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In the last decade, various clinical trials proved the capability of visual prostheses, in

particular retinal implants, to restore a useful form of vision. These encouraging results

promoted the emerging of several strategies for neuronal stimulation aiming at the

restoration of sight. Besides the traditional approach based on electrical stimulation

through metal electrodes in the different areas of the visual path (e.g., the visual cortex,

the lateral geniculate nucleus, the optic nerve, and the retina), novel concepts for neuronal

stimulation have been mostly exploited as building blocks of the next generation of retinal

implants. This review is focused on critically discussing recent major advancements in

the field of retinal stimulation with particular attention to the findings in the application

of novel concepts and materials. Last, the major challenges in the field and their clinical

implications will be outlined.
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Introduction

Low vision and blindness can result when any step of the visual pathway (the cornea, the lens,
the retina, the optic nerve, the thalamus, and the visual cortex) is altered or sustains damage. In
the recent years, a great attention has been dedicated to inherited retinal dystrophies, one of the
major causes of adult blindness in industrialized countries, causing themalformation or progressive
degeneration, and death of retinal photoreceptors (Wright et al., 2010). Retinal dystrophies, such
as Retinitis pigmentosa (Hartong et al., 2006), and macular degeneration (Swaroop et al., 2009),
are a complex trait that is influenced by many genes together with many environmental factors;
indeed, it is considered the most genetically heterogeneous disorder in humans. Several approaches
have been described for the restoration of sight due to photoreceptor degeneration (Jacobson
and Cideciyan, 2010; Busskamp et al., 2012), some of them have also reached human clinical
trials. They include attempts to slow down the degeneration process by pharmacotherapy (Frasson
et al., 1999), to correct the defect by gene supplementation therapy (Smith et al., 2012), to replace
lost photoreceptors by means of transplantation of retinal sheets (Seiler and Aramant, 2012) or
photoreceptor precursors (MacLaren et al., 2006; Pearson et al., 2012), to sensitize to light the
remaining retinal cells by means of optogenetics (Busskamp et al., 2010; Busskamp and Roska,
2011), or to bypass photoreceptors with visual prostheses (Zrenner, 2013).

After the development and successful clinical application of cochlear implants (Rauschecker and
Shannon, 2002; Clark, 2006), neural prostheses were exploited in the treatment of diverse acquired
or hereditary neural defects including visual impairments. However, restoring vision with bionic
devices can be much more complicated. The idea of probing electrical stimulation to restore vision
was first reported by Foerster (1929) and subsequently explored by coupling surface electrodes to
the visual cortex (Brindley and Lewin, 1968; Dobelle and Mladejovsky, 1974; Dobelle et al., 1974).
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Some of these approaches were even tested in human volunteers
reporting perception of phosphenes. Morevoer, early attempt
to retinal stimulation (Dawson and Radtke, 1977) were also
exploited following the demonstration that trans-ocular retinal
stimulation can induce the perception of phosphenes in both
normal subjects (Carpenter, 1972) and blind people affected
by Retinitis pigmentosa (Potts and Inoue, 1969). Since loss
of vision can results from the alteration of any element of
the visual pathway from the eye to the visual cortex in the
brain, the approaches currently exploited as visual prostheses
have been classified in cortical (Schmidt et al., 1996; Maynard
et al., 1997; Normann et al., 1999; Rousche and Normann,
1999), optic nerve (Veraart et al., 2003; Fang et al., 2005;
Sakaguchi et al., 2012), or retinal (da Cruz et al., 2013;
Stingl et al., 2013) implants depending on their position in
the visual path (Winter et al., 2007). Retinal prostheses are
designed to treat diseases affecting photoreceptors, whereas optic
nerve and cortical prostheses could theoretically address these
conditions plus those occurring further along the visual path
(e.g., glaucoma, diabetic retinopathy, severe optic atrophy, and
traumatic damages) (Merabet et al., 2005). Retinal implants
quickly became the preferred strategies, because they can benefit
from the natural information processing along the visual path.
On the other hand, cortical prostheses are hampered by the
difficult to communicate directly at the highest level of the visual
information processing.

Retinal implants can be classified on the basis of two
distinctive criteria, their position with respect to the retina or
their functional principle. Two kind of retinal implants have
been proposed on the basis of the first criterion: epi-retinal
and sub-retinal. In the epi-retinal configuration, the prosthesis
interfaces directly the ganglion cell layer, whereas in the sub-
retinal configuration the implant is positioned behind the retina
in place of photoreceptors. Based on the second criterion,
retinal prostheses can be identified as micro-photodiode arrays
(MPDAs) or micro-electrode arrays (MEAs). MEA-based devices
consist of an implanted electrode array physically connected
to a multichannel stimulator. Images are collected by a digital
camera and processed by an image-processing unit, which
in turn develops and generates a specific stimulation pattern
wirelessly transmitted to the implanted chip. Recently, these
retinal implants have been developed mainly by three research
consortium: Boston Retinal Implant Project (Boston, MA, USA),
Second Sightr Medical Products Inc. (Symlar, USA), and
Pixium Visium SA (Paris, France). The first targets the sub-
retinal implant location, while the latter two target an epi-
retinal implant location. On the contrary, MPDAs have been
exploited mainly by two consortiums: Optobionics (Chicago,
USA) and Retina Implant AG (Reutlingen, Germany). In this
configuration, the light impinging the retina is converted by the
photodiodes in electrical stimuli delivered to the inner retina
through metal electrodes. In general, they are designed to be
positioned in the sub-retinal space, thus providing functional
replacement of photoreceptors, representing the earliest possible
level, thus reducing the level of signal processing needed.
On the same framework, the unit of Grabiel A. Silva is
developing a new photo-detector technology approaching the

natural photoreceptors with nanoscale control of topography
(Khraiche et al., 2011). This technology employs semiconductor
vertical nanowires that promise to be high sensitivity, low power,
and broadband photo-detectors.

Novel Interfaces and Stimulation
Paradigms

Photovoltaic Stimulation
Current techniques employed in the fabrication of retinal
prostheses must provide control signals and/or power to the
implanted chip. This is typically solved via transdermal inductive
coils that deliver energy and signals via intraocular cables to the
implanted array. In general, this limits the number of electrode
that can be addressed, entails the need of sealed case for the
implanted electronic circuit, and requires the implementation of
complex surgical procedures (Zrenner, 2012).

Photovoltaic retinal stimulation was envisaged in the middle
of the 50’s when a photosensitive selenium cell placed behind the
retina of a blind patient resulted in the detection of phosphenes
when illuminated (Tassicker, 1956). This concept was explored
again in the early 90’s by Alan Chow and associated that proposed
the implantation of a photovoltaic semiconductor-based MPDA
with capacitive electrodes (Chow et al., 2004, 2010), the artificial
silicon retina (ASR, Optobionics). After preliminary studies in
rabbits (Chow and Chow, 1997) and cats (Chow et al., 2001),
in June 2000 and July 2001, six Retinitis pigmentosa patients
were implanted with the ASR chip in a pilot feasibility and
safety study with a follow up of 6 months (3 patients) and 18
months (3 patients) (Chow et al., 2004). As result of the trial,
all patients observed vision improvements of the implanted eye
in retinal areas both adjacent to and distant to the implant
that included the macular area. These vision changes consisted
of subjective and objective improvements of complex visual
function such as visual acuity, and the perceptions of color,
contrast, and darkness. Because of the huge improvements in
visual functions and because of these improvements involved
locations distant from the implant, they were unlikely due to
an acute effect from ASR electrical stimulation. In addition,
improvements also did not occur immediately, but 1 week
to 2 months later. The findings suggested that a generalized
neurotrophic effect might have resulted from ASR electrical
stimulation.

In the recent years, the group of Daniel Palanker
demonstrated the possibility to restore light responses with
a photovoltaic sub-retinal implant (Mathieson et al., 2012;
Mandel et al., 2013). Based on a similar concept of the ASR,
this photovoltaic sub-retinal implant allows the restoration of
light sensitivity in blind rats with photoreceptor degeneration.
Moreover, they demonstrated the capability to restore visual
acuity up to 0.47 cycles per degree, roughly corresponding to
20/250 when theoretically scaled to the dimension of the human
eye. Moreover, this limit appears to be closely related with the
pixel size; thus a further reduction of the pixel size could support
an even higher visual acuity. In the same years, two independent
groups pioneered the concept of photovoltaic stimulation
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with conjugated polymers (Ghezzi et al., 2013; Gautam et al.,
2014). The advantage in using conjugated polymers in retinal
implants consists in a large absorption coefficient allowing
for the fabrication of thin, lightweight, and pliable structures
(Figure 1). Moreover, the solution-processable films can be
patterned on flexible and conformable substrates for a better
match with the retina mechanics. These devices have been
validated in vitro with retinal explants from light-induced
degenerated rats and chicken embryos. Lately, Yael Hanein
proposed the use of a semiconductor nanorod-carbon nanotube
pair for photovoltaic stimulation of the retina providing a highly
efficient photosensitivity (Bareket et al., 2014).

Photo-thermal Stimulation
Direct infrared neural stimulation (INS) has been recently
introduced has alternative to optogenetic methods for light-tissue
interaction (Wells et al., 2005). The principle of INS stimulation
consists in the use of infrared laser pulses tuned to water
absorption peaks; infrared light absorption by the tissue’s water
content is putatively responsible of causing rapid membrane
capacitance changes leading to photo-thermally induced neural
excitation (Shapiro et al., 2012). To adapt this concept to
vision restoration (Figure 1), water absorption was replaced
by photo-absorbers (e.g., black micro-particles) scattered in
close proximity of the target cells (Farah et al., 2013). In
addition, the photo-thermal approach was also demonstrated be
able not only to induce neuronal excitation but also neuronal
silencing upon prolonged illumination (Yoo et al., 2014). In
the framework of vision restoration, photo-thermal modulation
could now represent a novel strategy to induce both excitation
and inhibition in the retinal circuitry. In addition, these effects
are now taken in consideration also in the photovoltaic retinal
prostheses, where light absorption (e.g., by conjugated polymers)
may induce also photo-thermal responses (Martino et al., 2015).

In summary, photo-thermal modulation based on heating of
exogenous photo-absorbers is a potential high-resolution optical
stimulation approach; however, it is still in its early stage of
biophysical and physiological characterization.

Ultrasonic Stimulation
Ultrasound waves were firstly introduced as a tool for
retinal stimulation in 2012 by Shy Shoham, who envisaged
a non-invasive retinal device sculpting the ultrasonic field
to obtain an efficient neuro-stimulation (Naor et al., 2012).
The concept behind the acoustic retinal prosthesis (Figure 1)
consists in an external camera with an image-processing unit
that transmit pattern information to a multi-element phases
array located externally to the cornea with a coupling gel.
Waves penetrate the eye and create a projected pattern for
exciting retinal neurons. Recent studies from the group of
William J. Tyler confirmed that focused ultrasonic pulses
efficiently stimulate cortical neurons in vitro (Tyler et al.,
2008), in vivo (Tufail et al., 2010), and in humans (Legon
et al., 2014). Retinal stimulation with acoustic waves was
demonstrated in vivo (Naor et al., 2012) and with retinal
explants (Menz et al., 2013). In the latter report, authors
demonstrated that ultrasound activated in part interneurons

beyond photoreceptors; these evidences suggest ultrasonic
stimulation as a valuable technology in case of photoreceptor
degeneration.

Although promising, many questions about this technological
framework still remain open. The mechanism of biological
transduction of ultrasonic stimulation is largely unknown;
therefore it is not yet clear if this effect is ubiquitous or delivered
only to specific cell types. Moreover, additional investigations are
required to understand the long-term tolerability of ultrasonic
stimulation.

Challenges in Materials and Fabrication

First, any prosthesis should be considered biocompatible, thus
minimizing or avoiding problems related to tissue encapsulation
and cellular/immune response. On the other hand, it should be
mechanically stable once implanted, with a lifetime compatible
with the human life (order of decades). In general, the pure
biocompatibility of implants described so fare are good. However,
in addition to biocompatibility issues related to the use of
foreign materials in the host eye, toxic effects at the pixel
level must be considered. In fact, cellular-electrode interface is
an argument of intense research in the recent years, in terms
of chemical composition, physical, and mechanical properties,
long-term stability, and charge transfer from the electrode to
the target tissue. Material selection plays a critical role. As
an example, carbon-based materials (e.g., conjugated polymers,
carbon nanotubes, graphene) have now been explored as the
working element in a vast array of bionic devices, thus becoming
a valuable solution for the next generation of implants (Fattahi
et al., 2014).

A second challenge in retinal prosthetics consists in the design
of prostheses allowing for the coverage of a wide area. Surface
coverage directly affects the size of the field of view restored
in the blind patient, thus it became of primary importance to
guarantee an enlargement of the central visual field enough to
allow reasonablemobility. However, because of technological and
surgical limits, Argus II™, the largest prosthesis implanted in
humans sizes approximately 3 × 5mm thus covering 11◦ × 19◦

in the visual field (∼22◦ diagonally). Other prostheses typically
are in the range of 1-3mm. Investigation on normal individuals
under pixelated vision condition indicated that 30◦ of visual
field could provide adequate mobility skills (Cha et al., 1992;
Dagnelie et al., 2007). Preliminary attempts in providing wide-
field retinal prostheses have been proposed (Ameri et al., 2009;
Waschkowski et al., 2014); however, implantation of a large
electrode array brings on new challenges that are still unmet.
As the area of the implant increase, the conformity of the array
to the eye curvature became important to minimize the relative
distance between the electrodes and the retinal surface. This is
an important parameter in order to minimize the strength of
the electric pulse and increase the resolution in stimulation. In
addition, the ability to fold prior to surgical insertion then unfold
it inside the eye chamber is mandatory in order to insert the
prosthesis through a scleral incision. The selection of the proper
materials and fabrication strategies plays a major role toward this
goal.
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FIGURE 1 | Novel strategies for retinal stimulation. Photothermal

stimulation left requires photo-absorber (e.g., black µ-particles) that absorb

light energy and transfer it to heat, which in turn activates the cells in their

near vicinity. Photovoltaic stimulation middle requires photoresponsive

surfaces (silicon, conjugated polymers, etc.) inducing capacitive stimulation

upon light absorption and charge generation. In ultrasonic stimulation right,
ultrasonic waves are transmitted into the eye and interfere to create a

projected pattern for exciting retinal neurons.

Complementary to the enlargement of the visual field, the
design of retinal prosthesis with high pixel density matches the
need of restoring a useful visual acuity in the blind patient.
However, increasing coverage together with pixel density leads
to the increase of the number of pixels, possibly introducing
significant technological problems (Palanker et al., 2005). While
micro-fabrication techniques allow for the realization of high
dense MEAs, however electrode routing and the size of the
connecting cable with the extra-ocular device still represent the
major limitation. In this perspective, photovoltaic stimulation
represents a powerful strategy to avoid intra-extra ocular
connection and simplify the surgical procedure. However, once
again, photovoltaic elements needs to be fabricated on flexible

wide-field substrates; thus requiring the implementation of
conformable materials and fabrication techniques.

Conclusion

Retinal stimulation represents a real solution for restoring
vision in blind people. The clinical trials with conventional
retinal prostheses already demonstrated that tangible results can
be obtained in everyday life. However, the goal of “restoring
vision” is still unreached. The challenges behind making retinal
stimulation a valuable solution for blindness must be faced by
an interdisciplinary activity including experts in material science,
micro-fabrication, neuroscientists, and clinicians.
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