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Abstract— We present a scheme for run-to-run disturbance
rejection in optimization-based feedforward path following of a
remotely piloted aircraft system (RPAS). The proposed scheme
is based on the inter-run estimation of unknown disturbances,
such as wind induced forces and model uncertainties. These
disturbance estimates are introduced in an optimal control
problem used to compute feedforward controls. In order to
achieve good run-to-run disturbance rejection, the structure of
the underlying stabilizing flight control of the RPAS is taken
into account. In this work, we consider flight control based
on adaptive reference following and the special case of the
unmanned helicopter ARTIS. We present simulation results
and flight test data. These results underpin that the proposed
approach significantly decreases flight path deviations in a run-
to-run fashion.

Index Terms— feedforward path following, remotely piloted
aircraft system, adaptive control, model reference control,
run-to-run disturbance rejection, unmanned aircraft system,
unmanned helicopter

I. INTRODUCTION

One strength of unmanned helicopters, like ARTIS (Au-
tonomous Rotorcraft Testbed of Intelligent Systems) shown
in Figure 1, is the ability to fly through obstacle occupied
environments. The problem of automatic navigation through
these environments, however, is a very complex task. Even
if the environment is known a priori, it involves finding
the way through the environment without getting stuck in
dead ends, considering constraints on the system dynamics
as well as mission requirements on the flight performance,
and stabilizing the helicopter along its route.

Consequently, the problem is often split into different
sub-tasks. Common problem decompositions involve sensor
fusion, path planning, and flight stabilization, cf. [1], [2],
[3]. While the path-planner determines safe geometric paths
through the obstacle field [4], the flight control system
stabilizes the helicopter and provides the interface to steer the
helicopter along the path [1], [2], [3]. Alternatively, planning
can be done using motion primitives [5], [6].

The flight control system considered in this paper deter-
mines reference trajectories using a designed reference model
[7], [8]. This reference model defines the desired closed-loop
dynamics. If the path to be tracked has a non-trivial geometry
with varying curvature these closed-loop dynamics have
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Fig. 1: Unmanned helicopter ARTIS of DLR (German
Aerospace Center).

to be considered in order to achieve good path-following
performance. Additionally, constraints on the dynamics of
the unmanned helicopter—such as confidence regions of the
software-components, requirements of the mission and the
payload, or aerodynamic and structural limitations—have to
be considered. Typical examples for such requirements are
smoothness of the trajectories, a certain flight velocity, or
limits of the acceleration.

In [9], [10] an optimization-based path following approach
is proposed, which generates feedforward inputs to the
underlying adaptive flight control system. An offline dynamic
optimization uses the reference model of the flight control
system as an approximation of the closed-loop dynamics.
The resulting input signals are stored in a database and
used during flight. Theses inputs steer the helicopter along
nonlinear paths. However, if disturbances occur in flight that
have not been considered during the optimization process,
the helicopter might deviate from the desired path.

Here, we extend the approach of [9], [10] by considering
the attenuation of disturbances in a run-to-run fashion. This
extension focuses on the translational motion of the heli-
copter and compensates for acceleration components caused
by model inaccuracies and unknown but constant wind con-
ditions. We propose estimation of the unknown disturbances
with a Kalman Filter. We validate the proposed approach
by means of simulation results and preliminary flight test
results. In order to demonstrate the quality and limitations
of the proposed approach no outer position feedback for
the adaptive flight controller is considered in simulation and
flight tests.

This paper is structured as follows: In Section II the prob-
lem of iteratively improving the path-following performance
in the context of adaptive flight control is introduced. In
Section III-A, we introduce the optimal control formulation



used to compute the feedforward commands. Section III-B
recalls important aspects of the underlying adaptive flight
control system, while in Section III-C the disturbance esti-
mation and the proposed algorithm for run-to-run rejection
are presented. Finally, we show simulation and flight test
results in Section IV, respectively, Section V.

II. PROBLEM FORMULATION

Next, we introduce the problem of this paper. As it will
be seen shortly, three different dynamic systems have to be
considered: the real dynamics of the helicopter, its known
approximated model, and the reference model of the flight
control system. These three systems are closely linked by the
flight control concept and motivate the way the disturbance
estimator will be designed later on.

The dynamics of the unmanned helicopter can generically
be written as

ẋp(t) = fp(xp(t),d(t), δp(t))), xp(0) = xp,0 (1a)
yp(t) = hp(xp(t)), (1b)

where xp ∈ Rnx represent the states and δp ∈ Rnδ is
the real actuator input of the helicopter. In practice, these
dynamics are only partially known. The time-varying and
unknown input d ∈ Rnd describes exogenous disturbances
(e.g. measurement error on the wind conditions).

Here, we consider a path-following control problem, i.e.,
the output1 yp ∈ Rny of the helicopter dynamics (1) shall
track a geometric reference path. Similar to [11], [12], the
considered path P ⊂ R4 is an explicitly parametrized curve
including the position r ∈ R3 and the yaw-angle ψ. The path
P is given by

P =
{

y ∈ R4 | θ ∈ [θ0, θ1]→ y = (r(θ), ψ(θ))T︸ ︷︷ ︸
=:p(θ)

}
, (2)

where the scalar variable θ is called the path parameter and
represents the reference position on the path. It is important
to note that this reference description does not involve a
reference timing. In general, θ(t) is time-dependent but its
time evolution is not known a priori, cf. [12], [11]. In order to
compute the time evolution t 7→ θ(t), we define an additional
dynamic system with input v, which will be used to control
the time evolution of θ(t). A double integrator has proven
sufficient for the purpose of this paper, thus θ̈ = v and a
corresponding state vector z := (θ, θ̇)T .

To achieve path following for the helicopter ARTIS, a
complicated control scheme is used. A simplified version of
this scheme is sketched in Figure 2. It involves three main
components: First, the flight control loops, marked by the
light shaded box, ensure flight stabilization. It receives path-
specific feedforward inputs uc computed by the optimization
block, which is the second main component in mid tone
grey. As mentioned, the helicopter dynamics (1) are not

1Note that this output does not represent the complete output used for
the adaptive flight controller. It represents only the coordinates of the path
definition. This simplification of notation is also included in Figure 2 where
the cascaded nature of the adaptive flight controller is omitted for clarity.

known exactly. Furthermore, wind might act as exogenous
disturbance on the helicopter. Thus, the model employed in
the optimization-block is subject to plant-model mismatch.
Here, we propose to account for this disturbance in a run-
to-run fashion by means of a disturbance estimation, which
is the third main component shaded in dark grey. Next,
we outline the main functionalities of these three main
components.

In the inner loop, adaptive flight control techniques [7] are
used to control the helicopter with limited model knowledge,
whereby the feedback part combines classical PID with an
adaptive compensator based on artificial neural networks
with a single hidden layer.

In a feedforward part of the flight controller, a known
(approximative) model of the plant is used

˙̂xp(t) = f̂p(x̂p(t), δp(t)), x̂p(0) = x̂p,0 (3a)

ŷp(t) = ĥp(x̂p(t)), (3b)

where x̂p ∈ Rn̂x ⊂ Rnx and ŷp ∈ Rny . In our case, the
feedforward is based on the dynamic inversion of a model in
the hover domain [8]. This technique uses designed reference
dynamics, which are called the reference model, to generate
reference trajectories xm for the feedforward and reference
outputs ym for tracking. The reference model is given by

ẋm(t) = fm(xm(t),d(t),uc(t)), xm(0) = xm,0 (4a)
ym(t) = hm(xm(t)), (4b)

where x̂m ∈ Rn̂x and ŷm ∈ Rny . It expresses the desired
closed-loop dynamics of the helicopter in terms of generating
reference trajectories xm based on the controller commands
uc. As it will be evident later, the reference model also
depends on the feedback δfb of the flight control error e.
This particular feedback is called pseudo control hedging
(PCH) [7]. While the details of this approach are beyond the
scope of this paper, it is important to note that the reference
model depends indirectly on the disturbance d and on the
plant-model mismatch, i.e., difference between fp and f̂p.

Here, we aim at run-to-run improvement of path following
in a feedforward fashion, whereby the feedforward com-
mands uc are computed by the optimization block, cf. Figure
2. To this end, an equivalent disturbance has to be estimated

-
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Fig. 2: General structure of the control architecture showing
the focus of this paper with dashed lines.



which contains the time varying external disturbance and the
modeling error ∆ = ẋp − ˙̂xp:

d̂(t) ≈∆(t) + d(t) (5)

Depending on its definition, the disturbance might also
depend on the states of the plant. In this context, this state
dependency is not resolved and rather represented by a time-
wise signal only. Now, we are ready to formally define the
problem of run-to-run disturbance rejection for feedforward
path following.

Problem 1 (Disturbance Rejection for Path Following):
Given the approximate helicopter dynamics (3), an adaptive
flight controller with the nominal reference model (4), and
a path P . At each iteration k, estimate a disturbance d̂k

and compute a corresponding transition time τk ∈ (0,∞),
a feedforward control ukc : [0, τ ]→ U , and a path evolution
θk : [0, τk]→ [θ0, θ1], which achieve the following:

i) Reduction of the path deviation: The path error

Ek =

∫ τk+1

0

∥∥∥hp(xk(t))− p(θk(t))
∥∥∥2 dt ≤ Ek−1

is reduced between flight trails (k − 1) and k.
ii) Forward motion: The system (4) moves in finite time τk

from hp(x
k
0) in forward direction to the final point θ1,

i.e., for all t ∈ [0, τk] : θ̇k(t) ≥ 0 and ym(τk) = p(θ1).
iii) Constraint satisfaction: The input and state constraints

of (4) are satisfied for all times, i.e., for all t ∈ [0, τk] :
ukc (t) ∈ U and xkm(t, xkm,0; ukc (·)) ∈ X .

III. ITERATIVE PATH FOLLOWING
Next, we discuss all three main components of Figure 2

starting with the optimization based command generation.
Afterwards some important aspects of the flight control
system are outlined. Finally, the disturbance estimation is
introduced, including the resulting algorithm for the iterative
path-tracking improvement.

A. Feedforward Path Following

In order to compute path-specific feedforward inputs uc,
we rely on ideas from model predictive path-following
control [11], [12]. Similar to our previous work [10] we
formulate an optimal control problem (OCP), which is solved
in a receding horizon fashion. That is, instead of solving
the OCP over the complete horizon τ , we solve a sequence
of OCPs over a shorter optimization horizon tI , which are
shifted forward along the path until its end is reached. This
approach speeds up the computation but comes at the cost
of approximating the optimal solution.

The OCP minimizes an objective by varying the decision
variables u = (uTω , ut, v)T , containing the flight control vari-
ables introduced later and the path parameter input v:

J (x0,u(·)) =

∫ ti+tI

ti

∥∥(eTP(t), ėTP(t))T
∥∥2
Qe

+ ‖z(t)− zr(t)‖2Qz
+
∥∥(uT (t), ȧt(t))

T
∥∥2
R
dt

Here, eP refers to a vector representing the path following
error. The matrices Qe,Qz,R contain weighting parameters.

The first term in the cost functional penalizes path deviation.
Introducing the time derivative of the path following error to
the objective avoids solutions where the resulting position
trajectory oscillates around the desired path. The second
term accounts for the deviation from the desired reference
behavior, and the third term introduces a regularization, u
and the thrust at, to smooth the optimal trajectories.

The overall OCP reads as follows:

minimize
uk(·)

J
(
xk0 ,u

k(·)
)

(6a)

subject to the dynamics

ẋm(t) = fm(xm(t), d̂k(θ(t)),u(t)), xm(0) = xm,0 (6b)

ż(t) = l(z(t), v(t)), z(0) = (θ0, 0)T (6c)

ėP(t) =
∂h

∂x
fm(xm(t), d̂k(θ(t)),u(t))− ∂p

∂z1
z2(t). (6d)

The dynamics (6b) are the reference model of the underlying
adaptive flight stabilization (4), cf. Section III-B. The term
l(·) is the double integrator of the path parameter dynamics.
The disturbance term is replaced by its estimate d̂k. Further-
more, constraints on states and inputs, as well as additional
constraints are considered

∀t ∈ [ti, ti + tI ] : xm(t) ∈ X , uk(t) ∈ U (6e)

∀t ∈ [ti, ti + tI ] : θ̇(t) ≥ 0 (6f)

θ̇(τ) = 0. (6g)

These constraints correspond to the controller’s validated
state-space region. The remaining constraints ensure that the
movement along the path is forward only and the helicopter
stops at the end of the path using τ as the time when the
helicopter reaches the path’s end.

It is worth noting that the disturbance estimate d̂ enters
the OCP. We explain in Section III-C how the estimate d̂ is
obtained.

B. Model Based Adaptive Control

This section motivates that from perspective of the refer-
ence model the disturbance is in fact the feedback used for
PCH. Furthermore, the outer loop reference model is pre-
sented in more detail to enable understanding the mechanics
of the disturbance estimate.

Flight control of ARTIS, like most helicopter flight con-
trol systems, is based on a cascaded approach. The inner
dynamics contain the rigid body rotational kinematics, the
dynamics of the main and tail rotor and the engine dynamics.
It also contains saturation of actuators, thrust and other
known dynamical limits. From perspective of the outer loop
these dynamics can be considered as an actuator. The outer-
loop dynamics are the translational motion of the helicopter.
Each loop has its own reference model. In this paper for the
disturbance compensation we focus on the outer-loop, while
the inner-loop dynamics are considered undisturbed. The
remaining tracking error caused by omitting the disturbance
for the inner-loops for a wind disturbance example will be
shown in the Section IV.
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Fig. 3: The translational reference model.

The aspect of the translation reference model important for
this paper is shown in Figure 3. The complete architecture
can be found in [8]. The dynamics of the reference model are
designed using the matrices Am and Bm. Note that while
these matrices might indicate a linear reference model, the
nonlinearity is introduces by the acceleration componenten
at creating an overall nonlinear reference model fm. The
feedback signal δfb contains linear velocity error feedback
in form of a PI controller but also the adaptive compensator.
The structure shown in the figure is a special form of PCH
as introduced by [8] such that the PCH does not require
state measurements of the actual plant, but uses the reference
model states instead. Two benefits are involved with this
structure: first, the reference model will not diverge from the
plant due to inner-loop saturations; and second, the actuator
dynamics are removed from the error states and thus hidden
from the adaptation, an effect referred to as hedging [7].

Figure 3b illustrates of the principal behind the reference
model signals. The acceleration of the helicopter r̈m consists
of different components, including gravity g and the accel-
eration caused by the main rotor thrust at. A property of
helicopters in the depicted classical rotor configuration is a
significant amount of aerodynamic and dynamic coupling.
The known part of this acceleration am is based on the
same model used for feedforward of Figure 2. All remaining
acceleration components caused by model uncertainty and in-
accurate wind information can be considered as a disturbance
acceleration d. From this discussion it is evident that the
feedback signal δfb is the only feedback into the reference
model that can change the reference trajectory compared to
the optimal ones. Furthermore, this feedback influences the
reference model similar to a disturbance acceleration, which
indicates a close relation between the equivalent disturbance
and the PCH feedback.

The complete reference dynamics can be found in [9].
These dynamics involve significant nonlinearities that make

the optimization computationally difficult. For this reason, a
reformulation is proposed in [10], which exploits the facts
that parts of the dynamics are invertible. This way, artificial
input variables can be introduced becoming the decision
variables for optimization without changing the reference
model itself. Using the optimized state trajectories of the
reformulated problem, the original commands uc ∈ R4 can
then be calculated in an algebraic fashion. The new inputs are
the second derivatives of the rotational rates uω ∈ R3, and
the second derivative of the mass normalized thrust ut ∈ R.
These reformulated internal dynamics can be written as

ω̈(t) = uω(t) (7a)
ät(t) = ut(t) (7b)

q̇(t) =
1

2
q(t)⊗ ω(t), (7c)

where ω represents the pure imaginary quaternion of ω and ⊗
the quaternion product. The inner-loop states are the attitude
q ∈ R4 represented by a quaternion, body-fixed rotation rates
ω ∈ R3 and its first and second derivative ω̇, ω̈. The engine
is modeled using a second-order system having the thrust
normalized by the helicopter’s mass at ∈ R as well as its
derivative ȧt as states.

For the outer-loop, the abbreviation R[a] is used to repre-
sent the rotation of a vector a, which is achieved by using the
formula for quaternion rotation aR = q⊗a⊗ q̄ and selecting
the imaginary part of the aR. Using the assumption that the
thrust is aligned with the main rotor shaft, the translation
dynamics already extended by an estimate of the disturbance
d̂ are given by

r̈m(t) = R

 0
0

−at(t)

+ g + am(xm(t)) + d̂(t). (8)

The overall state vector of the reference model is then
compiled to xm = (ṙT , qT ,ωT , ω̇T , at, ȧt)

T ∈ R15.

C. Disturbance Estimation

The path tracking error, which is the difference between
the desired and the actual position of the helicopter, contains
two components. First, the feedback δfb has an influence on
the signals of the reference model, such that the reference
signals do not match the solution of the OCP exactly. It
has been shown in the previous section that this feedback
acts like a disturbance acceleration from the perspective of
the reference model. Second, there is always a difference
between the reference model and the state of the plant
called the reference tracking error e. Its velocity component
eṙ = ṙm − ṙp is used here. The deviation is caused
by model inaccuracies of the feedforward part as well as
external disturbances like unmeasured wind. In the following
this deviation is considered to be caused by a disturbance
acceleration ad := ėṙ, such that

r̈p(t) = r̈m(t) + ad(t). (9)

Unfortunately, classical helicopter configurations are sub-
ject to a significant amount of vibration. As the small



scale helicopters considered here are limited in payload
capabilities, the inertial measurement units (IMU) are thus
limited in quality by weight as well as achievable sampling
rates. These two aspects render the direct measurement of
this disturbance infeasible. It hence has to be estimated.

A linear Kalman Filter (KF) is proposed as estimator in
this work. Nevertheless, there is a great variety of alternatives
to a KF based approach. One aspect shall be briefly dis-
cussed. The KF used here estimates the disturbance forward
in time. In contrast, approaches like optimal smoothing [13]
also include future measurements. This backward smoothing
enhances the estimate. However, as it is aimed to extend this
work in respect to an onboard closed-loop formulation at
some point, the backward smoothing cannot be applied.

The reference acceleration of (9) is recorded during flight
and can be considered as input for the estimation uest = r̈m.
The states of the estimator are augmented by ad, such that
xest = (ṙTp ,ad)

T . The linear process for estimation of a
slowly varying ad can now be written as

ẋest(t) =

(
0 I3
0 0

)
xest(t) +

(
I3
0

)
uest(t) + nx, (10)

where nx represents the process noise and I3 the 3×3 iden-
tity matrix. The correction is performed using the velocity
measurements and the measurement model

y(t) =

(
I3
0

)T
xest + ny, (11)

assuming the measurement noise ny .
The free parameters, namely the covariance matrices of

process and measurement noise are determined using a
derivative free, global optimization process. The optimization
of these parameters is performed once using flight test
data. The objective function of this optimization contains an
estimation error defined as

eest(t) = ṙp(t)− ṙp(t0)−
∫ t

t0

r̈m(τ) + ad(τ)dτ, (12)

which is in essence the velocity difference of the real plant
to the reference model corrected by the disturbance estimate.
The objective function additionally contains standard devia-
tion of the estimation error to penalize the noisiness of the
estimate.

The complete disturbance to be considered in the reference
model and optimization for path tracking at iteration k is
given by

d̂k(t) = d̂k−1(t) + δfb(t) + ad(t). (13)

Different possibilities have been investigated how this
disturbance estimate can be considered within the receding
horizon optimization. To this end, disturbances have been
generated in a full system simulation using a wind emulation
and an aerodynamic wind influence model. The results of the
OCP under ideal wind knowledge have then be compared to
different approaches where wind is assumed unknown and
the above procedure to estimate disturbance acceleration has
been applied. It has been found that strong simplifications as

assuming a constant mean value over the receding horizon
do significantly change the generated optimal trajectories.

The trend of the disturbance is hence important as well.
To this end, the following approach has proven successful:
Within the optimization horizon t ∈ [ti, ti + tI ], the distur-
bance estimate d̂(t) is locally represented by a sixth order
polynomial. As the path parameter is strictly increasing due
to the constraint in (6f) it is possible to replace the time-wise
representation of d̂(t) using the path parameter θ

d̂k(θ) ≈
6∑
j=0

ckj θ
j . (14)

In other words, for the re-optimization it is assumed
that the disturbance is repeatable at each position of the
path rather than a certain flight time. The parameters of
the polynomial are determined using a regression over
the optimization horizon with some time margin tm for
smoothness of the polynomial at the interval boarder,
t ∈ [ti − tm, ti + tI + tm]. This representation of the
disturbance can be considered within the optimization as it
simply extends the reference model as shown in (8). The
optimal time-wise evolution of the path parameter θk(t) at
iteration k is used to calculate an expected evolution of the
disturbance. This disturbance signal is stored together with
the input history ukc (t) in the maneuver database and used
in the feedforward during flight as shown in Figure 3a by
extending the signal (am+g) by the disturbance estimate d̂k.

The proposed scheme for run-to-run disturbance rejection
in feedforward path following can now be summarized. It
involves three main steps:
0 : Initialize with k = 0, path P , and disturbance estimate

d̂k(t) = 0.
1 : Optimization-based computation of feedforward com-

mands ukc (t) for the flight control system based on past
disturbance data.

2 : Application of ukc (t) to flight control system during the
flight along the path.

3 : Estimation of the disturbances d̂k(t) based on recorded
flight data.

4 : k → k + 1. If tracking error is insufficient, goto 1.
One limitation of the proposed approach is that, by design,

disturbances cannot be compensated if they do not reoccur
systematically during each iteration like (e.g. wind gusts).

IV. SIMULATION RESULTS

Next, we present results for an example path using a
system simulation of the ARTIS helicopter. This simula-
tion includes all software components present during flight.
Among others, it contains the flight control system outlined
here, sensor fusion and mission management. The identified
hover domain model is used as simulated dynamics of the
helicopter and sensor properties are emulated as well. Uni-
form static wind is introduced, which generates forces and
moments affecting the helicopter’s rigid body motion using



equivalent aerodynamic surfaces and lever arms. The opti-
mization has been implemented using the code generation of
the ACADO Toolkit, cf. [14]. Details on the implementation
can be found in [10].

In the example, the reference path is a clover leaf with
three leafs viewed from top. Additionally a height profile is
generated. The heading ψ is defined in forward direction such
that the helicopter is in side-slip free motion. The position
component of the path is defined as

r =

R cos
(
3θ − 3

2π
)

cos(θ)
R cos

(
3θ − 3

2π
)

sin(θ)
H sin(4θ)

 ,
R = 25 m,
H = 3 m.

(15)

The flight performance of one example of these non-
stationary, non-trim paths is shown in Figure 4, where the
position from different views and the absolute path error
‖ep‖ is presented. The desired flight velocity is 8 m/s, while
a wind of 10 m/s has been added, which is assumed to be
entirely unknown. The helicopter starts at r0 = (x0, y0, z0)T

from hover conditions and begins flying in southward direc-
tion. After completion of the path, the helicopter stops at the
initial position in hover condition. The flight is performed
several times using the iterative process outlined above.
All flights have been performed without position feedback,
which means the position measurement for the flight con-
troller has been disabled in order to highlight inaccuracies
of the presented method.

It can be seen that the path deviation ‖ep‖ of the first flight
is significant and exceeds 10 m. Already with the second
iteration, the path error is reduced to around 1-2 m. It is
only slightly improved by additional iterations.

The remaining flight path errors are caused by two sources:
first, the wind model also introduces disturbances of the
rotational dynamics caused by a lever arm between the
neutral point of the equivalent aerodynamic surfaces and the
center of gravity of the helicopter. These disturbances are not
estimated and considered within the optimization. Second,
the simulation also contains emulation of delays present in

Fig. 4: Simulation results of a clover leaf reference path with
10 m/s wind disturbance flown without position feedback.

the software and hardware interfaces also present in real
flight.

V. PRELIMINARY FLIGHT TEST RESULTS

In September 2014, flight tests of the path presented in
the simulation chapter have been conducted. Figure 5 shows
the flight from a ground camera perspective. In white, the
reference path is shown, which is defined by (15). The actual
path flown is drawn in green. The flight path error remains
in the range of 2 m in the presented case. Wind conditions on
the trial day were gentle breeze (number 3 on the Beaufort
scale). Equivalent to the simulation no position feedback
was used to determine the limits of the presented iterative
optimization-based approach.

In contrast to the simulation, the wind conditions were not
stationary. In order to decrease the effect of time varying
winds like gusts, for each iteration k, the flight was repeated
three times without reoptimization. Each flight results in a
separate time history of the disturbance. All flights involved
in one iteration were used to find a mean disturbance value
for each time step, that is

d̄(t) :=
1

3

3∑
i=1

d̂i(t). (16)

Figure 6 shows quantitative results of the performed flight
test. From top to bottom the iterations are shown starting
without disturbance compensation up to the second iteration.
Iterating further did not improve the tracking performance.
The left side shows the path error caused by a deviation of the
signals of the reference model. As can be seen these values
decrease with each iteration. The right side shows the actual
helicopter position in comparison with the desired path. Here,
the influence of the time varying wind is clearly visible in the
different curves. Nevertheless, an improvement is still visible
from around 5 m down to around 2.5 m. Although these
results strongly suggest that the proposed approach does
improve the tracking performance, a deep flight test analysis
is necessary to discuss all aspects of the validation of the
presented algorithm. Lessons learned from these experiments
are that it would be beneficial to test the approach with even
stronger wind. Additionally, the amount of wind variation
plays a significant role. This variation could be reduced either

Fig. 5: Ground camera perspective of the flight test of the
clover leaf path flown without position feedback.



by flying in higher altitudes or by introducing a virtual and
thus ideally known disturbance.

Figure 7 shows the Frobenius Norm of the matrix storing
all weights of the adaptive compensator, i.e. the sum of all
squared elements. With each iteration, this norm decreases
significantly. In other words, the model error that the adaptive
compensator has to adapt to decreases as well. This decrease
indicates that the unknown part of the disturbance also
decreases and both, model discrepancies and external distur-
bances, are captured adequately by the proposed approach.

VI. CONCLUSIONS

This paper presented a methodology for combining feed-
forward path following with run-to-run disturbance estima-
tion and rejection. It has been shown that the adaptive
feedback of a reference model-based approach can be used as
a first disturbance estimate. This estimate has to be extended
using the velocity control error. A Kalman Filter can be used
to tackle this second disturbance component. Simulations
have shown significant improvement of the path tracking for
an unmanned helicopter estimating outer-loop disturbances
in time-constant wind fields. Preliminary analyses of flight
test results confirm the tracking improvement to the extent
possible under the wind conditions of the flight test.

Future work will include a detailed analysis of the con-
ducted flight tests. It remains for investigation to assess
potential additional improvement by extending the estimation
for inner-loop disturbances.
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Fig. 6: Path tracking errors of the three flight test iterations.
The left shows the position error of the reference model while
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Fig. 7: Frobenius Norm of the weight matrix: The red solid
lines show the three flights without disturbance compensa-
tion, the dark green and dashed lines the first iteration and
light green and dotted lines the second iteration.


