.1

Thomas Cederborg, Ming Li, Adrien Baranes, and PY Oudeyer. Incremental
local online Gaussian Mixture Regression for imitation learning of multiple
tasks. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 267–274, Taipei, Taiwan, 2010. 2.1.7

E. Cha, K. Kronander, and A. Billard. Combined Kinesthetic and Simulated
Interface for Teaching Robot Motion Models. In IEEE International Sym-
posium on Robot and Human Interactive Communication (RO-MAN), 2015.
1.4

S. Chiaverini and L. Sciavicco. The parallel approach to force/position control
of robotic manipulators. IEEE Transactions on Robotics and Automation, 9
(4):361–373, 1993. ISSN 1042296X. doi: 10.1109/70.246048. 2.1.1

P Corke. Robotics, Vision & Control. Springer, 2011. 7.4.1

M. R. Cutkosky and P. K. Wright. Active Control of a Compliant Wrist in
Manufacturing Tasks. Journal of Engineering for Industry, 108(1):36, 1986.
ISSN 00220817. doi: 10.1115/1.3187038. 2.1.5

Nathan Delson and Harry West. Robot programming by human demonstration:
adaptation and inconsistency in constrained motion. In International Confer-
ence on Robotics and Automation, pages 30–36, 1996. ISBN 0-7803-2988-0.
doi: 10.1109/ROBOT.1996.503569. 2.1.3

AP Dempster, NM Laird, and DB Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B
(Methodological), 39(1):1–38, 1977. 2.1.7, 3.3.3, 5.3

Samuel Hunt Drake. Using compliance in lieu of sensory feedback for automatic
assembly. PhD thesis, 1977. 2.1.1, 2.1.5

Harris Drucker, CJC Burges, Linda Kaufman, Alex Smola, and Vladimir Vap-
nik. Support vector regression machines. Advances in neural information
processing systems, (x):155–161, 1997. 6.5

B. Dufay and J.-C. Latombe. An Approach to Automatic Robot Programming
Based on Inductive Learning, 1984. ISSN 0278-3649. 2.1.3

V. Duindam, S. Stramigioli, and J.M.a. Scherpen. Passive Compensation of
Nonlinear Robot Dynamics. IEEE Transactions on Robotics and Automation,
20(3):480–487, June 2004. ISSN 1042-296X. doi: 10.1109/TRA.2004.824693.
2.1.8, 7.1, B., 7.6

Vincent Duindam and Stefano Stramigioli. Passive asymptotic curve tracking. In
2nd IFAC Workshop on Lagrangian and Hamiltionian Methods for Nonlinear
Control, number 1, pages 229–234, Seville, 2003. 7.6

176



Vincent Duindam and Stefano Stramigioli. Port-Based Asymptotic Curve Track-
ing for Mechanical Systems. European Journal of Control, 10(5):411–420,
2004. ISSN 09473580. doi: 10.3166/ejc.10.411-420. 2.1.8, 4.1, 7.6

Ahmetcan Erdogan and Volkan Patoglu. Slacking prevention during assistive
contour following tasks with guaranteed coupled stability. IEEE International
Conference on Intelligent Robots and Systems, pages 1587–1594, 2012. ISSN
21530858. doi: 10.1109/IROS.2012.6386099. 2.1.8

Ahmetcan Erdogan, AC Satici, and Volkan Patoglu. Passive Velocity Field
Control of a Forearm-Wrist Rehabilitation Robot. In IEEE International
Conference on Rehabilitation Robotics, volume 2011, January 2011. ISBN
9781424498628. doi: 10.1109/ICORR.2011.5975433. 2.1.8

Federica Ferraguti, Cristian Secchi, and Cesare Fantuzzi. A tank-based approach
to impedance control with variable stiffness. In 2013 IEEE International
Conference on Robotics and Automation, pages 4948–4953. Ieee, May 2013.
ISBN 978-1-4673-5643-5. doi: 10.1109/ICRA.2013.6631284. 2.1.2, 4.1, 4.3,
4.2, 4.4.1, 4.4.1, 4.4.1, 4.3, 4.5, 7.3.3, 7.6

Michel Franken, Stefano Stramigioli, Sarthak Misra, Cristian Secchi, and
Alessandro MacChelli. Bilateral telemanipulation with time delays: A two-
layer approach combining passivity and transparency. IEEE Transactions on
Robotics, 27:741–756, 2011. ISSN 15523098. doi: 10.1109/TRO.2011.2142430.
2.1.2, 7.3.3, 7.6

David W Franklin, Etienne Burdet, Keng Peng Tee, Rieko Osu, Chee-Meng
Chew, Theodore E Milner, and Mitsuo Kawato. CNS learns stable, accurate,
and efficient movements using a simple algorithm. The Journal of neuro-
science : the official journal of the Society for Neuroscience, 28(44):11165–
73, October 2008. ISSN 1529-2401. doi: 10.1523/JNEUROSCI.3099-08.2008.
1.2.1, 2.1.4

Andrej Gams, Bojan Nemec, Auke Jan Ijspeert, and Aleš Ude. Coupling
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J Quiñonero Candela, CE Rasmussen, J Quinonero-Candela, and Joaquin Qui.
A unifying view of sparse approximate Gaussian process regression. The Jour-
nal of Machine Learning Research, 6:1939–1959, 2005. 6.3.4

M H Raibert and J J Craig. Hybrid position/force control of manipulators. Jour-
nal of Dynamic Systems Measurement and Control, 102(2):126–133, 1982.
2.1.1

183



Carl Rasmussen and Chris Williams. Gaussian processes for machine learning.
MIT Press, 2006. 6.3.2

E Rimon and D E Koditschek. Exact robot navigation using artificial potential
functions. IEEE Transactions on Robotics and Automation, 8(5):501–518,
1992. ISSN 1042296X. doi: 10.1109/70.163777. 2.1.6

DA Rosenbaum. Human motor control. Academic Press, 2009. 2.1.4

L. Rozo, P. Jimenez, and C. Torras. Robot learning from demonstration in
the force domain. In International Joint Conference on Artificial Intelligence
(IJCAI), Workshop on Agents Learning Interactively from Human Teachers,
2011. 2.1.3

Leonel Rozo, Sylvain Calinon, Darwin Caldwell, Pablo Jimenez, Carme Tor-
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