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Abstract

Instruction-supply mechanisms, namely the branch predictors and instruction prefetchers,

exploit recurring control flow in an application to predict the application’s future control flow

and provide the core with a useful instruction stream to execute in a timely manner. Con-

sequently, instruction-supply mechanisms aggressively incorporate control-flow condition,

target, and instruction cache access information (i.e., control-flow metadata) to improve

performance. Despite their high accuracy, thus performance benefits, these predictors lead to

major silicon provisioning due to their metadata storage overhead. The storage overhead is

further aggravated by the increasing core counts and more complex software stacks leading to

major metadata redundancy: (i) across cores as the metadata of cores running a given server

workload significantly overlap, (ii) within a core as the control-flow metadata maintained by

disparate instruction-supply mechanisms overlap significantly.

In this thesis, we identify the sources of redundancy in the instruction-supply metadata

and provide mechanisms to share metadata across cores and unify metadata for disparate

instruction-supply mechanisms. First, homogeneous server workloads running on many cores

allow for metadata sharing across cores, as each core executes the same types of requests and

exhibits the same control flow. Second, the control-flow metadata maintained by individual

instruction-supply mechanisms, despite being at different granularities (i.e., instruction vs.

instruction block), overlap significantly, allowing for unifying their metadata. Building on

these two observations, we eliminate the storage overhead stemming from metadata redun-

dancy in manycore server processors through a specialized shared frontend, which enables

sharing metadata across cores and unifying metadata within a core without sacrificing the

performance benefits provided by private and disparate instruction-supply mechanisms.

v



Abstract

Key words: server workloads, manycore server processors, instructions, prefetching, branch

prediction, shared predictor metadata.
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Résumé

Les structures d’approvisionnement en instructions, à savoir les prédicteurs de branchement

et les prefetchers d’instructions, exploitent les flux de contrôle récurrent dans une application

pour prédire le flux de contrôle futur et ainsi fournir à temps au cœur du processeur un flux

d’instructions utiles. Par conséquent, ces mécanismes intègrent des informations sur le flot

de contrôle tels que les conditions, la cible, et l’accès au cache d’instructions (c’est à dire,

des métadonnées sur le flot de contrôle) pour améliorer les performances. En dépit de leur

grande précision, améliorant ainsi les performances, ces prédicteurs nécessitent beaucoup

de place et de silicium à cause de la taille de ces métadonnées. Cela est encore aggravé par

l’augmentation constante du nombre de cœurs dans les processeurs et de la complexité des

piles logicielles, amenant à des métadonnées de plus en plus redondantes : (i) entre les cœurs

car les métadonnées des cœurs exécutant une même application serveur donnée se recoupent

de façon significative, (ii) dans chaque cœur car les métadonnées stockées par les différentes

structures sont elles aussi très redondantes.

Dans ce travail, nous identifions les sources de redondance dans les métadonnées et four-

nissons des mécanismes pour partager celles-ci entre les cœurs et au sein du même cœur

entre des structures disparates. Tout d’abord, nous observons que les applications serveur

homogènes s’exécutant sur un processeur comportant de nombreux cœurs permettent le

partage des métadonnées entre les cœurs, étant donné que chaque cœur exécute les mêmes

types de requêtes et suit le même flux de contrôle. Deuxièmement, nous observons que les mé-

tadonnées sur le flux de contrôle maintenues individuellement par les différentes structures,

en dépit d’être à différentes granularités (instruction versus blocs d’instructions par exemple),

se chevauchent de façon significative, ce qui permet de les rassembler. En s’appuyant sur

vii



Résumé

ces deux observations, nous minimisons le coût de stockage découlant de la redondance des

métadonnées dans les processeurs multi-cœurs pour serveurs en partageant ces métadonnées

entre les cœurs et au sein d’un même cœur entre les différentes structures, sans pour autant

sacrifier les gains associés à l’utilisation de structures privées et spécialisées.

Mots clefs : applications serveur, processeurs serveur multi-cœurs, instructions, prefetching,

prédiction de branchement, prédicteur à métadonnées partagées.
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1 Introduction

Servers power today’s information-centric world. Server workloads include but are not limited

to business analytics, online transaction processing, media streaming and web search. The

steadily increasing demand for these services from their global user base mandates constant

performance increase in servers.

While the demand for server performance continues to grow, the breakdown of Dennard

scaling (i.e., the ability to increase performance per unit area while keeping power density

constant) has put an end to the continuous performance increase with each new technology

node [24, 32]. As a result, improving efficiency has become the primary challenge in meeting

the ever-increasing performance requirements of server processors. Consequently, both prior

research and industry efforts have attempted to address the inefficiencies stemming from the

mismatch between what server workloads demand and what commodity server processors

provide.

Existing server chips from the major processor vendors, Intel and AMD, rely on architectures

developed for the general-purpose market, with only minor modifications to the cache hi-

erarchy to accommodate larger working sets in server workloads. These general-purpose

commodity processors are typically designed for computation-intensive desktop and engi-

neering workloads, featuring only a handful of wide-issue and high-frequency cores. An

1



Chapter 1. Introduction

important class of emerging server workloads, however, spend most of their execution time

waiting for memory while performing pointer chasing and exhibit moderate computational

intensity, while enjoying abundant request-level parallelism [21, 26, 53], similar to conven-

tional database workloads such as transaction processing and data analytics [2, 45, 63, 82]. As

a result, server workloads severely underutilize the computation resources in general-purpose

processors, leading to extreme inefficiency.

To maximize the throughput within a given area and power budget, recent research has

advocated the use of processors with many cores that are specialized to match the minimal

computation needs of server workloads without sacrificing single-threaded performance, just

a few MBs of on-chip cache to maintain only the shared instruction working set (due to low

on-chip data reuse) and a specialized on-chip interconnect to provide fast access from cores

to the instructions in the shared cache, essentially streamlining the instruction-supply path

[17, 29, 53].

Even after these first steps of specialization to improve server efficiency, there is still much

more room for improvement in the specialized server design space to optimize the instruction-

supply path, which is overwhelmed by the large instruction working sets of server workloads.

We observe that server workloads are homogeneous, meaning that each core executes the

same types of tasks as all the other cores running the same workload. However, all cores are

treated as standalone IP blocks, without taking into account the homogeneity of a given server

workload. This results in abundant redundancy in the overall chip stemming from the same

control-flow information being maintained privately in each core’s instruction-supply path.

Therefore, instruction supply still remains as a key efficiency bottleneck in terms of real-estate,

performance and energy in manycore server processors.

This thesis is the first to propose and evaluate the next-generation of specialized processors

for server workloads with a shared frontend based on the observation that the control-flow in-

formation within a core and across cores running a given homogeneous workload is replicated

redundantly.
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1.1 Instruction Supply in Servers

One of the distinguishing features that is common across many conventional and emerging

server workloads is the large instruction working sets. Server software implements complex

functionality in a stack of over a dozen layers of services with well-defined abstraction and

interfaces from the application all the way through the system. Control flow of each individual

request is quite complex and typically spans multiple layers of the software stack, including

the application itself, a database engine, a web server, various libraries and the operating

system, resulting in multi-megabyte instruction working sets [26, 31, 38, 43, 82].

Continuously supplying a core with a useful instruction stream to execute requires predicting

the future flow of instructions correctly and fetching those instructions in a timely manner.

The shortage of a continuous and useful instruction stream significantly degrades the overall

system performance in several ways. First, the lack of useful instructions to execute results

in core stalls preventing the core from making forward progress. Consequently, because

the number of instructions that co-exist in the instruction window of a core decreases, the

number of independent memory accesses that can be concurrently issued also decreases.

As a result, the lack of concurrent memory accesses exposes the core to the entire latency of

each long-latency memory access. Overall, the absence of useful instructions to execute and

concurrent memory accesses to issue causes severe underutilization of processor resources

and significantly hurts overall performance.

Eliminating the performance degradation caused by the lack of a continuous instruction

stream necessitates accurate and effective instruction-supply mechanisms to predict and

fetch the upcoming stream of correct-path instructions. The instruction-supply mechanisms,

namely the branch predictors and instruction prefetchers, exploit the recurring control flow in

applications to predict future control flow and proactively fetch instructions respectively. To

do so, they maintain the history of an application’s control flow and leverage this history to

predict the future control flow.

The lack of a continuous and useful instruction stream to execute can be due to two reasons:
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(i) instruction cache misses. (ii) branch mispredictions and branch target misses.

In order to mitigate the stalls caused by instruction cache misses, researchers have proposed

various instruction prefetching techniques to predict future instruction cache misses and

fetch the instructions from the lower levels of cache hierarchy ahead of core demand to hide

the long access latencies from the core frontend. Simple next-line prefetchers [72] that are

common in today’s processors are effective at predicting misses to sequential instruction

cache blocks without any storage overhead. However, they fail to predict misses caused by

diverging control flow upon taken branches and transitions between application, library and

OS codes. Moreover, next-line prefetchers are not timely enough to fully hide the access

latency of lower level caches and increasing their lookahead causes pollution due to frequent

control flow divergences.

More advanced prefetchers leverage the branch predictor to predict misses to non-sequential

blocks in addition to misses to sequential blocks [14, 20, 65, 77, 86]. To do so, these prefetchers

let the branch predictor run ahead of the fetch unit to explore the future control flow and

prefetch the instruction blocks that are not present in the cache along the way. Although these

prefetchers can eliminate more misses than the simple next-line prefetcher, they have two

major limitations. First, because the branch predictor can generate one or two predictions per

cycle, its lookahead is substantially limited to a few basic blocks, especially when the branch

predictor is exploring the local control flow spanning cache-resident instruction blocks (i.e.,

typically due to loop iterations). Second, because the branch predictor speculatively runs

ahead of the fetch unit to provide sufficient prefetch lookahead, its miss rate geometrically

compounds, increasingly predicting the wrong-path instructions along the way until receiving

feedback from the core backend upon the resolution of the first mispredicted branch. As a re-

sult, instruction prefetchers leveraging branch predictors provide only marginal performance

benefits.

Because server workloads exhibit high recurrence in processing a large number of similar

requests, their control flow tends to repeat significantly. To overcome the limitations of next-
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line and branch-predictor-directed prefetchers, the state-of-the-art instruction prefetchers

for server workloads rely on temporal streaming to record, and subsequently replay, entire

sequences of instructions [27, 28].These instruction streaming mechanisms have been shown

to be highly effective at eliminating the vast majority of frontend stalls stemming from instruc-

tion cache misses. However, due to the large instruction footprints and small, yet numerous

differences in the control flow among the various types of requests of a given workload, in-

struction streaming mechanisms incur significant storage overheads to accommodate the

instruction stream history.

Similar to instruction prefetching, branch prediction is a vital component for high perfor-

mance in today’s processors. While the instruction prefetcher predicts and fetches the in-

struction blocks that will be needed by the core frontend ahead of time, the branch predictor

predicts the future instruction flow long before the branch instructions are actually executed to

provide the core with a continuous useful instruction stream to execute. The branch direction

predictor predicts whether a branch will be taken or not, while the branch target buffer (BTB)

provides the address of the next instruction to execute (i.e., target instruction) for predicted

taken branches. The BTB essentially caches the target address of each taken branch upon its

retirement and uses the cached target address as the predicted target address for subsequent

predictions of the same branch.

BTB capacity is limited due to the low access latency constraints as it is required to provide a

prediction every cycle. As a result, the large instruction working sets of server workloads defy

the limited BTB capacities, causing frequent target address mispredictions (i.e., misfetches)

and providing the core with the wrong-path instruction flow (i.e., sequential) upon taken

branches [4, 11, 12, 35].

To mitigate the performance penalty of misfetches due to frequent misses in the BTB, prior

research has proposed employing hierarchical (i.e., two-level) BTBs [64]. The first-level BTB

exhibits low hit rate and low access latency, while the second-level BTB has higher hit rate

but higher latency due to its larger capacity. The second-level BTB can later override a wrong
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target prediction provided by the first level upon the completion of the corresponding lookup.

Although the hierarchical BTB design provides a trade-off between hit rate and access latency,

it still exposes the core to the high access latency of the second-level BTB in the case of misses

in the first-level BTB.

More recent work has proposed various prefetching schemes to hide the access latency of

the second-level BTB. The existing prefetching mechanisms exploit either temporal or spatial

correlation between BTB entries to predict future BTB misses. Techniques exploiting temporal

correlation [12, 23] form groups of BTB entries that miss consecutively in the BTB and record

these groups in a secondary storage. Upon a miss in the predefined code region surrounding

the first branch in a group, they prefetch all the entries in a group from the secondary storage

into the BTB. Because a branch might exist in multiple paths in the control-flow graph due to

various diverges in the control flow (e.g., data dependent if-else construct), it is not guaranteed

to co-exist with the same branches in a group every time it is accessed. Such divergences

substantially limit the accuracy of the BTB prefetching mechanisms relying on temporal

correlation.

Techniques exploiting spatial correlation [11], on the other hand, prefetch all the BTB entries

that fall into a contiguous region of code (i.e., 4KB, 64 instruction blocks) upon a BTB miss

in that region. Such techniques automatically fail to eliminate the first miss in every region,

because the first miss is the prefetch trigger. Moreover, as prior research has shown, because

consecutive accesses do not always fall into large contiguous code regions because of diver-

gences (i.e., due to taken branches whose targets are in a different region), there is only limited

spatial locality that can be exploited by these BTB prefetchers.

As summarized above, the instruction-supply mechanisms incorporate increasingly aggressive

control-flow condition [41, 68], target [11, 12], as well as miss [28, 47] and cache reference [27]

information, so-called predictor metadata, to improve prediction accuracy, thus performance.

Furthermore, the storage requirements to store predictor metadata scale with the instruction

working set size of an application. The storage requirements are further exacerbated by
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the increasing core counts, as each prediction mechanism is private per core, resulting in

abundant metadata redundancy in manycore server processors. The metadata redundancy

in the instruction-supply mechanisms is twofold: (i) Inter-core redundancy as the predictor

metadata of many cores running the same server workload overlap. (ii) Intra-core redundancy

as the predictor metadata for different instruction-supply mechanisms overlap significantly.

1.2 Thesis and Dissertation Goals

Given the potential performance benefits and storage overheads of instruction-supply mecha-

nisms, the next logical step toward higher efficiency is a specialized frontend that minimizes

the overhead without sacrificing performance improvements provided by instruction-supply

mechanisms. Therefore, the focus of this dissertation is to first identify the sources of redun-

dancy in metadata and then eliminate this redundancy. The statement of this thesis is as

follows:

The redundancy in metadata maintained by instruction-supply mechanisms can be eliminated

through sharing and unifying metadata across cores and within a core for resource-efficient

single-threaded performance improvement in manycore server processors.

In this thesis, we focus on two performance-critical and storage-intensive instruction-supply

mechanisms: the instruction streaming mechanism and the branch target buffer (BTB).

1.3 Shared Instruction Streaming Metadata

We observe that individual server workloads are homogeneous, meaning that each core exe-

cutes the same tasks as all other cores. Consequently, over time, all the cores of a processor

executing a common homogeneous server workload tend to generate similar instruction

streams. Building on this observation, we make a critical insight that commonality and re-

currence in the instruction-level behavior across cores can be exploited to generate common

temporal instruction streams, which can then be shared by all of the cores running a given
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workload.

In this thesis, we explore hardware mechanisms to effectively share temporal instruction

stream history across cores running a given homogeneous server workload. We find that a

shared instruction stream history generated by a single core can provide almost the same pre-

diction accuracy and performance improvement for all the cores running the same workload

by effectively eliminating the majority of instruction cache misses. Moreover, we also describe

mechanisms to maintain per-workload temporal instruction stream history in the presence of

multiple server workloads consolidated on a CMP.

1.4 Unifying Instruction Streaming with BTB

We observe that in both instruction streaming and BTB prefetching, the required metadata

contains a record of the application’s control flow history. In the case of the former, the

history is at the instruction block granularity; for the latter, it is at the granularity of individual

branches. Because of the different granularities at which history is maintained, existing

schemes require dedicated histories and prefetchers for both the instruction cache and the

BTB.

The temporal knowledge of the control flow at instruction-block granularity in an instruction

streaming mechanism incorporates the branches whose BTB entries that will be soon required,

obviating the need for a separate BTB prefetcher. If an instruction block is likely to be accessed,

the BTB entries of the branches within that block are also very likely to be accessed. Hence,

the prediction of an access to a block is a good indicator of the accesses to the BTB entries of

branches in that block too.

Accordingly, we propose a lightweight BTB design whose content is maintained in sync with

the instruction cache backed by an instruction streaming mechanism. While the temporal

instruction streams provided by the instruction streaming mechanism hint the instruction

blocks that are likely to be touched, the BTB eagerly installs all the branches (along with their

type information and target addresses) within a block upon the insertion of the block into
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the instruction cache. By doing so, the BTB exploits the fact that most instructions (including

branches) in a block are likely to be touched due to spatial locality during the residency of

a block in the instruction cache. By synergistically combining the coarse-grain control-flow

information supplied by temporal streams with fine-grain spatial locality in instruction blocks,

the BTB maintains only entries within the active instruction working set of an application,

while enjoying a high hit ratio just like the instruction cache.

1.5 Contributions

In this thesis, we explore and propose ways to eliminate redundancy in storage-intensive meta-

data maintained by instruction-supply mechanisms through a specialized frontend design.

We begin by quantifying the metadata storage overhead and describing the redundancy prob-

lem in the context of manycore server processors running homogeneous server workloads.

We then quantify the commonality of metadata maintained by storage-intensive instruction-

supply mechanisms demonstrating the opportunity for metadata sharing in manycore server

processors. Based on our findings, we propose low-overhead but effective metadata shar-

ing and unifying mechanisms that attain almost the same performance as private per-core

instruction-supply mechanisms without incurring their storage overheads.

Through a combination of trace-driven simulation and cycle-accurate modeling of manycore

processors running a variety of traditional and emerging server workloads, we demonstrate:

• Commonality of metadata maintained by instruction-supply mechanisms across

cores: We demonstrate significant commonality in the metadata maintained by per-core

instruction-supply mechanisms, the branch predictors and the instruction streaming

mechanism, across multiple cores running a common server workload.

• Design for shared instruction streaming history: We find that among many cores

running a server workload, one core picked at random can generate the instruction

history to be leveraged by all cores running the same workload. achieving similar
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instruction miss coverage as compared to private history of the same size. Based on this

observation, We propose Shared History Instruction Fetch, SHIFT, which maintains an

instruction history embedded in the LLC and enables history sharing across all cores.

We show that SHIFT provides performance benefits similar to that of private history,

despite its low storage overhead that is amortized across many cores. Furthermore, we

demonstrate SHIFT’s effectiveness in the presence of multiple workloads consolidated

on a CMP via per-workload history.

• Unifying Instruction Streaming with BTB: We observe the control-flow history repre-

sented with coarse-grain temporal streams leveraged for instruction streaming encap-

sulates the history of fine-grain branch accesses, eliminating the need for a separate

BTB prefetcher. In order to effectively leverage the temporal stream history maintained

for instruction streaming, we propose a lightweight BTB design whose content mir-

rors the instruction cache content by maintaining only the BTB entries that are in the

active instruction working set (i.e., L1-resident). We show that our lightweight BTB

design backed by our shared-history instruction streaming mechanism, SHIFT, provides

performance benefits similar to a perfect BTB.

The rest of this thesis is organized as follows. In Chapter 2, we quantify the storage overheads

of the state-of-the-art instruction-supply mechanisms and the commonality of their metadata

across cores running homogeneous server workloads. In Chapter 3, we propose SHIFT as a

hardware mechanism to enable sharing instruction stream history. In Chapter 4, we present

Confluence, which maintains a BTB design mirroring the content of the instruction cache

and leverages the low-overhead instruction streaming mechanism, SHIFT, to populate the

BTB content in parallel with the instruction cache. We discuss related work in Chapter 5 and

conclude the thesis with future directions in Chapter 6.
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2 Why a Specialized Processor with a

Shared Frontend?

In this chapter, we motivate the need for a specialized processor with a shared frontend for

traditional and emerging server workloads. First, we describe the common characteristic fea-

tures of server workloads and explain how the technology trends have been shaping the server

design space. Then, we present the storage overheads of instruction-supply mechanisms

employed in each core’s frontend and explain why they are amenable to sharing. Next, we

quantify the sharing opportunities for these storage-intensive instruction-supply mechanisms

across many cores. Finally, we touch on the challenges and opportunities associated with a

shared frontend design for manycore server processors.

2.1 Server Workloads and Processors

The server workload space has been expanding steadily due to the ever-increasing number of

services becoming online. The server software constituting the backbone of these services

includes but is not limited to traditional relational databases (e.g., IBM DB2, Oracle, MySQL),

modern NoSQL databases (e.g., Cassandra, MongoDB), web servers (e.g., Apache, nginx),

in-memory caching systems (e.g., memcached, Redis), streaming servers (e.g., Apple Darwin),

and web-search engines (e.g., Apache Nutch). Typical server software relies heavily on third-

party libraries and operating system functionalities (e.g., to handle network interrupts, access

11



Chapter 2. Why a Specialized Processor with a Shared Frontend?

the file system). Moreover, server applications are increasingly written in high-level languages

to make programming simpler, necessitating interpreters and virtual machines to generate

native code at runtime. Such a deep software stack constituting a server workload leads to

multi-megabyte instruction working sets [26, 27, 38, 82, 43].

In server workloads, a single client request can be parallelized leveraging multiple threads

or processes to minimize response latency (e.g., database systems parallelize the execution

of a single analytics query for lower response time as such queries necessitate processing

tremendous amounts of data). Furthermore, server workloads inherently exhibit high request-

level parallelism as they simultaneously serve a large client base, necessitating use of multiple

threads or processes running concurrently. In both cases, intra- and inter-request parallelism,

each thread or process executes similar tasks or requests, but only over a small portion of the

application data. We call such workloads homogeneous workloads.

2.1.1 Common Microarchitectural Characteristics of Server Workloads

Prior work has demonstrated a number of common microarchitectural characteristics dis-

tinguishing server workloads from other workload classes such as desktop, engineering, and

scientific workloads.

First, the large instruction working sets dwarf the limited capacities of instruction cache and

branch predictors, which have stringently low access-latency requirements [2, 26, 63, 82].

Consequently, the frequent misses in the instruction cache and branch predictors introduce

one of the major performance bottlenecks in server processors causing frequent misfetches

or fetch stalls [2, 4, 11, 12, 35]. Even the mid-level caches in three-level cache hierarchies fall

short of accommodating the instruction working sets of server workloads, resulting in frequent

accesses to LLC for instruction fetch [26, 38, 43].

Second, server workloads operate on massive datasets that are beyond the reach of limited on-

chip last-level caches (LLC). Datasets served by these workloads (i.e., a single server typically

accommodates tens of GBs of data in memory) are a few orders of magnitude larger than the
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on-chip LLC capacities available in today’s processors. Because server applications process

many requests in parallel, the temporal locality that can be captured by the LLC is very limited.

As a result, even large on-chip LLCs whose capacities are a few tens of MBs can capture only the

instruction working set of a server workload and the operating system data, which exhibit high

reuse as opposed to application data. Consequently, server workloads frequently access main

memory for application data. Moreover, server workloads typically perform irregular memory

accesses due to the use of pointer-intensive data structures (e.g., hash tables, B-tree indices,

inverted indices). Because of the dependencies between subsequent memory operations,

server workloads exhibit poor memory-level parallelism (MLP) (i.e., cannot overlap multiple

memory accesses), exposing the core to the full memory access latency [26, 73, 87]. Therefore,

server workloads spend most of their execution time waiting for memory.

Due to frequent memory stalls, server workloads are characterized by their low instruction-

level parallelism (ILP). Regardless of how large the instruction window of the underlying core is,

the core cannot utilize its resources by extracting independent instructions in the instruction

window because of long-latency memory instructions and the subsequent instructions that

depend on them. As a result, the data-intensive nature of server workloads results in low ILP

and MLP, leading to severe underutilization of computation resources.

2.1.2 Specialized Server Processors

Today’s mainstream server processors, such as Intel Xeon and AMD Opteron, feature a handful

of powerful cores targeting high single-threaded performance for computationally intensive

workloads. These processors employ wide-issue and high-frequency out-of-order (OoO) cores

with large instruction windows to extract as many independent instructions as possible from

the incoming instruction stream and execute independent instructions in parallel to boost

performance. However, as summarized in Section 2.1.1, due the low ILP and MLP that can be

extracted from server workloads, the core resources remain severely underutilized throughout

the execution [21, 26, 53]. This underutilization results in considerable energy inefficiency as

all the core resources consume power without being fully and effectively utilized. Furthermore,
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the large area footprints of wide-issue OoO cores constrain the number of cores that can be

integrated within a given area budget, which in turn limits the amount of parallelism that can

be exploited.

The mismatch between the server workload characteristics and general-purpose purpose

architectures calls for specialized processors that are tuned for the needs of server workloads

to maximize efficiency. Accordingly, recent research has demonstrated that server workloads

are best served by manycore processors with cores that are specialized for the relatively low

computation needs of server workloads, without sacrificing single-threaded performance [29,

53]. The cores employed in such manycore processors typically have narrower issue widths

and employ shallower instruction windows. As a result, they consume significantly less

power compared to wide-issue OoO cores. Despite their low power consumption, such

manycore processors deliver competitive performance when executing server workloads

compared to wide-issue OoO cores as server workloads exhibit low ILP. Furthermore, smaller

area footprints of these specialized cores allow for a higher core count within a given area

budget, further boosting the throughput by exploiting the request-level parallelism prevalent

in server workloads. A number of processors in today’s server space exemplify the manycore

server processors architected for server workloads. These include Cavium ThunderX [17],

Applied Micro’s XGene [6], and EZchip’s Tile-MX series [30], all featuring tens of ARM Cortex

cores.

A number of techniques further specialize for server workloads to provide low-latency in-

struction delivery from the LLC to the cores. Cavium ThunderX series employ a flat two-level

on-chip cache hierarchy to minimize the access latency to LLC-resident instructions, as sug-

gested by recent research results [26, 53], as opposed to deeper three-level cache hierarchies in

Intel Xeon and AMD Opteron. By doing so, Cavium ThurderX eliminates the latency associated

with accessing a mid-level cache in three-level hierarchies, which cannot accommodate the

instruction working sets of server workloads and only adds extra latency to frequent LLC

accesses for instructions. To further mitigate the inefficiencies in the cache hierarchy, scale-

out processors [53] shrinks the LLC to the extent that it can accommodate only the shared
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instruction working set, which in turn reduces the access latency to instructions and elimi-

nates the silicon waste stemming from low data reuse. NoC-Out [52] proposes a specialized

on-chip interconnect for server workloads that do not exhibit inter-core communication by

eliminating inter-core links, thus the unnecessary area overhead associated with them, and

organizing the cores around the small LLC to minimize the latency of accesses to instructions.

While these approaches propose specialization for high-performance instruction delivery

for server workloads, they do not address the inefficiencies associated with the instruction-

supply mechanisms employed in the frontend of each core in a manycore server processor for

high single-threaded performance. As we show in the rest of this section, further improving

the efficiency in server processors mandates specializing the server processors to address

remaining inefficiencies in the instruction-supply path.

2.2 Frontend Metadata Overhead and Commonality

As explained in Section 2.1.1, server workloads are characterized by their large instruction

working sets. These large instruction working sets defy the capacities of instruction-supply

mechanisms of a core, namely the branch predictors and the instruction prefetcher, whose

functionality is to provide the core with a continuous and useful instruction stream to exe-

cute. The instruction-supply mechanisms exploit the recurring control flow in applications to

predict future control flow, thus the upcoming instruction stream. To do so, they collect and

record application metadata that is used in identifying certain patterns during an application’s

execution. Upon recurrence of a particular pattern, the metadata recorded is leveraged to

predict future patterns of the application. Higher prediction accuracy necessitates main-

taining metadata for the entire instruction working set of an application to capture all the

possible recurring patterns. Therefore, the required metadata storage capacity scales with the

instruction working set size of an application.

To make matters worse, each core maintains its own private metadata storage, as the

instruction-supply mechanisms are latency-sensitive. As a result, the aggregate area footprint
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OLTP – Online Transaction Processing (TPC-C)

DB2
IBM DB2 v8 ESE Database Server

100 warehouses (10GB), 64 clients, 2GB buffer pool

Oracle
Oracle 10g Enterprise Database Server

100 warehouses (10GB), 16 clients, 1.4 GB SGA
DSS – Decision Support Systems (TPC-H)

Qry 2, 8, IBM DB2 v8 ESE
17, 20 480MB buffer pool, 1GB database

Media Streaming

Darwin
Darwin Streaming Server 6.0.3

7500 clients, 60GB dataset, high bitrates
Web Frontend (SPECweb99)

Apache
Apache HTTP Server v2.0

16K connections, fastCGI, worker threading model
Web Search

Nutch
Nutch 1.2/Lucene 3.0.1,

230 clients, 1.4 GB index, 15 GB data segment

Table 2.1: Server workload parameters.

dedicated to metadata storage scales with the number of cores in manycore processors. How-

ever, in a manycore server processor where each core executes a given homogeneous server

workload, the metadata privately maintained by each core overlaps significantly as each core

exhibits the same control flow, leading to significant waste of real-estate due to redundancy.

In homogeneous workloads, every thread and/or process executes the same code as all the

other threads/processes of the workload. Server applications that rely on multithreading

leverage a single application binary that is loaded into the memory and all threads within a

process share common virtual-to-physical address translations. In applications leveraging

multiple processes, new processes are often launched through forking, which maintains the

same virtual-to-physical address mappings of the parent process for the children processes

until there is a write operation performed by parent or children processes, upon which a new

page is created through a copy-on-write operation. The commonality of addresses across cores

running a given homogeneous server workload is the key enabler for sharing the metadata of

instruction-supply mechanisms across cores as explained in the rest of this section.

In the rest of this section, we first quantify the overheads of storage-intensive instruction-
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Figure 2.1: Temporal instruction stream example.

supply mechanisms for a suite of traditional and emerging homogeneous server workloads

listed in Table 2.1. For each mechanism, we also demonstrate the metadata commonality

across cores running a homogeneous server workload by maintaining a shared metadata

storage across cores and assuming a hypothetical server system, in which the cores can access

shared metadata without any latency penalties.

2.2.1 Instruction Streaming

Instruction prefetching is an established approach to alleviate instruction-fetch stalls prevalent

in server workloads stemming from frequent instruction misses. Next-line prefetcher, a

common design choice in today’s processors, can eliminate only around 30% of instruction

cache misses on average, for the workload suite listed in Table 2.1. Given the remaining

performance potential from eliminating more instruction cache misses, server processors call

for more sophisticated instruction prefetchers.

To overcome the next-line prefetcher’s inability to predict instruction cache misses that are

not to contiguous instruction blocks, instruction streaming mechanisms [27, 28] exploit the

recurring control-flow graph traversals in server workloads. As program control flow recurs,

the core frontend generates repeating sequences of fetch addresses. The instruction fetch

addresses that appear together and in the same order are temporally correlated and together

form a so-called temporal stream. For instance, as illustrated in Figure 2.1, in the instruction

cache access sequence A, B, C, D, X, Y, A, B, C, D, Z, M, A, B, C, D, the address sequence A, B, C,

D constitutes a temporal instruction stream. Once a temporal stream is recorded, it can be

identified by its first address, the stream head (address A in our example) and replayed to issue
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Figure 2.2: PIF’s miss coverage as a function of dedicated history size.

prefetch requests in advance of the core frontend to hide the instruction cache miss latency

from the core. If the actual instruction stream matches the replayed stream (addresses B, C,

D), the instruction misses are eliminated by the streaming mechanism.

The state-of-the-art instruction streaming mechanism is Proactive Instruction Fetch (PIF)

[27], which extends earlier work on temporal streaming [28]. PIF’s key innovation over prior

work is its reliance on access streams instead of miss streams. By recording all accesses to

the instruction cache, as opposed to just those that miss, PIF eliminates the dependence on

the content of the cache. While cache content can change over time, reference patterns that

PIF records remain stable. To mitigate the storage overhead associated with recording all

instruction cache access addresses, PIF exploits the temporal and spatial locality in instruction

access stream to maintain a compact representation of the addresses of the instruction blocks

that are in close proximity in the address space and accessed closely in time. Despite the

stream compaction optimization, PIF incurs significant storage overhead for high instruction

miss coverage (i.e., fraction of misses eliminated). Figure 2.2 illustrates how the miss coverage

increases with the history size. For instance, to eliminate an average of 90% of instruction

cache misses, thus approaching the performance of a perfect I-cache, PIF requires 32K entries

in history, corresponding to over 210KB of history storage per core (Section 3.4 details PIF’s

storage cost).
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Relative Area Overhead: While the performance benefits of instruction streaming are consis-

tently high across the core microarchitecture spectrum, the relative cost varies greatly. For

instance, the 210KB of storage required by the PIF prefetcher described above consumes

0.9mm2 of the die real-estate in 40nm process technology. Meanwhile, a Xeon Nehalem core

along with its private L1 caches has an area footprint of 25mm2. The 4% of area overhead that

PIF introduces when coupled to a Xeon core is a relative bargain next to the 23% performance

gain it delivers. This makes PIF a good design choice for conventional server processors.

(Section 3.4 details the system configurations used for these experiments)

On the opposite end of the microarchitectural spectrum is a lean core like the ARM Cortex-

A8 [9]. The A8 is a dual-issue in-order design with an area of 1.3mm2, including the private L1

caches. In comparison to the A8, PIF’s 0.9mm2 storage overhead is prohibitive given the 17%

performance boost that it delivers. Given that server workloads have abundant request-level

parallelism, making it easy to scale performance with core count, the area occupied by PIF is

better spent on another A8 core. The extra core can double the performance over the baseline

core, whereas PIF only offers a 17% performance benefit.

To succinctly capture the performance-area trade-off, we use the metric of performance-

density (PD), defined as performance per unit area [53]. By simply adding cores, server

processors can effectively scale performance, while maintaining a constant PD (i.e., twice

the performance in twice the area). As a result, the desirable microarchitectural features are

those that grow performance-density, as they offer a better-than-linear return on the area

investment.

Figure 2.3 shows the relative performance-density merits of three PIF-enabled core microar-

chitectures over their baseline (without PIF) counterparts. Two of the cores are the Xeon and

ARM Cortex-A8 discussed above; the third is an ARM Cortex-A15 [84], an out-of-order core

with an area of 4.5mm2.

In the figure, the trend line indicates constant PD (PD = 1), which corresponds to scaling

performance by adding cores. The shaded area that falls into the left-hand side of the trend
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Figure 2.3: Comparison of PIF area overhead and performance improvement for various core
types.

line is the region of PD gain, where the relative performance improvement is greater than the

relative area overhead. The right-hand side of the trend line corresponds to PD loss, where the

relative performance gain is less than the relative area. In summary, designs that fall in the

shaded region improve performance-density over the baseline; those outside strictly diminish

it.

The results in the figure match the intuition. For the Xeon core, PIF improves performance-

density. In contrast, for the Cortex-A15 core, PIF fails to improve PD, and for the Cortex-A8

core, PIF actually diminishes PD, providing less-than-linear performance density benefit that

cannot compensate for its area overhead. Thus, we conclude that processors with specialized

lean cores (i.e., ARM Cortex cores) benefit from instruction streaming nearly as much as

designs with fat wide-issue cores (i.e., Intel Xeon), but mandate area-efficient mechanisms to

minimize the overhead.

Temporal Instruction Stream Commonality: To quantify the similarity between the instruction

streams of cores running a homogeneous server workload, we pick a random core to record

its instruction cache access stream. All the other cores, upon referencing the first address

in a stream, replay the most recent occurrence of that stream in the recorded history. The

commonality between two streams is quantified as the number of matching instruction block
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addresses between the replayed stream and those issued by the core replaying the stream. For

this study, we use instruction fetch traces from 16 cores and average the results across all of

the cores.

Workload % I-cache accesses

OLTP DB2 91
OLTP Oracle 92

DSS Qry2 94
DSS Qry8 92

DSS Qry17 91
DSS Qry20 93

Media Streaming 96
Web Frontend 90

Web Search 95

Table 2.2: Instruction cache accesses within common temporal streams.

Table 2.2 shows the commonality of instruction streams between cores executing a given

homogeneous server workload. More than 90% (up to 96%) of instruction cache accesses

(comprised of both application and operating system instructions) from all sixteen cores

belong to temporal streams that are recorded by a single core picked at random. This result

indicates that program control flow commonality between cores yields temporal instruction

stream commonality, suggesting that multiple cores running a homogeneous server workload

can benefit from a single shared instruction history for instruction streaming.

2.2.2 Branch Predictors

Branch prediction is a vital component for high single-threaded performance. Branch instruc-

tions constitute a special class of instructions as they can divert the control flow of a program

from sequential flow to another location in the program. In the absence of a branch predictor,

upon an incoming branch instruction, the core would stall until the execution of the branch

instruction to resolve the branch (i.e., determine if it is taken or not) and calculate the target

instruction address, if the branch is taken, to redirect the control flow to the target address.

As a result, each branch instruction would stall the instruction fetch unit of the core until the

branch gets resolved and the next instruction address is calculated by the processor, creating
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Figure 2.4: Target address prediction of a branch instruction in BTB.

bubbles in the pipeline. These pipeline bubbles would essentially lead to lower performance.

To mitigate the pipeline bubbles due to branch instructions, today’s processors rely on aggres-

sive branch predictors. A branch predictor consists of two orthogonal components: 1) branch

direction predictor and 2) branch target predictor. The branch direction predictor predicts

whether a branch will be taken or not. If a branch is predicted not taken, the instruction fetch

stream continues sequentially with the next instruction in the program. However, if the branch

is predicted taken, its target instruction address, from which instruction the fetch stream will

continue, needs to be predicted as well.

Branch Target Prediction

The chief mechanism employed to predict the target instruction addresses of taken branches

is the Branch Target Buffer (BTB) [79]. Each BTB entry stores the most recent target instruction

address for a particular branch instruction and uses the stored target instruction address

as the prediction next time that branch instruction is encountered. In doing so, the BTB

exploits the fact that, for the majority of branches (i.e., relative branches) the target instruction

address is stable throughout the program execution. 1 BTB, as shown in Figure 2.4, is typically

a set-associative table, where each entry is tagged with a branch instruction’s program counter

1Return instructions and indirect branches may have several different target addresses. Because the BTB is
not very effective for these types branches as it only stores one target address per branch instruction, today’s
processors employ separate prediction mechanism to predict targets of return instructions and indirect branches.

22



2.2. Frontend Metadata Overhead and Commonality

(PC). Each BTB entry stores the most recent target instruction address (target PC) encountered

for a particular branch instruction and optionally a few status bits to indicate the type of the

branch (i.e., conditional, unconditional, return).

The BTB needs to be both accurate and timely meaning that it needs to provide the correct

branch target address within a cycle to constantly feed the processor pipeline with correct

instructions. The single-cycle latency constraint for the BTB can be relaxed in the presence

of a branch direction predictor with an access latency higher than one cycle, as retrieving

the target address of the branch instruction would be of no use before the direction of the

branch is known. In this work, we target a system with a branch direction predictor latency

of only single cycle. To achieve maximum hit rate, thus accuracy, the BTB needs to maintain

entries of all the taken branches in the instruction working set of an application. As a result,

the capacity requirements of the BTB scale with the instruction working set of an application.

However, larger BTBs exhibit higher access latencies, resulting in high-latency target address

predictions. Consequently, delayed target address predictions offset the performance benefits

of accurate predictions as they cause bubbles in the pipeline.

Superscalar cores necessitate the branch prediction unit to provide multiple instructions

every cycle depending on the fetch width of the core. To provide multiple instructions to be

fetched with a single BTB lookup, the BTB can be organized to provide a basic block range

with a single lookup [64, 91]. In this case, each BTB entry is tagged with the starting address

of a basic block and maintains the target address of the branch ending the basic block, the

fall-through address (the next instruction after the branch ending the basic block) and the

type of the branch instruction ending the basic block. Every cycle, a direction prediction

is made for the branch instruction terminating the current basic block (i.e., the instruction

before the fall-through instruction). Based on the outcome of the direction prediction, the

fall-through address or the target instruction address is used to perform a lookup in the BTB

for the next basic block. In the rest of the paper, we leverage such a BTB as the baseline BTB

design. Whenever a basic block (hence the branch ending the basic block) is not found in the

BTB, a basic block with a predetermined number of sequential instructions is passed to the
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Figure 2.5: BTB MPKI as a function of BTB capacity (in K entries).

instruction fetch unit to be fetched.

Figure 2.5 shows the BTB MPKI as a function of the total number of BTB entries per core. A

BTB miss corresponds to a branch instruction (or the basic block that ends with the branch

instruction in the basic-block-based design) whose entry is not present in the BTB and hence

is not considered as a branch at prediction time. As a result, BTB misses result in misfetches

(i.e., wrong target predictions) if the corresponding branch instruction is taken. The server

workloads require up to 16K BTB entries to fully capture the taken branches in the instruction

working sets of the workloads, while OLTP on Oracle benefits from even 32K entries, corrobo-

rating prior work [11, 12, 35]. The storage capacity requirement of a 32K-entry BTBs is around

290KB (Section 4.3 details the storage cost).

Relative Area Overhead: A 16K-entry BTB (~150KB) in 40nm technology occupies around

0.6mm2 area. This area footprint corresponds to 46% of the Cortex-A8, 13% of the Cortex-A15,

and only 2.5% of the Xeon area footprint. As the relative area overheads indicate, large BTBs

incur a much higher area overhead for the Cortex cores as compared to the Xeon core.

BTB Metadata Commonality: Table 2.3 demonstrates the BTB miss rate when 16 cores running

a given server workload leverage a shared 32K-entry BTB. The insignificant increase in BTB

MPKI (0.2 in the worst case) in the shared BTB validates our expectations of the commonality
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Workload Private Shared

OLTP DB2 0.50 0.55
OLTP Oracle 2.27 2.40

DSS Qry2 0.07 0.03
DSS Qry8 0.02 0.01

DSS Qry17 0.05 0.02
DSS Qry20 0.06 0.03

Media Streaming 0.02 0.02
Web Frontend 0.54 0.70

Web Search 0.03 0.04

Table 2.3: BTB MPKI when 16 cores share a 32K-entry BTB compared to private 32K-entry BTB.

of BTB entries between cores running a homogeneous server workload. The subtle increase

in the BTB miss rate can be attributed to cold code paths exercised by a random core due to

infrequent events such as OS scheduler activity.

To conclude, although the BTB storage requirements for server workloads are as big as 290KB,

the commonality of control flow across cores paves the way for sharing the BTB storage, thus

eliminating the redundancy and amortizing its storage overhead across many cores.

Branch Direction Prediction

The key enabler for the high accuracy provided by today’s state-of-the-art branch predictors

is mainly correlating a branch’s outcome with the outcome of many previously executed

branch instructions in the dynamic instruction stream [39, 41, 68]. While increasing the

prediction accuracy for some branch instructions necessitates maintaining longer branch

histories (i.e., hundreds of dynamic branch outcomes), most branches can be predicted

accurately by leveraging relatively short histories. Maintaining a fixed-size history for all

branches results in an unnecessary explosion in the required predictor size. Instead, only the

branches that benefit from longer histories should maintain predictions correlated with long

branch histories, while other branches should maintain predictions correlated with shorter

branch histories in the predictor table. Furthermore, achieving high accuracy necessitates

minimizing aliasing in the predictor tables, preventing two or more different branch patterns
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Figure 2.6: TAGE branch predictor with a base bimodal predictor and N tagged tables.

from reading or updating the same entry in the predictor.

Given these requirements for high branch prediction accuracy, the TAGE predictor [68] shown

in Figure 2.6, employs a base bimodal predictor and a set of partially tagged predictor tables,

each of which maintains predictions for branch outcome patterns with different lengths. The

global history lengths used by the tagged tables all together form a geometric series. The

base bimodal predictor is indexed by a branch PC and provides a prediction if there is no

matching entry in the tagged tables for a given branch history at the time of the prediction.

In addition to a partial tag, each tagged table entry contains a 3-bit saturating counter for

direction prediction and a 2-bit useful counter. Each tagged table is indexed through a unique

function of the current branch PC, global history and path history. Similarly, the partial tags

are formed through a unique function of the branch PC and global history.

At prediction time, all tables are accessed in parallel. The predictions from two tables with

the longest histories are considered for the actual prediction upon a tag match. Typically, the
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prediction from the table associated with a longer history is actually used unless the entry is

considered as recently inserted. If the prediction is wrong, a new entry is allocated in a table

associated with a longer history than the table that provided the prediction. This way, the

branches that cannot be correctly predicted by short histories are promoted to tables with

longer histories.

Overall, through the combination of entry tagging and use of variable history lengths in several

disparate tables, TAGE outperforms all the other branch predictors in the literature. However,

the use of tags in the predictor tables and the need for capturing all the recurring branch

patterns in a workload for high accuracy inflate the storage capacity requirements of the TAGE

predictor.

Configuration Tage_1 Tage_2 Tage_3 Tage_4 Tage_5 Tage_6
Scaling Factor 1/16 1/8 1/4 1/2 1 2

Aggregate Storage (KB) 4 6 9 16 30 58

Table 2.4: Total storage capacities required for various TAGE configurations.

We evaluate TAGE’s accuracy by varying its per-core aggregate storage capacity for the server

workloads listed in Table 2.1. We start with the ~30KB TAGE configuration [68], which achieved

the highest accuracy in the first Branch Prediction Championship (CBP-1) and set the basis for

the predictors that won the subsequent competitions. For the configurations with different

aggregate capacities, we keep the size of the bimodal predictor constant as it is a tagless table

and requires only 2.5KB storage capacity in total and scale the number of entries in the tagged

tables by powers of two for each different configuration. The resulting aggregate table sizes

for various configurations evaluated are listed in Table 2.4. We also evaluate the accuracy of

the base bimodal predictor to better understand the contribution of tagged tables to higher

accuracy.

Figure 2.7 shows the misprediction rates for the base bimodal predictor and the various

TAGE configurations listed in Table 2.4. As expected, as the number of entries in tagged tables

increases, TAGE achieves higher accuracy because it can accommodate more entries belonging

to different branch outcome patterns and different branches. The reduction in the MPKI with
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Figure 2.7: TAGE mispredictions per kilo instructions (MPKI) for various TAGE configurations.

the increasing aggregate TAGE capacity is more pronounced for the OLTP workloads and web

frontend as these workloads have larger instruction working sets. In conclusion, we see that

server workloads benefit from a TAGE predictor as big as ~60KB per core for higher accuracy.

Relative Area Overhead: We estimate the area of a single-ported 60KB TAGE to be around

0.25mm2 in 40nm technology using CACTI (This is a very rough estimate since CACTI does not

accept block sizes, which correspond to entry sizes in TAGE, in bits). TAGE’s area corresponds

to 20% of Cortex-A8, 6% of Cortex-A15 and only 1% of a Xeon core’s area. Because we do not

have enough details about the branch predictors employed in these cores, their sizes and

contribution to the aggregate core area, we are not able to perform a performance density

analysis for TAGE. However, like the instruction-streaming mechanism and BTB, the relative

area overhead induced by TAGE per core is higher for the Cortex cores as compared to the

Xeon core, as expected.

TAGE Metadata Commonality: To quantify the commonality of branch history patterns across

cores running a common server workload, we employ a single TAGE predictor with approxi-

mately 60KB of aggregate storage (Tage_6 in Table 2.4) shared across 16 cores. In our shared

TAGE configuration, the base bimodal predictor is per-core as it incurs insignificant storage

overhead (2.5KB), but all the tagged tables are shared across cores. Figure 2.8 demonstrates

the miss rates for 60KB per-core TAGE and 60KB shared TAGE, averaged across all cores. Lower
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Figure 2.8: TAGE misprediction rate when a 60KB TAGE table is shared across 16 cores com-
pared to per-core 60KB TAGE.

miss rates for the shared TAGE in the case of OLTP on DB2 and DSS queries indicate construc-

tive sharing, meaning a prediction entry inserted or updated by one core is useful for other

cores. For the rest of the workloads, the slight increase in the miss rate (0.6 in the worst case)

might be due to the capacity limitations or the interference between cores when actively using

the same entries.

We conclude that, although the TAGE storage requirements for server workloads are as big as

60KB per core, the commonality of control flow across cores makes the TAGE storage amenable

to sharing to eliminate the redundancy and amortize its storage overhead across many cores.

2.3 Exploiting Metadata Commonality for Shared Frontend

As explained in Section 2.2, the instruction-supply mechanisms employed in each core’s fron-

tend are storage-intensive, but amenable to sharing in the context of manycore processors

executing homogeneous server workloads due to the significant overlap of control flow across

cores. In this thesis, our goal is to build a manycore server processor with a shared frontend

and enable all the cores running a given server workload to leverage a shared single metadata

storage, hence eliminate the replication of metadata redundantly across cores, without los-

ing the single-threaded performance benefits attained by instruction-supply mechanisms
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maintaining private metadata.

The primary challenge associated with sharing the metadata of the instruction-supply mech-

anisms is their latency sensitivity. Branch predictors are required to provide one or more

predictions every cycle, while the instruction streaming lookahead must be large enough to

prefetch the instructions well ahead of the core frontend’s demand to hide the access latency of

the lower levels of the memory hierarchy. A large metadata storage naively shared across cores

would expose the core frontend to on-chip interconnect latencies and high access latencies of

large predictor tables, leading to marginal or no performance benefits as the predictors would

not be able to provide timely predictions.

Providing timely predictions leveraging shared frontend metadata necessitates predicting the

metadata that will be required in near future and fetch that metadata into a small and private

predictor table next to the core. This essentially means organizing the metadata in hierarchical

tables, just like cache hierarchies in today’s processors, and prefetching metadata from sec-

ondary storage into primary storage as needed. Provided the metadata can be prefetched in

timely manner, leveraging the private small metadata storage to make predictions minimizes

the latency the core is exposed to, while the shared metadata storage eliminates redundancy.

2.4 Summary

In this chapter, we described the common characteristics of server workloads and the cur-

rent processor specialization trends to achieve high efficiency for these workloads. We then

identified the metadata redundancy as another key source of inefficiency in manycore server

processors and quantified the per-core storage overheads of storage-intensive instruction-

supply mechanisms. We demonstrated the commonality of frontend metadata across cores

running homogeneous server workloads to pave the way for a shared-frontend server pro-

cessor. Finally, we described the requirements of a shared frontend that can provide similar

performance benefits to private instruction-supply mechanisms, without incurring their

storage overheads.
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3 SHIFT: A Design for Sharing Instruc-

tion Streaming Metadata

Prefetching is a well-known mechanism to overcome the instruction-fetch stall bottleneck

stemming from frequent instruction cache misses. Prior work has shown that instruction-

fetch stalls account for up to 40% of execution time in server processors [33, 63, 76, 82].

Given the performance potential of fully eliminating instruction-fetch stalls, prior work has

proposed increasingly aggressive instruction prefetchers through the use of more explicit

instruction reference history [27, 28, 47]. In the state-of-the-art instruction prefetcher, PIF [27],

the history consists of a continuous stream of instruction cache reference addresses that

are not filtered by caches, thus not affected by cache content at a given point in time or the

cache replacement policy. As a result, PIF yields phenomenally high accuracy and cache miss

coverage provided enough capacity to capture the history of the entire instruction working set

of an application. Unfortunately, such high accuracies are achieved at the cost of high per-

core storage overhead to maintain the history of the complete instruction reference streams.

Furthermore, in manycore server processors executing homogeneous server workloads, the

significantly overlapping streams of instruction references are replicated redundantly in the

private history tables of individual cores, leading to considerable waste of silicon.

We make a critical insight that commonality and recurrence in the instruction-level behavior

across cores can be exploited to generate a common instruction history, which can then be

shared by all of the cores running a given workload. By sharing the instruction history and its
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associated storage among multiple cores, this work provides an effective approach for mitigat-

ing the severe area overhead of existing instruction streaming designs, while preserving their

performance benefit. As a result, we propose a practical instruction streaming mechanism

to mitigate the frontend stalls resulting from instruction cache misses in manycore server

processors.

The contributions of this chapter are as follows:

• We introduce Shared History Instruction Fetch, SHIFT, a new instruction streaming

design, which combines shared instruction history with lightweight per-core control

logic. By sharing the history, SHIFT virtually eliminates the high history storage cost

associated with earlier approaches [27].

• We show that a single core chosen at random can generate the instruction history, which

can then be shared across other cores running the same workload. In a 16-core CMP,

the shared history eliminates 85%, on average, of all instruction cache misses across a

variety of traditional and emerging server workloads.

• SHIFT yields an absolute performance improvement of 19% on a suite of diverse server

workloads, on average, capturing 90% of the performance benefit of the state-of-the-art

instruction streaming mechanism [27] at 14x less storage cost in a 16-core CMP.

• By embedding the history in the memory hierarchy, SHIFT eliminates the need for

dedicated storage and provides the flexibility needed to support consolidated workloads

via a per-workload history.

The rest of this chapter is organized as follows. We first describe the SHIFT design with

dedicated storage in Section 3.1. In Section 3.2, we describe how we can embed the SHIFT

history into the LLC. In Section 3.3, we explain how SHIFT can be used by multiple workloads

in the case of consolidation. Section 3.4 details the methodology used for the evaluation.

Then, we study SHIFT’s sensitivity to the design parameters and evaluate SHIFT against prior
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proposals in Section 3.5. We discuss additional issues in Section 3.6. Finally, we conclude in

Section 3.7.

3.1 SHIFT with Dedicated History Storage

SHIFT exploits the commonality of instruction fetch streams across cores running a common

homogeneous server workload by enabling a single instruction fetch stream history to be

shared by all the cores. We base the SHIFT history storage on the Global History Buffer [57]

prefetcher to record instruction fetch streams in a similar vein to prior instruction streaming

mechanisms [27, 28, 47] as described in Section 2.2.1.

We augment each core with simple logic to read instruction streams from the shared history

buffer and issue prefetch requests. In this section, we present the baseline SHIFT design with

dedicated storage, and then explain how to virtualize the storage (i.e., embed the storage in

the LLC) in the next section. Finally, we demonstrate SHIFT with multiple history buffers to

enable support for workload consolidation.

SHIFT employs two microarchitectural components shared by all the cores running a common

workload to record and replay the common instruction streams: the history buffer and the

index table. The history buffer records the history of instruction streams; the index table

provides fast lookups for the records stored in the history buffer.

The per-core private stream address buffer reads instruction streams from the shared history

buffer and coordinates prefetch requests in accordance with instruction cache misses.

Recording. SHIFT’s distinguishing feature is to maintain a single shared history buffer and

employ only one core, history generator core, running the target workload to generate the

instruction fetch stream history.

The history generator core records retire-order instruction cache access streams to eliminate

the microarchitectural noise in streams introduced by the instruction cache replacement

policy and branch mispredictions [27]. To mitigate increased history storage requirements
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Figure 3.1: SHIFT’s logical components and data flow to record temporal instruction streams.

resulting from recording instruction cache accesses rather than instruction cache misses, the

history generator core collapses retired instruction addresses by forming spatial regions of

instruction cache blocks.

Step 1 in Figure 3.1 depicts how a spatial region is generated by recording retire-order instruc-

tion cache accesses obtained from the history generator core’s backend. In this example, a

spatial region consists of five consecutive instruction cache blocks; the trigger block and four

adjacent blocks. The first access to the spatial region, an instruction within block A, is the

trigger access and defines the new spatial region composed of the instruction blocks between

block A and A+4. Subsequent accesses to the same spatial region are recorded by setting the

corresponding bits in the bit vector until an access to a block outside the current region occurs.

Upon an access to a new spatial region, the old spatial region record is sent to the shared

history buffer to be recorded. The history buffer, logically organized as a circular buffer,

maintains the stream of retired instructions as a queue of spatial region records. A new spatial

region is recorded in the shared history buffer into the entry pointed by the write pointer, as

illustrated in step 2 in Figure 3.1. The write pointer is incremented by one after every history

write operation and wraps around when it reaches the end of the history buffer.

To enable fast lookup for the most recent occurrence of a trigger address, SHIFT employs an
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Figure 3.2: SHIFT’s logical components and data flow to replay temporal instruction streams.

index table for the shared history buffer, where each entry is tagged with a trigger instruction

block address and stores a pointer to that block’s most recent occurrence in the history buffer.

Whenever a new spatial region record is inserted into the history buffer, SHIFT modifies the in-

dex table entry for the trigger address of the new record to point to the insertion position (step

3 in Figure 3.1). SHIFT does not invalidate the index pointer of the entry that is overwritten in

the history buffer in order not to generate extra traffic to the index table.

Replaying. The per-core stream address buffer maintains a queue of spatial region records

and is responsible for reading a small portion of the instruction stream history from the shared

history buffer in anticipation of future instruction cache misses. When an instruction block is

not found in the instruction cache, the stream address buffer issues an index lookup for the

instruction’s block address to the index table (step 1 in Figure 3.2). If a matching entry is found,

it supplies the pointer to the most recent occurrence of the address in the history buffer. Once

the spatial region corresponding to the instruction block that triggered the lookup is located

in the history buffer (step 2 in Figure 3.2), the stream address buffer reads out the record and a

number of consecutive records following it as a lookahead optimization. The records are then

placed into the stream address buffer (step 3 in Figure 3.2). If the missing instruction’s block

address and the address read from the history buffer do not match (indicating a stale pointer),

the stream is discarded and nothing is allocated in the stream address buffer.
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Next, the stream address buffer reconstructs the instruction block addresses encoded by the

spatial region entries based on the trigger address and the bit vector. Then, the stream address

buffer issues prefetch requests for the reconstructed instruction block addresses if they do not

exist in the instruction cache (step 4 in Figure 3.2).

The stream address buffer also monitors the retired instructions. A retired instruction that

falls into a spatial region maintained by the stream address buffer advances the stream by

triggering additional spatial region record reads from the history buffer starting from the

location pointed by the stream address buffer (points to the last spatial region entry read for

that stream in the history buffer) (step 5 in Figure 3.2) and issues prefetch requests for the

instruction blocks in the new spatial regions.

As an optimization, SHIFT employs multiple stream buffers (four in our design) to replay mul-

tiple streams, which may arise due to frequent traps and context switches in server workloads.

The least-recently-used stream is evicted upon allocating a new stream. When the active

stream address buffer reaches its capacity, the oldest spatial region record is evicted to make

space for the incoming record.

For the actual design parameters we performed the corresponding sensitivity analysis and

found that a spatial region size of eight, a lookahead of five and a stream address buffer

capacity of twelve achieve the maximum performance.

3.2 Virtualized SHIFT

The baseline SHIFT design described in Section 3.1 relies on dedicated history storage. The

principal advantage of dedicated storage is that it ensures non-interference with the cache

hierarchy. However, this design choice carries several drawbacks, including (1) new storage

structures for the history buffer and the index table, (2) lack of flexibility with respect to

capacity allocation, and (3) considerable storage expense to support multiple histories as

required for workload consolidation. To overcome these limitations, we embed the SHIFT

history buffer in the LLC leveraging the virtualization framework [13].
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History Virtualization. To virtualize the instruction history buffer, SHIFT first allocates a

portion of the physical address space for the history buffer. History buffer entries are stored in

the LLC along with regular instruction and cache blocks. For the index table entries, SHIFT

extends the LLC tag array to augment the existing instruction block tags with pointers to the

shared history buffer records.

SHIFT reserves a small portion of the physical address space that is hidden from the operating

system. The reserved address space starts from a physical address called the History Buffer

Base (HBBase) and spans a contiguous portion of the physical address space. The size of the

reserved physical address space for the history buffer can change based on the instruction

working set size of a workload.

The history buffer is logically a circular buffer; however, the actual storage is organized as

cache blocks. To access a spatial region record in the history buffer, the value of the pointer to

the spatial region record is added to HBBase to form a physical address and an LLC lookup

is performed for that physical address. Each cache block that belongs to the history buffer

contains multiple spatial region records, therefore, each history buffer read and write operation

spans multiple spatial region records. The LLC blocks that belong to the history buffer are

non-evictable, which ensures that the entire history buffer is always present in the LLC. Non-

eviction support is provided at the cache controller through trivial logic that compares a block’s

address to the address range reserved for the history. As an alternative, a cache partitioning

scheme (e.g., Vantage [66]) can easily guarantee the required cache partition for the history

buffer.

The index table, which contains pointers to the spatial region records in the history buffer, is

embedded in the LLC by extending the tag array with pointer bits. This eliminates the need

for a dedicated index table and provides an index lookup mechanism for free by coupling

index lookups with instruction block requests to LLC (details below). Although each tag is

augmented with a pointer, the pointers are used only for instruction blocks. Each instruction

block tag in the LLC can point to the most recent occurrence of the corresponding instruction
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Figure 3.3: SHIFT’s virtualized history and data flow to record temporal instruction streams.
Virtualized history components (index pointers and shared history buffer) are shaded in the
LLC.

block address in the history buffer. The width of the pointer is a function of the history buffer

size and is independent of the LLC capacity. In our design, each pointer is 15 bits allowing for

an up to 32K-entry history buffer.

In Figure 3.3 and Figure 3.4 , the shaded areas indicate the changes in the LLC due to history

virtualization. The LLC tag array is augmented with pointers and a portion of the LLC blocks

are reserved for the history buffer. The LLC blocks reserved for the history buffer are distributed

across different sets and banks; however, we show the history buffer as a contiguous space in

the LLC to simplify the figure.

Recording. Figure 3.3 illustrates how the SHIFT logic next to the history generator core records

the retire-order instruction stream in the shared and virtualized history buffer. First, the history

generator core forms spatial region records as described in Section 3.1. Because the history

buffer is accessed at cache-block granularity in virtualized SHIFT, the history generator core

accumulates the spatial region records in a cache-block buffer (CBB), instead of sending each

spatial region record to the LLC one by one (step 1). However, upon each spatial region record

insertion into the CBB, the history generator core issues an index update request to the LLC

38



3.2. Virtualized SHIFT

Tag DataIndex

A

X, 1101 A, 0110 B, 1101

Miss A

1

+

HB 
Base

2

LLC

Stream 
Address 
Buffer

B, 1101
A, 0110

A, 0110

Prefetch Requests: A, A+2, A+3, ...

3

4
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for the spatial region’s trigger address by sending the current value of the write pointer (step

2). The LLC performs a tag lookup for the trigger instruction block address and if the block

is found in the LLC, its pointer is set to the write pointer value sent by the history generator

core. After sending the index update request, the history generator core increments the write

pointer.

Once the CBB becomes full, its content needs to be inserted into the virtualized history buffer.

To accomplish this, the SHIFT logic next to the history generator core computes the write

address by adding the value of the write pointer to HBBase (step 3), and then flushes the CBB

into the LLC to the computed write address (step 4).

Replaying. While the history generator core is continuously writing its instruction access

history into the LLC-resident history buffer, the rest of the cores executing the workload read

the history buffer to anticipate their instruction demands. Figure 3.4 illustrates how each core

replays the shared instruction stream.

SHIFT starts replaying a new stream when there is a miss in the instruction cache. For every
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demand request for an instruction block, the LLC sends the instruction block and the index

pointer stored next to the tag of the instruction block to the requesting core (step 1). The

SHIFT logic next to the core constructs the physical address for the history buffer by adding

the index pointer value to HBBase and sends a request for the corresponding history buffer

block (step 2). Finally, the LLC sends the history buffer block to the stream address buffer of

the core (step 3).

Upon arrival of a history buffer block, the stream address buffer allocates a new stream and

places the spatial region records in the history buffer block into the new stream. The stream

address buffer constructs instruction block addresses and issues prefetch requests for them

(step 4) as described in Section 3.1. If a retired instruction matches with an address in the

stream address buffer, the stream is advanced by issuing a history read request to the LLC

following the index pointer maintained as part of the stream in the stream address buffer

(i.e., by incrementing the index pointer by the number of history buffer entries in a block and

constructing the physical address as in step 2) .

Hardware cost. Each spatial region record, which spans eight consecutive instruction blocks,

maintains the trigger instruction block address (34 bits) and 7 bits in the bit vector (assuming

a 40- bit physical address space and 64-byte cache blocks). A 64-byte cache block can accom-

modate 12 such spatial region records. A SHIFT design with 32K history buffer entries (i.e.,

spatial region records) necessitates 2,731 cache lines for an aggregate LLC footprint of 171KB.

With history entries stored inside the existing cache lines and given the trivial per-core prefetch

control logic, the only source of meaningful area overhead in SHIFT is due to the index table

appended to the LLC tag array. The index table augments each LLC tag with a 15-bit pointer

into the 32K-entry virtualized history buffer. In an 8MB LLC, these extra bits in the tag array

constitute the 240KB storage overhead (accounting for the unused pointers for associated

with regular data blocks in the LLC).
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3.3 SHIFT Design for Workload Consolidation

Multiple server workloads running concurrently on a manycore CMP also benefit from SHIFT,

as SHIFT relies on virtualization allowing for a flexible history buffer storage mechanism.

SHIFT requires two minor adjustments in the context of workload consolidation. First, a

history buffer per workload should be instantiated in the LLC. SHIFT’s 171KB (2% of an 8MB

LLC) history buffer size is dwarfed by the LLC capacities of contemporary server processors

and the performance degradation due to the LLC capacity reserved for SHIFT is negligible. So,

we instantiate one history buffer per workload. Second, the operating system or the hypervisor

needs to assign one history generator core per workload and set the history buffer base address

(HBBase) to the HBBase of the corresponding history buffer for all cores in the system. After

these two adjustments, the record and replay of instruction streams work as described in

Section 3.2.

Even with extreme heterogeneity (i.e., a unique workload per core), SHIFT provides a storage

advantage over PIF as the history buffers are embedded in the LLC data array and the size of

the index table embedded in the LLC tag array does not change. Because the size of the index

pointers only depends on the size of the corresponding history buffer, it does not change with

the number of active per-workload history buffers.

3.4 Methodology

We evaluate SHIFT and compare it to the state-of-the-art instruction streaming mechanism

with per-core private instruction history, PIF [27], using trace-based and cycle-accurate simu-

lations of a 16-core CMP, running server workloads. For our evaluation, we use Flexus [88], a

Virtutech Simics-based, full-system multiprocessor simulator, which models the SPARC v9

instruction set architecture. We simulate CMPs running the Solaris operating system and

executing the server workload suite listed in Table 2.1.

We use trace-based experiments for our opportunity study and initial predictor results by using
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Processing UltraSPARC III ISA, sixteen 2GHz cores
Nodes Intel Xeon (25mm2):

4-wide dispatch/retirement 128-entry ROB, 32-entry LSQ
ARM Cortex-A15 (4.5mm2):
3-wide dispatch/retirement, 60-entry ROB, 16-entry LSQ
ARM Cortex-A8 (1.3mm2):
2-wide dispatch/retirement

I-Fetch 32KB, 2-way, 64B blocks, 2-cycle load-to-use L1-I cache
Unit Hyrid branch predictor: (16K-entry gShare, Bimodal, Meta selector)
L1 I&D Caches 32KB, 2-way, 64B blocks

2-cycle load-to-use latency, 32 MSHRs
L2 NUCA Unified, 64B blocks, 512KB per core, unified, 16-way, 64 MSHRs
Cache NUCA: 1 bank per tile, 5-cycle hit latency

UCA: 1 bank per 2 cores, 6-cycle hit latency
Interconnect Mesh: 4x4 2D, 3 cycles per hop

Crossbar: 5 cycles
Main memory 45ns access latency

Table 3.1: Parameters of the server architecture evaluated.

traces with 32 billion instructions (two billion per core) in steady state. For the DSS workloads,

we collect traces for the entire query execution. Our traces include both the application and

the operating system instructions.

For performance evaluation, we use the SimFlex multiprocessor sampling methodology [88],

which extends the SMARTS sampling framework [89]. Our samples are collected over 10-30

seconds of workload execution (for the DSS workloads, they are collected over the entire execu-

tion). For each measurement point, we start the cycle-accurate simulation from checkpoints

with warmed architectural state and run 100K cycles of cycle-accurate simulation to warm

up the queues and the interconnect state, then collect measurements from the subsequent

50K cycles. We use the ratio of the number of application instructions to the total number of

cycles (including the cycles spent executing operating system code) to measure performance;

this metric has been shown to accurately reflect overall system throughput [88]. Performance

measurements are computed with an average error of less than 5% at the 95% confidence

level.

We model a CMP with cores modeled after an ARM Cortex-A15 [84] interconnected with a
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mesh network. We also evaluate a CMP with a crossbar interconnect. For the performance

density study, we also consider a fat-OoO core (representative of contemporary Xeon-class

cores) and a lean in-order core (similar to an ARM Cortex-A8 [9]), which all operate at 2GHz to

simplify the comparison. The design and architectural parameter assumptions are listed in

Table 3.1. Cache parameters, including the SRAMs for PIF’s history buffer and index table, are

estimated using CACTI [55].

State-of-the-art prefetcher configuration. We compare SHIFT’s effectiveness and history

storage requirements with the state-of-the-art instruction streaming mechanism, PIF [27].

Like other instruction and data streaming mechanisms [28, 87], PIF employs a per-core history

buffer and index table. PIF records and replays spatial region records with eight instruction

blocks. Each spatial region record maintains the trigger instruction block address (34 bits) and

7 bits in the bit vector. Hence, each record in the history buffer contains 41 bits. PIF requires

32K spatial region records in the history buffer targeting 90% instruction miss coverage [27],

also validated with our experiments. As a result, the history buffer is 164KB for each core in

total.

Each entry in PIF’s index table contains an instruction block address (34 bits) and a pointer to

the history buffer (15 bits) adding up to 49 bits per entry. According to our sensitivity analysis,

the index table requires 8K entries for the target 90% instruction miss coverage. The actual

storage required for the 8K-entry index table is 49KB per core.

We also evaluate a PIF design with a total storage cost equal to that of SHIFT. Since SHIFT

stores the history buffer entries inside existing LLC cache blocks, its only source of storage

overhead is the 240KB index table embedded in the LLC tag array. An equal-cost PIF design

affords 2K spatial region records in the history buffer and 512 entries in the index table per core.

We refer to this PIF design as PIF-2K and the original PIF design as PIF-32K to differentiate

between the two design points in the rest of the paper.
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Figure 3.5: Comparison of temporal stream lengths in PIF and SHIFT histories and their
contribution to correct predictions.

3.5 Evaluation

3.5.1 Temporal Stream Lengths

The distinguishing feature of instruction streaming mechanisms is their ability to replay long

repetitive streams that offer high miss coverage and timely prefetches. Although the first few

blocks following the head of a stream might be delayed as the history buffer entries are fetched

from the LLC, long temporal streams amortize this delay by providing high lookahead and

prefetching the instruction blocks along the way far in advance of demand. As a result, the

longer the repetitive temporal streams are, the higher miss coverage they provide.

We analyze the temporal stream lengths in SHIFT and PIF [27] and their contribution to correct

predictions in Figure 3.5. In Figure 3.5, a stream length of 5 corresponds to 32 spatial region

entries, each encoding 8 instruction blocks, corresponding to 256 contiguous instruction

blocks in total (if all the blocks in regions are accessed). Although the stream lengths are highly

variable, the majority of the correct predictions are provided by medium and long streams

both in SHIFT and PIF. Compared to PIF, streams contributing to useful predictions are slightly

shorter in SHIFT. This can be attributed to the subtle divergences in the control flow due to

data dependent branches in the history generator core’s instruction stream and indicates
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Figure 3.6: Percentage of instruction misses predicted.

slightly lower miss coverage for SHIFT as shorter repetitive streams result in more frequent

stream lookups, thus more stream heads that cannot be predicted.

3.5.2 Instruction Miss Coverage

To show SHIFT’s effectiveness, we first compare the fraction of instruction cache misses

predicted by SHIFT to PIF [27]. For the purposes of this study, we only track the predictions

that would be made through replaying recurring instruction streams in stream address buffers

and do not prefetch or perturb the instruction cache state.

Figure 3.6 shows the fraction of instruction cache misses correctly predicted for all of the cores

in the system averaged across all workloads, as the number of spatial region records in the

history buffer increases. The history size shown is the aggregate for PIF in the 16-core system

evaluated, whereas for SHIFT, it is the overall size of the single shared history buffer.

Because the history buffer can maintain more recurring temporal instruction streams as its

size increases, the prediction capabilities of both designs increase monotonically with the

allocated history buffer size. Because the aggregate history buffer capacity is distributed across

cores, PIF’s coverage always lags behind SHIFT. For relatively small aggregate history buffer

sizes, PIF’s small per-core history buffer can only maintain a small fraction of the instruction
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Figure 3.7: Percentage of instruction misses covered and overpredicted.

working set size. As the history buffer size increases, PIF’s per-core history buffer captures

a larger fraction of the instruction working set. For all aggregate history buffer sizes, SHIFT

can maintain a higher fraction of the instruction working set compared to PIF by employing

a single history buffer, rather than distributing it across cores. As all the cores can replay

SHIFT’s shared instruction stream history, SHIFT’s miss coverage is always greater than PIF for

equal aggregate storage capacities. Because the history sizes beyond 32K return diminishing

performance benefits, for the actual SHIFT design, we pick a history buffer size of 32K records.

We compare SHIFT’s actual miss coverage with PIF for each workload, this time accounting for

the mispredictions as well, as mispredictions might evict useful but not-yet-referenced blocks

in the cache. For this comparison, we use the two PIF design points described in Section 3.4.

Figure 3.7 shows the instruction cache misses eliminated (covered) and the mispredicted

instruction blocks (overpredicted) normalized to the instruction cache misses in the baseline

design without any prefetching. On average, SHIFT eliminates 85% of the instruction cache

misses with 16% overprediction, while PIF-32K eliminates 92% of the instruction cache misses

with 13% overprediction, corroborating prior results [27]. However, PIF-2K, which has the

same aggregate storage overhead as SHIFT, can eliminate only 53% of instruction cache misses

on average, with a 20% overprediction ratio. The discrepancy in miss coverage between PIF-2K

and SHIFT is caused by the limited instruction stream history stored by each core’s smaller
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Figure 3.8: Performance comparison with a mesh on-chip interconnect.

history buffer in PIF, which falls short of capturing the instruction working set.

In conclusion, by sharing the instruction history generated by a single core, all cores running a

common server workload attain similar benefits to per-core instruction streaming, but with a

much lower storage overhead.

3.5.3 Performance Comparison

We compare SHIFT’s performance against PIF-32K, PIF-2K and the next-line prefetcher nor-

malized to the performance of the baseline system with OoO cores interconnected with a

mesh network, where no instruction prefetching mechanism is employed in Figure 3.8.

The difference in PIF-32K and SHIFT’s speedups stems from two main differences. First,

SHIFT has slightly lower miss coverage compared to PIF-32K, as shown in Figure 3.7. Second,

SHIFT’s history buffer is embedded in the LLC resulting in accesses to the LLC for reading the

history buffer, which delays the replay of streams until the history buffer block arrives at the

core. Moreover, history buffer reads and writes to LLC incur extra LLC traffic as compared

to PIF-32K. To compare the performance benefits resulting solely from SHIFT’s prediction

capabilities, we also plot the performance results achieved by SHIFT assuming a dedicated

history buffer with zero access latency (ZeroLat-SHIFT).
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Figure 3.9: Performance comparison with a crossbar on-chip interconnect.

The relative performance improvements of zero-latency SHIFT and PIF-32K match the miss

coverages shown in Figure 3.7. On average, zero-latency SHIFT provides 20% performance

improvement, while PIF-32K improves performance by 21%. A realistic SHIFT design results in

1.5% speedup loss compared to zero-latency SHIFT, due to the latency of accessing the history

buffer in the LLC and the traffic created by transferring history buffer data over the network.

Overall, despite its low history storage cost, SHIFT retains over 90% of the performance benefit

(98% of the overall absolute performance) that PIF-32K provides.

In comparison to PIF-2K, SHIFT achieves higher speedups for all the workloads as a result of

its higher miss coverage as Figure 3.7 shows. Due to its greater effective history buffer capacity,

SHIFT outperforms PIF-2K for all the workloads (by 9% on average). For the workloads with

bigger instruction working sets (e.g., OLTP on Oracle), SHIFT outperforms PIF-2K by up to

26%.

Finally, we compare SHIFT’s performance to the next-line prefetcher. Although the next-line

prefetcher does not incur any storage overheads, it only provides 9% performance improve-

ment due to its low miss coverage (35%) stemming from its incapability of predicting misses

to discontinuous instruction blocks.

We also evaluate SHIFT and the other prefetchers in the context of a CMP using a crossbar
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on-chip interconnect, which reduces the LLC access latency compared to a mesh interconnect

(i.e., in a 4x4 2D mesh with 3-cycle latency per hop the average latency is 10 cycles, whereas

crossbar provides a 5-cycle access latency to the LLC). For applications with higher L1-I miss

rates, we expect the instruction-fetch stalls to be reduced in the baseline system employing

a crossbar interconnect instead of a mesh interconnect, thus less performance benefit from

instruction streaming in the case of the crossbar interconnect. We also expect the performance

penalty to decrease for SHIFT as compared to ZeroLat-SHIFT as the metadata accesses become

faster with crossbar as compared to mesh.

Figure 3.9 shows the speedups provided by various prefetching techniques. When compared to

the CMP design with mesh on-chip network as shown in Figure 3.8, the speedups provided by

instruction prefetching are relatively lower, but still significant in the case of a crossbar on-chip

interconnect. For example, while SHIFT provides 42% and 30% performance improvement for

OLTP on DB2 and Oracle respectively in the case of the mesh interconnect, the performance

improvement is 34% and 20% respectively in the case of the crossbar interconnect. Overall,

SHIFT delivers 19% performance improvement on average for mesh and 15% for crossbar.

3.5.4 LLC Overheads

SHIFT introduces two types of LLC overhead. First, the history buffer occupies a portion of

the LLC, effectively reducing its capacity. Our results indicate that the performance impact

of reduced capacity is negligible. With SHIFT occupying just 171KB of the LLC capacity, the

measured performance loss with an 8MB LLC is under 1%.

The second source of overhead is due to the extra LLC traffic, generated by (1) read and write

requests to the history buffer; (2) useless LLC reads as a result of mispredicted instruction

blocks, which are discarded before used by the core; and (3) index updates issued by the history

generator core. Figure 3.10 illustrates the extra LLC traffic generated by SHIFT normalized

to the LLC traffic (due to both instruction and data requests) in the baseline system without

any prefetching. History buffer reads and writes increase the LLC traffic by 6%, while discards
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Figure 3.10: LLC traffic overhead.

account for the 7% of the baseline LLC traffic on average. The index updates (not shown in the

graph) are only 2.5% of the baseline LLC traffic; however, they only increase the traffic in the

LLC tag array.

In general, we note that LLC bandwidth is ample in our system, as server workloads have low

ILP and MLP, plus the tiled design provides for a one-to-one ratio of cores to banks, affording

very high aggregate LLC bandwidth. With average LLC bandwidth utilization well under 10%,

the additional LLC traffic even for the worst case workload (web frontend) is easily absorbed

and has no bearing on performance in our studies.

3.5.5 Workload Consolidation

Figure 3.11 shows the performance improvement attained by SHIFT in comparison to the

next-line prefetcher, PIF-2K and PIF-32K, in the presence of multiple workloads running on

a server CMP. In this experiment, we use the 16-core server processor with a mesh on-chip

interconnect described in Section 3.4. We consolidate two traditional (OLTP on Oracle and

web frontend) and two emerging (media streaming and web search) server workloads. Each

workload runs on four cores and has its own software stack (i.e., separate OS images). For

SHIFT, each workload has a single shared history buffer with 32K records embedded in the

LLC.
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Figure 3.11: Speedup for workload consolidation.

We see that the speedup trends for the various design options follow the same trend as the

standalone workloads, as shown in Section 3.5.3. SHIFT delivers 95% of PIF-32K’s absolute

performance and outperforms PIF-2K by 12% and the next-line prefetcher by 11% on average.

Zero-latency SHIFT delivers 25% performance improvement over the baseline, while SHIFT

achieves 22% speedup on average. The 3% difference mainly results from the extra LLC traffic

generated by virtualized SHIFT. The LLC traffic due to log reads remains the same in the

case of workload consolidation as all the cores read from their corresponding shared history

embedded in the LLC. However, the index updates and log writes increase with the number

of workloads, as there is one history generator core per workload. While log writes increase

the fetch traffic by 1.1%, index updates, which only increase the traffic in the LLC tag array,

correspond to 15% of the baseline fetch accesses.

Overall, we conclude that in the presence of multiple workloads, SHIFT’s benefits are unper-

turbed and remain comparable to the single-workload case.

3.5.6 Performance Density Implications

To quantify the performance benefits of the different prefetchers as a function of their area

cost, we compare SHIFT’s performance density (PD) with PIF-32K and PIF-2K. We consider
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the three core designs described in Section 3.4 namely, Xeon, Cortex-A15, and Cortex-A8.

SHIFT improves performance-density over PIF-32K as a result of eliminating the per-core

instruction history, while retaining similar performance benefits. Compared to PIF-32K, SHIFT

improves the overall performance by 16 to 20%, depending on the core type, at a negligible

area cost per core (0.96mm2 in total, as opposed to PIF-32K’s 14.4mm2 cost in aggregate in

a 16-core CMP). While PIF-32K offers higher absolute performance, the relative benefit is

diminished due to the high area cost. As a result, SHIFT improves PD over PIF-32K for all three

core microarchitectures. As expected, the biggest PD improvement is registered for lean cores

(16% and 59% for Cortex-A15 and Cortex-A8 respectively); however, even the fat-core design

(Xeon) enjoys a 2% improvement in PD due to SHIFT’s low area cost.

In comparison to PIF-2K, SHIFT achieves higher miss coverage due to the better capacity

management of the aggregate history buffer storage. Although PIF-2K occupies the same

aggregate storage area as SHIFT, SHIFT almost doubles the performance improvement for

the three core types, as a result of its higher miss coverage. Consequently, SHIFT improves

performance density over PIF-2K by around 9% on average for all the core types.

SHIFT improves the absolute performance-density for both lean-core designs and the fat-core

design over a no-prefetch system, while providing 98% of performance of the state-of-the-

art instruction streaming mechanism, demonstrating the feasibility of area-efficient high

performance instruction streaming for servers.

3.5.7 Power Implications

SHIFT introduces power overhead to the baseline system due to two factors: (1) history buffer

reads and writes to/from the LLC and (2) index reads and writes to/from the LLC. To quantify

the overall power overhead induced by SHIFT, we use CACTI [55] to estimate the LLC power

(both for index pointers in the tag array and history buffers in the data array) and custom NoC

power models to estimate the link, router switch fabric and buffer power in the NoC [52]. We

find the additional power overhead due to history buffer and index activities in the LLC to be
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less than 150mW in total for a 16-core CMP. This corresponds to less than 2% power increase

per core. We thus conclude that the power consumption due to SHIFT is negligible.

3.6 Discussions

3.6.1 Choice of History Generator Core

We show SHIFT’s miss coverage and performance improvement by employing one history

generator core picked at random in our studies. In our experience, in a sixteen-core system,

there is no sensitivity to the choice of the history generator core.

Although the cores executing a homogeneous server workload exhibit common temporal

instruction streams, there are also spontaneous events that might take place both in the core

generating the shared instruction history and the cores reading from the shared instruction

history, such as the OS scheduler, TLB miss handlers, garbage collector, and hardware inter-

rupts. In our experience, such events are rare and only briefly hurt the instruction cache miss

coverage due to the pollution and fragmentation of temporal streams. In case of a long-lasting

deviation in the program control flow of the history generator core, a sampling mechanism that

monitors the instruction miss coverage and changes the history generator core accordingly

can overcome the disturbance in the shared instruction history.

3.6.2 Virtualized PIF

Although virtualization could be readily used with streaming mechanisms using per-core

history, such designs would induce high capacity and bandwidth pressure in the LLC. For

example, virtualizing PIF’s per-core history buffers would require 2.7MB of LLC capacity and

this requirement grows linearly with the number of cores. Furthermore, as each core records

its own history, the bandwidth and power consumption in the LLC also increase linearly with

the number of cores. By sharing the instruction stream history, SHIFT not only saves area

but also minimizes the pressure on the LLC compared to virtualized per-core instruction
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streaming mechanisms.

3.7 Concluding Remarks

Instruction-fetch stalls are a well-known cause of performance loss in server processors due

to the large instruction working sets of server workloads. Sophisticated instruction-prefetch

mechanisms developed by researchers specifically for this workload class have been shown to

be highly effective at mitigating the instruction-stall bottleneck by recording, and subsequently

replaying, entire instruction sequences. However, for high miss coverage, existing instruction

streaming mechanisms require prohibitive storage for the instruction history due to the large

instruction working sets and complex control flow. The storage overhead is further exacerbated

by the increasing core counts on chip.

This work confronted the problem of high storage overhead in instruction streaming. We

observed that the instruction history among all of the cores executing a server workload

exhibits significant commonality and showed that it is amenable to sharing. Building on this

insight, we introduced SHIFT – a shared history instruction streaming mechanism. SHIFT

records the instruction access history of a single core and shares it among all of the cores

running the same workload. In a 16-core CMP, SHIFT delivers over 90% of the performance

benefit of PIF, a state-of-the-art instruction streaming mechanism, while largely eliminating

the prohibitive per-core storage overhead associated with PIF.

54



4 Confluence: Unifying Instruction-

Supply Metadata

In this chapter, we identify and eliminate the redundancy by focusing on two performance-

critical and storage-intensive structures: the instruction prefetcher and the branch target

buffer (BTB). We observe that state-of-the-art instruction cache prefetchers achieve extremely

high miss coverage through temporal instruction streaming [27, 28, 47]. As explained in

Chapter 3, the key idea of temporal streaming is to record the history of L1-I accesses at the

block granularity and subsequently replay the history in order to prefetch the blocks into

the instruction cache. The instruction streaming mechanisms eliminate the vast majority of

L1-I misses, because they maintain the entire control-flow history as a continuous stream of

instruction block addresses. By introducing SHIFT, we provide a practical and highly effective

instruction streaming mechanism.

On the BTB side, the massive instruction working sets and complex control flow of server

applications require tracking many thousands of branch targets, necessitating over 200KBs of

BTB storage capacity for perfect coverage as shown in Section 2.2.2. Since BTBs of that size

are impractical due to their dedicated storage overheads and latency penalties, researchers

proposed virtualizing the BTB state into the LLC and prefetching it into a small conventional

BTB, thus decoupling the large BTB footprint from the core [11, 12, 23].

We observe that in both cases – instruction prefetching and BTB prefetching – the prefetcher
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metadata contains a record of the application’s control flow history. While the instruction

prefetcher maintains its history at the instruction block granularity, the BTB prefetcher main-

tains its history at instruction granularity. Due to the different granularities at which history

is maintained, existing schemes require dedicated histories and prefetchers for both the

instruction cache and the BTB.

The key contribution of this chapter is in identifying the redundancy in the control flow

metadata for both types of prefetchers and eliminating it by unifying the two histories. To

that end, we introduce Confluence – a frontend design with a single prefetcher (with unified

metadata) feeding both the L1-I and the BTB. An important challenge Confluence addresses is

in managing the disparity in the granularity of control flow required by each of the prefetchers.

Whereas an I-cache prefetcher needs to track block-grain addresses, a BTB must reflect fine-

grain information of the individual branches.

Confluence overcomes this problem by exploiting a critical insight that a BTB only tracks

branch targets, which do not depend on whether or not the branch is taken or even executed.

Based on this insight, Confluence maintains the unified control flow history at the block

granularity and for each instruction block brought into the L1-I, it eagerly inserts the targets of

all PC-relative branches contained in the block into the BTB. Because the control flow exhibits

spatial locality, the eager insertion policy provides high intra-block coverage without requiring

fine-grain knowledge of the control flow. Finally, to overcome the exorbitant bandwidth re-

quired to insert 3-4 branches found in a typical cache block into the BTB, Confluence employs

a block-based BTB organization, which is also beneficial for reducing the tag overhead.

The contributions of this work are as follows:

• We show that a single block-grain temporal stream is sufficient for prefetching into

both L1-I and the BTB, as the instruction blocks encapsulate the instruction-grain

information necessary for the BTB. Based on this observation, we introduce Confluence

– a unified instruction-supply architecture that maintains one set of metadata used by a

single prefetcher for feeding both the L1-I and the BTB.
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• We propose AirBTB, a lightweight block-based BTB design for Confluence that takes ad-

vantage of a block-grain temporal stream and spatial locality within blocks to maintain

only a small set of BTB targets.

• We show that Confluence equipped with AirBTB can eliminate 93% of the misses of a

conventional BTB design with the same storage budget (around 10KB), and 85% of all

L1-I misses, providing 85% of the speedup possible with a perfect L1-I and BTB.

• Compared to the state-of-the-art BTB prefetcher, AirBTB eliminates 30% more misses

within the same BTB and prefetcher history storage budget, while providing 8% higher

performance.

The rest of this chapter is organized as follows. In Section 4.1, we explain the performance

limitations and associated area overheads of existing instruction-supply mechanisms and

sources of redundancy in instruction-supply metadata. We describe the Confluence design

and how it synchronizes BTB content with L1-I using AirBTB in Section 4.2. Section 4.3 details

our methodology. We evaluate Confluence and compare it against prior work in Section 4.4.

Finally, we conclude in Section 4.5.

4.1 Performance Limitations and Area Overheads of Instruction-

Supply Mechanisms

In this section, we briefly describe the state-of-the-art mechanisms to alleviate frequent misses

in the BTB and L1-I. We quantify their performance benefits and associated storage overheads,

and demonstrate that there is a need for an effective and low-cost unified mechanism for

storing and managing instruction-supply metadata.

4.1.1 Conventional Instruction-Supply Path

Extracting the highest performance from a core necessitates supplying the core with a useful

stream of instructions to execute continuously. To do so, modern processors employ branch
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predictors accommodating conditional branch history and branch target buffers to predict

the correct-path instructions to execute.

High-accuracy branch prediction necessitates capturing the prediction metadata of the entire

instruction working set of a given application in the predictor tables. Unfortunately, server

applications with large instruction working sets exacerbate the storage capacity requirements

of these predictors with low access-latency requirements as shown in Section 2.2.2

Recent work has examined hierarchical BTBs that combine a small-capacity low-latency first

level with a large-capacity but slower second level. The state-of-the-art proposals combine a

two-level BTB with a dedicated transfer engine, which we refer to as a BTB prefetcher, that

move multiple correlated entries from the second level into the first upon a miss in the first-

level BTB. One approach, called PhantomBTB, uses temporal correlation, packing several

entries that missed consecutively in the first level into blocks that are stored in the LLC using

predictor virtualization [12]. Another approach, called Bulk Preload and implemented in the

IBM zEC12, moves a set of spatially-correlated regions (4KB) between a dedicated 24K-entry

second-level BTB structure and the first level [11].

For both two-level designs, second-level storage requirements are more than 200KB per core.

Moreover, accesses to the second level are triggered by misses in the first level, exposing the

core to the latency of the second-level structure. For PhantomBTB, this latency is a function of

NOC and LLC access delays, likely running into tens of cycles for a manycore CMP. In the case

of bulk preload, this latency is in excess of 15 cycles [11].

While predicting the correct-path instructions to execute is essential for high performance,

serving those instructions from the L1-I cache is also performance-critical in order not to

expose the core to the long access latencies of lower levels of the cache hierarchy. Doing so

necessitates predicting the instructions that are likely to be fetched and proactively fetching

the corresponding instruction blocks from the lower levels of the cache hierarchy into L1-I

(or prefetch buffers). To that end, fetch-directed prefetching (FDP) [65] decouples the branch

predictor from the L1-I and lets the branch predictor run ahead to explore the future control
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flow. The instruction blocks that are not present in the L1-I along the predicted path are

prefetched into the L1-I.

Although huge BTBs are effective at accommodating the target addresses for all taken branches

in the instruction working set, when leveraged for FDP, they fall short of realizing the per-

formance potential of a frontend with a perfect L1-I (i.e., L1-I that always hits) [28]. FDP’s

limitations are two-fold. First, because the branch predictor generates just one or two pre-

dictions per cycle, its lookahead is limited and is often insufficient to hide the long-latency

accesses to the lower levels of the cache hierarchy, which includes the round-trip time to

the LLC and the LLC access itself. Second, because the branch predictor speculatively runs

ahead of the fetch unit to provide sufficient prefetch lookahead, its miss rate geometrically

compounds, increasingly predicting the wrong-path instructions. As a result, even with a

perfect BTB, FDP significantly suffers from fetch stalls.

4.1.2 Covering L1-I Misses with Stream-Based Prefetching

To overcome FDP’s lookahead and accuracy limitations, the state-of-the-art instruction

prefetchers [27, 28, 44, 47] exploit temporal correlation between instruction cache references.

The control flow in server applications tends to be highly recurring at the request level due

to serving the same types of requests perpetually. Because of the recurring control flow, the

core frontend generates repeating sequences of instruction addresses, so-called temporal

instruction streams. For example, in the address sequence A,B,C,D,A,B,C,E, the subsequence

A,B,C is a temporal stream. The state-of-the-art instruction prefetchers exploit temporal

correlation by recording and replaying temporal instruction streams consisting of instruction

block addresses. This way, every prediction made by the prefetcher triggers the fetch of a

whole instruction block into L1-I. Because of the high recurrence in the control flow, temporal

instruction streams span several hundreds of instruction blocks [27]. As a result, stream-

based instruction prefetchers can eliminate over 90% of the L1-I misses in server applications,

providing near-perfect L1-I hit rates [27, 44].
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However, the aggregate storage requirements of stream-based prefetchers scale with the

application working set size and core count, commonly exceeding 200KB per core. To mitigate

the storage overhead, the most recent work [44], SHIFT, introduced in Chapter 3, proposes

embedding the prefetcher metadata into the LLC and sharing it across the cores running the

same server application, thus eliminating inter-core metadata redundancy.

4.1.3 Putting It All Together

We quantify the performance benefits and relative area overheads of all the instruction-supply

mechanisms described above for a 16-core CMP running server workloads (details are listed

in Section 2.2) in Figure 4.1. Both the performance and area numbers are normalized to that

of a core with a 1K-entry BTB without any prefetching. For all the BTB design points (except

for the baseline and SHIFT), we leverage FDP for instruction prefetching.

We evaluate an aggressive two-level BTB design composed of a 1K-entry BTB in the first level

(1-cycle access latency) and a 16K-entry BTB in the second level (4-cycle access latency). Such

a BTB design necessitates around 150KB storage per core,1 corresponding to 12% of the core

area footprint. For a 16-core CMP, this per-core overhead totals more than 2MB of storage.

We also evaluate PhantomBTB, a state-of-the-art hierarchical BTB design with prefetching.

PhantomBTB is comprised of a 1K-entry private BTB backed by a second-level BTB virtualized

in the LLC. The second level features 4K temporal groups, each spanning a 64B cache line, for

a total LLC footprint of 256 KB. While not proposed in the original design, we take inspiration

from SHIFT and share the second BTB level across cores executing the same workload in order

to reduce the storage requirements. Without sharing, the storage overhead for PhantomBTB

would increase by 16X (i.e., to 4MB) for a 16-core CMP. We observe that sharing the virtual-

ized second-level BTB does not cause any reduction in the fraction of misses eliminated by

PhantomBTB.

As Figure 4.1 shows, the 1K-entry BTB with FDP improves performance by just 5% over the

1 Our core is modeled after an ARM Cortex A15.
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Figure 4.1: Relative performance and area overhead of various instruction-supply mecha-
nisms.

baseline as it incurs frequent BTB misses, thus failing to identify control flow redirects upon

taken branches. PhantomBTB+FDP provides a 9% performance improvement over the base-

line despite a large second-level BTB. The underwhelming performance of this configuration

is attributed to its low BTB miss coverage, which stems from the way PhantomBTB correlates

branches (detailed analysis in Section 4.4.5) and delays in accessing the second level of BTB

storage in the LLC.

Compared to PhantomBTB+FDP, 2LevelBTB+FDP delivers better performance as the BTB

metadata accesses from the second-level BTB are faster compared to the LLC access latency

incurred by PhantomBTB. Among the evaluated designs, the highest performance is reached

by 2LevelBTB+SHIFT, which combines a dedicated L1-I prefetcher (SHIFT) with a two-level

BTB. This configuration improves performance by 22% over the baseline, demonstrating the

importance of a dedicated L1-I prefetcher and underscoring the limitations of FDP. However,

2LevelBTB+SHIFT increases core area by 1.14X due to the high storage footprint of separate

BTB and L1-I prefetcher metadata.

Finally, we observe that an Ideal configuration comprised of a perfect L1-I and a perfect single-

cycle BTB achieves a 35% performance improvement over the baseline. 2LevelBTB+SHIFT

delivers only 60% of the Ideal performance improvement. Since both the L1-I and the BTB in

the 2LevelBTB+SHIFT design provide excellent coverage, the performance shortfall relative to

61



Chapter 4. Confluence: Unifying Instruction-Supply Metadata

Figure 4.2: High-level organization of cores around (a) disparate BTB and L1-I prefetcher
metadata (b) Confluence with unified and shared prefetcher metadata.

Ideal is caused by the delays in accessing the second level of the BTB upon a miss in the first

level. Because of the high miss rate of the first level BTB, these delays are frequent and result

in multi-cycle fetch bubbles.

To summarize, existing frontend designs are far from achieving the desired combination

of high performance and low storage cost. Performance is limited by the delays caused in

accessing the second BTB level. The high storage overheads arise from maintaining separate

BTB and instruction prefetcher metadata. Because both sets of metadata capture the control

flow history, they cause redundancy within a core. Moreover, because the server cores run

the same application, the metadata across cores overlap significantly, causing inter-core

redundancy. Eliminating the intra- and inter-core redundancy necessitates the metadata to be

unified within a core and shared across cores to maximize the performance benefits harvested

from a given area investment.

4.2 Confluence Design

Confluence unifies the prefetching metadata to feed BTB and L1-I synchronously as shown in

Figure 4.2. Confluence relies on an existing instruction streaming mechanism, which provides

high miss coverage for L1-I. However, exploiting an instruction streaming mechanism that
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Figure 4.3: Core frontend organization and instruction flow.

tracks control flow at the block granularity for filling the BTB requires rethinking the BTB

organization. To that end, we introduce AirBTB, a lightweight BTB design whose content

mirrors that of the L1-I, thus enabling a single control flow history to be used for streaming

into both structures.

Although instruction streaming mechanisms, which maintain history at block granularity,

effectively capture the control flow history at coarse granularity, they lack the fine-grain branch

information required to predict future BTB misses. To overcome the granularity mismatch

between cache blocks and individual branches, Confluence exploits spatial locality within

instruction blocks (i.e., the likelihood of multiple branches instructions being executed and

taken in a block) by eagerly inserting all of the BTB entries of a block into AirBTB upon the

arrival of a block at the L1-I.

As shown in Figure 4.3, Confluence synchronizes the insertions and the evictions into AirBTB

with the L1-I, thus guaranteeing that the set of blocks present in both structures is identical.

As the blocks are proactively fetched from lower levels of the cache hierarchy by the prefetch

engine (step 1), Confluence generates the BTB metadata by predecoding the branch type

and target displacement field encoded in the branch instructions in a block and inserts the

metadata into AirBTB (step 2) and the instruction block itself into the L1-I (step 3).
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Figure 4.4: AirBTB organization.

In the rest of this section, we first describe the AirBTB organization, the insertion and replace-

ment operations in AirBTB and how AirBTB operates within the branch prediction unit. Then,

we briefly describe how SHIFT orchestrates both the AirBTB and instruction content. Finally,

we explain why block-grain temporal streams are a better predictor of BTB misses compared

to the history of individual branches.

4.2.1 AirBTB Organization

AirBTB is organized as a set-associative cache. Because AirBTB’s content is in sync with the

L1-I, as shown in Figure 4.3, AirBTB maintains a bundle for each block in L1-I. Each bundle

comprises a fixed number of branch entries that belong to the branch instructions in a block.

In a conventional BTB design, each entry for a branch instruction (or basic block entry)

is individually tagged, and hence necessitates maintaining a tag for each individual entry.

Because the branches in a bundle in AirBTB belong to the same instruction block, the branch

addresses share the same high-order bits, which constitute the address of the block. To exploit

the commonality of high-order bits of the branch instruction addresses in a bundle, AirBTB

maintains a single tag for a bundle, which is the instruction block address that contains

the branches. We refer to this organization as block-based organization. The block-based
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organization amortizes the tag cost across the branches in the same block. Moreover, the

block-based organization avoids conflict misses between the branch entries that belong to

two different blocks resident in the L1-I.

Figure 4.4 depicts the AirBTB organization, where each bundle is tagged with the block address

and contains entries of three branches, which fall into the same cache block. The branch

bitmap in each bundle is a bit vector that identifies the branch instructions in an instruction

block. The branch bitmap maintains the knowledge of basic block boundaries within a block,

allowing for providing the instruction fetch unit (L1-I), with multiple instructions to fetch in

a single lookup. Each branch entry in a bundle contains the offset of the branch instruction

within the cache block, the branch type (i.e., conditional, unconditional, indirect, return) and

the branch target address (if the branch is a relative branch, which is mostly the case).

Because each bundle maintains a fixed number of branch entries, L1-I blocks with more

branch instructions can overflow their bundles. Such overflows happen very rarely if bundles

are sized correctly to accommodate all the branches in a cache block in the common case. To

handle overflows, AirBTB is backed with a fully-associative overflow buffer consisting of a fixed

number of entries. Each entry in the overflow buffer is tagged with full branch instruction

address and maintains the branch type and target address. The branch bitmap in a bundle

also keeps track of the the branch entries in a block that overflowed to the overflow buffer.

4.2.2 AirBTB Insertions and Replacements

To provide the synchronization with the L1-I, Confluence inserts the branch entries of a

block into AirBTB upon the insertion of the block into the L1-I. By relying on spatial locality,

Confluence inserts all the branch entries of a block eagerly into AirBTB. This way, Confluence

overprovisions for the worst case where the branch prediction unit might need every branch

entry within a block, even though the control flow might diverge to a different block before all

the entries in the current block are used by the branch prediction unit.

For each block fetched into the L1-I, Confluence necessitates identifying the branch instruc-
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tions in a block, extracting the type and relative displacement field encoded in each branch

instruction. Confluence relies on predecoding to generate the BTB metadata of the branches in

the block before the block is inserted into the L1-I. The predecoder requires a few cycles to per-

form the branch scan within a cache block before the block is inserted into the cache [14, 70].

However, this latency is not on the critical path if the block is fetched into the L1-I earlier than

it is needed with the guidance of the instruction prefetcher.

As shown in Figure 4.4 on the left-hand side, for each instruction block fetched into the L1-I,

Confluence creates a new bundle and inserts the branch entries into the bundle, while setting

the bits of the corresponding branches in the branch bitmap, until the bundle becomes full. If

the block overflows its bundle, the entries that cannot be accommodated by the bundle are

inserted into the overflow buffer, while their corresponding bits are also set in the bitmap.

Upon the insertion of a new bundle due to a newly fetched instruction block, the bundle

evicted from AirBTB belongs to the instruction block evicted from the L1-I. This way, AirBTB

maintains only the entries of the branch instructions resident in the L1-I.

4.2.3 AirBTB Operation

Every lookup in AirBTB, in cooperation with the branch direction predictor, provides a fetch

region, the addresses of the instructions starting and ending a basic block, to be fetched from

the L1-I. In this section, we explain how AirBTB performs predictions in collaboration with the

direction predictor in detail.

Figure 4.4(the right-hand side) lists the predictions made step by step. Let’s say the instruction

stream starts with address P. AirBTB first performs a lookup for block P and, upon a match,

identifies the first subsequent branch instruction that comes after instruction P by scanning

the branch bitmap. In our example, the first branch instruction after P is the instruction at

address P+3. The fetch region, P to P+3, is sent to the instruction fetch unit and the target

address for the branch instruction P+3 is read out. Next, a direction prediction is made for the

conditional branch at address P+3 by the direction predictor and a lookup is performed for
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P+3’s target address Q+2 in AirBTB. Because the conditional branch is predicted taken, the

next fetch region provided by the target address’ bundle, Q+2 to Q+4, is sent to the fetch unit.

Then, because the conditional branch Q+4 is predicted not taken, the next fetch region is Q+5

to Q+7.

If a branch is a return or indirect branch, the target prediction is made by the return address

stack or indirect target cache respectively. If a branch indicated by the branch bitmap is

not found in one of branch entries in the bundle, AirBTB performs a lookup for that branch

instruction in the overflow buffer. The rest of the prediction operation is exactly the same for

branch entries found in the overflow buffer.

If AirBTB cannot find a block or a branch entry indicated by a branch bitmap (because the

entry was evicted from the overflow buffer), it speculatively provides a fetch region consisting

of a predefined number of instructions following the last predicted target address, until it is

redirected to the correct fetch stream by the core.

4.2.4 Prefetcher Microarchitecture

Providing the pipeline with a continuous stream of useful instructions to execute necessitates

the branch predictor to be highly accurate. For BTB, accuracy corresponds to being able to

identify all the branches and provide their targets as the branch prediction unit explores the

future control flow. If the branch prediction unit does not identify instructions as branches

because they are not present in the BTB, it speculatively provides the fetch unit with sequential

fixed-size fetch regions, which become misfetches if there are actually taken branches in those

sequential fetch regions. To avoid such misfetches, AirBTB requires a mechanism to predict

the future control flow, so that it can eagerly insert the branch entries that will be needed soon.

The key enabler of AirBTB with a high hit ratio is an effective and accurate instruction

prefetcher as AirBTB leverages the instruction prefetcher to populate its limited storage with

branch entries that are likely to be referenced soon. Confluence leverages SHIFT, which amor-

tizes its history storage cost across many cores running the same workload as described in
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Chapter 3.

SHIFT consists of two components to maintain the history of instruction streams; the history

buffer and the index table. The history buffer maintains the history of the L1-I access stream

generated by one core at block granularity in a circular buffer and the index table provides the

location of the most recent occurrence of an instruction block address in the circular buffer

for fast lookups. The content of these two components are generated by only one core and

used by all cores running a common server workload in a server CMP. To enable sharing and

eliminate the need for a dedicated history table, the history is maintain in the LLC leveraging

the virtualization framework [13].

A miss in the L1-I initiates a lookup in the index table to find the most recent occurrence of

that block address in the history buffer. Upon a hit in the index table, the prefetch engine

fetches prediction metadata from the history buffer starting from the location that is pointed

by the index table entry. The prefetch engine uses this metadata to predict future L1-I misses,

thus prefetches the instruction blocks whose addresses are in the metadata. As predictions

turn out to be correct (i.e., the predicted instruction blocks are demanded by the core), more

block addresses are read from the metadata and used for further predictions.

4.3 Methodology

4.3.1 Baseline System Configuration

We simulate a sixteen-core CMP running server workloads using Flexus [88], a Virtutech

Simics-based full-system multiprocessor simulator. We use the Solaris operating system and

run the server workloads listed in Table 2.1.

We run trace-based simulations for profiling, predictor accuracy and miss coverage studies by

using traces with 16B instructions (1B instructions per core) in the steady state of the server

workloads. For the DSS queries, we use the traces of the full query executions. Our traces

consist of both application and operating system instructions.
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Processing UltraSPARC III ISA, Cortex A15-like (4.5 mm2 in 40nm technology)
Nodes 3GHz, 3-way OoO, 128-entry ROB, 32-entry LSQ
Branch Prediction Hyrid branch predictor: (16K-entry gShare, Bimodal, Meta selector)
Unit 1K-entry indirect target cache, 64-entry return address stack

1 branch per cycle
L1 I&D Caches 32KB, 4-way, 64B blocks

2-cycle load-to-use latency, 8 MSHRs
L2 NUCA Unified, 64B blocks, 512KB per core, unified, 16-way, 64 MSHRs
Cache NUCA: 1 bank per tile, 5-cycle hit latency

UCA: 1 bank per 2 cores, 6-cycle hit latency
Interconnect Mesh: 4x4 2D, 3 cycles per hop

Crossbar: 5 cycles
Main memory 45ns access latency

Table 4.1: Parameters of the server architecture evaluated.

For performance comparison, we leverage the SimFlex multiprocessor sampling methodology

[88] extending the SMARTS sampling framework [89]. The samples are collected over 10-

30 seconds of workload execution (from the beginning to the completion of each query

for DSS queries). The cycle-accurate timing simulation for each measurement point starts

from a checkpoint with warmed architectural state (branch predictors, caches, memory, and

prefetcher history), and then, runs 100K cycles in the detailed cycle-accurate simulation mode

to warm up the queues on on-chip interconnect. The reported measurements are collected

from the subsequent 50K cycles of simulation for each measurement point. Our performance

metric is the ratio of number of application instructions retired to the total number of cycles

(including the cycles spent executing the operation system instructions) as this metric has

been shown to accurately represent the overall system throughput [88]. We compute the

performance measurements with an average error of less than 5% at the 95% confidence level.

We model a tiled server processor architecture whose architectural parameters are listed in

Table 4.1. We also model a CMP with a crossbar on-chip interconnect. Today’s commercial

processor cores typically comprise 3-5 fetch stages followed by several decode stages [14, 48,

70, 84]. Similarly, we model a core with three fetch stages and fifteen stages in total. The branch

prediction unit is decoupled from the fetch unit with a fetch queue of six basic blocks [64]. The

branch prediction unit outputs a fetch region every cycle and enqueues the fetch region into
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the fetch queue to be consumed by the L1-I. Upon a miss in the BTB, a predefined number of

instructions (eight, in our case) subsequent to the last fetch address predicted by the BTB are

enqueued in the fetch queue as the next fetch region.

The branch instructions are identified right after the fetch stage, in the first decode stage. If

a branch instruction was not identified by the branch prediction unit because of the miss-

ing BTB entry (i.e., branch misfetch), the instruction fetch stream can be redirected in the

first decode stage. If a branch is conditional and has a relative target address, the direction

predictor is looked up. If the conditional branch instruction is predicted taken, the fetch

stream is redirected to the target address calculated in the first decode stage. If the branch

is unconditional and has a relative target, the fetch stream is redirected to the target address

calculated in the first decode stage. Finally, if the branch instruction is an indirect branch or a

return instruction, the fetch stream is redirected to the target address predicted by the indirect

target address or the return address stack.

4.3.2 Instruction-Supply Mechanisms

We compare Confluence (AirBTB coupled with SHIFT) against fetch-directed prefetching

leveraging three different BTB designs, namely the Idealized BTB with 1-cycle access latency

and no misses, realistic conventional two-level BTB, and PhantomBTB as a two-level BTB

design allowing for sharing the second-level BTB across cores. We also couple SHIFT with

these three different BTB designs and compare with AirBTB to decouple the effects of instruc-

tion prefetching and BTB design. The area overheads of these different design points are

determined based on Cacti 6.5 [55] in 40nm technology.

Instruction Prefetchers

Shared History Instruction Fetch (SHIFT): SHIFT, described in detail in Section 4.2.4, tuned

for our workloads for maximum L1-I miss coverage, requires a 32K-entry history buffer (160KB)

virtualized in the LLC and around 240KB of index storage embedded in the tag array of the
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LLC. The resulting per-core area overhead stemming from extra LLC storage and extension of

the tag array is estimated to be 0.8 and 1.2mm2 respectively. This corresponds to 0.12mm2

area overhead per core.

Fetch-Directed Prefetching (FDP): The branch prediction unit is decoupled from the L1-I

with a queue that can accommodate six basic blocks (determined experimentally to maximize

performance) and the branch prediction unit outputs a basic block every cycle, as described

above. For each fetch region enqueued in the fetch queue, prefetch requests are issued for the

instruction blocks that fall into the fetch region, if they are not already in the L1-I. Because

FDP relies on the existing branch predictor metadata, it does not incur any additional storage

overhead.

BTB Designs

AirBTB: The final AirBTB design maintains 512 bundles in total (same as the number of blocks

in the L1-I) and 3 branch entries per bundle. Because the instruction size is 4B, each 64B

cache block has 16 instructions in total. So, each bundle keeps a 16-bit branch bitmap. Each

branch entry has a 4-bit offset, 2-bit branch type, and 30-bit target field. The overflow buffer

has 32 entries. Overall, the final AirBTB design requires 10.5KB of storage, incurring 0.08mm2

area overhead per core (AirBTB’s sensitivity to design parameters is evaluated in Section 4.4.3).

AirBTB’s footprint is comparable in sizes to a 1K-entry conventional BTB with a victim buffer

and to the first-level of PhantomBTB. In total, Confluence, AirBTB(0.08mm2) backed by SHIFT

(0.12mm2), incurs 0.2mm2 area overhead per core.

Conventional BTB: To provide multiple instructions to be fetched with a single BTB lookup

to feed superscalar cores, prior work proposed organizing the BTB to provide a fetch range

(i.e., basic-block range) [64, 91]. Each BTB entry is tagged with the starting address of a basic

block (excluding the low-order bits used for indexing) and maintains the target address of

the branch ending the basic block (30-bit PC-relative displacement; the longest displacement

field in the UltraSPARC III ISA), the type of the branch instruction ending the basic block (2
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bits), and a number of bits to encode the fall-through address (the next instruction after the

branch ending the basic block). We found that the fall-through distance can be encoded with

four bits for 99% of the basic blocks. We assume a 52-bit virtual address space and evaluate a

four-way set associative BTB organization. We did not see any additional benefits in hit rate

from increasing the associativity. In our comparisons of conventional BTB with AirBTB, we

augment the conventional BTB with a 64-entry victim buffer (around 0.7KB). So, the 1K-entry

conventional BTB used as the baseline requires 10.4 KB of storage in total (0.08mm2) and has

1-cycle access latency. For the conventional two-level BTB configuration, we use a 16K-entry

conventional BTB as the second level, which is 148KB and occupies 0.6mm2 area per core and

has 4-cycle access latency.

PhantomBTB: In the PhantomBTB design tuned for our benchmark suite to maximize the

percentage of misses eliminated and performance, we use a 1K-entry conventional first-level

BTB with a 64-entry prefetch buffer (10.4 KB in total and 0.08mm2). PhantomBTB’s first-level

table storage cost is the same as AirBTB. For the virtualized prefetcher history, we pack six

BTB entries (the maximum possible) in an LLC block and dedicate 4K LLC blocks (256KB

assuming 64B blocks, with an estimated aggregate area overhead of 1.2mm2). We did not see

any significant change in the percentage of misses eliminated with a bigger history. The region

size used to tag each temporal group (i.e., LLC block) is 32 instructions.

Although the original PhantomBTB design maintains a private prefetcher history per core, we

evaluate a shared prefetcher history as we run homogeneous server workloads where each

core runs the same application code, thus is amenable to BTB sharing. This enables a fair

comparison between PhantomBTB and Confluence, as Confluence relies on shared history

for instruction prefetching. It is important to note that sharing the prefetcher history has

negligible (i.e., less than 2%) effect on the percentage of misses eliminated by PhantomBTB

as compared to the private prefetcher history that was originally proposed. As a result the

aggregate storage overhead per core is 0.15mm2.
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Figure 4.5: Distribution of dynamic branches according to their target address types.

4.4 Evaluation

Confluence unifies the disparately maintained instruction-supply metadata for BTB and L1-I

by relying on an instruction streaming mechanism, SHIFT, whose effectiveness is already

demonstrated for L1-I. For that reason, in this section, we focus on the benefits achieved with

our light-weight BTB design, AirBTB, operating in sync with the L1-I backed by the effective

instruction streaming mechanism. However, we quantify the performance benefits of Conflu-

ence stemming from synergy between AirBTB and the instruction streaming mechanism in

Sections 4.4.6- 4.4.8.

4.4.1 Distribution of Branch Types

While AirBTB is responsible for identifying the branches along with their types, it is also

responsible for providing the target addresses of branches with static targets. Because AirBTB

relies on predecoding to generate the target addresses of branches when they are fetched

into the instruction cache from the lower levels of the cache hierarchy, the more PC-relative

branches (i.e., branch instructions whose target addresses are generated adding the branch

PC with the displacement field embedded in the instruction) there are, the more branch

targets AirBTB can predict for taken branches. For other branches that are not PC-relative (i.e.,
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Figure 4.6: Density of static and dynamic branches in the demand-fetched instruction cache
blocks (The numbers on top of the bars represent the average values).

indirect branches and returns), AirBTB cooperates with the indirect branch target cache or the

return address stack.

Figure 4.5 shows the distribution of branches executed based on their classes. The PC-relative

branches constitute 90% of the retired branch instructions on average allowing AirBTB to

provide most of the target addresses for taken branches without requiring a large indirect

branch target cache or return address stack.

4.4.2 Branch Density in Cache Blocks

AirBTB maintains bundles of branch entries that belong to the same instruction block to exploit

spatial locality both for high miss coverage and storage savings. To achieve a high hit ratio,

AirBTB needs to accommodate all of the branch entries in a cache block in its corresponding

bundle in the common case and maintain an overflow buffer for the instruction blocks that

exceed the capacity of a bundle.

Figure 4.6 presents the total number of branch instructions in a demand-fetched instruction

cache block (i.e., static) as well as the total number of branches actually executed (and taken)

during the residency of the cache block in the L1-I (i.e., dynamic).
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Figure 4.7: Miss coverage for various AirBTB configurations over a 1K-entry conventional BTB
(B = branch entries in a bundle, OB = branch entries in the overflow buffer).

Demand-fetched instruction blocks typically contain 3-4 branch instructions on average out

of which only 1-2 are actually executed and taken, because the control flow is redirected to

another instruction block before reaching the rest of the branches in the current instruction

block. While a bundle size of 3-4 entries would be sufficient for most instruction blocks

to accommodate their branch entries, there is also a need for a sufficiently sized overflow

buffer to accommodate the branches of instruction blocks that exceed the capacity of their

corresponding bundle (i.e., overflows).

4.4.3 AirBTB Miss Coverage

In light of the branch behavior characterization findings presented in Section 4.4.2, we seek to

find the optimal AirBTB configuration to achieve the highest BTB miss coverage with minimum

storage overhead. To do so, we examine different AirBTB configurations by varying the bundle

size (i.e., the number of branch entries in a bundle) and the size of the overflow buffer. The

total number of bundles is fixed as AirBTB maintains only the instruction blocks resident

in the instruction cache at a given time. Figure 4.7 shows AirBTB’s miss coverage over the

1K-entry conventional BTB with a 64-entry victim cache. We show only the average values for

the four DSS queries due to space constraints.
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As the number of branch entries in a bundle increases, the overall miss coverage increases

for all workloads as each bundle can accommodate more entries. Figure 4.6 shows that

50% of instruction blocks contain up to three branches on average. As a result, an AirBTB

configuration with three branch entries per bundle is able to capture the branch footprint

of half of the instruction blocks at a given point in time. Unfortunately, such an AirBTB

configuration (B:3, OB:0) has a higher miss rate than the baseline 1K-entry BTB for some of

the workloads (i.e., increases the miss rate by 18% on average), because it cannot maintain the

overflowing branches.

To capture the overflowing branches, there is a need to increase the bundle size or accommo-

date the overflowing branches in the overflow buffer. When AirBTB with three branch entries

per bundle is backed with an overflow buffer (B:3, OB:32), it becomes effective at eliminat-

ing the misses as compared to a 1K-entry conventional BTB. For the AirBTB configuration

with three branch entries per bundle, we found the optimal overflow buffer size to be 32

entries. We did not see any improvement in coverage beyond 32 overflow buffer entries. Such

a configuration (B:3, OB:32) provides 93% miss coverage on average.

Similarly, the AirBTB configuration with four branch entries in a bundle without an overflow

buffer (B:4, OB:0) achieves 77% of miss coverage. The overflow buffer with 32-entries (B:4,

OB:32) further improves the coverage to 95% on average. However, compared to the AirBTB

configuration (B:3, OB:32), both of these design points (B:4, OB:0 and B4, OB:32) require more

storage (around 2KB), while increasing the miss coverage by only 2%. For this reason, we use

the AirBTB configuration with three branch entries per bundle and 32-entry overflow buffer

(B:3, OB:32) as the final AirBTB design and for the rest of the evaluation. This configuration

requires the same overall storage as the conventional 1K-entry BTB with a 64-entry victim

cache, which we use as the baseline comparison point in the rest of this section.

Finally, among the AirBTB design points that do not employ an overflow buffer, (B:5, OB:0) and

(B:6, OB:0) achieve 3% and 4% higher miss coverage on average compared to the final AirBTB

configuration (B:3, OB:32) with the cost of extra dedicated storage due to the use of bigger
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Figure 4.8: Breakdown of AirBTB miss coverage benefits over 1K-entry conventional BTB.

bundle sizes. In these two design points, although the majority of the blocks underutilize the

bundles by not occupying all the branch entries, the complexity of the overflow buffer is not

incurred.

4.4.4 Dissecting the AirBTB Benefits

To eliminate most of the misses within a given BTB storage budget, we modified the baseline

BTB design in several ways. Figure 4.8 shows how much each design decision helps to improve

the miss coverage over a conventional BTB design with 1K entries by employing the mecha-

nisms proposed for AirBTB step by step. First, AirBTB can afford more entries within in a given

storage budget as compared to the 1K-entry conventional BTB, because it amortizes the cost

of tags across the entries in the same instruction cache block, eliminating 18% of the misses

(Capacity). Second, because AirBTB eagerly identifies the branch instructions in a block upon

a BTB miss in an instruction block and eagerly installs their entries before the branches are

actually executed, it can eliminate 57% more misses on average (Spatial Locality). Third, by

relying on the instruction streaming mechanism, AirBTB can eliminate 7% more misses by

eliminating a BTB miss even if the first instruction touched in a missing block is a branch

(Prefetching). Finally, the block-based organization employed by AirBTB guarantees that the

blocks in the BTB are in sync with the L1-I, so that the BTB entries of two L1-I-resident blocks
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Figure 4.9: PhantomBTB, AirBTB and 16K-entry conventional BTB miss coverages over a
1K-entry conventional BTB.

do not conflict, which provides 11% additional miss coverage (Block-Based Organization).

It is important to note that, the coverage benefits of instruction streaming is only 7% in the

trace-based simulation. However, the presence of an instruction streaming mechanism is

absolutely necessary to hide the access latency of instruction blocks fetched from the lower

levels of the hierarchy, which are required to generate the AirBTB content that will be required

soon. Not hiding the long-latency accesses to lower levels of cache hierarchy would stall the

branch prediction unit, and hence the entire pipeline.

4.4.5 Competitive BTB Miss Coverage Comparison

Figure 4.9 shows the fraction of BTB misses eliminated by AirBTB, PhantomBTB and a 16K-

entry conventional BTB over the 1K-entry conventional BTB. PhantomBTB eliminates only

64% of the misses on average, compared to AirBTB’s 93% miss coverage. The discrepancy in

the coverage is attributed to two major differences between the two designs.

First, because AirBTB amortizes the cost of the tags across the branch entries within the same

instruction cache block, it can maintain more BTB entries as compared to PhantomBTB’s

first-level BTB, which is a conventional BTB organization, within the same storage budget.
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More importantly, PhantomBTB forms temporal groups of BTB entries that consecutively miss

in the first-level BTB by packing a number of BTB entries in an LLC block and prefetching

those entries into the first-level BTB upon a miss in the first-level BTB. In PhantomBTB, the

BTB entries that fall into a temporal group depend heavily on the branch outcomes in the

local control flow. Small divergences in the control flow significantly affect the content of the

temporal groups and reduce the likelihood of same sets of branches always missing in the

BTB together. Moreover, because PhantomBTB maintains fixed-sized temporal groups of BTB

entries, as opposed to arbitrary-length temporal streams as in SHIFT, its prefetch lookahead is

limited to only a few BTB entries upon each L1-BTB miss.

In contrast, the stream-based prefetcher leveraged by Confluence is a better predictor of future

control flow as it relies on a coarse-grain temporal streams of instruction block addresses

that often cover as many as a few hundred instruction blocks per stream. Hence, the stream

prefetcher’s highly accurate control flow prediction at the macro level coupled with AirBTB’s

eager insertion and block-based organization (which uncovers spatial locality) provides a

higher miss coverage than PhantomBTB. We conclude by noting that the coverage reported

for PhantomBTB is the highest coverage we could attain and does not benefit from further

increases in the size of its history storage.

Overall, AirBTB closely approaches the miss coverage of the 16K-entry conventional BTB,

which provides 95% miss coverage on average, without incurring its high per-core storage

overhead.

4.4.6 Competitive Performance Comparison

We compare Confluence’s (AirBTB backed by SHIFT) performance against PhantomBTB

and 16K-entry conventional BTB (with only one-cycle access latency) normalized to the

performance of the 1K-entry conventional BTB in Figure 4.10. It is important to note that

all the other designs employ SHIFT only for instruction streaming, while Confluence takes

advantage of SHIFT to stream the BTB metadata into AirBTB.
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Figure 4.10: PhantomBTB, Confluence and 16K-entry conventional BTB speedup compar-
ison over 1K-entry conventional BTB with SHIFT for a 16-core CMP with a mesh on-chip
interconnect.

PhantomBTB provides only 6% performance improvement on average, while Confluence

provides 14% performance improvement closely approaching the performance improvement

attained by the 16K-entry conventional BTB, which is 15.5%. The difference in speedups of

PhantomBTB and Confluence stems from two main differences.

First, PhantomBTB provides around 30% lower miss coverage than AirBTB, thus Confluence,

over the baseline 1K-entry conventional BTB as shown in Figure 4.9.

Second, PhantomBTB’s timeliness dramatically lags behind that of Confluence’s, because

PhantomBTB fetches only an LLC block worth of BTB entries (i.e., six BTB entries in a temporal

group) upon a miss in a particular code region. To fetch the next temporal group, PhantomBTB

waits until there is a miss in another code region. Waiting for a miss in a code region to prefetch

only a limited number of entries in a temporal group prevents PhantomBTB from hiding the

latency of the LLC from the branch prediction unit.

Confluence, on the other hand, relies on temporal streams with arbitrary lengths (on the

order of hundreds of cache blocks) provided by SHIFT enjoying a high lookahead. The high

lookahead provided by temporal streams helps Confluence to install the BTB entries that will

be accessed in near future before they are actually needed by the branch prediction unit. As a
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Figure 4.11: PhantomBTB, Confluence and 16K-entry conventional BTB speedup comparison
over 1K-entry conventional BTB with SHIFT for a 16-core CMP with a crossbar on-chip
interconnect.

result, Confluence achieves 99% of the performance provided by the 16K-entry conventional

BTB with one-cycle access latency. Bridging the remaining 1% performance gap would be

possible with an instruction prefetcher with a higher coverage than SHIFT (i.e., SHIFT can

eliminate 85% of L1-I misses on average).

Overall, Confluence achieves 85% of the performance improvement provided by a perfect BTB

and L1-I.

We also evaluated Confluence’s performance improvements for a CMP with a crossbar on-chip

interconnect as shown in Figure 4.11. We expect the crossbar interconnect to mitigate instruc-

tion and data stalls compared to a mesh interconnect, exposing the performance degradation

due to BTB misses as a bigger portion of the execution time, thus resulting in higher perfor-

mance improvements for Confluence. However, because the majority of the instruction-fetch

stalls are eliminated by SHIFT, and a significant portion of the latency of accessing the LLC for

data can be hidden by the OoO cores, Confluence provides only slightly higher performance

benefits in the case of the crossbar interconnect (on average 16% as compared to 14% in the

mesh configuration). PhantomBTB also benefits from the reduction in the average LLC access

latency provided by the crossbar interconnect as average latency of accessing the metadata in

its LLC decreases. In the case of a crossbar interconnect, PhantomBTB provides 8% perfor-
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Figure 4.12: Confluence performance benefits and area savings compared to other design
points.

mance improvement as opposed to 6% in the mesh interconnect case, but still lags behind

Confluence in terms of performance improvement.

4.4.7 Performance and Area Comparison

We finally compare the performance benefits and associated area overheads of Confluence

with various frontend designs discussed in Section 4.1 in Figure 4.12. All the performance and

area numbers are normalized to a core with 1K-entry BTB to be consistent with Section 4.1.3.

As Figure 4.12 demonstrates, Confluence is the closest design point to the Ideal by delivering

85% of the performance improvement delivered by the Ideal configuration (i.e., perfect L1-I

and BTB) with only 3% storage area overhead per core (including private BTB’s and SHIFT’s

per-core storage overhead). Confluence delivers higher performance as compared to all

other design points detailed in Section 4.1.3 thanks to its timely and accurate insertions of

instructions into the L1-I and branch entries into the BTB.

It is instructive to compare the 2LevelBTB+SHIFT and Confluence designs. Both feature a

SHIFT instruction prefetcher and a high-accuracy BTB. Because of the redundant metadata

in the 2LevelBTB+SHIFT design, Confluence achieves a considerably lower storage footprint

(10KB per core for Confluence vs. 150KB per core for the 2LevelBTB). Performance-wise,
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Confluence is 8% better, despite the fact that the 2LevelBTB+SHIFT delivers a slightly higher

hit rate (detailed analysis in Section 4.4.4). The reason for Confluence’s superior performance

is timeliness, as the BTB is filled proactively ahead of the fetch stream. In contrast, decoupled

BTB designs (including both 2LevelBTB and PhantomBTB) trigger BTB fills only when a miss

is discovered in the first-level BTB, thus exposing the core to the access latency of the second

level.

4.4.8 Performance Benefits without Prefetching

Confluence provides high-performance instruction supply by (i) synchronizing the BTB and

L1-I contents and (ii) streaming into both BTB and L1-I. Figure 4.8 quantifies the benefits

of content synchronization. In this section, we quantify the absolute need for an effective

instruction streaming mechanism to enable synchronization to achieve its full performance

potential. To do that, we employ AirBTB without SHIFT, only by maintaining the AirBTB

content in sync with the L1-I content. Without SHIFT, AirBTB provides only 2% performance

improvement on average. The discrepancy stems from AirBTB not being able to run ahead

to provide the pipeline with a useful instruction fetch stream, because it needs to wait for

the arrival of the instruction blocks at the core, getting highly exposed to the LLC latency.

This underscores the importance of backing AirBTB with an effective instruction streaming

mechanism, which is what Confluence does.

4.5 Concluding Remarks

Large instruction working sets of server applications are beyond the reach of practical BTB

and L1-I sizes due to their strictly low access-latency requirements. Frequent misses in BTB

and L1-I result in frequent misfetches and instruction fetch stalls dramatically hurting the

performance of server applications. In response, prior research proposed discrete prefetchers

for BTB and L1-I, whose metadata essentially capture the same control flow exhibited by an

application.
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This work proposed Confluence, a new front-end design, which synchronizes the BTB and L1-I

content to leverage a single prefetcher and unified prefetcher metadata to prefetch for both

BTB and L1-I by relying on a highly accurate instruction prefetcher. By doing so, Confluence

eliminates 93% of BTB misses and 85% of L1-I misses and provides 85% of the speedup possible

with a perfect L1-I and BTB.
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5 Related Work

5.1 Sharing Core Resources Across Hardware Contexts

Hardware multithreading has been proposed as a way of mitigating underutilization of core

resources by executing multiple independent threads concurrently on the same core. Hard-

ware multithreading intrinsically enables resource sharing across multiple hardware contexts

including both the frontend and computation resources of a core [83]. In hardware multi-

threading, hardware contexts typically compete for cache, TLB and branch predictor capacity

as these resources have limited capacities due to their low access-latency requirements, unless

identical software threads are executing in lock-step at a given time (lock-step execution would

not incur contention for frontend resources). Furthermore, the degree of sharing is limited by

the multithreading degree of a core.

Seeking a balance between the CMP designs with low-complexity cores and SMT designs

with high-complexity cores, Conjoined-core CMP [49] and Cash [22] enable sharing of re-

sources such as the L1 caches, branch predictors and functional units across adjacent cores.

Similar to hardware multithreading, the degree of sharing in such architectures is limited

to a few cores, as larger clusters of cores sharing resources would not benefit from sharing

due to the increasing physical distance, thus the increasing latency of accessing the shared

resources. Furthermore, the contention for the shared resources necessitates using larger
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shared resources.

As opposed to limited degree of sharing that can be provided by hardware multithreading and

sharing resources across adjacent cores, our shared frontend framework allows for sharing of

resources across all the hardware contexts in a CMP independently of the core microarchi-

tecture and the physical distance between the cores. By providing each core with dedicated

storage to store the metadata of the active instruction working set and filtering most accesses

to shared metadata through the dedicated storage, our shared frontend framework minimizes

the contention for shared metadata. Because the shared metadata storage typically captures

the entire working set of an application, introducing additional hardware contexts does not

affect the storage capacity requirement of the shared metadata as long as all hardware contexts

execute the same given workload.

A line of work has proposed mechanisms to enable cooperation between cores running the

same workload to improve TLB hit rates by exploiting the commonality of TLB miss patterns

across cores [10]. Our work also allows for inter-core cooperation for prefetching, however,

with the goal of eliminating the storage overheads of existing prediction mechanisms.

5.2 Instruction Prefetching

5.2.1 Next-Line Prefetchers

Instruction-fetch stalls have long been recognized as a dominant performance bottleneck

in servers [2, 16, 26, 38, 45, 51, 63, 85]. Simple next-line instruction prefetchers have been

ubiquitously employed in commercial processors to eliminate misses to subsequent blocks [3,

72]. Despite being ineffective for misses to non-sequential blocks, next-line prefetchers are

critical to server performance [63]. Because only one prefetch request is issued upon a miss in

the cache, next-line prefetchers highly suffer from insufficient lookahead.

More recent work has extended next-line prefetching to prefetch sequences of contiguous

instruction blocks with arbitrary lengths [62, 67]. Despite their zero storage overhead, next-line
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prefetchers fail to eliminate instruction cache misses due to discontinuities in the program

control flow caused by function calls, taken branches and interrupts.

SHIFT, on the other hand, records all the cache accesses including misses to sequential blocks

as well as to non-sequential blocks.

5.2.2 Discontinuity Prefetcher

To predict misses to non-sequential blocks, the discontinuity prefetcher [76] maintains the

history of transitions between two of non-sequential cache blocks that consecutively miss in

the cache. Each entry in the history maps one instruction block to another instruction block.

The discontinuity prefetcher provides only marginal benefits because of several fundamental

limitations. First, it cannot capture all the transitions for blocks with multiple branch instruc-

tions as different branches are likely to have different targets. Second, the lookahead of the

discontinuity prefetcher is limited to one target instruction block for each source block.

In contrast, in SHIFT, a block might be associated with many transitions in the history depend-

ing on the context. Unlike the discontinuity prefetcher, the instruction streaming mechanism,

SHIFT, does not have a lookahead limitation while replaying temporal streams with arbitrary

lengths.

5.2.3 Branch-Predictor-Directed Prefetchers

A class of instruction prefetchers rely on the existing branch predictor running ahead of the

fetch unit to predict instruction cache misses along the way capturing both sequential and

non-sequential blocks [20, 65, 86]. The branch-history guided prefetcher [77], execution-

history-guided prefetcher [92], multiple-stream predictor [67], next-trace predictors [36], call-

graph prefetching [5] and Efetch [18] maintain disparate history to essentially maintain the

branch outcomes creating discontinuities to make predictions. The branch-predictor-guided

prefetchers are limited by the accuracy and lookahead of the branch predictor.
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In contrast to branch-predictor-guided prefetchers, due to the history maintained at

instruction-block granularity, SHIFT is not affected by the minor divergences in the control

flow within individual blocks and exploration of the local control flow spanning cache-resident

instruction blocks.

Wrong-path prefetcher [60] prefetches the instructions along the not-taken path of conditional

branches at the cost of generating extra traffic in case the wrong-path instructions are indeed

never executed. Wrong-path prefetcher is typically effective only for backward loop exits or

frequently executed data-dependent branches, but not for other types of discontinuities such

as function calls.

5.2.4 Speculative-Thread Prefetchers

A line of research explores ways of leveraging the idle hardware contexts in CMPs or SMTs to

speed up single-threaded applications [1, 78, 93]. To do so, these techniques spawn threads

executing a speculative and shortened version of the program or upcoming critical regions of

the program to generate the future state and fetch instructions and data that will be required

by the main program, which runs slower than the helper thread. In a similar way, run-ahead

execution [56] allows a program to run far ahead in the program path upon long-latency

operations blocking the pipeline.

Similar to these techniques, SHIFT provides the instruction fetch unit with a speculative stream

of likely-to-be-fetched instructions, which are recorded previously during the execution of a

program. Instead of utilizing an idle core or hardware thread, SHIFT records the streams that

are then used for speculatively fetching instructions.

5.2.5 Instruction Streaming

The first instruction streaming mechanism, TIFS [28], records and replays streams of dis-

continuous instruction cache misses, enhancing the lookahead of discontinuity prefetching.

PIF [27], records the complete retire-order instruction cache access history, capturing both
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discontinuities and next-line misses, without being affected by the microarchitectural noise

introduced by the cache-replacement policy and wrong-path instructions like TIFS. As a

result, PIF achieves superior miss coverage and timeliness compared to all other instruction

prefetchers.

The SHIFT design adopts its key history record and replay mechanisms from previously

proposed per-core data and instruction prefetchers [27, 28, 73, 87]. To facilitate sharing the

instruction history, SHIFT embeds the history buffer in the LLC as proposed in predictor

virtualization [13].

SHIFT maintains the retire-order instruction cache access history like PIF. Unlike prior in-

struction streaming mechanisms, SHIFT maintains a single shared history, allowing all cores

running a common workload to use the shared history to predict future instruction misses.

RDIP [47] correlates instruction cache miss sequences with the call stack content. RDIP

associates the history of miss sequences with a signature, which summarizes the return

address stack content. In doing so, RDIP reduces the history storage requirements by not

recording the entire instruction streams as in streaming mechanisms. However, RDIP’s miss

coverage is still limited by the amount of per-core storage. SHIFT, on the other hand, amortizes

the cost of the entire instruction stream history across multiple cores, obviating the need for

per-core history storage reduction.

5.2.6 Computation Spreading

A number of orthogonal studies mitigate instruction cache misses by exploiting code com-

monality across multiple threads [7, 19]. These approaches distribute the code footprint

across private instruction caches of cores to leverage the aggregate on-chip instruction cache

capacity. A thread migrates from one core to another core, whose private instruction cache

accommodates the instructions that the thread is likely to execute in the next phase of its

execution. Although these approaches are beneficial to reduce the instruction miss rate each

thread is exposed to, the latency and other side effects (e.g., data cache misses) incurred when
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a thread is migrated from one core to the other might offset the benefits of reduction in cache

miss rate.

In a similar manner, SHIFT relies on the code path commonality, but it does not depend on

the aggregate instruction cache capacity, which might be insufficient to accommodate large

instruction footprints. Moreover, SHIFT supports multiple workloads running concurrently,

while these techniques might lose their effectiveness due to the contention for instruction

cache capacity in the presence of multiple workloads.

5.2.7 Batching & Time Multiplexing Similar Computations

Another way to exploit the code commonality across multiple threads is to group similar

requests and time-multiplex their execution on a single core, so that the threads in a group

can reuse the instructions, which are already brought into the instruction cache by the lead

thread [8, 33, 81]. Unfortunately, these approaches are likely to hurt response latency of

individual threads, as each thread is queued for execution and has to wait for the other threads

in the group to execute.

5.2.8 Compiler-Based Techniques

A line of work aims to improve instruction cache behavior by mitigating the discontinuities in

the dynamic instruction stream. Profile-guided code positioning [59] groups the basic blocks

executed one after the other and splits the portions of procedures that are never executed

based on run-time profiling of applications. These two techniques improve code density and

increase the number of accesses to sequential instruction blocks. Some techniques leverage

the compiler, linker and runtime information to organize the code layout to mitigate the

conflicts between blocks in the instruction cache [34, 42, 80]. Procedure inlining also improves

the code sequentiality at the cost of increasing the instruction working set size [61]. Because

SHIFT does not depend on profiling, in contrast to these techniques, it immediately learns

the execution sequences at run time and remains effective even in the case of changes in the
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dataset and program behavior.

Instruction-prefetch instructions in an ISA allow for compiler-inserted instruction prefetches

leveraging compiler’s knowledge of instructions that are likely to miss in the cache [54]. Such

techniques are limited in terms of lookahead as the compiler does not have much visibility

across procedure boundaries. Compiler hints can also be leveraged to throttle the hardware

next-line prefetcher to mitigate the pollution caused by erroneous next-line prefetches [54, 90].

5.3 Branch Target Buffer

Branch target buffer is the key component that allows the branch prediction unit to run ahead

of the core and provide the core with a continuous instruction stream to be executed along

with the branch direction predictor to avoid the bubbles in the pipeline that are caused by

taken branch instructions.

5.3.1 Alternative BTB Organizations

In the early BTB designs, a BTB entry contains the branch instruction address and the branch

target address to redirect control flow upon a predicted taken branch [50, 58, 79].

To increase the fetch bandwidth for wide superscalar cores and be able to fetch an entire

basic block every cycle, Yeh and Patt proposed tagging BTB entries with the address of the

instruction that starts a basic block and maintaining the fall-through address and the target

instruction address of the branch terminating the basic block in each BTB entry [91]. Every

cycle a direction prediction is made for the branch instruction terminating the current basic

block (i.e., the instruction before the fall-through instruction). Based on the outcome of

the direction prediction, the fall-through address or the target instruction address is used to

perform a lookup in the BTB for the next basic block.

Reinman et al. proposed decoupling the branch predictor from the instruction cache with a

fetch-target queue to mitigate the pipeline bubbles caused by the predictor tables with multi-
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cycle access latencies [64]. The fetch target queue allows the branch predictor to run ahead and

generate basic blocks to be consumed by the slower instruction cache by utilizing the small

and fast first-level predictor table in the common case and the big and slower second-level

table in the uncommon case. The buffering between the branch prediction unit and the fetch

unit hides the latency of the slower table from the pipeline. Moreover, the fetch-target queue

allows for instruction prefetching by exploring the basic-block addresses in the fetch-target

queue that are not yet consumed by the instruction cache [65].

5.3.2 Next Cache Line and Set Prediction

Next cache line and set prediction (NLS) [15] has been proposed as an alternative to BTB and

is employed in the Alpha EV8 processor [69]. NLS maintains pointers to the targets of branch

instructions in the instruction cache instead of maintaining a target address per branch as

the BTB does. When a branch instruction is read from the instruction cache, the instruction

pointed by the branch instruction’s predictor entry is used as the target instruction. NLS

is likely to be effective for workloads with cache-resident instruction working sets, as the

predictor maintains the predictions of branch and target instructions within the cache. For

workloads with low instruction cache locality, thus high instruction miss rate, NLS frequently

relearns branch-target instruction pairs every time an instruction block is evicted from and

then fetched again into the cache. As a result, it is expected to achieve poor accuracy for

workloads with large instruction working sets.

To mitigate the performance penalty associated with poor NLS accuracy, the Alpha EV8

processor [69] employs predecoding to scan the branches in the instruction cache blocks that

are fetched into L1-I, precompute the target addresses of the branches, and modify the branch

instructions to store the lower bits of their target addresses before they are inserted into the

L1-I. This way, the target address of a taken branch is formed with a simple concatenation of

the branch PC and the low order bits of the target address, right after the instruction is fetched

from the L1-I. Processors featuring cores with hardware multithreading [70, 71] also employ

the same mechanism to eliminate the BTB storage overhead and also to detect the branch
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instructions and their targets (if they are predicted taken) as early as possible in the pipeline. In

such a design, constructing the target addresses of branches in an instruction block read from

the L1-I takes 3-4 cycles [71], significantly hurting single-threaded performance. This latency

is tolerable in Alpha EV8, where branch direction prediction takes several cycles. Similarly,

in the presence of multiple hardware contexts, the latency penalty associated with branch

target prediction can be overlapped by fetching instructions from other hardware contexts.

However, in cores employing branch direction predictors with only one-cycle latency and

in the absence of multiple hardware threads to cover the latency, this scheme significantly

hurts single-threaded performance by requiring several cycles after fetch to identify branches

within a cache block and compute their targets. To mitigate the resulting fetch bubbles in the

cases where there is only a single thread to execute, some processors employ small BTBs [71];

however, such designs still expose the core to the high latency of target computation whenever

the small BTB misses.

5.3.3 Compression Techniques

Because the branch predictor is on the critical path, a large BTB with several cycles of access

latency greatly penalizes the rate at which the instruction stream is delivered to the core. One

way of reducing the capacity requirements of the BTB is to maintain fewer bits in the tag of

a BTB entry instead of uniquely identifying a basic block with its full tag [25], making BTB

entries susceptible to aliasing. Another way is to maintain only the offsets of the fall-through

and target addresses from the basic-block address instead of their full addresses, since the

distance between the basic-block address and the fall-through or target address is expected to

be small [46, 64]. Although these compression techniques help to reduce the BTB capacity

requirements to some extent, they cannot mitigate the number of individual entries that need

to be maintained in the BTB to capture the entire instruction working set of an application,

which is the fundamental problem for server workloads.
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5.3.4 Hierarchical BTBs

To mitigate the access latency of large predictor tables, hierarchical branch predictors provide

low access latencies with a smaller but less accurate first-level predictor in the common case

and leverage a larger but slower second-level predictor to increase accuracy [14, 40, 69]. The

second-level table overrides the prediction of the first-level table in case of disagreement at a

later stage.

Although hierarchical BTBs are likely to achieve higher hit rates than that of small BTBs with

low access-latency constraints, they still expose the core frontend to the access latency of

the second-level BTB in the case of misses in the first-level BTB, preventing them from fully

eliminating performance degradation due to misfetches as shown in Section 4.1.3.

5.3.5 Prefetching BTB Metadata

While hierarchical BTBs provide a trade-off between accuracy and delay, they still incur high

latencies to access lower levels of the hierarchy. To hide the latency of accesses to lower-level

predictor tables, several studies have proposed prefetching the predictor metadata from the

lower-level predictor table into the first-level predictor table. To do so, PhantomBTB exploits

the temporal correlation between BTB misses as misses to a group of entries are likely to recur

together in the future due to the repetitive control flow in applications [12]. Emma et al. also

propose spilling groups of temporally correlated BTB entries to the lower levels of the cache

hierarchy and tagging each group with the instruction block address of the first instruction

in the group [23]. This way, upon a miss in the instruction cache, the corresponding BTB

entry group can be loaded from the secondary table into the primary table. As explained

and quantified in Section 4.4.5, temporal correlation between individual BTB entries is highly

limited due to frequent divergences, resulting in limited predictability of BTB misses.

In a similar vein, bulk preload [11] fetches a group of BTB entries that belong to a spatial code

region of a predefined size upon a miss in that region. Although bulk preloading of BTB entries

exploits the spatial correlation between BTB entries in a large code region, it falls short of
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capturing the temporal correlation between BTB entries in different regions.

5.3.6 Synchronizing Predictor and Cache Content

One of the key ideas employed in Confluence, syncing the BTB content with the instruction

cache, is similar to fetching the data prefetcher metadata of memory pages from off-chip to

on-chip upon a TLB miss to a particular page as done in recent work [37] .
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6.1 Thesis Summary

The steadily growing demand for server applications call for more computing power, while

the end of Dennard scaling has ceased continuous performance improvements provided by

every new technology node. As a result, the growing need for more computation resources has

pushed the server efficiency into the forefront of the server design requirements. Researchers

and industry have started addressing the inefficiencies in commodity server processors by

identifying the mismatch between the server application needs and the existing general-

purpose server processor architectures. As a first step toward improving server efficiency,

processor vendors have started integrating tens of low-power cores on a server chip, which are

well-matched to the low ILP and high request-level parallelism prevalent in server applications,

as opposed to a few aggressive cores tuned for applications with high ILP.

In this thesis, we identified the frontend inefficiencies associated with manycore server proces-

sors running server applications with large instruction working sets and proposed techniques

to mitigate them. We first quantified the capacity requirements of the storage-intensive

instruction-supply mechanisms, which maintain application metadata to predict future con-

trol flow, and demonstrated the commonality of metadata across cores running a given

homogeneous server application. We concluded that the metadata commonality across cores
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leads to unnecessary silicon provisioning due to similar metadata maintained redundantly for

each core and paves the way for a specialized processor with a shared frontend to eliminate

this redundancy.

As a first step toward a specialized server processor with a shared frontend, we proposed SHIFT,

an instruction prefetcher with shared metadata generated by only one core selected at random

and accessed by all other cores running the same homogeneous server application. The

shared metadata embedded in the last-level cache in the SHIFT design allows for maintaining

a disparate history instance for each application running on a CMP when multiple applications

are consolidated. As a result, SHIFT eliminates the per-core history overhead, while amortizing

the overhead of the shared history across many cores. We showed that despite its low storage

overhead, SHIFT provides performance benefits similar to private history maintained per core

even in the presence of workload consolidation.

We then identified the redundancy in metadata maintained by individual instruction-supply

mechanisms, namely the instruction prefetcher and the branch target buffer. We observed

that the metadata maintained for instruction prefetching is at instruction block granularity

encapsulating the metadata maintained by the BTB and BTB prefetching metadata at instruc-

tion granularity. Based on this observation, we proposed Confluence, which maintains a

lightweight BTB whose content mirrors the content of the instruction cache and is populated

by SHIFT, as SHIFT prefetches instruction blocks into the cache. This way, Confluence elim-

inates the need for a disparate BTB prefetcher and the associated metadata, and limits the

per-core BTB storage overhead only to the L1-resident primary instruction working set of an

application. By doing so, Confluence delivers performance benefits close to that of a perfect

BTB.

6.2 Future Directions

This thesis introduces two new mechanisms to enable sharing the metadata associated with

two storage-intensive instruction-supply mechanisms, namely the instruction prefetcher and
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branch target buffer. Because the shared instruction prefetcher provides a minimal-overhead

way of predicting the active instruction working set in near future, which corresponds to the set

of blocks resident in the instruction cache, it opens new opportunities to share other frontend

metadata. Doing so would require organizing various metadata tables hierarchically (a small

dedicated table per core and a large shared table), associating certain metadata with the SHIFT

history entries based on the PCs, and prefetching metadata from the secondary storage into

the primary storage with SHIFT’s assistance, just like instruction blocks are prefetched from

LLC into L1-I.

In the rest of this section, we summarize the opportunities and challenges associated with

integrating various predictors into the shared frontend framework.

Branch Direction Predictor

As we quantified in Section 2.2.2, branch direction accuracy increases with the dedicated

storage size, but the metadata storage is amenable to sharing due to the significant overlap of

branch patterns across server cores.

Branch predictor tables are typically indexed by PCs or by hashing a branch PC, global branch

history and/or path history. Predictors that use PC for indexing (e.g., bimodal, perceptron

predictor [41]) are the primary candidates for sharing, as each entry can be easily associated

with SHIFT history entries based on PCs. The branch predictor entries that belong a certain

instruction block can be grouped together in the secondary storage, perhaps leveraging the

virtualization framework, and then can be prefetched together into the dedicated primary

storage along with the corresponding instruction block, as SHIFT predicts the instruction

blocks that are likely to be accessed in near future.

The state-of-the-art branch predictors, however, typically rely on hash functions to index

into the predictor tables [39, 68] and they also tag predictor entries to minimize aliasing [68].

Because the predictor entries do not maintain information about to the branch instructions

or the encapsulating instruction blocks they belong to, integrating such predictors into the
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shared frontend framework necessitates a disparate index table. The index table should be

accessed with the address of the instruction block provided by SHIFT as prediction. Each

entry in the index table should contain a list of pointers to the branch predictor table entries

associated with a certain block, so that those entries can be prefetched all together into the

dedicated primary storage from the shared storage. Such an index table would require extra

storage, which would be amortized across many cores.

Nevertheless, the main challenge associated with prefetching metadata entries is the highly

varying number of predictor entries per branch instruction, thus per instruction block. For ex-

ample, in TAGE, while most branch instructions are easy to predict and are correctly predicted

by the bimodal predictor without requiring any tagged entries, hard-to-predict branches main-

tain many tagged entries (i.e., hundreds of entries) due to the numerous global history patterns

associated with them. This leads to two potential problems. First, the per-block pointer lists

in the disparate index table should be over-provisioned for hard-to-predict branches, which

would result in wasting space for the blocks with only a few entries. Second, fetching all those

entries from the secondary storage into the primary storage and writing those entries into

the secondary storage would consume significant on-chip network bandwidth offsetting the

benefits of the increase in branch prediction accuracy.

Although several challenges associated with sharing branch direction metadata exist, enabling

such a mechanism might enable the use of more sophisticated and storage-intensive branch

predictors as their storage overheads would be amortized by many cores.

Translation Lookaside Buffer

Translation lookaside buffer (TLB) is used to cache virtual-to-physical address translations and

has strictly low access-latency requirements as it is typically on the critical path when accessing

the primary caches. Reducing the TLB size might be beneficial to reduce its access latency

and power consumption. SHIFT’s history can be used for I-TLB prefetching by predicting the

pages that are likely to be accessed in near future, provided it can achieve sufficient lookahead
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as performing a page-table walk might take hundreds of cycles. While SHIFT intrinsically

incorporates predictions for future page accesses in the I-TLB, leveraging the SHIFT history

for I-TLB prefetching automatically enables sharing I-TLB prefetching metadata.

Data Prefetchers

The state-of-the-art data prefetchers are also characterized by their storage-intensiveness as

their metadata storage requirements scale with instruction and data working sets of applica-

tions [73, 74]. For example, the state-of-the-art data prefetcher that exploits spatial correlation,

spatial memory streaming predictor (SMS) [74, 75], maintains history patterns per PC and

requires up to 64KB of per-core storage to maximize its miss coverage for L1-D.

To mitigate the storage overhead and enable sharing of the predictor storage without losing its

performance benefits, SMS entries whose PC tags fall into the same instruction block can be

grouped together in the secondary storage and then can be prefetched into the dedicated pri-

mary storage through SHIFT’s assistance. This way, only the SMS metadata of the instruction

blocks that are likely to be accessed in near future would be maintained in the primary storage,

significantly reducing the per-core storage overhead. We believe that similar techniques can

be applied to data prefetchers indexed by PCs or instruction block addresses to enable sharing

and reduction in dedicated storage capacity.
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