New Approaches towards Organic Photodetection and

Bio-Integration <u>M.R. Antognazza,</u>¹ E. Lanzarini,^{1,2} D. Ghezzi,³ M. Dal Maschio,³ F. Benfenati,³ and G. Lanzani^{1,2} ¹Center for Nanoscience and Technology of IIT@POLIMI via Pascoli 70/3, 20133 Milano (Italy) mariarosa.antognazza@iit.it ²Politecnico di Milano, Physics Dept., p.zza L. da Vinci 32, 20133 Milano (Italy) ³Italian Institute of Technology, Neuroscience and Brain Technologies Dept., via Morego 30, 16163 Genova (Italy)

We demonstrate hybrid, solid-liquid photodiodes, using semiconducting conjugated polymers as active materials and ionic liquids as unconventional cathodes (water, saline solutions, physiological buffers, cell-culturing media). We give a complete opto-electronic characterization in photovoltaic regime, investigate the interface phenomena by means of several timedomain optical probes, and propose a physical-chemical explanation of the working principle, taking into account the keyrole of the ionic transport. Additionally, we demonstrate that this hybrid device can be an interface for communicating with a neuronal network grown on top of the organic layer. The organic semiconductor behaves as photo-window for unconventional and unprecedented organic-bio communication protocols.