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Abstract
Pushed by the proliferation of antennas and of multiuser scenarios, matrices with random

entries are appearing more and more frequently in information theory. This leads to the study

of matrix channels, where the capacity depends on the distribution of the matrix’s eigenvalues.

These eigenvalues are complicated functionals of the entries of the matrix and the challenge

lies therein. It is often the case that in order to better model different communication scenar-

ios, one is driven away from matrix models typically studied in pure mathematics and physics.

One cannot simply resort to the standard tools developed over the years in these fields and

must come up with new approaches. In this thesis, our goal is to obtain results in scenarios

where the randomness is limited by the nature of the channel, in order to widen applicability

in real life scenarios.

We first discuss line of sight communication in ad hoc wireless networks. We investigate

a distributed MIMO setup where two clusters of users want to communicate, the difficulty

arising from the fact that the distance between users is highly variable. Here, the channel

matrix which is of interest is given by h j k = e2πi r j k

r j k
where r j k is the distance between two nodes

j and k. The distribution of the singular values of this matrix is intractable and we therefore ap-

proximate this matrix with a closely related matrix more amenable to analysis: gi j = e2πmi y j zk

where y j and zk are i.i.d. random variables uniformly distributed on an interval and m is a

parameter of key importance deduced from the characteristics of the network. We derive, in

the large n limit, a bound on the largest singular value of this matrix as well as a bound on the

number of significant singular values. This is related to the number of degrees of freedom in

the channel under study.

The second topic of this thesis relates to channels experiencing fading in both the time and

the frequency domain. Results concerning these channels depend on the concept of freeness,

the equivalent of independence in the noncommutative world. As such, we introduce free

probability, a noncommutative analog of classical probability well suited to answer questions

concerning the spectrum of large matrices. We show that if we consider i.i.d. time fading

with arbitrary frequency domain fading, the resulting matrices are not free, as was previously

hoped. While the usual free probability tools to deduce the capacity of such a channel can no

longer be applied, we indicate partial results allowing the computation of the moments of the

eigenvalue distribution for a matrix modelling both types of fading. We also give an explicit

criterion preventing two matrices from being free.
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Résumé
Poussées par la prolifération d’antennes et de scénarios de communication à multiples uti-

lisateurs, les matrices avec entrées aléatoires apparaissent de plus en plus fréquemment en

théorie de l’information. Dans le cas des canaux matriciels, la capacité se calcule à partir de

la distribution des valeurs propres de la matrice, les complications émanant du fait que ces

dernières sont des fonctionnelles compliquées des entrées de la matrice. Lors de la modéli-

sation de scénarios de communication, on doit souvent s’éloigner des modèles de matrices

typiquement étudiés en mathématiques pures et en physique, limitant donc l’utilité de plu-

sieurs des outils développés dans ces domaines au cours des années. Il est donc nécessaire

d’avoir recours à de nouvelles approaches. Dans cette thèse, nous nous intéresserons plus

particulièrement à la réduction de l’aléa dans les modèles de matrices, cette réduction pouvant

être due à un désir de mieux modéliser un phénomène physique, ou encore à une volonté de

généraliser l’applicabilité de résultats obtenus précédemment.

Nous discuterons d’abord de communication à ligne de visée directe dans les réseaux sans-fil

ad hoc. Nous nous intéressons à un système MIMO distribué où deux groupes d’utilisateurs

veulent communiquer. La difficulté tient au fait que la distance entre les utilisateurs est haute-

ment variable. La matrice du canal d’intérêt est donnée par h j k = e2πi r j k

r j k
où r j k est la distance

entre les utilisateurs j et k. La distribution des valeurs singulières de cette matrice est réfrac-

taire à l’analyse et nous l’approximons par une matrice pouvant être plus facilement étudiée :

gi j = e2πmi y j zk où y j et zk sont des variables aléatoires i.i.d. distribuées uniformément sur

un intervalle et m est un paramètre clef qui se déduit des caractéristiques du réseau. Nous

obtenons, dans la limite lorsque le nombre d’utilisateur tend vers l’infini, une borne sur la plus

grande valeurs singulière de la matrice étudiée, ainsi qu’une borne sur le nombre de valeur

singulières significatives. Ces quantités sont reliées au nombre de degrés de liberté du canal

étudié.

Le second chapitre de cette thèse s’intéresse aux canaux soumis à des évanouissements dans

les domaines temporels et fréquentiels. Certains résultats concernant ces canaux dépendent

de la notion de liberté, un équivalent de l’indépendance de variables aléatoires dans le cas

non commutatif. Ceci nous motive à introduire les probabilités libres, un analogue non com-

mutatif aux probabilités classiques qui est particulièrement bien adapté pour répondre aux

questions concernant le spectre de matrices de grande dimension. Nous démontrons que si

l’évanouissement temporel est i.i.d. et que l’évanouissement fréquentiel est arbitraire, les ma-
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Résumé

trices qui entrent en jeu ne sont pas libres, contrairement à ce qui avait été conjecturé. Même

si les outils habituels des probabilités libres ne peuvent plus être utilisés, nous indiquons des

résultats partiels nous permettant de calculer la distribution des valeurs propres de la matrice

modélisant le canal. Nous donnons aussi un critère explicite empêchant les deux matrices

d’être libres.

Mots clefs : communication sans-fil, réseaux ad hoc, matrices aléatoires, probabilités libres,

matrice de Fourier, degrés de liberté, distribution des valeurs propres.
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1 Introduction

The classical problem of communication over a non deterministic channel has evolved in a

multitude of directions since Shannon’s original statement. In particular, in today’s setting,

multiparty communication has taken the centre stage. Whether it is users or antennas, the

number of entities to take into account in a typical scenario can now easily reach the hundreds

or thousands. It is therefore not surprising that new tools have been introduced to deal

with this new development. While at first sight the increasing number of users leads only to

nightmares of complexity, in some cases the increased randomness allows one to make precise

probabilistic statements about the asymptotic behaviour of the system under study. Moreover,

the characteristics of moderate size systems are remarkably close to the limiting theoretical

predictions. A prime example of this is the use of matrices to describe the fading between

large groups of antennas. Here, the parameters of the problem are described by a channel

matrix, and the quality of the channel is governed by the singular values of this matrix.

Wigner’s seminal paper [33] concerning the convergence of the empirical eigenvalue distri-

bution of Hermitian matrices with i.i.d. entries to the semicircle law launched the study

of random matrix theory we are familiar with today. Wigner’s original motivation was to

model the spectra of heavy nuclei. This was followed by the study of the limit of the empirical

eigenvalue distribution of Wishart matrices in [15]. Random matrix theory has since then

bloomed into a rich field with connections to other areas of mathematics, as well as physics

and engineering. We refer the reader to two introductory books on the matter [1], [17]. More

recently, results concerning bounded rank perturbation [4], or the convergence of the empiri-

cal eigenvalue distribution of i.i.d. (not necessarily Hermitian) matrices [26] have also been

proved. While there exist (sometimes surprisingly) precise results concerning the behaviour

of eigenvalues for matrices with many i.i.d. entries, much less is known in other cases, notably

about the matrices presented in the present work.

The use of random matrices in the analysis of communication systems is the main topic of

this thesis. We will analyze different models of random matrices, and deduce probabilistic

estimates on the behaviour of the eigenvalues. This in turn leads to quantitative statements

on the behaviour of variables of interest for engineering purposes such as channel capacity.

1



Introduction

While many probabilistic estimates exist for a variety of channels, our aim is to recover results

in cases with decreased stochasticity. We want to widen the applicability of results and to

glean a better understanding of the objects under study. On the other hand, the price to pay is

that the many methods typically used in random matrix theory become inapplicable.

We will now describe the two problems we address in the present thesis. For more applications

of random matrix theory to problems in wireless communication, we refer the reader to the

monograph [29].

1.1 Random Matrices in Wireless Networks

1.1.1 Multiple Antenna Channel

Consider a channel where both the transmitter and the receiver have many antennas at their

disposal (MIMO, for Multiple Input Multiple Output). Channels with many transmitters

and (equally) many receivers are a prime example of the use of random matrices in wireless

communication. Each entry of the matrix describes the fading between a pair of antennas

and the so called channel matrix H captures the state of the channel. This was first studied

in [8] and [27]. Depending on how this fading is modelled and the hypotheses, the channel’s

characteristics can be quite different. Two common assumptions are that the receiver has

channel state information and that the fading coefficients between any two antennas are

independent and identically distributed. This is reasonable in a point-to-point scenario: the

communication wavelength is small and the antennas, while close, are still sufficiently distant

to ensure independence. Assuming the fading between any two antennas is an independent

complex Gaussian of unit variance, one can obtain the following expression for the capacity of

the channel with additive, independent Gaussian noise

E[logdet(I + (P/t )H H∗)] = E[∑
log((P/t )λi )

]
(1.1)

where P is the total power budget, t the number of transmit antennas and λi are the eigenval-

ues of the matrix H H∗. We see here appear the eigenvalues of the channel matrix, explaining

our interest in their stochastic properties. After investigating the properties of these eigen-

values, one concludes that the capacity of this channel grows linearly with the number of

transmitter antennas if there are at least as many receiver antennas. In the single antenna

point to point scenario, the capacity grows only logarithmically with the input power. By

adding more antennas, we stand to increase overall capacity while keeping the same total

power budget.

1.1.2 Ad Hoc Wireless Networks

Consider the problem of establishing communication in an ad-hoc wireless network of n

nodes distributed uniformly at random over some large area, where we form n transmitter-

2



1.1. Random Matrices in Wireless Networks

receiver pairs that want to communicate. Given the complexity of this multiparty scenario,

one quickly abandons the hope of finding an explicit formula for the capacity and instead

has to rely on asymptotic results in the dimension of the problem. In particular, we are

interested in information theoretic bounds on how the capacity scales with the number of

users. Lower bounds are provided by particular communication schemes. While a promising

solution at first sight would be to use a multihop strategy where neighbours relay messages

to the intended destination, it has been shown in [11] that this achieves a scaling of the total

throughput of the order of
p

n. As such, the rate per user decreases as 1/
p

n as the size of the

network grows and each node can send less and less information.

New strategies have been suggested, including hierarchical cooperation, introduced in [19].

The idea is to leverage the properties of MIMO communication to achieve linear scaling.This

is done by dividing the nodes into groups, and letting each group act as one large MIMO

cluster of antennas. The performance analysis of this strategy presents new challenges since it

involves the computation the eigenvalues of the matrix whose entries are modelled as

h j k = e iφ j k

r j k

where r j k is the distance between the nodes j and k, andφ j k models the phase fading between

the two nodes and i is the imaginary unit. Since the distance between two nodes varies greatly,

so does the variance of the entries of the channel matrix H , making the analysis more involved.

Still, by making the hypothesis that theφ j k are i.i.d., sufficiently many results can be recovered

to conclude that the linear scaling of the total throughput of the network with the number of

antennas (or in this case, users in a group) is maintained. This i.i.d. modelling of the phases

can be justified by observing that the wavelength of the transmission λ is typically orders of

magnitude smaller than the distance between users. On top of this, any multipath fading adds

to the randomness in the phase [7].

This linear scaling of the number of degrees of freedom of ad hoc wireless networks was

questioned in [9], where another approach, based on a physical modelling of the operators

involved in the communication channel, pointed towards a strictly sublinear scaling. One

must therefore question the validity of the i.i.d. assumption of the phases for the channel

matrix: it is not physically realistic for all scenarios.

By completely stripping away this i.i.d. modelling of the phases, we are left with the other

extreme: line of sight communication where fading is uniquely determined by the distance

between the nodes.

h j k = e i 2πr j k /λ

r j k

3



Introduction

We see here a fundamental difference: whereas i.i.d. fading involves n2 independent random

variables, line of sight fading involves only of the order of n independent random variables as

it depends only on the positions of the nodes. This reduction in stochasticity, as well as the

complexity of the functionals involved in each entry of the channel matrix, makes this problem

much less tractable. Indeed, many sophisticated results are no longer available since we are far

from the classically studied ensembles of random matrices. One must therefore resort to more

elementary methods, necessarily yielding less precise results. In particular, we are interested

in results concerning the order of the largest eigenvalue, as well as the number of significant

eigenvalues. This relates directly to Equation (1.1) : non-vanishing eigenvalues correspond to

degrees of freedom that could be exploited by a communication scheme. Even with this goal

in mind, the line of sight matrix is difficult to handle directly since the functional form of each

entry of the matrix is unwieldy. We are led to considering a matrix obtained by approximating

every entry to quadratic order. While we cannot obtain a theoretical result to quantify how

much this interferes with the eigenvalue distribution of the line of sight matrix, numerical

experiments suggest a remarkable fit between the eigenvalue distributions of the two matrices.

We therefore attack the problem of obtaining bounds on the number of significant eigenvalues,

as well as on the order of the largest eigenvalue of this approximated matrix. This is the topic

of the first chapter of the present thesis.

1.2 On the use of freeness

We now take a look at another example where a channel is modelled by a random matrix and

we hope to reduce the stochasticity involved to make the analysis more robust to real world

scenarios.

1.2.1 A seemingly simple communication problem

We will elaborate on one particular problem in communication systems: frequency and time

selective fading ([30]).

The time-selective coherent channel is modelled as (in vector form):

y =p
γHx+n

where x is subject to an average power constraint E[xi ] ≤ P , ni are i.i.d. random variables of

unit variance, γ is the Signal to Noise Ratio (SNR) and H is a diagonal matrix whose entries

come from a fading process known to the receiver, stationary and ergodic. Here, N is the

dimension of the matrices and vectors.

Assuming the decoder knows the realizations of the fading process, the capacity of this channel

4



1.2. On the use of freeness

(in the limit as N →∞) is known:

C (γ) = E[log(1+γ|h|2)] (1.2)

where h is a random variable distributed according to the stationary distribution of H .

The frequency selective channel is defined analogously

y =p
γFGF∗x+n

where G is a diagonal matrix of fading coefficients, and F is the unitary Fourier matrix, defined

as f j k = 1p
N

e2πi ( j−1)(k−1) for j ,k = 1, . . . , N .

It now seems natural to look at the following channel

y = γHFGF∗x+n (1.3)

where we concatenate the effects of the two channels: we have both frequency-selective and

time-selective fading. The problem becomes much more difficult to analyze as the interplay

between the two types of fading is hard to control.

If we suppose that both fading processes are i.i.d., we have the following theorem, which

satisfyingly answers our question concerning capacity.

Theorem 1.1 ([30]). Consider the channel model (1.3) with fading unknown at the transmitter,

full channel state information at the receiver and H and G having i.i.d. entries. The capacity

of this channel is given by

C (γ) = E[log(1+αγ|g |2)]+E[log(1+νγ|h|2)]− log(1+ανγ) (1.4)

where

0 ≤α≤ E[|h|2]

0 ≤ ν≤ E[|g |2]

5
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are coefficients that depend on γ and on the fading distributions, and are defined to be the

solution to

E[(1+αγ|g |2)−1] = (1+ανγ)−1 = E[(1+νγ|h|2)−1] (1.5)

The proof of this theorem relies on the fact that the matrices H and FGF∗ are asymptotically

free, a noncommutative analog of independence which we introduce next.

1.2.2 What is free probability?

In the now classical treatment of (commutative) probability theory, there is not much differ-

ence between measure theory and probability theory until the introduction of the concept

of independence. This is arguably where the fields of analysis and probability diverge sig-

nificantly in their vision of the objects under study. Similarly, it is with the notion of free

independence (or freeness) [32] that noncommutative probability theory takes a life of its

own. It is the noncommutative analog of independence in that it allows one to compute the

joint distribution of random variables from their marginals. While this field of mathematics is

rich and intricate and has shed some light on long standing conjectures in noncommutative

geometry, it is the results concerning one particular noncommutative probability space which

will be of interest to us: random matrices. Indeed, while finite dimensional matrices with

random entries are typically difficult to handle outside of very specific cases, the situation is

quite different when we let the dimension grow to infinity. Indeed, in many cases, and this is

the main topic of investigation of the second chapter of this thesis, sets of random matrices

converge to noncommutative random variables that are free: we say that these matrices are

asymptotically free. With this notion in mind, it is possible to handle products such as the one

that is of interest to us: HFGF∗.

1.2.3 Towards a more general model

We have seen that freeness is the tool that allows us to compute quantities of interest con-

cerning the channel experiencing both frequency and time selective fading. One natural

question is whether a wider class of channels could be analyzed in a similar way. Indeed, in

the quoted result from [30], one of the fading processes can be replaced with a strongly mixing

process instead of an i.i.d. process. The hope is to be able to model a wider array of channels,

for example bursty channels. In [6], the concept of asymptotically liberating sequences was

introduced and provides a satisfying framework to explain why the matrices H and FGF∗

are asymptotically free. It yields freeness for a large class of matrices and brings forward the

importance of the distribution invariance of the matrices under the action of the permutation

group, obviously satisfied in the case of diagonal i.i.d. matrices.

6



1.2. On the use of freeness

One could hope to obtain similar results while decreasing the randomness of the model, for

example introducing more dependencies between the entries, or asking for invariance under

a strict subgroup of the group of permutations. In particular, extending these results to cases

where one channel is deterministic would increase the robustness of the applicability to real

life scenarios.

It is to answer this question that we look into the theory of traffics [14], a setting generalizing

the notion of freeness between noncommutative random variables. We present a computable

criterion prohibiting two matrices from being free and use it to show that for many reasonable

generalizations the matrices H and FGF∗ cannot be free. Using an extension of freeness

appropriately coined traffic-freeness, it is possible to compute the moments of the joint

distribution. However, the combinatorial nature of the problem makes this computationally

prohibitive. Nonetheless, we manage to shed some light on certain cases of particular interest:

the case where the entries of one of the diagonal matrices is a Markov chain with long range

dependencies and the case where one of the matrices is deterministic.
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2 Line of sight in Wireless Communica-
tion

While random matrices are useful tools for modelling different communication scenarios,

they have certainly enjoyed their greatest success with the wireless medium. Due to the fading

and to the mobility of users, several parameters of a wireless transmission are probabilistic

quantities. When many users interact together, all the ingredients are present for the tools of

random matrix theory to be most useful.

2.1 Modelling the situation

We will study the number of spatial degrees of freedom of distributed multiple-input multiple-

output (MIMO) transmissions in a wireless network with homogeneously distributed nodes,

under the following classical line-of-sight propagation model between node k and node j in

the network:

h j k = e2πi r j k /λ

r j k
. (2.1)

In the above equation, λ is the carrier wavelength and r j k is the internode distance. From

a mathematical point of view, these matrices are interesting objects, as they are halfway

between purely random matrices with i.i.d. entries and fully deterministic matrices. Indeed,

the internode distances r j k are random due to the random node positions, but there is a clear

correlation between the matrix entries.

Let us recall that the degrees of freedom of a MIMO transmission are defined as the number of

independent streams of information that can be conveyed simultaneously and reliably over

the channel at high SNR. Under the assumption of a channel fading matrix H with i.i.d. entries,

this number of degrees of freedom is directly proportional to the number of antennas used for

transmission and reception [27].

The performance of MIMO systems in line-of-sight environment has been analyzed by various

authors (see e.g. [10, 23]) in the literature. Our intention here is to study this performance in

9



Chapter 2. Line of sight in Wireless Communication

the context of wireless networks, where large clusters of nodes are used as virtual multiple

antenna arrays. In this case, MIMO transmissions may not benefit from all possible degrees of

freedom; it was indeed observed in [9] that under the above propagation model (2.1), MIMO

transmissions suffer from a spatial limitation; if A denotes the network area, n the number

of nodes in the network (assumed to be uniformly distributed) and λ the carrier wavelength,

then the number of spatial degrees of freedom of any MIMO transmission in the network

cannot exceed

min
(
n,

p
A/λ

)
. (2.2)

up to logarithmic factors. In case the network area A remains reasonably large, this does

not prevent the possibility of transmissions with full degrees of freedom in the network. Yet,

transmissions between clusters of nodes confined to smaller areas and moreover separated by

long distances may suffer from even more spatial limitations.

p
Ac

p
Ac

DT

d

DR

Figure 2.1 – Node distribution

In [13, 20], it was shown independently that for two clusters of area A separated at distance d ,

as illustrated on Figure 2.1, at least the following spatial degrees of freedom could be achieved1:

min
(
n,

p
A/λ

)
, when 1 ≤ d ≤p

A,

min
(
n, A/(λd)

)
, when

p
A ≤ d ≤ A/λ.

(2.3)

The situation is summarized on the graph in Figure 2.2, again up to logarithmic factors:

We see that the lower bound (2.3) matches the upper bound (2.2) in the case where the inter-

cluster distance is smaller than or equal to the cluster radius (d ≤p
A), but nothing similar

holds for d ≥p
A. Our aim in the present chapter is to close this gap and to show that in the

regime where d ≥p
A, the actual spatial degrees of freedom of the MIMO transmission do not

exceed those found in (2.3) (up to logarithmic factors). As a corollary, this would imply that

1See Section 2.2, Theorem 2.1 for a precise statement.
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???

d

dof

1
p

A A/λ

p
A/λ

Figure 2.2 – Interplay between the degrees of freedom and the distance d .

when d ≥ A, the number of degrees of freedom is bounded by 1.

In order to show this, we rely on an approximation whose validity is not fully proven here; it is

however discussed in detail at the end of this chapter. Our approach leads to an interesting

result on the asymptotic behavior of the spectrum of random matrices that appear not to have

been previously studied in the mathematical literature.

2.2 Spatial degrees of freedom

Let us consider two square clusters of area A separated by a distance d , one containing n

transmitters and the other containing n receivers uniformly distributed in their respective

clusters, as illustrated on Figure 2.1. We are interested in estimating the number of spatial

degrees of freedom of a MIMO transmission between the two clusters:

Y j =
∑
k

p
F h j k Xk +Z j , j = 1, . . . ,n,

where F is Friis’ constant, the coefficients h j k are given by the line-of-sight fading model

(2.1), the transmitted signal Xk are subject to an average power constraint E[Xk ]2 ≤ P and Z j

represents additive white Gaussian noise of power spectral density N0 at receiver j . We denote

by W the bandwidth. The distance r j k between node j at the receiver side and node k at the

transmitter side is given by

r j k =
√

(d +
p

A (x j +wk ))2 + A (y j − zk )2 (2.4)

where x j , wk , y j , zk ∈ [0,1] are normalized horizontal and vertical coordinates, as illustrated

on Figure 2.3.

11
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p
Ay j

p
Ax jd

p
Awk

p
Azk

0

Figure 2.3 – The chosen parametrization

Assuming full channel state information and perfect cooperation of the nodes on both sides,

the maximum number of bits per second and per Hertz that can be transferred reliably from

the transmit cluster to the receive cluster over this MIMO channel is given by the following

expression:

Cn = max
pX s.t. E(|Xi |2)≤P, ∀i

I(X ,Y ) maximizing mutual information

= max
pX s.t. E(|Xi |2)≤P, ∀i

H(Y )−H(Y |X )

= max
pX s.t. E(|Xi |2)≤P, ∀i

H(Y )−H(Z )

= max
QX ≥0:(QX )i i≤P, ∀i

logdet(πeQY )− logdet(πe(N0W )I ) WLOG X is Gaussian and centered

= max
QX ≥0:(QX )i i≤P, ∀i

logdet(I + (F /(N0W ))HQ∗
X H∗)

where QX is the covariance matrix of the input signal vector X = (X1, . . . , Xn), QY = F HQX H∗+
(N0W )I and P is the power constraint at each node. In order to simplify notation, we choose

units so that the other parameters, such as Friis’ constant F , the noise power spectral density

N0 and the bandwidth W do not appear explicitly in the capacity expression:

Cn = max
QX ≥0:Qi i≤P, ∀i

logdet(I +HQH∗)

One has to keep in mind here that unlike in the fast fading scenario, there is no expected value

in front of this quantity. Indeed, the randomness comes from the node positions. This does

not change over the time of the transmission.

In the sequel, we make the following two assumptions:

1) d , A both increase2 with n and satisfy the relation
p

A ≤ d ≤ A/λ, which is the regime of

2By “increasing with n”, we mean that A = nβ and d = nγ for some powers β,γ> 0.
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2.2. Spatial degrees of freedom

interest to us (see Figure 2.2).

2) P = (d+pA)2

n ; because the average distance between two nodes in opposite clusters is d +p
A

and because the MIMO power gain is of order n, this power constraint ensures that the SNR

of the incoming signal at each receiving node is of order 1 on average, so that the MIMO

transmission operates at full power. Imposing this power constraint allows us to focus our

attention on the spatial degrees of freedom of the system.

By choosing to transmit i.i.d. signals (i.e. taking Q = PI ), we obtain a lower bound

Cn ≥ logdet(I +P H H∗)

and using Paley-Zygmund’s inequality, the following result was further shown in [20].

Theorem 2.1. Under assumptions 1) and 2), there exists a constant K1 > 0 such that

Cn ≥ logdet(I +PH H∗) ≥ K1 min

(
n,

A/(λd)

log(A/(λd))

)
with high probability as n gets large.

This result shows that the number of spatial degrees of freedom of the MIMO transmission

can reach A/(λd) (up to a logarithmic factor), when the number of nodes participating to the

MIMO transmission is large enough.

As mentioned in the introduction, a natural question is whether it is possible to find a corre-

sponding matching upper bound on the capacity. In order to answer this question, let us first

observe that any matrix QX satisfying QX ≥ 0 and (QX )i i ≤ P for all i also satisfies QX ¹ nPI .

Thus,

Cn ≤ logdet(I +nPH H∗) =
n∑

k=1
log(1+λk ) (2.5)

whereλ1 ≥λ2 ≥ . . . ≥λn are the eigenvalues of nPH H∗. The number of significant eigenvalues

of nPH H∗ therefore determines the number of spatial degrees of freedom. The direct analysis

of these eigenvalues appears to be difficult, so we proceed by approximating the matrix

nPH H∗ by another matrix GG∗, easier to analyze.

Let m = A/(λd) (hence, by Assumption 1, m = nδ for δ > 0) and let G be the matrix whose

entries are given by

g j k = e−2πi my j zk , (2.6)

where y j , zk , 1 ≤ j ,k ≤ n are the same random variables as in expression (2.4).

13
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Claim 2.2. Under Assumptions 1 and 2, the following approximation holds:

logdet(I +nPH H∗) = logdet(I +GG∗) (1+o(1))

with high probability as n gets large.

We discuss this approximation in detail in Section 2.4. For the time being, observe first

that by expression (2.5), the above approximation is equivalent to saying that the number

of significant eigenvalues of nP H H∗ and GG∗ do not differ in order as n gets large. Some

numerical evidence of this fact is provided on Figure 2.4 for a given set of parameters (a similar

behaviour is observed for a wide range of parameters).

k

0 100 200 300 400 500

la
m

b
d

a
k

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Plot of the eigenvalues of nPHH* and GG*

nPHH*

GG*

Figure 2.4 – Eigenvalues of nPH H∗ (blue) and GG∗ (red) for the parameters n = 500, A =
10′000m2, d = 300m, λ= 0.1m (so m = A/(λd) ' 333).

It can be observed on Figure 2.4 that the eigenvalues drop to zero after a threshold of order

m = A/(λd) for both matrices nPH H∗ and GG∗. Figure 2.5, a histogram of the two sets of

eigenvalues greater than a small threshold, highlights the fact that the empirical eigenvalue

distributions are also quite similar.

The rest of the present section is devoted to the proof of the following statement.

Theorem 2.3. Let m = A/(λd) be such that3 m Àp
n. Then under assumptions 1) and 2),

3i.e. m = nδ, where δ> 1/2.
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2.2. Spatial degrees of freedom

Figure 2.5 – Histogram of the eigenvalues of nPH H∗ and GG∗ greater than 0.1 for the parame-
ters n = 500, A = 10′000m2, d = 300m, λ= 0.1m (so m = A/(λd) ' 333).

there exist constants K2,K3 > 0 independent of δ such that

K2 min(m,n)

log(n)
≤ logdet(I +GG∗) ≤ K3 min(n,m) logn

with high probability as n gets large.

This result shows that the lower bound found in Theorem 2.1 is tight (provided Claim 2.2 holds

true and m Àp
n), which is saying that the number of spatial degrees of freedom of a MIMO

transmission between two clusters of area A separated by distance d is of order m = A/(λd),

up to logarithmic factors.

This result on matrices G of the form (2.6) is interesting in itself, as these do not appear to

have been studied before in the random matrix literature.

Proof of Theorem 2.3. We divide the proof of the theorem in 3 parts: a concentration result,

the proof of the lower bound and finally the proof of the upper bound. We begin with the

concentration argument.

Let gn = logdet(I +GG∗) =∑n
j=1 log(1+λ j ) = gn(y1, . . . , yn , z1, . . . , zn). We show that changing

one argument cannot change the value of this function by too much. By symmetry, we can

suppose that we are changing a y variable, which amounts to changing a row of the matrix

15
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G . Suppose this is the k th row, corresponding to yk . Consider the matrix G̃ with the k th row

replaced by a row of zeros. By the Cauchy interlacing property, we have that

λi−1 ≤ λ̃i ≤λi

We can conclude that |gn − g̃n | ≤ log(1+λmax ). We can upper bound λmax by the Frobenius

norm of G and so

|gn − g̃n | ≤ log(1+n)

Using the triangle inequality, we have that

|gn(y1, . . . , yk , . . . , yn , z1, . . . , zn)− gn(y1, . . . , y ′
k , . . . , yn , z1, . . . , zn)| ≤ 2log(1+n)

With this result in hand, we can turn to a standard result to prove concentration.

Theorem 2.4 (McDiarmid’s inequality, see [16]). Let X1, . . . Xn be a family of i.i.d. random

variables and fn a measurable function. Suppose that the exists a constant Kn such that

| fn(x1, . . . , xk , . . . , xn)− fn(x1, . . . , x ′
k , . . . , xn)| ≤ Kn

for any 1 ≤ k ≤ N , x ′
k being defined over the same set as the xi ’s. Then for all t > 0,

P(| fn −E fn | ≥ t ) ≤ 2exp

(−2ε2

nK 2
n

)

Applied to our particular case, we take t = n1/2+ε and obtain

P(|gn −Egn | ≥ n1/2+ε) ≤ 2exp

( −2n1+2ε

n4log2(1+n)

)

We therefore have the following concentration result: for all ε> 0, there exists some constant

K > 0 such that

| logdet(I +GG∗)−E(logdet(I +GG∗))| ≤ K n1/2+ε

with high probability as n gets large. As m Àp
n by assumption, what remains to be shown is

that there exist constants K2,K3 > 0 such that

K2 min(m,n)

log(m)
≤ E(logdet(I +GG∗)) ≤ K2 min(n,m) logn

as n gets large. Observe that this is the only part of the proof that requires m Àp
n. It follows

that a sharper concentration bound would immediately yield a stronger result in Theorem 2.3.

We now apply a similar technique as in [20] to obtain the lower bound on logdet(I +GG∗).
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Let us consider λ, an eigenvalue of GG∗ picked uniformly at random. We have the following

inequality

E logdet(I +GG∗) = E
n∑

j=1
log(1+λ j ) = nE(log(1+λ)) ≥ n log(1+ t )P(λ≥ t )

We will now use the Paley-Zygmund inequality to bound this last quantity.

Proposition 2.5 (Paley-Zygmund). Let X be a non negative random variable. Then for 0 ≤ t ≤
E(X ),

P(X ≥ t ) ≥ [E(X )− t ]2

E[X 2]

We therefore proceed to obtain a lower bound on the first moment and an upper bound on

the second moment of λ.

The first moment of λ is

E[λ] = E
(

1

n

∑
j
λ j

)
= E 1

n
Tr(GG∗) = 1

n
E
∑
i j
|gi j |2 = n

An upper bound for the second moment is given by

E[λ2] = E
(

1

n

∑
j
λ2

j

)
= E

(
1

n
Tr(GG∗GG∗)

)
= E 1

n

∑
i j kl

gi j gk j gkl gi l (2.7)

= 1

n

∑
i j kl

Ee2πi m(y j−yk )(zi−zl ) ≤ ∑
j kl

∫ 1

0
d y j

∫ 1

0
d yk

∣∣∣∣∫ 1

0
e2πi mzl (y j−yk )d zl

∣∣∣∣ (2.8)

(2.9)

Observe that we can split the integral over the y variables over two domains: Ωwhere |y j−yk | ≤
ε and the complementΩc . OverΩ, we can bound the integral by the volume of A, that is 2ε,

since the integrand is upper bounded by 1. OverΩc , we obtain

∣∣∣∣∫ ∫
d y j d yk

1−e2πi mzk (y j−yk )

2πi m(y j − yk )

∣∣∣∣≤ ∫ 1

0
d y j 1{|y j−yk |≥ε}

1

πm

1

|y j − yk |
≤ 1

2πm
log

(
1

ε

)

By choosing ε = 1/m, we get that Equation (2.7) is upper bounded by 2n3 logm
m . The above

derivation is correct if j 6= k and i 6= l . If j = k or i = l , by bounding the integrand by 1 in (2.7),
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we get that the sum is at most of the order of n2.

We will use a similar technique in Section 2.3 to upper bound the largest eigenvalue. Plugging

these moment estimates into the Paley-Zygmund inequality yields

E logdet(I +GG∗) ≥ n log(1+ t )P(λ≥ t )

≥ n log(1+ t )
[E(λ− t )]2

E(λ2)

≥ n log(1+ t )
(n − t )2

n3 log(m)/m

≥ K m/log(m) choosing for example t = n/2

This completes the proof of the lower bound. There now remains to upper bound the expected

value E(logdet(I +GG∗)). Let us first state the Cauchy-Binet theorem, which will be of use in

the proof. For a matrix A, let AJ×I represent the matrix where only the rows in the index set

J and only the columns in the index set I are present.

Lemma 2.6.

det(I + A) = ∑
J⊂{1,...,n}

det(AJ×J )

Lemma 2.7 (Cauchy-Binet Theorem). Let A and B be two matrices of dimensions m ×n and

n ×m respectively. Then

det(AB) = ∑
J⊂{1,...,n}
|J |=m

det(Am×J )det(BJ×m)

In order to upperbound E(logdet(I +GG∗)), let us now expand the determinant:

E(logdet(I +GG∗)) (2.10)

= E
(

log

(
1+

n∑
k=1

∑
J⊂{1,...,n}

|J |=k

det(GJ×nG∗
J×n)

))
(2.11)

≤ log

(
1+

n∑
k=1

∑
J⊂{1,...,n}

|J |=k

E(det(GJ×nG∗
J×n))

)
(2.12)

where we used Jensen’s inequality. Using the fact that the y j are i.i.d., we further obtain that

E(det(GJ×nG∗
J×n)) only depends on the size k of the subset J , so

E(logdet(I +GG∗)) (2.13)

≤ log

(
1+

n∑
k=1

(
n

k

)
E(detGk×nG∗

k×n)

)
(2.14)
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= log

(
1+

n∑
k=1

(
n

k

)
E

( ∑
I⊂{1,...,n}

|I |=k

det(Gk×I G∗
k×I )

))
(2.15)

= log

(
1+

n∑
k=1

(
n

k

)2

E(det(Gk×kG∗
k×k ))

)
(2.16)

where we have used this time the Cauchy-Binet formula together with the fact that the zk

are i.i.d. We thus see that in order to upperbound E(logdet(I +GG∗)), it is enough to control

E(det(Gk×kG∗
k×k )), where Gk×k is the upper left k ×k submatrix of G .

We show in the following that, similarly to what has been observed numerically for the eigen-

values λk , E(det(Gk×kG∗
k×k )) drops rapidly for k greater than a given threshold of order m,

which implies the result.

Let Sk denote the group of permutation on k elements. Using the definition of the determinant,

we obtain

E(det(Gk×kG∗
k×k ))

= ∑
σ,τ∈Sk

(−1)|σ|+|τ|E
( k∏

j=1
g j ,σ( j ) g j ,τ( j )

)
the determinant is multiplicative

= k !
∑
σ∈Sk

(−1)|σ|E
( k∏

j=1
g j j g j ,σ( j )

)
using symmetry, we suppose one permutation is the identity,

which in turn leads to

E(det(Gk×kG∗
k×k )) (2.17)

= k !
∑
σ∈Sk

(−1)|σ|EZ

( k∏
j=1
EY (e−2πi my j (z j−zσ( j )))

)
by independence of the yi (2.18)

= k !
∑
σ∈Sk

(−1)|σ|EZ

( k∏
j=1

1−e−2πi m(z j−zσ( j ))

2πi m(z j − zσ( j ))

)
(2.19)

= k !EZ

(
det

({
1−e−2πi m(z j−zl )

2πi m(z j − zl )

}
1≤ j ,l≤k

))
. (2.20)

Multiplying row j by eπi mz j and column l by e−πi mzl , we reduce the problem to computing

the following determinant:

Ek := EZ

(
det

({
sin(πm(z j − zl ))

πm(z j − zl )

}
1≤ j ,l≤k

))
.

Operators and Fredholm Theory. The key observation is that the above expected value of the

determinant can be seen as a classically studied quantity in the Fredholm theory of integral

operators. This allows us to deduce precise estimates. A reference for the material discussed

below is [21].
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Consider the continuous kernel Km(x, y) = sin(m(x−y))
π(x−y) on [0,1]2 and the associated operator

Km : C ([0,1]) →C ([0,1]) defined as

Kmφ(x) =
∫ 1

0

sin(m(x − y))

π(x − y)
φ(y)d y.

The p th iterated kernel K p of an operator K is defined as K 1 = K and

K p (x, y) =
∫ 1

0
K p−1(x, z)K (z, y)d z

Associated to this is the p th trace of K :

Ap =
∫ 1

0
K p (x, x)d x

Define as well the compound kernel K[p] ∈C ([0,1]2p ) as

K[p](x,y) = det


K (x1, y1) K (x1, y2) . . . K (x1, yp )

...
...

. . .
...

K (xp , y1) K (xp , y2) . . . K (xp , yp )


for x = (x1, . . . , xp ) and y = (y1, . . . , yp ). In this notation, the quantity we are interested in is

EZ

(
det

({
sin(πm(z j − zl ))

πm(z j − zl )

}
1≤ j ,l≤k

))
= k !

1

mk
dk ,

where

dk = 1

k !

∫
[0,1]k

Km,[k](x,x)d x1 · · ·d xk .

Since our original kernel Km is a compact operator, it has a discrete spectrum µ1 ≥µ2 ≥ . . .. By

the definition of Ap , we see that Ap =∑
µ

p
i .

The following lemma relates the quantity of interest dk = mk

k ! Ek to the eigenvalues µi of the

kernel Km .

Lemma 2.8.

dk = ∑
j1< j2<...< jk

µ j1 µ j2 · · ·µ jk . (2.21)

Proof. This follows from the fact that dk and Ap are related by the following recurrence

relation:

k dk =
k∑

p=1
(−1)p−1 Ap dk−p .

which follows from expanding the determinant in the definition of K[p] and regrouping equal
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terms (see [21]).Using the fact that Ap = ∑
i µ

p
i , it can be seen that the only solution to the

above recurrence (with d0 = 1) is given by Equation (2.21).

We conclude that it is sufficient to estimate the eigenvalues of the operator Km in order to

upperbound dk .

Since the kernel Km is translation invariant, it can be defined equivalently on [−1/2,1/2], and

this new operator has the same eigenvalues. This operator is called the sinc kernel and is

well known in signal processing, since it is the Fourier transform of the indicator function. It

was originally studied by D. Slepian in [24] and precise estimates exist on its eigenvalues. In

particular, we have the following recent result from [2, Theorem 3]:

Theorem 2.9. Let δ > 0. There exists M ≥ 1 and c > 0 such that, for all m ≥ 0 and k ≥
max(M ,cm),

µk ≤ e−δ (k−cm).

This theorem essentially says that the eigenvalues µk decay exponentially for k ≥ cm. The

direct consequence of this is that dk decays like exp(−δ(k − cm)2/2) for k ≥ cm, as we show

below.

Indeed, it follows that if we take k sufficiently large (i.e. larger than cm), the sum in (2.21)

always contains at least one term with exponential decay. We will upperbound all terms

coming before cm by 1. Let ai be the sum of the terms with exactly i terms after cmth

eigenvalue.

ai =
∑

j1< j2<...< jk−i<cm
δ j1δ j2 . . .δ jk−i

∑
cm≤ jk−i+1<...< jk

δ jk−i+1δ jk

All the δ j in the first sum are upperbounded by 1 and there are
( cm

k−i

)
ways to pick the indices.

As such,

ai ≤
(

cm

k − i

) ∑
jk−i+1=cm+1<... jk

e−δ jk−i+1 . . .e−δ jk

≤
(

cm

k − i

) ∑
jk−i+1≥cm+1, j j−i+2≥cm+2,... jk≥cm+i

e−δ jk−i+1 . . .e−δ jk relaxing the ordering constraint

≤
(

cm

k − i

)
e−δ

1−e−δ
e−2δ

1−e−δ
. . .

e−iδ

1−e−δ

≤
(

cm

k − i

)
1

(1−e−δ)i
e−δi (i+1)/2
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≤ 4cm/2(1−e−δ)−i e−δi (i+1)/2 using Stirling’s approximation

We can crudely upper bound the sum of the ai as

dk =
k∑

i=k−cm
ai ≤ cm4cm/2C (k−cm)e−δ(k−cm)2

for some constant C > 0.

This gives us the estimate we were after for dk :

dk ≤
1, if k ≤ cm,

cm4cm/2C k−cm e−δ (k−cm)2/2, if k > cm.
(2.22)

Gathering the estimates (2.12) (2.14) and (2.22) together, we finally obtain

E(logdet(I +GG∗))

≤ log

(
1+

n∑
k=1

(
n

k

)2
k !2

mk
dk

)
≤ log

(
1+

n∑
k=1

n2k

mk
dk

)
≤ log

(
1+

cm∑
k=1

n2k +
n∑

k=cm+1
n2k cm4cm/2C k−cm e−δ (k−cm)2/2

)
≤ (cm +1) logn +O(1),

which concludes the proof of Theorem 2.3.

Remark 2.10. Since Theorem 2.3 states that in the case of n = m there are n degrees of

freedom, one might get the impression that the matrix GG∗ behaves as an i.i.d. matrix. We

refer to Figure 2.6 where the histograms of the eigenvalues of GG∗ and LL∗ for L i.i.d. are

plotted. We see that these distributions are quite different. However, numerical simulations

indicate that if we set m = n2, the histograms of the eigenvalues match almost perfectly.

2.3 Maximal Eigenvalue

Our second contribution concerns the spectral radius (or largest eigenvalue) of the matrix

GG∗/n. The largest eigenvalue is of interest in many practical scenarios, for example when

several antennas are to be aligned for a beamforming gain. In our case, it allows us get a better

idea of the size of the significant eigenvalues, which is related to the number of degrees of

freedom. We show below that, again in the regime where m = nδ and 1/2 < δ< 1, and again
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2.3. Maximal Eigenvalue

Figure 2.6 – Histogram of the eigenvalues of GG∗ and LL∗ for L i.i.d.

up to a logarithmic factor, this spectral radius does not exceed n/m. Observe that

n = tr(GG∗/n) =
n∑

j=1
λ j ,

where λ1, . . . ,λn are the eigenvalues of GG∗/n. The two results concerning the scaling of the

spectral radius and the behaviour of logdet(I+GG∗) indicate that the m significant eigenvalues

of GG∗/n are roughly of the same order n/m (otherwise they could not sum up to n). In Figure

2.7, we see that indeed, while there is some fluctuation, many eigenvalues lie close to n/m.

Theorem 2.11. Let m = nδ with 1/2 < δ≤ 1. Then there exists a constant K3 > 0 such that

E(λmax(GG∗/n)) ≤ K3 (n/m) logn

and for every ε> 0,

λmax(GG∗/n) ≤ K3 (n/m)nε

with high probability as n →∞.

Proof. We use the following inequality, valid for any integer l ≥ 0, as well as Jensen’s inequality,
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Figure 2.7 – Plot of the eigenvalues of GG∗/n with n = 500 and m = 333.

to obtain:

E(λmax (GG∗/n)) ≤ E
(

Tr

(
GG∗

n

)l
)1/l

≤
[
E

(
Tr

GG∗

n

)l
]1/l

(2.23)

This reduces the problem to computing

1

nl
E

 ∑
1≤ j1, j2,... jl≤n
1≤k1,k2,...kl≤n

g j1k1 g j2k1 . . . g jl kl g j1kl

 . (2.24)

We analyze the expected value of each summand. We start with a subcase easier to deal with.

2.3.1 All indices are different

Suppose first all the indices are different, i.e. j1 6= j2 6= . . . 6= jl and k1 6= k2 6= . . . 6= kl . There are

of the order of n2l such terms. Concretely, we get the following multiple integral for each term.

1

nl

∫
[0,1]2l

{d y j d zk }e−2πi m[z1(y2−y1)+z2(y3−y2)+...+zl (y1−yl )] (2.25)
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2.3. Maximal Eigenvalue

For every j , we have ∫ 1

0
d z j e−2πi mz j (y j+1−y j ) = 1−e−2πi m(y j+1−y j )

2πi m(y j+1 − y j )

so ∣∣∣∣∫ 1

0
d z j e−2πi mz j (y j+1−y j )

∣∣∣∣≤ max

{
1,

1

πm

1

|y j+1 − y j |
}

,

where the first term is obtained by simply using that the integrand on the left-hand side is

upperbounded by 1. Observe next that∫ 1

0
d y j 1{|y j+1−y j |≥ε}

1

πm

1

|y j+1 − y j |
≤ 1

πm
log

(
1

ε

)
.

The above computation works because we can integrate over y j . We therefore pick a compo-

nent of the exponential, say z1(y2−y1), and upperbound e2πi mz1(y2−y1) by 1. We can now apply

the above procedure to z2(y3 − y2) since y2 appears only once in the integral. Observe that by

integrating y2, we obtain a bound which is independent of y3, the other variable multiplying

z2. We have thus reduced the occurrence of y3, which now only appears once in the integrand.

We can therefore repeat the above procedure with z3. Repeating this procedure l −1 times,

each time removing the volume where the y variables are less than ε apart, we obtain a bound

of the form

∫
[0,1]2l

{d y j d zk }e−2πi m[z1(y2−y1)+z2(y3−y2)+...+zl (y1−yl )] ≤
[

1

πm
log

(
1

ε

)]l−1

We will call this procedure successive integration.

One must also take care of the part of the domain of integration where |y j+1 − y j | < ε for any

of the j = 1,2. . . l . Since this has volume at most 2ε and the original integrand is bounded by 1,

one can apply the same integration trick as above when |y j+1 − y j | > ε and bound by ε when

|y j+1 − y j | < ε.

Suppose that exactly i of the y variables are less than ε apart. We then get a bound of the form

(
2log(1/ε)

πm

)l−i−1

(2ε)i ,

Since there are
(l

i

)
ways to choose these variables, if one takes 2ε= 1

m , one gets that (2.25) is
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bounded above by

1

nl

l∑
i=0

(
l

i

)(
2log(m)

πm

)l−i−1 (
1

m

)i

≤ 1

nl

l∑
i=0

(
l

i

)(
2log(m)

πm

)l−1

≤ 2
1

nl

(
1

m

)l−1 (
4log(m)

π

)l−1

.

As there are of the order of n2l such terms, this gives us the desired bound in the particular

subcase where all the indices are different.

1

nl
E

 ∑
1≤ j1, j2,... jl≤n
1≤k1,k2,...kl≤n

g j1k1 g j2k1 . . . g jl kl g j1kl

≤ 2

(
4n log(m)

πm

)l−1

n

Indeed, after choosing l sufficiently large and taking the l th root, we will obtain the scaling we

are after.

2.3.2 Some indices repeat

When indices repeat, the situation becomes a bit more involved. If y j = y j+1 or zk = zk+1 then,

after relabeling, we have simply reduced the problem to the case l −1, so we can without loss

of generality assume that no consecutive indices are the same. We start with the following

lemma

Lemma 2.12. If successive cancellation is possible when no z variables are identified, then it

is possible when some z variables are identified.

Proof. Key to successive cancellation as presented in the above section is the fact that integrat-

ing out a y variable eliminates the occurrence of another y variable. This allow to continue

the procedure with this last variable. When z j = z j ′ for j ′ 6= j +1, we get a term of the form(
1

y j+1−y j+yk+1−yk

)
after integration over z j . When we integrate over y j , the occurrence of all

remaining y variables will be reduced. There will therefore certainly be one y variable which

occurs only once in the remaining integral. Observe that this will make the splitting of the

domain of integration more involved (i.e. we must ensure that |y j+1 − y j + yk+1 − yk | ≥ ε) but

that does not compromise the rest of the argument.

Having taken care of repetitions in the z variables, we now take a look at identified y variables.

Observe that if i pairs of y variables are identified, there will be of the order of n2l−i terms in

the sum of (2.24), and so to get the same bound as in the previous section, we can afford to

bound an extra i of the z variables by 1 in the original integral (2.25). We therefore have some
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2.3. Maximal Eigenvalue

liberty in making the integrand similar to the situation without identification.

We introduce a combinatorial way to look at the problem. We use Lemma 2.12 to assume that

all the z variables are different. Consider a graph whose vertices are the variables y j and with

an edge between two vertices if the y variables appear in front of the same z variable in (2.25),

after possible identifications of y variables. A leaf in this graph is a y variable to which we can

apply successive cancellation. For example, when all the y j ’s are different, the graph we obtain

is a cycle. When we initiate successive cancellation, we then delete one edge (the equivalent

of bounding a term by 1 in the original integral) and get a line. This allows us to use successive

cancellation since the graph is a tree. Hence, we must show that, given a cycle, if we remove

i vertices by identification (without creating 1-edge loops), we can remove i +1 edges and

obtain a tree. Consider a Eulerian cycle in such a graph (all the degrees are even). We count

the number of cycles we encounter by travelling on this cycle. By the definition of a cycle, it

must start and end at the same vertex, i.e. a vertex that has been identified. Hence, there can

be no more cycles than identified vertices (not counting the full Eulerian cycle). This shows

that the number of cycles is upper bounded by i +1, proving the claim. See Figure 2.8.

Figure 2.8 – Illustration of the graphical representation of the successive cancellation proce-
dure. Here the partition of the vertices is {{1,4,6}, {3,8}, {2}, {5}, {7}}.

Therefore, if i of the y variables are identified, we obtain the following estimate

1

nl
E

 ∑
1≤ j1, j2,... jl≤n
1≤k1,k2,...kl≤n

g j1k1 g j2k1 . . . g jl kl g j1kl

≤ 2

(
4n log(m)

πm

)l−i−1

n

We can now do the same over all possible identifications and so the sum over all indices gives

us the desired bound:

E(λmax (GG∗/n)) ≤

 1

nl
E

 ∑
1≤ j1, j2,... jl≤n
1≤k1,k2,...kl≤n

g j1k1 g j2k1 . . . g jl kl g j1kl




1/l
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≤
[

1

nl

l∑
i=0

(
l

i

)
2

(
4log(m)

πm

)l−i−1

n2l−i

]1/l

≤
[

C 2l+1
(

4log(m)n

πm

)l−1

n

]1/l

≤C ′ n log(m)

m
for l sufficiently large

Here the index i counts the number of y indices that are paired up.

The second inequality may be obtained using Markov’s inequaility:

P
(
λmax (GG∗/n) ≥ K3(n/m)nε

)≤ E
(
(λmax (GG∗/n))l

)
(K3(n/m))l nεl

≤ (logn)l

nεl
,

which, for any fixed ε> 0, can be made arbitrarily small by taking l sufficiently large.

2.4 Discussion

Our aim in the following is to provide a justification for Claim 2.2. Here, we use the stronger

assumption that A3/2/d 2 → 0. Let us first recall the definition of both H and G :

h j k = e2πi r j k /λ

r j k
and g j k = e−2πi my j zk ,

where m = A/(λd) and

r j k =
√

(d +
p

A (x j +wk ))2 + A (y j − zk )2.

Given the chosen power constraint P and the fact that d ≥p
A, it follows that the amplitude

of the normalized fading coefficent
p

nP h j k is of order 1, matching that of g j k . Let us now

compare the phases of these two coefficients. Using a Taylor approximation to quadratic orderp
1+x ' 1+x/2−x2/8 , we get

r j k = d

√
1+2

p
A

d
(x j +wk )+ A

d 2

[
(x j +wk )2 + (y j − zk )2

]
' d

[
1+ 1

2

[
2

p
A

d
(x j +wk )+ A

d 2

[
(x j +wk )2 + (y j − zk )2]]

− 1

8

[
1+2

p
A

d
(x j +wk )+ A

d 2

[
(x j +wk )2 + (y j − zk )2]]2 ]
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' d + 1

2

[
2
p

A(x j +wk )+ A

d

[
(x j +wk )2 + (y j − zk )2]]

− 1

8

[
4

A

d
(x j +wk )2 +2

A3/2

d 2 [. . .]

]
' d +

p
A(x j +wk )+ A

2d
(y j − zk )2

Hence,

e2πi r j k /λ ' h̃ j k := e2πi (u j+vk−(A/(λd)) y j zk ),

whereu j = (d/2+p
A x j + (A/d) y2

j /2)/λ,

vk = (d/2+p
A wk + (A/d) z2

k /2)/λ.

Notice moreover that the eigenvalues of H̃ H̃∗ do not depend on the particular values of the

u j ’s or vk ’s; they are therefore the same as the eigenvalues of GG∗.

This entry-by-entry approximation adds some plausibility to Claim 2.2.

Remark 2.13. Observe that while the above justification works under the stronger assumption

that A3/2/d 2 → 0, the parameters used for the graphs in this chapter are such that A3/2/d 2 6→ 0

2.5 Conclusion and perspectives

The goal of this chapter is to give precise estimates on the number of spatial degrees of freedom

in large MIMO systems in a line-of-sight environment. An upper bound for a model closely

related to the line-of-sight model has been given, and the similarity of the models is supported

numerically. As such, it remains to be shown that the eigenvalues of the two models are indeed

very close, in order to bound | logdet(I +nP H H∗)− logdet(I +GG∗)|.

As a by-product, the spectral properties of random matrices G of the form g j k = e−2πi my j zk

have been studied. These matrices are not unrelated to both Vandermonde matrices and

random DFT matrices that appear in other contexts in the literature on wireless communica-

tions [18, 22, 28, 30] and compressed sensing [3, 5]. In particular, random DFT matrices are

obtained by selecting only certain rows/columns of the Fourier matrix, which is equivalent to

picking the y j and zk randomly among uniformly spaced points on the circle. These matrices

will be discussed in the next chapter.
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3 Free Probability

In the introduction, the channel matrices H and FGF∗ were brought up, as well as the problem

of describing their product’s eigenvalue distribution. In this chapter, we introduce the notions

of asymptotic freeness and asymptotic traffic-freeness between matrices. The former is

an essential tool in the proof of the main theorem of [30] concerning the capacity of the

channel with matrix HFGF∗. The hope to generalize this theorem to cases when one matrix is

deterministic is the main impetus behind the work presented in this chapter. We begin with

the definitions required for the introduction of free probability.

3.1 Noncommutative Probability Spaces and Free Independence

We will first discuss the notion of free independence, as opposed to classical independence. It

is by its very nature a noncommutative concept and so some care must be taken in defining the

objects we are interested in. This theory will serve as a basis for the concept of traffic-freeness

to be discussed in Section 3.2. While the case that will interest us most is the one of random

matrices, we will still introduce general noncommutative probability spaces, since, as we will

see, random matrices tend to be freely independent only asymptotically. In this spirit, we will

not introduce the most general setting in which to view each notion, but will rather choose

the objects that naturally arise in the context of large dimensional random matrices.

Definition 3.1. A Banach algebra A is a an algebra which is normed, complete with respect to

this norm, and such that ‖ab‖ ≤ ‖a‖‖b‖ for all a,b ∈ A. A C∗-algebra is a Banach algebra over

C equipped with an involution operator ∗ such that ‖aa∗‖ = ‖a‖2. By involution operator,

we mean an operator ∗ : A → A such that (a∗)∗ = a, (a +b)∗ = a∗+b∗, (ab)∗ = b∗a∗ and, for

γ ∈C, (γa)∗ = γa∗.

Definition 3.2. A bounded linear map L between two C∗-algebras A and B is said to be a *-

homomorphism if L(ab) = L(a)L(b) and L(a∗) = L(a)∗ for a,b ∈ A. A bijective *-homomorphism

is called a *-isomorphism.

A natural example of C∗-algebra is the set B(H) of bounded (equivalently continuous) linear
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operators defined on a complex Hilbert space H . The Gelfand-Naimark theorem states that

any C∗-algebra is *-isomorphic to a subalgebra of such a B(H ) for some H . The set of matrices

of dimension N constitutes an example of a C∗-algebra. Since we will consider matrices whose

dimension N goes to infinity, the requirement for such definitions becomes apparent.

Definition 3.3. An element a ∈ A is said to be nonnegative if there exists a0 ∈ A such that

a = a0a∗
0 .

Definition 3.4. A noncommutative probability space1 (A,φ) is a pair consisting of a C∗-algebra

A and a stateφ, i.e. a linear mapφ : A →C sending the unit of A to 1 and mapping nonnegative

elements of A to R+. An element of A is called a noncommutative random variable. We will

always assume that our states are tracial, i.e. φ(ab) = φ(ba) for all a,b ∈ A. In the case of

large dimensional matrices, the most common state is τN = 1
N ETr, explaining the terminology

tracial.

Definition 3.5. Let ai be a finite set of noncommutative random variables and C〈ai ,〉 be the

set of noncommutative polynomials in the ai ’s. The law (or distribution) of the family {ai } is

defined as the application µ{ai } :C〈ai 〉→C

µ{ai }(P ) =φ(P ({ai }))

Observe that in the case of a single random variable (in which case the polynomials are nec-

essarily commutative), we recover here the moments of a random variable. Indeed, for a

monomial ak , we have that φ(ak ) is the k th moment of the random variable a. In many cases,

the moments of a random variable uniquely determine its distribution and we will restrict

ourselves to such cases (where by distribution we mean the object studied in (commuta-

tive) probability theory, see [12]). We see that this definition is the natural extension to the

noncommutative setting of the notion of joint moments of (commutative) random variables.

Definition 3.6. The empirical eigenvalue distribution of a matrix M with eigenvalues λi

is given by 1
N

∑N
i=1δλi . This is a sum of Dirac δ’s at each eigenvalue and as such it is the

distribution of an eigenvalue picked at random from the eigenvalues of M . When considering

a single random matrix in the space of N dimensional matrices, the state 1
N ETr gives the

moments of the empirical eigenvalue distribution. Indeed, we have, for λ an eigenvalue of M

picked uniformly randomly and P a polynomial

1

N
ETrP (M) = E 1

N

N∑
i=1

P (λi ) = E(P (λ)).

Definition 3.7. We say that a sequence {aN
i } converges in distribution to a∞

i if for all P ∈C〈ai ,〉

lim
N→∞

µ{aN
i }(P ) =µ{a∞

i }(P )

1or nc probability space
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Remark 3.8. We will sometimes treat objects such as *-distributions or *-polynomials. The * in-

dicates that we allow both the element and its adjoint as input. Observe that the *-distribution

is a more precise object, as it specifies the moments of a larger family of objects. Similarly, the

set of *-polynomials in a variable a is strictly larger than the set of polynomials in a. When the

element is self-adjoint, i.e. a = a∗, the distinction between distribution and *-distribution is

no longer relevant.

3.1.1 Free independence

Given two Hermitian matrices M and N , what can we say about the eigenvalue distribution of

their sum M +N ? Unless they share the same eigenvectors, this is a very difficult question to

answer. What we can hope to answer is how the empirical eigenvalue distribution of the sum

relates to the individual empirical eigenvalue distributions. In the commutative case, little

can be said of the sum of two random variables from the distribution of the summands. One

key property that allows such computation is independence. In this section, we will introduce

the concept of free independence (or freeness) which allows one to make the analogous

computation in the noncommutative setting. The empirical eigenvalue distribution of the

product of the matrices can also be obtained (provided the product is Hermitian), hence

allowing us to characterize a random eigenvalue of the matrix HFGF∗ from the introduction.

The reader will immediately see that this last matrix is not Hermitian. However, if H can be

written as H0H∗
0 , HFGF∗ will have the same eigenvalues as the matrix H 1/2FGF∗H 1/2 and

we can work with this matrix.

Much like in the commutative setting, the essence of non commutative probability theory

comes into play once we introduce the concept of free independence. Suppose given a nc

probability space (A,φ). Given a finite number of subalgebras Ai containing the unit of A, we

say that they are free (or freely independent) if for any integer n, any indices k(1) 6= k(2),k(2) 6=
k(3), . . .k(n −1) 6= k(n) and any a j ∈ Ak( j ) with φ(a j ) = 0, we have that

φ(a1a2 . . . an) = 0

We say that subsets of elements of the noncommutative probability space are (*-)free if the

algebras they (*-)generate are free. Let us make this definition explicit in the case of random

matrices.

Definition 3.9. We say that a collection of self-adjoint random matrices Mi are asymptotically

free if for all i1, . . . , il ∈ I such that i1 6= i2, i2 6= i3, . . ., il−1 6= il , and for all fi polynomials, one

has

lim
N→∞

1

N
ETr[( f1(M1)−τN ( f1(M1))I ) . . . ( fl (Ml )−τN ( fl (Ml ))I )] = 0 (3.1)

Note that the polynomials fi appear here in connection with the generated subalgebras.

It is worth unpacking this definition a little bit to understand better its usefulness. The main
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point is that, if subalgebras Ai are free, it is sufficient to know the restriction of φ on the

subalgebras to evaluate φ on the whole algebra A. In the case of two random matrices being

asymptotically free, this means that we can compute the moments of any (noncommutative)

product of the matrices from the knowledge of the moments of the individual matrices. This

is in direct analogy with the commutative case where the commutativity allows us to group

the different appearances of each factor together: the expected value factors for independent

random variables: E(cd) = E(c)E(d).

Since its introduction by Voiculescu [31], free analogs of several probabilistic constructions

and results have been discovered including, but not limited to, law of large numbers, central

limit theorem [1] and stochatic calculus [32].

One of the first model that was studied in random matrix theory is the Gaussian Unitary

Ensemble (GUE): all upper diagonal entries are i.i.d. standard complex gaussian random

variables with unit variance, and the matrix is required to be Hermitian (and thus real on the

diagonal). It was recognized early on that an important feature of the GUE was its invariance

under conjugation by the unitary group. What we mean here is that given G a GUE matrix and

U a deterministic unitary matrix, G and UGU∗ have the same distribution. It is this feature

that allows one to conclude that two independent matrices drawn from the GUE ensemble

are asymptotically free. As such, it is natural to look at matrices of the form UCU∗ as the next

example of asymptotically free matrices. Here C is a deterministic matrix and U is picked

uniformly at random from the set of all unitary matrices. This intuition turns out to be correct:

given two deterministic matrices C , D and a matrix U uniformly distributed over the set of

unitary matrices, the matrices UCU∗ and D are indeed asymptotically free.

It is a rule of thumb that independent matrices with eigenvectors in sufficiently general

position will be asymptotically free. This is in stark opposition with classical independence.

Indeed, one case where one can compute the empirical eigenvalue distribution of a sum of

two random matrices is the case where these two matrices are independent and diagonal, the

entries of each matrix being i.i.d. as well. In this case, one obtains the classical convolution

between the two distributions. In the next section, we give the noncommutative analog of

these results, crucially using the freeness assumption.

3.1.2 Transforms and convolutions

One might ask how, given two Hermitian noncommutative random variables, one can compute

explicitly the distribution of their sum and product. The answer is given by the R and S

transforms respectively. The R transform plays the same role as the log of the Fourier transform

in classical probability. They are analytical tools allowing for efficient computation. Before

introducing these objects, let us recall the definition of the Stieljes (or Cauchy) transform, a

more classical and well-known object:
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Definition 3.10. Given a probability distribution µ, the Stieljes transform Sµ of µ is given by

Sµ(z) :=
∫
R

µ(d x)

x − z
, z ∈C\R

An inversion formula ensures that the knowledge of the Stieljes transform is equivalent to the

knowledge of µ itself. In the special case where µ is absolutely continuous with respect to

Lebesgue measure, with density function ρ, we have

ρ(x) = lim
ε→0+

ImSµ(x + iε)

π

Moreover, of particular usefulness is the fact that the Stieljes transform can characterize

convergence:

Definition 3.11. We say that µn converges weakly to µ if for any continuous bounded function

f on Rwe have that
∫

f dµn → ∫
f dµ.

Proposition 3.12. • Let Sµ be the Stieljes transform of a probability measure µ and µn a

sequence of probability measures. Then Sµn (z) converges for each z ∈C\R to Sµ(z) if

and only if µn converges weakly to µ.

• If the probability measures µn are themselves random and, for each z ∈ C\R, Sµn (z)

converges in probability to a deterministic limit S (z) that is the Stieljes transform of a

probability measure µ, then µn converges weakly in probability to µ.

For this and more, see [1].

R transform

Fix a probability distribution µ. Let Kµ(z) be the functional inverse of Sµ(z) the Stieljes

transform of µ. We then define the R transform as

Rµ(z) := Kµ(z)−1/z

It turns out that with this definition, if we take a with distribution µ and a′ with distribution

µ′, and suppose that a and a′ freely independent, we have

Ra+a′ = Ra +Ra′

Let µ�µ′ be the distribution of a+a′, called the additive free convolution (here, a and a′ must

be free). The way to obtain µ�µ′ from µ and µ′ is now clear from a conceptual point of view:

1. Compute Sµ and Sµ′
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2. From this, obtain Rµ(z) and Rµ′(z)

3. Rµ�µ′ = Rµ+Rµ′

4. Obtain Sµ�µ′ from the R transform

5. Use Stieljes inversion to finally obtain the distribution µ�µ′

Let us remark that it is possible to define the coefficients of the formal power series of the R

transform from a combinatorial point of view which puts the spotlight on the relationship

between its coefficients (called free cumulants) and the freeness property. We refer to the

excellent monograph [17] for a comprehensive treatment.

Other Transforms

There is a multiplicative analog of the R transform, called the S transform. It can be obtained

from the the moment generating function of a random variable a as follows.

Let ma(z) :=∑
n≥1φ(an)zn and denote its functional inverse by m−1

a . If φ(a) 6= 0, we define the

S transform of a as

Sa(z) := 1+ z

z
m−1

a (z)

We have

Saa′(z) = Sa(z)Sa′(z) when a and a′ are free.

Similarly to the additive case, we letµ�µ′ be the distribution of aa′ and call it the multiplicative

free convolution (here, a and a′ must be free).

We will present an example of multiplicative free convolution after Corollary 3.20.

With applications to wireless communication in mind, two more transforms have been intro-

duced, see [29]. They both can be obtained from the Stieljes transform, yet they simplify many

computations and their expression has a more immediately relatable significance with respect

to some wireless scenarios.

Definition 3.13. The η-transform is given by

ηa(z) := E
[

1

1+ za

]
Definition 3.14. The Shannon transform is given by

Υa(z) := E[log(1+ za)]
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3.1. Noncommutative Probability Spaces and Free Independence

3.1.3 Asymptotic liberation

We have seen how freeness allows us to compute the distribution of a random eigenvalue

from the product or the sum of matrices in the large N limit when one knows the marginal

distributions and the matrices are asymptotically free. We would like to understand when

this freeness relation holds for the matrices A and F∆F∗ where A and ∆ are independent

diagonal matrices with i.i.d. entries and F is the unitary Fourier matrix. The eigenvalues of

the product of these matrices have been investigated before in the case of random diagonal

projection matrices, see [5]. Prior to this work, the more general assertion that these matrices

are asymptotically free had been proven in [30]. This result is a priori surprising when one

thinks that asymptotically free matrices should have eigenvectors in general positions. Indeed,

in this particular case, the eigenvectors are deterministic. In [6], the concept of liberating

matrices was introduced and it puts this result in context and provides a framework to explain

why it holds. For W a uniformly distributed permutation matrix, the matrices {W,F } are

asymptotically liberating, i.e. they make other matrices become free, in a sense to be made

precise in this section.

Notation 3.15. We will denote the spectral norm of a matrix with the symbol ‖‖sp . For a

random variable Z , let ‖Z‖l = (E|Z |l )1/l for l ≥ 1.

We first state what it means for a family of matrices to be asymptotically liberating, a new

terminology introduced in [6]:

Definition 3.16. Let I be a finite set. A sequence of families of unitary matrices {{Ui }i∈I }∞N=1 is

said to be asymptotically liberating if for indices i1, . . . il ∈ I satisfying i1 6= i2, . . . il−1 6= il 6= i1,

there exist a constant c depending only on l such that

|ETr(Ui1 A1U∗
i1

. . .Uil AlU
∗
il

)| ≤ c(l )‖A1‖sp . . .‖Al‖sp

for all determnistic matrices Ai of trace 0.

To understand the meaning of the definition of asymptotic liberating sequences, let I be

a finite indexing set and for every i ∈ I , let Ui be a unitary matrix, Ei a matrix of bounded

spectral norm and Mi =Ui EiU∗
i . Suppose we want to show that the Mi are asympotically

free, recalling the definition of asymptotic freeness for matrices, see Definition 3.9. For a

polynomial f , we have that f (Mi ) = Ui f (Ei )U∗
i , using the fact that Ui is unitary. We can

rewrite the lefthand side of the equation in Definition 3.9 as

lim
N→∞

1

N
ETr(U1 A1U∗

1 . . .Ul AlU
∗
l )

where Ai = f (Ei )− ( 1
N ETr f (Ei ))I . Hence, if the Ui form an asymptotically liberating family,

ETr(U1 A1U∗
1 . . .Ul AlU

∗
l ) is uniformly bounded in N and the factor 1

N will drive the limit to 0.
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Chapter 3. Free Probability

The Mi are therefore asymptotically free. The terminology is now clear: a family of asymptoti-

cally liberating matrices will make other matrices free from each other by conjugating them.

This is the case in particular for uniformly distributed unitary matrices, which make other

matrices free by conjugating them.

Let us restate Theorem 2.8 from [6]:

Theorem 3.17. Let I be a finite index set and Ui be unitary matrices. Let Ui i ′ =U∗
i ′Ui for i 6= i ′.

Make the following assumptions:

1. For any deterministic signed permutation matrix W , one has {W ∗Ui i ′W }
d= {Ui i ′}, i.e.

they have the same distribution.

2. For each positive integer l , one has

∞
sup
N=1

max
i ,i ′∈I ,i 6=i ′

N
max
α,β=1

p
N‖(Ui i ′)α,β‖l <∞

Then the family {Ui } is asymptotically liberating.

Let us comment on these conditions. The first one requires invariance under the group

of permutation matrices. Observe that here the randomness requirements are much less

stringent than invariance under the conjugation action of a uniformly distributed unitary

matrix. The second condition asks that the entries of the matrices be "spread out". Since the

rows and columns of unitary matrices have l2 norm equal to 1, we require the mass of rows

and columns not to be concentrated on a few entries. One can think of the identity matrix as a

unitary matrix which is a counterexample.

We will now come to the main application: the case of Hadamard matrices (and thus Fourier

matrices as a special case).

Definition 3.18. H is a Hadamard matrix (respectively complex Hadmard matrix) if Hp
N

is

orthogonal (respectively unitary) and |h j k | = 1 for all j ,k. This is the case for the Fourier

matrix, f j k = e2πi ( j−1)(k−1)/N .

Proposition 3.19. For each positive integer N , let HN be a deterministic N ×N Hadamard

matrix and WN a uniformly distributed random signed permutation matrix. Then{
WN

⋃ HN WNp
N

}∞

N=1

is a sequence, in N , of families of matrices which is asymptotically liberating.

We can now use the invariance under the permutation group of the diagonal matrices with

i.i.d. entries to deduce the following:

38



3.1. Noncommutative Probability Spaces and Free Independence

Corollary 3.20. Let A and ∆ be independent diagonal matrices with i.i.d. entries from two

distributions having bounded support. Then F∆F∗ and A are asymptotically free.

Eigenvalues

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
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0.4

0.5

0.6

0.7

0.8
Free convolution of two Bern(0.5)

Figure 3.1 – The empirical eigenvalue distribution of AF∆F∗ with A and ∆ i.i.d. diagonal with
Bernoulli(0.5) entries.

In particular, we can compute the limiting eigenvalue distribution of the matrix AF∆F∗. By

taking the entries of A and ∆ to be Bernoulli 0−1 variables with parameter p and q , we obtain

a concrete example where we can easily do computations. The distribution of a diagonal

entry of the product A∆ is given by a Bernoulli of parameter pq . The empirical eigenvalue

distribution of AF∆F∗ is given (in the large N limit) by the free multiplicative convolution

of the two measures Bern(p) and Bern(q) since the two matrices are asymptotically free. See

Figure 3.1.

The multiplicative free convolution Bern(p)�Bern(q) is given by

fp,q (x) =
p

(1− (r−/x))((r+/x)−1

2π(1−x))
1r−<x<r+ + (1−min(p, q))δ0 +max(0, p +q −1)δ1

where r− = (√
(1−p)q −√

(1−q)p
)2

and r+ = (√
(1−p)q +√

(1−q)p
)2

.

We see on Figure 3.2 evidence of a stark difference between the multiplicative convolution

and the free multiplicative convolution. In particular, observe that the free multiplicative

convolution of two discrete probability distributions has a nonzero absolutely continuous

component.
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Multiplicative Free Convolution of Bern(p) and Bern(q)

p=0.5, q=0.5

p=0.3, q=0.8

p=0.8, q-0.8

Figure 3.2 – Plots of the continuous density of Bern(p)�Bern(q) for different choices of param-
eters.

3.2 Traffics

As we have seen, the invariance by permutation of one of our matrices is one of the im-

portant ingredients that allows us to make significant progress in describing the product’s

empirical eigenvalue distribution. We will now introduce the concept of traffics, which are

noncommutative random variables naturally suited to the invariance by permutation.

Traffic spaces are spaces of noncommutative random variables which are equipped with extra

structure and are particularly well suited to study matrices invariant by permutation, the

cases of interest. There exists an associated notion of traffic freeness and it also allows one to

compute joint moments of noncommutative random variables from the individual moments,

much like freeness. It is the interplay between freeness and traffic freeness that will interest

us. We will mostly be concerned with large random matrices, but a more general setting can

be elaborated and we encourage the algebraically-inclined reader to read [14] where this is

developed.

Notation 3.21. In this section, we will use a subscript to indicate the dimension of the matrices,

i.e. AN .

Definition 3.22. We say that AN is invariant by permutation if, for any fixed permutation

matrix WN , WN AN W ∗
N has the same distribution as AN .

Hypothesis 3.23. Throughout this section, we let AN be a diagonal matrix with i.i.d. entries,

with distribution having bounded support, and BN = FN∆N F∗
N of the form a diagonal deter-

ministic matrix∆N = diag(δ1, . . . ,δN ) conjugated by the unitary Fourier matrix FN We suppose
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1

2

3

1

2

T0 T π
0 for π= (1,3)(2)

Figure 3.3 – The graph T0 and an example of the vertex identification process.

that the δi are bounded and converge in distribution.

The idea behind traffics is to evaluate matrices not only on polynomials, but more generally

on graphs, which have a richer structure. We will now define what we mean by evaluating a

matrix on a graph. For the remainder of this document, we will consider T a finite connected

oriented graph. Also, for V the vertex set of T , letΠ|V | be the set of partitions of the vertices of

T . For π ∈Π|V |, we let T π be the graph obtained by identifying the vertices of T according to

the partition π.

Example 3.24. Let T0 be the oriented cycle on 3 edges, with a loop on one vertex. We will use

it as a running example of a graph to illustrate definitions. See Figure 3.3.

Definition 3.25 ((injective) trace). Let T be a (finite, connected, oriented) graph with edge

set E and vertex set V , and XN = (Xi )i∈I a family of (possibly random) matrices of dimension

N . Let there be given two functions ε : E → {1,∗} and γ : E → I . We can see these functions as

follows: γ chooses a matrix for each edge, and for this matrix, ε picks between the matrix and

its adjoint. We define τN (T (XN )) as

τN (T (XN )) := 1

N
ETr(T (XN )) = 1

N
E

∑
φ:V →[N ]

∏
e=(v,w)∈E

X ε(e)
γ(e)(φ(v),φ(w))

where [N ] = {1,2, . . . , N }. If the summation in the above definition is over all functions φ which

are injective, we call this object the injective trace and denote it τ0
N (T (XN )).

This object τN (T (XN )) can be interpreted as follows: to each edge is attached a matrix from

the family XN . The summation is over all possible assignments of indices for the vertices,

which for every edge picks an entry from the attached matrix.

Example 3.26. The (injective) trace of the graph T0 evaluated on a single matrix XN = XN with

ε always equal to 1 gives

τn(T0(X )) = 1

N
E

∑
i j k

X (i , j )X ( j , j )X ( j ,k)X (k, i )
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τ0
n(T0(X )) = 1

N
E

∑
i 6= j 6=k 6=i

X (i , j )X ( j , j )X ( j ,k)X (k, i )

Remark 3.27. We have the following relationship between the trace and the injective trace.

τN (T (XN )) = ∑
π∈Π|V |

τ0
N (T π(XN ))

We can express τ0 in terms of τ by using the Möbius inversion formula on the latticeΠ|V |.

τ0
N (T (XN )) = ∑

π∈Π|V |
µ(π)τN (T π(XN )) (3.2)

where µ is the so-called Möbius function that depends on the structure of the partially ordered

set. In our case, this is the latticeΠ|V | of all partitions of the set V , ordered by the relationship

of inclusion, i.e. a finer partition is below a coarser one. This means the bottom element is the

partition of singletons, and the top element is the partition consisting of one block. See [25]

for many applications, as well as explicit computations of the Möbius function.

Definition 3.28. Similarly to moments, we define the map T → τN (T (XN )) as the traffic

distribution. By convergence in traffic distribution, we mean the pointwise convergence of

this map.

Remark 3.29. In the above definition, we only ask that for every fixed graph T , the sequence

τN (T (XN )) has a finite limit as N →∞. This will be sufficient for our purposes. The appropriate

concept of spaces of traffics where this convergence takes place has been introduced in [14],

and we refer the reader to this article for the concepts surrounding spaces of traffics.

Observe that by taking the graph to be a cycle, we can recover any given ∗-monomial. This

means that convergence in traffic distribution implies convergence in *-distribution. Given

Hypothesis 3.23 on AN and BN , we have the following result concerning the joint distribution

of (AN ,BN ).

Theorem 3.30 ([14], Theorem 3.4). Suppose that BN is deterministic and that for all graphs T ,

τN (T (BN )) converges as N →∞. Then (AN ,BN ) converges in traffic distribution, and hence

in ∗-distribution.

The matrix BN = FN∆F∗
N is of particular interest to us. Let ω be a primitive N th root of unity, 1

denote the indicator function and (N ) the operation of reducing modulo N . Using the fact

that
∑N−1

j=0 ω
j k = N1k=0(N ), we have the following lemma.

Lemma 3.31. The value of τN [T (BN )] is

1

N 1+|E |−|V |
∑

j1,... j|E |∈[N ]

δ j1 . . .δ j|E |
∏

v∈V
1

∑
e entering v je−∑

e exiting v je=0(N ).
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Proof. First, observe that the fact that BN = FN∆N F∗
N immediately yields that (bn) j k = 1

N

∑N
l=1δlω

( j−k)l .

By Definition 3.25,

τN [T (BN )] = 1

N

∑
i1,...i|V |∈[N ]

∏
e∈E

BN (esour ce ,edesti nati on)

= 1

N

∑
i1,...i|V |∈[N ]

∑
j1,... j|E |∈[N ]

∏
e∈E

ω(isour ce−1)( je−1)

p
N

δ je

ω−(idest−1)( je−1)

p
N

= 1

N 1+|E |
∑

j1,... j|E |∈[N ]

δ j1 . . .δ j|E |
∑

i1,...i|V |∈[N ]

∏
v∈V

ω(iv−1)
∑

e entering v je−∑
e exiting v je

= 1

N 1+|E |−|V |
∑

j1,... j|E |∈[N ]

δ j1 . . .δ j|E |
∏

v∈V
1

∑
e entering v je−∑

e exiting v je=0(N )

Remark 3.32. Exactly |V |−1 of the linear equations in the last indicator function are linearly

independent. Indeed, these linear equations ei come from the graph, and as such, each j

variable appears once with a plus sign and once with a minus sign. It is clear that the sum of

all equations is 0, and so at most |V |−1 of the equations are linearly independent. Suppose

we can find a linear dependence
∑
αi ei with at most |V | −1 summand. For any variable j

appearing in equation ei in the linear dependence equation, the other equation containing

j , call it e ′i must also appear with the same coefficient, i.e. αi = α′
i . Since for any subset

of vertices of cardinality strictly less than |V | there is always an edge between this subset

and its complement by the connectedness of the graph, we can find a j variable that is not

cancelled, and thus a contradiction. We conclude that |V |−1 of these linear equations are

linearly independent.

We give an example which will be of use later: we evaluate the matrix BN on a particular graph

with 2 vertices and 4 edges.

Corollary 3.33. Evaluated on the matrix BN , we have

τN

[ 1

2

]
= 1

N 3

∑
j1... j4

δ j1 . . .δ j41 j1+ j2− j3− j4=0(N )

We now have the necessary background to introduce the concept of traffic freeness.

Definition 3.34. Let X1, . . . ,Xp be families of different random matrices and let T be a graph

with the associated ε and γ functions. Denote by T1, . . . ,Tk the connected components of T

that are labelled by variables in the same family. Consider T̄ the graph whose vertices are

given by T1, . . . ,TK , as well as the vertices vi of T that are common to at least 2 components T j .

There is an edge between vi and T j in T̄ if vi ∈ T j in T . Finally, we say that T is a free product

in X1, . . . ,Xp whenever T̄ is a tree.
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X

X

X

Y

Y

Y

X

T T̄
Figure 3.4 – Example of the construction of T̄ . On the righthand side, the round nodes
represent connected components of T and the square nodes represent shared vertices.

Definition 3.35. Two families of random matrices X1 and X2 are said to be asymptotically

traffic free if their joint distribution converges to some limit and for any graph T , we have that

τ0[T (X1,X2)] =


∏k
j=1τ

0[T j (Xi j )] if T is a free product in Xi

0 otherwise
(3.3)

Concretely this means that if two families of matrices are traffic free, we can compute the

injective trace (and therefore also the trace) on any graph from the traffic distribution of the

marginals, as it is a product according to equation (3.3).

Theorem 3.36 ([14] Theorem 3.4). Let E (1)
N and E (2)

N be two independent families of matrices

such that:

1. E (1)
N is invariant by permutation.

2. E (1)
N and E (2)

N converge in traffic distribution.

3. For j = 1,2 and for any family of finite graphs Ti in the variable x j , we have that

E

[
n∏

i=1

1

N
Tr[Ti (E ( j )

N )]

]
→

N→∞

n∏
i=1

τ[Ti (x j )]

Then the matrices E (1)
N and E (2)

N are asymptotically traffic free.

Corollary 3.37. With Hypothesis 3.23, AN and BN are asymptotically traffic free. Indeed, the

only condition to check in Theorem 3.36 is point 3, which is true both for the i.i.d. diagonal

matrices AN and for the deterministic matrix BN .
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3.2.1 Criteria ensuring the lack of asymptotic freeness

In this section, we compute explicit criteria that prevent matrices from being asymptotically

free. Let A0 be the recentred matrix AN − 1
N ETr(AN )I and let δ0

i be the diagonal entries of

the recentred matrix ∆0
N . The strategy is the following: we use the rules of traffic freeness

to compute the quantity 1
N ETr[(A0

N B 0
N )k ]. If the two matrices are free, this quantity should

converge to 0. If this is not the case, we know that our matrices cannot be free.

Criterion of order 2

This approach has already been used in [14] to deduce the following theorem. Here, since

the entries the matrix conjugated by the Fourier matrix could be random, we use a different

notation, MN = FNΞN F∗
N with ΞN = diag(ξ1, . . . ,ξN ).

Theorem 3.38 ([14] Corollary 3.5). Let MN be a random matrix asymptotically traffic free from

a diagonal matrix AN , and let P and Q be *-polynomials. If the limiting empirical eigenvalue

distribution of neither MN nor AN is a Dirac mass and

lim
N→∞

1

N
ETr[P (MN )◦Q(MN )]− lim

N→∞
1

N
ETr[P (MN )] lim

N→∞
1

N
ETr[Q(MN )] 6= 0 (3.4)

then the matrices AN and MN are not asymptotically *-free. Here, ◦ denotes the Hadamard

product, i.e. (M ◦N ) j k = m j k n j k .

By choosing P (X ) = X and Q(X ) = X , we obtain a simple, easy to apply criterion that applies

to all matrices, not only deterministic matrices. Observe that the diagonal entries of MN are

all equal to 1
N

∑N
i=1 ξi . We can reformulate the criterion (3.4) as

lim
N→∞

E

[[
1

N

N∑
i=1

ξi

]2]
−

[
1

N
E

N∑
i=1

ξi

]2

= lim
N→∞

Var

[
1

N

N∑
i=1

ξi

]
6= 0 (3.5)

In Section 3.3, we will use this criterion, which relies on the moment of order 2, to deduce that

some matrices are not asymptotically free. However, if the matrix MN in 3.4 is deterministic,

this criterion will always evaluate to 0. This prompts us to compute a criterion to check

asymptotic freeness which relies on the moment of order 4.

Remark 3.39. AN and MN are asymptotically traffic free, as long as MN is independent of AN

and that it converges in traffic-distribution. This can be deduced using the fact that AN is

diagonal from the proof of [14, Theorem 3.4].
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Criterion of order 4

We now compute the criterion of order 4 for deterministic matrices BN . Let us remark that if

the deterministic matrix BN is replaced by the random matrix MN from the previous section,

a slightly more complex criterion can be obtained, but the essential features are the same.

We have

1

N
ETr((A0

N B 0
N )4) = τN

[
1

2

3

4

5

6

7

8

]
edges alternating in A0

N and B 0
N (3.6)

= τN

[
1

2

3

4

]
as A0 is diagonal (3.7)

= ∑
π∈Π|V |

τ0
N [T π(A0

N ,B 0
N )] (3.8)

Let us call Ck the cyclic graph with loops, C4 appearing in Equation (3.7). Recall that T π is the

graph induced from T by quotienting by the relation induced by the partition π. We now use

the fact that AN and BN are asymptotically traffic free. The following is a reformulation for

this particular case of Definition 3.35.

For a graph T , denote by Tb be the graph obtained by keeping only the edges with labels BN .

We then have that

lim
N→∞

τ0
N [T π(AN ,BN )] = lim

N→∞
τ0[T π

b (BN )]
∏
β∈π

lim
N→∞

1

N
ETr(A|β|

N ) (3.9)

where for β ∈ π a block of the partition π, we denote |β| the size of this block. Observe that

since AN is diagonal, the graphs T π
b are always connected.

In principle, this gives us a formula to compute any moment of the product AN BN . However,

the complexity grows very quickly when the order of the moment increases and this is why we

use the moment of order 4.

Moreover, Equation (3.9) involves τ0 and Lemma 3.31 gives a formula for τ. We will therefore

use the formula τ=∑
π∈Π|V | τ

0 to relate τ and τ0. Since the partitions are small, we can do it by

hand, but, in general, we would use Möbius inversion to express τ0 in terms of τ.

We must therefore enumerate all possible partitions of the 4 vertices and look at their contribu-

tion in Equation (3.9). Observe that since the entries are centred, if a partition has a singleton,

the contribution is 0. Moreover, since A0
N and B 0

N are traffic free, the induced graph T π should

be a tree for the contribution to be non-zero. This last condition is always satisfied. Only 4

partitions are left, 2 of them yielding the same graph, see Table 3.1. Writing out Equation (3.9),

46



3.2. Traffics

1

2

1

2

{1,2,3,4} {1,2} {3,4} {1,3} {2,4}
OR

{1,4} {2,3}

Table 3.1 – The different partitions having a potentially non-zero contribution and their
associated graphs

1
N Tr[(AN ,BN )4] equals

τ0
N

[ ]
×E

[
1

N
TrA4

N

]
+2τ0

N

 1

2

×E[
1

N
TrA2

N

]2

+τ0
N

 1

2

×E[
1

N
TrA2

N

]2

+o(1)

(3.10)

and we have to compute the value of the 3 different graphs in BN . This is what follows:

1st Graph

τ0
N

[ ]
= τN

[ ]
= 1

N 4

∑
j1,..., j4

δ0
j1

. . .δ0
j4
=

[
1

N

∑
j
δ0

j

]4

= 0

2nd Graph

τ0
N

 1

2

= τN

 1

2

−τ0
N

[ ]

τN

 1

2

= 1

N 3

∑
j1,..., j4

1 j2− j3=0(N )δ
0
j1

. . .δ0
j4
= 1

N 3

∑
j1, j2 j4

δ0
j1

(δ0
j2

)2δ0
j4

=
[

1

N
Tr(∆0)

]2 [
1

N
Tr(∆0)2

]
= 0
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3rd Graph

τ0
N

 1

2

= τN

 1

2

−τ0
N

[ ]
= 1

N 3

∑
j1,..., j4

1 j1+ j2− j3− j4=0(N )δ
0
j1

. . .δ0
j4

Putting the last 3 computations together into Equation (3.10), we conclude that

1

N
ETr((A0

N B 0
N )4) →

N→∞
E

[
lim

N→∞
1

N
Tr ((A0

N )2)

]2 1

N 3

∑
j1,..., j4

δ0
j1

. . .δ0
j4
1 j1+ j2− j3− j4=0(N )

The conclusion that we can draw from this is that if the quantity

SN (∆0
N ) := 1

N 3

∑
j1,..., j4

δ0
j1

. . .δ0
j4
1 j1+ j2− j3− j4=0(N ) (3.11)

is not asymptotically 0, the matrices AN and BN cannot be asymptotically free.

Remark 3.40. We can rewrite SN (δ0
N ) as

1

N

N−1∑
h=0

1

N

∑
j1− j3=h(N )

δ0
j1
δ0

j3

1

N

∑
j4− j2=h(N )

δ0
j2
δ0

j4
= 1

N

∑
h

Cov2(h)

where we denote Cov(h) = 1
N

∑
i− j=h(N )δ

0
i δ

0
j .

3.3 Examples of lack of freeness

After this theoretical intermission, we return to our problem concerning wireless communica-

tion. In order to generalize the capacity theorem from [30] to a wider family of channels, the

two channel matrices modelling the time and frequency fading must be freely independent.

In this chapter’s notation, these are the matrices AN and BN (or MN ). We will therefore apply

our criteria to these matrices with particular models for BN (or MN ) to identify cases where

the matrices cannot possibly be free.

We begin with deterministic examples.

3.3.1 Examples relying on arithmetic structure

Fix a prime q such that N = nq and let the matrix ∆N be defined as

δi =
1 if i = 0(q)

0 if i 6= 0(q)
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3.3. Examples of lack of freeness

This represents very regular on-off fading. The associated ∆0
N matrix is

δ0
i =

1− 1
q if i = 0(q)

− 1
q if i 6= 0(q)

In this case we can see that Cov(h) evaluates to

Cov =


1
q

(
q−1

q

)
if h = 0(q)

−
(

1
q

)2
if h 6= 0(q)

This is because if h = 0(q), then j1, j2 = 0(q), whereas if h 6= 0(q) then at most one of j1 or j2

will be zero modulo q . We can therefore compute

1

N

N∑
h=0

Cov2(h) = 1

N

N

q

[
(q −1)

1

q4 +
(

1

q

q −1

q

)]
= q −1

q4

We see that this expression is never 0, proving that the matrices cannot be asympotically free.

We hasten to point out that in this particular case, we can compute explicitly the limiting

moments of the product AN BN for a well chosen AN matrix, see Section 3.4.

3.3.2 Projection with contiguous values

Fix 0 < η< 1 and consider the diagonal matrix

δi =
1 if i < ηN

0 otherwise

This matrix has two blocks of values, and represents on off fading where the fading blocks are

very long. The associated ∆0
N matrix is

49



Chapter 3. Free Probability

δ0
i =

1−η if i < ηN

−η otherwise

We can make the explicit computation of SN (∆0
N ) in this case. For the sake of exposition, we

will take η= 1/2 and N even, N ′ = N /2. Similar results can be obtained for 0 < η< 1,η 6= 1/2.

In the table below, we indicate by + (-) if the index is in the first (second) half of the N indices.

Since the entries are ±1
2 , only the signs matter.

(i,j,k,i+j-k) Cardinality

+ + + + or + + - - N ′(N ′−1)(2N ′−1)
3 +N ′2

+ + + - or + + - + (N ′+1)(N ′−1)N ′
3

+ - + + or + - - - (N ′+1)(N ′−1)N ′
3

+ - + - or + - - + N ′(N ′−1)(2N ′−1)
3 +N ′2

- + + + or - + - - (N ′+1)(N ′−1)N ′
3

- + + - or - + - + N ′(N ′−1)(2N ′−1)
3 +N ′2

- - + + or - - - - N ′(N ′−1)(2N ′−1)
3 +N ′2

- - + - or - - - + (N ′+1)(N ′−1)N ′
3

We add the contributions with an even number of + and subtract those with an odd number

and obtain

SN (∆0
N ) = 8

N 3 ∗
[

N ′2 + N ′(N ′−1)(N ′−2)

3

]
∗η4 = 1

16

(
1

3
+ 8

3N 2

)

This will not converge to 0 as N →∞, showing the lack of asymptotic freeness in this case.

3.3.3 Markov Chains

Let us consider the case where the matrix MN is not deterministic and the entries ξi are

distributed according to a stationary Markov chain. It is sufficient to use the criterion of order

2, Equation (3.5).

For concreteness, we examine a Markov chain ξi with two states, but the discussion carries to

any Markov chain whose stationary distribution has zero expectation.

Let the chain have two states s1 and s2 with transition probabilitiesα andβ. The chain remains

in its current state with probabilities 1−α and 1−β respectively. The stationary distribution is

given by
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Eigenvalues

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12
Contiguous VS iid

Contiguous

i.i.d.

Figure 3.5 – We see very different behaviour for the eigenvalues. Here N = 1000 and we plot
the eigenvalues of AF∆F∗ where A is i.i.d. Bernoulli(0.5) and ∆ is either i.i.d. or contiguous
(we remove a weight of 0.5 from the origin for better visibility).

π=
(

β

α+β ,
α

α+β
)

and so we require that βs1 +αs2 = 0. We set ξ0 the initial state to have distribution π.

The transition probabilities pi j (n) can easily be computed by diagonalizing the transition

matrix.

pi j (n) =
( β
α+β + α

α+β (1−α−β)n α
α+β − α

α+β (1−α−β)n

β
α+β − β

α+β (1−α−β)n α
α+β + β

α+β (1−α−β)n

)

Lemma 3.41. On the above Markov chain, we have that Equation (3.5) in the criterion of order

2 evaluates to

2

N 2

αβ

(α+β)2 (s1−s2)2
[

(N −1)
1−α−β
α+β + (1−α−β)2

(α+β)2 − (1−α−β)N+1

(α+β)2

]
+ 1

N

[
β

α+β s2
1 +

α

α+β s2
2

]
(3.12)

Remark 3.42. Equation (3.12) will be zero if we take α and β such that 1
α , 1

β ∈ o(N ). Note
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Chapter 3. Free Probability

that in the case where α and β are constants, the asymptotic freeness of AN and MN has

already been proven in [30]. Equation (3.12) will however be nonzero if we take α = k/N ,

β= k ′/N for k,k ′ constants. When looking at the Markov chain ξi , this would typically result

in blocks whose length is of order N . In our communication scenario, this would translate to a

bursty channel. See Figure 3.6 for the empirical eigenvalue distribution of the product AN MN

associated to these Markov chains.

Eigenvalues

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25
Markov VS Markov 1/N VS i.i.d.

Markov 0.5

Markov 0.005

i.i.d.

Figure 3.6 – We see here that if the transition probability between states is very low, the
eigenvalue distribution is different (we remove a weight of 0.5 from the origin for better
visibility).

Proof of Lemma 3.41. According to Equation (3.5), we must compute E[( 1
N

∑N
i ξi )2] = 1

N 2 E[
∑N

i j ξiξ j ]

since the diagonal entries of FΞF∗ are the same across the diagonal. It suffices to compute

the second moment and by stationarity we can suppose i = 0.

First, E(ξ2
i ) = β

α+β s2
1 + α

α+β s2
2.

Now, for k > 0,

E(ξ0ξk ) = E(ξ0ξk |ξ0 = s1)P(ξ0 = s1)+E(ξ0ξk |ξ0 = s2)P(ξ0 = s2)

= [P(ξk = s1|ξ0 = s1)s2
1 +P(ξk = s2|ξ0 = s1)s1s2]

β

α+β
+ [P(ξk = s1|ξ0 = s2)s1s2 +P(ξk = s2|ξ0 = s2)s2

2]
α

α+β
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3.4. Traffic distributions

= αβ

(α+β)2 (s1 − s2)2(1−α−β)k

With this expression in hand, we can compute the second moment

2
∑
i> j

E(ξiξ j ) = 2
αβ

(α+β)2 (s1 − s2)2
∑
i> j

(1−α−β)i− j

= 2
αβ

(α+β)2 (s1 − s2)2

[
N∑

j=2

1− (1−α−β) j

α+β −1

]

= 2
αβ

(α+β)2 (s1 − s2)2
[

(N −1)
1−α−β
α+β + (1−α−β)2

(α+β)2 − (1−α−β)N+1

(α+β)2

]

The quantity to consider is therefore

2
αβ

(α+β)2 (s1−s2)2
[

(N −1)
1−α−β
α+β + (1−α−β)2

(α+β)2 − (1−α−β)N+1

(α+β)2

]
+N

[
β

α+β s2
1 +

α

α+β s2
2

]
(3.13)

allowing us to conclude.

3.4 Traffic distributions

In this section, we will explicitly compute the eigenvalue distribution of the product AN F∆N F∗

for some well chosen matrices AN and ∆N . Since we are interested in the moments of the

product, we do not need to recentre the matrices and this will simplify computations.

Recall that Equation (3.9) allows us to write mk , the limiting k th moment of AN BN , as the

product of a component involving BN and a component involving AN , this last component

being particularly simple since the matrix AN is diagonal. Recall that Ck is the cyclic graph

with k edges, with one loop attached to each vertex and let C ′
k be the cyclic graph without these

loops. Let a be a random variable distributed as a diagonal element of AN . Using Equation

(3.9), we can compute

mk = lim
N→∞

τN [Ck (AN ,BN )] = lim
N→∞

∑
σ∈Π|V |

τ0
N [Cσ

k (AN ,BN )]
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= lim
N→∞

∑
σ∈Π|V |

τ0
N [C ′σ

k (BN )]
∏
β∈σ

E[a|B |] using that AN is diagonal

= lim
N→∞

∑
σ∈Π|V |

∑
π≥σ

µ(σ,π)τN [C ′π
k (BN )]

∏
β∈σ

E[a|β|] by Möbius inversion

= lim
N→∞

∑
π∈Π|V |

∑
σ≤π

µ(σ,π)τN [C ′π
k (BN )]

∏
β∈σ

E[a|β|] Inverting the two sums

= lim
N→∞

∑
π∈Π|V |

τN [C ′π
k (BN )]

∑
σ≤π

µ(σ,π)
∏
β∈σ

E[a|β|]

Let us now assume that AN is an i.i.d. matrix with 0-1 Bernoulli(p) entries. We therefore have

E(ai ) = p for all i > 0. This simplifies the above formula as

∑
π∈Π|V |

τ(C ′π
k )(BN )

∑
σ≥π

µ(σ,π)
∏
β∈σ

E[a|β|] = ∑
π∈Π|V |

τ(C ′π
k )(BN )

∑
σ≥π

µ(σ,π)p#σ (3.14)

where for a partition σ we denote #σ the number of blocks in σ.

Proposition 3.43. Let ∆N to be the deterministic matrix whose i th entry is 1i=0(q). Then the

k th moment of AN BN is

q∑
j=1

( j /q)k

[
1

q

q∑
l= j

p l

(
q

l

)(
l

j

)
(−1)l− j

]

and the empirical eigenvalue of converges to the measure q−1
q δ0+ 1

q νwhere ν∼ Binomial(q ,p).

Proof. Since we are evaluating the k th moment, k = |E |. Let us evaluate τ(Ck )(BN ) according

to Lemma 3.31.

1

N 1+k−|V |
∑

j1,... jk∈[N ]
δ j1 . . .δ jk1

∑
e entering v je−∑

e exiting v je=0(N )

= 1

N 1+k−|V |
∑
1all j are 0(q)1

∑
e entering v je−∑

e exiting v je=0(N )

= 1

N 1+k−|V |
N /q∑

j1,... j|E |
1

∑
e entering v q je−∑

e exiting v q je=0(N )

= 1

q1+k−|V |

The last equality follows from the fact that we have N /q possible values for each index ji , and

we have exactly k −|V |+1 choices to make, since precisely |V |−1 of the linear equations in
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the second indicator function are linearly independent. We can see the linear equations as a

linear map between modules and use a cardinality argument (the linear independence means

that the image module is free of rank |V |−1). Otherwise, one can observe that adding the two

equations containing a given variable j together yields a third equation, and on the graph

this is equivalent to merging two nodes together. This allows one to express j in terms of the

other variables (fixes the value of j ) and reduces the number of equations by 1. This can be

repeated |V |−1 times. Crucially, we use that the coefficient in front of j is ±1, hence invertible

in Z/(N /q)Z.

Observe that when we identify the vertices of the graph according to the partition π, the

number of edges is constant and the number of vertices is equal to the number of blocks of

the partition π. As such, we can rewrite Equation (3.14) as

1

q1+k

∑
π

∑
σ≤π

µ(σ,π)q#πp#σ = 1

q1+k

∑
σ

p#σ
∑
σ≤π

µ(σ,π)q#π (3.15)

We recognize the inner sum as the characteristic polynomial of the lattice Π#σ evaluated at

q, whose value is (q)#σ, see [25, Section 3.10]. Here, by (n)k we denote the combinatorial

coefficient n ∗ (n −1). . . (n −k +1). Substituting this, the sum on the right hand in Equation

(3.15) only depends on the number of blocks of the partition σ. Let S(k, l ) be the Stirling

number of the second kind, which count the number of partitions of k elements into l blocks.

We now get an expression for the k th moment:

mk = 1

qk+1

k∑
l=1

p l (q)l S(k, l ) (3.16)

= 1

qk+1

k∑
l=1

p l (q)l
1

l !

l∑
j=1

(−1)l− j

(
l

j

)
j k (3.17)

= 1

qk+1

q∑
l=1

p l (q)l
1

l !

l∑
j=1

(−1)l− j

(
l

j

)
j k changing the range of the summation

(3.18)

= 1

qk+1

q∑
l=1

p l

(
q

l

)
l∑

j=1
(−1)l− j

(
l

j

)
j k (3.19)

= 1

qk+1

q∑
j=1

j k

[
q∑

l= j
p l

(
q

l

)(
l

j

)
(−1)l− j

]
(3.20)

=
q∑

j=1
( j /q)k

[
1

q

q∑
l= j

p l

(
q

l

)(
l

j

)
(−1)l− j

]
(3.21)

From the second to the third line, we have changed the range of the summation. If k > q , then

(q)l is 0 for any l > q . If k < q , we must check that, for l > k
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l∑
j=1

(−1)l− j

(
l

j

)
j k = 0

For k = 1, we can rework the sum to be

(−1)l
l∑

j=1
(−1) j l !

( j −1)(l − j )!
= (−1)l

l∑
j=1

(−1) j

(
l −1

j −1

)
l = 0

We will prove the statement for k by induction, assuming it holds for k −1.

l∑
j=1

(−1)l− j

(
l

j

)
j k =

l∑
j=1

(−1)l− j

(
l

j

)
[( j )k +Q( j )]

=
l∑

j=k
(−1)l− j (l )k

(
l −k

j −k

)

= (−1)l (l )k

l∑
j=k

(−1) j

(
l −k

j −k

)
= 0

Here, the polynomial Q is of degree strictly less than k and so we can assume by induction

that
∑l

j=1(−1)l− j
(l

j

)
Q( j ) = 0. This completes the induction and the reasoning to obtain the

k th moment.

Equation (3.21) gives the moment of order k. We can recover the (discrete) distribution by

observing that the expression brackets is the weight at j /q and can be rewritten as

1

q

q∑
l= j

p l

(
q

l

)(
l

j

)
(−1)l− j = 1

q

q− j∑
m=0

pm+ j

(
q

m + j

)(
m + j

j

)
(−1)m

= 1

q

q− j∑
m=0

pm+ j q !

(q −m − j )!

1

j !m!
(−1)m

= p j

j !q

q− j∑
m=0

(−p)m q !

(q − j )!

(q − j )!

(q −m − j )!m!

= 1

q
p j

(
q

j

)
q− j∑
m=0

(−p)m

(
q − j

m

)

= 1

q

(
q

j

)
p j (1−p)q− j
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-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3
Histogram of the empirical Eigenvalue distribution VS Bernoulli

Empirical eigenvalues

Bernoulli

Figure 3.7 – Empirical eigenvalue distribution of the matrix in Proposition 3.43 with q = 7 (We
omit the mass in 0). The convergence is slow since most of the mass is in 0.

The rest of the mass is at 0, hence the result.

3.4.1 A more direct computation

Let N be even. We can compute 1
N ETr(AB)k directly for A i.i.d. Bernoulli(p) and ∆i i =1i=0(2),

i.e. q=2. Indeed, the j k entry of the matrix BN is given by

(BN ) j k = 1

N

N /2−1∑
l=0

e2πi ( j−k)l /N =


1/2 if j = k

1/2 if j −k = N /2(N )

0 otherwise

(3.22)

Therefore, if we consider a summand of 1
N ETr(AB)k = 1

N ETr(AB A)k , it is of the form

ci1i2 ci2i3 . . .cik−1ik

with ci j = δiδ j , since the δi are 0-1 valued. As such, we can use the special form of BN to

conclude that for a fixed initial index i , the only possibilities for c are ci i , ci ,N /2+i , cN /2+i ,i

and cN /2+i ,N /2+i . With a bit of combinatorics, we conclude that the expected value of such
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a summand is 1
2k [p +p2(2k−1 −1)]. The term in p comes from choosing exclusively the term

ci i and the term in p2 comes from having 2 choices at every step except the last one. This is

independent of the initial index i and so 1
N ETr(AB)k = p2

2 + p(p−1)
2k , matching the expression

found previously.

3.5 Conclusion and perspectives

In this chapter, we have recalled the concepts of freeness and traffic-freeness in noncommuta-

tive probability spaces and seen how these allow us to describe the eigenvalue distribution

of sums and products of large random matrices. We have described the main contribution

of this thesis in this field: the two criteria preventing asymptotic freeness between particular

families of matrices. We have discussed examples were these criteria do not evaluate to 0,

hence providing an answer to questions concerning freeness raised in [30]. This sheds new

light and gives a better understanding of channels experiencing both time and frequency

domain fading. We have also made explicit computations of the moments of a particular

matrix model using the theory of traffics.

One interesting research direction would be the development of R and S transforms for traffics.

Indeed, we have seen that while we can get expressions for the limiting moments of say

the products of matrices, the complexity grows exponentially. A traffic equivalent of the S

transform would allow us to compute the limiting eigenvalue distributions and would perhaps

allow us to characterize the capacity of channels with deterministic frequency fading (and i.i.d.

time domain fading) in a manner similar to what was done in [30].

One particular deterministic model where an explicit description of the moments might be

within grasp is the following. Consider the matrix ∆where δi = 1 if i ≤ r (q) and 0 otherwise.

The case r = 0 has been treated at the beginning of 3.3. By letting r, q go to infinity at the same

rate, perhaps some insight can be gained.
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