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Abstract
Object detection is a significant challenge in Computer Vision and has received a lot of attention

in the field. One such challenge addressed in this thesis is the detection of polygonal objects,

which are prevalent in man-made environments. Shape analysis is an important cue to detect

these objects. We propose a contour-based object detection framework to deal with the related

challenges, including how to efficiently detect polygonal shapes and how to exploit them for

object detection.

First, we propose an efficient component tree segmentation framework for stable region extraction

and a multi-resolution line segment detection algorithm, which form the bases of our detection

framework. Our component tree segmentation algorithm explores the optimal threshold for each

branch of the component tree, and achieves a significant improvement over image thresholding

segmentation, and comparable performance to more sophisticated methods but only at a fraction

of computation time. Our line segment detector overcomes several inherent limitations of the

Hough transform, and achieves a comparable performance to the state-of-the-art line segment

detectors. However, our approach can better capture dominant structures and is more stable

against low-quality imaging conditions.

Second, we propose a global shape analysis measurement for simple polygon detection and

use it to develop an approach for real-time landing site detection in unconstrained man-made

environments. Since the task of detecting landing sites must be performed in a few seconds or

less, existing methods are often limited to simple local intensity and edge variation cues. By

contrast, we show how to efficiently take into account the potential sites’ global shape, which is a

critical cue in man-made scenes. Our method relies on component tree segmentation algorithm

and a new shape regularity measure to look for polygonal regions in video sequences. In this

way we enforce both temporal consistency and geometric regularity, resulting in reliable and

consistent detections.

Third, we propose a generic contour grouping based object detection approach by exploring

promising cycles in a line fragment graph. Previous contour-based methods are limited to use

additive scoring functions. In this thesis, we propose an approximate search approach that
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eliminates this restriction. Given a weighted line fragment graph, we prune its cycle space by

removing cycles containing weak nodes or weak edges, until the upper bound of the cycle space

is less than the threshold defined by the cyclomatic number. Object contours are then detected

as maximally scoring elementary circuits in the pruned cycle space. Furthermore, we propose

another more efficient algorithm, which reconstructs the graph by grouping the strongest edges

iteratively until the number of the cycles reaches the upper bound. Our approximate search

approaches can be used with any cycle scoring function. Moreover, unlike other contour grouping

based approaches, our approach does not rely on a greedy strategy for finding multiple candidates

and is capable of finding multiple candidates sharing common line fragments. We demonstrate

that our approach significantly outperforms the state-of-the-art.

Key words: Image processing, computer vision, object detection, image segmentation, polygon,

contour grouping, cycle basis, component tree, line segment detection, shape analysis, automated

landing.
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Résumé
La détection d’objet est un défi important de la vision par ordinateur et a suscité beaucoup

d’attention du domaine. L’un de ces défis adressé dans cette thèse est la détection d’objets

polygonaux, très répandus dans les environnements créés par l’homme. Nous proposons un

système de détection d’objet basé sur les contours pour s’occuper de ces défis, y compris

comment détecter efficacement des formes polygonales et comment les exploiter pour faire de la

détection d’objet.

Premièrement, nous proposons un système de segmentation en arbre de composants efficace pour

l’extraction de régions stables ainsi qu’un algorithme multi-résolutions de détection de segments,

qui forment les bases de notre système. Notre algorithme de segmentation explore le seuil

optimal pour chaque branche de l’arbre, et est une amélioration significative de la segmentation

d’image par seuils, atteignant une performance comparable à des méthodes plus avancées, mais

pour seulement une fraction du coût de calcul. Notre détecteur de segments surmonte plusieurs

limitations inhérentes à la transformée de Hough, et atteint une qualité comparable aux méthodes

de pointes. Cependant, notre approche est capable de mieux capturer les structures dominantes et

est plus stable pour traiter des images de basses qualité.

Deuxièmement, nous proposons une mesure de forme globale pour la détection de polygones

simples et l’utilisons pour développer une approche de détection de sites d’atterrissages en temps

réel en environnements non contraints. Puisque la tâche de détection de sites doit être accomplie

en quelques secondes voir moins, les méthodes existantes sont souvent limitées aux informations

locales d’intensité et de bord. Contrairement à celles-ci, nous démontrons comment efficacement

prendre en compte la forme globale des sites d’atterrissages, une information critique dans ce

genre d’environnement. Notre méthode se base sur un algorithme de segmentation en arbre de

composants ainsi qu’une nouvelle mesure de la régularité d’une forme pour chercher des régions

polygonales dans une vidéo. De cette façon nous contraignons à la fois une cohérence temporelle

et une régularité géométrique, produisant des détections fiables et cohérentes.

Troisièmement, nous proposons une approche générique de détection d’objet basée sur le re-

groupement de contours en explorant les cycles prometteurs dans un graphe de fragments de
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lignes. Les méthodes à base de contours précédentes sont limitées à utiliser des fonctions de

score additives. Nous proposons une approche de recherche approximative qui élimine cette

restriction. Étant donné un graphe pondéré de fragments de lignes, nous réduisons son espace de

cycle en supprimant les cycles contenant des sommets ou des arêtes faibles, jusqu’à ce que la

limite supérieure de l’espace de cycle soit inférieure au seuil défini par le nombre cyclomatique.

Les contours de l’objet sont ensuite détectés comme les circuits élémentaires de scores maximaux

dans l’espace de cycle réduit. De plus, nous proposons un autre algorithme plus efficace, qui

reconstruit le graphe en regroupant les bords les plus forts de manière itérative jusqu’à ce que

le nombre de cycles atteigne la limite supérieure. Nos approches approximatives de recherche

peuvent être utilisées avec n’importe quelle fonction de score de cycle et sont capables de trouver

plusieurs candidats ayant des fragments communs .

Mots clefs : traitement d’image, vision par ordinateur, détection d’objet, segmentation, polygone,

regroupement de contours, espace de cycle, arbre de composants, détection de segments, analyse

de forme, atterrissage automatique.
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1 Introduction

Object detection is a fundamental and crucial problem of Computer Vision. More specifically,

many objects in man made environments, such as those shown in Figure 1.1, ranging from signs,

furniture, rooftops, fields to facades, have polygonal shapes. Such characteristic is an important

cue to detect these objects. In this thesis, we therefore focus on detecting them and propose a

detection framework to deal with how to detect polygonal shapes and how to use these shapes for

object detection. In the remainder of this chapter, we first define the problem more precisely and

the challenges that we address in this thesis. Then, we summarize our main contributions to this

field. Finally, we present the outline of this thesis.

1.1 Problem Definition and Challenges

Our goal is to detect polygonal objects in man made environments. We first discuss generic

object detection and then more specialized ones.

1.1.1 Object Detection

In Computer Vision, object detection is usually defined as the problem of finding instances of

semantic objects of a certain class in images and videos. Usually, the locations and extents of

the object instances are denoted by bounding boxes. Figure 1.2 summarizes the approaches that

have been proposed in last decades. Many early approaches use template matching and sliding

window search to detect objects. To deal with large intra-class variation, cluttered backgrounds,

and varying image conditions, pattern recognition techniques have been applied in this area.

1



Chapter 1. Introduction

Figure 1.1 – Polygonal objects in man-made environments.

Instead of hand designed rules, knowledge is encoded in the provided training examples, which

is explored by machine learning techniques. Due to the high discriminative ability and good

generalization of advanced machine learning techniques, object detection has achieved much

success, especially in face detection [1] and pedestrian detection [2]. However, using sliding

window search at different scales, aspect ratios and orientations is very expensive. To speed

up this exhaustive search strategy, an efficient subwindow search was proposed in [3]. It uses

a branch and bound algorithm, which makes it first, but this algorithm is limited to additive

features and linear kernel, and can not deal well with instance-level object detection. This can

easily result in two neighboring objects frequently being grouped together into one bounding

box, as shown in Figure 1.3. An alternate approach is to use multiple kernel learning for object

detection [4], which cascades a low cost linear kernel SVM with several expensive non-linear

kernel SVMs. Candidate object regions are proposed by the fast computed linear kernel SVM and

then are classified by the more powerful, but slower, non-liner kernel SVMs. Although it is not

as efficient as the branch and bound subwindow search, multiple kernel method can benefit from

the non-linearity of kernels and achieve a reasonable speed, whiling also dealing with multiple

object detection.

Instead of using rectangular windows to propose object hypotheses, an alternative class of

techniques is segmentation-driven detection methods, which exploit image region or appearance

cues to generate object hypothesis obtained from a bottom-up segmentation of the image [7, 8, 9,

10, 6]. These approaches can efficiently reduce the search space and better deal with instance-

level detection. For example, [10] proposes a branch-and-cut algorithm to efficiently search
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Figure 1.2 – Representative works of object detection. Based on how to generate object hypotheses,
object detection approaches can be divided into three categories: rectangular-window-based ones,
region-based ones and contour-based ones. There are several techniques that have been developed
to efficiently optimize additive scoring functions, as shown in the left column. But they are
limited to use linear kernel and additive features. Most recent works propose multiple-scale object
hypotheses to form a small search space, so as to exploit expensive but powerful non-additive
scoring functions, as shown in the right column. However, to the best of our knowledge, there
doesn’t exist such kind of contour-based approach.

region-based graph, but is also limited to use additive measurements. Most recently, researchers

trend to use hierarchical segmentation techniques to generate multi-scale object hypotheses, as

shown in Figure 1.4. Then the optimal solution is sought from these hypotheses, instead of from

the original image space. The performance of this kind of algorithms depends on the quality and

quantity of the proposed hypotheses, i.e., how well they cover the real objects at different scales

in the image and the extent of the search space that they form.

The methods used to generate hierarchical segmentations can be divided into region based ap-

proaches and contour based ones. Most approaches are region-based, focusing on the appearance

similarities between regions during the hierarchical segmentation, such as constrained parametric

min-cut [7], selective search [6]. One representative contour-based segmentation approach is

gPb-OWT-UCM [11]. A global probabilistic boundary detector (gPb) is first used to obtain con-

tours. Since it is not a closed boundary detector, an oriented watershed transform (OWT) is then
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Chapter 1. Introduction

Figure 1.3 – Limitation of rectangular subwindow search [5]. (a) Input image, (b) Feature map
and rectangular subwindow search result. Rectangular subwindow search using additive features
frequently groups objects into one bounding box.

used to transform contours into over-segmented regions, and finally an ultrametric-contour-map

(UCM) is computed by a greedy region-merging algorithm. As this algorithm still explores the

similarity/dissimilarity between regions to form a hierarchical segmentation, it is not actually a

fully contour-based approach.

Unlike rectangular window and region based methods, which first generate a number of hypothesis

either by sub-window search or region-based segmentation and then validate them as object or

not, ratio contour [5] is a method directly detecting the optimal closed contour as the object by

exploiting the saliency of the contour and the object appearance. It has shown to be better than the

branch and bound subwindow search. However, similar with ESS, this approach is also limited to

be used with linear kernel and additive features, and can not generate multiple hypotheses except

using greedy search, which makes it inferior to the state-of-the-art region-based approaches.

In short, although the region-based approaches have demonstrated their success in object detection

using hierarchical segmentation, we believe the contour-based approaches should be further

studied to explore the shape cues between neighboring contour fragments. This is because that

these cues are very important for detecting objects with specific shapes, but they are largely

ignored by region based approaches.

1.1.2 Polygon Detection

Polygon detection is the problem of detecting a region bounded by a finite chain of line seg-

ments forming a closed circuit. More specifically, we are interested in simple polygons, whose
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Figure 1.4 – Object detection using hierarchical segmentation. This figure shows a representative
work [6] of region based object detection approaches. Hierarchical segmentation regions are
proposed as object hypotheses, obtained by iteratively grouping the most similar neighboring
regions. Objects are detected from these object hypotheses, instead of from the original image
space.

boundaries do not self-intersect. However, they are not restricted to simple shape polygons,

such as triangles, quadrilaterals, or pentagons, but instead include complex-shaped polygons that

comprise many line-segments without any self-intersection.

Polygon detection has received much attention since the very beginning of Computer Vision,

starting with the Blocks World [12]. Many early approaches use parametric models to detect the

polygonal shapes. These kinds of model-driven algorithm require a specific model for each type

of polygon. Furthermore, a high dimensional parameter space is needed to describe a complex

shape, resulting in a hard search problem. As a result, only simple and regular shapes can be

well-detected by such approaches. Among these, the Hough Transform [13] is probably one

of the most successful algorithms and it is still widely used typically for simple objects, such

as rectangles [14] and circles [15]. However, these approaches are very sensitive to changing

imaging conditions, such as the projective distortions caused by their viewpoint changes can

easily stump them. Generally speaking, it is very difficult to design generic models for various

kinds of polygons in varying imaging environments for model-drive approaches.

More generic approaches use perceptual contour grouping to link line segments together into a

polygon according to certain laws or principles. These approaches are usually data-driven, which

do not require a special model. Many early approaches group neighboring edges that exhibit right

geometry, e.g., parallel line segments are grouped to form rectangular runways [16]. Over the

years, it has become apparent that only looking at edges was insufficient and that, to distinguish
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Figure 1.5 – Graph based contour grouping approaches. Edges are extracted from the image and
approximated by line fragments. These fragments are considered as the nodes of the graph, and
edges are computed using some local saliency measurements. Finally, the most salient contour is
selected from the contour-fragment graph by optimizing some contour scoring function.

valid polygonal regions from spurious ones, it was indispensable to also consider the pixels these

edges enclose [17, 18].

Recently, newer contour grouping approaches that treat the line segments as the nodes of a

graph, whose edges are local linking measurements between neighboring line segments, have

appeared. Such local linking measurements are usually designed according to Gestalt laws, such

as similarity, proximity, continuity [19, 20, 21], and described by probability models, typically

random field [22] or Bayesian frameworks [19, 20]. Then the contours are defined to follow

specific geometric structures in the line fragment graph. Frequently used structures include

strongly connected components [22], paths [19], cycles [18, 21, 5], among which cycle is the

most efficient one to generate closed contours. Finally, the most salient contour is selected from

the line-fragment graph using a contour scoring function. Many works directly use the sum

of local measurements as scoring function, e.g. sum of gaps between fragments. Some recent

approaches try to encode global measurements into scoring function. However, in order to keep

the efficiency of optimization, the global measurements must be additive, that is, they can be

expressed as a sum of additive terms attached to individual fragments. Unfortunately, there

are only a few global measurements having this characteristic, such as area of contour interior,

Bag-Of-Words. Most other global measurements are non-additive, especially for global shape
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analysis which is the most important cue to detect polygons. To the best of our knowledge, there

is no perceptual grouping approach that can deal with non-additive scoring function. Besides, as

most perceptual grouping approaches are designed for single contour detection, multiple objects

detection must rely on a greedy search, which is inefficient for searching and inaccurate for

objects sharing boundaries. To sum up, graph based perceptual grouping approaches group edges

mainly rely on local measurements or additive global measurements. How to design an efficient

algorithm optimizing non-additive scoring functions and how to efficiently search multiple salient

contours should be further researched.

1.1.3 Challenges

We are interested in developing contour-based approaches to detect polygonal objects. Formally,

such objects can be taken to be instances of geometric objects of a certain class having specific

rigid shapes whose outlines can be approximated by polygonal shapes, such as traffic signs,

computer screens, rooftops. Doing this job will entails addressing the following challenges:

• How to efficiently extract and accurately describe the low level linear structures in an

image? Contour fragment extraction is the base of contour grouping approaches. The

complexity and performance of a grouping algorithm is highly related to the contour

fragment space. Since we are interested in polygonal objects, an efficient and accurate

line segment detector is essential. However, even after decades of research, line segment

detection is still an open question. The state-of-art approach LSD [23] does not meet our

requirements when dealing with noisy imaging environments, due to tiny line segments and

numerous false detections. Hence, we must consider a multi-scale line segment detection

approach. Actually, the scale of the line segment should also be considered in the design

of its descriptor. Since traditional geometric descriptions in favor of angles and lengths are

not sufficient for line segment description, a neighboring region of the line segment is used

as an additional appearance description. However, approaches for determining the scale of

the associate region has not been well studied.

• Is there a generic measurement to describe a polygonal shape? Model driven approaches

require the design of a specific model for each type of polygon, while perceptual grouping

approaches focus on local geometric relation instead of global shape analysis. We would

like to design an efficient generic measurement to globally analyze the shape of polygons

to select simple polygonal shapes, regardless of whether they are triangles, rectangles or
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pentagons.

• How to design an efficient free shape object detection framework using contour grouping

approaches? Finding free shapes means that we want to perform the instance-outline-level

object detection, that is, our detection will provide the outline contour of each object,

which is approximated by a polygonal shape. Although some region-based object detection

approaches can also provide the outlines of the objects, their outlines depend on the initial

segmentation results. During hierarchical region grouping, no geometric measure is used

to guide the grouping to form specific shapes. In contrast, we want to use contour grouping

approaches encoding both shape and appearance information to generate hierarchical object

hypotheses. However, the optimization problem for contour-based approaches is much

harder than that of the region-based ones. This is because that the region-based approaches

only explore the binary combinations of neighboring nodes in a segmented-region graph,

while the contour-based ones have to explore the high order geometric relations of nodes in

a line-fragment graph, which results in a much more complex search space, e.g., the cycle

space of a fully connected graph with n nodes is larger than 2n [24]. Hence, designing an

efficient contour based object detection approach is very challenging.

• How to overcome the limitations in contour grouping approaches: additive measurements

and low efficiency for multiple object detection? Up to now, one of the best algorithms

at combining contour grouping with object detection is the ratio-contour [5]. It explores

the minimum ratio weight cycle in a line-fragment graph. However, as other contour

grouping approaches, it is limited to be used with additive measurement. Besides, there is

only one hypothesis that can be generated by this algorithm, which means that multiple

object detection must rely on a greedy search. Since we also detect cycles as the object

outlines, how to design an efficient search algorithm which can exploit both additive and

non-additive measurements to propose multiple object hypotheses is our final challenge.

1.2 Contributions

To address the challenges described above, we proposed a segmentation-based framework for

polygonal region detection, as shown in Figure 1.6, which includes three parts. First, we proposed

an efficient component tree segmentation algorithm which can extract multi-scale stable regions

enclosed by dominant boundaries. We then used an adaptive Hough transform to extract line

segments from the boundaries of stable regions, resulting in a region-based line segment detector.
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Figure 1.6 – Segmentation-based polygonal region detection. Given an input image, a preliminary
segmentation (the left) is obtained by component tree algorithm, then the linear structures (the
middle) are extracted from the boundaries of segmented regions, and finally the polygonal shapes
(the right) are detected according to global shape analysis.

Finally, we proposed a polygonal region detection algorithm, which exploits extracted linear

structures to do global shape analysis. Based on this algorithm, we developed an application of

automatic landing place detection in both images and videos, which significantly outperforming

the state-of-the-art. Although this segmentation-based framework is efficient and accurate for

detecting textureless objects, it can not deal with generic polygonal objects which may comprise

several segmented regions, such as the rooftop shown in Figure 1.7. We instead proposed a

generic object detection framework by exploring the promising cycles in a line fragment graph,

which can be used with any scoring function and can efficiently detect multiple objects. In the

process, we made the following contributions.

1.2.1 Efficient Low Level Feature Extraction

We proposed an efficient component tree segmentation algorithm and a multi-resolution line

segment detector, to extract low level features in man-made environments. Our component tree

segmentation algorithm explores the optimal threshold for each branch of the component tree,

which is one kind of multi-thresholding technique and robust to varying imaging conditions

and noise. Therefore, our algorithm can achieve a significant improvement over simple image

thresholding segmentation, and comparable performance to more sophisticated methods but

at a fraction of computation time. Using area variation as the signature of a component, the

output of our component segmentation approach can be considered as an extension of Maximally

Stable Extremely Region (MSER) [25]. By exploring global maxima, and enhancing boundary

information into the feature space, our output is a better segmentation representation than the

original MSER. Further, temporal stability can be efficiently encoded by detecting spatio-temporal
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Figure 1.7 – Cycle-based polygonal object detection. A directed graph is constructed for extracted
line segments. The target objects are detected by search promising cycles in this line-fragment
graph. For example, the white cycle corresponds to the outline of a rooftop.

stable regions in a video sequence using our 3D component tree algorithm.

Our line segment detection algorithm explores linear structures in the boundary of each MSER

using a resolution-adaptive Hough transform. The resolution of our Hough transform is defined

by the scale of the MSER, and kernel density estimation is used to better estimate the Hough

accumulator space. Our approach overcomes several inherent limitations of the Hough transform,

which have not been well-studied in previous works, including setting the bin-size, handling

collinear segments, dependence on the edge map, etc. The performance of our approach relies on

the result of the component tree segmentation (MSER). Since MSER is a very reliable multi-scale

region feature in man-made environments, our line segment detection approach has achieved

a great improvement over previous Hough-based approaches and a comparable performance

to the state-of-the-art approach LSD [23], which is based on a clustering technique. LSD can

better capture detailed linear structures, while our approach focuses on dominant linear structures,

which is more stable against noisy low-quality imaging conditions. This has been demonstrated

by experiments on a large set of images in various man-made environments.

Since our line segments are clustered by the MSERs, there is a strongly coupling relation between

our stable regions and our line segments, which can help significantly in further applications.

Line segments can be used to perform shape regularity analysis for their associated stable regions,

while a stable region can be employed as a useful descriptor for its line segments.

10



1.2. Contributions

1.2.2 Regular Polygon Detector and Real-time Landing Site Detection

We proposed a novel approach for real-time landing site detection and assessment in unconstrained

man-made environments based on a regular polygonal region detector. Because this task must be

performed in a few seconds or less, existing methods are often limited to simple local intensity

and edge variation cues. By contrast, we showed how to efficiently take into account the potential

sites’ global shapes , which are critical cues in man-made scenes. To do this, we proposed

a regular polygonal region detector, which can enhance both the stability and the linearity of

the candidate regions. We use the output regions of the component tree segmentation as the

candidates. The stability of each candidate is encoded by the area variation score. Our linearity

measure is to select simpler polygonal shapes by exploiting how well the boundary of the

candidate region is covered by the line segments. Since it is a global measure for generic simple

polygons, our approach can deal well with the projective transform caused by viewpoint changes,

and detect various shapes: triangle, rectangle, pentagon, etc. Furthermore, our approach can be

extended for multi-frame processing to improve reliability in low-resolution videos. We evaluated

our approach on challenging aerial infrared and color video sequences. By jointly leveraging

area-based cues and enforcing spatio-temporal consistency and geometric regularity, we achieved

reliable detection and assessment of runways, arbitrarily shaped landable fields, and rooftops,

significantly outperforming the state-of-the-art.

1.2.3 Free Shape Multiple Object Detection by Exploring Promising Cycles

One of our aims in this thesis is to design an efficient contour grouping based object detection

approach, which exploits polygonal shapes for rigid object detection. Early approaches for de-

tecting polygonal objects are relied mainly on geometry while subsequent ones also incorporated

appearance-based cues. It has recently been shown that this could be done quickly by searching

for cycles in graphs of line-fragments, provided that the cycle scoring function can be expressed

as additive terms attached to individual fragments [5]. In this thesis, we proposed an approximate

search approach that eliminates this restriction. Given a weighted line fragment graph as shown

in Figure 1.7, we prune the cycle space of the graph by removing cycles containing weak nodes

or weak edges, until the upper bound of the cycle space is less than the threshold defined by

the cyclomatic number of the graph. Object contours are then detected as maximally scoring

elementary circuits in the pruned cycle space. Furthermore, instead of pruning the weakest edges

from the graph, we proposed another algorithm that yields the same result but is more efficient,

which reconstructs the graph by grouping the strongest edges iteratively until the number of
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the cycles reaches the upper bound. Our approximate search approach can be used with any

cycle scoring function and multiple candidates that share line fragments can be found, which is

unlike other contour-grouping-based approaches that rely on a greedy search for finding multiple

candidates. Compared with the state-of-the-art region-based approaches, i.e., selective search

[6], our approach enhances the shape cues during the grouping, resulting in a better outline

representation. Furthermore, our approximate search algorithm could propose a much smaller

set of object hypotheses than that generated by selective search. Thus, object detection by our

algorithm is more efficient. We demonstrate that our approach significantly outperforms the

state-of-the-art contour-based approach [5] and region-based approach [6] for the detection of

building rooftops in aerial images and polygonal object categories from ImageNet.

1.3 Thesis Outline

In Chapter 2 we introduce our efficient component tree segmentation algorithm, which can

detect multi-scale stable regions in images and videos. Chapter 3 describes our region-based

line segment detector using an adaptive Hough transform. It can capture the dominant linear

structures in man-made environments, robust to noisy imaging conditions. Chapter 4 introduces

our approach for real-time landing site detection and assessment in unconstrained man-made

environments, based on our regular polygon detection algorithm, which combines our component

tree segmentation algorithm with our Hough based linear structure analysis. Chapter 5 introduces

our graph-cycle based free shape object detection framework, which can be used with any cycle

scoring function and multiple candidates that share line fragments can be found. We first propose

a graph-partition approximate search algorithm to solve the hard search problem of a huge cycle

space. We then describe a contour-grouping approximate search algorithm, which yields the

same result, but is more efficient. Finally, in Chapter 6, we conclude our works in this thesis and

briefly discuss on potential extensions.

Our works in this thesis partially appears in a number of peer-reviewed international conference

and journals [26, 27].
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2 Component Tree Segmentation in

Images and Videos

Segmentation is one of the fundamental problems in the field of Computer Vision. It is a very

challenging task because it is an ill-posed problem. Over the past decades, a lot of literature has

been published in this area, e.g. graph theoretic approaches [28, 29, 30], clustering approaches

[31, 32], level set approaches [33], etc. Although many of these approaches have achieved good

performance in practice, their high computation cost cannot meet the requirements of real-time

applications. Our aim is to design a real-time or near real-time segmentation algorithm that can

efficiently detect textureless regions in man-made environments, e.g. landing sites, rooftops,

facades of buildings, furniture, etc. Segmentation by single thresholding is a very efficient way to

detect constant-texture regions, but is very sensitive to parameter tuning, and unstable for varying

environments. In this chapter, we extend the component tree filter algorithm, which is a kind of

multi-thresholding technique, to propose an efficient segmentation algorithm that can be applied

in both images and videos (3D volumes). We will show that it achieves comparable segmentation

results with respect to more sophisticated approaches, but at a fraction of the computation time. In

the following, we first talk about related methods, then we provide a brief overview of component

tree filter mostly using the formulation of [34]. We then discuss the extensions we implement

resulting in our proposed segmentation algorithm. Finally, we show the segmentation results

demonstrating the effectiveness and superiority of our approach.
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2.1 Related Works

2.1.1 Connected filtering

Image segmentation by thresholding is an instance of a more general class of techniques known

as connected filtering. Connected filters are morphological operators that can be used to simplify

the image while preserving its contours, employed in a variety of applications [34]. Those that

commute with thresholding are called flat filters [35]. Flat filters remove components whose

attributes violate a given criteria, and get their name from the constant valued regions they detect

in an image. Although efficient, they are fairly simple and can be sensitive to varying imaging

conditions and noise, especially when only considering the connected components computed

at a single pre-defined threshold, as is typically done in landing sites detection applications

[36, 37, 38, 39].

The component tree [40, 34] is a tree structure recording components in all the thresholding

level sets. It can implement non-flat filter that considers the relationship between connected

components as they evolve across an entire threshold range. In this way, it allows for increased

flexibility and modeling capacity overcoming many of the limitations of simple flat filtering [34].

Furthermore, highly efficient algorithms exist for their implementation [34, 41, 42, 43] making

them well suited for real-time applications.

2.1.2 Maximally Stable Extreme Regions

Maximally stable extremal regions (MSER) was proposed by [44] for blob detection in images.

It has been successful applied to wide baseline stereo and object recognition applications. In [45],

MSER has been proved to be the overall best affine-invariant region detector, due to its invariance

to affine transformation, stability, and multi-scale detection. Furthermore, there exists a linear

time algorithm to implement it [46].

MSER algorithm detects stable regions included by dominant boundaries over a range of thresh-

olds, which can be considered as a special instance of component tree non-flat filtering that uses

area variation as component signature. However, its aim is to detect repeatable region features,

instead of a clean segmentation representation. Hence, in MSER outputs, there may exist a lot

of redundant regions caused by noise and merging regions due to blurring or weak boundaries.

In the past decade, there have been a lot of extensions of MSER [47, 48, 49, 50]. Among them,
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the most important extension is applying MSER detection in gradient feature space [49, 50] to

efficiently exploits the boundary information, but it sacrifices robustness to noise.

2.2 Component Trees

Component trees are based on the notion of threshold decomposition [51]. Let f be a real-valued

image defined by the function f : F 7→R where the support F ⊆R2. A reconstruction of the image

f can be defined using image thresholding

f (x) =max{t : x ∈Xt ( f )}, (2.1)

where

Xt ( f ) = {x ∈ F : f (x) ≥ t }, (2.2)

is the threshold set of the real-valued image f obtained at threshold t .

Equation 2.1 decomposes the image into a set of binary images that define a simplified represen-

tation.

Let Ct ,n be the nth connected component of threshold set Xt . Equation 2.1 can be re-expressed

as

f (x) =max
{

t : x ∈⋃
n

Ct ,n

}
. (2.3)

A connected filter preserves the components of f whose attributes satisfy a certain criterion T ,

Φ(Xt ( f )) =∪{Ct ,n : Ct ,n satisfies criterion T }. (2.4)

An important feature of connected filters is that they only remove components, and unlike other

morphological operators they do not alter the component boundaries, a desirable property for

image segmentation.

A component tree T is defined from the components Ct ,n with one node per component denoted

as n(Ct ,n) or simply n. Threshold sets have the important property that Xt+1( f ) ⊆Xt ( f ) which

implies that for every component Ct ,m there exists a component Ct+1,n ⊆Ct ,m [34]. Two nodes

Ct+1,n and Ct ,m are linked in the tree if Ct+1,n is a descendant of Ct ,m satisfying the above
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property. The root of the tree nmin is defined by the component Cmin that is the superset of all

the components in the image found by thresholding the image by its minimum value. The tree

is constructed by progressively thresholding the image, linking the nodes between neighboring

thresholds, starting at the root.

Component trees can be used to implement either a flat or non-flat connected filtering. A flat

filtering only considers the nodes Ct ,n individually at each level t , whereas a non-flat filtering

enforces criteria defined along branches of the tree. A key advantage of component trees is that

they can be used to define a selective image filtering that only affects concentrated regions in

the image corresponding to branches in the tree, leaving the rest of the image un-altered. A

selective filtering is not possible using flat filters and gives component trees a distinct advantage

over them, especially when not all objects are well segmented using only a single threshold, as

is typically the case. Component trees also generalize previous hierarchical connected filters in

the literature having a close connection with opening trees [52] and max-trees [53]. For a more

detailed treatment of component trees we refer the reader to [34].

An example illustrating the use of flat vs. non-flat filtering is depicted in Figure 2.1 where the

goal is to segment the two constant circular regions. Flat filtering considers each threshold set

individually and therefore has difficulty in obtaining the desired segmentation, especially when

only considering a single threshold. The boundaries of each region can be detected using multiple

thresholds, however, at the cost of added clutter. In contrast, a non-flat tree filtering can easily

detect the circular regions since it can exploit the fact that the connected components of these

regions remain relatively unchanged across threshold sets compared to other regions in the image.

2.3 Image Segmentation using Non-flat Filtering

Image segmentation with component trees is performed by considering the sequence of node

attributes found along a branch of the tree, otherwise called an attribute signature [34]. While

[34] considers signatures defined with respect to tree branches associated with leafs of the tree,

we detect regions in the image by finding attribute extrema along each branch similar to [25].

This allows for the discovery of featureless regions characterized by dominant image boundaries

referred to in [25] as Maximally Stable Extremal Regions (MSERs). Whereas [25] only considers

local extrema, however, we compute extrema across an entire tree branch as this helps to avoid

spurious detections.
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(a) f (x) (b) f (x) ≥ thigh (c) f (x) ≥ tlow

(a) f (x) (d) Flat (f) Non-Flat

Figure 2.1 – Selective filtering. (a) An example intensity image and its associated surface (a). (b),
(c) Flat filtering with a single threshold. (d) Flat filtering across an entire threshold decomposition.
(e) Non-flat component tree filtering. Detected regions are indicated in white with a red contour.
Cleanly segmenting the constant circular regions is not possible using a flat filtering with either
a single threshold or threshold decomposition. In contrast, a non-flat component tree filter can
selectively filter these regions by exploiting the fact that their connected components remain
unchanged across a range of threshold sets.

More formally, let g (n) represent an attribute of node n. Our attribute signature is defined as

n(Ct ,n) is


active, if g (n(Ct ,n)) = min{g (n(Ck,m)) :

Ck,m ∈B(n(Ct ,n))}

not active, otherwise.

(2.5)

where B(n) is the tree branch containing node n. A node is labeled as active if it is to be

preserved by the component tree filter, and is labeled as non-active otherwise. Following [25]

we use an area variation signature and define g (n) using the area variation between n and its
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neighboring parent and child nodes

g (n) = ar ea(Ct+δ,par ent (n))−ar ea(Ct+δ,l ar g est_chi l d(n))

ar ea(Ct ,n)
, (2.6)

where δ is a parameter to control how many adjacent levels are considered to compute the area

variation. par ent (n) is the index of component in level t+δ containing Ct ,n . l ar g est_chi l d(n)

is the index of the largest component in level t−δ contained by Ct ,n . The final image segmentation

is then obtained retaining all the active nodes in the tree

Seg ( f )(x) =

1, if φT ( f )(x) ≤ f (x),

0, otherwise,
(2.7)

obtained with the connected tree filter

φT ( f )(x) =

max{t : x ∈Ct ,n and n(Ct ,n) is active},

256, x doesn’t belong to any active component.
(2.8)

2.3.1 Modifying Topology by Enhancing Edges in Intensity Feature

The base of the component tree filter is the connected components analysis at each thresholding

level, which explores the topology of the binary thresholding image. However, the topology of

binary image is very sensitive to weak connections. A tiny connection between two neighbouring

pixels can result in a merging of two connected components, especially when using 8-way

connected components analysis as original MSER algorithm does[25]. Usually for connected

filtering approaches, morphological operations are used to fix such kinds of flaws. Applying a

morphological operation function M (·) to a grayscale image f (x) can be decomposed into a set

of morphological operations done in each level set Xt ( f ) during the connected filtering,

M ( f (x)) =max
{

t : x ∈⋃
n

Ct ,n , Ct ,n ⊆M (Xt ( f ))

}
. (2.9)

For example, erosion operation can be used to break weak connections between components.

Opening operation can be used to smooth noisy boundaries. However, applying morphological

operations in component tree approach is very expensive, since it is impossible to be encoded in

linear component tree algorithm, and time-consuming done in a lot of thresholding sets.

Instead of modifying topology during constructing component tree, a more efficient way is
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C2#

C1#

C3#

C2#C1# C3#

C2#

C1#

C3#

C4#

C5#

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.2 – Feature combination. (a) is a grayscale image. (b) is the intensity feature curve,
which is the observation of (a) in 1D(Horizontal direction). Component tree segmentation using
intensity image tends to find large component regions. (c) is a gradient feature curve of (b),
by which component tree algorithm can well segment three small components. (d) illustrates
Mach band effect: the blue curve is the real luminance curve, while the red line shows the
luminance cure in human vision system in which the contrast between two surfaces with different
illuminance is increased. (e) is a combination feature curve such that (e)=(b)-(c): Enhancing
edge information in the intensity feature channel can help component tree algorithm finding
more components. (f) is a noisy grayscale image. (g) is the intensity feature curve of (f) in 1D,
which is stable to the white noise. (h) is the gradient curve of (g), which is too noisy to find any
stable components. (i) is the combination feature curve such that (i)=(g)-(h), which shows the
combination feature is also stable to noise, similar with intensity feature. (j) is a combination
feature curve such that (j)=(g)-(c), which shows if enhancing stable edge information (c) into the
noisy image (g), the combined feature (j) can get similar performance with case (e).

directly working on feature space. Different feature representations can result in component trees

of different topologies. Except intensity feature, gradient feature has also been exploited by many

approaches [49, 50], since it is a better representation of geometry. A simple synthetic example

is shown in Figure 2.2 (a). (b) is an observation of (a) in 1D along the horizontal direction.

The component tree algorithm using intensity features tends to find large regions, while using

gradient feature (c) successfully segments three small regions. However, gradient feature is very

sensitive to noise. Given a noisy image (f), using intensity feature (g) is still reliable to find stable

component regions, while the gradient feature (h) is too cluttered to find any stable component

region. In summary, using intensity-only can stably segment noisy regions, however, it often

overlooks salient edge information. Similarly, a gradient based segmentation delineates geometric

shapes very well, but is more sensitive to noise.
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Inspired by Mach band effect, we propose a feature combination of intensity and gradient that

can benefit from the strength of each representation. Mach band effect describes that the human

mind subconsciously increases the contrast between two surfaces with different luminance (see

the red curve in Figure 2.2 (d)). Simulating the human vision system, we employ the combination

feature by enhancing edge information in original intensity image, defined as1,

C =

I −uint8(αG), dark to bright

255− I −uint8(αG), bright to dark
(2.10)

where I is an intensity image, G is the edge probability map of I , and α is a scale used to weight

the edge map. To simplify the feature, we directly use the gradient image of I as the edge

probability map G. Under the proposed feature combination, the image gradient helps guiding

the component tree segmentation, while still benefiting from the stability of constant intensity

regions. Figure 2.2 (e) shows an example of feature combination such that (e)=(b)-(c), by which

more stable component regions have been found by the component tree segmentation. Even for a

noise image (f), the combination feature (i)=(g)-(h) still preserve the stability of intensity feature

(g). Furthermore, if providing an ideal edge map (c), the combination feature (j)=(g)-(c) can get

similar performance with case (e). Such kind of reliable edge map can be obtained by advanced

edge detection approaches, e.g. [54], albeit expensive to compute. However, in most cases,

gradient image already meets the requirement of edge information. Although many low-level

image representations can be also used with our approach, e.g intensity variation [55, 38, 39], in

our experiments, we found our combination feature of intensity and intensity gradient to work

best.

2.3.2 Temporal Consistence in Videos

For segmentation in a video sequence, temporal consistency is an important cue that exploits

multiple image time instances to help gauging the presence of temporal stable segments. It is

particularly well suited for segmenting low-quality images whose image boundaries are noisy and

are more reliably extracted by accumulating evidence across many frames. The traditional way to

encode temporal consistency is detecting segments in each frame, and tracking them by features

in adjacent frame to check whether or not these segments consistently appear across frames.

1Component Tree can be built in two directions: dark to bright(0->255) detects components brighter than
surrounding area; bright to dark(255->0) detects components darker than surrounding area, which can be done by
inverting the intensity image I = 255− I .
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(a) (b)

Figure 2.3 – Spatio-temporal stable regions. Considering a video sequence as a 3D volume (a),
component tree algorithm can be used to find spatio-temporal stable regions (b).

However, instead of exploring the repeatability of 2D MSER across frames, a more efficient way

is to directly apply 3D component tree analysis on video sequences. Provided an image sequence

as shown in in Figure 2.3 (a), component tree segmentation is applied to find dominant regions

across both space and time (Figure 2.3 (b)). These regions are not only spatial stable, which

are enclosed by dominant boundaries, but also temporal stable, which are consistently detected

across all the frames. We call them as Spatio-Temporal Stable Regions.

Component tree filtering and segmentation on image sequences proceeds much in the same way it

does for a single image. Let v be a real-valued image sequence defined by the function v : V 7→R

where the support V ⊆R3 with the third dimension being time. Connected components are found

using threshold decomposition on v applying Equation (2.1). Whereas for a single image the

components are 2D regions for image sequences they correspond to 3D volumes. 3D component

tree algorithm can be naturally extended from 2D component tree algorithm by modifying two

terms:

• It uses 6-way connected component analysis, instead of 4-way in 2D images.

• Non-flat filtering Equation 2.5 employs volume variation signature similar to [56], instead

of area variation,

g (n) = v(Ct+δ,par ent (n))− v(Ct+δ,l ar g est_chi l d(n))

v(Ct ,n)
, (2.11)
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Parameters Default Values
Maximum variation 0.05
Minimum diversity 0.7
Maximum area 0.2
Minimum area 0.001
Edge map weight α in Eq. 2.10 α= std(I )

std(G)
Neighbor threshold δ in Eq. 2.6 5

Table 2.1 – Parameters of component tree segmentation.

where v(Ct ,n) is the volume of 3D component Ct ,n and δ is the threshold difference level.

Ct+δ,par ent (n) ⊃Ct ,n is the node at threshold t +δ of the component immediately including

Ct ,n , and Ct−δ,l ar g est_chi l d(n) ⊂Ct ,n is the largest component at threshold t−δ immediately

included by Ct ,n .

2.4 Experiments

2.4.1 Implementation Details

The main parameters for component tree segmentation are shown in Table 2.1. Maximum

variation is a threshold of the area variation to remove unstable segmenting regions. Minimum

diversity is a threshold of overlap between two components to remove duplicated regions caused

by two-directions filtering or noise. Maximum area and Minimum area are used to control the

size of segmenting regions. The input of component tree is combination feature described in

Equation 2.10. α is defined as a value proportional to the ratio between standard deviations of

intensity image I and gradient image G .

Our implementation of component tree segmentation is based on the vlfeat library [57] and was

done in MATLAB using C-code MEX-wrappers. Although efficient, our code can be further

improved for even faster performance.

2.4.2 Comparison with Original MSER Approach

Since we employ area variation as component signature in our component tree segmentation

approach(Equation 2.5), which is the same with original MSER approach [25], the outputs of

our approach can be considered as a kind of enhanced MSERs. In this section, we compare the

MSERs generated by our approach with original MSERs to demonstrate the improvement of our
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Figure 2.4 – Global extrema V.S. local extrema. The left image is the output of original MSER
approach, which keeps all the local extrema as MSER. The right image is the output of the our
component tree algorithm, which only keep the global extrema along each branch of the tree. Our
approach keeps fewer redundant regions, and focus on the components capturing the dominant
structures of the image.

approach.

Global Extrema V.S. Local Extrema

In our approach, the non-flat filtering (Equation 2.5) only keeps the global extrema along each

branch of the tree, while original MSER approach preserves all the local extrema such that the

area variation of component is less than parent’s and children’s. A comparison is shown in Figure

2.4, in which MSERs are expressed as fitting ellipses. The left image is the output of original

MSER approach, while the right image is the output of ours. Our approach removes the redundant

components, and results in a clearer segmentation representation of the input image.

Comparison of Input Features

Original MSER employs intensity feature, while several extensions [49, 50] use gradient feature.

A comparison of these two features is shown in Figure 2.5, using two low quality infrared

images. The left image is at very low resolution 320×240 and blurred. The right one is at a

higher resolution 1024×768 but noisy. Intensity feature is very stable to the noisy image (right),

but misses some dominant structures in a blurred image (left). Although gradient feature can

well capture the structures in blurred images (left), it is very sensitive to the noise (right). The

combined feature of our approach benefits from the strengths of each representation and has the

ability to exploit image edges while leveraging the stability of constant intensity regions. More
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results are shown in Figure 2.6.

STSR V.S. MSER

In Section 2.3.2, we further encode temporal stability in video sequence segmentation by de-

tecting Spatio-Temporal Stable Regions(STSR). In order to compare the performance in noise

environment, we use a low quality infrared videos (Figure 2.7 (A)) to compare original MSER,

our MSER, and STSR. We detect STSRs in a 15 frames temporal window. The segmentation

results of center frame are shown in Figure 2.7. Random color are assigned for different regions.

Again, the original MSER algorithm detects a lot of redundant regions and noise regions, as

shown in Figure 2.7 (B). Our 2D MSER detection (Figure 2.7 (C)) has a much clearer segmen-

tation result. STSR detection (Figure 2.7 (D)) enhances temporal stability and further remove

temporal unstable regions. Quantitative results will be present in Chapter 4, in which we apply

our component tree segmentation approach in a landing place detection application.

2.4.3 Comparison with Other Approaches

Baselines

The aim of our segmentation approach is to design an efficiently to detect featureless regions

in man-made environments. A common approach is using an intensity variation method to find

constant texture regions based on efficient, simple image thresholding [58, 39, 55]. This measure

is evaluated using a spatial sliding window computed densely throughout the image. Intensity

variation is defined as

Iσ(c) =
√

1

(2r +1)2

∑
x∈W (c,r )

(I (x)−µ(c;r ))2 (2.12)

where W (c,r ) ⊂ F defines an (2r +1)×(2r +1) window centered at c and µ(c) is the mean intensity

within the window. Flat filtering is then performed by thresholding this measure at a pre-specified

value. We evaluate this method at different threshold values and used r = 5 throughout our

experiments as we found this to give the best results.

We also consider a more sophisticated technique and compare against mean-shift image seg-

mentation [31], using the EDISON segmentation library [59]. Although our method cannot be

expected to be significantly more accurate than this approach we show that it performs similarly
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for finding the boundaries of featureless, un-obstructed regions, while being far more efficient.

Segmentation Quality

A comparison of our component tree segmentation approach to simple flat filtering, both applied

to the intensity variation measure, and mean-shift color image segmentation is provided in Figure

2.8. Average computation time per image is also shown. The segmentation quality obtained with

our approach is similar to mean-shift, however, at a fraction of the computation time. A simple

flat filtering, although efficient, is highly sensitive to an appropriate choice of threshold, with a

different threshold per dataset giving favorable results. In contrast, our approach can be seen

as integrating across this parameter, and the exact same setting of our approach works equally

across datasets, while still maintaining a real-time computation time of under one second.

2.5 Conclusion

In this chapter, we have presented an efficient component tree segmentation algorithm to detect

featureless regions in man-made environments. Unlike the simple-thresholding approach which

is sensitive to varying imaging conditions and noise, our component tree algorithm explores the

optimal threshold for each branch, which is one kind of local adaptive thresholding technique.

It can therefore achieve a huge improvement over simple image thresholding segmentation,

and comparable performance to more sophisticated methods, but at a fraction of computation

time. Using area variation as the signature of a component, the output of our component

segmentation approach can be considered as enhanced MSERs, by exploring global maxima, and

exploiting combined feature. Experiments show that our MSER output is a better segmentation

representation than the original MSER. Further, our 3D component tree segmentation algorithm

can be applied in video sequences so that temporal stability can be naturally encoded by detecting

spatio-temporal stable regions. In the following chapters, we will present methods of exploiting

the outputs of our component tree segmentation in various applications.

25



Chapter 2. Component Tree Segmentation in Images and Videos

Figure 2.5 – Combined feature representation. Component tree segmentation applied to the
(second row) intensity image, (third row) gradient image, and (last row) a combination of intensity
and gradient. Detected regions are displayed using a heat map color coding with red indicating
highly stable regions and blue low stability. The proposed feature combination benefits from the
strengths of each representation and has the ability to exploit image edges while leveraging the
stability of constant intensity regions.
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Inputs Combination feature Intensity feature Gradient feature

Figure 2.6 – Feature comparison. Component tree segmentation applied to the (middle right)
intensity image, (right) gradient image, and (middle left) a combination of intensity and gradient.
Detected regions are displayed using a heat map color coding with red indicating highly stable
regions and blue low stability. The combination feature works best.
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Figure 2.7 – STSR V.S. MSER. A low quality infrared video (A) is used to compare 2D MSER
approaches with 3D STSR. (B) is the original MSER result, (C) is the MSER result obtained by
our component tree segmentation, and (D) is the center frame of the STSR result detected in a
15-frames temporal window. Random color are assigned for different regions. STSR can remove
temporal unstable regions to result in a better segmentation.
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3 Region Based Line Segment Detector

Line Segment Detection is another fundamental problem in the field of Computer Vision. As one

of the basic features in Computer Vision, lines have been exploited in a lot of applications. The

well-known Hough Transform has been widely used in line/line-segment detection. However,

there are several limitations to discourage it from achieving optimal performance, e.g. bin-

size/resolution setting, ambiguous peaks, etc. Although a lot of improved Hough voting methods

have been developed in the past decades to deal with these limitations, their performance is

still far from the state-of-the-art approaches using clustering techniques [60]. In this chapter,

we propose a region based line segment detection algorithm by combining our component tree

segmentation algorithm with the Hough voting technique. The proposed method overcomes some

of the inherent limitations of the Hough transform and yields comparable performance to the

state-of-the-art clustering based approaches. However, our approach can better capture dominant

structures and is more stable against low-quality imaging conditions. In the following, we first

review the limitations of the Hough transform and related works, then we propose our region

based line detection algorithm using an adaptive Hough voting, and finally we show experiments

to demonstrate our approach.

3.1 Related Works

3.1.1 Hough Based methods

Hough transform [13] is a well known technique for extracting pre-defined model in images, e.g.

lines, circles, ellipse, etc. Furthermore, [61] proposed a generalized Hough transform which can

detect any kind of shape defined by template. For line detection, the standard Hough transform
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Chapter 3. Region Based Line Segment Detector

(HT) [13] maps each edge point (x, y) in an image to a set of variables (ρ,θ) in the Hough

parameter space having the relation:

ρ = xcosθ+ ysinθ. (3.1)

The Hough space is quantized into bins, and a 2D array is used to accumulate the votes of edge

points. The local maxima of the 2D accumulator are detected and used as parameters to fit the

line models. Hence, the standard Hough transform process includes three parts: accumulating the

votes of edge points, finding local maxima, and extracting lines corresponding to the maxima.

However, there are several limitations of the standard Hough transform, especially when detecting

line segments instead of lines.

• Bin size setting. The bin size of the parameter space is inversely proportional to the

resolution of parameter in the line model. Large bins will reduce the resolution of the

parameter space, which causes the corresponding peaks of nearby line segments are

ambiguous in the parameter space, and yields inaccurate detection results. But if applying

small bins to obtain a high resolution, the votes of edge points belonging to one line

segment may fall in the neighbouring bins, i.e. few observations exist in each bin, which

makes local maxima less visible in the parameter space. The trade off between the bin size

and the number of observation in each bin has a great influence on its performance. The

selection of an optimal and efficient bin size is crucial but a very difficult task.

• Time and memory consuming. The standard Hough transform maps each edge point to a

cosine curve in the parameter space, which is a one to many voting. The efficiency of the

standard Hough transform depends on the number of edge points and the resolution of the

parameter space. It is very inefficient to deal with a dense edge map at a fine resolution.

• Depending on edge detection results. The performance of the standard Hough transform

depends heavily on the quality of edge detection. Canny edge detection has been exploited

by many approaches due to its good balance between efficiency and performance. However,

it can not guarantee a desired edge map for vary imaging conditions, without manually

tuning parameters. If given a dense and cluttered edge map, the peak finding of the standard

Hough transform will be very hard, and usually a lot of false detections will be generated.

• Collinear line segments. There may exist collinear line segments belonging to different

objects in an image. However, the standard Hough transform treats them as a single line
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and votes them into the same peak. It is very challenging to separate them into right line

segments. Simple post processing, e.g., gap length checking, is not enough.

To overcome these problems or some of them, plenty of improved Hough transform approaches

have been proposed over the past decades.

In order to improve computational efficiency, a randomized Hough transform (RHT) algorithm

has been introduced by [62], which randomly selects several pair of edges to compute the

accumulator. The random sampling method was further improved by [63], which proposed

a probabilistic Hough transform algorithm using a subset of the edge points to estimate the

maximum in the parameter space. Their experiments showed only using a small fraction of

edge points in the voting process could obtain almost identical results to the standard Hough

transform. A progressive probabilistic Hough transform (PPHT) has been proposed in [64] to

further improve the computational efficiency by minimizing the number of points that participate

in the voting process. Beyond random sampling, advanced sampling methods have also been

exploited, e.g importance sampling [65], and slice sampling [60].

The standard Hough transform employs one to many voting process, i.e. an edge point (x, y) in

image space votes to a cosine curve in Hough space. In contrast, many to one voting methods have

been exploited in [62, 66], such that the parameters of a fitting curve of a small neighbourhood

of edge points are used to map these points into a single point in the parameter space. Such

kind of methods are advantageous over the standard Hough transform in their high speed, small

storage and high resolution. However, they result in fewer observations in parameter space than

the standard Hough transform, so they cannot obtain a dense representation of accumulator.

Therefore, instead of finding peaks in accumulator, they use a k-means like algorithm to find

the cluster centers from these fitting parameters to detect curves. However, the problem is that

the performance of their algorithm really depends on local curve fitting accuracy. How to define

neighbourhood and set a optimal fitting error threshold can be very complicated.

Since the bin size setting has a great influence on the perform of Hough transform, there are

also many literatures working on a continuous representation for the 2D discrete accumulator. A

butterfly distribution has been used to reduce the background contribution to the peaks in [67].

Adaptive kernel estimation has also been employed in this area. Gaussian kernel is used to obtain

a dense and continuous representation of accumulator, and variable bandwidth are estimated by

the variance of local observation [68, 69]. A more general kernel estimation framework has been

given by statistical Hough transform [70]. Mean-shift [31] has been applied to find the peaks

33



Chapter 3. Region Based Line Segment Detector

in accumulator [71], which also uses continuous kernel estimation with variable bandwidth to

find cluster center. For these methods, the bandwidth estimation is crucial, which is hard if only

according to local observation.

In summary, sampling methods and many to one voting strategy have been exploited to improve

efficiency. Adaptive kernel estimation has been used to solve the influence caused by discretization

of parameter space. Given a good edge input image, many of them can obtain good performance.

However, a desired edge image can not be always guaranteed by currently available edge detection

approach, e.g. Canny [72]. Since Hough transform is a method to capture global structures in

an edge map, a cluttered background can cause a big problem to its efficiency and performance.

What’s more, as a line segment detector, Hough based methods can not deal well with collinear

line segments belonging to different objects.

3.1.2 Clustering Methods

The clustering methods try to group neighbouring pixels into a subset according to some common

properties, e.g., eigenvalues of the covariance matrix [73], gradient orientation [74, 75, 60], etc.

Then a line segment is estimated in each subset. Clustering methods usually extract line segments

directly from the intensity image, by emphasizing the orientation consistence and the connectivity

of local pixels. However, there are also some literatures working on edge images. For example,

[60] directly uses mean shift on spatial-orientation space (x, y,θ) of edge image instead of the

accumulator space (ρ,θ) as [71] does, avoiding the bin-size setting problem. However, similar to

other edge based approaches, its performance relies on edge detection results.

The state-of-the-art line segment detection algorithm is LSD: a fast line segment detector with a

false detection control [23]. This approach greedily groups nearby pixels with similar gradient

orientation into a rectangular line-support region. Then any rectangle region with the number

of false alarms less than a threshold is used to fit a line segment. Since it is a region grouping

approach, LSD prefer local geometric structures instead of global ones. Especially when dealing

with noise image, long line structure can be broken into several small segments.

3.2 Proposed Method

We propose a region-based line segment detection algorithm, which employs a resolution-

adaptive Hough transform to detect line segments on the boundary of each MSER obtained
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Figure 3.1 – Region-based line segment detector. We combine our component tree segmentation
algorithm with an adaptive Hough transform to propose a region-based line segment detector.
The Hough transform is adjusted according to the information obtained from each segmented
region, resulting in a multi-resolution line segment detection.

by our component tree segmentation algorithm. Our motivation is using the information of

segmented region to control the setting and estimation of the Hough parameter space so as to

overcome the inherent limitations of standard Hough transform, as shown in Figure 3.1. Our

approach is summarized as Algorithm 1. We first run our component tree algorithm to obtain the

segmentation result. Then we use an adaptive Hough transform to detect line segments on the

boundary of each MSER. The bin size of radius ρ is set as a value proportional to the scale of

the current MSER, which is defined as the square root of the smallest eigenvalue of covariance

matrix of its boundary points. Finally, we use kernel density modeling method to estimate the

accumulator, of which the peaks are found by a greedy approach:

• The global maximum of the accumulator is detected first, and used to fit a line segment.

• Then boundary points close enough to this line segment are selected, and their weighted

voting contributions are removed from the accumulator.

• The above two processes are repeated until enough number of line segments are detected,

or the length of detected line segment is less than a threshold.

In the following, we explain the details of our three main contributions: region based stable edge

detection, adaptive bin size setting for multi-resolution line detection and weighted voting by

kernel estimation.
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Algorithm 1 Region based Line Detector
Input: An image I
Parameters: Maximum number of line segments per region: Nummax = 20, minimum line
length: Lenmin = 10, θ bandwidth: θw = 20, θ resolution: ∆θ = 0.5.
Output: Line segment set: Li nes.

Run component tree segmentation, and obtain labeling matrix L.
Compute the orientation of local cutting plane normal for each pixel in I , saved as θ̄i .
for n = 1 to Max(L) do

Extract boundary point set B for binary region R = {(x, y) ∈ I |L(x, y) = n}.
Compute the region scale s = sqr t (the smallest eigenvalue of the covariance matrix of R).
Set ρ resolution ∆ρ = 0.8× s.
Compute the accumulator A(ρ,θ) using resolution (∆ρ ,∆θ):
For each (xi , yi ) ∈ B , its voting is v(ρ,θ, xi , yi ) = kθ(θ−θi

θw
)·kρ(ρ−ρi

∆ρ
), where kθ(·) is a uniform

kernel, and kρ(·) is a triangle kernel. Then A(ρ,θ) =∑
i v(ρ,θ, xi , yi ).

while num(Li nes)≤ Nummax and min_length(Li nes) ≥ Lenmin do
Find the maximum Pmax in A and compute a new line segment l , and push it into Li nes.
Find the edge points close to l from B .
Remove the weighted voting contributions of these points from A

end while
end for
Return: Li nes.

3.2.1 Detecting the Boundaries of MSERs as Edges

Canny edge detector [72] has been employed by many approaches, due to its high efficiency

and good performance. However, it is hard to automatically select optimal thresholds for vary

imaging conditions. Although better performance can be achieved by probabilistic approaches

[54], they are usually time consuming so that they can not be applied in real time applications.

An approach applying component tree to detect linked stable edges has been first proposed by

[50], in which they use contour fragment distance as the signature of components. However,

using such kind of non-additive signature will prevent it from linear implementation. Besides,

their algorithm strongly removes unstable boundaries of segments, in which there may also exist

linear structures.

In our approach, we directly detect the boundaries of MSERs obtained from our component tree

algorithm as edges of the input image, which can be done in linear time. MSER is a stable region

included by dominant edges, i.e. the boundary of MSER keeps and only keeps the dominant

edge information. The noise edge inside MSERs or cluttered background will be overlooked.

Figure 3.2 shows the comparison between our approach with Canny, which is employed by most

of Hough based methods. The results of Canny using automatically generated thresholds (Matlab
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built-in function) and manually selected optimal thresholds are shown in the second row and the

third row respectively. As can be seen, the performance of Canny is very sensitive to the threshold

selection, especially for noisy image, e.g. the infrared image shown in the middle column of

Figure 3.2. The edge detection results of our method are shown in the last row, using default

parameters in Section 2.4.1. Our approach obtains a clear and stable edge detection. However,

our approach may overlook fine structures because there is a minimum region size control, e.g.

windowpanes in the last column of Figure 3.2. Since our target is to detect salient line segments,

losing such tiny structures won’t cause a big performance degradation. Hence, in general, our

segmentation-based edge detector provides us a reliable result for the following processes.

3.2.2 Defining Resolution using the Scale of MSER

Line segment detection is a multi-resolution problem. As shown in Figure 3.3, human vision

system is less sensitive to noise for long segments, but has strict requirements for short ones. A

fixed small bin-size will break noisy long segments into small segments and generate duplicated

detections, while a large bin-size will cause less accurate results and more false detections.

Therefore, multi-resolution detection must be considered to solve this problem. As can be seen in

the middle image of Figure 3.3, good fitting results can be obtained by using different radius ρ

resolutions.

Except stable edge detection result, component tree segmentation also provides a clustering of

edge points. Since component tree segmentation is a multi-scale technique, by which both fine

and large structure can be detected, we employ Hough transform on the boundary of each MSER

respectively instead of the whole edge map, so that the ρ resolution can be automatically adjusted

by setting the bin-size ∆ρ to a value proportional to the scale of MSER,

∆ρ =α ·SMSERi (3.2)

where α is a weight between 0 and 1, SMSERi is the scale of ith MSER, which is defined as

the square root of the smallest eigenvalue of the covariance matrix of boundary points, so as to

capture the finest structure of the boundary (seeing Figure 3.4).
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Figure 3.2 – Edge detection. The first row shows three input images: a good quality image(left),
a noisy infrared image(middle), and an image with complex structure (right). The second row
is canny detection results using automatic thresholds. The third row is canny detection results
with optimal thresholds manually selected for each image. The last row is boundaries of MSERs
obtained by our component tree segmentation using default parameters in Section 2.4.1. The
performance of Canny detection relies on threshold selection. Our segmentation-based edge
detector can capture the dominant edges in the image and overlook noisy details. However, since
there is a minimum region size control, our edge detector may lose some fine structures, seeing
windowpanes in the right example.
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Figure 3.3 – Resolution of Hough Parameter Space. The left image shows two point sets having
linear structure. The larger set is more noise than the smaller set. However, human vision system
is less sensitive to noise for long structure. If applying adaptive bin-size for ρ, good fitting results
can be obtained for each set, as shown in the middle image. But human vision system is very
sensitive to the angle error, especially for long structures, because the angle error is amplified in
long segments, as shown in the right image.

To sum up, our approach applying a resolution adaptive Hough transform in each MSER results in

a multi-resolution line segment detection. Besides, it naturally solves the collinear line segments

problem that has not been well studied in other Hough based approaches, since component

tree segmentation clusters them into different MSERs. However, human vision system is very

sensitive to angle fitting error, since the error can be amplified in long segments (seeing Figure

3.3. right). A fine θ resolution must be employed for the Hough transform in all MSERs to obtain

accurate angle estimation.

3.2.3 Weighting the Votes by Kernel Estimation

For standard Hough transform, given an edge point (xi , yi ), the voting function v can be expressed

as:

v(ρ,θ, xi , yi ) = δ(ρ−xcosθ− ysinθ), (3.3)
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Figure 3.4 – Setting ρ resolution using region scale. We fit an ellipse for each MSER, and define
the length of its short axis as the region scale, and set ρ resolution to be a value proportional
to this scale. Above two regions have the same length but different widths. Although their
boundaries are added the same power of white noise, the narrow one (the left) seems to be noisier.
This is because noise is more sensitive in the short axis direction for human vision. Hence we use
the length of short axis to define the resolution of ρ.

where δ(·) is the Dirac function, and 0 ≤ θ ≤ 180. Then the accumulator of Hough transform is

A(ρ,θ) =
N∑

i=1
v(ρ,θ, xi , yi ). (3.4)

In order to remove the influence of the discretization of parameter space, kernel density modeling

has been studied in many approaches [68, 69, 70] to obtain a better estimation of the accumulator

space:

A(ρ,θ) =
N∑

i=1

1

hθi

kθ(
θ−θi

hθi

) · 1

hρi

kρ(
ρ−ρi

hρi

) ·pi , (3.5)

where pi is a prior corresponding to the probability of an edge points, which is usually considered

as a normal distribution, i.e. pi = 1
N . kθ(·) and kρ(·) are kernel functions or weight functions,

with the bandwidths hθi and hρi respectively. (ρi ,θi ) are local observations, computed using

local appearance-base measures,

θi = θ(xi , yi ) = arctan Iy (xi ,yi )
Ix (xi ,yi )

ρi = ρ(xi , yi ) = xi ·cosθi + yi · sinθi .
(3.6)

We also apply kernel density estimation for the accumulator. In the following, we elaborate the

setting of our kernel functions.
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Kernels

Gaussian kernel has been used by many approaches [68, 69], to obtain a continuous and smooth

estimate of the accumulator. However, in order to save computational time, we employ an uniform

kernel for θ, and a triangle kernel for ρ,

kθ(
θ−θi

hθi

) =


1

2hθi
for |θ−θi | ≤ hθi ,

0, otherwise.
(3.7)

kρ(
ρ−ρi

hρi

) =


1− |ρ−ρi |

hρi
for |ρ−ρi | ≤ hρi

0, otherwise.
(3.8)

Although discontinuous, they are more efficient and achieve a very good performance in practice.

Bandwidths

The bandwidth is an important parameter for kernel density estimation. Variable bandwidths

estimation methods have been proposed in many works [68, 69, 70]. For example, [70] sets

the bandwidths as the standard estimation errors of angle θi and radius ρi , i.e. hθi = σθi and

hρ =σρi , which are computed by

σ2
θi
= σ2

||5 Ii ||2
, (3.9)

and

σ2
ρi

= cos2θiσ
2
xi
+ sin2θiσ

2
yi
+σ2

θi
(yi cosθi −xi sinθi )2, (3.10)

where σ2 is the variance of the gradient 5I in a neighbourhood of (xi , yi ), σ2
xi

and σ2
yi

are the

variance of the spatial coordinates (xi , yi ).

In contrast, we employ MSER-related-bandwidth kernel density estimate during our implementa-

tion, hθi = θw

hρi =∆ρ ,
(3.11)
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where 0 ≤ θw ≤ 90 is a pre-defined parameter by users, and ∆ρ is the adaptive ρ bin-size for each

MSER(seeing Equation 3.2).

Since the bandwidth is fixed for each MSER, our accumulator estimation Equation 3.5 can be

simplified as

A(ρ,θ) = 1

C

N∑
i

kθ(
θ−θi

θw
) ·kρ(

ρ−ρi

∆ρ
), (3.12)

where C is a constant for normalization and can be overlooked during the implementation.

Analysis

As we mentioned in related works, the bin-size ∆ρ setting plays an important role for the

discretization of Hough parameter space, which hasn’t been well studied in previous approaches.

Instead of adjusting bin-size, adaptive kernel density estimation methods are exploited by many

approaches to remove the influence of the discretization of Hough parameter space, by estimating

variable bandwidth for each vote. In contrast, we use the scale of MSERs to obtain an adaptive

bin-size setting for ρ, so that the bin-size can automatically fit for the requirement of multi-

resolution line segment detection. Moreover, we set the bandwidth hρ equal to the bin-size ∆ρ ,

which means the bandwidth of our kernel function is also related with the scale of MSER. Since

MSER is a very multi-scale region detector, our approach can achieve more global bandwidth-

adjusting, compared with other adaptive bandwidth approaches based on local observations, e.g.

variable variation, KNN(mean-shift). In the experimental section, we will demonstrate that our

approach yields a much better performance.

To obtain an accurate angle estimation, a fine resolution (∆θ = 0.5) is employed for θ in our

approach. However, a small resolution may result in too few observations in each bin to well

estimate accumulator. Hence, we also use kernel density estimation to solve this problem.

However, different with adaptive bandwidth methods, we pass an user-defined parameter θw as

the kernel bandwidth hθi . Since we employ uniform kernel for kθ(·), the adjusting of θw results

in a change of voting strategy:

• θw = 0 : This case works like many to one approaches, based on a strong assumption that

the normal of local cutting plane must be strictly consistent with the normal of fitting line.

Although efficient and accurate, there may be too few observations to find the right peaks

in the accumulator.
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• θw = 90 : This case works like the standard Hough transform, which is one to many voting.

The majority voting works well only when the right bin-size is chosen.

• otherwise is a trade-off between the above two cases.

Users can adjust θw to reflect their requirement about the consistency between the local cutting

plane and the fitting line normals. In this way, given a noise image, users can employ a larger θw

to overlook local noise on the boundaries and capture global linear structures. Although we can

also use variable bandwidth estimation, the setting of parameter θw is very flexible. Our default

value θw = 20 can meets the requirements of most cases. Besides, users can also easily adjust the

bandwidth for some special cases, e.g. noise images.

3.3 Experiments

3.3.1 Implementation Details

The user defined parameters and their default values are shown in Algorithm 1, including

• Nummax = 20, which is an upper bound of the number of line segments in each MSER.

• Lenmin = 10, which is a threshold of line segment length to remove short line segments.

• θw = 20, which is the θ bandwidth for kernel density estimation. A smaller value will

prefer more salient but shorter line segments, while a larger one will detect longer but

noisier line segments.

• ∆θ = 0.5, which is the θ bin-size used to compute accumulator. This parameter should be

set to be a small value to yield a high angle accuracy.

There are also several built-in parameters, which have already been well tuned, and don’t need to

be adjusted in different types of services, including:

• Bin-size of ρ : ∆ρ is set as 0.8 of the scale of MSER. Besides, there is lower bound and

upper bound for ∆ρ that is: 1 ≤∆ρ ≤ 5.

• Distance threshold D th during peak finding process, which is used to decide whether an

edge point is close enough to the current fitting line l , and set as 0.5 of the scale of MSER.
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• Gap length threshold Gth during peak finding process, which is used to check whether two

short collinear line segments should be merged as a long line segment, and set as 2 times of

the scale of MSER, with a lower bound and an upper bound check, which is 1 ≤Gth ≤ 10.

In the following experiments, all the results of our approach have been generated using the default

parameter setting.

3.3.2 Baselines

We compare our component tree line segment detection approach (CTL) with four line segment

detection methods, including:

• Standard hough transform (HT), which only gives the line detection results, instead of line

segments.

• Progressive probabilistic Hough tranform (PPHT)[64] , which can minimize the number

of edge points for random sampling to improve the efficiency of Hough transform and

control false detections. Besides, their peaks finding strategy is pretty similar with our

greedy methods.

• Line segment detection using weighted Mean-shift (LSWMS)[60], which uses slice sam-

pling to improve edge point sampling, and exploits mean shift to find the cluster centers

of (xi , yi ,θi ) space to fit line segments. This approach can be considered as an extension

of Mean-shift Hough transform [71]. Moreover, since mean-shift is a various bandwidth

estimation method, this approach can also be considered as a representation of adaptive

kernel density model approaches.

• Line segment detector (LSD)[23], which is the state-of-the-art line segment detection

approach that greedily groups neighbouring pixels into line segments with a false detection

control.

We use built-in functions in OpenCV for HT and PPHT and the authors’ source codes for the

other two approaches to in our experiments. All the results have been generated using default

parameters without any tuning.
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3.3.3 Experiments in Man-made Environments

We have collected a large set of images of various environments to test our approach. Most of

them are man-made environments, which are full of linear structures, including: indoor cases

(Figure 3.5), building facades (Figure 3.6), aerial images of both town area (Figure 3.7) and rural

area (Figure. 3.8), etc.

Figure 3.5 shows the comparison experiments of indoor environment. HT can well capture

dominant linear structures, only when the edge image is very clean and simple (Seeing the top

and the bottom example). Since HT hasn’t used any gradient orientation constraint, a lot of

false detections are generated due to collinear segments and cluttered background (The middle

example). Although PPHT has a great improvement over HT by checking the gap length between

segments, these problems still exist. As shown in the middle example, PPHT generates a lot of

false detections at dense edge points area. In the bottom example, PPHT merges close collinear

short segments into long segments. PPHT uses a similar peak finding strategy to ours, such that

peak finding and line fitting are interleaved. However, this greedy approach has a very strict

requirement about the accuracy of peak finding. If a false detection happens, the greedy approach

will remove all edge points belonging to this false detection, which may break the true linear

structures in the remaining edge points. This is why PPHT fails in finding small structures in

these examples. Both LSWMS and LSD find segments by grouping edge points with similar

gradient orientations, which can solve the collinear segments and cluttered background problems.

There are few false detections in their results. But shorter line segments are preferred, since

the noise may break the grouping process. However, there exists a big difference between

them, i.e., LSWMS runs the grouping only on cluster centers, while LSD run it greedily on the

whole image. As we mentioned before, LSWMS exploits mean-shift, which is a adaptive kernel

estimation approach, to find the peaks for multi-resolution line segments. However, in practice,

their results are not satisfactory. In the top and middle examples of Figure 3.5, several dominant

linear structures have been missed by LSWMS. Both LSD and our approach CTL have achieved

good performance. LSD uses grouping approach which prefers shorter and more dense line

segments representation, while our approach uses Hough transform which prefers longer and

more dominant line segments representation. Since CTL does Hough transform in each MSER,

there won’t exist collinear segments and cluttered background problem, and the peak finding will

be much easier than the ones in the whole image.

Figure 3.6 shows examples of building facades, which usually have plenty of linear structures.
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Again, our approach CTL and baseline LSD have obtained much better results than others. The

only problem is that our approach has missed some fine structures, e.g., windowpanes in the

middle example, since CTL has a small area control during the component tree segmentation.

Figure 3.7 shows the detection results for aerial images of a town area, which are usually high

resolution images, with several buildings existing in a very complex background. Such kind of

images amplify the weakness of baselines, that is they cannot find right peaks in a complex edge

map. The results of HT and PPHT are almost useless. Even with gradient orientation constraints,

LSWMS still can not capture most dominant linear structures. Although LSD has found most

dominant structures, a lot of tiny false detections are also included in their results. The success of

our approach is due to multi-scale segmentation of component tree, which efficiently reduces

the complex problem into several sub-problems, and results in a multi-resolution line segment

detection. The similar results have been achieved for aerial images of rural areas, as shown in

Figure 3.8.

3.3.4 Experiments on Noisy Images

The presence of noise can deteriorate the performance of line segment detection. Usually low

amount of noise won’t affect the detection results, since there is a Gaussian filtering included in

most approaches. However, when strong noise is present, e.g. Figure 3.9(top), a synthetic image

with significant white noise (σ= 50), all the baselines fail to detect any line segment. HT and

PPHT fail because the Canny edge detection result in such an image is a disaster, while LSWMS

and LSD fail because of huge variance of local gradient orientations. [23] claims that Human

vision system uses a multi-scale analysis to easily find line segments in noisy images, and the

global structures which are masked at full resolution can be well captured in a very coarse scale.

As shown in the bottom of Figure 3.9, most dominant lines are captured by baselines after a very

strong Gaussian smoothing using 11×11 window with σ= 2). However, our approach CTL can

detect the dominant line segments in both cases, because it is based on MSER detection, which is

a multi-scale detection, and stable to white noise.

Besides white noise in the region, the noise on the boundary also has an important influence

on line segment detection, which has not well studied in other works. Figure 3.10 shows a

synthetic example. The top is the original image, the middle is added with weak boundary noise,

and the bottom is added with strong boundary noise. Even with strong noise, human still can

recognize triangle, square, pentagon, and hexagon, while decagon looks very similar with circle.
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This shows that human vision system is less sensitive to noise for dominant linear structures.

Hough transform can well capture the dominant structures. The line detection results for HT are

pretty the same for all three cases. PPHT also detects most dominant structures, although there

are some tiny fragments (Seeing Figure 3.10.Bottom). Our approach CTL obtains a very clear

representation of linear dominant structures. However, boundary noise causes a big problem for

clustering methods, since they group pixels using angle constraints. LSWMS is very sensitive

to such kind of noise. LSD also fails to find all the dominant line segments, and prefers shorter

segments to represent for noisy boundary.

Figure 3.11 shows the detection results of some low quality infrared images, which are affected

by the above two kinds of noise. Our approach CTL has achieved best performance, which

demonstrates our approach is very stable to noise.

3.3.5 Speed

The processing time of our approach for a 640×480 image is around 1s, using a core of 2.6

GHz Intel Core i5. For the top image in Figure 3.5, our approach needs 0.48s to run component

tree segmentation, and 0.22 to use Hough transform detecting lines, while HT needs 0.01s,

PPHT needs 0.02s, LSWMS needs 0.08s, and LSD needs 0.08s respectively. Unlike baselines

implemented in C/C++, our approach has been implemented using Matlab with some Mex

functions, and can be further improved for even faster performance. Besides, there exists a linear

algorithm to implement component tree segmentation [46], and sampling methods can be used

to speed up Hough transform. Hence, it is possible for our approach to achieve similar speed

performance with baselines by further optimization.

3.4 Conclusion

In this chapter, we have presented a region-based line segment detection algorithm, which

combines component tree segmentation with an adaptive Hough transform. Our approach

overcomes several inherent limitations of the Hough transform, which have not been well-studied

in previous works, including setting the bin-size, handling collinear segments, dependence on

the edge map, etc. The performance of our approach relies on the result of the component tree

segmentation (MSER). Since MSER is a very reliable multi-scale region feature in man-made

environments, our line segment detection approach has achieved comparable performance to the

state-of-the-art approaches based on clustering, and a great improvement over previous Hough-
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based approaches. This has been demonstrated by a large set of images in various man-made

environments. Besides, our approach is more stable to noise, and obtains the best performance

for noise testing.

There is another big advantage of our approach over others, namely, that the output line segments

of our approach are naturally clustered by MSERs, i.e. each line segment has an associated

MSER. The coupling relation between line segments and MSER regions can help significantly in

further applications. In Chapter 4, we will show how to use line segments to do a shape regularity

analysis for their associated regions, while in Chapter 5, the associated region will be employed

as a useful descriptor for the line segment.
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Figure 3.5 – Line segment detection in indoor environment.
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Figure 3.6 – Line segment detection for building facades.
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Figure 3.7 – Line segment detection for aerial images of town areas.
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Figure 3.8 – Line segment detection for rural area.
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Figure 3.9 – The influence of white noise. The top example is a synthetic image with strong
white noise (σ = 50). All the baselines fail to find the dominant line segments when a lot of
noise is present, while our approach still can detect them due to the stability of MSER detection.
The bottom image is a very coarse resolution version of the top image, obtained by Gaussian
smoothing using a 11×11 window with σ= 2. All the baselines can capture some linear structures,
but do not obtain perfect detection results, as their long line segments are broken into several
short fragments. LSWMS also generates a lot of false detections. Our approach CTL works the
best resulting in a very clean line segment detection.
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Figure 3.10 – Line segment detection for noisy boundaries.

54



3.4. Conclusion

Figure 3.11 – Line segment detection for noise infrared images.
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4 Detecting Polygons as Candidate

Landing Sites

In this chapter, we show how to exploit the techniques described in the above two chapters in

an application of real-time landing site detection and assessment in unconstrained man-made

environments. As this task must be performed in a few seconds or less, existing methods are

often limited to simple local intensity and edge variation cues. By contrast, we show how to

efficiently take into account the potential sites’ global shape, which is a critical cue in man-made

scenes. To do this, we propose a regular polygonal region detector by combining component tree

segmentation and global shape analysis, which enhances both the stability and the linearity of

the candidate regions. Our approach selects simple polygonal shapes by exploiting how well the

boundary of the candidate region is covered by the line segments, which is a global measure for

generic simple polygons. Furthermore, our approach can be extended for multi-frame processing

to improve reliability in low-resolution images. We evaluated our approach on challenging aerial

infrared and color video sequences. By jointly leveraging area-based cues and enforcing spatio-

temporal consistency and geometric regularity, we achieved reliable detection and assessment

of runways, arbitrarily shaped landable fields, and rooftops, significantly outperforming the

state-of-the-art.

The remainder of this chapter is organized as follows. We first present our motivation of detecting

regular polygonal regions as candidate landing sites. Then related work is discussed in Section 4.2.

The proposed shape regularity measure and its extension to temporal sequences are presented in

Section 4.3. Experimental results are reported in Section 4.4.
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4.1 Motivation

Unmanned aerial vehicles (UAVs) offer many civilian and military applications, and are now a

quickly growing industry [36]. While they are still usually remote-controlled, automated flight is

an attractive alternative that would largely increase their usefulness and reliability. Of particular

importance, is the ability to land automatically, which requires the efficient and reliable detection

of suitable landing sites. This is actually an old problem as it has been extensively studied for

planetary landing in space, but it has been recently revisited for both fixed-wing and rotorcraft

UAVs [76, 77, 36, 78].

Landing site detection is generally a time critical decision that must be made reliably and

quickly, often in a few seconds or less [38, 76]. Active sensors have been widely used for this

purpose [79, 80, 81, 82, 78] but have severe drawbacks. They are expensive, power-hungry, and

often heavy. Their range and resolution are usually limited [80] and special care must be taken

when operating in populated areas.

By contrast, passive sensors such as cameras are inexpensive, low power and lightweight. They

can operate from a range of flight altitudes and are safe for use in populated urban and rural

environments. As a result, many camera-based approaches [55, 58, 83, 36] have also been

explored over the years. To achieve real-time performance, most of them rely on simple techniques

such as thresholding of local intensity variations or edge density. They completely ignore the

global shape of the potential landing area, which is a vital clue for human pilots seeking a

landable field in an emergency. As illustrated by Figure 4.1, global shape and regularity matter

because it is extremely difficult to assess visually whether a piece of terrain is sufficiently flat by

other means from above. Human eyes do not provide a long enough baseline for stereo under

these conditions and although textural or shading cues can be useful in some cases, such as

when a heavily rutted field produces strong shadows at particular times of day, they are generally

unreliable. Typically, they only become useful when very close to the ground and therefore too

late to select another field if the chosen one proves unsuitable. Furthermore, obstacles such as

ditches and fences that could cause an accident cannot easily be seen either. In the event of an

engine failure, light-aircraft and helicopter student pilots are therefore trained to look for regular

polygonal areas, such as cultivated fields or rooftops, large enough given their respective aircrafts’

landing speeds and under the assumption that they are more likely to be flat than irregular ones

and less likely to contain hidden obstacles. This is even more important for glider pilots who fly

without an engine and can expect to land in unprepared fields such as those in Figure 4.1 several
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Figure 4.1 – Importance of shape cues for landing site detection. The center image was taken
from a glider flying along a mountain ridge. From the air and based on local appearance, the
regions within the yellow and red black regions both appear to be landable. On the left and right,
we used Google EarthŮ to display nadir views of these two areas and low-altitude oblique views,
which are those a pilot would see upon approaching to land. While the area on the left is indeed
flat and landable, the one on the right is not and touching down there would result in a crash.
Local appearance is therefore insufficient to assess suitability for landing and finding regular
polygonal structures on the ground is required.

times during their flying careers due to adverse meteorological conditions.

In this chapter, we propose a real-time algorithm that emulates this human ability to quickly

assess candidate landing sites when flying over man-made environments whose 3D geometry

cannot be reliably assessed by shape-from-X methods, for example in the event of an emergency

landing that precludes a controlled flight path to acquire reliable range estimates. Polygonality

combined with simple texture measures is then a useful substitute, which has been used in earlier

work to detect prepared landing sites such as runways [84] but not unprepared ones.

The base of our approach is the component tree segmentation algorithm in Chapter 2, which has

been proven effective for stable patch detection, which we use in spatio-temporal image volumes

to produce candidate regions. In this chapter, we introduce our Hough voting scheme in Chapter

3 into our component tree segmentation framework that further filter our spatio temporal stable
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regions to guarantee that they have planar sides. Unlike other algorithms that perform global

image segmentation [31, 29], ours is highly efficient and runs at 5 Hz on 320×240 images using

commodity hardware.

We will demonstrate that our algorithm can reliably detect a wide range of potentially landable

areas for both fixed-wing and rotorcraft UAVs, such as rural fields and building rooftops from both

nadir- and oblique-viewpoints. We also show that we can detect runways from low-quality infrared

image sequences in which runway markings are not clearly visible, with significantly better

performance than traditional contour-based methods that rely solely on their rectangularity [16,

85, 86, 84, 87].

4.2 Related Work

There is a long tradition of detecting landing sites from aerial images, which dates back to the

inception of our field [88]. Initial work focused on the detection of runways for the automated

aerial mapping of airports [16, 89, 88, 90]. Since then many automated landing approaches have

been developed that considered the detection of both prepared and unprepared landing sites from

both active and passive sensors in a variety of terrains.

Our work is primarily concerned with landing site assessment in man-made environments from

images captured by a monocular camera. We begin our discussion with an overview of unprepared

landing site detection with both active and passive sensing. Prepared landing site detection is

then outlined with an emphasis on runway detection. Finally, a discussion on the use of shape for

man-made landing site assessment is provided.

4.2.1 Unprepared Landing Sites

Techniques to unprepared landing site detection rely on measurements of surface geometry and

appearance to detect and avoid hazards and find suitable landing sites. Many methods have been

proposed for the assessment of 3D surface geometry from active range sensors [79, 91, 78, 82].

Johnson et al. [91] propose a hazard map estimation framework using estimates of surface slope

and roughness from laser scanner range measurements. Similarly, Howard and Seraji [79] develop

a fuzzy logic approach for the classification of terrain into landable and hazardous segments,

based on measurements of slope, approach and roughness obtained with least-squares plane

fitting applied to LIDAR range data. More recently, Scherer et al. [78] have demonstrated the
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automated landing of a full-scale rotorcraft UAV using a laser scanning sensor.

While a promising technology for landing place assessment, active sensors have a high energy

consumption and a heavy payload. They typically have a restricted operational range of 1km or

less, require additional safety considerations in populated areas, and often involve a costly, time

consuming acquisition process making them unsuitable for the applications we target [78, 82].

To overcome the limitations of active sensing many approaches have been developed for the

estimation of 3D surface geometry and landing site assessment from passive camera sensors [38,

83, 92, 77]. Camera sensors are inexpensive, low power, lightweight devices that can operate

from a large range of flight altitudes and can be safely used in populated areas, making them an

attractive alternative to expensive, power intensive active sensors, especially for the smaller UAVs.

Still the full acquisition of 3D range estimates from passive sensors in generic environments and

operating conditions remains challenging and computationally costly.

Monocular methods usually utilize sparse structure from motion in combination with surface

interpolation to estimate 3D terrain geometry [93, 94, 77]. Hoff and Sklair [93] utilize optical flow

tracked features to obtain range estimates that are incrementally improved with Kalman filtering.

Similarly, Templeton et al. [77] propose a recursive multi-frame planar parallax algorithm

for dense, real-time 3D surface recovery. Although efficient, these methods are prone to fail

when local features cannot be tracked reliably, and require a controlled flight path for reliable

range estimation restricting their general applicability. Simpler methods based on homography

estimation have been proposed for surface slope estimation that either assume the presence of

a flat ground plane [95] or rely on the efficient proposal of candidate landing sites [58]. Stereo

vision systems have also been investigated [96, 76], however, generally require a large baseline

making them less suitable for smaller platforms.

As an alternative to active or passive-only sensing solutions to landing place assessments, multi-

sensor approaches have also been investigated that seek to combine the strengths of each sensing

modality [55, 80, 39]. Pien [55] proposes the use of passive sensing that exploits simple intensity

variation measures to segment candidate landing regions provided as input to an active sensor

laser range verification stage. Similarly, Serrano et al. [80] advocate for a multi-tiered solution

that combines the strengths of passive and active sensors to achieve a diverse capability of

operational ranges.

Whether a passive-only or combined sensing solution is used the ability to quickly assess
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candidate landing sites is a crucial step employed by many approaches in the literature [58, 36,

39, 83, 55]. Monocular texture analysis techniques have played a predominant role in finding

suitable candidate landing sites as they typically involve a fairly simple image processing and are

easily amenable to real-time operation [97, 36, 38, 39, 55].

Approaches assume that obstacles are indicated by dominant image boundaries, and look for

relatively featureless, constant valued candidate landing regions. Garcia et al. [38] find circular

areas exhibiting a low edge density computed using normalized edge histograms. Similarly,

Fitzgerald [36] detects candidate landing sites as featureless regions absent of image edges.

Howard et al. [39] employ a local intensity variation measure similar to [55] along with a

simple thresholding to find candidate sites. Although efficient, these methods do not truly

model the object image boundaries, and as seen in our experiments are sensitive to image noise

and hallucinated local edges, often requiring a careful threshold selection and choice of edge

detection parameters. In this chapter, we propose a global image segmentation algorithm that can

be computed in real-time and significantly improves over the performance of these methods.

4.2.2 Landing Pads and Runways

Prepared landing site detection has also received a lot of attention in the literature in particular for

the detection of landing pads and runways. Research on landing pad detection has concentrated

on the design of landing signatures that can be easily detected and tracked using a monocular

camera [98, 99, 100, 101]. Similarly, techniques to runway detection exploit runway markings

and region geometry [37, 102, 84, 16, 85, 87, 103]. They typically search over extracted line

features to find landing patterns and the runway boundary. Huertas et al. [16] utilize a hypothesis

and test formulation based on the detection of “anti-parallel” lines. Provided with a set of

hypothesis regions, pathway markings are used to detect runways and differentiate them from

other airport and ground transportation roads. Shang and Shi [85] apply a horizon detection and

intensity thresholding step to identify a runway region of interest followed by Hough line fitting

to detect the runway boundary. Similarly, Hamza et al. [84] assume a region of interest and a

perspective runway template provided from an external navigation system. Various line fitting

methods are then explored for runway corner detection including Hough voting and a RANSAC

least-squares estimation.

However, a known region of interest and runway template is not always readily available, and

horizon detection is restricted to oblique-viewpoints where the horizon is clearly visible and not
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obstructed by nearby building or mountain structures. Also, due to poor visibility or when seen

from a distance runway markings are not always apparent. A method that can efficiently detect

candidate regions without the use of such additional cues is therefore needed. Moreover all these

approaches do not generalize to unprepared landable sites.

4.2.3 Shape Regularity

In man-made environments, many suitable landing sites can be characterized as featureless,

regularly shaped regions. While region shape has been an important cue for the detection of

runways, shape has been largely un-explored for the assessment of unprepared landing sites.

Although methods have been proposed that search over rectangular or circular regions for

unprepared landing site assessment [36, 38], these methods do not exploit region shape for the

underlying segmentation, and instead apply a template search of known scale and geometry.

Unlike previous approaches, we do not assume the existence of a known region of interest or

template, and shape is used to guide the underlying image segmentation and detect candidate

man-made landing sites. The use of region shape results in accurate landing site detection without

the need for distinctive landing patterns or other constraints, however, when available, such

additional cues can be useful in combination with our approach at a later verification stage.

4.3 Proposed Method

Man-made landing sites can be distinguished by their characteristic, simple shape, often consisting

of elongated linear structures. In this section we introduce a notion of shape regularity and use

it to segment polygonal regions from the image indicative of man-made landing sites. Many

algorithms have been proposed for polygon detection in the literature, however, most of them are

restricted to fairly simple polygonal shapes [14, 104]. We provide a generic measure of shape

regularity applicable for the detection of a variety of polygonal structures.

4.3.1 Shape Measurement

In Chapter 2, we show how to use non-flat filtering to efficiently detect MSERs. In this section,

these MSERs resulting from our component tree segmentation approach are further filtered

according to their shape. A region’s shape is considered regular if its contour is well approximated

by N lines. This concept is illustrated in Figure 4.2 using two example contours, one that is
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Regular Shape Irregular Shape 

Figure 4.2 – Shape regularity. Regularly shaped regions are those exhibiting a simple polygonal
shape. We consider a region to be regularly shaped if its contour is well approximated by N lines.
This is illustrated for two example regions with N = 4.

regular and one that is not. With our approach, lines are efficiently estimated from each contour

using our adaptive Hough line detection algorithm in Chapter 3. Since the resolution of our

line detector is adaptive to the scale of the corresponding MSER, the detected lines can well

capture the dominant structure of the boundary, which gives more reliable linear structure analysis

compared to a fixed-resolution Hough transform.

A shape regularity score is computed for each region based on the percentage of contour points

that belong to a detected linear structure,

L(n) = ∑
min{N ,M }

pi , (4.1)

where pi is the percentage of region contour points voting for line i , and M is the number of

detected lines. The linearity score is parameterized by N , defined as the maximum number of

detected lines used to compute the score, and with the lines sorted in decreasing order by their

dominance, pi . Intuitively, a higher value of N will assign a higher score to more complex shapes,

and can be used to tune the detector to the desired class of polygonal shapes. For example, in the

case of rectangular runways one would set N = 4.
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4.3.2 Extension to Component Tree Segmentation

In Chapter 2.3, our component tree algorithm exploits area variation g (n) (Equation 2.6) as

signature, and uses non-flat filtering (Equation 2.5) to select stable regions (MSERs). The area

variation signature can be considered as the stability measurement of each component region. To

further select polygonal regions, we also encode shape measurement into our component tree

filtering. In order to find dominant polygonal regions, we define the combined score

s(n) = L(n)Γ(−g (n)) = L(n)

1+exp
(
−µ−g (n)

σ

) (4.2)

where L(n) is the linearity score and g (n) is the area variation score for component tree node

n. In Eq. (4.2) a soft thresholding is applied to the stability score defined by the sigmoid Γ(x)

with threshold µ and bandwidth σ. This reflects the intuition that the stability score is often only

a weak feature, the combined score giving more emphasis to the underlying linearity measure

while down-weighting highly unstable regions.

The final shape segmentation signature employed by our component tree approach can be

expressed as

n(Ct ,n) is



active, if g (n(Ct ,n)) = min{g (n(Ck,m)) :

Ck,m ∈B(n(Ct ,n))} and

s(n(Ct ,n)) ≥ T

not active, otherwise.

(4.3)

with detection threshold T . The shape regularity measure defines a flat tree filtering and can be

efficiently implemented by restricting its evaluation to the extremal nodes for which it applies.

4.3.3 Temporal Consistency

We explore the use of temporal consistency in addition to geometric regularity to increase the

reliability of our man-made landing site detection. Instead of using 2D MSERs as candidates, we

apply 3D component analysis described in Chapter 2 to obtain spatio-temporal stable regions

(STSRs). We further exploit a Hough plane voting scheme for assessing the shape regularity of

STSRs.
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Time Time 

x x 

y y 

Figure 4.3 – Spatio-temporal plane detection: (left) an aligned spatio-temporal point cloud and
(right) detected planes whereby the points belonging to each plane are highlighted in separate
colors.

Temporal consistency exploits multiple image time instances to help gauging the presence of

a suitable landing site. It is particularly well suited for segmenting low-quality images whose

image boundaries are noisy and are more reliably extracted by accumulating evidence across

many frames. Considering the balance of accuracy and efficiency, we employ a short sliding

temporal window (for example, 10 frames for a 60Hz video), to detect landing sites from video.

Prior to segmentation, a simple homographic alignment step similar to [95] is first applied to

each windowed image sequences to provide a quick, coarse camera motion correction1. By doing

this, the linear structures of STSRs will be coarsely aligned across frames, which can increase

the accuracy of the following shape regularity analysis.

The shape regularity measure is extended to evaluate the surfaces of component volumes. Lines

used to approximate 2D region contours correspond to spatio-temporal planes in the image

sequence. These planes are efficiently detected using a Hough voting procedure. We represent a

plane using its normal vector n = (nx ,ny ,nt ) and a point Xc = (xc , yc , tc ) belonging to the plane.

For any point X in the plane,

(X −Xc ) ·n = (x −xc )nx + (y − yc )ny + (t − tc )nt

= xnx + yny + tnt −ρ = 0 (4.4)

where ρ is the distance from the origin to the plane. Using spherical coordinates,

ρ = x ∗cosθ∗ sinφ+ y ∗ sinθ∗ sinφ+ t ∗ cosφ (4.5)

1 Multi-view geometrical constraints can be used to check the planarity of candidate regions. However, in our
landing place detection task, since the airplanes are far from the ground, a short consecutive video sequence (e.g. 10
frames) can not provide wide enough baselines to reliably estimate 3D geometry. Therefore, we instead use global
shape analysis to select candidate landing sites.
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where φ is the angle between the normal vector n and the t axis, and θ is the angle between the x

axis and the projection of n onto the x y plane.

A plane is therefore defined by three parameters: (ρ,θ,φ), which form a three dimensional voting

space. Each component surface point casts a 3D surface of votes in this space. Similar to our

2D Hough line detection algorithm in Chapter 3, we also use kernel estimation to compute

accumulator,

A(ρ,θ,φ) =
N∑

i=1

1

hθi

kθ(
θ−θi

hθi

) · 1

hρi

kρ(
ρ−ρi

hρi

) · 1

hφi

kφ(
φ−φi

hφi

) ·pi , (4.6)

where
θi = θ(xi , yi , ti ) = arctan Iy (xi ,yi ,ti )

Ix (xi ,yi ,ti )

φi = 90

ρi = ρ(xi , yi , ti ) = xi ·cosθi · sinφi + yi · sinθi · sinφi + ti ·cosφi .

(4.7)

Finally, planes are detected as the peaks in the resulting accumulator matrix. Same with 2D case,

we also uses an uniform kernel for θ, and a triangle kernel for ρ for Hough plane voting. We

further use an uniform kernel to limit φ to a small range about 90 degrees

kφ(
φ−φi

hφi

) =


1

2hφi
for |φ−φi | ≤ hφi ,

0, otherwise.
(4.8)

where φi = 90 and hφi = 5.

The reason is that we are only interested in the linear structures stable across time, which means

the detected planes must be parallel with the time axis. Figure 4.3 displays an example plane

fitting result. In the figure, the left plot shows the aligned point cloud, and the right plot the fitting

results with the points of each plane highlighted in a separate color.

4.4 Experiments

In this section, we demonstrate our approach for the detection of runways, building rooftops and

rural fields from aerial infrared and color video sequences. We first discuss our experimental
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setup and employed baselines. We then present our results on man-made landing site detection

that highlight both the reliability and efficiency of our method.

4.4.1 Experimental Setup

Five settings of our approach are evaluated, they are: (S) single-frame and (M) multi-frame

component tree segmentation without shape regularity, (SL) single-frame segmentation using

line detection, (ML) multi-frame segmentation with line detection, and (MP) our full approach

using plane detection.

For runway detection we compare against the method of [14] that employs a windowed Hough

transform for rectangular region detection, and is representative of the approaches that look for

landable fields as rectangles. We will refer to it as WH.

As an evaluation metric we use the percent overlap between the ground-truth and detected runway:

detection accuracy= area of overlap
total area

(4.9)

In our experiments, a landing site is considered detected if the detection accuracy is at least 30%.

We systematically used a feature combination weighting of α= 4, a temporal window size of

10 frames, and used stability parameters of µ= 0.1 and σ= 0.2 for the noisy infrared sequences.

The higher-quality color videos exhibited less noise, and we therefore set µ= 0.1 and σ= 0.001.

In other words the linearity score was the primary measure for these sequences.

Sequence alignment was performed using SIFT feature matching [105] and homography estima-

tion between consecutive image frames. Although we do not optimize over the efficiency of the

alignment pre-processing step, many methods exist for fast feature matching and homography

estimation [95, 94].

Component tree segmentation as with other segmentation algorithms can often result in small

spurious regions. Minimum and maximum region area limits are therefore used, that we assume

known for both ours and the baseline methods. This is a reasonable assumption, since in most

applications the landing site area is easily available from the landing size requirements of the

aircraft, as is typically used in practice [38, 36, 78].
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Our implementation of MSER component tree segmentation is based on the vlfeat library [57]

and was done in MATLAB using C-code MEX-wrappers. Although efficient, our code can be

further improved for even faster performance.

4.4.2 Results

Runways: We evaluated our approach using the three infrared runway sequences. They consist of

mid-resolution (640×480) and low-resolution (320×240) infrared images, each sequence being

made of roughly 250-500 frames. As runways are defined by rectangular planar surfaces, we ran

our approach with polygonal complexity parameter N = 4.

A qualitative comparison with the baseline on the runway sequences is provided in Figure 4.4.

The top-4 recognition results are shown with red indicating the top region. The baseline technique

results in many false and missed detections. Compared to the baseline our approach more

consistently and accurately detects the runway region.

Figure 4.4 displays the top-n recognition results for the different approaches. The runway is

considered detected if it is found as one of the top n detected regions. Leveraging area-based cues

and spatio-temporal consistency results in a significant improvement over the baseline rectangular

region detection method. The baseline method was run with knowledge of the ground-truth scale

and affine transformation parameters of the runway that are required as input to their method. In

contrast our approach has no knowledge of these parameters and they are estimated automatically

as part of the detection, which means that it starts with a handicap.

The use of area-based cues alone results in a significant improvement over the baseline with

single-frame component tree segmentation and line detection exhibiting a fairly reasonable

performance, detecting the runway as one of the top 10 regions in most images. Temporal

consistency can result in an even further improvement with our approach, as is especially the case

for the low-resolution day sequence whose top-3 recognition rate increased from 85% to nearly

100%.

Figure 4.5 also displays the detection accuracy of each method. Once again we gain a significant

improvement over the baseline method with our approach resulting in an average detection

accuracy of 70% across the different settings compared to 55% for the baseline.

Performance time and accuracy with respect to window size is displayed in Figure 4.6. Single-
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frame performance for our approach is well under a second for both image resolutions, with

a speed of 5 Hz for 320× 240 and 1.25 Hz for 640× 480. While performance time remains

reasonable with larger window sizes for 320× 240, it is more costly for the mid-resolution

sequences. Unlike at lower resolutions, however, temporal consistency is less important for these

sequences with a similar accuracy across different window sizes.

Unprepared landing sites: We also evaluated our approach for the detection of landable fields,

consisting of flat, planar, regularly shaped expanses such as agricultural fields and dirt strips, and

building rooftops.

For landable fields, we used a dataset consisting of two aerial sequences of an aircraft flying

above a rural area. They consist of 854×480 color images each of roughly 85 images in length.

The geometry of these fields is more complex than the rectangular runways considered.

In order to assess the performance of our algorithm we asked a trained glider pilot to label a

handful of images from these sequences with the 10 most landable areas in each image. Gliders

are planes without engines. They sometimes have to land out on unprepared surfaces if they

cannot make it back to an airfield due to adverse conditions. Glider pilots are therefore trained to

recognize suitable landing spots, which are flat and 300 to 400 meters long.

Figure 4.7 displays the detection results of our approach on the pilot-annotated images. Our

approach detects a significant number of the landable areas labeled by the expert annotator.

Single-frame performance (SL) is displayed with multi-frame (MP) performing similarly. The

top 4 most landable areas as deemed by the pilot are colored in yellow, most of which are

detected by our algorithm. Missed detections mostly consist of distant regions not clearly visible

in the image. Similarly, extraneous detections consist of regions with similar appearance and

geometry to those annotated by the pilot, and were eliminated by him due to factors not taken

into consideration by our algorithm. For example, the pilot took into account the type and slope

of the landing surface, preferring grass fields un-occluded by trees to dirt patches. A simple,

efficient color thresholding can be used in combination with our approach to prefer green regions

to dirt-colored and blue ones, and help avoid unwanted areas like dirt-strips, regularly shaped

lakes and sky. These results are also included in Figure 4.7 and are seen to more closely resemble

to the pilot’s selections.

For building rooftops, we used aerial images captured from a Sensefly drone2 flying above

2http://www.sensefly.com
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the EPFL campus. This dataset consists of a collection of 164 (1000× 750) images. Figure

4.8 displays the detections obtained with our approach. Most of the rooftops in these images

are detected, our method favoring un-obstructed featureless rooftop regions without imposing

explicit rectilinearity constraints as in earlier work [18, 17]. Not surprisingly, false detections

largely consist of other regularly shaped constant textured regions, such as building walls and

polygonal side-walks and courtyards. Such detections can be easily filtered at a later detection

stage, e.g., using image homographies to discriminate vertical from horizontal surfaces.

Shape regularity: We also compare the performance of our approach for different shape com-

plexity parameters. Figure 4.9 displays the results on the landable field and rooftop datasets

for different values of N. In the figure, the different regions are highlighted according to the

employed detection threshold T applied to the shape regularity measure. Using a small com-

plexity parameter N = 4 favors fairly simple regions, with larger values of N resulting in regions

of increasing complexity. For reasonably sized N our approach performs similarly across the

different values, as is seen for N = 6,8. Comparing with the original component tree segmentation

we see that our approach is able to successfully discriminate regularly and irregularly shaped

regions to detect man-made landing sites.

4.5 Conclusion

We have presented a real-time algorithm for landing site assessment in unconstrained man-made

environments. In addition to purely local appearance, our algorithm effectively exploits region

shape, which is a critical cue in such environments. We rely on a component tree for real-

time image segmentation. The component tree is complemented by a Hough voting scheme

to select polygonal regions and extended for multi-frame processing to improve reliability in

low-resolution images.

We evaluated our approach on challenging aerial infrared and color video sequences. By jointly

leveraging area-based cues as well as enforcing spatio-temporal consistency and geometric

regularity, we achieved reliable detection and assessment of runways, arbitrarily shaped landable

fields, and rooftops, significantly outperforming baselines. Our experiments on landable fields

involved annotations by an expert pilot. Experimental results demonstrate that our algorithm can

approach human performance and provide insight into the types of visual features that would be

useful for further improvements.
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Figure 4.4 – Runway detection. Results for each sequence are displayed for (top) the windowed
hough baseline and (bottom) our approach (MP). Red, orange, green and blue rectangles denote
the top 4 detections ranked in that order. We supply the corresponding video sequences as
supplementary material. Our approach significantly outperforms the baseline technique.
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Figure 4.5 – Runway recognition performance displayed for each method. Five settings of
our approach are evaluated, they are: (S) single-frame and (M) multi-frame component tree
segmentation without shape regularity, (SL) single-frame segmentation using line detection, (ML)
multi-frame segmentation with line detection, and (MP) our full approach using plane detection.
The use of area-based cues and spatio-temporal consistency result in a large improvement over
the baseline method across all three sequences. Temporal-consistency is especially important
when working from low-resolution imagery. Runway detection accuracy is also shown across
all sequences. A box plot is provided for each method with the red bar and edges of each box
showing the median, and top 25th and 75th percentile detection accuracy. Compared with the
baseline technique (WH) our method results in a more accurate detection of the runway.
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Figure 4.6 – Performance time. The average computation time is shown across the runway
sequences: (a) average time for each step of our approach as a function of input frame count and
(b) detection rate as a function of computation time.

74



4.5. Conclusion

Figure 4.7 – Landable field detection. Results on landable field dataset: (left) pilot annotations
with yellow polygons signifying top 4 most landable areas, (middle) landable areas detected by
our approach, and (right) our approach combined with color. We detect a significant number of
the landable areas labeled by the expert annotator, especially those clearly visible by the camera.
Additional detections appear similar to the expert annotated regions, however, are differentiated
by other factors such as field type and slope that are not taken into account by our approach.
A simple color feature used in combination with our approach helps avoid unwanted regions
(highlighted in blue), and results in detections that more closely resemble the pilot’s selections.
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Figure 4.8 – Rooftop detection. Detected rooftops are highlighted in red, ground-truth rooftop
annotations are shown in yellow. Our approach faithfully detects many of the relatively featureless,
regularly shaped rooftops displayed in these images. False detections largely consist of other
regularly shaped, constant textured regions including polygonal side-walks and courtyards.

76



4.5. Conclusion

s(n) ≥ 0.9 s(n) ≥ 0.8 s(n) ≥ 0.7 s(n) ≥ 0.6 

CT Segmentation (S) SL (N = 4) SL (N = 6) SL (N = 8) 

Figure 4.9 – Shape regularity: (left) regions found with component tree segmentation and (right)
regions scored according to shape regularity with different N . The color coding indicates each
region’s regularity score s(n). Our approach successfully discriminates regularly and irregularly
shaped regions. While N = 4 favors fairly simple regions, larger values of N also detects regions
of a more complex shape. For reasonably sized N our approach performs similarly across the
different values, as is seen for N = 6,8.
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5 Free Shape Polygonal Object Detec-

tion

One of our aims in this thesis is to design an efficient contour grouping based object detection

approach, which exploits polygonal shapes for rigid object detection. Early approaches detecting

polygonal objects relied mainly on geometry while subsequent ones also incorporated appearance-

based cues. It has recently been shown that this could be done quickly by searching for cycles in

graphs of line-fragments, provided that the cycle scoring function can be expressed as additive

terms attached to individual fragments [5]. In this chapter, we propose an approximate search

approach that eliminates this restriction. Given a weighted line fragment graph, we prune the

cycle space of the graph by removing cycles containing weak nodes or weak edges, until the

upper bound of the cycle space is less than a threshold defined by the cyclomatic number of

the graph. Object contours are then detected as maximally scoring elementary circuits in the

pruned cycle space. Furthermore, instead of pruning the weakest edges from the graph, we

propose another algorithm that yields the same result but is more efficient, which reconstructs

the graph by grouping the strongest edges iteratively until the number of the cycles reaches the

upper bound. Our approximate search approach can be used with any cycle scoring function.

Moreover, unlike other contour grouping based approaches, our approach does not rely on a

greedy strategy for finding multiple candidates and is capable of find multiple candidates sharing

common line segments. We demonstrate that our approach significantly outperforms the state-of-

the-art contour-based approach [5] and region-based approach [6] for the detection of building

rooftops in aerial images and polygonal object categories from ImageNet.

The remainder of this chapter is organized as follows. We first talk about our motivation and

related work. We then present how to construct a line-fragment graph and learn the weights of its

nodes and edges. We then propose two approximated search approaches to efficiently find most
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promising cycles. Finally, we show experimental results to demonstrate our approach.

5.1 Motivation

Polygonal objects ranging from fields and rooftops in aerial images to signs, furniture, and

facades in ground-level views are prevalent in man-made environments. Many of them are not

textureless objects, which can not be dealt with by our segmentation-based framework described

in above chapters. Many early approaches formulated the problem of finding generic polygonal

objects in terms of perceptual grouping of edges that exhibit the right geometry [16]. Over the

years, it has become apparent that only looking at edges was insufficient and that, to distinguish

valid polygonal regions from spurious ones, it was indispensable to also consider the pixels these

edges enclose [17].

Many recent algorithms do this by treating image edges or line fragments as nodes of graphs

whose cycles represent closed contours. Delineating polygonal regions is then accomplished by

finding those cycles that minimize an appropriate objective function. Even though the number of

potential cycles can grow very large even in moderately-sized graphs, this can be done efficiently

when the objective function can be written as a sum of terms, one for each edge of the cycle [21, 5].

However, this is limiting because using more complex non-linear objective functions, such as

those based on kernel SVMs, is required in many real-world scenarios. Furthermore, when looking

for multiple objects, these approaches tend to rely on finding the best candidate, removing the

corresponding edges, and then finding the next one. This precludes finding shapes that share

edges, which is important in densely packed environments.

In this chapter, we overcome these limitations by looking for connected subgraphs of the line-

fragment graph whose cyclomatic number [106], or upper bound on the number of cycles they may

contain, is small enough so that we can find and score them individually as elementary circuits

in each subgraph. Intuitively, this is made possible by the fact that for a typical image, object

contours can be found within relatively small-sized sub-graphs having only a few elementary

circuits. Fig. 5.1 illustrates this approach. In contrast to previous ones, it lets us use generic

shape and appearance cues to score each cycle that are not restricted to linearly additive measures

and can easily generate multiple hypotheses that share some edges. We relied on recursively

partitioning the graph until the cyclomatic number of the subgraphs was small enough. To this

end, we progressively removed more and more weak nodes and edges using discriminative node

and edge weighting functions that encode how likely a line fragment or line fragment pair is
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(a) (b) (c)

(d) (e) (f)

Figure 5.1 – Free-shape polygonal object detection. (a) Aerial image of a set of buildings and (b)
Detected image line fragments and their associated image regions. (c) Weighted unidirectional
graph, with the line fragments as the nodes and directed links between nearby nodes as edges. (d)
Graph node and edge weights are used to quickly prune the search space and focus on sub-regions
likely to contain object contours. Thicker line fragments and darker red highlights reflect larger
node and edge weights respectively, each line fragment highlighted by its maximum incident
edge weight.(e) Partitioned graph after pruning the search space. (f) We detect polygonal objects
as high scoring circuits in the pruned line fragment graph. Detected rooftops are displayed in
white. Best viewed in color.

to belong to an object. While effective for relatively small subgraphs, this approach quickly

becomes computationally demanding for large ones. We therefore introduce another algorithm

that iteratively groups the most promising edges until the cyclomatic number reaches a prescribed

limit. We will prove that both algorithms yield the same result but that the second one is far more

efficient for large graphs.

We evaluate our approach for the detection of building rooftops in aerial images and other

polygonal object categories from ImageNet [107], and explore the use of Histogram of Oriented

Gradients [2] and normalized color histogram representations as cycle scoring objective functions,

each of which are non-additive. We will show that our approach significantly outperforms recent

polygonal and free-shape object detection methods [5, 6].

81



Chapter 5. Free Shape Polygonal Object Detection

5.2 Related Works

Early approaches detected shapes in images using perceptual saliency criteria to group image

edgels [108, 109, 110]. An iterative optimization method to group them based on local curvature

and curvature variation was proposed in [110]. Similar ideas were explored in [108, 109]

using measures such as co-curvilinearity and co-circularity for perceptual grouping. Spectral

methods for grouping the elements of the resulting edgel graph [111, 112, 113] and probabilistic

approaches useful for incorporating more global dependencies [114, 115, 20] and edgel detection

uncertainty [116] have also been proposed. While useful for finding dominant shapes in images,

these methods have largely focused on shape saliency and less on finding objects of a particular

shape.

Voting methods based on the Hough Transform can be used to detect image contours of a specific

shape [61, 104, 14, 117]. With these approaches, each edgel votes for its shape parameters

and shape instances are detected as peaks in the resulting hypothesis voting space. The Hough

Transform has been demonstrated for the detection of simple shapes including lines, circles, and

rectangles [14, 117] and regular polygons whose edges inscribe a circle [104]. It has also been

applied for the detection of arbitrary shapes [61], but becomes computationally prohibitive for

complex shapes involving many parameters.

To overcome these limitations many methods have been proposed that leverage annotated images

to learn models of object shape [118, 119, 120, 121, 122, 123, 124]. Statistical shape models

define flexible and rich representations capable of efficiently modeling and detecting objects with

a complex geometry. Initial approaches defined holistic or “top-down” models that incorporated

global object shape statistics [118, 119, 120], a prevalent example being the Active Shape Model

[119] that leverages dominant models of object shape variation to define a deformable object

template. More recent methods utilize local models of object geometry and learn a grammar of

object parts that are individually detected in the image and then fused in a bottom-up fashion

[121, 122, 123, 124]. Although versatile, these methods have largely focused on modeling object

shape and less on appearance.

Segmentation-driven detection methods comprise an alternative class of techniques that exploit

image region or appearance cues to generate object hypothesis obtained from a bottom-up

segmentation of the image [6, 8, 7, 125, 9]. In [8, 7], object region hypothesis are formed from

multiple figure-ground image segmentations, each obtained using either different segmentation

parameters or different foreground seed locations. Similarly, in [6] several hierarchical image
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segmentations are computed across various image representations and grouping criteria. These

methods largely focus on deriving category-independent region proposals, however, which

although related is a different problem than what we address in this chapter. Also, most of them

do not account for region geometry.

Recent methods have focused on finding polygonal or free-shape objects using both object shape

and appearance [10, 126]. [126] extends the branch-and-bound method of [3] to find k-sided

bounding polygons with a bag-of-words appearance model [127]. Similarly, [10] proposes a

branch-and-cut algorithm to efficiently find the best scoring free-shape object region. While

efficient, these methods rely on a linearly additive objective function. Yet many measures of

interest involve non-additive scoring functions and therefore cannot be used in conjunction with

these methods. In contrast, our approach can be employed for polygonal object detection with

any scoring function.

Probably the closest approach to ours is the ratio-contour algorithm [21, 5, 128] and related

approaches that formulate salient boundary detection as finding minimum cost cycles in a graph

[18, 17, 19, 22]. However, these algorithms are restricted to cases where the scoring function can

be written as a sum of terms, one for each edge of the cycle [21]. Furthermore, when searching

for multiple objects, they rely on greedy optimization. Each subsequent solution is found by

removing the previous best solution from the search space, which precludes finding shapes

with common nodes or edges. In contrast, our approach enables the use of generic shape and

appearance measures beyond linearly additive ones and can easily generate multiple, overlapping

hypotheses.

5.3 Graph Construction

Our goal is to find polygonal objects of arbitrary complexity. We start from line fragments and

treat them as nodes of a graph whose edges encode geometric relationships. As a result, its cycles

define polygonal shapes enclosing an image region, as depicted by Figure 5.2. Our problem then

reduces to finding the best possible such cycles in terms of a suitable objective function. We are

particularly interested in elementary circuits, that is, connected cycles whose vertices have degree

two. Even though they can be self-intersecting, they usually correspond to well defined object

boundaries that enclose well-defined polygonal region.

Unfortunately, even though it is in theory easy to enumerate all these elementary circuits and
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Figure 5.2 – Line fragment graph. Line segments are shown for two neighboring image regions
colored according to their associated region that define the nodes of the graph. Each line
fragment is oriented in a clockwise direction and we instantiate directed edges between nearby
line fragments of compatible orientation, displayed as dashed, black arrows. Elementary circuits
in the graph correspond to closed polygonal image contours whose image regions all lie within
the same contour.

eliminate the self-intersecting ones, it is in practice intractable even for moderate-sized graphs

because their number can be exceedingly large. More specifically, for a fully connected graph

with n nodes, it can grow faster than 2n [24]. To avoiding this combinatorial explosion without

eliminating promising hypotheses, We first construct a weighted line-fragment graph. We then

present a very simple approach to partitioning them in subgraphs that are sufficiently small for the

number of elementary circuits they contain to remain manageable. We then introduce a slightly

more involved approach to building the subgraphs by grouping edges, which provably yields the

same results but is computationally far more efficient. In this section, we first talk about how we

build the graph.

As discussed above, we begin by extracting line fragments and using them as the nodes of our

graphs. Since polygonal outlines should be evaluated not only according to their geometry but

also to the color and texture of the area they enclose, we use region based line detector. More

specifically, we take our line fragments to be long straight edges of Maximally Stable Extremal

Regions (MSERs) obtained by our component tree segmentation algorithm. Hence, each line

fragment has an associated region.

When building the graph, our goal is to ensure that real polygonal objects can be represented as

cycles within it. To maximize the probability of it being so, we construct the graph as follows.
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(d)$$Invalid$Grouping$$V.S.$Valid$Grouping$

(a)$Degenerate$cycle$

(c)$Duplicated$cycles$

(b)$Non<degenerate$cycles$

Figure 5.3 – Cycle representation. The arrows represent the directed line fragments, the dashed
lines represent the links between the fragments, the rectangles indicate the positions of associated
regions. (a) is an example of a degenerate cycle in a bidirectional graph. (b) shows the non-
degenerate cycles in our unidirectional graph. (c) is a case of duplicated cycles. (d) display the
examples of invalid grouping and valid grouping of associated regions. Any non-self-intersecting
directed cycle in our unidirectional graph corresponds to an valid grouping of associated regions
while ones in bidirectional graph may be invalid groupings.

• Directed Nodes: The nodes are taken to be the detected image line fragments. Each one

is oriented in a clockwise direction along the boundary of its associated region.

• Directed Edges: The edges are taken to be he head to tail links between nearby line

fragments of compatible orientation, as illustrated by Figure 5.2 and defined below.

– Nearby: The distance between two line fragments, computed as the minimum

distance between the head and tail endpoints of each, is smaller than a proximity

threshold.

– Compatible: Two line fragments have compatible orientations if their head-tail

distance is less than their head-head and tail-tail distances.

As shown in Figure 5.3, enforcing compatibility prevents the formation of inappropriate cycles,

even when the proximity threshold is relatively large, that is, 80 pixels in our implementation. This

makes it possible to recover cycles by connecting distant fragments in cases where intermediate

ones have been missed.

In approaches such as [19, 22] edges do not have a specific orientation and cycles must be found

in bidirectional graphs, that is, graphs containing two nodes for each line fragment, one for each

possible orientation. By contrast, our graphs cannot contain degenerate or duplicated cycles such
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as those depicted by Figure 5.3(a,c). This can of course also be prevented in bidirectional graphs

by introducing heuristics. For example in [21], endpoints of line fragments are treated as graph

nodes and only alternating cycles are constructed. However, this does not generalize to detecting

multiple cycles that can share edges. Furthermore, even though there can be very many directed

cycles in one of our graphs, their number is still far smaller than in the equivalent bidirectional

one.

5.4 Assigning Weights to Nodes and Edges

As will be discussed below, our approach to preventing a combinatorial explosion is to restrict

our search to cycles that contain the most promising single line fragments and pairs of them. To

this end, we use the margins of trained RBF-kernel SVMs to assign weights to the nodes and

edges that represent them. We first describe how we obtain the required training data and then

the features we use for classification purposes.

5.4.1 Training Data

Let us assume we are given a set of ground-truth segmentations. We first extract line fragments

from the training images and build edge pairs as described above. We take all line fragments that

are within a small distance–0.1 of the radius of ground truth objects in practice–from the ground-

truth boundaries and whose orientation is consistent with that of the ground-truth boundaries to

be part of the on-boundary-set. We then discard all line-fragments associated to the same regions

as those in this set and take all remaining fragments to form the off-boundary-set. In this way,

we guarantee that regions to which on-boundary-set segments are associated are disjoint from

those to which off-boundary-set segments are, which is intended to make the subsequent learning

easier.

For nodes, we treat the on-boundary-set as the set of positive samples and the off-boundary-set

as the set of negative ones. For edges, we take the positive samples to be pairs of edges that

are both in the on-boundary-set and the negative ones to be pairs of edges where one belongs

to the on-boundary-set and the other to the off-boundary-set. We then use these to train two

different classifiers whose output will be turned into weights. The node-based ones will favor

line fragments that correspond to true object outlines while the pair-based ones will penalize the

grouping of a fragment that corresponds to a true boundary with one that does not.
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5.4.2 Image Features

Since the line fragments and their associated regions are tightly coupled, the information provided

by the latter should be exploited in addition to the purely contour-based information, which is the

only one being used in many traditional approaches [19].

We characterize the local appearance of a line fragment using a Histogram of Oriented Gradients

(HOG) descriptor computed over a 128×128 window normalized and rotated from the rectangular

extent of its associated region. We additionally use region color histogram features computed

over both RGB and YCbCr channels. For fragment pairs, we compute a HOG descriptor over the

rotated and normalized region defined by the merging of their respective corresponding regions

and the absolute difference between their color histograms. Local geometry is then encoded using

the angle between line pairs, the ratio of their lengths and the relative distances between their

endpoints as in [19]. The feature vector of a single line fragment or line fragment pair is then

formed by concatenating its features into a single vector given as input to the SVM.

5.5 Search by Graph Partition

Let I be an image and {vi }N
i=1 the detected line fragments in I . To formulate our search problem

we define a weighted, directed graph G = 〈V ,E〉 whose nodes are the detected line fragments

vi ∈ V and directed edges ei j ∈ E are built as described in Section 5.3 between nearby line

fragments. u(v) : V →R and w(e) : E →R are node and edge weight functions where the weights

are computed as described above.

Each elementary circuit c ∈G defines a closed, polygonal outline. Let f (c) be a scoring function

that represents the likelihood that c truly is the outline of an object. We wish to find the image

circuit

c∗ = argmaxc∈G f (c). (5.1)

In the special case of scoring functions defined as sums of the node and edge weights c∗ can be

found in polynomial time [21, 5]. However, as we will see in the results section, this is restrictive

and better results can be obtained using non-additive scoring functions at the cost of a much more

computationally demanding optimization. The bottleneck in using such non-additive functions is

that we essentially have to enumerate all the possible cycles. In general, this is intractable because

their number grows exponentially with the size of the graph. In our specific case, however, object
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contours are typically contained within relatively small sized sub-graphs of the full line fragment

graph. Our goal is then to partition it into smaller sub-graphs until we can guarantee that the

computation remains manageable but without going too far. To this end, we first briefly review

cycle space graph theory and use it to derive an upper bound on the number of cycles in a graph.

We then use it as a key ingredient of a partitioning algorithm that achieves our goal.

5.5.1 Bounding the Number of Cycles in a Graph

Consider a spanning tree T of G . For each non-tree edge e ∈G let ce be the path connecting the

endpoints of e in T . ce is an elementary circuit of G, also referred to as a fundamental circuit.

Together the ce form a basis for the cycle space of G [106]. Let c ∈ {0,±1}|E | define a cycle in

G such that each entry of c is ±1 if the corresponding directed edge in G belongs to it and is 0

otherwise1. Let

m = |E |− |V |+1 (5.2)

be the cyclomatic number of G. Any cycle c can be expressed as a linear combination of the

fundamental circuits ce as

c =Ce x, (5.3)

where Ce ∈ {0,±1}|E |× {0,±1}m , each column of Ce is a fundamental circuit ce of G and x ∈
{0,±1}m are the coefficients of c.

While any cycle can be expressed as a linear combination of cycle bases, not all linear combina-

tions produce a valid graph cycle. Let X = {x ∈ {0,±1}m | Ce x is a directed cycle in G} is the set

of valid cycle coefficients. Our search problem can be reformulated as one of finding,

x∗ = argmaxx∈X f (Ce x). (5.4)

Eq. 5.4 defines our problem in its most general form. It allows for the maximization of any

scoring function f but solving it may require exploring up to 2m solutions.

1For ease of notation, we use c to denote both elementary circuits and generic graph cycles.
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5.5.2 Partitioning the Graph

As discussed above, the number of potential cycles in a graph is bounded by 2m , where m is

the cyclomatic number of Eq. 5.2. Our approach is therefore to recursively partition G into

k subgraphs {G1, ..Gk } whose cyclomatic numbers are all small enough for their cycles to be

enumerated. This is accomplished by using the node and edge weight functions u and w to

iteratively preserve nodes and edges with a high weight and discard those with a low one so as to

remove the cycles containing weak nodes or edges from the cycle space.

More specifically, let mmax be the user-defined maximum cyclomatic number we are willing to

accept. We first eliminate all nodes whose weight is below a threshold µ. We then eliminate

edges in order of increasing weight until the cyclomatic number of all the resulting subgraphs

are smaller than mmax. In the end, this produces P subgraphs, each having a cyclomatic number

smaller than mmax. Let G ′ = {Gi = 〈Vi ,Ei 〉}P
i=1, Vi ⊆V and Ei ⊆ E be the collection of nodes and

edges in these subgraphs. We can reformulate the original optimization problem of Eq. 5.1 as

seeking

c∗appr ox = argmaxc∈G ′ f (c) (5.5)

and its worst-case complexity is O(2mmax ). This algorithm is summarized as Algorithm 2.

To further speed-up the processing, instead of explicitly enumerating the elementary circuits in

terms of a cycle basis, we use the more efficient algorithm of [24]. Its computational complexity

is O((|E |+ |V |)× (|C |+1)), where |C | is the unknown true number of elementary circuits. |C | is

systematically much smaller than the theoretical maximum 2mmax because our graphs are sparse.

5.6 Search by Contour Grouping

In the previous section, we showed that we could control the computational complexity of our

algorithm by partitioning the graph into subgraphs whose cyclomatic number is small enough.

However, we can arrive at exactly the same result more efficiently by grouping edges until the

graphs reach the appropriate size.

This is achieved as follows. We start with a graph G# initially without edges and whose nodes

are line fragments with weights greater than µ. We then consider the edges of G one by one

in descending weight order. For an edge that connect nodes already belonging to the same
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Algorithm 2 Graph-Partition Search Algorithm
Input: Line fragment graph G = 〈V ,E〉, cycle score function f (c) : {0,1}|E | →R, and node and
edge weight functions u(v) : V →R and w(e) : E →R.
Parameters: Node weight threshold µ and sub-graph cyclomatic number threshold mmax.
Output: Object contours c∗.

Initialize C =;.
if cyclomatic number of G > mmax then
τ= mine∈E w(e).
V ′ = {v ∈V |u(v) ≥µ}.
E ′ = {ei j ∈ E |(vi , v j ∈V ′)∧ (w(ei j ) > τ)}.
Define G ′ = 〈V ′,E ′〉.
for each connected component Gi of G ′ do

ci =GraphPartitionSearch(Gi , f ,u, w,µ,mmax)
Add ci to C .

end for
else

Enumerate elementary circuits C in G using [24].
Remove self-intersecting circuits from C .

end if

if initial call to GraphPartitionSearch then
c∗ = argmaxc∈C f (c).

else
c∗ =C .

end if

Return: c∗.

connected component, we check whether or not adding it to G# would increase the cyclomatic

number of this subgraph(connected component) beyond mmax. If it does, we discard it and

declare the subgraph to be final such that any subsequent edge that includes one of its nodes

will be discarded. Otherwise we add it. For an edge that connects two disjoint subgraphs, we

compute the cyclomatic number that would result from merging the two connected components.

If it is smaller than mmax, we keep it and add the edge to G#. If not, the two subgraphs are also

declared to be final. In the appendix, we will prove that this produces exactly the same G ′ graph

as the partitioning algorithm of Section 5.5.2. Intuitively, these two algorithms build the same

thresholding tree, as shown in Figure 5.4. One does is from root to leaves and the other from

leaves to root. Both processes terminate when the cyclomatic numbers of all subgraphs reach the

bound, yielding the same results in both cases. We prove this formally in Appendix C.

A naive implementation of the grouping scheme involving finding the connected components by

visiting all the edges would be extremely inefficient and slower than the partitioning algorithm.
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(a) Thresholding Tree (b) Partition Tree (c) Grouping SubTrees

Figure 5.4 – Thresholding Tree. Each node stands for an Maximally Connected Compo-
nent(MCC), as defined in Appendix A.1. Edges are instantiated between parent and children
MCCs. Red color indicates that the cyclomatic number of MCC is less than mmax. The arrows
indicate the tree constructing direction. Unreconstructed MCCs are marked as dashed nodes.
(a) Full thresholding tree. (b) Tree obtained by graph partition approach. (c) Tree obtained by
contour grouping approach.

However, this can be avoided by introducing the more involved algorithm described by Algo-

rithm 32, in which the new connected component can be quickly found by merging the previous

connected components saved in the thresholding tree and the cyclomatic number can be easily

calculated by Equation 5.2. We will also show in Appendix A.2 that its computational complexity

is O(|V |+ |E |) whereas that of the partitioning algorithm is O(|E |× (|V |+ |E |)).

5.7 Relationship to other Approximation Algorithms

Greedily merging edges to form contours is a common idea in approximated search algo-

rithms [114, 115, 20]. We greedily add edges into our graph. However, we do not permanently

merge line-fragments, as in many of these methods. Instead, any edge in our reconstructed graph

can re-form cycles freely for the best cycles and to be selected by the scoring function.

In [20], the top N merging choices are kept but a threshold L on the length of cycles is required

to terminate the search. Furthermore, these two parameters have to be set to reasonable values to

keep the computational burden in check. By contrast, we use the cyclomatic number to control

the size of the reconstructed graph so that our algorithm can efficiently find cycles of arbitrary

length. We only prune the cycles containing low score edges, but keep all the cycles constructed

by strong edges no matter how long they are.

2The grouping algorithm for a directed graph is shown in Appendix A.4
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Algorithm 3 Contour Grouping Search Algorithm
1: Input: Line fragment graph G = 〈V ,E〉, cycle score function f (c) : {0,1}|E | → R, and node

and edge weight functions u(v) : V →R and w(e) : E →R.
2: Parameters: Node weight threshold µ and sub-graph cyclomatic number threshold mmax.
3: Output: Object contours c∗.
4: Variables: Λ defines the maximally connected component (MCC ) set of the thresholding

tree T = 〈Λ,Θ〉. Θ is the edge set of thresholding tree. E # is the edge set of reconstructed
graph G#. Tset is the terminal MCC set.

5: Initialize Λ: each node vi ∈V is pushed into Λ as one MCC with 1 node and 0 edge.
6: Initialize Θ=;;E # =;;Tset =;.
7: V ′ = {v ∈V |u(v) ≥µ}.
8: E ′ = {ei j ∈ E |(vi , v j ∈V ′)}.
9: E∗ is sorted E ′ with w(en) in descend order.

10: for n = 1 to |E∗| do
11: [i , j ] = E∗(n, :).

12: Ri = findRoot(i ,Θ); R j = findRoot( j ,Θ).
13: if Ri or R j is in Tset then
14: Push Ri and R j into Tset .
15: Continue.
16: end if
17: if Ri = R j then
18: C yclomati c =ΛRi .ned g es −ΛRi .nnodes +2.
19: if C yclomati c ≤ mmax then
20: Push E∗(n, :) into E #.
21: ΛRi .ned g es =ΛRi .ned g es +1.
22: else
23: Push Ri into Tset .
24: end if
25: else
26: C yclomati c =ΛRi .ned g es +ΛR j .ned g es −ΛRi .nnodes −ΛR j .nnodes +2.
27: if C yclomati c ≤ mmax then
28: Push E∗(n, :) into E #.
29: N = |Λ|+1.
30: ΛN .ned g es =ΛRi .ned g es +ΛR j .ned g es +1.
31: ΛN .nnodes =ΛRi .nnodes +ΛR j .nnodes .
32: Push (N ,Ri ), (N ,R j ) into Θ.
33: else
34: Push Ri ,R j into Tset .
35: end if
36: end if
37: end for
38: Reconstruct the graph G# using E #.
39: Enumerate elementary circuits C in G# using [24].
40: Remove self-intersecting circuits from C .
41: c∗ = argmaxc∈C f (c).
42: Return: c∗.
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In our approach, µ and mmax are the parameters that control the trade-off between computational

cost with approximation quality. For example, we can use mu =−5 and mmax = 40 to preserve a

large circuit set. The worst case complexity 240 ≈ 1012 is still a very large number. However, the

number of elementary circuits in the graph is about several millions. Furthermore, after removing

self-intersecting circuits, the number of cycles in the pruned graph can be reduced to around one

thousand so as to result in a much smaller search space for cycle scoring function. We will show

more details about the number of cycles after each pruning step in the experiment section.

5.8 Cycle Scoring Functions

As discussed in Section 5.5, we use a score function f to evaluate the quality of the cycles our

algorithm produces according to their global appearance and shape.

Such scoring functions are widely used in the literature but they are typically written as sums of

terms associated to the nodes and edges of the graphs to allow for an efficient implementation [129,

5, 128]. This, however, is very restrictive and in this chapter we instead let our scoring function

be any SVM classifier of the form

f (c) =∑
i
αi K (Ψ(ci ),Ψ(c)), (5.6)

where the ci are cycle support vectors learned from training data, the αi are the corresponding

weights, K (·) is a pre-specified kernel or similarity function, andΨ(c) is a feature vector associated

to cycle c. Since our search algorithm efficiently enumerates all the elementary circuits in a

pruned cycle space as object boundary hypotheses, we can evaluate Ψ(c) over whole cycles and

use both linear and non-linear kernels.

5.8.1 Feature Vectors

Let c be a cycle. To compute Ψ(c), we first build a HOG descriptor over the rectangular extent of

c [2, 130], which is estimated by orienting c about its dominant orientation and normalizing it to

a canonical scale. Besides, we also use the normalized color histogram feature. For each RGB

channel, we bin the color values within the cycle and normalize each histogram to sum to one.

We then concatenate the three color histograms and the HOG feature into a single feature vector

given as inputs to the SVM. Note that neither HOG nor color histograms are additive features.

Due to the rotation and normalization, they cannot be decomposed as a sum over line-fragments
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Chapter 5. Free Shape Polygonal Object Detection

or line-fragment-pairs. We will show in the result section that our non-additive feature yields

better results than a commonly used additive one based on bag-of-words [5].

5.8.2 Training the SVM

To guarantee the relevance of our scoring function, we train it on cycles similar to those it will

have to score. To this end, we exploit our ability to enumerate the cycles on training images.

We treat those that sufficiently overlap with ground-truth ones are positives and the others as

negative.

This is quite different from what algorithms such as those of [129, 5, 128] do. In these approaches,

only ground truth boundary are used as positive samples and random rectangles from the back-

ground are used as negative ones, which may result in a harder classification problem than in

ours. Due to scale and rotation, the search space in an original image is huge and it is hard to find

sufficient rectangles to account for all variability, especially in terms of shape. By contrast, our

approach exploits samples by enumerating all the cycles in pruned graphs that results in a much

smaller search space. We will show that our training method yields better results than others in

the results section.

5.9 Experiments

In this section, we demonstrate our approach for the purpose of detecting polygonal objects in

man-made environments. We first consider the detection of building rooftops in aerial images.

While there is an extensive literature on this topic (e.g., for a survey see [131]), in this chapter we

focus on techniques that detect rooftops as cycles in line segment graphs [17, 132] and compare

to the state-of-the-art graph cycle detection method [5]. We then demonstrate our approach

for more generic object detection using ImageNet [107]. In what follows, we first discuss our

datasets, experimental setup and baselines, and then present our results.

5.9.1 Datasets

We use two datasets to evaluate our approach. The first consists of 65 aerial images of rural

scenes containing several building rooftops many of which exhibit a fairly complex polygonal

geometry. Each image is of size 1000×750 pixels. The second includes images from 10 different

object categories from ImageNet [107]. They are sign, screen, remote control, cleaver, computer
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Parameters Values
Graph Construction:
Max distance threshold between nearby line-fragments 80 pixels
Max distance threshold to define a line-fragments belonging to on-
boundary-set

0.1 of the radius of ground
truth objects

Approximated Search:

Max cyclomatic number mmax
Cross validation:10, 15,
20, 25, 30, 35, 40

Node weight threshold µ -1
Scoring function:
Overlap threshold to define a positive sample 60%
Overlap threshold to define a negative sample 50%
Features:
Window size of HOG 128*128
Cell size of HOG 16
Bin number of Color histogram 51
Codebook size of BOW 500

Table 5.1 – Parameters used in the experiment section.

mouse, ipod, wine bottle, mug, beer bottle, and lampshade. We selected around 100 images per

category. which were randomly split into equal-sized training and testing sets. We manually

labeled the ground-truth contours of the objects in each image, and learned two weight functions

and the cycle soring function for each category respectively.

5.9.2 Experimental Setup and Baselines

Graph Construction: As described in Section 5.3, we use the line fragments extracted from

MSERs as input, and construct a unidirectional graph. We then learn node and edge weight

functions according to Section 5.4 to obtain a weighted unidirectional graph. The main parameters

are shown in Table 5.1. To compare, we construct another bidirectional graph using the line

fragments extracted from the gPb [11] edge map. The contour fragments are found by removing

junctions of the gPb edges, and then are approximated by line-fragments using polygonal

approximation algorithm. For each line-fragment, two opposite directional nodes are assigned,

whose associated region is defined as a rectangular region on its right side. With the exception of

gPb-HOG&RGB, we use unidirectional graphs in all experiments. gPb-HOG&RGB uses an

RGB-kernel SVM with HOG and RGB features on a gPb bidirectional graph3.

3The node weight function for the nodes of gPb graph is very weak, therefore, we set the node weight threshold
µ=−2 to keep more nodes.
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Approximate Search: We propose two approximate search algorithms, either by partioning or

grouping, as described in Sections 5.5 and 5.6 respectively. Because they provably yield the

same result, we only compare them in terms of runtimes. For all other experiments, the grouping

algorithm is used. As parameters for our approximate search algorithm, we use a conservative

node weight threshold of µ=−1 and only disregard nodes that are highly unlikely to belong to

an object and we cross-validate mmax with values mmax = 10,15,20,25,30,35,40 using 5-fold

cross-validation on the training data.

Cycle Scoring Functions: We experiment with both additive and non-additive cycle scoring

functions: a linear and RBF-kernel SVM using bag-of-words (BOW) features, which we refer

to as L-BOW and K-BOW in our experiments and linear and RBF-kernel SVM with HOG and

RGB color features referred to as L-HOG&RGB and K-HOG&RGB. Of these, L-BOW is

the only additive one. For bag-of-words, we used SIFT keypoint descriptors and a dictionary

containing 500 visual words computed with k-means. HOG is computed in a 128×128 windows

normalized and rotated from the rectangular extent of each cycle using cell-size 16. The RGB

color histogram feature is computed in each individual channel using 51 bins.

Training Cycle Scoring Functions: We compare two training methods: contour-grouping driven

training, and random training as described in Section 5.8.2. For the first one, the cycle SVM

functions are trained from labeled samples found by the contour grouping part of our graph

search algorithm. Cycles having an overlap greater than 60% with the ground-truth are labeled

as positive and those with less than 50% overlap as negative. The percent overlap between two

contours is computed as the area of their intersection divided by that of their union. For the latter,

positive samples are the ground-truth boundaries, while negative samples are random rectangles

in the background area. The first one is the default setting of our approach. To compare with it,

Rand-HOG&RGB defines the random training method for RBF-kernel SVM using HOG and

RGB features.

Baselines: We compare our approach with the state-of-the-art free shape object detection method–

ratio-contour [5]. Because it can only be used in conjunction with additive cycle-score functions,

we used the bag-of-words feature representation of [5] along with the same MSER line fragments

we use in our own approach. For multiple object detection, ratio-contour relies a greedy search

that removes the optimal cycle from the graph and then is re-run to find the next one. In practice,

we run it on each image until it cannot find any more cycles. We will refer to this hybrid approach

to as RC-BOW.
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Approximated Search RC SS
mmax NC NI ND [5] [6]

15 512 421 227
Rooftop 25 1.2k 657 287 92 17.8k

35 2.9k 932 341
15 133 112 39

ImageNet 25 396 247 51 14 4.7k
35 1.3k 494 63

Table 5.2 – Quantities of object hypotheses. The average numbers of cycles after each step of our
approach using different cyclomatic number are shown. NC is the number of elementary circuits
without Node-Node intersections. NI is the number of circuits without any kinds of intersections.
ND is the number of circuits without duplications that are the final object hypotheses of our
approach. The numbers of hypotheses of Ratio Contour(RC) and Selective Search(SS) are also
shown.

We chose the Selective Search algorithm of [6] as a second baseline because it has been shown to

yield similar or better results than many recent segmentation-driven detection techniques. We will

refer to it as SS. We use the code provided by the authors with the ‘Fast’ setting of their approach

that resulted in a manageable number of object region hypothesis, and scored the candidates

it returns using an K-HOG&RGB SVM classifier, which we found to be our best performing

scoring function.

Evaluation: We evaluate the baselines and each setting of our approach using precision-recall

curves where detection accuracy is measured by the percentage overlap between the detected

cycle ci and ground-truth boundaries gn :

Over l ap(ci , gn) = interior(ci )∩ interior(gn)

interior(ci )∪ interior(gn)
(5.7)

As in previous work, a detection is considered to be correct if the detection accuracy is greater

than 50%.

5.9.3 Object Hypotheses

Our approximate search algorithm enumerates elementary circuits in the pruned cycle space. It

then treats them as object hypotheses that are ranked by a cycle scoring function. The number

and quality of these object hypotheses is key to good performance. An ideal object hypothesis

proposal method should produce as few candidates as possible while preserving a high recall. In

this section, we compare the pruning step of our approach against several baselines to gauge the
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effectiveness of our hypothesis generation mechanism.

Number and Speed: In our approach, only non-self-intersecting elementary circuits are con-

sidered. An elementary circuit is a cycle in an abstract graph, whose vertices have degree two,

which is another way to say it should not be self-intersecting. However, since we deal with a

line-fragment graph, in which both nodes and edges represent line segments, there may still exist

self-intersections between these segments, including node-node, edge-edge, and node-edge. To

remove node-node intersections, we modify the elementary circuit algorithm [24] by adding

a hard constrain that prevents intersecting nodes from appearing in a circuit. Edge-edge and

node-edge intersections are then checked in each enumerated elementary circuit. Finally, we

remove duplicated circuits, that is, those whose overlap is more than 95%. The cycle numbers

after these three pruning steps (NC , NI , ND ) are shown in Table 5.2.

By removing self-intersections, our approach quickly prunes the cycle space from millions of

circuits4 to a few hundreds. This number is very comparable to the one returned by RC-BOW

and a much smaller one than the corresponding one for selective search. Consequently, both RC-

BOW and our approach run at about the same speed and faster than SS, as shown in Table 5.35.

By contrast, on the Rooftop dataset we are faster than both RC-BOW and SS. We attribute this

change of behavior to the fact that, in such high-resolution images, the graphs become very

complex and our grouping procedure is more efficient than the RC-BOW greedy procedure even

though it enumerates slightly more cycles.

Quality: We use the recall-overlap curves introduced in [4] to compare the quality of the

candidates produced by our method and the two baselines. Given a number of candidates per

image, the recall-overlap curve is obtained by measuring the recall rate of the ground-truth object

segmentations for a given minimum overlap. The resulting curves for the Rooftop and ImageNet

datasets are shown in Fig. 5.5.

In terms of this measure, we do better than RC-BOW but worse than SS. The underperfomance

of RC-BOW is a consequence of its greedy nature. The edges associated to the first object

detected cannot be reused for a subsequent one, which may cause detection failures for objects

sharing boundaries or if a false detection occurs. By contrast, our approach can generate all the

cycles in the pruned graph, including those that share boundaries. SS clearly outperforms our

4The number of original elementary circuits without any intersection check can be more than several millions for a
complex graph using mmax = 40.

5The graph construction costs 2 ∼ 5 seconds for medium-sized images, while 10 ∼ 15 seconds for large sized
images.
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Figure 5.5 – Recall-Overlap curves for the Rooftop and ImageNet datasets. The plot the curves
produced by our approach using cyclomatic number thresholds mmax ∈ {15,20,25,30,35,40}
along with those produced by RC-BOW and SS. (a) Rooftop dataset as a whole. (b) ImageNet
dataset as a whole. (c) Mouse category in ImageNet. (d) Beer bottle category in ImageNet.

approach for low overlap values but the results are much closer at high overlap values. A closer

analysis, shows that on datasets for which the MSER line-extraction did well, such as the mouse

category depicted by Fig. 5.5(c), the results are very similar. It is when the MSER line-extraction

does poorly6, as in the case of the beer category depicted by Fig. 5.5(d), that the difference is

most noticeable.

In any event, only the hypotheses with high overlap can properly capture the shape geometry,

which is critical for the next ranking step and the slight advantage of SS is offset by the fact that

it produces some many more candidates as discussed above, which puts far more demands on the

final cycle-scoring function. As a result, except in the two categories of the ImageNet dataset in

6The many colored labels on the beer bottles result in small MSERs and tiny line fragments, which makes it hard
for to learn edge-weights that favor the right geometry.
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Figure 5.6 – Precision-recall curves for building rooftop detection. Results are displayed for the
different settings of our approach and the baselines. The HOG and color RBF measure achieves
the best performance, significantly outperforming the baselines and linear bag-of-words. Best
viewed in color.

which our edge-detection scheme does poorly, our final detection average precision is better than

that of SS.

5.9.4 Object Detection

Rooftop Dataset: Figure 5.6 displays the precision-recall curves for each method on this dataset.

Our approach with the HOG and color RBF scoring function consistently yields the best per-

formance. Unlike bag-of-words, HOG encodes both global shape and appearance which is

important for detecting polygonal objects. Additionally color helps avoid false detections such as

those belonging to grass or dark shadow regions. When only using bag-of-words, introducing

a non-linear kernel function also results in a significant improvement. Ratio-contour, however,

is limited to a linear bag-of-words classifier, and cannot take advantage of non-additive scoring

functions.

Furthermore, even when using the same linear bag-of-words scoring function, our approach still

outperforms ratio-contour. This is due to ratio-contour’s greedy nature. False detections can

result in missed detections. This is illustrated by Figure 5.7 that displays the detections obtained
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by our approach along with those of ratio-contour on a set of representative images. Compared

with the combined HOG and color scoring function, linear bag-of-words results in many more

false detections. These are often higher scoring than cycles corresponding to true object contours,

which for ratio-contour results in deleted building rooftop hypotheses. By contrast, our approach

is not affected by this problem.

Our approach also outperforms selective search both in detection accuracy and quality, for which

example detections are also displayed in Figure 5.7. This is in part due to our use of geometry for

forming region hypothesis resulting in cleaner polygonal outlines, but can also be attributed to

our use of discriminative, category-specific node and edge weight functions that help to quickly

reduce and focus region hypothesis to those likely to be an object and increase accuracy.

ImageNet Dataset: Table 5.4 gives the average precision obtained for each one of the 10

ImageNet categories we have worked with. The corresponding precision-recall curves are given

in Fig. 5.8. Our approach achieves the best performance using a HOG and color RBF classification

function and yields a significant improvement over the baselines, especially RC-BOW using a

linear bag-of-words, once again demonstrating the importance of using non-additive measures.

However, when using the linear bag-of-words, our approach still outperforms ratio-contour,

which is further evidence that our approach to pruning the graph is more effective than a greedy

search. We outperform SS on 8 of the 10 datasets, with the exception of mug and beer bottle.

As discussed in Section 5.9.3, we attribute this to MSER-based edge-detection being unreliable

on these datasets, with RC-BOW being similarly affected. This clearly suggests that a way to

improve our algorithm would be to introduce a more sophisticated edge-detection scheme.

The detections returned by our approach and by the baselines on a set of example images from

each category are shown in Fig. 5.9. RC-BOW suffers from significantly more false and missed

detections than our approach. This is in part because for many of these categories, shape is an

informative cue that bag-of-words does not capture and in part because of the greedy nature of

the ratio-contour algorithm, which is not well suited to the detection of multiple objects. SS also

results in more false detections and it often detects noisy object contours as it does not take into

account their geometry.

In Table 5.4, we also give results obtained using different settings of our approach. gPb-

HOG&RGB means running our approximate search algorithm on bidirectional graphs, which

we compare to using unidirectional graphs (K-HOG&RGB). Note that the latter achieves higher

average precision on all the categories. Rand-HOG&RGB means using our approach in conjunc-
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tion with randomly generated hypotheses for cycle scoring function training purposes. As could

be expected, it does worse, which demonstrate that our approximate search algorithm prunes the

cycle space into small feasible sets containing target objects, for which it is easier to train a high

accuracy classifier.

5.10 Conclusion

This chapter presented a graph-cycle based object localization algorithm that unlike previous

approaches can exploit generic shape and appearance cues for polygonal object detection. We

use the cyclomatic number to define an efficient approximated search algorithm which partitions

a line fragment graph into manageable-sized sub-graphs, which preserve high-scoring node and

edge weights, and detect object boundaries as maximum scoring elementary circuits in the cycle

space of a pruned graph. To speed up the process, we also proposed a contour grouping algorithm,

which yields the same result, but is more efficient. Our graph search algorithm can be used

with any cycle scoring function to detect multiple polygonal objects in an image. We evaluated

our approach for the detection of building rooftops in aerial images and other polygonal object

categories from ImageNet. On these datasets, our approach achieved a significant improvement

over the baselines due to its ability to leverage non-additive scoring functions that go beyond local

measures of shape and appearance, and to consider multiple overlapping, hypotheses. Interesting

avenues of future work include a broader exploration of cycle scoring functions and the use of

alternative graph-cycle optimization strategies.
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Figure 5.9 – Polygonal object detection with ImageNet. The detections obtained by our approach
with the combined HOG and color RBF scoring function and the baselines are shown for example
images from each category at 50% recall. Correct detections are shown in green and false ones in
red. The baselines result in many false and missed detections that are significantly reduced with
our approach. Best viewed in color.
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6 Concluding Remarks

We started this thesis with a description of the challenges of polygonal object detection. Through-

out the thesis, we have presented the algorithms we have developed to solve these challenges,

including efficient low level feature extraction, global shape analysis and generic contour-based

object detection.

We introduced an efficient component tree segmentation algorithm in Chapter 2 and a multi-

resolution line segment detection algorithm in Chapter 3 to extract low level features. Unlike

the simple-thresholding approach which is sensitive to varying imaging conditions and noise,

our component tree segmentation algorithm explores the optimal threshold for each branch of

the component tree, which is one kind of multi-thresholding technique and robust to varying

imaging conditions and noise. Therefore, our algorithm can achieve a significant improvement

over simple image thresholding segmentation, and a comparable performance to more sophistical

methods but at a fraction of computation time. Our line detection algorithm uses an adaptive

Hough transform to do multi-scale line segment detection, which overcomes several inherent

limitations of the Hough transform that have not been well-studied in previous works, e.g.,

setting the bin-size, handling collinear segments and dependence on the edge map. Our line

segment detector can achieve a great improvement over previous Hough-based approaches and

a comparable performance to the state-of-the-art line segment detector-LSD [23]. Compared

with LSD, our approach can better capture dominant linear structures, and is more stable against

low-quality imaging conditions. Furthermore, there is a strongly coupling relation between our

stable regions and our line segments, which can help significantly in polygonal object detection.

In Chapter 4, we have presented polygon detection algorithm using global shape analysis. Based
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Chapter 6. Concluding Remarks

on it, we have developed a real-time application for landing site assessment in unconstrained man-

made environments that exploits region shape, a critical cue in such environments, in addition to

purely local appearance. Our method relies on our component tree segmentation algorithm and

shape regularity measure to look for polygonal regions in video sequences. The component tree

is complemented by a Hough voting scheme to select polygonal regions and extended to 3D for

multi-frame processing to improve reliability in low-resolution images. In this way we enforce

both geometric regularity and temporal consistency, resulting in very reliable and consistent

detections. We evaluated our approach on challenging aerial infrared and color video sequences.

By jointly leveraging area-based cues and enforcing spatio-temporal consistency and geometric

regularity, we achieved reliable detection and assessment of runways, arbitrarily shaped landable

fields, and rooftops, which significantly outperformed other methods.

Finally, in Chapter 5 we have proposed a graph-cycle based object localization algorithm exploit-

ing generic shape and appearance cues for polygonal object detection. We use the cyclomatic

number to define an efficient approximated search algorithm which partitions a line fragment

graph into manageable-sized sub-graphs, which preserve high-scoring node and edge weights.

We then detect object boundaries as maximum scoring elementary circuits in the cycle space

of a pruned graph. To speed up the process, we also proposed a contour grouping algorithm,

which yields the same result, but is more efficient. Our approximate search approach can be used

with any cycle scoring function. Moreover, unlike other contour grouping based approaches,

our approach does not rely on a greedy strategy for finding multiple candidates and is capable

of finding multiple candidates sharing common line fragments. We evaluated our approach for

the detection of building rooftops in aerial images and other polygonal object categories from

ImageNet. On these datasets, our approach achieved a significant improvement over the baselines

due to its ability to leverage non-additive scoring functions that go beyond local measures of

shape and appearance, and to consider multiple overlapping, hypotheses.

To sum up, this thesis dealt with both low-level and high-level Computer Vision problems related

with polygonal object detection. We believe that the presented methods and technical details

represent a significant step towards making it of practical use.

6.1 Limitations and Future Works

There are various ways to improve our proposed methods. We briefly mention the most interesting

extensions below.
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6.1. Limitations and Future Works

We have proposed a contour-based object detection approach by exploring most promising cycles

in a line fragment graph. Since the cycle space can be exceedingly large even for moderate-

sized graphs, exhausted searching is not feasible. To deal with this problem, we have proposed

two approximated algorithms to maximize the cycle scoring function in a pruned cycle space.

Although they are efficient and work very well in practice, there is no guarantee that the global

optimal will be preserved in the pruned cycle space. Hence, interesting avenues of future work

include a broader exploration of cycle scoring functions and the use of alternative graph-cycle

optimization strategies. Since we have shown in Chapter 5 that any cycle can be expressed as a

linear combination of cycle basis, we reformulated our cycle search problem into a combinatorial

optimization problem of cycle basis, as shown in Equation. 5.4. Given specific scoring functions,

e.g., submodular second order functions, this optimization problem can be solved by many

existing techniques, e.g., graph cut. The design of energy function encoding global shape

measurement is very challenging, and usually needs a high-order function expression, which

results in a very difficult optimization problem. These challenges should be further studied in the

future.

We have also proposed a novel algorithm for landing site detection and assessment by exploring

polygonal regions in man-made environment, and achieved reliable detection of runways, arbi-

trarily shaped landable fields, and rooftops. Although efficient, our algorithm just exploits shape

cue to propose candidate landing sites, which can be used as an initial step of a full landing site

detection system. A complete landing system is very complex and should consider a lot of issues,

e.g., shape, slope, color, size, direction. Many of them are hard to estimate purely according to

vision information. Vision-based landing site detection methods should exploit the information

collected by other sensors and be integrated into a full landing system. For example, if provided

with GPS (Global Positioning System) and GIS (Geographic information system) information

and the rotation angles of an airplane and its camera, we can easily estimate the scale of candidate

landing sites. Furthermore, with knowing rotation information, we can recover the projective

transform of the shape of objects on the ground so as to estimate the shape more accurately.

Designing a full landing system is very challenging. The landing strategies can be quite different

for different type of aircrafts (e.g., airplane, helicopter, UAV), different flying conditions (e.g.,

weather, seasons, time) and different aims (e.g., automatically landing or emergency landing). In

recent years, the number of aircrafts has been increasing drastically. For both automation and

security purposes, auto-landing, as a new research area, should be put into more effort.
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A Proofs for Approximated Search

Algorithm

A.1 Definition of Thresholding Tree

Definition A.1.1. A Level Set LS(th) is a subgraph of G = 〈V ,E〉 with edge weights greater than

the threshold th, i.e.

LS(th) = {〈V LS ,E LS〉 |V LS ⊆V ;E LS ⊆ E ,∀ei j ∈ E LS , vi , v j ∈V LS , w(ei j ) ≥ th}.

Definition A.1.2. A Connected Component (CC) CC = 〈V CC ,ECC 〉 in a Level Set LS(th) is a

subgraph of LS(th) in which for any pair of vertices (vi , v j ) ∈V CC , there exists at least one path

connecting them, defined by a set of edges in ECC .

Definition A.1.3. An Maximally Connected Component (MCC) in a Level Set LS(th) is a CC

which cannot be included by any other CC in LS(th) , except itself. i.e. Given a graph G = 〈V ,E〉,
a connected graph CC = 〈V CC ,ECC 〉 is maximally, if for all vertices {u|u ∈ V ,u 6∈ V CC }, there

does not exist a vertex v ∈V CC , such that edge (u, v) ∈ E .

Definition A.1.4. Given a set of thresholds ({T hr s(i )},1 ≤ i ≤ M), the nodes Λ of the Thresh-

olding Tree T = 〈Λ,Θ〉 are defined as all the MCCs ({Λn}) at all the Level Sets ({LS(T hr si )},1 ≤
i ≤ M) and the edges Θ of the tree are added between their parent-children MCCs based on

including/included relations.

Figure 5.4 shows an example of thresholding tree. Each node of the tree stands for an Maximally

Connected Component(MCC). Edges are instantiated between parent and children MCCs. The

thresholding tree can be built in two directions root to leaves and leaves to root, which correspond
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Appendix A. Proofs for Approximated Search Algorithm

to our Partition Algorithm 2 and Grouping Algorithm 3, respectively. In the following Section

A.2, we will analyze the computation complexity of these two algorithms. In Section A.3, we

will demonstrate the equivalence of these two algorithms.

A.2 Computation Complexity Analysis

In Chapter 5, we propose two approximate search algorithms: Partition Algorithm 2 and Grouping

Algorithm 3. Both of these two algorithms can be considered as the processing of building

thresholding tree, as shown in Figure 5.4. The Partition algorithm builds the tree from root

to leaves, until the cyclomatic number for all the leaves less than mmax, while the Grouping

algorithm merges sub-trees by iteratively adding edges, until the cyclomatic numbers of the roots

for all the sub-trees reach the upper bound.

Firstly, supposing we do not set the upper bound to the cyclomatic number, we use both algorithms

to build the full thresholding tree. The main process for both of them is to find maximally

connected components (MCC s), for which there exist a linear time algorithm related to the

number of edges and nodes (O(|E |+ |V |)). For partition algorithm, this processing needs to be

done in each level set to find all the MCC s (subgraphs in Algorithm 2). Since the depth of the

thresholding tree is |E |, the complexity of partition algorithm is O(|E |× (|E |+ |V |)). In contrast,

grouping algorithm can make full use of the tree structure. Instead of re-visiting each edge to find

the connected components as partition algorithm does, the new MCC can be efficiently generated

by directly merging already found root MCC s of sub-trees. During the implementation, a label

matrix is used to record the index of previous root MCC for each node, which makes the findRoot

function very efficient, and can be done in constant time. Since each edge in graph is visited only

once, the complexity of grouping algorithm in general is O(|E |+ |V |).

Furthermore, if we set an upper bound mmax to cyclomatic number, the construction of threshold-

ing tree will be terminated at the middle of the tree. Supposing mgraph stands for the cyclomatic

number of the largest sized subgraph in the original graph G , only when graph G is very simple

that mgraph is very close to mmax, the performance of partition algorithm is close to but still

worse than the one of grouping algorithm. However, in most cases, mgraph À mmax, especially

for complex graphs, which means the terminal nodes are closer to the leaves of the tree instead of

the root, so that the grouping algorithm is much faster than the partition algorithm.
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A.3. Proof of the Equivalence between Partition Algorithm with Grouping Algorithm

A.3 Proof of the Equivalence between Partition Algorithm with Group-

ing Algorithm

Both Partition and Grouping algorithm can generate exactly the same thresholding tree, even if

there exist equal-value edges in the graph. We will demonstrate it in this section. We firstly show

a simpler representation of MCC. We then propose a general partition algorithm and a grouping

algorithm for a thresholding tree using a user-defined threshold set, and prove the equivalence

between them. 1

A.3.1 Representation

Lemma A.3.1. For the nth MCC Λn = 〈V Λn ,EΛn 〉 in Λ of T = 〈Λ,Θ〉 which belongs to the Level

Set LS(T hr si ), there exists an equivalent MCC Λeseed at the Level Set LS(w(eseed )) defined by

the weight of a seed-edge eseed , where seed = argmink {w(ek )|ek ∈EΛn }.

Proof. eseed ∈EΛn & Λn ⊂ LS(T hr si ) ⇒ w(eSeed ) ≥ T hri ⇒ LS(w(eseed )) is a subgraph

of LS(T hr si ). According to the definition of MCC, there doesn’t exist a CC including Λn

in LS(T hr si ), except itself. Hence, there doesn’t exist such a CC including Λn in the subset

LS(w(eseed )) either. Besides, seed = argmink {w(ek )|ek ∈EΛn } means the weights of all the

edges in Λn are not less than the threshold w(eseed ), so Λn is in LS(w(eseed )), hence Λn is an

MCC in LS(w(eseed )). Since both Λn and Λeseed are the MCCs in LS(w(eseed )) and contain the

same edge eseed , they have to correspond to the same MCC, i.e. they are equivalent with each

other.

According to Lemma A.3.1, each MCC can be saved and re-generated by a seed-edge. However,

there may exist more than one minimum weight edge for an MCC. In this case, we choose the

first appearing minimum weight edge as the seed edge, i.e. the edge with the minimum weight

and index, which is unique for each MCC. The seed edge index can be considered as the ID of

an MCC. Hence, for a thresholding tree T = 〈Λ,Θ〉, we can use T = 〈S,Θ〉 to express it, where

S is a vector of integer (N ∗1) recording the seed edge index for N MCCs. Θ is a M ∗2 matrix

recording the parent index and the child index at each row.

1Algorithm 2 and Algorithm 3 are the special case of thresholding tree algorithm, which uses all the sorted edges
as the user-defined threshold set.
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Appendix A. Proofs for Approximated Search Algorithm

Algorithm 4 Thresholding Tree by Partition
Input: Graph G = 〈V ,E〉, an edge weights function w(e) : E →R, thresholds set T hr eshold s
in ascend order.
Outputs: A Thresholding Tree T = 〈S,Θ〉. S is a vector of integer (N ∗1) recording the seed
edge index of N MCCs in all Level Sets. Θ is a M ∗2 matrix recording the parent index and
the child index at each row.
Variables: Label Matrix Label s records the index of Parent MCC which each node belongs
to.
Initialize Label Matrix: Label s = ones(1, |V |).
Index = 1.Θ=;.
for i = 1 to |T hr eshold s| do

Level Set: LS(T hr eshold s(i ))) = {〈V ′,E ′〉 |V ′ ⊆V ,E ′ ⊆ E ,and ∀e ∈ E ′, vm , vn ∈V ′, w(e) ≥
T hr eshold s(i )}.
Connected component analysis: find all MCCs {Λi

j } in LS(T hr eshold s(i )).
for j = 1 to |Λi

j | do

seed = argminInd {w(e Ind )|e Ind ∈ EΛ
i
j }.

if ∃s ∈ S, s = seed then
continue.

end if
S(Index) = seed .
Par ent = Label s(v),∀v ∈V Λi

j .
Θ= [Θ; [Par ent , Index]].
Upate Label matrix: Label s(v) = Index,∀v ∈V Λi

j .
end for

end for

A.3.2 Partition Algorithm

Given a set of thresholds in ascend order, an edge thresholding tree T = 〈S,Θ〉 can be built

from root to leaves by connected graph analysis in the increasing thresholding level sets. See

Algorithm 4. To clearly stating the building process of thresholding tree, we show an iterative

version Algorithm 4, instead of the recursive version Algorithm 2.

A.3.3 Grouping Algorithm

Algorithm 4 builds the tree in root-to-leaves direction. It splits a big graph into separated

subgraphs. In fact, the tree can also be built in the other direction: leaves-to-root, which is a

more efficient algorithm by iteratively grouping an edge into the current constructed graph until

obtaining the whole graph.

Definition A.3.1. Given a thresholds set (T hr eshold s), the Maximally Connected Compo-
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A.3. Proof of the Equivalence between Partition Algorithm with Grouping Algorithm

nent Set (Ω(th)) at the threshold level th is a set of all the MCCs contained in the level sets

which are defined by the thresholds bigger than th:

Ω(th) = {Λk |Λk ∈ LS(t ),∀t ∈ T hr eshold s & t ≥ th},

i.e. It includes all the MCCs from leaves level to the current thresholding level th.

Hence, given a pre-defined thresholds set T hr eshold s, Ω(min(T hr eshold s)) is the set of all

the MCCs in the thresholding tree obtained by T hr eshold s using Partition Algorithm 4. In the

following, we will propose a grouping algorithm to obtain Ω(min(T hr eshold s)) by iteratively

adding strongest edges into the graph.

To do this, we first define another thresholds set as the sorted weights of edges of graph

G = 〈V ,E〉: T hr sed g e = {w(e1), ...w(em), ...w(eM )}, where w(ei ) ≥ w(e j ) if i ≤ j . Ω∗(w(em))

is the MCC Set from leaves to the level w(em) of Thresholding Tree obtained by T hr sed g e .

Ω∗(mi n(T hr sed g e )) =Ω∗(w(eM )) is the set of all MCCs in this tree.

Grouping algorithm finds all the MCCs at each levelest defined by edge weights, resulting

in the MCC set Ω∗(mi n(T hr sed g e )). We will prove that Ω(min(T hr eshold s)) is a subset of

Ω∗(mi n(T hr sed g e )). Hence, we can generateΩ(min(T hr eshold s)) by removing invalid MCCs

from Ω∗(mi n(T hr sed g e )) according to Lemma A.3.3.

Lemma A.3.2. Ω(min(T hr eshold s)) is a subset of Ω∗(mi n(T hr sed g e )).

Proof. ∀th ∈ T hr eshold s, there exists an edge em∗ ∈ T hr sed g e where m∗ = argminm {w(em)|w(em) ≥
th}, so that LS(th) ≡ LS(w(em∗)), because there is no other edges included between level th

and level w(em∗). Since for any Level Set defined by T hr eshold s, there exists an equivalent

Level Set defined by T hr sed g e , any MCCs in Ω(th) are also in Ω(w(em∗)). Hence, we have that

Ω(min(T hr eshold s)) is a subset of Ω∗(mi n(T hr sed g e )).

Definition A.3.2. Supposing Λn is the nth MCC in Ω∗(w(em)) with the seed edge eseed , the

index of the thresholding level which Λn belongs to in user-defined thresholds set T hr eshold s

is:

Level = argmaxth{T hr eshold s(th)|T hr eshold s(th) ≤ w(eseed )}.

Lemma A.3.3. Given em+1 = (vi , v j ), the index of node vi ’s Root MCC: Ri is the index to the

largest MCC in Ω∗(w(em)) including vi . The thresholding level in T hr eshold s for edge em+1:
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Appendix A. Proofs for Approximated Search Algorithm

Lm+1 = argmaxth{T hr eshold s(th)|T hr eshold s(th) ≤ w(em+1)}. The thresholding levels for

two root MCCs are LRi and LR j . The MCC Set Ω(mi n(T hr eshold s)) can be generated by

grouping algorithm, according to the following four rules:

• Confirmation: If Lm+1 < LRi ,ΛRi is inΩ(T hr eshold s(Lm+1)), elseΛRi is not inΩ(T hr eshold s(Lm+1)).

The case is the same for ΛR j .

• Generation: If Lm+1 < min{LRi ,LR j }, ΛRi and ΛR j together compose a new MCC in

Ω∗(w(em+1)), with seed edge em+1.

• Updating:

1. If Lm+1 < LRi & Lm+1 = LR j , then update the seed of ΛR j to em+1.

2. If Lm+1 = LRi & Lm+1 < LR j , then update the seed of ΛRi to em+1.

3. If Lm+1 = LRi = LR j & Ri = R j , then update the seed of ΛRi to em+1.

• Merging: If Lm+1 = LRi = LR j & Ri 6= R j , ΛRi and ΛR j are not in Ω(LM+1), and should be

merged to be a new MCC in Ω∗(w(em+1)), with seed edge em+1.

Proof.

Confirmation: ΛRi is the root MCC of node vi , which is the largest MCC in Ω∗(w(em)) contain-

ing vi . Hence, ΛRi must be in the level set LS(w(em)). Supposing the thresholding level for edge

em is Lm , if Lm+1 < ΛRi .Level , then T hr eshold s(Lm+1) ≤ w(em+1) < T hr eshold s(Lm) ≤
w(em). There is no edge added between T hr eshold s(Lm) and w(em), so ΛRi is also in the

level set LS(T hr eshold s(Lm)). Then ΛRi ∈Ω(T hr eshol d s(Lm)) ⊆Ω(T hr eshold s(Lm+1)). If

Lm+1 =ΛRi .Level , then T hr eshold s(Lm+1) = T hr eshold s(Lm) = T hr eshold s(ΛRi .Level ) ≤
w(em+1) ≤ w(em). em+1 are still in the same thresholding level with that of the seed edge of ΛRi ,

and is connected with ΛRi . Hence, ΛRi is not a MCC in Ω(T hr eshold s(Lm+1)).

Generation: This rule is used to generate MCCs contained in MCC Set Ω∗(w(em+1)) defined by

edge thresholding set T hr sed g e . Each added edge will generate one and only one MCC. All the

MCCs in Ω∗(w(em+1)) are considered as candidate MCCs for Ω(T hr eshold s(Lm+1)) obtained

by user-defined thresholds set T hr eshold s.

Updating & Merging: During the process of grouping algorithm, candidate MCCs are born

by Generation step, and then checked by Confirmation rule. The valid candidates should be

kept, and the invalid ones should be removed. When adding an edge em+1, there is one candidate
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Λnew generated with the seed edge em+1, and two Root MCC candidates ΛRi and ΛR j waiting

for checking, where ΛRi ⊂Λnew and ΛR j ⊂Λnew . If there is only one invalid candidate to be

killed, we just use Λnew to replace it, by only updating the seed edge of the invalid one. We call

this process as Updating. If both of them are needed to be killed, they should be merged to be

Λnew , and all their children should be linked with Λnew . We call this process as Merging. If

Ri and R j are pointing to the same invalid MCC, the only thing to do is updating the seed edge

of the invalid one. E.g. for a case of Updating: Lm+1 < LRi & Lm+1 = LR j , ΛRi is in Ω(Lm+1),

while ΛR j is not in Ω(Lm+1). ΛR j will be removed from Ω∗(w(em+1)), and a new MCC should

be added to Ω∗(w(em+1)). This processing is done by updating the seed of ΛR j to em+1.

According to Lemma A.3.2, Ω(min(T hr eshold s)) is a subset of Ω∗(mi n(T hr sed g e )). By

adding a new edge in the graph, Generation step produces all the MCCs in theΩ∗(mi n(T hr sed g e ))

which are considered as candidates for Ω(min(T hr eshold s)). Updating and Merging step re-

moves all the invalid candidates according to the Confirmation rule. Hence, we can obtain the

Ω(min(T hr eshold s)) by grouping Algorithm 5.

As above, we prove the equivalence between the partition algorithm and grouping algorithm to

build thresholding tree using a user-defined threshold set. However, for the cycle enumeration

application, because there are almost no equal-value edges in the graph, and the thresholds set

is defined by all the sorted edges of the graph, the grouping algorithm is already simplified and

specialized for our object detection application as Algorithm 3. Besides, Algorithm 3 is only for

undirected graphs. During the experiments, we use the grouping algorithm considering strongly

connected components for directed graphs, which is provided in Appendix A.4.

A.4 Grouping Algorithm for a Directed Graph

For a directed graph, instead of considering maximally connected components MCC, we need

consider strongly connected components.

Definition A.4.1. An Strongly Connected Component (SCC) of a directed graph is a subgraph

that is strongly and maximally connected. Strongly connected means there is a path in each

direction between any pair of vertices in the subgraph. Maximally connected is defined the same

with the case of undirected graph.

We show our Contour Grouping Approximated Search algorithm for directed graph in Algorithm
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6. When adding a new edge, we check whether there form new cycles to between root SCCs,

because a cycle can strongly connect two SCCs to form a new SCC. To efficiently do that, we

check the cycle connection in root SCCs graph instead of the original graph G, since the root

SCCs graph is much simpler than the original graph. We use an adjacent matrix Ad j to record

the directed links between root SCCs, in which Ad j ( j , i ) = k means there k paths from root R j to

Ri . When adding an edge vi → v j which corresponds to a directed path from Ri to R j . We find

all the paths P j k = {P1, ...Pk } from R j to Ri in root SCCs graph, and merge all the SCCs in these

k paths P j k into a new SCC. If the cyclomatic number of this new SCC is less than mmax, the

edge vi → v j will be added to E #, otherwise it will be connected to terminal set Tset . If there

is no path from R j to Ri , then edge vi → v j is also added to E #, because it does not change the

connection statement for current constructed graph.

Similar with Grouping Algorithm 3 for undirected graph, Algorithm 6 make full use of the

tree structure to find SCC with re-visiting all edges in each Level Set. Hence, its computation

complexity is also O(|E |+ |V |).
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Algorithm 5 Thresholding Tree by Grouping
Input: Graph G = 〈V ,E〉, an edge weights function w(e) : E →R, thresholds set T hr eshold s
in ascend order.
Outputs: A Thresholding Tree T = 〈S,Θ〉. S is a vector of integer (N ∗1) recording the seed
edge index of N MCCs in all Level Sets. Θ is a M ∗2 matrix recording the parent index and
the child index at each row.
variables: Root Labeling Matrix Label s records the current root MCC for each node.

Initialize Label Matrix: Label s = [1 : |V |].
Initialize Λ: each node vi ∈V ,1 ≤ i ≤ |V |, is considered as one MCC. Θ=;. Index = |V |+1.
E∗ = E(Or d , :), where [dr opped ,Or d ] = sort(w(E), ′descend ′).

for n = 1 to |E∗| do
Current threshold level: Ln = argmaxt {T hr eshold s(t )|T hr eshold s(t ) ≤ w(En)}.
[i , j ] = E∗(n, :)

% Find roots for nodes of this edge.
Ri = root(Label (i ),Θ), R j = root(Label ( j ),Θ); Label (i ) = Ri ,Label ( j ) = R j .
Li = Level (ΛRi ), L j = Level (ΛR j ).

if min(Li ,L j ) > Ln then
% Generation:
S(Index) =Or d(n).
Θ= [Θ; [Index Ri ]; [Index R j ]].
Label (i ) = Index,Label ( j ) = Index.
Index = Index +1.

else
if Li = L j = Ln then

if Ri 6= R j then
% Merging:
S(Ri ) =Or d(n).
Θ(i nd , :) = [Ri Θ(i nd ,2)], where Θ(i nd ,1) == R j .
S(R j : end −1) = S(R j +1 : end). % Delete R j from S.
Θ(i nd) =Θ(i nd)−1, where Θ(i nd) >= R j .
Label s(i nd) = Label s(i nd)−1, where Label s(i nd) >= R j .
Index = Index −1.

else
% Updating:S(Ri ) =Or d(n).

end if
end if
% Updating:
if Li > L j = Ln then

S(R j ) =Or d(n); Θ= [Θ; [R j Ri ]];Label (i ) = R j .
end if
if L j > Li = Ln then

S(Ri ) =Or d(n); Θ= [Θ; [Ri R j ]];Label ( j ) = Ri .
end if

end if
end for
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Algorithm 6 Directed Contour Grouping Search Algorithm
Input: Line fragment graph G = 〈V ,E〉, cycle score function f (c) : {0,1}|E | →R, and node and
edge weight functions u(v) : V →R and w(e) : E →R.
Parameters: Node weight threshold µ and sub-graph cyclomatic number threshold mmax.
Output: Object contours c∗.
variables: Λ defines SCC set of the thresholding tree T = 〈Λ,Θ〉. Θ is the edge set of
thresholding tree. E # is the edge set of reconstructed graph. Tset is the terminal SCC set. Ad j
is the adjacent matrix for root SCC s, in which Ad j (i , j ) = k means there are k paths from ith

SCC to jth SCC .

Initialize Λ: each node vi ∈V is considered as one SCC with 1 node and 0 edge.
Initialize Θ=;;E # =;;Tset =;.
V ′ = {v ∈V |u(v) ≥µ}.
E ′ = {ei j ∈ E |(vi , v j ∈V ′)}. E∗ is sorted E ′ with w(en) in descend order.

for n = 1 to |E∗| do
[i → j ] = E∗(n, :).

Find root SCC s for nodes i → j : Ri → R j .
if There is a cycle connecting Ri , R j and Tset then

Push Ri and R j into Tset , and continue
end if
if Ri = R j then

Compute C yclomati c for Ri , adding a new edge.
if C yclomati c ≤ mmax then

Push E∗(n, :) into E #.
ΛRi .ned g es =ΛRi .ned g es +1.

else
Push Ri into Tset .

end if
else

Find all paths for R j to Ri according to Ad j .
if There is no path then

Push E∗(n, :) into E #, and continue.
end if
Compute C yclomati c by combining the SCC s in all paths.
if C yclomati c ≤ mmax then

Push E∗(n, :) into E #.
Merge all these SCC s and push the new one into Λ
Update Θ and Ad j .

else
Push all these SCC s into Tset .

end if
end if

end for
Reconstruct the graph G# using E #.
Enumerate elementary circuits C in G# using [24].
Remove self-intersecting circuits from C .
Return: c∗ = argmaxc∈C f (c).
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