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Abstract 

Bodily self-consciousness is linked to multisensory integration and is 

particularly dependent on vestibular perception providing the brain with the main 

sensory cues about body motion and location in space. Vestibular and visual inputs are 

permanently balanced and integrated to encode the most optimal representation of 

the external world and of the observer in the central nervous system. Vection, an 

illusory self-motion experience induced only by visual stimuli, illustrates the fact that 

the visual and the vestibular systems share common neural underpinnings and a 

similar phenomenology. Optokinetic stimulation inducing vection and direct 

vestibular stimulation induce whole-body motion sensations that can be used to 

explore multisensory interactions. A failure in visuo-vestibular integration, artificially 

induced by the methods of cognitive psychology or in pathological conditions, has 

also been reported to altered own body perception and bodily self-consciousness. The 

respective contributions of the vestibular and visual systems to bodily self-

consciousness amongst other polymodal sensory mechanisms, and the neural 

correlates of visuo-vestibular convergence, should be better understood. We first 

performed a neuroimaging study of brain regions where optokinetic and vestibular 

stimuli converge, using 7T functional magnetic resonance imaging in individual 

subjects. We identified three main regions of convergence: (1) the depth of 

supramarginal gyrus or retroinsular cortex, (2) the surface of supramarginal gyrus at 

the temporo-parietal junction, (3) and the posterior part of middle temporal gyrus and 

superior temporal sulcus. Then, we aimed to induce the embodiment of an external 

fake rubber hand through visuo-tactile conflict - the so-called rubber hand illusion 
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paradigm, and studied how this integration is modulated by vection. Subjects 

experiencing vection in the direction of the rubber hand mislocalised the position of 

their real hand towards the rubber hand indicating that visuo-vestibular stimuli can 

enhance visuo-tactile integration. We also investigated if visuo-proprioceptive and 

tactile integration in peripersonal space could be dynamically updated based on the 

congruency of visual and proprioceptive feedback. A pair of rubber hands or feet 

provided visual feedback. Fake and real limbs were crossed or uncrossed. We showed 

that sensory cues were integrated in peripersonal space, dynamically reshaped but only 

for hands. Finally, we investigated a rare case of an illusory own body perception in an 

epileptic patient suffering from multiple daily disembodiments during seizures. 

Seizures were associated to a focal cortical microdysplasia juxtaposed to a 

developmental venous anomaly in the left angular gyrus, a brain region known to be 

important for visuo-vestibular integration and bodily self-consciousness. Our results 

characterize the inferior parietal lobule as a crucial structure in merging visual, 

vestibular, tactile and proprioceptive inputs, allowing the emergence of the global and 

unified experience of being “I.” Multisensory body representation can be reshaped 

transiently using visual and vestibular signals or in relation to a medical condition 

affecting the temporo-parietal junction. The integration of visual and vestibular 

signals, aims to adapt dynamically our internal representations to constant changes 

occurring in our environment. 
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Résumé 

 

La conscience corporelle de soi repose sur l'intégration multisensorielle et 

particulièrement dépendante de la perception vestibulaire qui fournit au cerveau les 

indices sensoriels principaux sur le mouvement du corps et de son emplacement dans 

l'espace. Les informations visuelles et vestibulaires sont en permanence équilibrées et 

intégrées pour encoder une représentation la plus fidèle possible du monde extérieur et 

de l’observateur dans le système nerveux central. La vection, expérience de 

mouvement du corps illusoire induite par des stimuli visuels isolés, illustre bien le fait 

que le système vestibulaire et la vision partagent des fondements neuronaux communs 

et une phénoménologie proche. Ainsi, les stimuli optocinétiques induisant une 

vection et la stimulation vestibulaire directe peuvent induire des sensations de 

mouvement du corps entier pouvant être utilisées pour étudier les interactions visuo-

tactiles. Un échec de l’intégration visuo-vestibulaire, artificiellement provoqué par les 

méthodes de la psychologie cognitive ou apparaissant dans des états pathologiques, 

peut conduire à des altérations de l’intégrité corporelle et des troubles de 

l’appropriation de son propre corps. Parmi le reste du traitement polymodal émanant 

d’autres modalités sensorielles, les contributions respectives des systèmes visuel et 

vestibulaire à la conscience de soi corporelle et corrélats neuronaux de la convergence 

visuo-vestibulaire, sont à préciser. Nous avons cartographié les régions du cerveau où 

les stimuli optocinétiques et vestibulaires convergent en utilisant l’imagerie par 

résonance magnétique fonctionnelle à 7 Teslas chez des sujets individuels; nous avons 

identifié trois principales régions de convergence: (1) la profondeur du gyrus 
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supramarginal ou cortex rétroinsulaire, (2) la surface du gyrus supramarginal au niveau 

de la jonction temporo-pariétale, (3) et la partie postérieure du gyrus temporal moyen 

et du sillon temporal supérieur. Nous avons ensuit cherché à induire l’incorporation 

dans le schéma corporel d'une fausse main en caoutchouc via un conflit visuo-tactile, 

communément appelée le paradigme de « l’illusion de la main en caoutchouc », et 

nous avons étudié comment cette intégration pouvait être modulée par l’utilisation de 

la vection. Les sujets ressentant une illusion de vection en direction de la main en 

caoutchouc localisaient par erreur la position de leur vraie main proche du niveau de la 

main en caoutchouc. Cela signifie que les stimuli visuo-vestibulaires peuvent interagir 

avec l’intégration visuo-tactile par un effet facilitateur. Nous avons aussi examiné si 

l'intégration tactile et visuo-proprioceptive dans l'espace péri-personnel pourraient 

être mises à jour dynamiquement en fonction de la congruence entre le feedback visuel 

donné par de fausses mains et de faux pieds et la posture réelle des membres, selon 

que ceux-ci ou les faux membres étaient croisés ou décroisés. Nous avons montré que 

les signaux sensoriels sont intégrés dans l'espace péri-personnel et que celui-ci peut 

être dynamiquement remodelé, mais seulement pour les mains. Enfin, nous avons 

exploré un cas rare d’illusion de la perception du corps chez une jeune patiente 

épileptique éprouvant des épisodes pluriquotidiens de décorporation pendant les 

crises, associées à un foyer de micro-dysplasie corticale focale juxtaposée à une 

anomalie du développement veineux dans le gyrus angulaire gauche, une région 

capitale dans l'intégration visuo-vestibulaire et la conscience de soi corporelle. Nos 

résultats plaident pour un rôle clé du lobule pariétal inférieur pour assembler les 

entrées sensorielles multimodales, afin qu’ils soient intégrés pour permettre 

l’émergence de l’expérience globale et unifiée du « Je ». La représentation 
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multisensorielle du corps peut être redessinée de façon transitoire en utilisant des 

signaux visuels et vestibulaires ou en relation avec une pathologie atteignant la 

jonction temporo-pariétale. L’utilité d’une telle intégration est d’adapter 

dynamiquement nos représentations internes aux changements permanents de notre 

environnement. 
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Chapter 1  General Introduction 

 

1.1 Bodily self-consciousness as an object of study in neurology 

Human consciousness started to be considered as a possible object of scientific 

study in the last decades (Crick, 1994; Dehaene and Naccache, 2001; Dennett, 2015, 

1991). Apparently outside of the span of visual awareness, which was investigated at 

length, another approach emerged through the systematic study of body perception 

and self-consciousness, called ‘bodily self-consciousness.’ How does someone 

experience the feeling of ‘I’ (Blanke and Metzinger, 2009)? Three components of 

bodily self-consciousness have been identified thus far: first-person perspective, self-

identification – the feeling of identifying with a body or a body part, and self-location 

– the place where ‘I’ feel to be in a spatial referential (Blanke and Metzinger, 2009; 

Lenggenhager et al., 2007). The feeling of being localised within a physical body or 

‘embodiment’ and the implicit knowledge of body ownership or somatognosia can be 

disturbed in some pathological conditions. Hence, it can lead to autoscopic 

phenomena such as out-of-body experience (OBE), or its variants, heautoscopy 

(HAS) and autoscopic hallucination (AH), or illusory presences (Arzy et al., 2006; 

Blanke and Mohr, 2005; Blanke et al., 2002). OBEs have been triggered by cortical 

electrical stimulation from the angular gyrus at the right temporo-parietal junction 

(TPJ) at in one epileptic patient (Blanke et al., 2002). During the OBE, the patient 

had the illusory feeling of being dissociated from her own body and seeing it from an 

external visual perspective. Right parieto-temporal lesions are also associated with 

somatoparaphrenia, where body ownership is also impaired (Halligan et al., 1995). 
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Those patients can either ‘misattribute’ someone else’s body part to themselves, or 

‘miss to attribute’ their own body parts to themselves (Aglioti et al., 1996; Bisiach et 

al., 1991; Bottini et al., 2002). Disorders of bodily self-consciousness include various 

semiologies such as feeling of presence (Arzy et al., 2006) and many variants of 

doppelganger’s experiences in very different neurological pathologies (Blanke and 

Mohr, 2005; Heydrich and Blanke, 2013; Heydrich et al., 2011, 2010; Ionta et al., 

2011). Multisensory processing, through the integration of sensory inputs from 

different modalities, is suspected to be one of the key mechanisms making the global 

and unitary character of self-consciousness possible, which a healthy human may 

experience. Interestingly, a strong association seems to exist between illusions 

concerning the whole body and improper visual perceptions about body parts, such as 

the patient stimulated by Blanke et al. (2002) who experienced limb elongation and 

shrinkage sensations. Thus, a failure in multisensory integration may induce changes 

in limbs sensations and whole body illusions that may be both derived from similar 

mechanisms (Blanke et al., 2004). Moreover, vestibular sensations during OBEs have 

been reported (Blanke et al., 2002a; De Ridder et al., 2007; Penfield and Faulk, 

1955). To summarize, dissecting the mechanisms of multisensory interactions 

through illusions or disorders affecting whole body and body limbs may allow a better 

understanding of bodily self-consciousness. Such studies must focus on the most 

important sensory signals processed by human bodies, including visual and vestibular 

systems. 
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1.2 The importance of vestibular cortex in bodily self-consciousness. 

 

In most mammals, the vestibular system, together with the cochlea, the 

peripheral sensory organ of the auditory system, constitutes the labyrinth within the 

inner ear located in the petrous bone. The vestibular system is made of two 

components: the otoliths (utricle and saccule) and the three semicircular canals 

(anterior, posterior and horizontal). The otoliths encode linear accelerations and 

earth’s gravitational pull. The semicircular canals encode rotational accelerations. The 

vestibular system allows body rotation experience (circular motion) - in the three 

Tait-Bryan axes or yaw, pitch and roll - and translation (linear motion) – along 

craniocaudal, dorsoventral, mediolateral axes (see Figure 1).  

 

Figure 1. Linear motions and rotations can describe head motion in different axes in rotation and 

translation. Linear motion is described by its components along front-back (x), left-right (y), and up-

down (z) axes. Rotations are named after nautical terms (pitch, roll, and yaw). Copyright Forget 

Joachim 2015, Inspired from Goldberg et al. (Goldberg and Cullen, 2012). 
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Vestibular signals contribute to posture and oculomotor control through 

vestibulo-ocular reflex (Goldberg and Cullen 2012). Vestibular relays are found in 

many neural structures from the brainstem to the cerebellum, and in the cerebral 

cortex. They contribute to many cognitive functions (see for reviews Lopez 2015, 

Lopez and Blanke 2011).  

Due to its ontological function of encoding body motion, the vestibular system 

is challenging to study in laboratory conditions, requiring subjects to remain 

motionless in the supine position during neuroimaging. The physiological stimulation 

of the vestibular system under ecological conditions is possible in laboratory 

conditions and in routine clinical practice, using rotating or translating chair systems, 

which are not compatible with MRI due to its constraining environment. To achieve 

vestibular stimulation, diverse methods have been used, including in fMRI, but never 

tested with ultra-high field MRI above 3T magnetic fields. Two main methods of 

stimulation have been used: the caloric vestibular stimulation (CVS) and the galvanic 

vestibular stimulation (GVS). During CVS and GVS, illusory head spinning and 

body motion are experienced. During CVS, warm or cold water/air is injected in the 

external auditory canal. The transmission of thermal energy to the inner ear due to the 

temperature gradient is responsible for convective motion in the endolymph of the 

semicircular canals, activating the hair cells of the crista ampullaris. GVS (see chapter 

2 for details) stimulates the vestibular apparatus using electrical currents through 

electrodes placed near the mastoid processes. This creates a modulation of 

hyperpolarization in the vestibular neuroepithelium increasing the firing rate in 

vestibular afferents to the cathode and decreasing it to the anode. Sensations evoked 
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are stronger with GVS than with CVS because GVS unselectively activates both the 

otoliths and the semicircular canals (Lopez, 2015). 

 

 The vestibular system appears to be particularly important for bodily self-

consciousness. Vestibular symptoms are known to accompany many disturbances of 

bodily self-consciousness (Lenggenhager and Lopez, 2015; Lopez, 2013). The 

functional and anatomical properties of vestibular neural networks, especially at the 

cortical level, are still not fully understood both in animals and in humans (Lopez and 

Blanke, 2011; Lopez, 2015). A core peri-sylvian region in the posterior parietal and 

insular cortex, including the depth of parietal operculum and the surface of TPJ in 

inferior parietal lobule (IPL), seems to mediate the processing of vestibular signals 

(see Figure 2). But the vestibular system is not organised like vision, touch and 

audition, with the classical hierarchy of a primary sensory cortex with further relays in 

the associative cortices (Lopez et al., 2012b; Zu Eulenburg et al., 2012). Area OP2 of 

the parietal operculum may correspond to the human homologue of parieto insular 

vestibular cortex (PIVC). No proper primary vestibular cortex exists but OP2 

(Eickhoff et al., 2006) has the characteristics of a koniocortex (thin and granular) like 

primary cortices found in cuneus, lingual gyrus, parahippocampal, post central gyrus, 

and transverse gyrus of Heschl (Arslan, 2001). OP2 may also correspond to an area 

found by Glasser and Van Essen (Glasser and Van Essen, 2011), showing differential 

intensity properties in T1- and T2-weighted images. Following the line of 

interpretation of these authors, those intensity differences are due to particular local 

intracortical myelination properties, which would fit the classical aspect of a primary 

sensorial area, like the primary somatosensory cortex or Heschl gyrus, always more 
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hyperintense in T1 weighted sequences than adjacent cortices. Brand et al. (1998) 

suggest that “all vestibular areas are multisensory.” Other cortical areas seem 

particularly important for vestibular processing: the inferior parietal lobule in extenso, 

the visual associative areas hMSTd (the anterior part of MT-MST complex in 

humans, homologue of MSTd in monkeys), the ventral intra parietal area (VIP) or 

the cingulate sulcus visual area (CSv). All those suspected ‘vestibular cortices’ have 

been identified using functional magnetic resonance imaging (fMRI) or positron 

emission tomography (PET) or direct electrical cortical stimulation during clinical 

investigations for epilepsy (Lopez and Blanke, 2011; Lopez et al., 2012b). 
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Figure 2. Comparative anatomy of monkey and human vestibular cortex. From Lopez and Blanke 

(2011). (A) Schematic representation of the vestibular areas in monkeys. Areas 2v, 6v, 7 and 3av 

(3aHv: 3a-hand-vestibular region, 3aNv: 3a-neck-vestibular region), MIP: medial intraparietal area, 

MST: medial superior temporal area, PIVC: parieto-insular vestibular cortex, VIP: ventral intraparietal 

area, VPS: visual posterior sylvian area. Major sulci are represented: arcuate sulcus (arcuate), central 

sulcus (central), lateral sulcus (lateral), intraparietal sulcus (intra.) and superior temporal sulcus (sup. 

temp.). Adapted from Sugiuchi et al (Sugiuchi et al., 2005). (B) Vestibular areas in humans revealed by 

neuroimaging during caloric (red symbols) and galvanic (blue symbols) vestibular stimulation, as well as 

during short auditory stimulation (yellow symbols). To summarize, right and left cerebral activations 

are reported on a lateral view of the right hemisphere (modified after Duvernoy, 1999). The supposed 

homologous vestibular areas reported in animals are indicated in bold letters (FEF: frontal eye fields). 

The numbers on the cortex refer to the cytoarchitectonic areas defined by Brodmann. 
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Vestibular cortices must be better mapped and amongst them, important 

regions for multisensory integration need to be investigated further to understand 

better the neural correlates of bodily self-consciousness. In TPJ lesions, along angular 

gyrus (AG) and supramarginal gyrus (SMG), vestibular dysfunctions have been 

reported and intracranial electrical stimulation at this site also evoked graviceptive 

sensations and whole-body displacements as well as complex limb transformations 

(Blanke et al., 2002b; Mazzola et al., 2014; Penfield, 1957). Even if, by the past, 

vestibular research has not been considered enough by cognitive neuroscientists in the 

study of neural correlates of consciousness (NCC), many recent works investigated 

the role of vestibular integration with other polysensory signals in the last decade. 

Studies focused both on humans (Ferre et al., 2014, 2013, 2010; Ferrè et al., 2013; 

Lenggenhager et al., 2008; Lopez et al., 2010, 2008b; Pfeiffer et al., 2014, 2013) and 

on animals. Visual and vestibular inputs were particularly investigated (Angelaki et al., 

2011; DeAngelis and Angelaki, 2012; Fetsch et al., 2012, 2011; Ohshiro et al., 2011). 

 

1.3 Multisensory integration: key concepts 

As reported by Stein and Stanford (Stein and Stanford, 2008), “For thousands 

of years science philosophers have been impressed by how effectively the senses work 

together to enhance the salience of biologically meaningful events. However, they 

really had no idea how this was accomplished.” Scientists approached the concept of 

multimodal sensory integration, the so-called “multisensory integration, using various 

theoretical models. The multisensory integration problem has been classically 

investigated using the superior colliculus as a model of polysensory integration aiming 
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to the control of eye and head movements (Holmes and Spence, 2005; Miller et al., 

2015). Accumulation of multiple sensory evidence also occurs at the cortical level in 

higher-order association cortices (Ghazanfar and Schroeder, 2006). Three key 

principles seem to account to multisensory integration: (1) the temporal congruency 

principle (see also Rowland and Stein, 2014), (2) the spatial congruency principle, (3) 

the principle of inverse effectiveness (or ‘superadditivity’). It means that neuronal 

responses to stimuli coming from two different sensory modalities have more chance 

to occur through mutual enhancement if both stimuli come from the same location 

(1), come at the same time (2) or when at least one of the two stimuli is too weak to 

excite a single neuron by itself (3). Some models based on divisive normalisation have 

been proposed. They take into account the integration of sensory evidence by 

neuronal assemblies (Ohshiro et al., 2011; van Atteveldt et al., 2014). The most 

recent models based on Bayes theorem (Seilheimer et al., 2014; Vilares and Kording, 

2011) have challenged traditional cue combination models (allowing only integration, 

partial integration or segregation). In Bayesian models, different sensory inputs have a 

certain amount of variability and the brain has to build a coherent representation of 

the external world, based on prior knowledge (sensory representations) and likelihood 

(statistics obtained from the environment). Prior knowledge and likelihood have been 

shown to be independent parameters (Beierholm et al., 2009). The multisensory 

assignment problem or “causal inference problem” (Körding et al., 2007) can be 

addressed through Bayesian models of multisensory integration. The capacity to infer 

causal structure does not seem to be restricted to conscious cognition (Körding et al 

2007) but occurs unconsciously in different aspects of perceptual processes. Body 

ownership can be viewed as a multisensory assignment problem solved continually in 
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an effortless manner and through multisensory evidence, for body ownership, for body 

location, and for peripersonal space. This ability may be disrupted temporarily when a 

subject has to undergo experiments using the methods of cognitive psychology, 

leading to limit states of bodily self-consciousness and reshaping the integrity of body 

scheme. This has been shown for example by Guterstam et al. in elegant series of 

studies where bodily self-consciousness was altered: subjects were either 

misattributing an external limb to their own body (Guterstam et al., 2011), 

embodying of volume of empty space as their own hand (Guterstam et al., 2013) or 

experiencing full disembodiment towards an invisible body (Guterstam et al, 2015). 

Classical former experiments also showed that a human healthy subject could 

misattribute a rubber hand as his own body part (Botvinick and Cohen, 1998) and an 

avatar as his own body (Ehrsson, 2007; Lenggenhager et al., 2007). Perceptual effects 

of multisensory integration mainly correspond to a decrease of the sensory 

uncertainty. It happens when multisensory cues are merged as a single percept while 

we try to localise the source of stimulation. It can lead for example to perceptual 

illusions ass in the ventriloquism illusion (Alais and Burr, 2004) or in the McGurk 

effect (McGurk and MacDonald, 1976). Multisensory integration can also diminish 

reaction times. Hence, the perception of multiple simultaneous or ‘optimally’ 

separated in time can be faster than the perception of the same stimuli well separated 

in space and time. For instance, an optimal level of asynchrony (short delays) in the 

onsets of a tone and of a light allows detecting them faster than when they are 

displayed separately (Hershenson, 1962). Similarly, redundant target effects can also 

be observed, as human subjects will be faster to answer to two simultaneous visual 

targets than to two separate targets (Ridgway et al., 2008). In our field of interest, i.e. 
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bodily self-consciousness, visuo-tactile stimuli will trigger faster reaction times than 

visual or tactile unimodal stimuli (Forster et al., 2002). The enhancement effect seems 

particularly important for vision and vestibular senses, as readjustment of postures for 

a new situation while the body is moving is capital, to avoid life threats (for instance, 

when someone is driving a vehicle). While a fast update of our internal 

representations of the world seems to be needed, conversely, conscious reports of 

visual events seem to obey to slow mechanisms occurring in temporal windows of 300 

ms (Forget et al., 2010; Sergent and Dehaene, 2004). Vestibular sensations are also 

reported after long delays of approximately 450 ms in average, following the onset of a 

vestibular stimulation (Barnett-Cowan and Harris, 2009). The intersensory 

enhancement processes could occur at different levels of relays of the vestibular before 

it “reaches” consciousness (Lopez, 2015). Vestibular inputs need visual evidence and 

proprioceptive evidence to allow fast bodily reactions to the environment, while 

vestibular inputs seem better to detect transients such as body accelerations, where 

visual modality alone with proprioception and erroneous top-down predictions may 

be defective (as in the train illusion, where one can think he is moving while the 

environment is actually moving). 

 

1.4 Manipulation of embodiment in healthy subjects: multisensory mismatches 

Nevertheless, in adulthood, despite of prior learning through multisensory 

experience, the body schema and the peripersonal space seem to stay flexible enough 

to be transiently reshaped, at least for some aspects and in certain circumstances. It 

happens for instance in limit states of perception such as Rubber Hand Illusion 
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(RHI), Full Body Illusion, vection (see above), train illusions, vestibular and motion 

aftereffects (motion feeling after body rotation or after optokinetic motion, following 

a period of habituation and with a sudden stop of the stimulation). We cannot limit 

definitions to “multisensory integration”. It seems more accurate to speak about 

“multisensory mechanisms”, as multisensory convergence dos not always lead towards 

integration. Body disintegration occurs quite easily in laboratory conditions during 

experimental workup. Environmental conditions continuously alternate when one 

modality is more effective than the other. Both are balanced to allow an optimal body 

interaction with its environment. The adaptability to environment (to avoid obstacles 

for example) might be the evolutionist benefit of such a plasticity of body ownership. 

In fact, body ownership can be easily manipulated in healthy humans and a 

temporary disruption of the physiological multisensory integration can occur through 

causal interference. Related procedures are the rubber hand illusion (RHI) (Botvinick 

and Cohen, 1998) or its equivalent for the whole-body in Virtual Reality set-ups 

(VR), the full body illusion (FBI) (Aspell et al., 2009; Lenggenhager et al., 2007; see 

also Ehrsson, 2007). RHI and FBI create a mismatch between sensorial modalities, 

by a manipulation of visual and proprioceptive cues. Those illusions are associated 

with self-identification to elements external to the physical body, respectively a fake 

hand in the case of RHI or an avatar in the case of FBI. In the FBI, the subject views 

his own body from behind displayed in a head-mounted display (a virtual body seen 

from the back corresponding to a live movie by a camera behind the subject). Thus, 

when the ‘felt stroking’ on the back of the body is synchronous with the ‘seen 

stroking’ on the virtual body, the subject has a tendency to self-attribute the virtual 

body as its own, as a result of visual and tactile congruency and of visual dominance, 
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as vision biases other sensory modalities in crossmodal perceptual tasks (see also 

Witten and Knudsen, 2005). The touch is illusory felt by the subject at the virtual 

body location, as if tactile sensations were remapped to the avatar. It also leads to 

impaired estimation of self-location towards the avatar. Participants show a 

significantly stronger drift in the direction of the virtual body in the synchronous 

condition than in the asynchronous condition (see Figure 3). 

 

 

Figure 3. Adaptation of the rubber hand illusion to the entire body: the full body illusion, after 

Lenggenhager et al. (2007). Experimental setup and proprioceptive drift in cm the synchronous (black) 

and asynchronous stroking conditions (grey) on the posterior-anterior axis.  

 

Visuo-tactile integration can also be modulated by a stimulation of the 

vestibular system. The RHI effect can be enhanced with galvanic vestibular 

stimulation (Lopez et al., 2010). Moreover, the experience of phantom limbs in 

amputees and paraplegic patients is modulated by CVS (André et al., 2001; Le 

Chapelain et al., 2001). In healthy humans, vestibular stimulation can impair hand 

pointing tasks and the reproduction of arm positions (Bresciani et al., 2002; Knox et 

al., 2006; Mars et al., 2003). 
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1.5 Vection, a tool to investigate visuo-vestibular interactions and self-motion 

Multisensory interactions occur between the visual and vestibular systems. 

This cross-convergence has been explained by the fact that an organism in motion 

essentially receives the information from vision and vestibular signals, as well as 

somatosensory and proprioceptive signals. A typical example of visuo-vestibular 

interactions is the phenomenon called vection, extensively reported in visual 

psychophysics literature starting from Ernst Mach in a princeps paper (Mach, 1875) 

and still studied in contemporary research (Berthoz et al., 1975; Dichgans and 

Brandt, 1978; Trutoiu et al., 2009). A moving visual scene or an optokinetic stimulus 

based on an optic flow can induce a sensation of self-motion in the absence of real 

motion from the subject. Vection is a visually induced illusory self-motion, where 

bodily self-motion can be felt by the subject, in the direction opposite to the optic 

flow but on the same axis. Linear upward flow induces downward vection for 

instance. Vection also leads to postural readjustments (Lestienne et al., 1977). Vection 

is commonly experienced in daily life, while gazing at the sky and the clouds moving, 

the water moving in the river stream, or when we are waiting in a train while seeing 

the train besides starting in opposite direction. The main dilemma to solve for a 

subject gazing at an optic flow is to rely on an egocentric or on an allocentric 

referential to decide about his own self-motion: “Is the surrounding environment 

moving or am I moving?” Visual cues provide important information (together with 

touch and proprioception) to the brain in order to assess for one’s own motion in 

space at a constant speed motion, when vestibular cues are weak or not present. 

Seven functional neuroimaging studies in PET and fMRI investigated vection 

(Beer et al., 2002; Brandt et al., 1998; Deutschländer et al., 2004; Kleinschmidt et al., 
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2002; Kovács et al., 2008; Previc et al., 2000; Slobounov et al., 2006). Many other 

studies focused on coherent optic flow stimulation or optokinetic nystagmus but failed 

to induce vection or were not interested to induce such illusory self-motion. Inducing 

vection requires specific criteria including a large peripheral field of view (for linear 

vection), high velocity stimuli, high visual density of the display, and optimisation by 

a central fixation. Optokinetic stimuli inducing vection activate a network of motion-

sensitive areas such as the anterior portion of the human motion complex (hMSTd or 

V5a), the TPJ, the dorsomedial cortex or V6 (cuneus and parieto-occipital cortex), 

and an area of ST and posterior intraparietal cortex (Kleinschmidt et al., 2002). 

Vection might also correlate with deactivations in the vestibular cortices (retroinsular 

and parietal-insular regions) and in early motion-sensitive visual areas, supporting the 

idea of an inhibitory interaction between visual and vestibular systems for motion 

perception (Brandt et al., 1998; Deutschländer et al., 2004; Kleinschmidt et al., 

2002). Kleinschmidt et al (2002) described a direct correlation of vection with 

cerebellar nodulus activity and Kovacs, Raabe and Greenlee (2008) reported a more 

intense activity in several regions when they compared vection with object motion 

perception. Those regions included the right MT, the precuneus and the areas along 

the dorsal part of the IPS and along the left posterior IPS. The larger cluster of this 

study was located in the precuneus which is an area activated by optic flow, also 

activated in visuo-spatial imagery and which has connections with parieto-insular 

cortical regions (Cavanna and Trimble, 2006). A right paramedian precuneus lesion 

has also been reported to lead to recurrent illusory linear vection episodes in a patient. 

Those episodes were reproduced by cortical stimulation at the site lesion and ceased 

after tumour excision (Wiest et al., 2004). Two associative visual areas seem to receive 
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vestibular afferents in humans: the anterior part of MST (hMST, but not the adjacent 

area MT) and the cingulate sulcus visual areas CSv, as it has been shown recently in 

fMRI with using galvanic stimulation (Smith et al., 2012). 

 

1.6 General Overview: investigating visuo-vestibular contributions to bodily self-

consciousness 

Data from the literature emphasise the concept of a bodily self-consciousness 

based on multisensory integration and highly linked to vestibular and visual 

perception. A failure of multisensory integration artificially induced by the methods 

of cognitive psychology or in pathological conditions can lead to an altered body limb 

perception, to modified body ownership and even to disembodiment. The 

contribution of the vestibular system is still to be assessed more extensively amongst 

other multisensory mechanisms. Vection is a phenomenon for which a functional and 

anatomical link has been described between visual and vestibular systems. For the 

study of bodily self-consciousness and bodily perception, optokinetic stimuli or ‘optic 

flow’ is a good alternative to direct vestibular stimulation, as it also induces whole-

body transformations and may modulate visuo-tactile conflicts observed in classical 

cognitive psychology paradigms. 

On the other hand, the vestibular network description in human remains a 

major challenge. If we consider it a major contributor to multisensory processing, an 

extensive knowledge of its anatomy, its function and its interactions with other 

sensory systems (somatosensory, motor, and proprioceptive) are prerequisites to a 

better understanding of bodily self-consciousness. Two main obstacles remain: first of 
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all, delivering vestibular stimuli in experimental neuroimaging conditions may be 

complex but is possible through fMRI using artificial peripheral stimulation with 

GVS or CVS. Moreover, the characterization of the vestibular cortex imposes a better 

delineation of the highly folded cortical areas at the TPJ and in the insulo-opercular 

region to label them accurately and appreciate their respective contribution to the 

visuo-vestibular integration. It can be achieved by a combination of neuroimaging 

techniques with high spatial resolution, needing an increased signal-to-noise ratio 

compared to traditional fMRI at 1.5 or 3T. 

 

This thesis research project was dedicated to the study of visuo-vestibular 

mechanisms in the healthy human brain and in pathological conditions leading to 

altered states of bodily self-consciousness. Accordingly to the previous statements, we 

decided to orientate our work towards two main experimental lines: neuroimaging 

and cognitive psychology. We approached both healthy people and patients with 

disturbed embodiment multisensory processing. In chapter 2 we conducted the main 

work of this thesis, a functional MRI study of the vestibular network to map the 

regions of visuo-vestibular convergence in healthy humans. We performed this study 

with the ultra-high field 7 Tesla MRI EPFL-CIBM machine, and identified the 

cortical nodes of the vestibular network critical for visuo-vestibular processing. We 

used galvanic vestibular stimulation within the constraining MR environment to 

stimulate the vestibular system (Wardman and Fitzpatrick, 2002) and optokinetic 

stimuli, the visual counterpart of vestibular control during human motion (Warren et 

al., 2001). In chapter 3 and 4, we designed behavioural studies manipulating visual, 

tactile, proprioceptive and optokinetic stimulations to see how bodily self-
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consciousness and embodiment of external fake limbs could be modulated by visuo-

vestibular signals triggering vection or by visual dominance over somatosensory 

signals. We used visuo-tactile conflicts based on visual dominance over touch, and 

tested the respective contribution of visual optokinetic stimuli and visuo-

proprioceptive manipulations to assess the weight of those respective sensory inputs to 

create the body schema and body image. In chapter 5, we finally made the link with 

clinical practice by reporting the case of a patient with a rare disturbance of bodily 

self-consciousness, based on a mixed semiology between OBE and HAS which was 

associated with a cortical lesion in a visuo-vestibular multisensory cortex, the left 

temporo-parietal junction. 
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Abstract  

 

Visual and vestibular systems interact to encode body motion and location in 

space. Nevertheless, the existence of cortical areas processing both visual and 

vestibular signals is unclear. We aimed to identify visuo-vestibular brain regions in the 

posterior peri-sylvian and extrastriate brain regions using 7T functional magnetic 

resonance imaging. 11 human subjects received galvanic vestibular stimulation at the 

mastoid (contrasted to galvanic cutaneous stimulation of the neck) and were exposed 

to linear coherent motion via an optokinetic visual stimulation (contrasted to a 

condition with static dots). Visuo-vestibular convergence occurred within a parieto-

temporal network and included the (1) retroinsular cortex within the depth of 

supramarginal gyrus and in the area OP1 of parietal operculum, (2) at the temporo-

parietal junction at the surface of the supra marginal gyrus, mainly in areas PF and 

PFt, and in (3) posterior middle temporal gyrus and superior temporal sulcus 

extending in extrastriate cortex. Visuo-vestibular convergence in (2) and (3) were 

found in the majority of subjects while Ri was a less consistently activated across 

subjects. These data are aligned to recent neurophysiology data in monkeys showing 

that visuo-vestibular integration does not occur in posterior insula but in its posterior 

vicinity in the inferior parietal lobule, which incorporated the retroinsular cortex, 

behind the human analogue of the monkey parieto-insular vestibular cortex. 

Moreover, we describe a new region of visuo-vestibular convergence in middle 

temporal gyrus, anterior and superior to the motion-sensitive extrastriate cortex. 
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Introduction 

The vestibular system encodes rotational and translational accelerations of the 

head in space, provides important signals about gravity, and contributes to posture 

and eye movement control. Visual and vestibular systems are complementary in 

coding self-motion and self-location in daily life (Barry and Burgess, 2014; DeAngelis 

and Angelaki, 2012). For example, the vestibular system is tuned to high velocity 

motion while the visual system preferentially encodes low velocity motion in space. In 

addition, while vestibular receptors are silent during constant velocity motion, visual 

receptors continue to encode self-motion (Fetsch et al., 2012). As a result, low-

velocity coherent visual motion can evoke compelling sensations of self-motion 

(Berthoz, Pavard, & Young, 1975; Kleinschmidt et al., 2002; Pavard & Berthoz, 

1977). 

 

Visuo-vestibular integration has been extensively described in the vestibular 

nuclei and thalamus of monkeys, cats and rats (Cazin, Precht, & Lannou, 1980; 

Cullen, Roy, & Sylvestre, 2003; Magnin & Putkonen, 1978; Waespe & Henn, 1980), 

but there is still scarce description of the mechanisms supporting visuo-vestibular 

integration in the cortical vestibular network, especially in humans. To date, more 

than ten cortical regions sensitive to vestibular inputs have been described in animals, 

including the parieto-insular vestibular cortex (PIVC), primary somatosensory cortex, 

ventral intraparietal, medial intraparietal and lateral intraparietal areas, medial 

superior temporal area (MST), the motor and premotor cortex, hippocampus, and 
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several other regions (review in Lopez & Blanke, 2011; Lopez, 2015). Interestingly, 

visuo-vestibular convergence has been revealed in many of these regions in monkeys, 

indicating that the vestibular cortex is foremost a cortex underpinning multisensory 

self-motion perception (Guldin & Grüsser, 1998).  

Anatomical investigations into the cortex of several monkey species suggest 

that the PIVC – located at the junction of the posterior insula, parietal operculum and 

retroinsular cortex – constitutes the core of the vestibular cortex (Akbarian, Grusser, 

& Guldin, 1994; Akbarian, Grüsser, & Guldin, 1993; Grüsser, Pause, & Schreiter, 

1982, 1990; Grüsser, Pause, Schreiter, et al., 1990; Guldin, & Grüsser, 1998; Guldin, 

Akbarian, Grüsser, & Grusser, 1992; Guldin, Mirring, & Grüsser, 1993). While 

electrophysiological studies showed that the PIVC is crucially involved in processing 

vestibular signals (Chen, DeAngelis, & Angelaki, 2010; Grüsser, Pause, & Schreiter, 

1990; Grüsser, Pause, Schreiter, et al., 1990; Liu, Dickman, & Angelaki, 2011; 

Shinder & Newlands, 2014), these studies provided diverging results regarding the 

convergence of vestibular and visual signals in PIVC neurons. According to Grüsser 

and colleagues (Grüsser, Pause, & Schreiter, 1990; Guldin et al., 1992), PIVC 

neurons in Macaque monkey (Macaca fascicularis) respond to body rotation and optic 

flow rotating around the animal. Other data confirmed this and also reported that 

PIVC neurons respond to the motion of a visual target (Shinder and Newlands, 

2014). In addition, visuo-vestibular integration was reported in an area located 

posteriorly to the PIVC and referred to as “visual posterior sylvian area” (VPS) 

(Dicke, Chakraborty, & Thier, 2008; Guldin et al., 1992; Guldin & Grüsser, 1998). 

By contrast, Chen and colleagues (2010) localised vestibular neurons in rhesus 

monkeys (Macaca mulatta) more posteriorly, “within area Ri (retroinsular) and in the 
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transition zones between S2, Ri and Ig (insular granular field)”, and showed that 

PIVC neurons did not respond to optokinetic stimulation.  

 

 In humans, six neuroimaging studies reported brain activations evoked by 

visual and vestibular stimulation as tested in the same subjects. It is however difficult 

to directly compare these results as different types of vestibular stimulations have been 

used (caloric or galvanic vestibular stimulation) as well as different neuroimaging 

techniques in recent studies using 3T fMRI (Smith, Wall, & Thilo, 2012, Frank, 

Baumann, Mattingley, & Greenlee, 2014; Billington and Smith, 2015; Della-Justina 

et al., 2015) and earlier work using PET (Deutschländer et al., 2002) or MEG 

(Hegemann et al., 2003). Although these studies revealed overlapping visual and 

vestibular activations in both deep and superficial parts of the posterior Sylvian fissure 

(Frank et al., 2014; Smith et al., 2012) there is, to date, no detailed anatomical 

definition of the site of visuo-vestibular convergence in the human PIVC, probably 

due to diverging nomenclatures and the lack of high spatial resolution in previous 

neuroimaging studies. Thus, human PIVC has been located in different parts within 

temporo-parietal cortex: in cytoarchitectonic area OP2 in the parietal operculum 

(Eickhoff, Weiss, Amunts, Fink, & Zilles, 2006; Lopez & Blanke, 2011; zu 

Eulenburg et al., 2013; zu Eulenburg, Caspers, Roski, & Eickhoff, 2012), in the 

posterior insular cortex (Mazzola et al. 2014; Bense et al. 2001), posteriorly to the 

insula and OP2 in the “retroinsular cortex” (Lopez, Blanke, & Mast, 2012), or in the 

more superficial “temporo-peri-Sylvian vestibular cortex” widely distributed in the 

inferior parietal lobule and superior temporal gyrus (Kahane et al., 2003). Thus, it 

remains unclear which exact region or regions of the human operculo-insular complex 
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and perisylvian area contribute to visuo-vestibular processing. Moreover, functional 

neuroimaging studies also revealed visuo-vestibular convergence in the extrastriate 

cortex in MT/MST complex (i.e. hMST), the human homologue of animal MSTd, 

the anterior part of MT/MST complex (Cardin & Smith, 2010; Frank et al., 2014), 

as well as in posterior cingulate sulcus (Cardin & Smith, 2010). Although galvanic 

vestibular stimulation (GVS) activates the posterior part of the middle temporal gyrus 

(pMTG) and the superior temporal sulcus (pSTS) (upper and anterior to hMST; 

Lopez et al., 2012; Stephan et al., 2005) visuo-vestibular convergence has not been 

reported so far in the pMTG and pSTS (note that pMTG and pSTS are part of 

multisensory cortex activated by to optokinetic stimulation, somatosensory and 

auditory stimuli (i.e. Beauchamp, 2005). 

 

Here, we investigated visuo-vestibular convergence in human cortex taking 

advantage of the ultra-high resolution 7T MRI with its high signal-to-noise ratio 

allowing BOLD measurements in individual subjects (Dula et al., 2010; Duyn, 2012; 

van der Zwaag et al., 2009). We compared brain activations evoked by GVS, which is 

a reliable and safe technique to deliver artificial vestibular stimulation in MRI (Brandt 

and Dieterich, 1999; Lobel et al., 1998). GVS was contrasted with a control galvanic 

cutaneous stimulation (GCS), and compared to activations evoked by linear 

optokinetic stimulation (Saenz, Lewis, Huth, Fine, & Koch, 2008). The high spatial 

resolution available at 7T (Salomon et al., 2014) allowed us to observe activations in 

individual subjects, tracking possible inter-individual variability inherent to vestibular 

stimulation (see for example Bense et al., 2001; Cardin & Smith, 2010; Lopez, 

Blanke, et al., 2012). To disentangle the respective contribution of small regions in 
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the highly folded region of the inferior parietal lobule, and particularly the cortices 

including parietal operculum, supramarginal gyrus and posterior insula, the detected 

regions of visuo-vestibular convergence were precisely mapped according to 

cytoarchitectonic subdivisions of the inferior parietal lobule using cytoarchitectonic 

atlases of the parietal and occipital lobe (Triarhou, 2013; Von Economo and 

Koskinas, 2008) as well as probabilistic cytoarchitectonic mapping (Caspers et al., 

2013, 2008; Eickhoff et al., 2005; Eickhoff et al., 2006a; Eickhoff et al., 2006; Kurth 

et al., 2010) 

 

Materials and methods 

 

Subjects 

Twelve subjects participated to the study, of which one had to be excluded due 

to failure of the galvanic vestibular stimulation during fMRI scanning. The remaining 

eleven subjects (7 males; mean age ± standard deviation: 26.2 ± 5.1 years) were all 

right-handed, had normal or corrected-to-normal vision, and gave written informed 

consent to participate in the study. All procedures received the approval of the Ethics 

Committee of the Faculty of Biology and Medicine of the University of Lausanne and 

the study was conducted in accordance with the Declaration of Helsinki.  
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Experimental setup for sensory stimulations 

Galvanic vestibular stimulation and galvanic cutaneous stimulation 

GVS and GCS were applied using a bipolar, binaural configuration. A 

stimulator (Model Grass S48, Astor-Med Inc., West Warwick, RI, USA) delivered a 

square wave pulse through an isolation unit (Model Grass SIU5), a constant current 

stimulus unit (Model Grass CCU1), and a switch box to alternate current polarity 

between the electrodes. Two pairs of rubber carbon electrodes (4 × 5 cm) embedded 

in a sponge saturated with water were attached to the subject’s head. For GVS, the 

electrodes were placed on the skin over the mastoid processes. For GCS, the 

electrodes were placed on the left and right side of the neck, 5 cm below the GVS 

electrodes. GCS was used to evoke tactile sensations mimicking those evoked by 

GVS, without inducing vestibular stimulation (Lenggenhager et al., 2008). The firing 

rate of vestibular afferents is known to increase on the cathodal side and decrease on 

the anodal side (Goldberg et al., 1984). Accordingly, right GVS and GCS refer to 

right cathodal stimulations, whereas left GVS and GCS refer to left cathodal 

stimulations.  

In the pre-scan testing phase, GVS voltage was adapted for each subject: while 

the subject was sitting with eyes closed outside of the scanning room, the current 

intensity was progressively increased until the subject reported a vestibular sensation 

as strong as possible without being uncomfortable or painful. For GCS, the current 

intensity was progressively increased until the subject reported the same intensity of 

tactile and/or heat sensation as during GVS. Before the beginning of the GVS and 

GCS runs, while the subject was lying inside the bore, the intensity of the GVS and 



 41 

GCS was controlled to ensure that vestibular and tactile sensations were not modified 

by head position and fixation in the MRI coil. Individual thresholds were confirmed 

once the subject was placed supine inside the scanner. All subject reported identical 

cutaneous sensations for GVS and GCS stimulation. The current intensity used for 

GVS (mean ± SD: 2.5 ± 1.2 mA) did not differ from that used for GCS (mean ± SD: 

2.0 ± 1.1 mA; paired-sampled t-tests: p = 0.14).  

 

The stimulation protocol was controlled using E-prime (Psychology Software 

Tools, Inc.) and included two functional runs, one providing GVS and the other 

GCS. Each of the two runs consisted of 10 blocks of right cathodal stimulation and 

10 blocks of left cathodal stimulation, delivered in a random order. Each block 

consisted of 5 pulses of 1500 ms with inter-stimulus intervals of 500 ms (for a total 

duration of 10 s per block), followed by 20 s of rest. In total, the duration of each run 

was 8 min. Subjects were asked to keep their eyes closed during GVS and GCS runs. 

 

Optokinetic stimulation 

We used an optokinetic stimulation, that does not evoke vection, originally 

designed to localise the MT+/V5 complex (Saenz, Lewis, Huth, Fine, & Koch, 

2008). The stimulus consisted of 300 white dots located within a circular field of 

view, moving coherently on a black background, with a velocity of 8 °/s, radially 

inward or outward with a reversal of the direction of motion every 800 ms. Random 

dot arrays subtended ±12° of visual angle from a central fixation point. Individual dots 
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(50 displayed in total in each frame) subtended 1°. Subjects were instructed to fixate a 

red dot at the centre of the visual field for the entire duration of the run. Stimulation 

blocks were made of periods of moving dots of 12 s alternatively moving forward or 

backward separated by 18 s during which the dots remained stationary, used as a 

baseline condition. The functional run included 8 repetitions of the stimulation-rest 

blocks, starting with the moving one, resulting in a total duration of 4 minutes. Visual 

stimuli were generated using MATLAB (The MathWorks Inc.) and the 

Psychophysics Toolbox (www.psychtoolbox.org) and projected onto a rear-projection 

screen visible from the scanner bore via a mirror mounted on the head coil. 

 

MRI data acquisition 

Images were acquired on a short-bore 7T scanner (Siemens Medical, 

Germany) equipped with a 32-channel Rx / 1-channel Tx rf-coil (Nova Medical, 

Cleveland, USA) (Salomon et al., 2014). Functional images were acquired using a 

sinusoidal readout EPI sequence and comprised 46 transverse slices, placed in order to 

cover the insula, the temporo-parietal junction and visual associative areas, with an in-

plane resolution of 1.5 × 1.5 mm2 (slice thickness = 1.5 mm, no gap). The matrix size 

was 140 × 140, field of view = 210 mm, TE = 26 ms, TR = 2.5 s, GRAPPA = 3. Each 

GVS and GCS functional run comprised 200 volumes and the optokinetic functional 

run 96 volumes. An anatomical volume was acquired using the MP2RAGE sequence 

(Marques et al., 2010) at 1 × 1 × 1 mm3 resolution (TE = 2.63 ms, TR = 7.2 ms, TI1 = 

0.9 s, TI2 = 3.2 s, TRMPRAGE = 5 s). To perform the coregistration between functional 

and anatomical volumes, a whole brain EPI with 80 slices was also acquired (in-plane 
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resolution of 1.5 × 1.5 mm2, TR = 4350 ms, TE = 26 ms, slice thickness = 1.5 mm, no 

gap, matrix size 140 × 140). 

 

Functional MRI data analysis and anatomical landmarks  

Pre-processing and analysis were conducted with SPM8 (Wellcome 

Department of Cognitive Neurology, London, UK). Functional volumes were 

spatially realigned to the first volume acquired, and smoothed with an isotropic 

Gaussian kernel (FWHM = 2 mm). Blocks of left and right GVS stimulation and 

blocks of visual stimulation were statistically analysed using the General Linear 

Model using the canonical hemodynamic response function (HRF) and its time 

derivative as basis functions. A high-pass filter was applied to remove slow signal 

drifts with a period longer than 256 s in the case of GVS and GCS and longer than 

60 s in the case of visual stimuli. 

 The MP2RAGE volume was coregistered to the whole brain EPI image by 

means of rigid body transformation and both were coregistered to the mean EPI 

functional volume. All the fMRI analysis was conducted in the individual subject 

space (i.e. in the space of individual functional acquisitions) and, for visualization 

purposes, these results were then normalized to the MNI standard brain and 

resampled at a resolution of 1 × 1 × 1 mm3. To this end, the transformed structural 

images were first segmented into grey matter, white matter and cerebrospinal fluid 

using SPM8 and then transformed into the MNI (Montreal Neurological Institute) 

space using the Diffeomorphic Anatomical Registration Through Exponentiated Lie 

algebra (DARTEL) tool (Ashburner, 2007).  
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 Vestibular regions were identified as those brain areas showing higher 

activation for GVS than GCS for the right and left stimulation separately and results 

were masked inclusively by the GVS activation in order to keep only GVS-activated 

regions.  To identify visual motion areas, the optic flow was contrasted to the static 

images. We were interested to look at true positive voxels (i.e. the conjunction of 

visual and vestibular activations). To this end, conjunction maps were computed with 

a threshold of p < 0.0052 = p < 2.5 e-5, uncorrected for multiple comparisons. 

Corresponding to a threshold of p < 0.005, uncorrected for multiple comparisons, for 

single modality t-maps, respectively right and left GVS-GCS and visual motion-static 

images. 

 After normalization of the results to the MNI template brain, activations were 

allocated to probabilistic cytoarchitectonic maps of the parietal operculum, posterior 

insula, and temporo-occipital cortex using the SPM Anatomy toolbox based on 

Jülich/Düsseldorf group data (Caspers et al., 2006, 2008; Eickhoff, Schleicher, Zilles, 

& Amunts, 2006; Eickhoff, Weiss, et al., 2006; Eickhoff et al., 2007) and anatomic 

atlases of human brain for regions not yet marked in the Anatomy toolbox (Duvernoy, 

1999; Von Economo and Koskinas 1925 and 2008, Triarhou 2013). Von Economo 

and Koskinas (Koskinas, 1925; Von Economo, 2009) attributed a nomenclature 

where the first capital letter corresponds to the lobe (F = frontal, P = parietal, Oc = 

occipital, T = temporal), and the second capital letter corresponds to a subpart of the 

lobe. A third letter may index another subdivision. Inferior parietal cortex is then 

composed of 5 subregions in supramarginal gyrus (PF: rostral main inferior parietal 

area or ‘area supramarginalis’; PFcm: ‘columnata magnocellularis’ subregion of PF; 

PFm: ‘magnocellularis’ subregion of PF; PFop: ‘tenuicorticalis opercularis’ subregion 
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of PF; PFt: ‘tenuicorticalis’ subregion of PF) and 2 regions in angular gyrus or ‘area 

angularis’ or PG, the caudal main inferior parietal area (PGa: anterior; PGp: 

posterior). For extrastriate regions, we do not use original Von Economo 

nomenclature. In fact, area Oam or area 16 in Fleschig Atlas (Flechsig, 1920) , at the 

junction between BA37 and anterior BA19, has been originally described by Von 

Economo and Koskinas (1925) as corresponding to MT+ but was discarded by further 

research (Malikovic et al., 2007; see also page 1037 Paxinos and Mai, 2004). We 

prefer here the nomenclature of Malikovic et al., 2007 used by Anatomy Toolbox. 

The letter ‘h’ corresponds to ‘human’, ‘Oc’ to occipital cortex, and area is numbered as 

5, “when moving laterally from the primary visual cortex” (Malikovic et al., 2007). 

Parietal operculum is corresponding to functionally defined region SII and is 

subdivided into OP1, 2, 3 and 4 (Caspers et al., 2006; Eickhoff et al., 2006a). 

Posterior medial temporal lobe regions are not defined in the Anatomy toolbox, 

except for the medial part of PH (see above), corresponding to fusiform gyrus (Fg1 

and Fg2). Correspondence between Brodmann and Von Economo and Koskinas 

atlases have been schematized (Caspers, 2015) Brodmann area 37 (BA37) is a 

heterogeneous brain region corresponding to a part of lateral occipital cortex, 

including hOc5 and of part of posterior medial temporal gyrus. The anterior and 

superior part of BA37 corresponds to posterior middle temporal region still 

considered as part of parietal lobe called PH in Von Economo and Koskinas (Von 

Economo and Koskinas, 1925; see also figure 27.13 in Paxinos and Mai, 2004). PH is 

considered as paratemporalis ‘homotypical’ cortex in Smith Atlas (1907) and as 

temporal by Campbell atlas (1905) (page 768, comparison of classification schemes of 

the human cortex, in Paxinos, 2012) or as area parietalis basalis by Von Economo and 
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Koskinas atlas (Paxinos, 2012). PH is subdivided into PH (main region), PHo (area 

parietalis basalis limes occipitalis), PHt (temporalis) and PHp (parietalis). 

 

Subjective reports 

At the end of the experiment, subjects filled in a questionnaire (from Lopez et 

al., 2010) to report the effects of GVS and GCS (irrespective of the cathode location). 

Subjects rated the intensity of their body translations and rotations induced by the 

electrical stimulation, the perception of motion during optokinetic stimulation, and 

the skin sensation on a 7-point Likert scale ranging from 0 (no feeling at all) to 6 

(very strong feeling). Axes of rotation and translation were reported according to a 

body-centred reference frame, not with respect to gravity. 

The intensity of tactile sensation experienced during GVS and GCS is reported in 

Table 1. All ratings were significantly different from zero (p < 0.001), indicating that 

a tactile perception was induced by GVS and GCS. No difference between the 

intensity of tactile sensation was observed between GVS and GCS (p = 0.7), neither 

between right and left stimulation (p = 0.5).  

 

1p-values based on the sign test on one sample set. 

Table 1. Skin percepts 
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Table 2 summarizes the intensity of self-motion perception during GVS and 

GCS. No subject reported vestibular sensation outside GVS stimulation. Subjects 

reported sensations of body rotation only around the yaw and pitch axes or sensations 

of body translation only along the mediolateral axis. A Mann-Whitney test indicated 

significantly stronger sensations of body rotation than translation (U = 1178.5, p < 

0.0001). Sign-tests computed on each direction of rotation showed that GVS induced 

a significant perception of body rotation observed along all axes, except along the 

pitch axis in the backward direction (see Table 2 for the statistical values). Sign-tests 

computed on each direction of translation showed that the only significant perception 

of body translation observed during GVS was in the left direction along the 

mediolateral axis (see Table 2 for the statistical values). 

1 p-values are based on the sign test on the one sample set. 
2 The letters for each axis category are linked to the result of the Mann-Whitney test 
for each motion experience (rotation/translation). Group a is significantly different 
from group b (α<0.05) 

Table 2. Body percepts 
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Results 

 

Functional MRI data 

Visuo-vestibular convergence 

We identified three main loci of visuo-vestibular convergence in the 

retroinsular cortex (Ri), at the temporo-parietal junction (TPJ) and in the posterior 

part of the medial temporal gyrus and superior temporal sulcus (pMTG-STS). Visuo-

vestibular convergence is illustrated for three representative subjects in Figures 1, 2 

and 3. Pooling right and left cathodal stimulations, we observed that the majority of 

the subjects showed visuo-vestibular convergence in the bilateral TPJ and pMTG-

STS, and to lesser extent in Ri. For TPJ, ten out of eleven subjects showed visuo-

vestibular convergence. Among those, seven subjects showed bilateral TPJ 

convergence, two showed right TPJ convergence, and one showed left TPJ 

convergence. For pMTG-STS, nine subjects showed visuo-vestibular convergence. 

Seven subjects showed bilateral pMTG-STS convergence, one showed right pMTG-

STS convergence and one showed left pMTG-STS convergence. For Ri, six subjects 

showed visuo-vestibular convergence. Two subjects showed bilateral Ri convergence, 

three subjects showed right Ri convergence, and one showed left Ri convergence.   
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Figure 1. Representative subjects:  subject 1. We can see deep and superficial convergence in 

perisylvian areas, respectively in Ri and parietal operculum, and also at TPJ along supramarginal gyrus 

in more posterior and superficial parts of IPL called PF and PFt. pMTG and pSTS convergence 

extends on left side to hOc5 (hMSTd), lower and more posteriorly. In this subject, we find mostly 

anterior convergence, explaining why cytoarchitectonic areas in the depth are still implying OP1 with 
PFcm, PFt and PFop both in the depth and at the surface, and PF at the surface. 
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Figure 2. Representative subjects: subject 2. We can see mostly small loci of convergence at the surface 

of TPJ. Cytoarchitectonic analyses show activation of PF and PFop mainly on right side. PF is always 

at the surface while PFop is also more at the surface at this localization according to Caspers 2008. It 

shows how PFcm and PFop can be classified in some subjects as superficial (TPJ) and in some others 

as in the depth as “Ri” as PFcm is mostly in the depth. In left side, most of the convergence are more 
posterior that on right side and seem to belong mostly to PFcm. 
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Figure 3. Representative subjects: subject 4. The most anterior convergence on left hemisphere 

corresponds to parietal opercular regions OP1 and OP2, while the biggest component of convergence 

appears to follow a gradient from anterior to posterior and from depth to surface along z axis, 

corresponding massively to PFcm anatomy anteriorly and to PF and PFm posteriorly, illustrating again 

why some loci of convergence can be sometimes assessed as Ri or as TPJ while they are in continuity, 

anterior part in the depth and posterior part at the surface. On right hemisphere, activations are at the 

surface and generally more posterior than on left side, explaining why they are classified as posterior 
PFcm for a small part and in majority within PF and upper PFt (superficial) at the surface of IPL. 

 

Figure 4 summarizes the centre of each subject’s visuo-vestibular convergence 

locus on an inflated brain. Although we describe three locations of visuo-vestibular 

convergence, we note that anatomically, especially in the right hemisphere, 

convergences in individual subjects seem to be distributed along the SMG from the 

depth to the surface and from the anterior to posterior sites in functionally defined 

regions called here Ri and TPJ.  
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Figure 4. Summary of visuo-vestibular convergences where we projected on a generic inflated brain, 

the centre of each locus of convergence of each individual subject. A continuum of activations from the 

depth of Ri and OP to the surface of TPJ can be observed, mainly on right side. A second hub of 

convergence is observed centred in posterior MTG region, extending in lower bank of posterior STS 
and projecting on hMSTd or hOc5 in 4/ 8 subjects showing convergence in pMTG-STS. 
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Overlap with cytoarchitectonic probabilistic maps 

 

Figure 5. Mean brain volumes of visuo-vestibular convergence, classified by hemisphere and 

cytoarchitectonic region of IPL, parietal operculum and extrastriate cortex. We gather convergence due 

to Right and Left GVS. We can see that the small volumes of hOc5 activated contrast while very 

reproductive convergence was assessed within pMTG, but upper and anterior to hOc5 (=hMSTd) and 

not mapped by cytoarchitectonic maps. We also notice more important convergence in the non-

dominant hemisphere (right). Our data advocate for a continuum of activations between depth and 

surface along the anatomy of mainly PFcm, which could correspond to the so-called retroinsular cortex, 

behind and upper parietal opercular region OP1.  Other subdivisions of IPL are also activated and 

mainly PF and PFt, at the surface, also following an anatomy from depth to surface, front to back, in 

what we call here temporo-parietal junction, projecting actually on the surface of supramarginal cortex 
and anterior part of angular gyrus. 

 

 We used the SPM Anatomy Toolbox (Eickhoff et al., 2005) to determine the 

cytoarchitectonic brain areas of the Ri and TPJ activations described above. This 

analysis was carried out for 10 subjects (this analysis could not be done for subject 7 
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because he showed a wide activation pattern extending over the entire area, making it 

impossible to separate the contribution of different subregions). Figure 5 shows the 

average volume of activation allocated to each cytoarchitectonic region, separately for 

each hemisphere (pooling activations due to right and left cathodal stimulation). The 

present analysis revealed that Ri activations were mostly located in cytoarchitectonic 

areas PFcm and OP1. TPJ activations were mostly located in areas PF and PFt of the 

supramarginal gyrus, and less consistently in areas PFop, PFm and PGa. Visuo-

vestibular convergence in TPJ was not consistently allocated to OP2. Modest 

contributions of TPJ activations were found in superior temporal regions of the region 

temporalis propria (TE1.0, TE1.1, TE1.2, TE3) (Morosan et al., 2001; Zilles, 2004) 

and primary sensory cortex (area 1) (Geyer et al., 2000) and there was no visuo-

vestibular convergence in the dysgranular insular area Id1, granular insular areas Ig1 

and Ig2, and area PGp of angular gyrus. Activation labelled here as pMTG-STS was 

effectively centred on the posterior MTG and the lower bank of posterior STS and 

did not match any probability map available in the Anatomy toolbox, except in 4 

subjects where this activation extended also downward and posteriorly into the 

cytoarchitectonic region hOc5 of occipital cortex functionally identified as the 

putative human homologue of V5/MT+ (Dumoulin et al., 2000; Malikovic et al., 

2007; Wilms et al., 2005). 

 

Discussion 

 

We provide a detailed anatomical analysis of visuo-vestibular convergence in 

the human brain using a single subject approach and 7 Tesla MRI. Visuo-vestibular 
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convergence was evident in three main regions centred on the inferior parietal lobule: 

(1) Retroinsular activation in the depth of the posterior part of the lateral fissure, 

allocated to cytoarchitectonic area PFcm of the SMG. (2) A superficial region at the 

temporo-parietal junction in areas PF and PFt corresponding to superficial parts of 

SMG. (3) The posterior aspect of the middle temporal gyrus, extending to the 

posterior STS, sometimes also extending downwards and posteriorly to the 

cytoarchitectonic area hOc5 which may be fit the definition of human v5/MT+ 

(Malikovic et al., 2007). In the following part, we discuss each activation site 

separately with respect to different anatomical and functional classifications of the 

human vestibular cortex as well as electrophysiological data in non-human primates. 

 

Retroinsular and opercular activations 

Visuo-vestibular convergence was found in the depth of the posterior Sylvian 

fissure, within medial aspects of the IPL (areas PFcm, PFop) and marginally within 

OP1. This localization is in agreement with the results of two recent meta-analytic 

definitions of the human vestibular cortex that localised the core region of vestibular 

cortex in area OP2 (Zu Eulenburg et al., 2012) or in areas OP2 and Ri (Lopez et al., 

2012). This is also agreeing anatomically with the findings of a recent fMRI study 

analysing visuo-vestibular convergence (Frank et al., 2014) reporting a bimodal region 

in an area termed PIC (for ‘posterior insula cortex’). This region was defined in 

reference to a visual motion sensitive area described previously at the posterior border 

of the insula (Claeys et al., 2003). Frank et al. (2014) reported large intersubject 

variability in the location of PIC, in agreement with a partial variability reported in 
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the present study. Moreover, the location of visuo-vestibular convergence that was 

found in our study is also close to the retroinsular activations observed in response to 

optic flow stimulations in Cardin and Smith (2010) and in responses to visuo-

vestibular convergences in Billington and Smith (2014).  

 

However, no study (Frank et al., 2014; Cardin and Smith, 2010) analysed 

activations with respect to cytoarchitectonic areas. Results from the present study 

therefore add that visuo-vestibular convergence in the posterior Sylvian fissure 

involved mostly area PFcm, to a smaller extent area PFop, and marginally involved 

OP1 Accordingly, we propose that the retroinsular responses to optic flow and 

vestibular stimulation reported in the present study and previous investigations 

(Cardin and Smith, 2010; Frank et al., 2014) correspond to area PFcm of the 

supramarginal gyrus, behind the PIVC. PFcm has been shown to be involved also in 

speech and hand motor execution (Heim et al., 2012) but more studies need to be 

performed using cytoarchitectonic maps to map what are the exact functions allocated 

to respective subparts of SMG. A significant gender difference is known as PFcm 

seem to be significantly wider in males subjects (Caspers et al 2008). In addition, we 

propose that Ri may partly correspond to cytoarchitectonic region PFcm. Ri is not 

well defined in humans (Bense et al., 2001a; Eickhoff et al., 2006b) and it has been 

shown to be involved in vestibular processing and the perception of gravitational 

motion (Indovina et al., 2005; for review see Lacquaniti et al., 2013). Ri has been 

shown to be a multisensory region, integrating signals from tactile and muscular 

proprioceptive receptors (Bottini et al., 2005, 2001), a finding consistent with 

electrophysiological investigations in monkeys (Robinson and Burton, 1980a, 1980b; 
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see also for insular cortex organization (Evrard and Craig, 2015; Evrard et al., 2014). 

Ri has been clearly defined functionally as the region behind the posterior insula, and 

behind the areas OP2 and OP1; the only cortical region at this location is the deeper 

part of SMG or PFcm, which thus may be necessarily, be the anatomical correlate of 

Ri. 

 

Interestingly, we did not find visuo-vestibular convergence in the granular 

(Ig1, Ig2) and dysgranular (Id1) insular cortex. This finding is in contrast with earlier 

hypotheses about the implication of the posterior insular cortex in vestibular 

processing as demonstrated by previous GVS and CVS studies (Bense et al., 2001a; 

Dieterich and Brandt, 2001; Emri et al., 2003; Lopez et al., 2012; zu Eulenburg et al., 

2013, 2012) and intracranial stimulation investigations (Mazzola et al., 2014). 

However, the present data are in agreement with more recent visuo-vestibular 

investigations and electrophysiological recordings in macaque PIVC showing that 

visuo-vestibular integration does not occur in PIVC, but rather takes place in more 

posterior regions, adjacent to the insular cortex (Chen et al., 2011; Liu and Angelaki, 

2009; Shinder and Newlands, 2014). Hence, our present data do not confirm the 

existence of visuo-vestibular integration in the posterior insula as seminally posited by 

Grüsser and colleagues (Grüsser et al., 1990b, 1982; Guldin et al., 1992), but concord 

with the extensive observations by Angelaki and co-workers (Chen et al., 2011; Liu 

and Angelaki, 2009; Shinder and Newlands, 2014).  
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Inferior parietal lobule, superficial part 

Another region in the inferior parietal lobule showed visuo-vestibular 

convergence, in particular the superficial parts of IPL. Importantly, this region also 

showed strongest and most consistent activations across subjects. Cytoarchitectonic 

allocation showed that the IPL included areas PF and PFt and to a smaller extent area 

PFm and PGa. Anatomically, these IPL regions involve mostly the supramarginal 

gyrus, but also involve adjacent parts of the angular gyrus in PGa (i.e. respectively 

Brodmann areas 40 for PF and PFt and BA 39 for PGa). PFt has been suggested to 

be involved in the mirror neuron system as the human analogue of monkeys’ PF 

(Peeters et al., 2013) but again more past functional studies using fMRI should be 

reinterpreted under the light of cytoarchitectonic maps allowing a more detailed 

anatomical mapping. Intracranial stimulation studies in epileptic patients are 

compatible with vestibular responses in this region and have demonstrated that the 

focal stimulation of both gyri may evoke conscious sensations that the body is 

spinning (Kahane et al., 2003) or translating (Blanke et al., 2002). Previous studies 

using CVS and GVS also consistently reported activations of these regions with SMG 

and anterior parts of the AG (Bense et al., 2001a; Stephan et al., 2005; review in 

Lopez and Blanke 2011). Interestingly, SMG and AG are key regions for the 

embodied experience of self-location (Ionta et al., 2011) and  various neurological 

conditions in these regions may  disturb the sense of self-location (for example: 

Blanke, Landis, Spinelli, & Seeck, 2004; Blanke, Ortigue, Landis, & Seeck, 2002b; 

Heydrich, Dieguez, Grunwald, Seeck, & Blanke, 2010; Heydrich, Lopez, Seeck, & 

Blanke, 2011; Heydrich & Blanke, 2013). 

We note that there is an anatomical distribution along the same sulcus 
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between the activations in the superficial aspect of the IPL and the retroinsular 

activations in the depth of the Sylvian fissure. This likely reflects the complex 

anatomical folded organization of the IPL, with cytoarchitectonic subregions of IPL 

organised from the surface (i.e. PF) to the depth of the IPL (i.e. PFcm) (Caspers, 

2015; Caspers et al., 2008) (see Figure 5) who all seem to respond to vestibular and 

visual stimuli. 

 

Posterior middle temporal cortex and superior temporal sulcus 

 

Partially consistent with previous data analyzing GVS-induced (Billington and 

Smith, 2015; Frank et al., 2014; Smith et al., 2012; Stephan et al., 2005) or CVS-

induced brain activations in humans (Wang et al., 2008) and electrophysiological 

studies in monkeys (Gu et al., 2008, 2007), we also observed visuo-vestibular 

convergence within cytoarchitectonic area hOc5 as in Malikovic et al., 2007). 

However, we found an overlap of the individually defined regions of activation with 

hOc5 in only half of our subjects who exhibited wider responses in pMTG region. 

The activation in pMTG extended dorsally and posteriorly to reach the anterior and 

superior parts of hOc5, that is extrastriate cortex, and where only small volumes were 

allocated while the volume was centred on pMTG. In agreement with human (Smith 

et al., 2012) and animal research (Bremmer et al., 1999; Chen et al., 2008; Gu et al., 

2008, 2007; Takahashi et al., 2007), these data may suggest that only the anterior part 

of MT-MST complex (likely hMST), was activated in the present subjects in whom 

an overlap was found with extrastriate cortex. 
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To our knowledge, this is the first study to report visuo-vestibular convergence 

in pMTG and pSTS. Only one previous work reported that GVS activates pMTG 

(Stephan et al., 2005) but no visuo-vestibular convergence was explored in this work. 

Nevertheless, this mapping as hOc5 in our study should be taken with caution as the 

anatomy of the sulcation in the region as well as the functional localization of MT+ is 

highly variable from one subject to another (Malikovic et al., 2007). We can thus 

speculate that this component of visuo-vestibular convergence in pMTG and pSTS 

has been reported as extrastriate loci of convergence on a functional basis, as MT or 

MST. As suggested by Saenz and colleagues (Saenz et al., 2008), “ the probable 

human homologue of visual motion-responsive macaque areas MT and MST, is 

typically located posterior to the intersection of the lateral occipital sulcus (LOS) and 

the inferior temporal sulcus (ITS). However, identifying human MT+ by anatomical 

landmarks and/or stereotaxic coordinates alone is problematic because of significant 

anatomical variability between individuals (Dumoulin et al., 2000; Zeki et al., 1993) 

and because of its proximity to polysensory temporal lobe regions (Beauchamp et al., 

2004). As a result, the location of MT+ is normally defined functionally, by its 

response to moving visual stimuli (Dumoulin et al., 2000; Tootell et al., 1995).”  

In original description from Von Economo and Koskinas (1925), 

cytoarchitectonic region ‘Oam’ was speculated as being MT+ but it was discarded by 

further research (see page 1037 in Zilles, 2004). If hOc5 seems to be the best 

candidate to fit the definition of V5/MT+, but the anterior part of MT-MST 

complex still needs to be localised with more accuracy in further studies. We speculate 

here that our activations more anterior to hOc5 (MT+), in pMTG, i.e. corresponding 

to cytoarchitectonic baso-parietal regions PH and its subdivisions PHo, PHt, and 
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PHp, may partially correspond to the anterior part of MT-MST complex: the human 

homologue of MST of hMST. It may explain why hOc5 is not activated in all 

subjects and why when it is activated, only small brain volumes in this area are 

concerned (Zilles et al., 2015). Nevertheless, this could be better explored using 

different stimuli preferred by MST, an area that does not show retinotopy, and 

sensitive to optic flows stimulating peripheral field of views (Cheng et al., 1995; Huk 

et al., 2002). The precise location of what was claimed to be hMST in previous 

studies (Billington and Smith, 2015; Smith et al., 2012), responding to vestibular and 

visual inputs, should be compared by further studies on the same basis of 

cytoarchitectonic atlases in individual subjects 7T fMRI studies to compare 

coordinates of hMST and regions anteriorly and upper than hOc5 in Von Economo’s 

PH region, the lateral and posterior part of middle temporal gyrus. 

Several studies reported pSTS and pMTG as brain regions activated by 

optokinetic stimuli (Beer et al., 2009; Gilaie-Dotan et al., 2013a, 2013b; Grosbras et 

al., 2012; Grossman et al., 2000; Grossman and Blake, 2002; Ulloa and Pineda, 

2007), existing even in congenital visual deprivation (Bedny et al., 2008; Noppeney et 

al., 2003). pMTG is also processing visual motion related to gravity together with the 

posterior insula and Ri (Indovina et al., 2005; Lacquaniti et al., 2013; Miller et al., 

2008). pSTS and pMTG are also multisensory regions responding to tactile, motion-

related auditory and visual signals (Beauchamp, 2005; Beauchamp et al., 2004). They 

may even overlap with what was called the extrastriate body area or EBA, a region 

responding to body parts at the junction between lateral occipital cortex and posterior 

medial temporal cortex (Astafiev et al., 2004; Downing et al., 2001; Grossman and 

Blake, 2002; Urgesi et al., 2004) also recently reported to correlate with rubber hand 
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illusion (Limanowski and Blankenburg, 2015; Limanowski et al., 2014). In the 

absence of cytoarchitectonic maps of pMTG, the basal part of parietal lobe according 

to old definitions from Von Economo and Koskinas (1925) of PH and its 

subdivisions, and with the ontological intersubject variability in the location of motion 

sensitive extrastriate multisensory regions, its stays difficult to disentangle the exact 

contributions of those cortices to visual, vestibular and somatosensory processing but 

it may be further explored with a fine resolution using dedicated multisensory tasks. 

 

In addition, in the present study, GVS and visual stimulus were applied 

separately while they were applied simultaneously during previous works in fMRI but 

at 3T (in Frank et al., 2014 for example). In addition, we did not look for 

deactivations of visual cortex during vestibular stimulation or reciprocal deactivation 

of vestibular cortex during visual stimulation as investigated before (Brandt et al., 

1998; Angela Deutschländer et al., 2002). Our data nevertheless advocate for the 

existence of brain regions at the single subject level which can process both vestibular 

and visual motion signals, extending previous studies supporting the existence of 

patterns of reciprocal inhibition of visual and vestibular cortices (Bense et al., 2001a; 

Chen et al., 2011; Deutschländer et al., 2002).  

 

Further experiments, with imaging methods combining 7T fMRI and 

cytoarchitectonic maps, functional and anatomical connectivity, should take into 

account the temporo-spatial dynamics of visuo vestibular processing when 

simultaneous polysensory stimulation is applied. 
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Conclusion 

Our data reveal the existence of visuo-vestibular convergence consisting in a 

large activation, starting behind the posterior insula and OP2, and encompassing the 

depth of inferior parietal lobule mainly in supramarginal gyrus in retroinsular cortex 

and partly in parietal operculum, then extending to the surface of the temporo-

parietal junction still along supramarginal gyrus. A second core region of visuo-

vestibular convergence was identified in pMTG with a downward and posterior 

extension to area hOc5 previously identified as MT+. The locus of activation suggests 

pMTG activations to be corresponding to the anterior part of MT-MST complex, or 

hMST but need to be confirmed by appropriate cytoarchitectonic-mapping methods 

of the middle temporal region still not available. Further studies may assess the 

dynamics of such convergences during complex tasks involving bimodal stimulations 

together or independently, as well as the respective contribution of each locus of 

convergence within the vestibular network. The high signal-to-noise ratio allowed by 

7T fMRI in brain regions characterized by high inter-subject anatomical and 

functional variability allowed us to perform individual mapping of visuo-vestibular 

convergences in parietal and occipito-temporal cortices. 
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Abstract 

 Previous studies have shown that the body representation can be flexibly 

updated through a process of multisensory integration. For instance, rubber fake 

hands are felt as a part of the real body when stroked in visuo-tactile synchrony. 

However, the importance of vestibular information for the body representation is less 

well understood. In this study, we investigated whether vestibular stimulation, as 

induced by optic flow, can influence the multisensory integration of information 

about one’s body. We used the Rubber Hand Illusion (RHI) as a classical paradigm to 

study multisensory processing. Importantly, we manipulated the visual context in 

which the illusion was presented, by superimposing the rubber hand on a coherent 

linear starfield inducing upward or downward vection. We found that vection 

selectively modulated the proprioceptive drift induced by the visuo-tactile conflict, but 

not the subjective ratings regarding felt ownership over the hand. When the rubber 

hand and the real hand were stroked in synchrony, subjects tended to locate the 

position of their hand as higher than their actual hand position when the rubber hand 

was superimposed on downward flow inducing upward vection. This finding 

illustrates how visuo-vestibular signals are fundamental components of the embodied 

self-representation.  
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Highlights 

 

3-5 bullet points maximum 85 characters including spaces 

 

• Proprioceptive drift towards the rubber hand can be modulated by vection. 

• Self-location depends on the integration of visual motion and tactile cues. 

• Feelings of ownership are not modulated by vection. 

 

 

Keywords 

Vection; Optic flow; Touch; Multisensory integration; proprioceptive drift;  Bodily 

self-consciousness; Visuo-vestibular interactions; Bodily illusions; Rubber hand 

illusion 
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1. Introduction 

Patients with asomatognosia may be characterized by a loss of awareness of 

specific body parts or body sites. Such conditions are usually associated with right 

parietal damage, right premotor or primary motor cortex stroke and typically the 

contralesional hemi-body is affected (Arzy, Overney et al. 2006). For instance, in a 

case report, a 51 years old woman was affected by a temporary loss of awareness of her 

left hand and forearm, while she could see through the table at the ‘missing’ limb 

location. As the example of the woman illustrates, damage to brain areas involved in 

the integration of multisensory information can result in changes in the body 

representation. In healthy humans, over the last decades many studies have shown 

that similar experiences of changed body awareness can be experimentally 

manipulated, for instance by inducing the illusory ownership of a body part or of a full 

body through congruent visuo-tactile stimulation (Botvinick and Cohen 1998, 

Lenggenhager, Tadi et al. 2007). In the rubber hand illusion (RHI), the subject gazes 

at a fake rubber hand while the real hand is out of view. When both the rubber hand 

and the real hand are stroked in synchrony, the rubber hand is experienced as one’s 

own, which is reflected in a proprioceptive drift towards the location of the fake hand 

(i.e. a mislocalization of one’s hand position in the direction of the fake had) and in 

subjective feelings of ownership (i.e. seeing the fake hand as a real part of one’s body, 

cf. (Botvinick and Cohen 1998, Ehrsson, Holmes et al. 2005, Tsakiris and Haggard 

2005, Ehrsson, Wiech et al. 2007, Moseley, Olthof et al. 2008, Kammers, de 

Vignemont et al. 2009, Barnsley, McAuley et al. 2011). The RHI likely results from 

the automatic integration of visual and tactile cues that can selectively overrule 

proprioceptive information regarding the position of one’s real hand. 
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Whereas most studies have used visuo-tactile conflicts to induce illusory body 

ownership, recent studies underline the importance of vestibular information for the 

body representation.  For instance, using galvanic stimulation, it has been shown that 

the strength of the RHI was enhanced, likely due to an enhanced visual capture of the 

rubber hand related to the vestibular activation (Lopez, Lenggenhager et al. 2010). 

Other studies also highlighted the importance of vestibular stimulation for the body 

representation, by showing effects of vestibular stimulation on an own body 

transformation task (Lenggenhager, Lopez et al. 2008, Lopez, Halje et al. 2008). In 

addition, caloric vestibular stimulation has been shown to modulate the experience of 

phantom limbs in amputees and paraplegic patients (Andre, Martinet et al. 2001, Le 

Chapelain, Beis et al. 2001) and, in healthy humans, vestibular stimulation can impair 

hand pointing tasks and reproduction of arm positions (Bresciani, Blouin et al. 2002, 

Mars, Archambault et al. 2003, Knox, Coppieters et al. 2006). The experienced self-

location and the first person perspective could be selectively modulated by visuo-

vestibular conflicts, thereby underlining the importance of vestibular processing for 

the global body representation (Ionta, Heydrich et al. 2011, Ferre, Bottini et al. 2013, 

Ferre, Day et al. 2013, Ferre, Vagnoni et al. 2013, Pfeiffer, Serino et al. 2014). 

Optic flow and vestibular signals are integrated in common brain areas in 

humans as shown by fMRI studies, mainly in perisylvian areas . Furthermore, 

behavioral studies indicate that visual motion inducing vection (i.e. illusory self-

motion) and vestibular signals compete to encode body motion and that these signals 

are weighted in a Bayesian-optimal fashion according to their respective reliability 

(Fetsch, Pouget et al. 2011). Moreover, the so-called vestibular cortices are known to 

overlap with areas generally involved in multisensory integration, mainly at the 
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temporo-parietal junction and lesions in this area have been associated with visuo-

vestibular disturbances of body scheme integrity (e.g. as during an out-of-body 

experience; cf. (Blanke, Ortigue et al. 2002, Blanke and Mohr 2005, Lopez and 

Blanke 2011, Lopez, Blanke et al. 2012).  

A key characteristic of illusory motion percepts induced through full body 

rotation (e.g. Prsa et al., 2012; van Elk et al., 2012) or indirectly through optic flow 

(Brandt and Dichgans 1972, Berthoz, Pavard et al. 1975, Trutoiu LC 2009) is the 

direction-specific information that is conveyed through vestibular and optokinetic 

signals (i.e. signalling a yaw, pitch or roll rotation in a clock- or a counter-clockwise 

direction). The vestibular nerve discharges in response to utricle and saccule (linear 

motion) or semi-circular canals stimulation (circular motion), occurring during 

acceleration phases. But at a constant speed, the vestibular system is at rest and the 

optic flow delivered to the visual system is the only remaining cue allowing the subject 

to feel his own body in motion, as it happens in daily life in cars and public transports. 

Interestingly, the same visual stimuli used in fMRI experiments on visuo-vestibular 

convergence - coherent expanding or contracting visual motion - can be also used to 

induce vection, under certain circumstances. It constitutes an easy access to 

systematically manipulate self-location in laboratory conditions, in the absence of real 

body displacement. It is a perceptual phenomenon commonly experienced in daily 

life, gazing at the sky and the clouds moving, at water moving in the river stream, or 

waiting in a train while seeing the train besides starting in opposite direction. Vection 

has been extensively reported in visual psychophysics literature starting from Mach 

(Mach 1875, Berthoz, Pavard et al. 1975, Dichgans 1978, Trutoiu, Mohler et al. 

2009). Bodily self-motion is felt by the subject in the direction opposite to the optic 
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flow but on the same axis; it also leads to postural readjustments (Lestienne, 

Soechting et al. 1977).. Contracting or expanding optic flows have been shown to 

induce a subjective linear vection feeling in the opposite direction than the flow, as 

described before (Trutoiu, Mohler et al. 2009). Linear upward flow induces 

downward vection for instance, and reciprocally. The “self-other” dilemma to solve 

for the brain is to rely on a egocentric or an allocentric spatial referential to decide 

about our own self-motion: “Is the surrounding environment moving or am I 

moving?”.  

 

Whereas other studies have shown a general and non-specific effect of visual 

and vestibular stimulation on body ownership (Lopez, Lenggenhager et al. 2010, 

Ionta, Heydrich et al. 2011), we exploited the fact that visuo-vestibular information 

induced through optic flow is direction-specific and may thereby modulate 

proprioception in a direction-specific fashion. More specifically, we investigated 

whether upward or downward vection would modulate the proprioceptive drift toward 

a fake body part, i.e. thereby enhancing the mislocalization of one’s real body parts in 

the direction of the fake body part. To this end we used a classical RHI paradigm and 

we measured the proprioceptive location of one’s arm along a vertical axis (Bekrater-

Bodmann, Foell et al. 2012).  

In this study, a fake right hand has been displayed to healthy subjects and 

stroked synchronously or asynchronously with respect to the real right hand. 

Importantly, the fake hand was superimposed on a 3D optic flow stimulus, inducing 

upward or downward vection, and the real hand was hidden below the screen. 
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Following the induction phase, participants were required to indicate the felt position 

of their real hand by pointing along a vertical axis perpendicular to the rubber hand 

with their left hand and answered a questionnaire about their sensations after each 

condition tested. In this way, it could be investigated if upward or downward vection 

as induced through optic flow can modulate the effects of visuo-tactile synchrony on 

illusory hand ownership and hand location. The classical RHI manipulates two cues 

(vision and touch); our study presupposes the existence of an additive effect of a third 

cue (vection induced by optokinetic stimuli or ‘optic flows’) that could further 

modulate the RHI.  We predicted that the classical RHI effect driven by visuo-tactile 

integration (i.e. drift towards the rubber hand and identification with the rubber hand 

during synchronous stroking) would be modulated selectively by the direction of the 

vection (i.e. stronger drift towards the rubber hand if the flow direction implies 

upward vection towards the rubber hand compared to downward vection). In 

addition, we investigated to what extent the modulatory effect of optic flow direction 

on visuo-tactile synchrony further influenced subjective feelings of ownership over the 

fake hand.  

 

2. Material and Methods 

 

2.1.   Participants 

 

A total of 15 healthy volunteers took part in our experiment (6 females, 9 

males), ranging in age from 21 to 36 years (mean age = 28.8 years). All had normal or 
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corrected-to-normal vision and fully completed the entire experiment. Participants 

were paid for their participation, which lasted 1.5 hours. All participants gave their 

informed consent to take part in this study, which was approved by the local ethics 

committee in conformity to the Declaration of Helsinki. 

  

2.2.   General procedure 

 

The experimental setup is presented in Figure 1 and 2. Participants were 

seated on a chair and a 3D screen was placed horizontally in front of the subject. 

During the experiment we exposed subjects to linear vection induced by a stimulus 

simulating white moving dots on a black background with coherent motion (an optic 

flow starfield). The simulated motion consisted of radial expansion or contraction 

inducing feelings of upward or downward. 

A fake rubber hand with skin colour imitation, dimensions 23.5cm x 13 cm x 

4.5 cm, was superimposed on the vection display 15 cm higher than the real hand (see 

Figure 1). The subject could see a right rubber hand whose medium finger basis was 

positioned at the centre of the optic flow. At the same time, the right hand of the 

subject was hidden under the screen, staying at rest on a foam platform. The 

experimenter was seated on the opposite side with respect to the subject’s position and 

from this position he was able to stroke the right hand of the subject and the rubber 

hand synchronously or asynchronously.  

Hand stroking and the onset of the vection display occurred at the same time 

and lasted for 60 seconds for each individual condition. In different conditions, 
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subjects were exposed to 2 stroking modalities (synchronous with respect to the visual 

feedback or asynchronous) and 3 optic flow directional modalities on a cranio-caudal 

axis (contracting – downward flow; expanding – upward flow; random flow without 

coherent motion in a direction). Random flow does not induce any vection feeling; we 

used it as a control condition as it should not modulate the visuo-tactile conflict of the 

classical RHI. In sum, the full factorial design that was used in the present study 

consisted of the factors Flow (upwards, downwards, random) and Visuo-tactile 

synchrony (Synchronous, Asynchronous). 

 

  

Figure 1. Visual display: optic flow and the rubber hand superimposed on the display as seen from 

above (left panel) and from the experimenter’s point of view (right). 

 

2.3.    Visual display and optic flow stimulation 

 

A High Definition Stereo Samsung 3-D screen was used measuring 63 x 111 

cm at which stimuli could be presented with a resolution of 1920x1080, resulting in 

approximately 120 degrees of horizontal and 80 degrees of vertical visual angle. The 

optic flow was displayed with expyVR, a custom-laboratory made software package 
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for 3-D experimental stimulus presentation. It consisted of white dots on a black 

background, moving with a constant velocity for upward and downward flow, and 

identical dots density across all conditions. It is important to note that no absolute 

velocity of the moving dots can be reported, as the movement is perceived within a 

virtual space with relative units, thereby making the perceived movement highly 

dependent on the scaling of the 3D parameters. The velocity parameter of the optic 

flow within ExpyVR was set up as a fixed value of 20 cm/sec and 60 dots/m2. 

Nevertheless, the movement was always identical across conditions and chosen to 

induce vection as verified empirically in pilot studies. Optimal parameters to induce 

vection are: a high velocity, high spatial frequency, and wide optic field stimulation 

including peripheral fields of view (Brandt, Dichgans et al. 1972, Berthoz, Pavard et 

al. 1975, Chu 1976, Straube and Brandt 1987, Deutschlander, Bense et al. 2004, 

Trutoiu LC 2009).  The experiment was conducted in the dark except the luminance 

due to the screen to remove stable cues that may decrease the vection effect.  

 

2.4.    Behavioral measures: questionnaires and drift measures 

 

 The subjects completed both subjective ownership ratings (questionnaires) and 

objective (drift) measures. The following questionnaires were included: Likert 

questionnaires on a 7 degrees scale from -3 to 3 (illusion score, and control score) to 

assess the rubber hand illusion and vection scores to assess the vection feelings (see 

Table 1), inspired by previous studies (Botvinick and Cohen 1998, Trutoiu LC 2009).  
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Q1 It seemed as if I were feeling the touch at the location where I saw the rubber 

hand touched. 

Q2 It seemed as though the touch I felt was caused by the finger touching the rubber 

hand. 

Q3 I felt as if the rubber hand were my hand. 

Q4 The rubber hand began to resemble my own (real) hand, in terms of shape, skin 

tone, freckles or some other visual feature. 

Q5 It seemed as if the touch I was feeling came from somewhere between my own 

hand and the rubber hand. 

Q6 It felt as if my (real) hand were turning ‘rubbery’. 

Q7 I felt as if I were travelling in the virtual space. 

 

Table 1. Questionnaires: 7 questions related to the Rubber Hand Illusion score (Q1-Q3), control 

questions for the RHI (Q4 – Q6)  and a question about the experience of vection (Q7).  

 

 The proprioceptive drift is used to measure changes in hand location during 

the RHI and this measure was collected both before and after each condition. To this 

end the participant was required to indicate with the left hand on a vertical axis the 

perceived height of their right hand (see Figure 2). The two measures were registered 

for each condition and pre and post illusion measurements were used as a factor in the 

analysis. The rationale for including a pre- and a post-illusion measurement of the 

drift was to control for the potential confound that individual differences in the ability 
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to perceive the location of the hand may have partly confounded our effects of 

interest.  

 

 

Figure 2. Proprioceptive drift measure: the participant indicates on the ruler with the left index finger 

the estimated height of his right hand, while keeping his eyes closed. The proprioceptive drift measure 

was administered both before and after 60 seconds of immersion with visuo-tactile stroking and 3D 

optic flow. 

 

3. Results 

 

3.1. Vection score 

 The vection scores confirmed that subjects associated the perception of 

downward and upward vection respectively with upward and downward flow and are 

represented in Figure 2. For the question, “I feel moving downward (range -3 to 0) or 

upward (range 0 to 3), we observed a main effect of flow F(1,14)= 20, η2=0.59, 

p<0.001, confirming that subjects experienced vection in the opposite direction of 
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optic flow direction. Random motion was not associated with consistent vection. 

Vection feeling was not modulated as a function of synchrony, as we did not observe 

interaction between flow and synchrony (F(1,14)=0.52, p=0.6) and no main effect of 

synchrony (F(1,14)=3.52, p = 0.08). 

 

 

Figure 3. Vection scores. Negative scores reflect perceived downward vection and positive scores reflect 

upward vection. A score of zero indexes that no vection was perceived. US =upward flow synchronous 

visuo-tactile stimulation (VTS), UA = upward flow asynchronous VTS, DS = downward flow 

synchronous VTS, DA = downward flow asynchronous VTS, RS = random flow synchronous VTS, 

RA = random flow asynchronous VTS. Errors bars represent the standard deviation of the mean. 

 

3.2.  Proprioceptive drift 

 The relative difference in proprioceptive drift between the pre- and the post-

session is represented in Figure 3. For the proprioceptive drift measures a main effect 
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of Synchrony was observed F(1,14)=8.62, η2=0.38, p<0.05, observed power = 0.78) but 

the main effect of flow was not significant (F < 1). A main effect of the hand 

estimation location parameter was also observed F(1,14)=10.2, η2=0.42,p<0.01, 

observed power = 0.84 meaning that in general, participants estimated with a 

systematic bias the location of their real hand too high along the vertical axis (i.e. 

perceiving the position of their real hand to be higher than it actually was). 

A main effect of synchrony on hand location estimation was observed, F(1,14)=7.49, 

η2=0.35,p<0.05, observed power = 0.72, but the effect of optic flow on hand location 

estimation was not significant, F(1,14)=2.48, η2=0.35,p=0.1, observed power = 0.46,. 

 A significant interaction between Synchrony and Hand Location Estimation 

was observed F(1,14)=7.49, η2=0.35, p<0.05, observed power = 0.72, reflecting that 

participants tended to localise their hand higher (i.e. closer to the rubber hand) in the 

synchronous condition (differences of means after-before=2.99cm, sd(before)=1.2, 

sd(after)=1.21) than in the asynchronous condition (differences of means after-

before=0.5cm, sd(before)=1.11, sd(after)=1.25). 

 

 Optic flow also selectively modulated the proprioceptive drift (errors in 

localization of position of the real hand) induced by the visuo-tactile conflict. The 15 

participants located the position of their right hand higher than their real hand 

position on the vertical axis when they were exposed to downward flow inducing 

upward vection but only when the real and the rubber hands were stroked 

synchronously. This effect was reflected by a significant interaction between Flow, 

Synchrony and Hand Location Estimation, F(1,14)=7.24, η2=0.34, p<0.01, observed 
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power = 0.89. Post-hoc analyses showed that the drift significantly increased for 

synchronous stroking and downward flow visual stimulation (mean drift, i.e. difference 

between pre-experimental and post-experimental estimation = 5.4 cm, sd=3.83, 

t(14)=5.46, p<0.001), but not in the asynchronous condition and downward visual 

flow (mean drift = 0.27cm, sd=2.98 t(14)=0.35, n.s.). In the upward flow condition, a 

trend for an increased drift measure after congruous visuo-tactile stimulation (i.e. 

synchronous) was observed (mean drift =1.73cm, sd=3.13, t(14)=2.15, p=0.05). No 

significant differences were observed in in the upward flow – asynchronous stroking 

condition (mean drift =1.13cm, sd=2.8 t(14)=1.57, n.s. p=0.14).  In the random 

condition, no significant differences were observed both for the synchronous 

condition (mean drift =1.83cm, sd=4.9 t(14)=1.45, n.s.) and the asynchronous 

condition (mean drift =0.1cm, sd=3.8 t(14)=0.1, n.s.).   
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Figure 3. Relative proprioceptive drift (estimation of hand position after the induction phase – 

estimation of hand position before the induction phase). Positive values reflect an increased drift 

towards the rubber hand following the induction phase. US =upward flow synchronous visuo-tactile 

stimulation (VTS), UA = upward flow asynchronous VTS, DS = downward flow synchronous VTS, 

DA = downward flow asynchronous VTS, RS = random flow synchronous VTS, RA = random flow 

asynchronous VTS. Errors bars represent the standard deviation of the mean. 

 

3.3. Illusion scores (touch and hand ownership) 

 Subjective feelings of body ownership were highly dependent on synchrony, as 

reflected in a main effect of synchrony for the illusion versus control score: 

F(1,14)=100.45, η2=0.88, p<0.001, observed power=1 (see Figure 4). We also observed 

a main effect of illusion versus control scores F(1,14)=38.55, η2=0.73, p<0.001, 

observed power=1 and a significant interaction between synchrony and scores 
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F(1,14)=73.23, η2=0.84, p<0.001, observed power=1 but no main effect of flow 

F(1,14)=0.3, p=0.74. No significant interactions with Flow were observed, indicating 

that feelings of ownership were not modulated as a function of flow. The score and 

synchrony significant interaction corresponds to a strong difference between Illusion 

and Control scores for the synchronous conditions between mean score illusion =1.78, 

sd=1.17 and mean score control =-1.3, sd=1.48 (t(44)=13.3, p<0.0001) but not for the 

asynchronous conditions mean score illusion =-1.43, sd=1.47 and mean score control =-

1.7, sd=1.28 (t(14)=1.11, n.s.). 

 

Figure 4. Illusion scores for the different experimental conditions, on a Likert scale from -3 to 3. 

SYNC= synchronous visuo-tactile stimulation; ASYNC= asynchronous visuo-tactile stimulation. i = 

illusion score (i.e. composite of ‘ownership questions’); c = control score (i.e. composite measure of 

‘control questions’). Positive values reflect a strong illusory feeling of ownership and negative values 

reflect a reduced feeling of ownership for the rubber hand. Errors bars represent the standard deviation 

of the mean. 
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4. Discussion 

 

Using a combination of two classical paradigms from modern cognitive 

psychology and psychophysics, we investigated the effects of optic flow on the 

induction of the rubber hand illusion. In our paradigm we reproduced the rubber 

hand illusion when drift was measured along a vertical axis. At the same time the 

rubber hand was superimposed on a pattern of visually induced upwards or 

downwards vection. It was found that optic flow and induced vection could modulate 

visuo-tactile integration. Inducing upwards vection (i.e. the subjective feeling of 

moving upwards with respect to our actual location) increased the proprioceptive drift 

towards the rubber hand, but only when the rubber hand was stroked in visuo-tactile 

synchrony with respect to the rubber hand. No significant drift was observed when 

the rubber hand was superimposed on downward vection or on a random motion 

pattern. Our study suggests that the brain readily integrates information from 

different sensory cues to provide an estimate of one’s current body position. Vestibular 

signals can influence visuo-tactile integration (Lopez et al., 2009), and we suggest in 

our study that a multiplicity of sensory cues (i.e. tactile, visual and vestibular) biased 

the proprioceptive perception of one’s body.  

 

At a neural level, electrophysiological studies have previously shown in 

monkeys the existence of neurons responding to visual, tactile and vestibular 

stimulations, e.g. in the parieto-insular vestibular cortex (Grusser, Pause et al. 1990), 

the ventral intraparietal area (Bremmer, Klam et al. 2002) , and the somatosensory 

cortex (Schwarz and Fredrickson 1971, Schwarz, Fredrickson et al. 1973).  
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Interestingly, some authors investigating the neural correlates of the embodiment of a 

rubber hand showed that sensation of body ownership of the fake hand was correlated 

to brain activity in the posterior insula (Tsakiris, Hesse et al. 2007) and in the 

supramarginal gyrus, in the posterior aspect of lateral fissure, at the surface of inferior 

parietal lobule (Gentile, Petkova et al. 2010). Posterior insula is considered a core 

region of the vestibular cortex (Mazzola, Lopez et al. 2014) - and the putative human 

homologue of PIVC or ‘parieto-insular-vestibular cortex’ signals (Lopez and Blanke 

2011, Lopez, Blanke et al. 2012), known to be a multimodal area integrating visual 

optokinetic and vestibular signals (Cardin and Smith 2010) and even somatosensory 

signals (zu Eulenburg, Baumgartner et al. 2013). The supramarginal cortex seems 

even more systematically involved in visuo-vestibular conjunctions according to recent 

experiments that mapped activations due to optokinetic stimulation and vestibular 

signals delivered through galvanic and caloric stimulation (Frank, Baumann et al. 

2014). We speculate that the selective effect of vection on the RHI as observed in the 

present study might be also mediated by another core of motion-sensitive areas 

including the anterior part of hMST or hMSTd and posterior regions of medial 

temporal gyrus containing visuo-tactile polysensory cortices within the vestibular 

networks (Cardin and Smith 2010, Smith, Wall et al. 2011, Lopez, Blanke et al. 

2012, Lopez, Schreyer et al. 2012, zu Eulenburg, Caspers et al. 2012). Amongst 

multisensory cortices known to process together vestibular, tactile, proprioceptive and 

optokinetic stimuli, the depth of parietal operculum (OP1-OP2) and the inferior 

parietal lobule (retroinsular cortex and temporo parietal junction along supramarginal 

gyrus) seem to be good candidates where embodiment of an external limb by visuo-

tactile conflict could be reinforced by congruent optokinetic stimulus. 
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Interestingly, irrespective of the effects of optic flow – the subjective feelings 

of ownership were high in all synchronous conditions. In the present study, optic flow 

selectively modulated the proprioceptive drift (errors in hand localization) induced by 

the visuo-tactile conflict but it did not influence feelings of ownership. Thus the 

optokinetic stimulation seems to interact with visuo-tactile integration only at a pre-

reflective level involving the proprioceptive localization of one’s body parts. The 

dissociation between the drift measure and the feeling of ownership may indicate that 

exists a certain ‘margin of tolerance’ or ‘lack of precision’ with respect to bodily self-

consciousness. For instance, previous studies have shown that participants 

automatically adjust their movements when confronted with perceptual distortions, 

without becoming aware of the fact they actually do (Fourneret and Jeannerod 1998, 

Kannape, Schwabe et al. 2010). Similarly, the optic flow could modulate the implicit 

perception of the location of one’s hand (i.e. as measured with the proprioceptive 

drift) but not further enhance subjective feelings of ownership. 

 

The effect of vection on visuo-tactile integration could also be related a size-

related illusion: a hand closer to the subject is more likely to be embedded and 

recognize as its own hand (Moseley, Gallace et al. 2012). In fact, when one’s 

experiences upward vection, the rubber hand may seem to be its own hand, giving the 

visual impression of being larger, thus enhancing the mechanisms of body ownership; 

in fact, it has been shown in the case of bigger rubber hands that the size of the fake 

hand affects the proprioceptive drift but not the subjective scores (Pavani and 

Zampini 2007). Further investigations would be needed to investigate whether 
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changes in perceived body part size may solely explain the effects observed in our 

study (Haggard and Jundi 2009, Heed, Grundler et al. 2011) or if the dynamic aspect 

of the optokinetic stimulus and induced vection illusion plays a role. 

The proprioceptive drift may index different neural phenomena than directly 

reflecting a disturbance in the estimation of self-location and this measure may in 

some cases be dissociated from illusion scores focusing on body ownership of a limb 

part. Authors who failed to replicate the proprioceptive drift as a dependent variable 

of visuo-tactile synchrony have proposed such an alternative view on the 

proprioceptive drift. In fact, proprioceptive drift has been challenged and described as 

an objective measure still ontologically highly variable (Holmes 2007, de Vignemont 

2011). For instance, weak illusory scores have been found in association with strong 

drifts measures (Holmes, Snijders et al. 2006) while strong illusory scores were 

correlated with weak drifts only (Holmes 2007). Drift and questionnaires could be 

differentially affected by other factors, and similarly to our findings, drift in itself is 

never consciously experienced in the classical paradigm setup (Botvinick and Cohen 

1998, Pavani, Spence et al. 2000, Ehrsson, Holmes et al. 2005). For instance, Haans 

and colleagues (Haans, Ijsselsteijn et al. 2008) also have shown that modifying the 

shape and texture of the rubber hand, could modulate subjective ratings but not the 

proprioceptive drift. Recently, another study emphasised the fact that higher-order 

cognitive factors affect subjective but not proprioceptive aspects of self-representation 

and that proprioceptive localization of the limbs obey a pure bottom-up process 

resistant to top-down effects (Dempsey-Jones and Kritikos 2014).  

We may also notice that in all conditions (i.e. upward, downward or random 

optic flow information) a systematic bias towards the rubber hand was induced even 
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with asynchronous stroking. The conscious information conveyed through vection 

may not alone override the strong visual signal induced by a rubber hand located 

closer to the eyes of the observer than the real (hidden) hand. It has been shown that 

visual dominance of observed body parts even in the absence of tactile stimulation can 

result in changes in the remapping of the body representation (van Elk, Forget et al. 

2013). Similarly, another study found that subjects can experience embodiment of a 

rubber hand without tactile stimulation by just gazing at the rubber hand as assessed 

with both skin conductance and questionnaire measures (Ferri, Chiarelli et al. 2013).  

In the present study we found that when the rubber hand was superimposed 

on random motion and when it was stroked in synchrony with the real hand no 

significant drift occurred as it usually occurs with a neutral visual background in the 

classical RHI experiment. We argue that random motion acts as a visual distractor 

conflicting with the effects of visuo-tactile synchrony on self-localization, but at a pre-

attentional, unconscious step during the bottom-up processing of multisensory 

signals. 

 

5. Conclusion 

When the rubber hand and the real hand were stroked in synchrony, subjects 

tended to locate the position of their hand as higher than their real hand position 

when presented with downward flow inducing upward vection. Our results show that 

optokinetic signals inducing illusory-motion feelings can modulate visuo-tactile 

integration, thereby inducing changes in the localization of one’s body parts.  
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It emphasises the concept that multimodal sensory signals may contribute to 

bodily self-consciousness in a bottom-up fashion, balanced and integrated at a pre-

conscious level depending on their congruency, as shown by the dissociation of drift 

measures and subjective reports. Embodiment is probably not predominantly based on 

top-down predictions as advocated by recent works (Ferri, Chiarelli et al. 2013).   
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Abstract 

The present study investigated how multisensory integration in peripersonal space is 

modulated by limb posture (i.e. whether the limbs are crossed or uncrossed) and limb 

congruency (i.e. whether the observed body part matches the actual position of one’s 

limb). This was done separately for the upper limbs (Experiment 1) and the lower 

limbs (Experiment 2). The crossmodal congruency task was used to measure 

peripersonal space integration for the hands and the feet. It was found that the 

peripersonal space representation for the hands but not for the feet is dynamically 

updated based on both limb posture and limb congruency. Together these findings 

show how dynamic cues from vision, proprioception, and touch are integrated in 

peripersonal limb space and highlight fundamental differences in the way in which 

peripersonal space is represented for the upper and lower extremity. 

 

Keywords: Body representation; Crossmodal congruency effect; Multisensory 

integration; Peripersonal space; Upper and lower limbs 
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Introduction 

Many of our everyday activities and interactions rely on an implicit 

representation of our body. For instance, when grasping a cup in the periphery of our 

visual field we rely on an implicit representation of the position of our hand and when 

making a pass in a football game we use an internal representation of the location of 

our feet to hit the ball. Usually the complex processes underlying these bodily 

transformations are taken for granted and are not given much further thought. Only 

in the case of neurological deficits the importance of these complex processes and 

their integration with knowledge about one’s body parts becomes unmistakably clear. 

For instance, apractic patients and patients with autotopagnosia are characterized by 

an impaired ability to locate the spatial position of their body parts (e.g. Goldenberg 

1995, Felician, Ceccaldi et al. 2003). An autotopagnosic patient may well be able to 

give an accurate verbal description of the feet, but when asked to point to the location 

of these body parts he may be at a complete loss (Schwoebel, Coslett et al. 2001).  

Over the last decade many studies have investigated the functional and neural 

mechanisms underlying the representation of our body (e.g. Berlucchi and Aglioti 

1997, Dijkerman and de Haan 2007, Berlucchi and Aglioti 2010, de Vignemont 

2010). It has been found for instance, that neurons in the superior parietal lobe fire 

selectively when a fake body part is presented in an anatomically congruent position, 

but not when the body part is placed in an impossible position (Graziano, Cooke et 

al. 2000). In addition, the visual receptive field size of visuo-tactile neurons has been 

shown to increase to the space surrounding the end of a handheld tool (Iriki, Tanaka 

et al. 1996). These studies suggest that multimodal neurons in parietal areas provide 

an important neural mechanism supporting the flexible updating of the body 
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representation based on current sensory input. In humans, multisensory interactions 

between touch and vision have been studied extensively by using the crossmodal 

congruency task (Spence, Pavani et al. 2000, Maravita, Spence et al. 2002, Schicke, 

Bauer et al. 2009). In this task participants are required to respond to tactile stimuli 

applied to their thumb or index finger while ignoring visual distractor stimuli. 

Typically, participants respond slower if the visual distractor appears at an 

incongruent location with respect to the tactile stimulus, which is known as the 

crossmodal congruency effect (CCE). It has been found that CCEs are enhanced 

when the visual distractors are superimposed on a rubber body part that is placed in an 

anatomically congruent compared to an incongruent position (Pavani, Spence et al. 

2000). In addition, the CCE is larger when the visual and tactile stimuli are presented 

in the same side of space as compared to when presented in different sides (CCE side 

effect; see: Spence, Pavani et al. 2000), suggesting that the CCE provides a direct 

measure of the perceived proximity of visual and tactile events.  

It is well known that our body representation can be flexibly updated via 

processes of multisensory integration, resulting in different mappings of peripersonal 

space (i.e. the space directly surrounding our body) based on current sensory input 

(Maravita and Iriki 2004). For instance, through a process of synchronous visuo-

tactile stimulation participants may experience feelings of ownership for rubber body 

parts (Botvinick and Cohen 1998, Ehrsson, Holmes et al. 2005, Tsakiris and 

Haggard 2005, Costantini and Haggard 2007) and even for virtual bodies 

(Lenggenhager, Tadi et al. 2007, Aspell, Lenggenhager et al. 2009). With respect to 

tool use, it has been found that visual distractors presented at the end of a handheld 

tool interfere with judgments of tactile stimuli applied to the hand (Maravita, Spence 
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et al. 2002, Maravita and Iriki 2004). Normally, the effect is stronger for visual stimuli 

presented at the tip of the tool on the same side as that of tactile stimulation. 

However, when the tools were held in a crossed posture, visual distractors presented 

at the end of the tool which were now in the opposite visual hemifield interfered more 

strongly, indicating that tool crossing resulted in a remapping of peripersonal space 

(Maravita, Spence et al. 2002, Maravita and Iriki 2004). 

Several studies have shown that a touch to a crossed hand is initially mapped 

to the wrong side and then after a period of 200-400 ms remapped to the correct side 

(Kitazawa 2002, Azanon, Camacho et al. 2010). Other studies have shown that hand 

crossing across the body midline can reverse spatial compatibility effects (Riggio, 

Gawryszewski et al. 1986, Holmes, Sanabria et al. 2006). However, no study has 

directly investigated how limb crossing modulates the multisensory integration of 

visuo-tactile information. Furthermore, although it has been shown that anatomical 

plausibility (i.e. placing rubber limbs in an anatomically possible or impossible 

position) can modulate multisensory integration as measured by the CCE (Pavani, 

Spence et al. 2000), it remains unclear to what extent anatomical congruency (i.e. 

whether rubber limbs are in a congruent position with respect to one’s actual body 

parts) modulates multisensory integration.  

Thus, the aim of the present study was to determine the relative importance of 

two factors for the remapping of peripersonal space, namely limb crossing and limb 

congruency. To this end we used a paradigm in which participants were presented with 

anatomically congruent or incongruent visual body information, while their actual 

body parts were in a crossed or an uncrossed posture. To measure multisensory 

integration in peripersonal space, we used the crossmodal congruency task by applying 
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vibro-tactile stimuli to the participant’s hands and by presenting visual distractors 

superimposed on rubber hands (Spence, Pavani et al. 2004, Holmes, Sanabria et al. 

2006, Shore, Barnes et al. 2006, Holmes, Calvert et al. 2007, Aspell, Lenggenhager et 

al. 2009, Salomon, van Elk et al. 2012).  

We made the following predictions regarding our experimental manipulations. 

First, when both the real hands and the rubber hands were uncrossed we expected a 

stronger same side CCE (i.e. visual and tactile stimuli presented at the same side) 

compared to a different side CCE (i.e. visual and tactile stimuli presented at different 

sides). Such a finding would be indicative that the rubber hands are automatically 

perceived as a part of one’s body proper. Second, following the notion that the 

crossing of body parts results in a remapping of touch (Yamamoto and Kitazawa 

2001, Schicke and Roder 2006, Azanon, Camacho et al. 2010), we expected that 

when the real arms were crossed tactile stimuli should interfere more strongly with 

visual distractors presented in the opposite hemifield – similar to the remapping 

observed with tool use studies (Maravita, Spence et al. 2002, Holmes, Calvert et al. 

2004, Maravita and Iriki 2004). Third, given the finding that crossing one’s hands 

impairs one’s ability for tactile localization (Axelrod, Thompson et al. 1968, Spence 

and Driver 1994, Yamamoto and Kitazawa 2001, Shore, Spry et al. 2002, Roder, 

Rosler et al. 2004, Wada, Yamamoto et al. 2004), we expected that hand crossing 

would result in an overall decline in performance.  
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Experiment 1 

 

Methods 

Participants 

In the first experiment 18 participants (5 female participants, mean age = 21.2 years) 

were tested, who were all students at the École Polytechnique Fédérale de Lausanne 

in Switzerland.  

 

Experimental setup 

In the first experiment, participants were seated in front of a device that has been 

described in detail in a previous study (Lopez, Lenggenhager et al. 2010). On top of a 

table a wooden frame was placed with openings on the side (width: 96 cm, depth: 55 

cm height: 23 cm). Participants put their real hands on the bottom plane of the 

wooden frame so that they were out of view. On top of the wooden frame two 

anatomically realistic rubber hands were placed that matched the position of the 

participants’ real hand. The distance between the left and the right hand was 20 cm. 

A black blanket covered the arms of the participant and was overlaid on the wrist of 

the rubber hands, to give the natural impression that the rubber hands were the actual 

hands of the subject.  

 In 4 different experimental blocks the position of the participants’ real hands 

and the rubber hands was adjusted (see Figure 1). In half of all blocks participants 
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held their real hands in an uncrossed position and in the other half of all blocks 

participants placed their hands in a crossed position. Similarly, in half of all blocks the 

rubber hands were presented in an uncrossed position (e.g. left rubber hand placed on 

the left side) and in the other blocks the rubber hands were placed in a crossed 

position (e.g. left rubber hand placed on the right side). Block order was 

counterbalanced between participants.  

 

Figure 1: Experimental Setup. (A) In the first experiment participants’ real hands were covered and 

two rubber hands were placed on the table in front of the participant. (B) In the second experiment 

participants’ real feet were covered and two rubber feet were placed on a platform in front of the 

participant. Vibrotactile stimulators (dark squares) were attached to the participants’ hand or feet and 

visual distractor stimuli (light circles) were presented on the rubber hands or feet. In different blocks, 

the real body parts and / or the rubber body parts were placed in an uncrossed or a crossed posture, 

resulting in 4 different experimental conditions (i.e. uncrossed-uncrossed, crossed-uncrossed, 

uncrossed-crossed, crossed-crossed).  
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The crossmodal congruency task was used as a measure of visuo-tactile integration in 

peripersonal space. Custom made vibro-tactile stimulators, consisting of a small 

vibrating motor (Precision MicroDrives shaftless vibration motors, model 312–101, 

3V, 60mA, 9000 rpm (150 Hz), 5 g), were attached to the participants’ hands. The 

motors had a surface area (the area touching the skin) of 113 mm2. These were placed 

approximately 5 centimetres apart at the dorsal side of the hand close to the proximal 

phalanx of the middle finger (see Figure 1). Thus, one vibro-tactile stimulator was 

placed on the anterior side of the hand closer to the fingers and the other vibro-tactile 

stimulator was placed on the posterior side of the hand, closer to the arm. At the 

corresponding location as the vibro-tactile stimulators small LEDs were attached on 

the rubber body hand. (Please note that this setup is different from classical CCE 

paradigms, in which the vibro-tactile stimuli are typically applied to the index finger 

and thumb and the participant is required to report whether the stimulus was presented 

at the upper or lower side) During the experiment participants received concurrent 

visuo-tactile stimulations and participants were instructed to report the location of the 

vibro-tactile stimuli, while ignoring the visual distractor stimuli. Participants 

responded by releasing one of two pedals (Psychology Software Tools, Inc., 

Pittsburgh, PA), by lifting their toes or heels of their right foot when they perceived a 

vibro-tactile stimulus at respectively the anterior or posterior side of their hand.  

Visual distractor stimuli were presented for 50 ms, followed by a 50 ms vibro-

tactile stimulus and this sequence was repeated three times in a rapid sequence (e.g. 

visual-tactile-visual-tactile-visual-tactile stimulation). Previous studies have shown 

that this protocol results in a strong visuo-tactile crossmodal congruency effect 

(Salomon, van Elk et al. 2012). For each condition (i.e. crossed vs. uncrossed real 
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hands, crossed vs. uncrossed rubber hands) 64 visuo-tactile stimuli were presented to 

which the participant responded. In half of all trials the visual stimuli were presented 

at a congruent spatial location with respect to the vibro-tactile stimuli and in the 

other half of all trials at an incongruent location. In addition, in half of all trials the 

visual distractors appeared at the same spatial side as the vibro-tactile stimuli (e.g. 

both the vibro-tactile stimulus and visual distractor were presented on the left side) 

and in the other half of all trials the visual distractor was presented at a different side 

(e.g. vibro-tactile stimulus at the left side, visual distractor at the right side).  

It is important to note that the location of the side was defined in allocentric 

coordinates (i.e. whether the visual distractor was presented at the same spatial 

location with respect to the vibro-tactile stimulation). Accordingly, when both the 

real hand and the rubber hands were crossed or when they were both uncrossed, 

stimuli at the same side of space were presented at an anatomically congruent location 

(e.g. vibro-tactile stimulus at left real hand, visual distractor at rubber hand). 

However, when either the real hands or the rubber hands were crossed, stimuli at the 

same side of space were presented at an anatomically incongruent location (e.g. vibro-

tactile stimulus at the real left hand, visual distractor on the right rubber hand that is 

close in space to the real left hand). 

Participants were instructed to respond as fast and accurately as possible, 

indicating whether the vibro-tactile stimulus was applied to the anterior or posterior 

side of their hand. If the participant did not respond within 2000 ms, the next trial 

was initiated. Trials were separated by a variable 1000 – 2000 ms inter-trial interval. 

At the beginning of each block, 16 practice trials were administered, to familiarize the 
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participant with the task. The experiment was controlled using Presentation software 

(Neurobehavioral Systems, Albany, CA).  

Analysis 

The analysis focused on reaction times and error rates for the different 

experimental conditions. Trials in which the subject made an error or trials that 

exceeded the participants’ mean reaction time by more than 2 standard deviations 

were excluded from reaction time analysis. Reaction times were analysed using a 

repeated measures ANOVA with the factors Real Body part (Uncrossed vs. Crossed), 

Rubber Body part (Uncrossed vs. Crossed), Side (Same Spatial Side vs. Different 

Spatial Side) and Congruency (Congruent visuo-tactile stimulation, vs. Incongruent 

visuo-tactile stimulation). To control for speed-accuracy trade-offs we also analysed 

the error rates.  

 

Results 

Reaction times are represented in Table 1 and the crossmodal congruency 

effect (i.e. difference between incongruent and congruent trials) is represented in 

Figure 2. Analysis of the reaction times revealed a main effect of Congruency, F(1, 

17) = 160.7, p < .001, η2 = .90, which was reflected in faster reaction times to 

congruent (509 ms) compared to incongruent (570 ms) visuo-tactile stimulation. An 

interaction between Side and Congruency, F(1, 17) = 8.9, p < .01, η2 = .34, reflected a 

stronger CCE when the visual distractor appeared at the same side compared to a 

different side. An interaction was found between Real Body part, Rubber Body part 



 120 

and Congruency, F(1, 17) = 6.2, p < .05, η2 = .27, indicating that a larger CCE was 

found when both the real hands and the rubber hands were crossed or when both real 

and rubber hands were uncrossed (see Figure 2). An interaction between Real Body 

part, Side and Congruency, F(1, 17) = 4.8, p < .05, η2 = .21, indicated that visuo-

tactile stimuli presented at the same spatial side resulted in a stronger CCE when the 

real hands were uncrossed compared to when the real hands were crossed.  

Finally, and most importantly, a significant 4-way interaction was found 

between Real Body part, Rubber Body part, Side, and Congruency, F(1, 17) = 8.9, p < 

.01, η2 = .34. This interaction reflects that the CCE side effect was modulated by the 

position of both the real hands and the rubber hands. To explore this interaction, 4 

separate ANOVAs were conducted with the factors Side (Same spatial side vs. 

Different spatial side) and Congruency (Congruent visuo-tactile stimulation vs. 

Incongruent visuo-tactile stimulation) for each of the possible real hand-rubber hand 

positionings. Only when both the real hands were uncrossed and the rubber hands 

were uncrossed, an interaction was found between Side and Congruency, F(1, 17) = 

13.6, p < .002, η2 = .44, reflecting that the CCE was larger for same side visuo-tactile 

stimuli compared to different side visuo-tactile stimuli (see Figure 2). For the other 

conditions, no interaction was observed (F < 1). This analysis indicates that the 4-way 

interaction was driven by the CCE side-effect in the condition in which both the real 

and the rubber hands were uncrossed.  
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Figure 2: Behavioral Results Experiment 1. The crossmodal congruency effect (i.e. reaction time 

difference between incongruent and congruent visuotactile stimulation) for Experiment 1. Dark bars 

represent same side CCE conditions and light bars represent different side CCE conditions. The left 

side of each graph represents conditions in which the real body parts were uncrossed, the right side of 

the graph represents conditions in which the real body parts were crossed. Please note that the location 

of the side was defined in allocentric coordinates (i.e. whether the visual distractor was presented at the 

same spatial location with respect to the vibrotactile stimulation). Error bars represent standard errors.  

 

On average, participants made errors in 9.9 % of all trials (see Table 1) and 

individual error rates varied between 3.1% and 20.9%. A main effect of Congruency, 

F(1, 17) = 15.9, p < .001, , η2 = .48, reflected that participants made more errors to 

incongruent compared to congruent visuo-tactile stimulation. An interaction between 

Rubber Body Part and Side, F(1, 17) = 7.1, p < .05, , η2 = .29 reflected that when the 

rubber hands were uncrossed participants made more errors to stimuli at the same side 

of space , but when the rubber hands were crossed more errors were made to different 
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side stimuli. An interaction between Real Body Part and Congruency, F(1, 17) = 4.8, 

p < .05, , η2 = .22, reflected that participants made more errors to incongruent visuo-

tactile stimuli when the real hands were crossed. An interaction between Real Body 

Part, Side and Congruency, F(1, 17) = 6.3, p < .05, , η2 = .27 reflects that the CCE 

side effect (i.e. more errors to incongruent visuo-tactile stimuli presented at the same 

side) differed between the hands being in an uncrossed compared to a crossed posture. 

Finally, a 4-way interaction between Real Body Part, Rubber Body Part, Side and 

Congruency, F(1, 17) = 7.2, p < .05, , η2 = .30, was observed. This finding confirms 

the results from the reaction time analysis and indicates that the CCE side effect is 

modulated by both the position of the real hands and the rubber hands. Importantly, 

analysis of the error rates indicates that the reaction time results cannot be accounted 

for by a speed-accuracy trade-off, as participants made relatively more errors in 

conditions that also elicited the slowest reaction times.  
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Table 1: Reaction Times (in milliseconds; upper panel) and error rates (in percentage; lower panel) for 

Experiment 1 (Rubber Hand). Columns are separated according to whether the visuo-tactile stimuli 

were applied to the same (left part of table) or the different side (right part of the table) and according 

to whether the visuo-tactile stimuli were congruent (left columns) or incongruent (right columns). 

Rows reflect the different experimental conditions according to whether the real and the rubber body 

parts were uncrossed or crossed. Standard errors are represented between brackets. 

 

Discussion 

In the first experiment it was found that limb congruency facilitated 

multisensory integration, as reflected in a stronger CCE when both the real and the 

rubber hands were either in an uncrossed or a crossed posture. This finding replicates 

and extends previous findings (Pavani, Spence et al. 2000) and suggests that, in 

addition to anatomical plausibility, anatomical congruence between fake and real body 

parts facilitates multisensory integration.  

In addition, a CCE side-effect (i.e. stronger same side compared to different 

side CCE) was observed only when both the real and the rubber hands were 

uncrossed. The stronger same side CCE likely reflects the perceived proximity of 

visual and tactile stimuli (Spence, Pavani et al. 2004, Aspell, Lenggenhager et al. 
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2009), suggesting that in the uncrossed-uncrossed condition visual distractor stimuli 

applied to the rubber hands interfered with vibrotactile judgments, as if they were 

applied to the real hands. This was different for the other conditions, in which no 

difference between same side and different side CCEs was observed. This finding 

suggests that both limb incongruence and limb crossing can impair multisensory 

integration. The absence of a CCE side-effect for the other conditions also suggests 

that limb crossing did not result in a complete remapping of peripersonal space, as is 

typically observed in tool use studies (Maravita, Spence et al. 2002, Macaluso, George 

et al. 2004). This was likely due to the fact that the remapping of touch according to 

one’s arm posture takes about 300-400 ms (Kitazawa 2002, Azanon, Camacho et al. 

2010), whereas in the present study tactile stimuli were applied for a shorter interval, 

thereby preventing a complete remapping of touch.  

 In sum, in the first study it was found that both limb congruency and limb 

crossing can modulate multisensory processing in peripersonal hand space. In a second 

study we aimed to investigate whether a similar mechanism applies for the 

representation of the feet. The rationale for testing multisensory integration for the 

feet was twofold. First, it has been suggested that similar mechanisms of multisensory 

integration apply to the hands and the feet (Roder, Kusmierek et al. 2007, Schicke, 

Bauer et al. 2009). However, it could well be that multisensory integration is less 

sensitive to limb congruence for the feet compared to the hands. In daily life we have 

ample experience with relating felt to observed hand representations (e.g. when typing 

on a keyboard, when grasping a cup), but we have less experience with relating felt to 

observed feet movements. As a consequence, the visual representation of our feet is 

probably less strongly coupled to the proprioceptive representation of our feet and 
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accordingly multisensory integration may be less sensitive to visual-proprioceptive 

congruence for the feet compared to the hands. Secondly, it has been found that 

tactile remapping according to one’s actual body posture takes longer for the feet 

compared to the hands (Schicke and Roder 2006). As a consequence, we expected 

that multisensory integration as measured with the CCE would be less sensitive to 

limb crossing for the feet than for the hands. That is, because the remapping of touch 

takes relatively long for the feet, the tactile stimuli delivered during the CCE task are 

initially incorrectly localised, which should be reflected in a stronger different side 

CCE when the feet are crossed.  

 

Experiment 2 

 

Participants 

In the second experiment 18 participants (Experiment 2: 3 female 

participants, mean age = 20.6 years) were tested, who were all students at the École 

Polytechnique Fédérale de Lausanne in Switzerland.  

 

Experimental setup 

In the second experiment, participants were standing on their bare feet. Two 

wooden platforms (width: 15 cm, depth: 30 cm height: 20 cm) covered the 

participants’ real feet. On top of these platforms two anatomically realistic rubber feet 
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were placed that matched the position of the participants’ real feet. The distance 

between the left and the right foot was 20 cm. A black blanket was attached to the 

participants’ waist and covered the ankles of the rubber feet, to give the natural 

impression that the rubber feet were the actual feet of the participant.  

As for Experiment 1, in 4 different experimental blocks the position of the 

participants’ real feet and the rubber feet was adjusted (see Figure 1). In half of all 

blocks participants had their real feet in an uncrossed position and in the other half of 

all blocks participants had their feet in a crossed position. Similarly, in half of all 

blocks the rubber feet were presented in an uncrossed position (e.g. left rubber foot 

placed on the left side) and in the other blocks the rubber feet were placed in a crossed 

position (e.g. left rubber foot placed on the right side). Block order was 

counterbalanced across participants.  

 Vibro-tactile stimuli were applied at the dorsal side of the feet close to the 

proximal phalanx of the third toe. Tactile vibrators were applied to the anterior part of 

the feet (close to the toes) and the posterior part of the feet (close to the instep). In 

the second experiment participants responded by pressing the upper or lower button 

of a response box with their right hand, when they perceived a vibro-tactile stimulus 

at respectively the anterior or posterior side of their foot. 

 

Results 

Reaction times for the second experiment are represented in Table 2 and the 

crossmodal congruency effect (i.e. difference between incongruent and congruent 

trials) is represented in Figure 3. Analysis of the reaction times revealed a main effect 
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of Congruency, F(1, 17) = 56.2, p < .001, η2 = .77, reflecting slower reaction times to 

incongruent (494 ms) compared to congruent (432 ms) visuo-tactile stimulation. An 

interaction between Real Body part, Side and Congruency, F(1, 17) = 7.3, p < .05, η2 

= .30, indicated that the CCE side effect was modulated by the position of the real 

legs: when the legs were uncrossed a larger CCE was observed for stimuli at the same 

side of space , but when the legs were crossed a larger CCE was observed for different 

side stimuli. In contrast to the first experiment, no 4-way interaction was found 

between Real Body part, Rubber Body Part, Congruency and Side.   

 

Figure 3: Behavioral Results Experiment 2. The crossmodal congruency effect (i.e. reaction time 

difference between incongruent and congruent visuotactile stimulation) for Experiment 2. Dark bars 

represent same side CCE conditions and light bars represent different side CCE conditions. The left 

side of each graph represents conditions in which the real body parts were uncrossed, the right side of 

the graph represents conditions in which the real body parts were crossed. Please note that the location 

of the side was defined in allocentric coordinates (i.e. whether the visual distractor was presented at the 

same spatial location with respect to the vibrotactile stimulation). Error bars represent standard errors.  
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On average, participants made errors in 9.3 % of all trials and individual error 

rates varies between 2.3 % and 14.8 %. Analysis of the error rates revealed a main 

effect of Congruency, F(1, 17) = 16.5, p < .001, , η2 = .49, reflecting that more errors 

were made to incongruent compared to congruent visuo-tactile stimulation. An 

interaction between Real Body part and Side, F(1, 17) = 4.7, p < .05, η2 = .22, 

indicated that participants made more errors to different side stimuli when the legs 

were uncrossed, but more errors to stimuli at the same side of space  when the legs 

were crossed.  

 

Table 2: Reaction Times (in milliseconds; upper panel) and error rates (in percentage; lower panel) for 

Experiment 2 (Rubber Foot). Columns are separated according to whether the visuo-tactile stimuli 

were applied to the same (left part of table) or the different side (right part of the table) and according 

to whether the visuo-tactile stimuli were congruent (left columns) or incongruent (right columns). 

Rows reflect the different experimental conditions according to whether the real and the rubber body 

parts were uncrossed or crossed. Standard errors are represented between brackets. 
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Between-experiment comparison 

A between-experiment comparison was conducted, by using a mixed ANOVA 

with Extremity (Upper extremities vs. Lower extremities) as an additional between-

subjects factor. An interaction was found between Extremity, Real Body part, Rubber 

Body part and Congruency, F(1, 34) = 4.4, p < .05, η2 = .11. This interaction reflected 

that for the rubber hands the CCE was higher when the rubber hands were placed in 

an anatomically congruent position (i.e. uncrossed-uncrossed or crossed-crossed), but 

for the rubber feet the CCE was not modulated according to anatomical congruency. 

No other interactions were found.  

 

Discussion 

In the second experiment it was found that limb congruency did not facilitate 

multisensory integration for the feet. This finding was in contrast to the first 

experiment, in which an enhanced CCE was found when the real and the rubber 

hands were placed in an anatomically congruent position. In addition, it was found 

that limb crossing did not modulate multisensory integration for the feet. In fact, visual 

stimuli always interfered with tactile stimuli as if the feet were uncrossed. Although 

previous studies have suggested that multisensory integration in peripersonal space is 

comparable between the hands and the feet (Schicke and Roder 2006, Roder, 

Kusmierek et al. 2007, Schicke, Bauer et al. 2009), the present study indicates 

important differences between the hands and the feet with respect to the effect of limb 

congruency and limb crossing on multisensory integration, which will be discussed in 

more detail below.  
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General Discussion 

In the present study we investigated whether the integration of multisensory 

stimuli related to the hands and the feet is differentially modulated by limb congruency 

(i.e. whether the real and the rubber body parts were in a congruent or an incongruent 

position) and by limb posture (i.e. whether the real body parts were crossed or 

uncrossed). Multisensory integration was measured by using the crossmodal 

congruency task in which participants reported the elevation of tactile stimuli applied 

to the real hands or feet, while ignoring visual distractor stimuli superimposed on the 

rubber hands or feet.  

When both the real and the rubber body parts were uncrossed (i.e. when the 

rubber body parts were placed in an anatomically congruent position) we observed a 

standard-size CCE for visuo-tactile stimuli applied to the hands and to the feet. For 

both extremities we also found that the CCEs were characterized by a side effect 

reflected in a stronger same-side CCE when both the real and the rubber body parts 

were uncrossed. These finding indicate a similar peripersonal space representation for 

both the hands and the feet when the limbs are in an uncrossed posture and when the 

rubber body parts are placed in an anatomically congruent position.  

However, our findings also highlight important differences in the integration 

of information related to the hands and the feet in case the real and the rubber body 

parts were crossed.  For the hands the CCE was modulated by the anatomical 

congruency of the rubber hands, whereas this was not the case for the feet. In 

addition, for the hands the CCE was modulated by the crossing of the real hands 

whereas for the feet the CCE was unaffected by feet crossing. As explained in more 
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detail below, we suggest that these findings reflect that visual body information is 

more readily integrated with proprioceptive information for the hands compared to 

the feet, likely due to different functional roles and different multisensory 

representations of these body parts. 

First, only for the hands a smaller CCE was observed when the rubber hands 

were placed in an anatomically incongruent position (i.e. uncrossed-crossed, crossed-

uncrossed) compared to a congruent position (i.e. uncrossed-uncrossed, crossed-

crossed). The effect of anatomical congruency between the real and the rubber hand 

observed in the present study replicates earlier findings (Pavani, Spence et al. 2000) 

and indicates that the CCE is sensitive to the anatomical plausibility of the position 

of the rubber hands based on the comparison between proprioceptive and visual 

signals. However, in the Pavani et al. study (2000) the anatomically incongruent 

condition involved rotating the rubber hands by 90°, resulting in a misalignment with 

the participants’ real hands. In the present study we showed for the first time that the 

CCE is also reduced for rubber hands placed in an anatomically incongruent instead of 

an anatomically impossible condition. The effect of rubber hand placement on 

multisensory integration is also in line with studies on the rubber hand illusion (RHI), 

indicating that synchronous visuo-tactile stimulation can result in a feeling of 

ownership for the rubber hand, only if the rubber hand is placed in an anatomically 

congruent position (Tsakiris and Haggard 2005, Costantini and Haggard 2007). In 

contrast to these previous studies however, in the present study we did not actively 

induce a bodily illusion through visuo-tactile stroking.  The finding that congruent 

rubber hand placement still facilitated the CCE suggests that the mere placement of 
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rubber hands in an anatomically congruent position is already sufficient to facilitate 

integration in one’s peripersonal space.  

In contrast to the effects observed for the hands, for the feet the CCE was not 

modulated by the anatomical congruency between the position of the rubber feet and 

the participants’ real feet. That is, for the feet the CCE was comparable in size 

irrespective of whether the real or the rubber feet were crossed or uncrossed. We 

suggest that this differential effect between the hands and the feet is related to 

differences in visual experience with observing our hands versus our feet. That is, in 

daily life we can readily observe our hands and visual information about our hands is 

strongly coupled to proprioceptive information about the position of our hands. As a 

consequence, visual information related to the rubber hands is more easily integrated 

in our hand representation if the rubber hands are in a congruent position with 

respect to our real hands (see also: Ehrsson, Spence et al. 2004, Tsakiris and Haggard 

2005). If the rubber hands are in an anatomically incongruent position, however, this 

visual-proprioceptive conflict leads to a reduced CCE (cf. Pavani, Spence et al. 2000, 

Zopf, Savage et al. 2010).  

Compared to the richness of visual signals about our hands, we have relatively 

less visual experience with observing our feet and therefore visual and proprioceptive 

information are probably less strongly coupled for the feet compared to the hands. 

Indeed several studies have indicated the importance of proprioceptive over visual 

feedback for postural control, stability and locomotion (Rossignol, Dubuc et al. 2006, 

Duysens, Beerepoot et al. 2008). Furthermore, Stratton already noted that - when 

wearing a mirror system that projected his body image as seen from above in front of 

him - whereas tactile information from the hands was remapped to the new visual 
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location, this was not the case for tactile information from the legs or the feet 

(Stratton 1899). In the present study the CCE was not modulated by the anatomical 

congruency between the rubber feet and the real feet. Accordingly these data suggest 

that the position information of the observed feet was not automatically coupled to 

the position information of the real feet. These data are suggestive of fundamental 

differences of how visual, proprioceptive, and tactile signals are integrated. 

In addition to the stronger visual-proprioceptive coupling for the hands 

compared to the feet, it should be noted that limb crossing was visually more salient 

for the hands compared to the feet (i.e. more visual features to disambiguate laterality, 

such as protruding thumbs). For instance, studies on motor imagery indicate that 

mental rotation is easier for the hands compared to the feet (Parsons 1987, 

Gentilucci, Daprati et al. 1998, Ionta, Fourkas et al. 2007). In addition, feet are 

visually more distal than the hands, thereby further reducing the relative importance 

of visual information for the feet compared to the hands. As a consequence, it could 

be that the stronger effect of limb congruency on multisensory integration for hands 

compared to feet is related to the fact that laterality could be more readily inferred for 

hands compared to feet.  

A second major difference between the hands and the feet was observed in the 

CCE side effect. Typically, a stronger CCE is observed when the visual distractor 

stimuli are presented in the same spatial hemifield as the tactile stimuli compared to 

when the visual distractor appears in a different hemifield The stronger same side 

CCE is taken to reflect a stronger interference when the visual stimulus is perceived 

to be in close spatial proximity to the tactile stimulus (Spence, Pavani et al. 2004, 

Spence, Pavani et al. 2004). The notion that the CCE is sensitive to the perceived 
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proximity of visual and tactile stimuli is supported by tool use studies, indicating that 

crossing tools results in a reversal of the CCE side effect, such that visual stimuli 

presented at the end of a handheld tool interfere with a tactile stimulus applied to the 

hand that is actually in the opposite hemifield (Maravita, Spence et al. 2002, Maravita 

and Iriki 2004, Holmes, Sanabria et al. 2007). In the present study for the hands the 

CCE side effect was modulated by the position of both the real hands and the rubber 

hands. More specifically, a stronger CCE was observed when visuo-tactile stimuli 

appeared at the same location compared to a different location when both the real 

hands and the rubber hands were uncrossed. When both the real and the rubber 

hands were crossed, a reduction in the CCE side effect was observed. Interestingly 

though, we did not observe a complete reversal of the CCE side effect, as is typically 

observed in studies on active tool use (Maravita, Spence et al. 2002, Maravita and 

Iriki 2004, Sengul, van Elk et al. 2012). This suggests that although limb crossing did 

modulate multisensory integration, it did not result in a complete remapping of 

peripersonal space. The absence of a complete remapping is likely related to the 

relatively short duration of the tactile stimulations that were used in the present study. 

Previous studies have indicated that the remapping of touch according to one’s body 

posture takes about 300-400 ms (Schicke and Roder 2006, Azanon and Soto-Faraco 

2008, Azanon, Camacho et al. 2010), and the tactile stimuli used in the present 

CCE-task were likely too short to result in a complete remapping.  

This interpretation is further supported by the finding that the CCE was not 

modulated by the crossing of the feet. That is, when the real feet were in an uncrossed 

posture, same side visual distractors interfered more strongly as it happened for the 

hand. However, when the real feet were in a crossed posture, different side visual 
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distractors interfered more strongly. In other words: even though the real feet were 

crossed, visual distractors interfered with tactile judgments as if the feet were 

uncrossed. This finding indicates that no remapping of tactile information occurred 

according to the position of the real or the rubber feet. It could well be that due to the 

crossing of the feet, tactile stimuli were incorrectly localised thereby interfering more 

strongly with visual distractors presented at a different side. This suggestion is in line 

with the finding that the remapping of tactile stimuli on the hand according to 

proprioceptive signal is quicker than for tactile stimuli on the feet (Schicke and Roder 

2006). As visual distractor stimuli were presented in close temporal proximity to the 

tactile stimuli, the tactile stimuli may have been incorrectly localised, resulting in an 

interference effect with different side visual distractors when the feet were crossed.  

In the present study, participants were statically holding their hands or feet in 

either an uncrossed or a crossed posture. With this design we observed a partial 

updating of the peripersonal space representation based on body posture only for the 

hands, but not for the feet. An interesting question is whether dynamic instead of 

static crossing of the feet would result in a stronger updating of the body 

representation, similar to the effects observed for actively crossing and uncrossing 

tools (Maravita, Spence et al. 2002, Maravita and Iriki 2004). Dynamic crossing may 

yield the actual position of one’s body parts more salient or relevant, thus resulting in 

a stronger updating of one’s body representation. In addition, an interesting question 

would be to what extent the remapping of peripersonal hand and foot space differs 

between individuals who have profound experience with using either the hands or the 

feet (e.g. aplasic subjects). Given the notion that action experience has a strong effect 

on the visuo-motor and visuo-proprioceptive representation of our body (Calvo-
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Merino, Grezes et al. 2006, Gazzola, van der Worp et al. 2007), one would expect 

that peripersonal space would be more readily remapped for body parts with which we 

have profound experience.  

In sum, the finding that the CCE was differentially modulated for hands and 

feet according to limb congruency and limb crossing suggests important differences in 

the processes underlying the representation of peripersonal space around these body 

parts. Multisensory integration was modulated by both limb crossing and limb 

congruency only for the hands but not for the feet. This finding indicates that the 

coupling between visual and proprioceptive information may be stronger for our 

hands than for our feet, which might be related to differences in the visual experience 

related to actions performed with our hands and feet.  

 

Acknowledgments 

The present study was supported by the Marie Curie Intra European 

Fellowship within the Seventh European Community Framework Program (IEF 

grant 252713 to MVE). JF is supported by the Swiss National Science Foundation. 

OB is supported by the Swiss National Science foundation, the European Science 

Foundation, and the Foundation Bertarelli.  

  



 137 

References 

Andre, J. M., N. Martinet, J. Paysant, J. M. Beis and L. Le Chapelain (2001). 
"Temporary phantom limbs evoked by vestibular caloric stimulation in amputees." 
Neuropsychiatry Neuropsychol Behav Neurol 14(3): 190-196. 
Arzy, S., L. S. Overney, T. Landis and O. Blanke (2006). "Neural mechanisms of 
embodiment: asomatognosia due to premotor cortex damage." Arch Neurol 63(7): 
1022-1025. 
Arzy, S., M. Seeck, S. Ortigue, L. Spinelli and O. Blanke (2006). "Induction of an 
illusory shadow person." Nature 443(7109): 287. 
Aspell, J. E., B. Lenggenhager and O. Blanke (2009). "Keeping in touch with one's 
self: multisensory mechanisms of self-consciousness." PLoS One 4(8): e6488. 
Axelrod, S., L. W. Thompson and L. D. Cohen (1968). "Effects of senescence on the 
temporal resolution of somesthetic stimuli presented to one hand or both." J Gerontol 
23: 191-195. 
Azanon, E., K. Camacho and S. Soto-Faraco (2010). "Tactile remapping beyond 
space." Eur J Neurosci 31(10): 1858-1867. 
Azanon, E. and S. Soto-Faraco (2008). "Changing reference frames during the 
encoding of tactile events." Curr Biol 18(14): 1044-1049. 
Barnsley, N., J. H. McAuley, R. Mohan, A. Dey, P. Thomas and G. L. Moseley 
(2011). "The rubber hand illusion increases histamine reactivity in the real arm." Curr 
Biol 21(23): R945-946. 
Bekrater-Bodmann, R., J. Foell, M. Diers and H. Flor (2012). "The perceptual and 
neuronal stability of the rubber hand illusion across contexts and over time." Brain 
Res 1452: 130-139. 
Berlucchi, G. and S. Aglioti (1997). "The body in the brain: neural bases of corporeal 
awareness." Trends Neurosci 20(12): 560-564. 
Berlucchi, G. and S. M. Aglioti (2010). "The body in the brain revisited." Exp Brain 
Res 200(1): 25-35. 
Berthoz, A., B. Pavard and L. R. Young (1975). "Perception of linear horizontal self-
motion induced by peripheral vision (linearvection) basic characteristics and visual-
vestibular interactions." Exp Brain Res 23(5): 471-489. 



 138 

Berthoz, A., B. Pavard and L. R. Young (1975). "Perception of linear horizontal self-
motion induced by peripheral vision (linearvection) basic characteristics and visual-
vestibular interactions." Exp Brain Res 23(5): 471-489. 
Blanke, O. and C. Mohr (2005). "Out-of-body experience, heautoscopy, and 
autoscopic hallucination of neurological origin Implications for neurocognitive 
mechanisms of corporeal awareness and self-consciousness." Brain Res Brain Res Rev 
50(1): 184-199. 
Blanke, O., S. Ortigue, T. Landis and M. Seeck (2002). "Stimulating illusory own-
body perceptions." Nature 419(6904): 269-270. 
Botvinick, M. and J. Cohen (1998). "Rubber hands 'feel' touch that eyes see." Nature 
391(6669): 756-756. 
Botvinick, M. and J. Cohen (1998). "Rubber hands 'feel' touch that eyes see." Nature 
391(6669): 756. 
Brandt, T. and J. Dichgans (1972). "[Circular vection, visually induced pseudocoriolis 
effects, optokinetic afernystagmus. A comparative study of subjective and objective 
optokinetic aftereffects]." Albrecht Von Graefes Arch Klin Exp Ophthalmol 184(1): 
42-57. 
Brandt, T., J. Dichgans and E. Koenig (1972). "Perception of self-rotation (circular 
vection) induced by optokinetic stimuli." Pflugers Arch 332(Suppl): R98. 
Bremmer, F., F. Klam, J. R. Duhamel, S. Ben Hamed and W. Graf (2002). "Visual-
vestibular interactive responses in the macaque ventral intraparietal area (VIP)." Eur J 
Neurosci 16(8): 1569-1586. 
Bresciani, J. P., J. Blouin, K. Popov, C. Bourdin, F. Sarlegna, J. L. Vercher and G. 
M. Gauthier (2002). "Galvanic vestibular stimulation in humans produces online arm 
movement deviations when reaching towards memorized visual targets." Neurosci 
Lett 318(1): 34-38. 
Calvo-Merino, B., J. Grezes, D. E. Glaser, R. E. Passingham and P. Haggard (2006). 
"Seeing or doing? Influence of visual and motor familiarity in action observation." 
Curr Biol 16(19): 1905-1910. 
Cardin, V. and A. T. Smith (2010). "Sensitivity of human visual and vestibular 
cortical regions to egomotion-compatible visual stimulation." Cereb Cortex 20(8): 
1964-1973. 



 139 

Chu, W. H. N. (1976). Dynamic response of human linear vection. 
Costantini, M. and P. Haggard (2007). "The rubber hand illusion: sensitivity and 
reference frame for body ownership." Conscious Cogn 16(2): 229-240. 
de Vignemont, F. (2010). "Body schema and body image--pros and cons." 
Neuropsychologia 48(3): 669-680. 
de Vignemont, F. (2011). "Embodiment, ownership and disownership." Conscious 
Cogn 20(1): 82-93. 
Dempsey-Jones, H. and A. Kritikos (2014). "Higher-order cognitive factors affect 
subjective but not proprioceptive aspects of self-representation in the rubber hand 
illusion." Conscious Cogn 26: 74-89. 
Destrieux, C., B. Fischl, A. Dale and E. Halgren (2010). "Automatic parcellation of 
human cortical gyri and sulci using standard anatomical nomenclature." Neuroimage 
53(1): 1-15. 
Deutschlander, A., S. Bense, T. Stephan, M. Schwaiger, M. Dieterich and T. Brandt 
(2004). "Rollvection versus linearvection: comparison of brain activations in PET." 
Hum Brain Mapp 21(3): 143-153. 
Dichgans, J., Brandt, T (1978). "Visual-vestibular interaction: Effects on self-motion 
perception and postural control." Perception Handbook of Sensory Physiology, vol. 
VIII. Springer, New York: 756-804. 
Dijkerman, H. C. and E. H. de Haan (2007). "Somatosensory processes subserving 
perception and action." Behav Brain Sci 30(2): 189-201; discussion 201-139. 
Duvernoy, H. C., EA.; Duvernoy, HM.; Cabanis, EA.; (1991). "The Human brain: 
surface, three-dimensional sectional anatomy and MRI." Springer-Verlag Wien: 11. 
Duysens, J., V. P. Beerepoot, P. H. Veltink, V. Weerdesteyn and B. C. Smits-
Engelsman (2008). "Proprioceptive perturbations of stability during gait." 
Neurophysiol Clin 38(6): 399-410. 
Ehrsson, H. H., N. P. Holmes and R. E. Passingham (2005). "Touching a rubber 
hand: feeling of body ownership is associated with activity in multisensory brain 
areas." J Neurosci 25(45): 10564-10573. 
Ehrsson, H. H., C. Spence and R. E. Passingham (2004). "That's my hand! Activity 
in premotor cortex reflects feeling of ownership of a limb." Science 305(5685): 875-
877. 



 140 

Ehrsson, H. H., K. Wiech, N. Weiskopf, R. J. Dolan and R. E. Passingham (2007). 
"Threatening a rubber hand that you feel is yours elicits a cortical anxiety response." 
Proc Natl Acad Sci U S A 104(23): 9828-9833. 
Felician, O., M. Ceccaldi, M. Didic, C. Thinus-Blanc and M. Poncet (2003). 
"Pointing to body parts: a double dissociation study." Neuropsychologia 41(10): 
1307-1316. 
Ferre, E. R., G. Bottini, G. D. Iannetti and P. Haggard (2013). "The balance of 
feelings: vestibular modulation of bodily sensations." Cortex 49(3): 748-758. 
Ferre, E. R., B. L. Day, G. Bottini and P. Haggard (2013). "How the vestibular 
system interacts with somatosensory perception: a sham-controlled study with 
galvanic vestibular stimulation." Neurosci Lett 550: 35-40. 
Ferre, E. R., E. Vagnoni and P. Haggard (2013). "Vestibular contributions to bodily 
awareness." Neuropsychologia 51(8): 1445-1452. 
Ferri, F., A. M. Chiarelli, A. Merla, V. Gallese and M. Costantini (2013). "The body 
beyond the body: expectation of a sensory event is enough to induce ownership over a 
fake hand." Proc Biol Sci 280(1765): 20131140-20131140. 
Fetsch, C. R., A. Pouget, G. C. Deangelis and D. E. Angelaki (2011). "Neural 
correlates of reliability-based cue weighting during multisensory integration." Nat 
Neurosci 15(1): 146-154. 
Fourneret, P. and M. Jeannerod (1998). "Limited conscious monitoring of motor 
performance in normal subjects." Neuropsychologia 36(11): 1133-1140. 
Frank, S. M., O. Baumann, J. B. Mattingley and M. W. Greenlee (2014). "Vestibular 
and Visual Responses in Human Posterior Insular Cortex." J Neurophysiol. 
Gazzola, V., H. van der Worp, T. Mulder, B. Wicker, G. Rizzolatti and C. Keysers 
(2007). "Aplasics born without hands mirror the goal of hand actions with their feet." 
Current Biology 17(14): 1235-1240. 
Gentile, G., V. I. Petkova and H. H. Ehrsson (2010). "Integration of visual and 
tactile signals from the hand in the human brain: an FMRI study." J Neurophysiol 
105: 910-922. 
Gentilucci, M., E. Daprati and M. Gangitano (1998). "Right-handers and left-
handers have different representations of their own hand." Brain Res Cogn Brain Res 
6(3): 185-192. 



 141 

Goldenberg, G. (1995). "Imitating gestures and manipulating a mannikin--the 
representation of the human body in ideomotor apraxia." Neuropsychologia 33(1): 
63-72. 
Graziano, M. S., D. F. Cooke and C. S. Taylor (2000). "Coding the location of the 
arm by sight." Science 290(5497): 1782-1786. 
Grusser, O. J., M. Pause and U. Schreiter (1990). "Vestibular neurones in the parieto-
insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses." J 
Physiol 430: 559-583. 
Haans, A., W. A. Ijsselsteijn and Y. A. de Kort (2008). "The effect of similarities in 
skin texture and hand shape on perceived ownership of a fake limb." Body Image 
5(4): 389-394. 
Haggard, P. and S. Jundi (2009). "Rubber hand illusions and size-weight illusions: 
self-representation modulates representation of external objects." Perception 38(12): 
1796-1803. 
Heed, T., M. Grundler, J. Rinkleib, F. H. Rudzik, T. Collins, E. Cooke and J. K. 
O'Regan (2011). "Visual information and rubber hand embodiment differentially 
affect reach-to-grasp actions." Acta Psychol (Amst) 138(1): 263-271. 
Holmes, N., Spence C. (2007). "Dissociating body image and body schema with 
rubber hands." Behavioral and Brain Sciences 30(2): 211-212. 
Holmes, N. P., G. A. Calvert and C. Spence (2004). "Extending or projecting 
peripersonal space with tools? Multisensory interactions highlight only the distal and 
proximal ends of tools." Neurosci Lett 372(1-2): 62-67. 
Holmes, N. P., G. A. Calvert and C. Spence (2007). "Tool use changes multisensory 
interactions in seconds: evidence from the crossmodal congruency task." Exp Brain 
Res 183(4): 465-476. 
Holmes, N. P., D. Sanabria, G. A. Calvert and C. Spence (2006). "Multisensory 
interactions follow the hands across the midline: evidence from a non-spatial visual-
tactile congruency task." Brain Res 1077(1): 108-115. 
Holmes, N. P., D. Sanabria, G. A. Calvert and C. Spence (2007). "Tool-use: 
capturing multisensory spatial attention or extending multisensory peripersonal 
space?" Cortex 43(3): 469-489. 



 142 

Holmes, N. P., H. J. Snijders and C. Spence (2006). "Reaching with alien limbs: 
visual exposure to prosthetic hands in a mirror biases proprioception without 
accompanying illusions of ownership." Percept Psychophys 68(4): 685-701. 
Ionta, S., A. D. Fourkas, M. Fiorio and S. M. Aglioti (2007). "The influence of 
hands posture on mental rotation of hands and feet." Exp Brain Res 183(1): 1-7. 
Ionta, S., L. Heydrich, B. Lenggenhager, M. Mouthon, E. Fornari, D. Chapuis, R. 
Gassert and O. Blanke (2011). "Multisensory mechanisms in temporo-parietal cortex 
support self-location and first-person perspective." Neuron 70(2): 363-374. 
Iriki, A., M. Tanaka and Y. Iwamura (1996). "Coding of modified body schema 
during tool use by macaque postcentral neurones." Neuroreport 7(14): 2325-2330. 
Kammers, M. P. M., F. de Vignemont, L. Verhagen and H. C. Dijkerman (2009). 
"The rubber hand illusion in action." Neuropsychologia 47(1): 204-211. 
Kannape, O. A., L. Schwabe, T. Tadi and O. Blanke (2010). "The limits of agency in 
walking humans." Neuropsychologia 48(6): 1628-1636. 
Kitazawa, S. (2002). "Where conscious sensation takes place." Consciousness and 
Cognition 11(3): 475-477. 
Knox, J. J., M. W. Coppieters and P. W. Hodges (2006). "Do you know where your 
arm is if you think your head has moved?" Exp Brain Res 173(1): 94-101. 
Le Chapelain, L., J. M. Beis, J. Paysant and J. M. Andre (2001). "Vestibular caloric 
stimulation evokes phantom limb illusions in patients with paraplegia." Spinal Cord 
39(2): 85-87. 
Lenggenhager, B., C. Lopez and O. Blanke (2008). "Influence of galvanic vestibular 
stimulation on egocentric and object-based mental transformations." Exp Brain Res 
184(2): 211-221. 
Lenggenhager, B., T. Tadi, T. Metzinger and O. Blanke (2007). "Video ergo sum: 
manipulating bodily self-consciousness." Science 317(5841): 1096-1099. 
Lestienne, F., J. Soechting and A. Berthoz (1977). "Postural Readjustments Induced 
by Linear Motion of Visual Scenes." Experimental Brain Research 28(3-4): 363-384. 
Lopez, C. and O. Blanke (2011). "The thalamocortical vestibular system in animals 
and humans." Brain Res Rev 67(1-2): 119-146. 



 143 

Lopez, C., O. Blanke and F. W. Mast (2012). "The human vestibular cortex revealed 
by coordinate-based activation likelihood estimation meta-analysis." Neuroscience 
212: 159-179. 
Lopez, C., P. Halje and O. Blanke (2008). "Body ownership and embodiment: 
vestibular and multisensory mechanisms." Neurophysiol Clin 38(3): 149-161. 
Lopez, C., B. Lenggenhager and O. Blanke (2010). "How vestibular stimulation 
interacts with illusory hand ownership." Conscious Cogn 19(1): 33-47. 
Lopez, C., H. M. Schreyer, N. Preuss and F. W. Mast (2012). "Vestibular 
stimulation modifies the body schema." Neuropsychologia. 
Macaluso, E., N. George, R. Dolan, C. Spence and J. Driver (2004). "Spatial and 
temporal factors during processing of audiovisual speech: a PET study." Neuroimage 
21(2): 725-732. 
Mach, E. (1875). " Grundlinien der Lehre von der Bewegungsempfindung." 
Engelmann, Leipzig, Germany. 
Maravita, A. and A. Iriki (2004). "Tools for the body (schema)." Trends Cogn Sci 
8(2): 79-86. 
Maravita, A., C. Spence, S. Kennett and J. Driver (2002). "Tool-use changes 
multimodal spatial interactions between vision and touch in normal humans." 
Cognition 83(2): B25-34. 
Mars, F., P. S. Archambault and A. G. Feldman (2003). "Vestibular contribution to 
combined arm and trunk motion." Exp Brain Res 150(4): 515-519. 
Mazzola, L., C. Lopez, I. Faillenot, F. Chouchou, F. Mauguiere and J. Isnard (2014). 
"Vestibular responses to direct stimulation of the human insular cortex." Ann Neurol. 
Moseley, G. L., A. Gallace and C. Spence (2012). "Bodily illusions in health and 
disease: Physiological and clinical perspectives and the concept of a cortical 'body 
matrix'." Neurosci Biobehav Rev 36(1): 34-46. 
Moseley, G. L., N. Olthof, A. Venema, S. Don, M. Wijers, A. Gallace and C. 
Spence (2008). "Psychologically induced cooling of a specific body part caused by the 
illusory ownership of an artificial counterpart." Proc Natl Acad Sci U S A 105(35): 
13169-13173. 
Parsons, L. M. (1987). "Imaged spatial transformations of one's hands and feet." 
Cogn Psychol 19: 178-241. 



 144 

Pavani, F., C. Spence and J. Driver (2000). "Visual capture of touch: out-of-the-body 
experiences with rubber gloves." Psychol Sci 11(5): 353-359. 
Pavani, F. and M. Zampini (2007). "The role of hand size in the fake-hand illusion 
paradigm." Perception 36(10): 1547-1554. 
Pfeiffer, C., A. Serino and O. Blanke (2014). "The vestibular system: a spatial 
reference for bodily self-consciousness." Front Integr Neurosci 8: 31-31. 
Riggio, L., L. Gawryszewski and C. Umiltà (1986). "What is crossed in crossed-hand 
effects?" Acta Psychol (Amst) 62: 89-100. 
Roder, B., A. Kusmierek, C. Spence and T. Schicke (2007). "Developmental vision 
determines the reference frame for the multisensory control of action." Proc Natl 
Acad Sci U S A 104(11): 4753-4758. 
Roder, B., F. Rosler and C. Spence (2004). "Early vision impairs tactile perception in 
the blind." Curr Biol 14(2): 121-124. 
Rossignol, S., R. Dubuc and J. P. Gossard (2006). "Dynamic sensorimotor 
interactions in locomotion." Physiol Rev 86(1): 89-154. 
Salomon, R., M. van Elk, J. E. Aspell and O. Blanke (2012). "I feel who I see: Visual 
body identity affects visual-tactile integration in peripersonal space." Conscious Cogn 
21(3): 1355-1364. 
Schicke, T., F. Bauer and B. Roder (2009). "Interactions of different body parts in 
peripersonal space: how vision of the foot influences tactile perception at the hand." 
Exp Brain Res 192(4): 703-715. 
Schicke, T. and B. Roder (2006). "Spatial remapping of touch: confusion of perceived 
stimulus order across hand and foot." Proc Natl Acad Sci U S A 103(31): 11808-
11813. 
Schwarz, D. W. F. and J. M. Fredrickson (1971). "Rhesus monkey vestibular cortex: a 
bimodal primary projection field." Science 172: 280-281. 
Schwarz, D. W. F., J. M. Fredrickson and L. Deecke (1973). "Structure and 
connections of the rhesus vestibular cortex." Adv Otorhinolaryngol 19: 206-209. 
Schwoebel, J., H. B. Coslett and L. J. Buxbaum (2001). "Compensatory coding of 
body part location in autotopagnosia: Evidence for extrinsic egocentric coding." Cogn 
Neuropsychol 18(4): 363-381. 



 145 

Sengul, A., M. van Elk, G. Rognini, J. E. Aspell, H. Bleuler and O. Blanke (2012). 
"Extending the body to virtual tools using a robotic surgical interface: evidence from 
the crossmodal congruency task." PLoS One 7(12): e49473. 
Shore, D. I., M. E. Barnes and C. Spence (2006). "Temporal aspects of the 
visuotactile congruency effect." Neurosci Lett 392(1-2): 96-100. 
Shore, D. I., E. Spry and C. Spence (2002). "Confusing the mind by crossing the 
hands." Brain Res Cogn Brain Res 14(1): 153-163. 
Smith, A. T., M. B. Wall and K. V. Thilo (2011). "Vestibular Inputs to Human 
Motion-Sensitive Visual Cortex." Cereb Cortex. 
Spence, C. and J. Driver (1994). "Covert spatial orienting in audition: exogenous and 
endogenous mechanisms facilitate sound localization." J Exp Psychol Hum Percept 
Perform 20: 555-574. 
Spence, C., F. Pavani and J. Driver (2000). "Crossmodal links between vision and 
touch in covert endogenous spatial attention." J Exp Psychol Hum Percept Perform 
26(4): 1298-1319. 
Spence, C., F. Pavani and J. Driver (2004). "Spatial constraints on visual-tactile cross-
modal distractor congruency effects." Cogn Affect Behav Neurosci 4(2): 148-169. 
Spence, C., F. Pavani, A. Maravita and N. Holmes (2004). "Multisensory 
contributions to the 3-D representation of visuotactile peripersonal space in humans: 
evidence from the crossmodal congruency task." J Physiol Paris 98(1-3): 171-189. 
Stratton, G. M. (1899). "The spatial harmony of touch and sight." Mind 8(32): 492-
505. 
Straube, A. and T. Brandt (1987). "Importance of the visual and vestibular cortex for 
self-motion perception in man (circularvection)." Hum Neurobiol 6(3): 211-218. 
Trutoiu, L., B. Mohler, J. Schulte-Pelkum and H. Bülthoff (2009). "Circular, linear, 
and curvilinear vection in a large-screen virtual environment with floor projection." 
Computers & Graphics 33(1): 47-58. 
Trutoiu LC, M. B., Schulte-Pelkum J, Bülthoff HH (2009). "Circular, linear, and 
curvilinear vection in a large-screen virtual environment with floor projection." 
Computers & 
Graphics 33: 47–58. 



 146 

Tsakiris, M. and P. Haggard (2005). "The rubber hand illusion revisited: visuotactile 
integration and self-attribution." J Exp Psychol Hum Percept Perform 31(1): 80-91. 
Tsakiris, M., M. D. Hesse, C. Boy, P. Haggard and G. R. Fink (2007). "Neural 
signatures of body ownership: a sensory network for bodily self-consciousness." Cereb 
Cortex 17(10): 2235-2244. 
van Elk, M., J. Forget and O. Blanke (2013). "The effect of limb crossing and limb 
congruency on multisensory integration in peripersonal space for the upper and lower 
extremities." Conscious Cogn 22(2): 545-555. 
Wada, M., S. Yamamoto and S. Kitazawa (2004). "Effects of handedness on tactile 
temporal order judgment." Neuropsychologia 42(14): 1887-1895. 
Yamamoto, S. and S. Kitazawa (2001). "Reversal of subjective temporal order due to 
arm crossing." Nat Neurosci 4(7): 759-765. 
Zopf, R., G. Savage and M. A. Williams (2010). "Crossmodal congruency measures 
of lateral distance effects on the rubber hand illusion." Neuropsychologia 48(3): 713-
725. 
zu Eulenburg, P., U. Baumgartner, R. D. Treede and M. Dieterich (2013). 
"Interoceptive and multimodal functions of the operculo-insular cortex: tactile, 
nociceptive and vestibular representations." Neuroimage 83: 75-86. 
zu Eulenburg, P., S. Caspers, C. Roski and S. B. Eickhoff (2012). "Meta-analytical 
definition and functional connectivity of the human vestibular cortex." Neuroimage 
60(1): 162-169. 
  

 

  



 147 

Chapter 5 Mixed out-of-body and heautoscopic 

experiences of epileptic origin associated with a 

developmental venous anomaly and a focal cortical 

micro-dysplasia of the left angular gyrus 

Forget Joachima,b,c, *, Lukas Heydrichd ,  Blanke Olafa,b,e, Meuli Retoc. 

 

aLaboratory of Cognitive Neuroscience, Swiss Federal Institute of Technology, 

Lausanne, Switzerland 

cCentre for Neuroprosthetics, Swiss Federal Institute of Technology, Lausanne, 

Switzerland 

cDepartment of Radiology, University Hospital, Lausanne, Switzerland 

dDepartment of Neurology, University Hospital, Bern, Switzerland 

eDepartment of Neurology, University Hospital, Geneva, Switzerland 

 

 

 

  



 148 

Keywords 

Heautoscopy 

Developmental venous anomaly  

Cortical Dysplasia  

Epilepsy 

Out-of-body Experience 

 

Bullet points 

 

Heautoscopy is a rare syndrome where bodily self-consciousness is affected. 

In heautoscopy, self-location is shared between a real and an illusory body. 

Heautoscopy is reported to be associated with focal cortical microdysplasia. 

Heautoscopy may be linked to left angular gyrus lesions. 

Focal cortical microdysplasia can be associated to a developmental venous anomaly. 
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Abstract 

 

We explored the case of EM, a young female 15 years old patient, treated for 

partial seizures, happening several times a day at the onset of the disease. Each seizure 

episode lasted between 1 and 2 minutes and associated typical symptoms of mesial 

epilepsy (absences seizures, epigastric sensations) with a rare disorder of somatognosia 

called heautoscopy (HAS). Interestingly, symptoms were fully cured by the 

introduction of a medical antiepileptic treatment, removed progressively after 2 years. 

Brain imaging showed the presence of a Developmental Venous Anomaly (DVA) in 

the left angular gyrus, a multisensory region important in bodily self-consciousness. 

Lesions of angular gyrus have been linked to disorders of somatognosia. A cortical 

micro-dysplasia was observed in the vicinity of the DVA. The epileptogenicity of 

DVAs is still debated but previous studies report cases of DVAs associated with 

complex partial seizures and histological brain changes even in the absence of bleeding 

event. 

 

1. Introduction 

Disorders of somatognosia characterized by visual body reduplication can 

happen transiently in healthy humans or patients with neurological conditions and 

affect the two main components of bodily self-consciousness: self-location and self-

identification. Three categories of alterations of bodily self-consciousness have been 

identified and described (Brugger, 2002; Mohr and Blanke, 2005) according to their 

respective phenomenology, their associations to specific clinical context and brain 

regions that are affected: out-of-body experience (OBE), autoscopic hallucination 
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(AH) and heautoscopy (HAS). HAS represents an intermediate form between OBE 

and AH. A patient experiencing HAS sees himself or his double in the extrapersonal 

space with a difficulty to disentangle if the self is located within his body or 

hallucinated from the virtual body location. It has been also frequently reported in 

HAS an alternation from those two different visuo-spatial perspectives: from the 

physical body or from the duplicated body (Blanke et al., 2004). In OBE, the 

disembodiment predominates as the self is located in the virtual body’s location where 

the subject sees his physical body from an elevated perspective while in AH the self 

localization stays within the physical body; in AH the visual component is the major 

component of the percept and the subject sees himself or a double in the extrapersonal 

space. HAS is predominantly characterized by the ambiguous localization of the self 

(Blanke and Mohr, 2005; Brugger et al., 2006, 1994). In AH self-processing (agency, 

visuo-spatial perspective and self-other distinction) is preserved. AH has been 

commonly associated to extra striate body area (Astafiev et al., 2004; Downing et al., 

2001). But OBEs have been repeatedly associated with brain lesions or transient 

disturbances in the inferior parietal lobule, commonly described as temporo-parietal 

junction (TPJ), mainly the angular gyrus (AG), the supramarginal gyrus (SMG) and 

the posterior part of the superior temporal gyrus (STG) (Blanke, 2004; Blanke et al., 

2004, 2002b, 2000; Brugger, 1997; Brugger et al., 2006, 1994; De Ridder et al., 2007; 

Heydrich and Blanke, 2013; Heydrich et al., 2010, 2011; Ionta et al., 2011). As the 

3d person perspective or alter-ego perspective dominates in OBE, they have been 

associated with right TPJ while HAS is more commonly associated with pathological 

activity related to left TPJ. 
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 Different medical neurological conditions, general (encephalitis, intoxications, 

general anaesthesia) or more focal (mainly epilepsy and more rarely brain trauma, 

migraine, tumour) have been described as aetiologies of autoscopic phenomena 

(Blanke et al., 2004; Bünning and Blanke, 2005). Focal epilepsy on the right parietal 

lobe has been reported to be associated to heautoscopy (Anzellotti et al., 2011), or 

also autoscopy at the postictal phase has been observed (Tadokoro et al., 2006) but 

parietal lobe epilepsy manifested with autoscopic phenomena stay a more rare 

phenomenon according to previous reviews (Brandt et al., 2005; Salanova et al., 1995; 

Sveinbjornsdottir and Duncan, 1993). 

 Development Venous Anomaly (DVA) clinical expression is still a 

controversial topic as some authors found them to be epileptogenic only in cases of 

secondary complications, mostly haemorrhagic, or with a concomitant presence of 

cavernoma or cortical dysplasia. It is also a common incidental finding in healthy 

people, up to 2.6% in a series of 4’069 brain autopsies (Sarwar and McCormick, 

1978). Nevertheless, DVA without complications seem sometimes the only candidate 

of a pathological condition whether a causal link is difficult to establish, and questions 

the limit about spatial resolution of the radiological diagnosis. Moreover, in some 

cases, DVA can also be associated with cortical dysplasia, common source of epilepsy 

(Madan and Grant, 2009). 

 

2. Case presentation 

We present the case of EM, is a 15-year-old female, right handed and French 

native speaker patient that we first examined in the Neurology Department of 
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Geneva. She suffered her first partial complex seizures for a year. The habitual seizure 

frequency (in the absence of any antiepileptic medical treatment) during the first 7 

months course of the disease was of 3-4 crisis per day, following a stereotypical 

semiology that was reported as follows by the patient: her typical seizures start like 

classical mesial seizures, with an epigastric sensation (described as a “boule dans le 

ventre”, a “ball inside the belly”). She describes this feeling as starting from the level of 

the stomach then ascending to reach the upper thorax behind the sternal line (she 

added that the sensation reminded her as if she were taking a roller coaster and there 

is a sudden bump downwards). Some chills and a feeling of heat accompany it, and it 

was also associated with an impossibility of talking with her mates if some are present. 

She reports being still able to perceive voices as if she would be in a crowd but 

somehow less understandable, and loosing ability to interact at this time with 

language production.  

 This is immediately followed by a sudden vision of her own body “from 

outside”. It occurs almost with each seizure, several times a day, before the 

introduction of the treatment. She defined her self-location as “in front of herself”, as 

if she would be outside of her own physical body and facing it; she sees her body in 

the position she was in before the seizure (either standing or sitting (one seizure 

happened when she was lying on the bed but she does not remember if she was 

feeling like floating in the air). She also describes to see her immediate environment 

(she quotes the bench where she was eventually sitting, the trees, or the room), while 

she does not explain it to be duplicated. If human beings surrounded her before the 

seizure, there are not seen anymore from the autoscopic body location. Nevertheless, 

astonishingly, while she explains the new self-location seems to be inside the 
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autoscopic body location, her description contradicts herself, as she still hears voices 

around her (again, she actually reports a self-location within the real body by 

explaining those details), but cannot respond verbally or interact. The body she sees is 

always immobile and always with eyes opened (“Je me vois comme bloquée”, “I see 

myself as blocked”). She cannot interact with the body she sees. The impression is a 

view of her whole body image at 2 meters distance, not lateralized, and not partial. 

She describes the body seen with details corresponding to her real physical body 

characteristics before the seizure (colour, necklace, clothes, all identical to what she is 

actually wearing) but without details on limbs shapes. She describes this feeling as not 

really scary: the first times she just felt “bizarre”, “not normal” but without describing 

any strong positive or negative emotional component. There is never any feeling of 

progressive disembodiment or vertiginous gravitational or rotatory sensations 

associated. It never occurred while she was walking. It only happened once when she 

was lying but only with the visceral heating feeling without autoscopic phenomena 

further. 

 

3. Methods 

 3.1 Neuropsychology and paraclinical investigations  

Clinical routine neuropsychological batteries of tests, testing number sense, word 

reading, writing, and executive control were performed. A drawing of her experiences 

was asked to the patient while she was still having daily crisis episodes. 

Electroencephalographic (EEG) clinical evaluation awake and by night monitoring 

were also done during a short hospital stay. 
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 3.2 Neuroimaging 

Magnetic Resonance Imaging acquisition was performed on a 3 Tesla MR 

scanner (Trio, Siemens, Erlangen, Germany) using a 32-multichannel receiver head 

coil. The imaging protocol included a pre-gadolinium MP2RAGE acquisition 

(TR/TE = 5000/2.84 ms, inversion times TI1 = 700 ms and TI2 = 2500 ms, FA1 = 

4°, FA2 = 5°). The MP2RAGE is a 3-dimensional (3D) magnetization-prepared 

rapid gradient echo derivative providing homogeneous T1 weighting and 

simultaneous T1 mapping MP2RAGE and to obtain improved grey to white matter 

contrast in respect to conventional T1-w protocols (Marques et al., 2010). It was 

completed by clinical routine sequences including 3D fluid-attenuated inversion 

recovery or FLAIR, Diffusor Tensor Imaging or DTI, T2 1mm in coronal and axial 

plane passing by the parietal lesion and the hippocampus, Willis Polygon time of 

flight MRI arteriography and post-gadolinium arterial 3D volumetric, high-

resolution T1-weighted Magnetization Prepared Rapid Gradient Echo or MPRAGE 

before and after intravenous injection of Gadolinium (TR/TE = 2300/2.84 ms, 

inversion time TI = 900 ms, voxel size = 1×1×1.2 mm3, matrix size = 256×240×160). 

DTI was acquired in the axial plane with diffusion sensitization gradients applied in 

six non – collinear directions with b-value of 1000s/mm2. 
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4. Results 

4.1 Neuropsychology 

  

 

Figure 1: Graphical representation of her symptoms by the patient showing disembodied location with 
ambiguous shared self-location in the physical and in the illusory body, and also hesitating self-
identification to one of the two bodies. 

Neuropsychological tests did not show any deficit in any cognitive functions. 

The drawing made by EM (figure 1) is evoking the same ambiguity as in her 

description about her self-location: sometimes in the autoscopic body, sometimes in 

her real body. It emphasises the strong ambiguity about the actual self-location and 

self-identification during the seizure that we noticed during the interviews. She writes 

“moi” (“me”) to designate both physical and autoscopic body and both seem to look at 

each other and being surprised of their mutual presence (represented by interrogation 

points). She indicates “moi en crise” (“me in crisis”) on the autoscopic body, located 
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on the other side of the street than her real body, and it is drawn as less dark than the 

real body, as if it looks less real than her real body. The real body is represented as 

surrounded by her environment before the crisis (bus stop, bench, people also 

rendered as blurred and half real - half inexistent, similar to her oral description). 

 

4.2 Neuroimaging 

 

 

Figure 2: Left angular DVA, visible in MPRAGE Coronal, axial and sagittal slices (left side) after 
Gadolinium enhancement showing the DVA in hypersignal T1 and before Gadolinium enhancement 
showing the DVA in hyposignal T1 and the cortical microdysplasia as irregular cortical ribbon ill 
defined with the subcortical white matter (zoomed images, on the right side). The DVA is running 
from left angular gyrus, then anteriorly between supramarginal and STG then going with an 
orthogonal pathway to the deep white matter, and finally drained in the left cerebral internal vein.  
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 The MRI scanner showed a locus of focal cortical microdysplasia (Figure 2). It 

was located on the inferior part of the left angular gyrus, between the superior and the 

superior margin of posterior part of the horizontal part of STG and the ascending 

branch of lateral fissure leading to SMG, with those veins draining white matter 

immediately under the cortical layer at this location, also described as sulcus 

intermedius primus (of Jensen), and which separates the inferior parietal lobule into 

supramarginal (anterior and upper) and angular (posterior) gyri (Duvernoy 1991, 

Destrieux, Fischl et al. 2010). Interestingly, we observed in direct contact with this 

cortical anomaly the presence of a Developmental Venous Anomaly (DVA) with a 

‘caput medusae’ typical shape located. In this study, we found no proof of white matter 

lesions unspecific lesions surrounding the focal microdysplastic cortical ribbon as 

FLAIR and T2 sequences did not shown any hyperintensity signal in the surrounding 

white matter. The locus of cortical microdysplasia appeared under the appearance of 

blurred grey-white matter delineation, with grey matter irregularities of the deepest 

cortical layer in angular gyrus. It consisted in gyral irregularity in continuity to the 

cortical ribbon immediately under the DVA vessels and appearing as an increased T1 

and decreased T2 subcortical signal.  On the most medial part of the cortical sulcus 

affected, we noticed the infiltration of the cortex and subcortical white matter by the 

venous anomaly, appearing under the form of a hyperintense line in unified maps on 

MP2RAGE and T1-w images. The venous collector was then going to the deep 

white matter, and drained in the left cerebral internal vein, before the junction with 

the great vein of Galen, making this DVA in the category of deep DVA compared to 

those draining in pial veins. No stenosis or obstruction of the collecting vein was 

observed, and no calcification, no cavernous angioma or acute or chronic haemorrhage 
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could be identified in gradient echo sequences with T2*-weighting. We did not 

identify any expansive intra or extra-axial mass, no hydrocephaly, no pathological 

enhancement, no hippocampal atrophy or morphologic abnormality, no acute or 

chronic ischemic lesion and no brain haemorrhage. No cortical, subcortical or 

subependymal ectopic grey matter was identified. No other cortical sulcation or 

gyration disorder was observed. 

 

4.3 Other paraclinical investigations 

Electroencephalographic (EEG) clinical evaluation awake and by night 

monitoring was performed and did not show any focal seizure at the time where the 

investigation was performed 6 months after the onset of the symptoms. All clinical 

examination including cardiac, oncologic and neurological care came back negative. 

Only the hyperventilation test during 60 seconds evoked to the patient the feeling of 

prodromal symptoms with epigastric and thoracic heating feeling but without 

triggering of autoscopic hallucination.  

 

4.4 Treatment and follow-up 

 The patient started to be treated by her neurologist after clinical and 

paraclinical investigations 7 months after initial appointment. Since beginning of her 

symptoms, the patient faced more and more troubles described as attentional deficits 

and social conflicts at school. After first MRI and EEG exams failed to find a 

constitutive brain epileptic source, she benefited of a test treatment for epilepsy with 

complex partial seizures without secondary generalization. A significant drop of these 
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autoscopic episodes started after she began medical treatment with Keppra 

(Levetiracetam). Due to important side effects, the medication was rapidly switched 

to Lamictal (Lamotrigine) with following pattern: Lamotrigine, 100mg-0-100mg, 

then switched to 100mg-0-125mg after 6 months, to reach 100mg-0-150mg one 

week later, until a prolonged 150mg-0-150mg pattern during one year. After 2 years 

and a progressive reduced treatment pattern and with successful dramatic drop of 

seizures incidence, the treatment was totally stopped and the patient is still free of 

seizure 2 years after the treatment stopped. 

 

5. Discussion 

 Our patient was affected by typical mesial focal seizures signs with epigastric 

heat feelings, then followed by the apparition of an autoscopic body, with a ‘partial’ 

disembodiment: self-location and self-identification, 2 key ingredients of bodily-self 

consciousness, seemed to be shared between the autoscopic body and real body. In 

fact, our patient feelings’ compete between self-identification and self-location with 

the double and with the real body. Sometimes she felt her surrounding environment 

as before the onset of the crisis (that would explain that her self-location did not 

change and that the new body she sees is a autoscopic double in front of her physical 

body), and at the same time, she told us that she sees herself from outside her real 

body, from the autoscopic body perspective.  

 Our case corresponds to one of the very rare cases linking heautoscopy and 

epilepsy, with a particular semiology. The causality of an epileptic context has been 

established by the disappearance of the symptoms with the introduction of the anti-
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epileptic treatment and by the discovery of a focal cortical microdysplasia in the left 

angular gyrus. Following semiological descriptions as in Blanke and Mohr (Blanke 

and Mohr 2005), visual hallucinations were dominant and tactile and auditory 

percepts were reduced compared to her normal state. Body scheme disturbances were 

present, with associated neurological signs mainly interoceptive visceral sensations 

(“bawl in the stomach”) similar to motion sickness and intra-thoracic pressure. 

Vestibular hallucinations were not present but interoceptive visceral feelings are closed 

to early feelings during vestibular experiences. The autoscopic body was always 

standing like in most cases of HAS and AH, and the physical body was always sitting 

or standing when the symptoms occurred, while only 30% of OBE occur when 

patients were sitting or standing. The bilocation was reported orally and by the 

drawing, which is the most common characteristic of HAS. Typically, no positive 

emotions have been reported but more negative emotions in first episodes, with 

adaptation leading to neutral emotions as the seizures became frequent and the 

patient anticipated what would happen. It was experienced as highly realistic as 

common in OBE and HAS. As most of other cases of the 3 forms of autoscopic 

phenomena, epileptic seizure was the diagnosis associated. Lesion side was on the left, 

common for more than 50% of HAS but not in AH or OBE. Temporo parietal lesion 

location was common for both HAS and OBE, while occipital lesions are more 

associated with AH (60%). This case shows a mixed symptomatology of OBE and 

HAS: 

 a. Typically for HAS: 

- the disembodiment was not felt with strong vestibular feelings as it occurs 

in OBE, 
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- the self-location seems to be shared between the two bodies which is 

typical for HAS, 

- the axis of disembodiment is more typical for heautoscopic phenomenon 

than for OBE as it happens in upright position. 

b. Not typical for HAS: 

- the autoscopic body was always seen in front-view (face to face), which is 

systematic in AH and almost always in OBE but rarely in HAS, 

- no actions of the heautoscopic body have been reported, which is normally 

happening in 80% of HAS cases, but stays uncommon in AH and absent in 

OBE. Sharing of thoughts, words and actions seemed limited to questioning 

about the actual self-location and the strangeness of the situation. 

 

In general, idiopathic epilepsy in teenagers show a good response to the 

medical treatment and this one can be suspended after long-interval remission of the 

disease, as in this case (Camfield and Camfield, 2002; Scheidegger et al., 2013). But 

in majority of cases, focal cortical dysplasia is difficult to manage with medical 

treatment and surgery is required (Kabat and Król, 2012), which was not the case for 

our patient. 

 This case challenged both our conventional views on DVAs and focal cortical 

microdysplasia. In most of cases, DVAs are chance findings on MRI routine exams, 

without symptomatology (except rare cases of haemorrhagic events or associated 

cavernous angiomas). They may be associated to a cortical dysplasia. Pattern of 

cortical dysplasia cannot be considered as a unified entity, while it extends from very 
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mild lesions called microdysgenesis or microdysplasia under usual radiological 

detectability thresholds, to huge cortical rearrangement (Colombo et al., 2003). 

Abnormal dysplastic cortical ribbon may be epileptogenic but under diagnosed in 

daily practice with resolution obtained by conventional radiological investigations at 

1.5 and 3T for such cases of microdysgenesis or when the EEG results do not help 

orientate the research of cortical abnormalities (Madan and Grant, 2009). In our 

patient, the very small cortical irregularity in the vicinity of DVA caput medusae could 

be easily missed with standard routine examination and in the absence of orienting 

symptoms towards left TPJ. Here, we did manage to identify cortical dysplasia at a 

location coherent with temporo-parietal junction lesions associated with autoscopic 

phenomena and OBEs in previous literature. More precisely, the left hemisphere, 

where we found the cortical lesion and the DVA, has been the main identified 

candidate for heautoscopic phenomena in previous casuistic (Heydrich et al., 2010; 

Ionta et al., 2011). HAS has been associated with visceroceptive phenomena, usually 

absent in OBE, and with lesion on the left hemisphere (in posterior insula in 

Heydrich et al. 2013) while right hemisphere lesions, but more posterior in inferior 

parietal lobule, at the angular gyrus location, have been associated to OBE. 

Interestingly, the semiology of the patient is shared between OBE features and HAS 

features that could be explained by the location of the cortical lesion, on the left 

hemisphere (more typical for heautoscopic phenomena see Heydrich et al. 2013) but 

on the angular gyrus (more typical for OBE phenomena, see Blanke et al 2002). 

   

 The potentiality of DVA to lead to seizures is still debated. In general, some 

authors refuse the idea of a link between DVAs and epilepsy, based on the absence of 
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epilepsy in most of people with brain DVAs (Morioka et al., 1999; Striano et al., 

2000). Of course, DVAs may be associated with surrounding gliosis or hemosiderin 

following a microscopic bleeding event that contributes to the onset of epileptic 

disease (Rammos et al., 2009). But even in the apparent absence of macroscopic grey 

matter abnormalities diagnosed as focal cortical microdysplasia, recent works also 

claim for an association between DVA and epilepsy cases (Andrea et al., 2015; 

Scheidegger et al., 2013). Rare post-mortem pathological descriptions of DVA reveal 

the existence of abnormalities in adjacent brain tissue underestimated by radiological 

conventional techniques. An historical pathological reports from Noran et al. (Noran, 

1945) speaks about “demyelination, degenerative alterations of nerve cells, gliosis and 

leukomalacia (…)” around DVAs, as quoted by San Millan Ruiz and Gailloud (San 

Millán Ruíz and Gailloud, 2010), which is in the same line with documented reports 

of white matter abnormalities on CT and MRI studies around DVAs (San Millan 

Ruiz et al., 2007). Such microscopic neural changes unseen with routine MRI and 

CT exams could be the source of seizures even in the absence of obvious macroscopic 

focal cortical dysplasia.  
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Chapter 6 General Discussion 

 

6.1.  Summary of main results 

Chapter 2: Using GVS and optokinetic stimuli, we found evidence for 

ubiquitous brain regions processing both vestibular and visual signals, especially in 

areas of inferior parietal lobule, at the temporo-parietal junction and in posterior 

middle temporal gyrus. All those regions are part of a vestibular network (see figure 4) 

made of highly multisensory cortices processing visual, vestibular and somatosensory 

inputs (Cardin and Smith, 2010; Frank et al., 2014; Ionta et al., 2011; Smith et al., 

2012; Ventre-Dominey, 2014; Zu Eulenburg et al., 2013). When regions of inferior 

parietal cortex have been shown to be impaired (Blanke and Mohr, 2005; Heydrich 

and Blanke, 2013; Heydrich et al., 2011, 2010; Ionta et al., 2011) or are stimulated by 

electrical currents (Blanke et al., 2002b; Tong, 2003), some disturbances of bodily 

self-consciousness, altering body schema and/or body image can occur (de 

Vignemont, 2010). 
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Figure 4. Schema of important relays of the vestibular neuronal network Copyright Forget Joachim, 

2015 

 

Chapter 3: We also showed that visuo-tactile integration for the embodiment 

of an external limb could be modulated by visuo-vestibular stimulation made of 

optokinetic stimuli inducing vection. When vection evoked a whole body 

displacement towards the rubber hand, an unconscious component of rubber hand 

illusion, the proprioceptive drift towards the rubber hand, is increased while the 

conscious experience of the illusion, the self-identification to the rubber hand is 

reproducible while vection is felt, but is not increased or diminished significantly by 

vection.  

 

Chapter 4: Peripersonal space can be easily remapped through visuo-

proprioceptive conflicts when crossing limbs over the midline, but only for superior 

limbs and not for inferior limbs. It emphasises again a visual dominance phenomenon 
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over proprioceptive and somatosensory signals. It also suggests the ontological plastic 

nature of the body schema in peripersonal space and its ecological need for optimal 

processing of complex body movements for preservation of body integrity. 

 

Chapter 5: Regions from the depth to the surface of the inferior parietal 

lobule are known to contribute to bodily self-consciousness, partly through 

multisensory processes, including visuo-vestibular mechanisms (Blanke, 2012). When 

a lesion occurs in those cortices, somatognosia can be affected, as in our epileptic 

patient showing an original and rare semiology mixed between out-of-body 

experiences and heautoscopy. 

 

6.2 Overlap of neural networks for visuo-vestibular processing and bodily self-

consciousness  

The multisensory character of visuo-vestibulo-somatosensory pathways has 

been assessed at multiple levels of the nervous system in animals and in humans. 

Relays are identified in the vestibular nuclei, in the thalamus and in the cortex 

(Lopez, 2015; see figure 5).  



 176 

 

Figure 5. Convergence of vestibular, visual, and somatosensory signals in vestibulo-thalamo-cortical 

structures, from Lopez (2015). The schema summarizes animal and human data, showing multisensory 

convergence in three vestibular relays. Vestibular signals are first processed in the vestibular nuclei in 

the brainstem, a region that is highly multisensory. A second level of vestibular processing takes place 

in the thalamus. Multiple thalamic nuclei contain neurons that respond to vestibular stimulation such 

as the ventro posterior complex (VPM, ventral posterior medial nucleus; VPI, ventral posterior inferior 

nucleus; VPL, ventral posterior lateral nucleus), ventro anterior (VA) and ventro lateral (VL) nuclear 

complex, intralaminar nuclei (IL), thalamic posterior nuclear group (MGN, medial geniculate nucleus; 

LGN, lateral geniculate nucleus) and lateral posterior nucleus (LP). Most of these thalamic nuclei 

contain multisensory neurons. A third level of vestibular processing occurs in the cerebral cortex. 

Neuroimaging studies used caloric (CVS) and galvanic (GVS) vestibular stimulation and revealed 

activations centred on the insula, parietal operculum, and temporo-parietal junction (Lopez et al., 

2012a; zu Eulenburg et al., 2012). This area may be similar to a region known as the parieto-insular 

vestibular cortex (PIVC) in monkeys (Grüsser et al., 1990a,b; Guldin and Grüsser 1998; Chen et al., 

2010). The PIVC is considered the core region of the vestibular cortex because it is strongly connected 

or interconnected with most of the other vestibular cortical areas. At least 10 other cortical areas 

process vestibular signals including somatosensory (areas 2 and 3), superior parietal, cingulate, and 
premotor cortex. 
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Through our 7T fMRI study on visuo-vestibular convergence, we have shown 

the existence of multiple regions processing both visual and vestibular inputs in 

perisylvian areas. As seen in chapter 2, those visuo-vestibular regions seem to be 

distributed over a large and ubiquitous network, from extrastriate and medial 

temporal cortex to retroinsular cortex and parietal operculum, including also the 

surface of TPJ along supramarginal gyrus and angular gyrus. Other authors focused 

also on extrastriate visual cortex (Bense et al., 2001; Frank et al., 2014; Smith et al., 

2012; Stephan et al., 2005; Wang et al., 2008) and posterior cingulate areas where 

they also found visuo-vestibular convergences (Cardin and Smith, 2010; Smith et al., 

2012). Other multisensory mechanisms implying vestibular tactile and nociceptive 

signals are also associated with parietal operculum and posterior insula, and S2 and 

OP1 for tactile stimuli and OP3 and frontal operculum for nociceptive stimuli (Zu 

Eulenburg et al., 2013). Vestibular neurons are found also in hippocampus, in the 

insula and in frontal operculum (Lopez and Blanke, 2011; Lopez, 2015; Lopez et al., 

2012b; Zu Eulenburg et al., 2012). 

It is very attempting to compare this large multimodal vestibular network with 

the networks of bodily self-consciousness, as many brain regions associated with 

illusory hand ownership, self-location and self-identification are actually overlapping 

with vestibular regions and mainly visuo-vestibular regions. Blanke (2012) reviewed 

multisensory brain mechanisms of bodily self-consciousness and showed that a large 

fronto-parieto-temporal network (see also Ionta et al., 2014) is associated with self-

identification, self-location and body ownership (see above figures 6, 7 and 8 

reproduced and adapted from Blanke 2012), including the intraparietal sulcus (IPS), 

the dorsal premotor cortex (PMC), the medial prefrontal cortex, the primary 
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somatosensory cortex (S1), the TPJ, the posterior superior temporal gyrus (pSTG), 

and the extrastriate body area (EBA). Importantly, illusory hand ownership has been 

also associated with S2 and SMG exactly in regions of visuo-vestibular convergence 

we found (Gentile et al., 2011). A close look at data from Gentile et al (2011) actually 

suggests that the locus of brain activations goes beyond the SMG and S2, and also 

extends posteriorly in Ri and parietal operculum. 

In addition, pMTG and pSTS loci of visuo-vestibular convergence in our 

fMRI study seem in the vicinity or may overlap with many multisensory regions 

(Beauchamp, 2005; Berger and Ehrsson, 2014) including EBA, a region responding 

to body parts at the junction between lateral occipital cortex and posterior medial 

temporal cortex (Astafiev et al., 2004; Downing et al., 2001; Grossman and Blake, 

2002; Urgesi et al., 2004). EBA was also recently reported as a neural correlate of 

rubber hand illusion (Limanowski and Blankenburg, 2015; Limanowski et al., 2014).  

Finally, Guterstam et al. (2015) suggested that retrosplenial posterior 

cingulate areas could also have a key role in the integration of neural representation of 

self-location and body ownership (Guterstam et al., 2015). Interestingly, medial 

parietal cortices in precuneus are involved in vection and human navigation (Antal et 

al., 2008; Ghaem et al., 1997; Wiest et al., 2004) and posterior cingulate has been 

shown to be activated by visual and vestibular stimulation (Cardin and Smith, 2010; 

Fischer et al., 2012; Smith et al., 2012) and by pure vestibular stimulation in BA23 

(Bense et al., 2001; Bottini et al., 1994; Della-Justina et al., 2015; Dieterich et al., 

2003; Fasold et al., 2002; Miyamoto et al., 2007). Vestibular influences on rubber 

hand ownership seem to occur only when a visual feedback is available (Lopez et al., 

2012a). In animals, no recording of vestibular neurons in this region has been done up 
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to now, but tracer studies showed interconnection of a vestibular cingulate region with 

the PIVC and somatosensory area 3a described in monkeys (Guldin and Grüsser, 

1998). 

 

 

 

Figure 6. Illusory Hand ownership, modified after Blanke 2012. The main brain regions that are 

associated with illusory hand ownership and changes in perceived hand position. Regions include the 

ventral and dorsal premotor cortex (PMC), primary somatosensory cortex (S1), intraparietal sulcus 

(IPS), insula, anterior cingulate cortex (ACC) and the cerebellum. Data from recent literature also 

include EBA and SMG to brain regions associated to illusory hand ownership, in yellow and bold 

characters in the figure. 
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Figure 7. Brain mechanisms of illusory self-identification, from Blanke (2012). The drawing shows 

the different brain regions that have been implicated in illusory self-identification. Regions include the 

ventral premotor cortex (vPMC), primary somatosensory cortex (S1), intraparietal sulcus (IPS), 

extrastriate body area (EBA) and the putamen (not shown). Data by (Petkova et al., 2011) are shown 

in red, by Lenggenhager et al.(Lenggenhager et al., 2011) in blue and by Ionta et al. (Ionta et al., 2011) 

in yellow. The location of brain damage leading to heautoscopy is also shown (Blanke and Mohr 2005) 

in green. 
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Figure 8. Brain mechanisms of illusory self-location and first-person perspective from Blanke (2012). 

The drawing shows the different brain regions that were activated during illusory self-location and 

changes in the first-person perspective in different studies. Regions include the right and left posterior 

superior temporal gyrus (pSTG), right temporoparietal junction (TPJ), primary somatosensory cortex 

(S1) and medial premotor cortex (mPMC) and adjacent medial prefrontal cortex (mPFC). Data by 

Lenggenhager et al. (2009) are shown in blue, data by Ionta et al. (2012) are shown in yellow and the 

location of brain damage at the right angular gyrus that leads to out-of-body experiences is shown in 

green. 

 

6.3 Visuo-vestibular interactions and cognitive functions 

 

6.3.1 Visuo-vestibular and cognition: generalities 

Visuo-vestibular mechanisms contribute to cognition in very different ways. 

For a very long time, the vestibular system was known to contribute to postural and 

oculomotor control (Goldberg and Cullen, 2012) while vection is also affecting 

posture, as it leads to postural readjustments to compensate illusory-motion perceived 
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by the observer (Baumberger et al., 2004; Clément et al., 1985; Lestienne et al., 

1977). The links between vestibular system and cognition are now better assessed 

with spatial navigation, memory functions, perception of gravity, and metacognitive 

functions of the human brain such as visual awareness and bodily self-consciousness 

(Barra et al., 2010; Blanke, 2012; Brandt et al., 2005; Ferre et al., 2013; Indovina et 

al., 2005; Lacquaniti et al., 2013; Lopez et al., 2008a; Mast et al., 2014; Smith, 1997). 

Loss of vestibular or visual functions can lead to dramatic conditions for body motion 

and integrity, as it can be observed in aging (Deshpande and Patla, 2007; Herdman et 

al., 2000; Kobayashi et al., 2002; Schubert et al., 2002) where an increased temporal 

window of multisensory integration is also reported (Cyran et al., 2015; Mozolic et 

al., 2012), or after brain lesion or vestibular deficits (Lacour et al., 2009; Philbeck et 

al., 2006, 2004; Redfern et al., 2004). Moreover, if visuo-vestibular mechanisms are so 

important for human cognition, other polysensory interactions linked with the 

vestibular system seem fundamental, such as auditory and visuo-vestibular integration. 

Sounds can interact with visually induced vection for example (Blum et al., 1979; 

Riecke et al., 2009; Väljamäe and Soto-Faraco, 2008). Also, visceroceptive feelings as 

those observed in mesial seizures (such as in our patient in chapter 4), disgust 

sensations, stomach feelings (closed to those observed in motion sickness) and 

semantics expressing vestibular and visuo-vestibular feelings should be studied further. 

Link between emotions and vestibular feelings seem also obvious (such as when 

people vertigos and visual symptoms during happy or stressful conditions) but were 

not extensively studied. Psychiatric consequences of vestibular lesions are known to 

exist and should be also more investigated (Best et al., 2009, 2006; C. Best et al., 

2007; Chua et al., 2003; Hanes and McCollum, 2006). Increased self-focus is 
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enhanced in major depression where patients are less sensitive to external stimuli, 

while self-related brain networks as the default mode network are normally 

deactivated when an external object becomes conscious (Crone et al., 2013). The 

visual and vestibular contributions to mood disorders are a very challenging and 

promising topic of research. 

 

6.3.2 Visuo-vestibular contributions to altered states of bodily self-consciousness and 

further research needed 

In the general framework of body awareness, vestibular feelings observed 

during GVS could be somehow considered as transient out-of-body experiences or 

‘partial disembodiment’ such as suggested by Lopez (2008), where a mismatch occurs, 

as an illusory body motion is experienced in the absence of actual body motion. Some 

of those troubles of somatognosia nevertheless rely more on visual components such 

as autoscopic phenomena or heautoscopy. In OBEs and in the case of lesions of the 

parieto-insular cortex, the disembodiment is often associated to vertiginous 

sensations. Blanke and Mohr (2005) posit that some failure of integration occurs 

between visual, tactile and vestibular signals, leading to pathological self-identification 

and self-location. Failure of integration can also trigger some disturbances of body 

schema such as neck and head enlargement feelings occurring in patients or in healthy 

volunteers during CVS or GVS. Interestingly, the parieto-insular cortex is not only a 

visuo-vestibular region of convergence but also a region where convergence has been 

assessed between somatosensory signals and vestibular signals triggered by CVS 

(Bottini et al., 2005, 2001, 1995; Ferre et al., 2012). Hippocampus, a region reported 
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to be part of the vestibular cortex, is also linked with amnesia occurring while eliciting 

OBEs by visuo-tactile conflict in a recent fMRI study (Bergouignan et al., 2014). 

Future research should gather in a systematic way the spared casuistic of diseases 

related to disturbed embodiment and their respective associated brain lesions and 

their overlap with multisensory vestibular regions. The understanding of such 

pathologies would be itself boosted by a better knowledge of multimodal brain 

networks by further studies and rely on a higher resolution for the anatomical 

description of inferior parietal cortex but with a clear ‘connexionist’ approach, as the 

vestibular system seems ontologically multisensory, acting at all neural relays in 

bottom-up and top-down directions. Anatomical research should also target structural 

quantitative MRI studies and qualitative analysis of the microstructure with 7T MRI 

of multisensory vestibular cortices, and link studies of the associated connectome. A 

good lesion model would be the use of bilateral vestibular loss patients to study brain 

plasticity of vestibular networks resulting from deafferentation; but those patients are 

very rare and an important percentage of them benefits from a cochlear implant to 

overcome the auditory deficit, which prevents any study within the constraining 

magnetic free MR environment for those who were implanted before the existence of 

MRI compatible material. Unilateral lesions of the vestibular system can also be used 

as a model for vestibular deafferentation as these patients never recover a normal 

balance even after intensive vestibular rehabilitation. Vestibular lesions are due to 

pharmaceutical toxicity (e.g. post-antibiotics therapy with gentamycin), a traumatic 

origin, or post-surgery lesions like labyrinthectomy. The loss of unilateral vestibular 

function can be assessed clinically but the main challenge of such a study with classical 
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quantitative methods (voxel-based morphometry for example) would be the inherent 

inter-subject variability of the results in vestibular neuroimaging. 

 

6.4 Models of visual awareness and bodily self-consciousness 

 

6.4.1 Attempting to compare models 

Our data showing distributed brain networks with long-range axonal links 

raise the question of a parallel between bodily self-consciousness and visual awareness, 

widely described in the theoretical framework of global workspace (Barttfeld et al., 

2015; Dehaene and Changeux, 2004, 2003; Dehaene and Naccache, 2001; Dehaene 

et al., 2006; Schurger et al., 2015). Dehaene et al. (2014) suggests that: “Reportability 

is defined as one of the main criterion for whether a piece of information is or not 

conscious.” Amongst the “great variety of representations that can be accessed”, the 

authors suggest that “Self-consciousness is a particular instance of conscious access 

where the conscious ‘spotlight’ is oriented toward internal states” (Dehaene et al., 

2014). Such networks of visual awareness were widely explored through paradigms 

like visual masking (Naccache et al., 2002), temporal integration (Forget et al., 2010) 

or attentional blink (Sergent and Dehaene, 2004). Dehaene and Naccache (2001) 

advocate for the existence of a brain network with long distance axons, 

interconnecting different individual specialized modules through recurrent loops 

making the information available within a global workspace. Successive metastable 

states of this network constitute series of conscious states. 
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 In fact, bodily self-consciousness networks, including visuo-vestibular 

integration cortical regions, seem to be distributed within all cortical lobes, bilaterally, 

with an important reciprocal connections between different ‘modules’ of human 

cognition; it seems to impact body posture and cognition from very basic reflexes 

(vestibulo-ocular reflex, vestibulo-cervical reflex) in the first neural relays (brainstem, 

thalamus, cerebellum), or later at the cortical level. Some mechanisms that do not 

require a complex cortical processing seem to occur very fast as bottom-up processes. 

In opposite, conscious reports of vestibular feelings take time, like visual awareness 

but even slower. In vision, a minimal time window of 300 ms to become conscious is 

considered by previous works (Dehaene and Naccache, 2001; Sergent and Dehaene, 

2004). Percepts faster than 10 Hz cannot be correctly distinguished (Coltheart, 1983, 

1980; Forget et al., 2010). In fact, reaction times to GVS stimulation are also very 

slow (Barnett-Cowan and Harris, 2009; Barnett-Cowan et al., 2012). In Barnett-

Cowan’s series of experiments, head movement were reported only 438 +/- 49 ms 

after the onset of the stimulation and reaction times to touches (245 +/- 14 ms), to 

lights (220 +/- 13 ms) or sounds (197 +/- 13 ms) were much faster. In Barnett-

Cowan and Harris (2009) temporal order and simultaneity judgments also show that 

if GVS occur until 160 ms before other stimuli, both stimuli could be integrated as 

one percept, which is significantly less than what could be predicted by reaction times 

difference. It suggests that integration processes are occurring before becoming aware 

of the vestibular stimulation. This window is interestingly much larger than the 

window of integration of brief visual events for simple lights, the critical fusion 

frequency (Andrews et al., 1996). It is even larger than the window of integration 
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where independent visual letters can be detected as words even if presented with 

temporal delays (Forget et al 2013). In general, vestibular perception seems to be a 

slow phenomenon, as an immediate physiological neural response without awareness 

is preferred in priority, and where awareness of the stimulation is delayed because of 

multiple multisensory integration processes occurring at all levels (Barnett-Cowan, 

2013). We could hypothesise the existence of a huge time tolerance to integrate 

vestibular percepts in a large time window with other sensory stimuli. Thus, an 

external event would be keener to be detected as only one event responsible of head 

motion, while merging different sensory evidences towards the source of stimulation. 

Knowing where the head is located could be more relevant for a human being than 

knowing the exact head velocities during motion, but it requests the time of 

multisensory integration; the exact velocity knowledge (vestibular system is actual 

transducing acceleration to a velocity signal, see Fernandez and Goldberg, 1971) 

might be a less relevant signal, physiologically (empirically we are not good to detect 

high velocities without visual control actually; its allows us to feel comfortable in very 

fast planes for instance). Similarly, vection experience seems also to be a slow 

phenomenon (Keshavarz and Berti, 2014) requiring 2 to 3 seconds to be induced 

(Mohler and Thompson, 2005; Trutoiu et al., 2009). It would be very interesting to 

distinguish visuo-vestibular phenomena that need to occur with and without 

conscious control and apply mental chronometry paradigms and neurophysiology 

measures by ERPs to appreciate how optokinetic stimuli injected to the visual system 

propagate in the global workspace. It stays an open question if visuo-vestibular inputs 

are processed differentially than visual, motor, somatosensory or auditory signals. 

Many visuo-vestibular processes also occur in daily life under the conscious threshold, 
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such as mechanisms involved in some basic functions (walking, heading, limbs 

movement correction, head and body coordination). On the other hand, we postulate 

that the conscious experience of vertigos and visuo-vestibular feelings such as vection 

could take some time to occur after the onset of a new situation, following the same 

rules as any other conscious object from another sensory modality. The temporal 

resolution of vestibular and visuo-vestibular perception could be also explored to 

better characterize those processes. The ubiquity of visual and vestibular neurons 

across the brain suggests the importance to maintain intact visuo-vestibular functions 

in case of brain lesion. Visual and vestibular sensors detect signals that are 

permanently integrated and balanced through optimal cue integration (Fetsch et al., 

2012, 2010; Prsa et al., 2012) to allow the survival of an individual in a moving 

environment. Awareness does not seem to be a prerequisite for bodily self-

consciousness which stays ‘under the threshold’ in most of situations such as for 

walking trajectories towards a target (Kannape et al., 2010). Body percepts may 

nevertheless occur and the conscious content can be even modulated by attention 

(Juravle et al., 2011; Spence et al., 2004; Van Hulle et al., 2013a, 2013b). 

Interoceptive sensations such as heartbeat are most of the time unconscious as our 

homeostasis escapes to our conscious scope but can be enhanced though interoceptive 

learning via the insular cortex (Canales-Johnson et al., 2015) and perceived more 

strongly when needed (effort, threat for instance), and differentially from one 

individual to another (Craig, 2002, 2004). Similarly, a relevant event for one’s own 

life would access consciousness depending on the context (a bump on the road does 

not have similar statistical significance for his brain neither the same perceptual 

saliency for a driver on a highway compared to a motorbike driver in a chaotic field). 
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Otoliths signals cancellation is also gated when proprioceptive feedback matches the 

motor-based expectation in active self-motion, while neurons respond more robustly 

during passive head translations (Carriot et al., 2013). Unconscious, efficient and 

rapid mechanisms occur in early vestibular mechanisms within the vestibular nuclei 

and brainstem (Cullen et al., 2003; Roy and Cullen, 2004) but more complex 

situations may require bodily self-awareness to adapt the behaviour (Brooks and 

Cullen, 2014).  

 

6.4.2 Midline cortex and bodily self-consciousness 

Recent studies on vigilance and disorders of consciousness may let us speculate 

on a close link between the neural correlates of self-referential processing and the 

resting-state activity in cortical midline areas (Araujo et al., 2014; Crone et al., 2013; 

Huang et al., 2014; Kelley et al., 2002; Lamm et al., 2011; Mitchell et al., 2005; 

Northoff and Bermpohl, 2004; Platek et al., 2008; Uddin et al., 2007; Yaoi et al., 

2009; Zhu et al., 2007). It includes anterior cingulate and posterior cingulate regions, 

within the default-mode network and also the inferior parietal lobule (Salomon et al., 

2014). Visual detection can be predicted by spontaneous fluctuations of neural 

responses to heartbeats in posterior right inferior parietal lobule and ventral anterior 

cingulate in a recent MEG study (Park et al., 2014). Guterstam et al (2015) 

supported the relevance of retrosplenial posterior cingulate cortex as a ‘hub’ between 

self-identification and limb ownership. Also, optokinetic stimulations inducing 

vection and vestibular stimulations lead to activations of precuneus (Wiest et al., 

2004), anterior and posterior cingulate (Antal et al., 2008; Dieterich et al., 2003; 
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Fischer et al., 2012; Kovács et al., 2008; Lopez et al., 2012b). Even visual and 

vestibular convergence seems to occur in the posterior cingulate sulcus (Cardin and 

Smith, 2010; Fischer et al., 2012; Wall and Smith, 2008) but such activations could 

be general activations related to the self as well. As visual and vestibular contributions 

to bodily self-consciousness seem to be mandatorily weighted and present (Prsa et al., 

2012), a lack of sensitivity to those components should be expected in several 

disturbances of the self related to the activation of the default-mode network, such as 

depression, and particularly in midline cortical structures (Grimm et al., 2009; 

Lemogne et al., 2012; Nejad et al., 2013). In vestibular dysfunctions, depressive 

syndromes are reported. It would be interesting to know better how visual and 

vestibular function contribute to the self through the activation and deactivation of 

default mode network (Best et al., 2006; C Best et al., 2007; Gomez-Alvarez and 

Jauregui-Renaud, 2011; Smith et al., 2005). 

Self-related versus other stimuli activate the anterior regions such as anterior 

cingulate (Qin and Northoff, 2011). Deactivated patterns of anterior cingulate are 

seen when a conscious effort toward the external world or high cognitive demand 

occurs (Greicius and Menon, 2004; Shulman et al., 1997b). Previous authors 

hypothesised that it may correspond to the redirection of cognitive resources from 

internal ongoing processes towards the new task requiring consciousness (Gusnard et 

al., 2001; Raichle and Snyder, 2007). Self-related stimuli do not interrupt the anterior 

cingulate activity (Qin and Northoff, 2011) while other stimuli do interrupt it 

(Shulman et al., 1997a). Qin and Northoff (2011) support the idea of a preserved self-

oriented processes while awareness of other external stimuli occurs but we hypothesise 

a distinction should be done between self-related processes needing consciousness and 
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self-related processes which do not need conscious control. Further research should 

disentangle which components of the self-processing stay under conscious threshold 

and when they need to become conscious and what is the ecological function of 

vection occurring sometimes during optokinetic stimulation, in respect to vestibular 

perception (Palmisano et al., 2015). 

 

6.5 Visuo-vestibular representations in human culture 

Visuo-vestibular representations are quite present in human culture, and the 

selection of individuals having the most “optimal integration” of visual and vestibular 

cues is a feature of human societies, such as in sport activities requiring fine motion 

control (piloting car, planes or motorbikes, dance, ice skating). Human beings are 

highly addicted to visuo-vestibular strong experiences as an amusement, as much as 

they can be addicted to music, the auditory system being the anatomical twin of 

vestibular sense. Functionally, auditory and vestibular systems are also closely linked. 

Noises can induce vestibular sensations even used as an experimental condition to 

trigger vestibular sensations (Freeman et al., 1999; Lopez et al., 2012b; Murofushi et 

al., 2005; Yokota, 2000; zu Eulenburg et al., 2012) and loud music can evoke 

vestibular responses that could be responsible of pleasurable sensations of self-motion 

(Phillips-Silver and Trainor, 2008; Todd and Cody, 2000). People look for such 

sensations for those who crave for loud music in dance clubs and rock concerts, even 

enhanced by their own body motion while dancing. Congruent tactile and auditory 

cues ease the discrimination between march-like rhythms and waltz-like rhythms 

(Huang et al., 2012) while vestibular inputs can interfere with notes important to 
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recognize music metrics, and make a sequence perceived as binary or ternary (Phillips-

Silver and Trainor, 2008, 2007, 2005; Trainor et al., 2009). Head motion is 

empirically a component of music experience while being in the audience and a 

performer, while musicians also claim “to feel” the music “inside” of them, evoking 

tactile and interoceptive components as well. The huge value of vestibular and 

auditory sensations in human societies within a multisensory framework invites for 

fascinating research in consciousness studies, beyond the exploration of several sensory 

modalities as vestibular and vision, to explain “how” and “why” those sensations were 

selected in human culture and also how it impacts human social bonds. 

Finally, visuo-vestibular mechanisms are also associated to the ritual lives of 

human beings in religions, mysticism and “transcendental” experiences. Dervishes in 

the contemplative Muslim sufi traditions inspired by Rumi (Ambrosio et al., 2006) 

and originated from Konya in Turkey and in Western Balkans, are used to trigger 

bodily self-illusions making dissociation of the body and environment experienced 

duality, based on dances like in Mevlevi groups, and on rhythmic body linear motion 

back and forth in Bektashi and Halevi groups with breathing methods inducing 

hypercapnia. The dancer in Mevlevi tradition turns during 10-15 minutes in counter 

clockwise rotations, with the head on the right side, and actually triggering pitch 

rotations, right hand in the sky symbolizing the link with the sky and left hand with 

palm toward the ground to make the link with earth. Based on daily practices, the 

dancer starts using tricks like fixation the thumb of left hand to prevent motion 

sickness but then either close or open eyes and try to lose physiological visual 

referential leading to alleviate the feeling of embodiment and experience the “fusion 

with universe”. With habits, they are used to not feel anymore the vestibular 
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aftereffects when they stop turning. Those traditions may actually induce such trances 

phenomena through visuo-vestibular conflicts disturbing bodily self-consciousness 

and are liked to be observed by observers, such as in touristic demonstrations in 

Konya and in Tanura, an Egyptian version of the rotating dances of sufi communities 

(Forget et al., work in preparation). 

 

 Experimental psychology could manipulate bodily self-consciousness as we 

have seen with visuo-tactile conflicts. It can also use a variety of less famous strategies 

such as the levitation illusions (see figure 9) when a familiar scene viewed by supine 

observers through a mirror oriented at 45 degrees appears vertical when, optically, it is 

horizontal and above the head (Howard and Hu, 2001; Howard et al., 2005). Room 

tilt illusions can be induced with tilt rooms in healthy subjects (de Graaf et al., 1992; 

Groen et al., 2002; Howard and Childerson, 1994). They can also occur in 

neurological conditions (Arjona and Fernandez-Romero, 2002; Malis and Guyot, 

2003; Tiliket et al., 1996). Gravity and observer’s body orientation influence the visual 

perception of human body postures (Lopez et al., 2009) while spatial orientation loss 

in weightless environments in astronauts can also induce body tilt illusions (Lackner 

and Levine, 1979; Lackner, 1992a, 1992b). 

 



 194 

Figure 9. The levitation illusion (Howard et al., 2005). The mirror bed showing the actual and 

reflected scene can bee seen on the left. The perceived positions and orientation of the scene for an 

observer experiencing a reorientation illusion can be seen on the right. Typically, the torso feels pitched 

up by about 20° and the head feels pitched up to a greater degree. The observer cannot see his or her 

own body. 

In contemporary plastic arts, visuo-vestibular mechanisms and relativity of 

bodily self-location in respect to the environment, such as rivalry for verticality, have 

been exploring such phenomena like in the work of the famous French artist Philippe 

Ramette (see catalogue in Ramette and Onfray, 2010 and figures 10 and 11). Those 

tricks of visual and bodily cues are exploited to develop abstract metacognitive 

thinking in the observer. Beyond the evident sense of humour in such unedited 

pictures (the artist really posed in those situations), the artist leaves cues to 

disentangle the rivalry for verticality in such scenes (face tension to indicate it is not a 

natural stance, visibility of the prostheses used to maintain the body in such stances). 

It is striking that even the presence of such cues is not enough to kill the rivalry for 

verticality experienced while looking at those pictures, enhancing the idea that a body 

inside a frame, for individuals’ visual systems biased to detect human shapes as vertical 

lines, even a strong suggestion that the environment gives the real verticality 

orientation is not enough.  
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Figure 10. Contemplation irrationnelle, 2003 

Credits: colour photographs, original format 150 x 120 cm, photograph. © Marc Domage and Philippe 

Ramette, ADAGP, Courtesy galerie Xippas and Philippe Ramette. 
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Figure 11. Balcon 2 (Hong-Kong), 2001 

Credits: colour photographs, original format 150 x 120 cm, photograph. © Marc Domage and Philippe 

Ramette, ADAGP, Courtesy galerie Xippas and Philippe Ramette. 
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Chapter 7 Conclusions 

 

Visuo-vestibular mechanisms are key components of bodily self-consciousness. 

Ubiquitous brain regions integrate visual and vestibular signals and those brain 

regions are very important to encode bodily signals in general and create 

phenomenologically the experience of “I”, the global and unitary feeling of the self, 

distinct from an environment. The statistically optimal weighting of optokinetic 

information and head motion makes an individual better in its interaction with this 

environment. Proprioceptive, auditory and somatosensory signals also provide 

important information for bodily-self consciousness. 

The body schema and its peripersonal space can be easily reshaped as some 

components of bodily self-consciousness such as limb ownership, self-location, self-

identification and body motion, are highly plastic representations, sensitive to 

multisensory mismatch, triggered in laboratory conditions but also occurring in daily 

routine, such as it is the case of vection. Limb ownership and plasticity of peripersonal 

space can be transitorily remapped to allow tool learning and to recover after brain 

lesions, while self-location and self-identification plasticity are probably important for 

social cognition and for metacognitive skills where one’s need to project in space and 

time. 

Visual and vestibular signals are mandatorily present and balanced, and a 

better knowledge of their neural correlates will enhance our understanding of neural 

correlated of consciousness and also refine our understanding of brain lesions 
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semiology in multisensory cortices such as found in parietal operculum and inferior 

parietal lobule. Visual and vestibular mechanisms and their ‘rivalry’ as dominant cues 

for bodily self-consciousness amongst other sensory modalities is an important 

component of human culture, where individuals performing an optimal visuo-

vestibular integration may be preferentially selected. 
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Appendix 

Chapter 2. Supplementary data 

 

 

Figure A. Summary of convergences: same data than figure 4 but displayed on semi-inflated generic 

brains (centres of convergence of visuo-vestibular for each subject showing a convergence in this 

location) 
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Figure B. Schema of the GVS and GCS stimulation (left) and static representations of the visual 

stimulation (right) 
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Glossary 

 

ACC  anterior cingulate cortex 

AG  angular gyrus 

AH  autoscopic hallucination 

BA  Brodmann area 

Csv  cingulate sulcus visual area 

CVS  caloric vestibular stimulation 

EBA  extrastriate body area 

FBI  full body illusion 

FEF  frontal eye fields  

fMRI  functional magnetic resonance imaging  

GCS  galvanic cutaneous stimulation 

GVS  galvanic vestibular stimulation 

HAS  heautoscopy 

hMSTd human homologue of MSTd, the anterior part of MST 

IL  intralaminar nuclei 

IPL  inferior parietal lobule 

IPS  intraparietal sulcus 

LGN  lateral geniculate nucleus 

LP  lateral posterior nucleus 

MGN  medial geniculate nucleus 

MIP  medial intraparietal area 

MST  medial superior temporal 

MT  middle temporal 

NCC  neural correlates of consciousness 

OBE  out-of-body experience  
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PET  positron emission tomography  

PFC  prefrontal cortex 

PIVC  parieto insular vestibular cortex 

PMC  premotor cortex 

RHI  rubber hand illusion 

S1  primary somatosensory cortex 

S2  secondary somatosensory cortex 

SMG  supramarginal gyrus 

STG  superior temporal gyrus 

TPJ  temporo-parietal junction 

VA  ventro anterior nuclear complex 

VIP  ventral intraparietal area 

VL  ventro lateral nuclear complex 

VPL  ventral posterior lateral nucleus 

VPM  ventral posterior medial nucleus 

VPS  visual posterior sylvian area 

VR  virtual reality 
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