
Asynchronous Byzantine Agreement with Optimal Resilience
and Linear Complexity

Cheng Wang
EPFL

cheng.wang@epfl.ch

Abstract

Given a system with n > 3t+1 processes, where t is the tolerated number of faulty ones, we present
a fast asynchronous Byzantine agreement protocol that can reach agreement in O(t) expected running
time. This improves the O(n2) expected running time of Abraham, Dolev, and Halpern [1]. Furthermore,
if n = (3 + ε)t for any ε > 0, our protocol can reach agreement in O(1/ε) expected running time. This
improves the result of Feldman and Micali [7] (with constant expected running time when n > 4t).

1. Introduction

The Byzantine Agreement (BA) problem, first introduced by Pease, Shostak, and Lamport [11, 12], is a
fundamental problem in distributed computing. Given n processes, t of which being faulty, the problem
consists for all correct processes to agree on one of the input values. The faulty processes might deviate
from the algorithm assigned to them arbitrarily, e.g., to prevent correct processes from agreeing on one
of their input values.

A lot of work has been devoted to the problem in the last three decades. Despite the effort, the
Asynchronous Byzantine Agreement (ABA) problem, where the communication between processes can
take an arbitrary amount of time, is still not very well understood. Certain results are however known.
For example, it is known that the problem is impossible to solve if n 6 3t [9, 12]. Any ABA protocol
assuming n > 3t is called optimally resilient. According to the seminal result of [8], any deterministic
ABA protocol must have some non-terminating execution.

Faced with the impossibility result [8], a natural direction of research is to design efficient randomized
Byzantine agreement protocol. This direction was started with the work of Ben-or [3], Rabin [13], and
Bracha [4]. Remarkably, Canetti and Rabin [6] proposed an ABA protocol with constant expected running
time and overwhelming probability to terminate. With a randomized ABA protocol the best that can be
achieved is to have every execution terminate with probability one. Such protocols are said to be almost-
surely terminating [1].

Several almost-surely terminating ABA protocols were proposed. In 1983, Ben-Or [3] proposed an
almost-surely terminating ABA protocol for n > 5t, which runs in exponential expected time. One year
later, Bracha [4] presented an almost-surely terminating ABA, which also runs in exponential expected
time, but with optimal resilience, i.e., for n > 3t. In 1988, Feldman and Micali [7] presented an almost-
surely terminating ABA protocol with constant expected time, assuming however n > 4t. Twenty years
later, Abraham, Dolev, and Halpern [1] presented an almost-surely terminating optimally resilient ABA
protocol with polynomial efficiency (the expected running time is O(n2)). In some sense, state-of-the-art
results for almost-surely terminating ABA are [7] and [1]: optimally resilience with polynomial efficiency
on the one hand, or constant expected time, assuming however n > 4t, on the other hand.

We present in this paper a new almost-surely terminating ABA protocol that achieves a significant
progress with respect to the state-of-the-art. For n > 3t, our protocol completes in O(t) expected running
time. If n > (3 + ε)t where ε is an arbitrary positive constant, our protocol has O(1/ε) expected running
time. Table 1 aggregates these results in the context of related work.

Most ABA protocols follow the idea of Ben-or [3], Rabin [13], and Bracha [4], namely a reduction of
the ABA problem to the implementation of a common coin (namely, a source of common randomness
with certain properties). Specially, the reduction of Bracha [4] is optimally resilient and runs in constant
expected time. Thus, designing efficient ABA protocols could be solved by designing efficient common
coins. The protocol of Feldman and Micali [7] includes a method to implement a common coin by making

Reference Resilience Expected Running Time
Ben-Or (1983) [3] n > 5t O(2n)

Bracha (1984) [4] n > 3t O(2n)

Feldman, Micali (1988) [7] n > 4t O(1)

Abraham, Dolev, Halpern (2008) [1] n > 3t O(n2)

This paper n > 3t O(t)

This paper n > (3 + ε)t, (ε > 0) O(1/ε)

Table 1. Results for almost-surely terminating ABA problem

1

use of a verifiable secret sharing (VSS) scheme. (For a complete description of the reduction from VSS
to ABA, see [5].) Canetti and Rabin [6] have an implementation of asynchronous verifiable secret sharing
(AVSS) with constant expected running time but overwhelming probability to terminate (the resulting
ABA protocol is thus not almost-surely terminating). Recently, King and Saia [10] introduced a novel
technique for implementing common coin via a spectral method.

This paper follows the reduction from (some form of) AVSS to ABA. We first recall the standard
AVSS scheme [6]. Roughly speaking, an AVSS scheme consists of a sharing phase and a reconstruction
phase, involving a process designated as the dealer which has a value (usually called secret) to share.
In the sharing phase, the dealer shares its secret among all processes and each process locally verifies
that a unique secret is being considered. In the reconstruction phase, the processes reconstruct the secret
from the shares. The correctness of AVSS lies on two properties: (1) if the dealer is correct, then all
correct processes will reconstruct the secret of the dealer, and (2) if the dealer is faulty, then all correct
processes will reconstruct the same value that is fixed in the sharing phase.

We introduce in this paper a variant of AVSS called IVSS (standing for inferable (asynchronous)
verifiable secret sharing). Our IVSS scheme has a weaker correctness property than AVSS, but provides
strong fault-detection ability. Specifically, IVSS requires that if the correctness property of AVSS does
not hold in an invocation of some round, then correct processes will ignore (or infer) at least t(n− 3t)
faulty pairs from that round on. Here, by a faulty pair, we mean a pair of processes of which at least one
is faulty. In our IVSS protocol, secrets are shared through symmetric bivariate polynomials. If processes
reconstruct different secrets in the protocol, the symmetry of polynomials can be used to infer faulty
pairs.

There are existing secret sharing protocols with fault-detection capacity, e.g., shunning verifiable secret
sharing in [2] and secret sharing with dispute control in [1]. These protocols are composed of several
levels of secret sharing subprotocols, while our protocol is very simple with only one-level secret sharing
subprotocol. In all previous approaches, the Byzantine agreement algorithm proceeds round by round and,
once a round is over, the correct processes forget it and never look back to it. In fact, if a correct process
could look back at the history of invocations of the secret sharing protocol, it may infer more failures.
We implement this history-based checking mechanism in a certification subprotocol. This subprotocol
is invoked when the Byzantine agreement protocol is initialized and then runs concurrently with all
invocations of our IVSS protocol. The main technique for inferring faults in our protocol is also different
from [1, 2]. Our fault-detection mechanism is based on symmetric polynomials which enable our protocol
to infer a linear number of faults when secret sharing does not succeed, while protocols in [1, 2] can
generally infer only one fault.

The rest of this paper is organized as follows. In Section 2, we recall the asynchronous computing
model and the Byzantine agreement problem. In Section 3, we state the properties of our IVSS scheme
and describe an algorithm that implements it. In Section 4, we show how to obtain our fast ABA protocol
from our IVSS scheme. For space limitations, some algorithms and proofs are given in the appendices.

2. Model and Definitions

The Model. We consider an asynchronous computing model in the classical sense, e.g., [1, 6]. We consider
a complete network of n processes with identifiers {1, 2, . . . , n}. The number n is always strictly greater
than 3t. The communication channels are private, i.e. no one can read or alter messages transmitted
along it. Messages sent on a channel may have arbitrary (but finite) delay. A t-adversary can control at
most t processes during the Byzantine agreement protocol. Once a process is controlled, it hands all its
data over to the adversary and follows its instructions. We call all these controlled processes as faulty
ones and other uncontrolled processes as correct ones. Note that the adversary cannot access messages
transmitted between correct processes due to private communication channels.

2

We measure the running time of a protocol by the maximal expected number of communication rounds
it takes to reach agreement [6, 10]. Consider a virtual ‘global clock’ measuring time in the network. This
clock cannot be accessed by the processes. Let the delay of a message transmission denote the time
elapsed from its sending to its reception. The period of a finite execution of a protocol is the longest
delay of a message transmission during this execution. Let the duration of a finite execution denote the
total time measured by the global clock divided by the period of this execution. The expected running
time of a protocol, is the maximum over all inputs and applicable adversaries, of the average of the
duration of executions of the protocol over the random inputs of the processes. In addition, each process
divides its local time into rounds and execute a protocol round by round. The time of each round is less
than or equal to a period of the execution of a protocol. The expected running time of a protocol can be
computed by the expected rounds in execution.

Asynchronous Byzantine Agreement.

Definition 1 (ABA). Let π be any asynchronous protocol in which each process has a binary input. We
say that π is an almost-surely terminating, t-resilient ABA protocol if the following properties hold for
every t-adversary and every input:
• Termination: With probability one, every correct process terminates and outputs a value.
• Correctness: All correct processes which have terminated have the same outputs. Moreover, if all

correct processes have the same input, denoted v, then all correct processes output v.

Asynchronous Broadcast: A-Cast. We will often make use of this asynchronous broadcast primitive,
introduced by Bracha [4] (for n > 3t). We follow the terminology in [5]. For completeness, the
implementation is provided in Appendix I.

Definition 2 (A-Cast). Let π be any asynchronous protocol initiated by a designated process (the sender)
which has an input value u to be broadcast. We say that π is a t-resilient A-Cast protocol if the following
properties hold for every t-adversary:
• Termination:

1. If the sender is correct and all correct processes participate in π, then every correct process
eventually completes π.

2. If some correct process completes π, then every correct process eventually completes π.
• Correctness:

1. All correct processes which complete π receive the same value v.
2. If the sender is correct, then v = u.

3. Inferable Verifiable Secret Sharing

In this section, we first state the properties of our IVSS scheme. Then we provide an implementation
of IVSS. We prove that our implementation satisfies all the IVSS properties and finally we analyze its
fault-detection.

3.1. Definition

Definition 3 (Faulty Pair). An unordered pair {i, j} of processes is called a faulty pair if either i or j
is faulty.

Our IVSS protocol consists of two subprotocols: S (sharing protocol) and R (reconstruction protocol).
These two are invoked separately but R is never called unless S is completed, and R may not be called

3

even if S is completed. If the correct processes do not reconstruct a same secret in R, then a set of
faulty pairs will be inferred. We assume that each IVSS invocation is unique for every correct process.
This can be easily guaranteed, e.g. by associating with each IVSS invocation the identifier of the dealer
and an invocation counter.

Definition 4 (IVSS). Let (S,R) be any pair of sharing-reconstruction protocol with a dealer which has
a secret s to share. We say that (S,R) is an IVSS protocol if the following properties (called IVSS
properties) hold.
• Termination:

1. If the dealer is correct and all correct processes keep participating in protocol S, then every correct
process eventually completes protocol S.

2. If some correct process completes protocol S, then every correct process that keeps participating
in protocol S eventually completes protocol S.

3. If some correct process completes protocol S and all correct processes begin protocol R and keep
participating in protocol R, then every correct process eventually completes protocol R.

4. If some correct process completes protocol R, then every correct process that keeps participating
in protocol R eventually completes protocol R.

• Correctness: Once a correct process has completed protocol S, then there is a unique value v such
that the following holds.

1. Either every correct process upon completing protocol R outputs v, or a set of new faulty pairs is
eventually inferred by correct processes. (In our implementation, the size of the set of new faulty
pairs is at least t(n− 3t).)

2. If the dealer is correct, then v = s.
• Secrecy: If the dealer is correct and no correct process invokes protocol R, then the faulty processes

have no information about secret s.

Note that, a correct process is said to keep participating in a protocol if it follows the protocol until
completion. Another note is that we assume all secrets, random values, and polynomials to be over the
integer ring.

3.2. Implementation

In our ABA protocol, the processes invoke a set of secret sharing instances in each round (starting
from round 1). Every process records its invocations in each round r and A-Casts these invocations in
the next round r + 1 to let other processes know about its behavior in round r. We introduce a new
component, which we call the certification protocol, to take care of the IVSS invocations from past rounds
and infer faulty pairs. The certification protocol is invoked before round 1 and runs concurrently with
all invocations of IVSS. Hence our IVSS protocol should be aware of the particular round it is involved
in, and should make progress based on the data from past rounds. Therefore, we use the notion IVSS[r]
with round number r as a parameter. In this section, we give a high-level description of our IVSS[r] and
our certification protocols.

In the sharing phase, we assume that the dealer with secret s selects a random degree-t symmetric
bivariate polynomial f such that f(0, 0) = s. Let fi denote the degree-t polynomial such that fi(y) =
f(i, y) for y ∈ {1, . . . , n}. The dealer shares secret s by sending polynomial fi to process i. By polynomial
interpolation, if the dealer is correct, then any t + 1 correct processes could reconstruct f . Since f is
a symmetric polynomial, we should have fi(j) = fj(i). Each process k that receives fk sends fk(i)
to process i. When k receives fi(k) from process i, k checks whether fi(k) = fk(i). This equality
may not be true since the dealer or process i could be faulty. If the equality is correct, then k A-Casts

4

Sharing protocol IVSS[r]-S:
1. If the dealer wants to share secret s in round r, it selects a random degree-t symmetric bivariate

polynomial f(x, y) such that f(0, 0) = s. Let fi denote the degree-t polynomial such that fi(y) =
f(i, y) for y ∈ {1, . . . , n}. The dealer sends fi to process i.

2. If process k receives f̂k from the dealer, then k sends f̂k(i) to process i. (Note that f̂k is supposed
to be fk if the dealer is correct.)

3. If process k receives f̂k from the dealer and receives f̂i(k) from process i, and f̂k(i) = f̂i(k), then
k A-Casts “equal: (k, i)”. (Note that f̂i(k) is supposed to be f̂i(k) if i is correct.)

4. If there is a setM of n− t processes such that the following conditions are satisfied for the dealer:
a) for every i, j ∈M, the dealer receives “equal: (i, j)”;
b) for every i, j, p, q ∈M, the dealer receives “checkedr : p, q, {i, j}” from p,
then the dealer A-Casts M. (M is called candidate set.)

5. If process k receives M from the dealer and the following conditions are satisfied:
a) for every i, j ∈M, k receives “equal: (i, j)”;
b) for every i, j, p, q ∈M, k receives “checkedr : p, q, {i, j}” from p,
then k completes the sharing protocol.

Reconstruction protocol IVSS[r]-R:

1. If process k ∈M, then k A-Casts polynomial f̂k.
2. If there is a set ISk (standing for Interpolation Set) of n− 2t processes such that

a) k receives f̃i from each process i ∈ ISk; (Note that f̃i is supposed to be f̂i if i is correct.)
b) there is a symmetric bivariate degree-t polynomial f̄ such that f̄(i, j) = f̃i(j) for all i ∈ ISk

and j ∈M,
then k sets v = f̄(0, 0), A-Casts “ready to complete” and adds this instance of IVSS[r] to
CoreInvocationskr .

3. If k completes Step 2 and receives “ready to complete” from n − t processes, then k outputs v
and completes the reconstruction protocol.

Certification protocol:
1. Process k initializes empty sets FPk and CoreInvocationsk0 .
2. Process k sets CoreInvocationskr = ∅ and A-Casts CoreInvocationskr−1 in the beginning of round
r (r > 1).

3. (Infer faulty pairs) If k receives CoreInvocationslr from process l, then for any instance I in
CoreInvocationslr, if k receives f̃i and f̃j from process i and j (i, j ∈ M of I) in Step 1 of
IVSS-R such that f̃i(j) 6= f̃j(i), then k adds unordered pair {i, j} to FPk.

4. If k receives CoreInvocationslr from process l, then for any invocation I in CoreInvocationslr, k
completes the sharing protocol of I and Step 1 of IVSS[r]-R of I. (Note that k does this because
different process might complete different instances of IVSS[r] in round r.)

5. If the following conditions are satisfied for process k (check in order a, b, c):
a) k receives CoreInvocationslr′ from process l for all r′ < r;
b) for every IVSS invocation I in ∪

r′<r
CoreInvocationslr′ , if i (j resp.) is included in the candidate

set M of I then k should receive the polynomial A-Cast by i (j resp.) in Step 1 of IVSS-R
of I;

c) {i, j} 6∈ FPk (Here FPk has been updated after checking condition b, see Step 3),
then k A-Casts “checkedr; k, l, {i, j}”. (Intuitively, this means k has checked that {i, j} is not a
faulty pair according to the invocation history of l before round r.)

“equal: (k, i)”. When the dealer receives “equal: i” from every process i in a set M that contains n− t
processes, and checks that M does not contains faulty pairs according to the IVSS invocations in the
past rounds (see the description of the certification protocol below), the dealer A-Casts M. Intuitively,
M is a candidate set that processes could trust to reconstruct the secret. If process k receives set M
from the dealer and checks the correctness of M as the dealer, then k completes the sharing protocol.

In the reconstruction phase, processes in M A-Cast their polynomials received from the dealer. When
process k receives polynomials from n − 2t processes and these polynomials can be interpolated to a
degree-t symmetric bivariate polynomial f̄ , k considers f̄(0, 0) as the dealer’s secret. If f̄ is not equal
to the polynomial f selected by the dealer in the sharing phase, we can show that a set of faulty pairs
will be inferred. In order to get every secret sharing instance checked by the certification protocol in the
next round, it is important that, when a correct process completes a secret sharing invocation, at least
t+ 1 correct processes take this invocation as its history invocation. Therefore, after getting polynomial
f̄ , k first A-Casts a message “ready to complete” and records the invocation. Then k completes the
reconstruction phase if k receives n− t “ready to complete”.

Our certification protocol handles the history of invocations. Process k uses set FPk to track the
faulty pairs it inferred. In each round r, k records all invocations of IVSS[r] and adds them into a set
called CoreInvocationskr . Then, at the beginning of round r + 1, k will A-Cast CoreInvoationskr to
let other processes know its action in round r. Intuitively, this means that every correct process should
know what the other processes have done in the past rounds. If a process k receives fi from i and fj
from j but fi(j) 6= fj(i) for some IVSS instance, then k knows that at least one of i, j is faulty and
adds unordered pair {i, j} into FPk. The word “inferable” in IVSS means that correct pairs could infer
faulty pairs during the execution. If k receives CoreInvoationslr from process l, then it checks for each
invocation I in CoreInvoationslr that every correct process in M of I should A-Cast its polynomial in
the beginning of the reconstruction phase, and no pair of correct processes should be considered as a
faulty pair according to these invocations. If k has checked that an unordered pair {i, j} is not a faulty
pair according to the invocation history of l before round r, then k will A-Cast “checkedr : k, l, {i, j}”.
In the sharing protocol, a correct process accepts a candidate set M only if every pair of processes in
M are checked by every process in M.

3.3. Proof of IVSS properties

Lemma 1. If i, j, k are correct processes, then unordered pair {i, j} will not be added to FPk.

Proof. The pair {i, j} will be added to FPk only if there is an invocation I of IVSS[r] such that i, j ∈M
and the polynomials f̃i and f̃j A-Casted by i and j in Step 1 of IVSS[r]-R satisfy f̃i(j) 6= f̃j(i). However,
if i, j ∈ M then i and j must have A-Casted “equal: (i, j)” and “equal: (j, i)” and hence must have
checked that f̃i(j) = f̃j(i) in IVSS[r]-S. Thus {i, j} will not be added to FPk.

Lemma 2. In round r (r > 1), if i, j, k, and l are correct processes, then k eventually A-Cast “checkedr :
k, l, {i, j}”.

Proof. Since {i, j} is not in FPk by Lemma 1, we only need to check conditions a and b of Step 5 in
the certification protocol.

Condition a: Since l is correct, l will A-Cast CoreInvocationslr in the beginning of round r. Then k
will receive these CoreInvocationslr by the correctness property of A-Cast.

Condition b: Suppose that i is in the set M of an IVSS[r′] invocation I in ∪
r′<r

CoreInvocationslr′ .
Since l adds I into its CoreInvocations, l must have completed the sharing protocol of I. Then i must
have received polynomial f̂i from the dealer in invocation I. According to Step 4 of the certification
protocol, i will complete Step 1 of IVSS[r′]-R of I. So k will receive the polynomial A-Casted by i in
Step 1 of IVSS[r]-R of I.

6

Taking above together, k will A-Cast “checkedr : k, l, {i, j}”.

Lemma 3. Let N be a subset of {1, . . . , n} and |N | > t+ 1. Let {fi}i∈N be a set of degree-t univariate
polynomials. If fi(j) = fj(i) for all i, j ∈ N , then there is a unique symmetric bivariate degree-t
polynomial f such that f(i, j) = fi(j) for all i, j ∈ N .

Proof. Select any subset N0 of N such that |N0| = t+ 1. Let

f0(x, y) =
∑

i∈N0;j∈N0

∏
k∈N0,k 6=i

(x− k)
∏

k∈N0,k 6=j
(y − k)∏

k∈N0,k 6=i
(i− k)

∏
k∈N0,k 6=j

(j − k)
fi(j).

By Lagrange interpolation, f0(i, j) = fi(j) for all i, j ∈ N0. Since fi(j) = fj(i), f0 is a symmetric
bivariate degree-t polynomial by definition. Now we prove that f0(i, j) = fi(j) for all i, j ∈ N .

Consider any arbitrary i in N . We have fi(j) = fj(i) = f0(j, i) for all j ∈ N0. Since f0 is symmetric,
we have fi(j) = f0(i, j) for all j ∈ N0. Since |N0| = t + 1, we have fi(y) = f0(i, y) for any y.
Especially, we have fi(j) = f0(i, j) for all j ∈ N . Hence, f0 satisfies f0(i, j) = f(i, j). The uniqueness
follows easily from Lagrange interpolation.

Theorem 1. Assume n > 3t. Then the pair (IVSS[r]-S, IVSS[r]-R) satisfies all the IVSS properties.

Proof. We check below the IVSS properties.
Termination (1): Suppose the dealer is correct and all correct processes keep participating in IVSS[r]-

S. Every correct process will receive correct messages from the dealer. Then for each pair (i, j) of
correct processes, i will A-Cast “equal: (i, j)”. By Lemma 2, for correct processes i, j, k, l, “checkedr :
k, l, {i, j}” will be A-Cast by k. Thus the set of correct processes will satisfy the conditions in Step 4 of
IVSS[r]-S. Therefore, a correct dealer will A-Cast a set M with respect to Step 4 of IVSS[r]-S. Since
all messages that the dealer received in Step 4 are sent using A-Cast, it follows that all correct processes
will receive M and check that M satisfies the conditions in Step 5 of IVSS[r]-S. Hence, every correct
process will complete IVSS[r]-S.

Termination (2): If a correct process completes IVSS[r]-S, then, since all messages required in Step
5 of IVSS[r]-S are sent by A-Casting, every correct process that keeps participating in IVSS[r]-S will
receive these messages and complete IVSS[r]-S.

Termination (3): If some correct process completes protocol IVSS[r]-S and all correct processes begin
IVSS[r]-R and keep participating, we show that every correct process will complete IVSS[r]-R. Let C
be the set of correct processes in M. Since |M| > n− t, then |C| > n− 2t. Let f̂i be the polynomial i
(i ∈ C) received from the dealer. Since C ⊂ M, we have f̂i(j) = f̂j(i) for all i, j ∈ C. By Lemma 3,
there is a symmetric bivariate degree-t polynomial f̄ such that f̄(i, j) = f̂i(j) for all i, j ∈ C. Thus C
satisfies the conditions in Step 2 of IVSS[r]-R. It follows that every correct process will complete Step
2 of IVSS[r]-R and A-Casts “ready to complete”. Therefore, every correct process will receive at least
n− t “ready to complete” messages and complete IVSS[r]-R.

Termination (4): If a correct process completes IVSS[r]-R, then, since all messages required for
completing IVSS[r]-R are sent by A-Casting, every correct process that keeps participating in IVSS[r]-
R will receive these messages and complete IVSS[r]-R.

We now turn to the correctness properties.
Suppose that a correct process has completed the sharing protocol. By Lemma 3, there is a symmetric

bivariate degree-t polynomial f̄ such that f̄(i, j) = f̂i(j) for all i, j ∈ C where C is the set of all correct
processes in M. We denote f̄(0, 0) as v.

Correctness (1): If some correct process k completes IVSS[r]-R and outputs a value different from v,
then ISk must be different from C. And there must be some process i ∈ ISk and some process j ∈ C such

7

that f̄(i, j) 6= f̂i(j), otherwise ISk also interpolates f̄ and output f̄(0, 0). Since f̄(i, j) = f̄(j, i) = f̂j(i),
we have f̂i(j) 6= f̂j(i), which means some faulty pair will be inferred (we will analysis how many pairs
could be inferred in the following section).

Correctness (2): If the dealer is correct, then f̂i(j) = f(i, j) for all i, j ∈ C where f is the polynomial
selected by the dealer. Thus f̄ = f and v = f̄(0, 0) = f(0, 0) = s.

Secrecy: By polynomial interpolation, the combined view of the t faulty processes is not enough to
compute the initial random degree-t polynomial selected by the dealer. As long as no correct process
invokes IVSS[r]-R, the shared secret is independent of the information obtained by the faulty processes.
Hence, the faulty processes have no information of the shared secret.

So all the IVSS properties hold for IVSS[r]. The theorem follows.

3.4. Fault-Detection Analysis

We introduce the following convention for the analysis of Fault-Detection in the certification protocol.
Consider an instance R of IVSS[r]-R in CoreInvocationsir for a correct process i. If faulty process l in
M of R does not send its polynomial in Step 1 of R, then in round r′ (greater than r), no correct process
will allow l to appear in M of IVSS[r′] (see condition (b) of Step 5 in IVSS[r′]-S and Step 5 of the
certification protocol). This is the best case for correct processes. Therefore without loss of generality,
we use the following convention.

Convention. In any instance of IVSS[r]-R and any round r, every faulty process in the corresponding
set M eventually A-Casts a polynomial (can be arbitrary) according to Step 1 of IVSS[r]-R.

Consider an arbitrary instance of IVSS[r]. With the above convention, let f̂i be the polynomial
eventually A-Casted by process i ∈ M in Step 1 of IVSS[r]-R. We say that a set S ⊂ M of at
least n−2t processes is an interpolation set if there is a symmetric bivariate degree-t polynomial g such
that g(i, j) = f̂i(j) for all i ∈ S. Two interpolation sets S and S′ are different, if the corresponding
bivariate polynomial are different, which implies |S ∩ S′| 6 t by Lemma 3.

For an instance I of IVSS[r], recall that by Lemma 3 the polynomials that processes in C received
from the dealer actually define a unique symmetric bivariate degree-t polynomial, and therefore define a
unique secret s. We say that s is the secret defined by I.

Definition 5. Let E be the event that at least one of the correct processes output a value s′ in the
reconstruction phase of I such that s′ 6= s.

If E never occurs, then we could get a common coin with high probability (we will show this later in
Section 4). Thus it is significant to analyze the situation when E occurs.

Lemma 4. E could only occur in some instance I of IVSS[r] when n 6 4t.

Proof. If E occurs, then there are at least two different interpolation sets. One of these is the set C of
correct processes inM, the other one is the interpolation set IS causing some correct process to output a
different secret. Since |C| > n−2t, |IS| > n−2t, |C∩IS| 6 t, we have |C∪IS| = |C|+|IS|−|C∩IS| >
2n− 5t. If n > 4t, then |C ∪ IS| > n− t. This is impossible since |C ∪ IS| 6 |M| = n− t. Therefore,
E could only occur when n 6 4t.

Lemma 5. If E occurs in some instance I of IVSS[r], then at least t(n−3t) faulty pairs will be inferred
by every correct process due to I.

Proof. When E occurs, at least one correct process completes instance I. According to Step 3 of IVSS[r]-
R, there are at least n − 2t correct processes that have A-Casted “ready to complete”. According to
Step 2 of IVSS[r]-R, these correct processes must have added I into the set CoreInvocations. In the

8

next round r + 1, the candidate set M of any instance of IVSS[r + 1] will contain at least one of these
n− 2t processes since M = n− t and n− 2t > t. Thus I will be checked by every correct process in
the certification protocol. Since the faulty pairs are inferred from the polynomials A-Casted by processes
in M of I, all correct processes will infer the same faulty pairs. So we only need to prove the lemma
for correct process k.

Let {S1, S2 . . . , Sr} be all maximal interpolation sets with respect to the inclusion relation of sets.
Since E occurs, there must be at least two maximal interpolation sets, one of which implies the secret
s defined by I and another of which implies the secret s′ 6= s, i.e. r > 2. Suppose i, j ∈ 1, . . . , r and
i 6= j. By the assumption of maximal interpolation sets, |Si ∩ Sj | 6 t. Let S0 be the interpolation set in
{S1, S2 . . . , Sr} with the smallest cardinal number. Since |Si ∪ Sj | 6 |M| = n − t and |Si ∩ Sj | 6 t,
then |Si|+ |Sj | = |Si ∪ Sj |+ |Si ∩ Sj | 6 n. Therefore |S0| 6 |Si|+|Sj |

2 6 n
2 . Also from the definition of

the interpolation set, we have |S0| > n− 2t.
Suppose the corresponding symmetric bivariate polynomial for S0 is f0. Let f0i be the polynomial

with f0i (j) = f0(i, j). Since f0 is symmetric, f0i (j) = f0(i, j) = f0(j, i) = f̂j(i) for every j ∈ S0.
Recall that f̂j is the polynomial eventually A-Casted by process j ∈ M in Step 1 of IVSS[r]-R of
instance I. For any i ∈M but i 6∈ S0, we have f̂i 6= f0i because otherwise S0 ∪ i is an interpolation set
bigger than S0, which contradicts the fact that S0 is maximal. Since f̂i 6= f0i , f̂i− f0i has at most t zero
points. So there are at least |S0| − t processes j in S0 such that f̂i(j) 6= f0i (j), i.e. f̂i(j) 6= f̂j(i) (since
f0i (j) = f̂j(i) for j ∈ S0) which leads to the faulty pair {i, j}. Therefore, for each i ∈M but i 6∈ S0, k
will infer at least |S0| − t faulty pairs. In total, k could infer at least (|S0| − t)(n− t− |S0|) faulty pairs.
Since n− 2t 6 |S0| 6 n

2 , then (|S0| − t)(n− t− |S0|) > (n− 3t)t. The lemma is proved.

In the lemma above, we show that a set of faulty pairs will eventually be inferred if E occurs in an
instance of IVSS[r]. However, “eventually” is not enough to improve running time. In the next lemma,
we will show that the faulty pairs inferred from instance of IVSS[r] will not appear in candidate set M
of IVSS[r + 1] even though these faulty pairs might be inferred after the invocation of IVSS[r + 1].

Lemma 6. If E occurs in some instance Ir of IVSS[r], and {i, j} is eventually inferred as faulty pairs
by the correct processes due to Ir, then i and j could not appear simultaneously in the set M of any
instance of IVSS[r′] with r′ > r.

Proof. Since E occurs, there must be a correct process (say k) that completes instance Ir. Then, by Step
3 of IVSS[r]-R, k must have received “ready to complete” from n− t processes. According to Step 2
of IVSS[r]-R, these n− t processes must have added instance Ir into CoreInvocations∗r . Then there are
at least n− 2t correct processes (denoted by S) that have added instance Ir into CoreInvocations∗,r.

Now consider round r′ > r. In any instance Ir
′

of IVSS[r′], set M, A-Casted by the dealer, contains
at least one correct process (denoted by l) from S since |M| > n− t and |S| > n− 2t > t+ 1. If i and
j are both in the setM of Ir

′
, then every correct process k′ inM must A-Cast “checkedr′ , k′, l, {i, j}”

according to Step 5 of IVSS[r′]-S. By Step 5 of our certification protocol, k′ must have received the
corresponding polynomials of i and j A-Cast in Step 1 of IVSS[r′]-R. However, this would make k′

add {i, j} into FPk′ and not A-Cast “checkedr′ : k′, l, {i, j}”. This is a contradiction. Therefore, i and
j could not appear simultaneously in candidate set M of any instance of IVSS[r′] with r′ > r.

Lemma 7. If n = 3t+ δ, then there are at most 3t
δ + 1 rounds where E occurs.

Proof. Suppose E occurs in round r1, r2, . . . , rc and denote the faulty pairs that could be inferred for
these rounds by S1, S2, . . . , Sc. By Lemma 6, Si is different from Sj for 1 6 i, j 6 c and i 6= j.
According to Lemma 5, there will be at least c · (n−3t)t different faulty pairs inferred. Since each faulty
process can only appear in n faulty pairs, we have t · n > c · (n− 3t)t. Thus, c 6 tn

(n−3t)t = 3t
δ + 1.

9

4. From IVSS to Asynchronous Byzantine Agreement

Using our IVSS[r] protocol, we now design an ABA protocol (following the reduction scheme of
Canetti and Rabin [6]). The first step is to get a common coin. In the common coin protocol of [6], every
process shares n random secrets using n different invocations of the AVSS protocol of [6]. Following
Figure 5-9 of [5] and using our IVSS[r] protocol, we obtain an Inferable Common Coin (ICC) protocol
which always terminates.

Definition 6 (ICC). Let π be any protocol where every process has a random input and a binary output.
We say that π is a terminating, t-resilient Inferable Common Coin protocol if the following properties
(called ICC properties) hold for every t-adversary.
• Termination.

1. If all correct processes keep participating in π, then every correct process eventually completes.
2. If some correct process completes π, then every other correct process that keeps participating in

π eventually completes.
• Correctness. For every invocation, either

– for each v ∈ {0, 1}, with probability at least 1/4, every correct process upon completing π
outputs v; or

– a set of faulty pairs is eventually inferred by correct processes.

Lemma 8. For n > 3t and each round r, there is a terminating, t-resilient Inferable Common Coin
protocol.

Proof. The protocol implementing ICC by using our IVSS[r] subprotocol is a slight variant of figure 5-9
of [5]. We call this protocol ICC[r]. The proof is in Appendix II.

The second step is to use the common coin protocol to get an ABA protocol. In [6], Canetti and Rabin
use their common coin protocol (that terminates with probability 1 − ε) to get an ABA protocol (that
terminates with probability 1− ε). We replace the common coin protocol of [6] by ICC[r] to obtain our
almost-surely terminating ABA protocol.

Theorem 2 (Byzantine Agreement). If n = 3t + δ, then there is an almost-surely terminating ABA
protocol with expected running time O(tδ).

Proof. By Lemma 7, we know there are at most 3t
δ + 1 rounds in which the adversary could break the

correctness of secret sharing. In the rest of the rounds, all correct processes reconstruct the same value
and this value is equal to the secret of the dealer if the dealer is correct, with which we can have a
common coin that is sufficient for Byzantine agreement with constant expected running time. Therefore,
the expected running time of our ABA protocol is O(tδ). we give the details in Appendix III.

If we take δ = 1 in the above theorem, we have the following corollary, which improves the result of
Abraham, Dolev, and Halpern [1].

Corollary 1. If n = 3t+ 1, then there is an almost-surely terminating, optimally resilient ABA protocol
with expected running time O(t).

If we take δ = εt where ε > 0, we have the following corollary, which improves the result of Feldman
and Micali [7].

Corollary 2. If n = (3 + ε)t where ε > 0, then there is an almost-surely terminating ABA protocol with
expected running time O(1/ε).

10

References

[1] ABRAHAM, I., DOLEV, D., AND HALPERN, J. Y. An almost-surely terminating polynomial protocol for
asynchronous Byzantine agreement with optimal resilience. In Proceedings of the Twenty-Seventh ACM
Symposium on Principles of Distributed Computing (2008), PODC ’08, ACM, pp. 405–414.

[2] BEERLIOVÁ-TRUBÍNIOVÁ, Z., AND HIRT, M. Efficient multi-party computation with dispute control. In
Proceedings of the Third Conference on Theory of Cryptography (2006), TCC ’06, Springer-Verlag, pp. 305–
328.

[3] BEN-OR, M. Another advantage of free choice (extended abstract): Completely asynchronous agreement
protocols. In Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing
(1983), PODC ’83, ACM, pp. 27–30.

[4] BRACHA, G. An asynchronous [(n-1)/3]-resilient consensus protocol. In Proceedings of the Third Annual
ACM Symposium on Principles of Distributed Computing (1984), PODC ’84, ACM, pp. 154–162.

[5] CANETTI, R. Studies in secure multiparty computation and applications. PhD thesis, The Weizmann Institute
of Science, 1996.

[6] CANETTI, R., AND RABIN, T. Fast asynchronous Byzantine agreement with optimal resilience. In Proceedings
of the Twenty-fifth Annual ACM Symposium on Theory of Computing (1993), STOC ’93, ACM, pp. 42–51.

[7] FELDMAN, P., AND MICALI, S. Optimal algorithms for byzantine agreement. In Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing (1988), STOC ’88, ACM, pp. 148–161.

[8] FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. Impossibility of distributed consensus with one faulty
process. J. ACM 32, 2 (1985), 374–382.

[9] KARLIN, A., AND YAO, A. Probabilistic lower bounds for Byzantine agreement. Unpublished document
(1986).

[10] KING, V., AND SAIA, J. Faster agreement via a spectral method for detecting malicious behavior. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (2014), SODA ’14,
SIAM, pp. 785–800.

[11] LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine generals problem. ACM Trans. Program. Lang.
Syst. 4, 3 (1982), 382–401.

[12] PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching agreement in the presence of faults. J. ACM 27, 2
(1980), 228–234.

[13] RABIN, M. O. Randomized Byzantine generals. In Proceedings of the Twenty-Fourth Annual Symposium on
Foundations of Computer Science (1983), FOCS ’83, IEEE Computer Society, pp. 403–409.

11

Appendix I.
A-Cast Protocol

Definition 7 (A-Cast). Let π be any asynchronous protocol initiated by a designated process (the sender)
which has an input value u to be broadcast. We say that π is a t-resilient A-Cast protocol if the following
properties hold for every t-adversary:
• Termination:

1. If the sender is correct and all correct processes participate in π, then every correct process
eventually completes π.

2. If some correct process completes π, then every correct process eventually completes π.
• Correctness:

1. All correct processes which complete π receive the same value v.
2. If the sender is correct, then v = u.

A-Cast Protocol:
1. The sender with input u sends “msg: u” to all processes.
2. i waits until receiving “msg: u”. Then i sends “echo: u” to all processes.
3. i waits until receiving n− t “echo: u′” that agree on the value of u′. Then i sends “ready: u′” to all

processes.
4. i waits until receiving t + 1 “ready: u′” that agree on the value of u′. Then i sends “ready: u′” to

all processes.
5. i waits until receiving 2t+1 “ready: u′” that agree on the value of u′. Then i outputs u′ and completes

the protocol.

Appendix II.
Inferable Common Coin Protocol

Definition 8 (ICC). Let π be any protocol where every process has a random input and a binary output.
We say that π is a terminating, t-resilient Inferable Common Coin protocol if the following properties
(called ICC properties) hold for every t-adversary.
• Termination.

1. If all correct processes keep participating in π, then every correct process eventually completes.
2. If some correct process completes π, then every other correct process that keeps participating in

π eventually completes.
• Correctness. For every invocation, either

– for each v ∈ {0, 1}, with probability at least 1/4, every correct process upon completing π
outputs v; or

– a set of faulty pairs is eventually inferred by correct processes.

Our implementation (called ICC[r]) of ICC follows [6]. Roughly speaking, the protocol consists of
two phases. First, every process shares n random secrets using our IVSS[r]-S protocol. The ith secret
shared by each process is assigned to process i. Once a process i completes t + 1 sharing protocols of
secrets assigned to it, i A-Casts the identity of the dealers of these secrets. After this, by the correctness
property of IVSS[r], a fixed value (yet unknown) is attached to i. The second phase is to select a subset
of processes (say H) and reconstruct the attached values of H . Different processes may choose different
H to reconstruct secrets. However, if an instance of IVSS[r]-R is invoked by a strict subset of correct

12

processes, then there is no guarantee of termination. Hence, in ICC[r] we require every process to A-Cast
its H before completion, so that each process could try to reconstruct values with different H .

ICC[r] protocol: code for process i
1. Choose a random value xi,j for all 1 6 j 6 n and invoke IVSS[r]-S as a dealer for this value. Denote

this execution by IVSS[r]-S(xi,j).
2. Participate in IVSS[r]-S(xj,k) for every j, k ∈ {1, . . . , n}.
3. Define a set Ti. Add process j to Ti if all IVSS[r]-S(xj,l) have been completed for all 1 6 l 6 n.

Wait until |Ti| = t + 1, then assign Ti = Ti and A-Cast “attach Ti to i”. (we say that the secrets
{xj,i|j ∈ Ti} are attached to process i.)

4. Define a set Ai. Add process j to Ai if the A-Cast “attach Tj to j” has been completed and Tj ⊆ Ti.
Wait until |Ai| = n− t, then assign Ai = Ai and A-cast “i accepts Ai”.

5. Define a set Si. Add process j to Si if “j accepts Aj” is received from j and Aj ⊆ Ai. Wait until
|Si| = n − t, then A-Cast “Reconstruct Enabled”. Let Si denote the current content of Si and Hi

denote the current content of Ai. Then A-Cast (Hi, Si).
6. Participates in IVSS[r]-R(xk,j) for every k ∈ Tj and j ∈ Ai. Let yk,j be the corresponding output.
7. Let u = d0.87ne. Every process j ∈ Ai is associated with a value, say vj , which is computed as

follows: vj =
(∑

k∈Tj
yk,j

)
modu.

8. Wait until receiving (H̃j , S̃j) from j with H̃j ⊆ Ai and S̃j ⊆ Si and the values associated with all
processes in H̃j are computed. Now if there exists a process k ∈ H̃j such that vk = 0, then output 0.
Otherwise output 1.

We now state and prove the following lemmas which are slight variants of lemmas 5.28-5.31 presented
in [5].

Lemma 9. If some correct process completes ICC[r], then every other correct process that keeps
participating in ICC[r] eventually completes.

Proof. If a correct process i completes ICC[r] with respect to (H̃j , S̃j), then, since all messages are sent
by A-Casting, every correct process that keeps participating in ICC[r] will receive at least t+ 1 (H̃j , S̃j)
as well. By the termination property (4) of IVSS[r], every correct process that keeps participating will
also compute the values associated with all the processes in H̃j and then complete the protocol.

Lemma 10. If all correct processes keep participating in ICC[r], then all correct processes complete
ICC[r] in constant time.

Proof. First we show that every correct process will A-Cast “Reconstruct Enabled”. By termination
property (1) of our IVSS[r] protocol, every correct process eventually completes IVSS-S(xj,k) for every
k ∈ {1, . . . , n} and correct j. Since there are at least n − t correct processes, for each correct process
i, Ti will eventually contain at least t + 1 (actually n − t) processes and thus i will eventually A-Cast
“attach Ti to i”. So eventually, correct process i will receive “attach Tj to j” from every correct process
j. Now since every process k that is included in Tj will be eventually included in Ti (by termination
property (2) of IVSS[r]), Tj ⊆ Ti will eventually hold. Therefore, every correct process j will eventually
be included in Ai. Thus for every correct process i, Ai will eventually be of size n− t and hence i will
A-Cast “i accepts Ai”. Following the same argument, Si will be of size n− t and hence i will A-Cast
“Reconstruct Enabled” and A-Cast (Hi, Si).

We now show that all correct processes will complete ICC[r]. By the lemma above, we only need
to show that at least one of the correct processes will complete ICC[r]. Suppose by contradiction that
no correct process will complete ICC[r]. Let i be a correct process. If i receives “attach Tj to j”

13

from j and includes j in Ai, then eventually every other correct process will do the same. Hence if i
invokes IVSS[r]-R(xk,j) for k ∈ Tj and j ∈ Ai, then eventually every other correct process will also
invoke IVSS[r]-R(xk,j). By termination property (3) of IVSS[r], all correct processes will complete this
IVSS[r]-R(xk,j). Therefore, the values associated with all processes in Hi will be computed. So i
will complete the protocol, in contradiction with the assumption that no correct process will complete.
Therefore, all correct processes will complete.

In the certification protocol, each process need to check all the past invocations in past rounds. However,
since every correct process does this in every round, it is equal to that each process in every round
checks all the invocations in the previous round. Therefore, all “checkedr; k, l, {i, j}” could be finished
in constant time for correct process i, j, k, l. Thus all invocations of IVSS[r]-S and IVSS[r]-R in ICC[r]
complete in constant time. Since all A-Casts also complete in constant time, our ICC[r] protocol completes
in constant time as well.

Lemma 11. In ICC[r], once some correct process j receives “attach Ti to i” from the A-Cast of i, a
unique value vi is fixed such that
1. Every correct process will associate vi with i or a set of faulty pairs will eventually be inferred by

correct processes.
2. Value vi is distributed uniformly over [0, . . . , u−1] and is independent of the values associated with

the other processes.

Proof. The correctness property of IVSS[r] ensures that for each k ∈ Ti there is a fixed value yk,i such
that all correct processes will output yk,i in IVSS[r]-S(xk,i) or a set of faulty pairs will be inferred. Let
vi =

(∑
k∈Ti

yk,i
)

modu, then every correct process will associate vi with i except that event E occurs
in some instances of IVSS[r], i.e., a set of faulty pairs will eventually be inferred by correct processes.

It remains to show that vi is uniformly distributed over [0, . . . , u−1], and is independent of the values
associated with the other processes. A correct process starts reconstructing the secrets attached to process
i only after it completes the “attach Ti to i” A-Cast. So the set Ti is fixed before any correct process
invokes IVSS[r]-R(xk,i) for some process k. The secrecy property of IVSS[r] now ensures that, by the
time the set Ti is fixed, the adversary view of the invocations of IVSS[r]-S(xk,i) where the dealers are
correct is distributed independently of the shared values. Since Ti contains at least one correct process
and every correct process’s shared secrets are uniformly distributed and mutually independent, the sum
vi is uniformly and independently distributed over [0, . . . , u− 1].

Lemma 12. Once a correct process A-Casts “Reconstruct Enabled”, there is a set M such that
1. For every process j ∈M , some correct process has received “attach Tj to j” from the A-Cast of j.
2. If any correct process k receives (H̃j , S̃j) from j with H̃j ⊆ Ak and S̃j ⊆ Sk and the values

associated with all processes in H̃j are computed, then M ⊆ H̃j .
3. |M | > n

3 .

Proof. Let i be the first correct process to A-Cast “Reconstruct Enabled”. Let M be the set of processes,
k, for which k ∈ Al for at least t+ 1 processes l ∈ Si. We now show that all processes in M satisfy the
properties of the lemma.

It is clear that M ⊆ Hi. Thus process i has received “attach Tj to j” for every j ∈ M . Since i is
assumed to be correct, the first part of the lemma is proved.

We now prove the second part. First S̃j contains n − t > 2t + 1 processes. Now if k′ ∈ M then k′

belongs to Al for at least t+ 1 processes l ∈ Si. This ensures that there is at least one process l which
belongs to S̃j as well as Si. Now l ∈ S̃j implies that j has ensured that Al ⊆ H̃j . Consequently, k′ ∈ H̃j .

It remains to show that |M | > n
3 . We use a counting argument for this purpose. Let h = |Hi|. We

have h > n− t. Consider the h× n table Λ (relative to process i), where Λl,k = one iff i has received

14

“l accepts Al” from l before A-Casting “Reconstruct Enabled” and k ∈ Al. Then M is the set of
processes k such that the kth column in Λ has at least t+ 1 one entries. There are n− t one entries in
each row of Λ; thus there are h(n− t) one entries in Λ.

Let m denote the minimum number of columns in Λ that contain at least t+ 1 one entries. We show
that m > n

3 . Clearly, the worst distribution of one entries in Λ is letting m columns be all one entries and
letting each of the remaining n −m columns have t one entries. This distribution requires the number
of one entries to be no more than mh+ (n−m)t. Thus, we must have:

mh+ (n−m)t > h(n− t).

This gives m > h(n−t)−nt
h−t . Since h > n− t and n > 3t+ 1, we have

m >
(n− t)2 − nt

n− 2t
= n− 2t+

nt− 3t2

n− 2t
> n− 2t >

n

3
.

This shows that |M | > n
3 .

Lemma 13. For every invocation of ICC[r], either
• For each v ∈ {0, 1}, with probability at least 1/4, all correct processes output v; or
• A set of faulty pairs will eventually be inferred by correct processes.

Proof. If E occurs in any instance of IVSS[r] while executing ICC[r], then a set of faulty pairs will be
inferred by correct processes. We prove the first part of the lemma assuming E does not occur. Suppose
correct process j completes ICC[r] with respect to (H̃k, S̃k). Since E does not occur, by Lemma 11,
for every process i in Aj , there is a fixed value vi that is distributed uniformly and independently over
[0, . . . , u− 1]. Now we consider two cases:
• Let M be the set of processes discussed in the lemma above. Clearly if vi = 0 for some i ∈ M ,

then all correct processes associate 0 with j and output 0. The probability that at least one process
i ∈ M has vi = 0 is 1 −

(
1− 1

u

)|M |. Since u = d0.87ne, n > 4, and |M | > n
3 by Lemma 12,

we have 1−
(
1− 1

u

)|M |
> 1− e−0.29 > 0.25. This implies that all correct processes output 0 with

probability at least 1/4.
• If no process i has vi = 0 (and all correct process associate vi with i), then all correct processes

output 1. The probability of this event is at least
(
1− 1

u

)n
> e−1.15 > 0.25.

Hence we have the following theorem.

Theorem 3. Protocol ICC[r] is a terminating, t-resilient inferable common coin protocol.

Proof. The termination properties follow from Lemma 10. The correctness properties follow from Lemma
13.

Appendix III.
From Common Coin to Byzantine Agreement

First we recall a voting protocol called Vote from [5] which is a primitive required for the construction
of our ABA protocol. Protocol Vote computes whether a detectable majority for some value among the
(binary) inputs of all processes. The output of protocol Vote is a tuple with the following meanings.
• For σ ∈ {1, 2}, output (σ, 2) means that there is an overwhelming majority for σ.
• For σ ∈ {1, 2}, output (σ, 1) means that there is a distinct majority for σ.
• (⊥, 0) means that there is no distinct majority.

15

Vote protocol: code for process i with binary input xi
1. A-Cast “input, j, xj”.
2. Define a set Ai. Add (j, xj) to Ai if “input, j, xj” is received from the A-Cast of process j.
3. Wait until |Ai| = n − t. Then assign Ai = Ai. Set ai to the majority bit among{xj : (j, xj) ∈ Ai}

and A-Cast “vote, i, Ai, ai”.
4. Define a set Bi. Add (j, Aj , aj) to Bi if “vote, j, Aj , aj” is received from the A-Cast of process j,
Aj ⊂ Ai, and aj is the majority bit of Aj .

5. Wait until |Bi| = n− t. Then assign Bi = Bi. Set bi to the majority bit among {aj : (j, Aj , aj) ∈ Bi}
and A-cast “revote, i, Bi, bi”.

6. Define a set Ci. Add (j, Bj , bj) to Ci if “revote, j, Bj , bj” is received from the A-cast of process j,
Bj ⊂ Bi, and bj is the majority bit of Bj .

7. Wait until |Ci| > n − t. If all processes j ∈ Bi had the same vote aj = σ, then output (σ, 2) and
terminate. Otherwise, if all processes j ∈ Ci have the same revote bj = σ, then output (σ, 1) and
terminate. Otherwise, output (⊥, 0) and complete the protocol.

This voting protocol is identical to that of [5]. The readers may refer to lemmas 5.32-5.35 [5] for
complete proofs.

Lemma 14. All correct processes complete the voting protocol in constant time.

Lemma 15. If all correct processes have input σ, then all correct processes output (σ, 2).

Lemma 16. If some correct process outputs (σ, 2), then every correct process outputs either (σ, 2) or
(σ, 1).

Lemma 17. If some correct process outputs (σ, 1), and no correct process outputs (σ, 2), then every
correct process outputs either (σ, 1) or (⊥, 0).

Given the voting protocol and our ICC[r] protocol, we can design our ABA protocol following [6].

ABA protocol: code for process i with binary input xi
1. Set r = 0 and v1 = xi. Start the certification protocol.
2. Repeat until completing: (each iteration is consider as a round)

a) Set r = r + 1. Set (yr,mr) = Vote(vr).
b) Invoke ICC[r] and wait until completion. Let cr be the output of ICC[r].
c) Consider the following cases:

I. If mr = 2, set vr+1 = yr and A-Cast “complete with vr”. Participate in only one more
instance of the voting protocol and only one more ICC[r] protocol.

II. If mr = 1, set vr+1 = yr.
III. Otherwise, set vr+1 = cr.

d) Upon receiving t + 1 “complete with σ” A-Casts for some value σ, output σ and complete the
protocol.

We now state and prove the following lemmas which are slight variants of lemmas 5.36-5.39 presented
in [5].

Lemma 18. If all correct processes are in rounds greater than or equal to r, then every correct process
eventually completes ICC[r].

16

Proof. If some correct process is in a round greater than r, then it must have completed ICC[r]. Then
by termination property (2) of ICC[r], every correct process eventually completes ICC[r].

If all correct processes are in round r, Suppose that no correct process will complete ICC[r]. Since no
correct process completes ICC[r], all correct processes keep participating. Then by termination property
(1) of ICC[r], every correct process eventually completes. This is a contradiction.

Therefore, the lemma is proved.

Lemma 19. In our ABA protocol, if all correct processes have the same input σ, then all correct processes
complete and output σ.

Proof. If all correct processes have the same input σ, then by Lemma 15 every correct process will output
(y1,m1) = (σ, 2) by the end of Step a. Therefore, every correct process A-Casts “complete with σ” in
the first iteration. Therefore, every correct process will receive at least n− t “complete with σ” A-Casts,
and at most t “complete with σ′” A-Casts. Consequently, every correct process will output σ.

Lemma 20. In our ABA protocol, if a correct process completes with output σ, then all correct processes
will complete with output σ.

Proof. Let us first show that if a correct process A-Casts “complete with σ” for some value σ, then
all correct processes will A-Cast “complete with σ”. Let k be the first round when a correct process
i A-Casts “complete with σ”. By Lemma 16, every correct process i has yk = σ and either mk = 2
or mk = 1. Therefore, no correct process A-Casts “complete with σ′” at iteration k. Furthermore, all
correct processes invoke the voting protocol in round k + 1 with input σ. Lemma 15 now implies that,
by the end of Step a of round k + 1, every correct process has (yk+1,mk+1) = (σ, 2). Thus, all correct
processes A-Cast “complete with σ”, either at round k or at round k + 1.

Now assume a correct process completes with output σ. Thus, at least one correct process A-casted
“complete with σ”. Consequently, all correct processes A-Cast “complete with σ”. Hence, every correct
process will receive at least n−t “complete with σ” A-Casts and at most t “complete with σ′” A-Casts.
Therefore, every correct process will output σ.

Lemma 21. If all correct processes have initiated and completed some round k, then with probability at
least 1/4, all correct processes have the same value for vk+1 or a set of faulty pairs will eventually be
inferred by correct processes.

Proof. We have two cases here. If all correct processes execute Step III in round k, then all correct
processes set their vk+1 to the output of ICC[r]. According to the correctness property of ICC[r], the
lemma is true.

Otherwise, some correct process has set vk+1 = σ for some σ ∈ {0, 1}, either in Step I or Step II of
round k. By Lemma 17, no correct process will set its vk+1 to σ′. According to the correctness property
of ICC[r], with probability at least 1/4, all correct processes have output σ or a set of faulty pairs will
eventually be inferred by correct processes.

Lemma 22. Let n = 3t+ δ, then all correct processes complete the ABA protocol in expected running
time O(tδ).

Proof. We first show that all correct processes complete protocol ABA within constant time after the
first correct process initiates a “complete with σ” A-Cast in Step III of the protocol. Assume the first
correct process initiates a “complete with σ” A-Cast in round k. Then all correct processes participate
in the voting and common coin protocols of all the rounds up to round k+ 1. We have seen in the proof
of Lemma 20 that all correct processes will A-Cast “complete with σ” in round k+1. All these A-Casts
complete in constant time. Then every correct process completes the ABA protocol after completing

17

t+1 of these A-Casts. Consequently, once the first correct process A-Casts “complete with σ”, the ABA
protocol completes in constant time.

Let the random variable τ count the number of rounds until the first correct process A-Casts “complete
with σ”. We have

Prob(τ > k) = Prob(τ 6= 1) · Prob(τ 6= 2|τ 6= 1) . . . · Prob(τ 6= k|τ 6= 1 ∩ . . . ∩ τ 6= k − 1).

If event E does not occur in round k, we have Prob(τ 6= k|τ 6= 1 ∩ . . . ∩ τ 6= k − 1) 6 3
4 . Hence, by

Lemma 7, Prob(τ > k) 6
(
3
4

)k−3t/δ−1. By a simple calculation, we have E(τ) 6 3t
δ + 17. Therefore,

the expected running time is O(tδ).

We have thus shown the following:

Theorem 4. If n = 3t + δ, then there is an almost-surely terminating ABA protocol with expected
running time O(tδ).

18

