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Abstract—As the recognition of emotion from speech has
matured to a degree where it becomes applicable in real-life
settings, it is time for a realistic view on obtainable performances.
Most studies tend to overestimation in this respect: acted data
is often used rather than spontaneous data, results are reported
on pre-selected prototypical data, and true speaker disjunctive
partitioning is still less common than simple cross-validation.
A considerably more realistic impression can be gathered by
inter-set evaluation: we therefore show results employing six
standard databases in a cross-corpora evaluation experiment. To
better cope with the observed high variances, different types
of normalization are investigated. 1.8 k individual evaluations in
total indicate the crucial performance inferiority of inter- to intra-
corpus testing.

I. INTRODUCTION

Since the dawn of emotion and speech research [1], [2], [3],

[4], [5], [6], the usefulness of automatic recognition of emotion

in speech seems increasingly agreed given hundreds of (com-

mercially interesting) use-cases. Most of these, however, require

sufficient reliability, which may not be given yet [7], [8], [9],

[10], [11], [12], [13], [14]. A simplification that characterizes

almost all emotion recognition performance evaluations is that

systems are usually trained and tested using the same database.

Even though speaker-independent evaluations have become

quite common, other kinds of potential mismatches between

training and test data, such as different recording conditions

(including different room acoustics, microphone types and

positions, signal-to-noise ratios, etc.), languages, or types of

observed emotions, are usually not considered. Addressing

such typical sources of mismatch all at once is hardly possible,

however, we believe that a first impression of the generalization

ability of today’s emotion recognition engines can be obtained

by simple cross-corpora evaluations. For emotion recognition,

several studies already provide accuracies on multiple corpora

– however, only very few consider training on one and testing

on a completely different one (e. g., [15], and [16], where

two, and four corpora are employed, respectively). In this

article, we provide cross-corpus results employing six of the

best known corpora in the field of emotion recognition. This

allows us to discover similarities among databases which in

turn can indicate what kind of corpora can be combined –

e. g., in order to obtain more training material for emotion

recognition systems as a means to reduce the problem of

data sparseness. A specific problem of cross-corpus emotion

recognition is that mismatches between training and test

data not only comprise the aforementioned different acoustic

conditions but also differences in annotation. Each corpus for

emotion recognition is usually recorded for a specific task

– and as a result of this, they have specific emotion labels

assigned to the spoken utterances. For cross-corpus recognition

this poses a problem, since the training and test sets in any

classification experiment must use the same class labels. Thus,

mapping or clustering schemes have to be developed whenever

different emotion corpora are jointly used.

As classification technique, we follow the approach of supra-

segmental feature analysis via Support Vector Machines by

projection of the multi-variate time series consisting of Low-

Level-Descriptors as pitch, Harmonics-to-Noise ratio (HNR),

jitter, and shimmer onto a single vector of fixed dimension

by statistical functionals such as moments, extremes, and

percentiles [17]. To better cope with the described variation

between corpora, we investigate four different normalization

approaches: normalization to the speaker, the corpus, to both,

and no normalization. As mentioned before, every considered

database bases on a different model or subset of emotions. We

therefore limit our analyses to employing only those emotions

at a time that are present in the other data set, respectively.

As recognition rates are comparably low for the full sets, we

consider all available permutations of two up to six emotions

by exclusion of remaining ones. In addition to exclusion, we

also have a look at clustering to the two predominant types of

general emotion categories, namely positive/negative valence,

and high/low arousal. Four data sets are used for testing with

an additional two that are used for training only. In total, we

examine 23 different combinations of training and test data,

leading to 409 different emotion class permutations. Together

with 2 × 23 experiments on the discrimination of emotion



categories (valence and arousal), we perform 455 different

evaluations for four different normalization strategies, leading to

1 820 individual results. To best summarize the findings of this

high amount of results, we show box-plots per test-database and

the two most important measures: accuracy (i. e., recognition

rate) and – important in the case of heavily unbalanced class

distributions – unweighted average recall. For the evaluation of

the best normalization strategy we calculate Euclidean distances

to the optimum for each type of normalization over the complete

results.

The rest of this article is structured as follows: we first deal

with the basic necessities to get started: the six databases chosen

(sec. II) with a general commentary on the present situation.

We next get on track with features and classification (sec. III).

Then we consider normalization to improve performance in

sec. IV. Some comments will follow on evaluation (sec. V)

before concluding this article (sec. VI).

II. SELECTED DATABASES

For the following cross-corpora investigations, we chose six

among the most frequently used and well known. Only such

available to the community were considered. These should

cover a broad variety reaching from acted speech (the Danish

and the Berlin Emotional Speech databases, as well as the

eNTERFACE corpus) with acted fixed spoken content to natural

with fixed spoken content represented by the SUSAS database,

and to more modern corpora with respect to the number of

subjects involved, naturalness, spontaneity, and free language as

covered by the AVIC and SmartKom [18] databases. However,

we decided to compute results only on those that cover a broader

variety of more ‘basic’ emotions, which is why AVIC and

SUSAS are exclusively used for training purposes. Naturally we

have by that to leave out several emotional or broader affective

states as frustration or irritation – once more databases cover

such, one can of course investigate cross-corpus effects for

such states as well. Note also that we did not exclusively focus

on corpora that include non-prototypical emotions, since those

corpora partly do not contain categorical labels (e. g., the VAM

corpus). The corpus of the first comparative Emotion Challenge

[17] – the FAU Aibo Emotion Corpus of children’s speech –

could regrettably also not be included in our evaluations, as it

would be the only one containing exclusively children speech.

We thus decided that this would introduce an additional severe

source of difficulty for the cross-corpus tests.

An overview on properties of the chosen sets is found in

Table II. Since all six databases are annotated in terms of

emotion categories, a mapping was defined to generate labels

for binary arousal/valence from the emotion categories. This

mapping is given in Table I. In order to be able to also map

emotions for which a binary arousal/valence assignment is not

clear, we considered the scenario in which the respective corpus

was recorded and partly re-evaluated the annotations (e. g., neu-
trality in the AVIC corpus tends to correspond to a higher level

of arousal than it does in the DES corpus; helpless people in the

SmartKom corpus tend to be highly aroused, etc.). The chosen

TABLE I
MAPPING OF EMOTIONS FOR THE CLUSTERING TO A BINARY

AROUSAL/VALENCE DISCRIMINATION TASK.

AROUSAL Low High
AVIC boredom neutral, joyful
DES neutral, sadness anger, happiness, surprise
EMO-DB boredom, disgust, neutral,

sadness
anger, fear, joy

eNTER-
FACE

disgust, sadness anger, fear, joy, surprise

Smart-
Kom

neutral, pondering, anger, helplessness, joy,
surprise

SUSAS neutral high stress, medium stress,
screaming, fear

VALENCE Negative Positive
AVIC boredom neutral, joyful
DES angry, sadness happiness, neutral, surprise
EMO-DB anger, boredom, disgust,

fear, sadness
joy, neutral

eNTER-
FACE

anger, disgust, fear, sad-
ness

joy, surprise

Smart-
Kom

anger, helplessness joy, neutral, pondering, sur-
prise, unidentifiable

SUSAS high stress, screaming, fear medium stress, neutral

sets provide a good variety reaching from acted (DES, EMO-

DB) over induced (eNTERFACE) to natural emotion (AVIC,

SmartKom, SUSAS) with strictly limited textual content (DES,

EMO-DB, SUSAS) over more textual variation (eNTERFACE)

to full textual freedom (AVIC, SmartKom). Further Human-

Human (AVIC) as well as Human-Computer (SmartKom)

interaction are contained. Three languages – English, German,

and Danish – are comprised. However, these three all belong to

the same family of Germanic languages. The speaker ages and

backgrounds vary strongly, and so do of course microphones

used, room acoustics, and coding (e. g., sampling rate reaching

from 8 kHz to 44.1 kHz) as well as the annotators. Summed

up, cross-corpus investigation will reveal performance as for

example in a typical real-life media retrieval usage where a

very broad understanding of emotions is needed.

III. FEATURES AND CLASSIFICATION

We decided for a typical state-of-the-art emotion recognition

engine operating on supra-segmental level, and use a set of

1 406 systematically generated acoustic features based on 37

Low-Level-Descriptors as seen in Table III and their first order

delta coefficients. These 37× 2 descriptors are next smoothed

by low-pass filtering with a simple moving average filter.

We derive statistics per speaker turn by a projection of each

uni-variate time series – the Low-Level-Descriptors - onto a

scalar feature independent of the length of the turn. This is

done by use of functionals. 19 functionals are applied to each

contour on the word level covering extremes, ranges, positions,

first four moments, and quartiles as also shown in Table III.

Note that three functionals are related to time (position in time)

with the physical unit milliseconds.

Again, we choose the most frequently encountered solution

(e. g., in [24], [25], [26], [27], [28]) for representative results
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TABLE III
Overview of Low-Level-Descriptors (2× 37) and functionals (19) for static

supra-segmental modeling.

Low-Level-Descriptors Functionals
(Δ) Pitch mean, centroid, stdandard deviation
(Δ) Energy Skewness, Kurtosis
(Δ) Envelope Zero-Crossing-Rate
(Δ) Formant 1–5 amplitude quartile 1/2/3
(Δ) Formant 1–5 bandwidth quartile 1 – min., quart. 2 – quart. 1
(Δ) Formant 1–5 position quartile 3 – quart. 2, max. – quart. 3
(Δ) MFCC 1–16 max./min. value,
(Δ) HNR max./min. relative position
(Δ) Shimmer range max. – min.
(Δ) Jitter position 95 % roll-off-point

in sections IV and V: Support Vector Machine (SVM) classifi-

cation. Thereby we use a linear kernel and pairwise multi-class

discrimination [29].

IV. NORMALIZATION

Speaker normalization is widely agreed to improve recog-

nition performance of speech related recognition tasks. Nor-

malization can be carried out on differently elaborated levels

reaching from normalization of all functionals to, e. g., Vocal

Tract Length Normalization of MFCC or similar Low-Level-

Descriptors. However, to provide results with a simply imple-

mented strategy, we decided for the first – speaker normalization

on the functional level – which will be abbreviated SN . Thus,

SN means a normalization of each calculated functional feature

to a mean of zero and standard deviation of one. This is done

using the whole context of each speaker, i. e., having collected

some amount of speech of each speaker without knowing

the emotion contained. As we are dealing with cross-corpora

evaluation in this article, we further introduce another type

of normalization, namely ‘corpus normalization’ (CN ). Here,

each database is normalized in the described way before its

usage in combination with other corpora. This seems important

to eliminate different recording conditions as varying room

acoustics, different type of and distance to the microphones, and

– to a certain extent – the different understanding of emotions by

either the (partly contained) actors, or the annotators. These two

normalization methods (SN and CN ) can also be combined:

after having each speaker normalized individually, one can

additionally normalize the whole corpus, that is ‘speaker-

corpus normalization’ (SCN ). To get an impression upon

improvement over no normalization, we consider a fourth

condition, which is simply ‘no normalization’ (NN ).

V. EVALUATION

Early studies started with speaker dependent recognition

of emotion, just as in the recognition of speech [30], [31],

[32]. But even today the lion’s share of research presented

relies on either subject dependent or percentage split and cross-

validated test-runs, e. g., [33]. The latter, however, still may

contain annotated data of the target speakers, as usually j-

fold cross-validation with stratification, or random selection

of instances is employed. Thus, only Leave-One-Subject-Out



(LOSO) or Leave-One-Subject-Group-Out (LOSGO) cross-

validation is next considered for ‘within’ corpus results to

ensure true speaker independence (cf. [34]). Still, only cross-

corpora evaluation encompasses realistic testing conditions

which a commercial emotion recognition product used in every-

day life would frequently have to face.

The within corpus evaluations’ results – intended for a first

reference – are sketched in Figures 1(a) and 1(b). As classes

are often unbalanced in the oncoming cross-corpus evaluations,

where classes are reduced or clustered, the primary measure

is unweighted average recall (UAR, i. e., the accuracy per

class divided by the number of classes without considerations

of instances per class), which has also been the competition

measure of the first official challenge on emotion recognition

from speech [17]. Only where appropriate the weighted average

recall (WAR, i. e., accuracy) will be provided in addition. For

the inter-corpus results only minor differences exist between

these two measures owed to the mostly acted and elicited

nature of the corpora, where instances can easily be collected

balanced among classes. The results shown in Figures 1(a) and

1(b) were obtained using LOSO (DES, EMO-DB, SUSAS) and

LOSGO (AVIC, eNTERFACE, SmartKom) evaluations (due

to frequent partitioning for these corpora). For each corpus

classification of all emotions contained in that particular corpus

is performed. A great advantage of cross-corpora experiments

is the well definedness of test and training sets and thus

the easy reproducibility of the results. Since most emotion

corpora, in contrast to speech corpora for automatic speech

recognition or speaker identification, do not provide defined

training, development, and test partitions, individual splitting

and cross validation are mostly found, which makes it hard

to reproduce the results under equal conditions. In contrast to

this, cross-corpus evaluation is well defined and thus easy

to reproduce and compare. Table IV lists all 23 different

training and test set combinations we evaluated in our cross-

corpus experiments. As mentioned before, SUSAS and AVIC

are only used for training, since they do not cover sufficient

overlapping ‘basic’ emotions for the testing. Furthermore, we

omitted combinations for which the number of emotion classes

occurring in both, the training and the test set was lower than

three (e. g., we did not evaluate training on AVIC and testing

on DES, since only neutral and joyful occur in both corpora –

see also Table II). In order to obtain combinations for which

up to six emotion classes occur in the training and test set, we

included experiments in which more than one corpus was used

for training (e. g., we combined eNTERFACE and SUSAS

for training in order to be able to model six classes when

testing on EMO-DB). Dependent on the maximum number

of different emotion classes that can be modeled in a certain

experiment, and dependent on the number of classes we actually

use (two to six), we get a certain number of possible emotion

class permutations according to Table IV. For example, if we

aim to model two emotion classes when testing on EMO-DB

and training on DES, we obtain six possible permutations.

Evaluating all permutations for all of the 23 different training-

test combinations leads to 409 different experiments (sum

TABLE IV
Number of emotion class permutations dependent on the used training and
test set combination and the total number of classes used in the respective

experiment.

Test set Training set # classes
2 3 4 5 6

EMO-DB AVIC 3 1 0 0 0
DES 6 4 1 0 0
eNTERFACE 10 10 5 1 0
SmartKom 3 1 0 0 0
eNTERF.+SUSAS 15 20 15 6 1
eNTERF.+SUSAS+DES 15 20 15 6 1

DES EMO-DB 6 4 1 0 0
eNTERFACE 6 4 1 0 0
SmartKom 6 4 1 0 0
EMO-DB+SUSAS 6 4 1 0 0
EMO-DB+eNTERFACE 10 10 5 1 0

eNTERFACE DES 6 4 1 0 0
EMO-DB 10 10 5 1 0
SmartKom 3 1 0 0 0
EMO-DB+SUSAS 10 10 5 1 0
EMO-DB+SUSAS+DES 15 20 15 6 1

SmartKom DES 6 4 1 0 0
EMO-DB 3 1 0 0 0
eNTERF. 3 1 0 0 0
EMO-DB+SUSAS 3 1 0 0 0
EMO-DB+SUSAS+DES 6 4 1 0 0
eNTERF.+SUSAS 6 4 1 0 0
eNTERF.+SUSAS+DES 6 4 1 0 0

SUM 163 146 75 22 3

of the last line in Table IV). Additionally, we evaluated the

discrimination between positive and negative valence as well

as the discrimination between high and low arousal for all 23

combinations, leading to 46 additional experiments.

We next strive to reveal the optimal normalization strategy

from those introduced in section IV (refer to Table V for the

results). The following evaluation is carried out: the optimal

result obtained per run by any of the four test sets is stored as

the maximum obtained performance as corresponding element

in a maximum result vector vmax. This result vector contains

the result for all tests and any permutation arising from

exclusion and clustering of classes (see also Table IV). Next, we

construct the vectors for each normalization strategy on its own,

that is vi with i ∈ {NN,SN,CN, SCN}. Subsequently each

of these vectors vi is element-wise normalized to the maximum

vector vmax by vi,norm = vi · v−1
max. Finally, we calculate the

Euclidean distance to the unit vector of the according dimension.

Thus, overall we compute the normalized Euclidean distance

of each normalization method to the maximum obtained

performance by choosing the optimal strategy at a time. That

is the distance to maximum (DTM ) with DTM ∈ [0,∞[
whereas DTM = 0 resembles the optimum (“this method

has always produced the best result”). Note that the DTM as

shown in Table V is a rather abstract performance measure,

indicating the relative performance difference between the

normalization strategies, rather than the absolute recognition

accuracy. Here, we consider mean weighted average recall

(=accuracy, Table V) and – as before – mean unweighted



(a) UAR (b) WAR

Fig. 1. Unweighted and weighted average recall (UAR/WAR) in % of within corpus evaluations on all six corpora using corpus normalization (CN ). Results
for all emotion categories present within the particular corpus, binary arousal, and binary valence.

TABLE V
(Un-)Weighted average recall (UAR/WAR). Revealing the optimal normalization method: none (NN ), speaker (SN ), corpus (CN ) or combined speaker, then
corpus (SCN ) normalization. Shown is the Euclidean distance to the maximum vector (DTM) of mean accuracy over the maximum obtained throughout all

class permutations and for all tests. Detailed explanation in the text.

DTM # classes
[%] 2 3 4 5 6 V A mean

WAR NN 1.24 1.82 1.96 0.69 0.71 0.98 1.43 1.26
CN 0.67 0.87 0.94 0.87 0.90 0.63 0.86 0.82
SN 0.61 0.82 0.63 0.58 0.64 0.57 0.72 0.65
SCN 0.47 0.78 0.70 0.76 0.84 0.32 0.71 0.65

UAR NN 0.78 1.32 1.51 0.99 0.81 0.50 0.94 0.98
CN 0.83 0.82 1.09 1.07 0.90 0.44 0.62 0.82
SN 0.27 0.38 0.42 0.39 0.41 0.43 0.23 0.36
SCN 0.30 0.39 0.47 0.46 0.52 0.42 0.26 0.40
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Fig. 2. Box-plots for unweighted average recall (UAR) in % for cross-corpora testing on four test corpora. Results obtained for varying number of classes
(2–6) and for classes mapped to high/low arousal (A) and positive/negative valence (V).

recall (UAR) (Table V) for the comparison, as some data sets

are not in balance with respect to classes (cf. Table II). In

the case of accuracy, no significant difference [35] between

speaker and combined speaker and corpus normalization is

found. As the latter comprises increased efforts not only in

terms of calculation but also in terms of needed data, the

favorite seems clear, already. A secondary glance at UAR

strengthens this choice: here solemnly normalizing the speaker

outperforms the combination with the corpus normalization.

Thus, no extra boost seems to be gained from additional corpus

normalization. However, there is also some variance visible

from the tables: the distance to the maximum (DTM in the

tables) never resembles zero, which means that no method is

always performing best. Further it can be seen that depending

on the number of classes the combined version of speaker and

corpus normalization partly outperforms speaker only. As a

result of this finding, the further provided box-plots are based

on speaker normalized results: to summarize the results of

permutations over cross-training sets and emotion groupings,

box-plots indicating the unweighted average recall are shown



(see Figures 2(a) to 2(d)). All values are averaged over all

constellations of cross-corpus training to provide a raw general

impression of performances to be expected. The plots show

the average, the first and third quartile, and the extremes for

a varying number (two to six) of classes (emotion categories)

and the binary arousal and valence tasks. First, the DES set

is chosen for testing, as depicted in Figure 2(a). For training

five different combinations of the remaining sets are used (see

Table IV). As expected the weighted (i. e., accuracy – not

shown) and unweighted recall monotonously drop on average

with an increased number of classes. For the DES experience

holds: arousal discrimination tasks are ‘easier’ on average. No

big differences are further found between the weighted and

unweighted recall plots. This stems from the fact that DES

consists of acted data, which is usually found in more or less

balanced distribution among classes. While the average results

are constantly found considerably above chance level, it also

becomes clear that only selected groups are ready for real-life

application – of course allowing for some error tolerance. These

are two-class tasks with an approximate error of 20 %. A very

similar overall behavior is observed for the EMO-DB in Figure

2(b). This seems no surprise, as the two sets have very similar

characteristics. For EMO-DB a more or less additive offset in

terms of recall is obtained, which is owed to the known lower

‘difficulty’ of this set. Switching from acted to mood-induced,

we provide results on eNTERFACE in Figure 2(c). However,

the picture remains the same, apart from lower overall results:

again a known fact from experience, as eNTERFACE is no

‘gentle’ set, partially for being more natural than the DES

corpus or the EMO-DB.

Finally considering testing on spontaneous speech with non-

restricted varying spoken content and natural emotion we note

the challenge arising from the SmartKom set in Figure 2(d):

as this set is – due to its nature of being recorded in a user-

study – highly unbalanced, the mean unweighted recall is again

mostly of interest. Here, rates are found only slightly above

chance level. Even the optimal groups of emotions are not

recognized in a sufficiently satisfying manner for a real-life

usage. Though one has to bear in mind that SmartKom was

annotated multimodally, i. e., the emotion is not necessarily

reflected in the speech signal, and overlaid noise is often

present due to the setting of the recording, this shows in

general that the reach of our results is so far restricted to

acted data or data in well defined scenarios: the SmartKom

results clearly demonstrate that there is a long way ahead for

emotion recognition in user studies (cf. also [17]) and real-life

scenarios. At the same time, this raises the ever-present and

in comparison to other speech analysis tasks unique question

on ground truth reliability: while the labels provided for acted

data can be assumed to be double-verified, as the actors usually

wanted to portray the target emotion which is often additionally

verified in perception studies, the level of emotionally valid

material found in real-life data is mostly unclear relying on

few labelers with often high disagreement among these.

VI. CONCLUDING REMARKS

Summing up, we have shown results for intra- and inter-

corpus recognition of emotion from speech. By that we have

learnt that the accuracy and mean recall rates highly depend

on the specific sub-group of emotions considered. In any

case, performance is decreased dramatically when operating

cross-corpora-wise. As long as conditions remain similar,

cross-corpus training and testing seems to work to a certain

degree: the DES, EMO-DB, and eNTERFACE sets led to

partly useful results. These are all rather prototypical, acted

or mood-induced with restricted pre-defined spoken content.

The fact that three different languages – Danish, English, and

German – are contained, seems not to generally disallow inter-

corpus testing: these are all Germanic languages, and a highly

similar cultural background may be assumed. However, the

cross-corpus testing on a spontaneous set (SmartKom) clearly

indicated limitations of current systems. Here only few groups

of emotions stood out in comparison to chance level. To better

cope with the differences among corpora, we evaluated different

normalization approaches, whereas speaker normalization led

to the best results. For all experiments we had used supra-

segmental feature analysis basing on a broad variety of prosodic,

voice quality, and articulatory features and SVM classification.

While an important step was taken in this study on inter-corpus

emotion recognition a substantial body of future research

will be needed to highlight issues like different languages.

Future research will also have to address the topic of cultural

differences in expressing and perceiving emotion. Cultural

aspects are among the most significant variances that can occur

when jointly using different corpora for the design of emotion

recognition systems. Thus, it is important to systematically

examine potential differences and develop strategies to cope

with cultural manifoldness in emotional expression. To better

cope with differences across corpora, adaptation of the feature

sets [36], sub-sampling of the instances of the corpora rather

than taking all data [37], adding unlabelled data to self-train the

system [38], synthesizing of additional data [39], or employing

transfer learning methods to make the data more ‘similar’ [40].

Concluding, this article has shown ways and need of future

research on the recognition of emotion in speech as it reveals

fallbacks of current-date analysis and corpora.
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things the measure is man”: Automatic classification of emotions and
inter-labeler consistency,” in Proc. of ICASSP 2005, Philadelphia, 2005,
pp. 317–320.

[35] L. Gillick and S. J. Cox, “Some statistical issues in the comparison of
speech recognition algorithms,” in Proc. of ICASSP 1989, vol. I, 1989,
pp. 23–26.

[36] F. Eyben, A. Batliner, B. Schuller, D. Seppi, and S. Steidl, “Cross-Corpus
Classification of Realistic Emotions - Some Pilot Experiments,” in Proc.
of 3rd International Workshop on EMOTION: Corpora for Research on
Emotion and Affect, satellite of LREC 2010. Valletta, Malta: ELRA,
2010, pp. 77–82.

[37] B. Schuller, Z. Zhang, F. Weninger, and G. Rigoll, “Selecting Training
Data for Cross-Corpus Speech Emotion Recognition: Prototypicality vs.
Generalization,” in Proc. of 2011 Speech Processing Conference. Tel
Aviv, Israel: AVIOS, 2011, 4 pages.
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