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A new method for the design of fixed-structure dynamic output-feedback Linear Parameter Varying
(LPV) controllers for discrete-time LPV systems with bounded scheduling parameter variations is pre-
sented. Sufficient conditions for the stability, H2 and induced l2-norm performance of a given LPV system
are given through a set of Linear Matrix Inequalities (LMIs) and exploited for design. Extension to the
case of uncertain scheduling parameter value is considered as well. Controller parameters appear directly
as decision variables in the convex optimisation program, which enables preserving a desired controller
structure in addition to the low order. Efficiency of the proposed method is illustrated on a simulation
example, with an iterative convex optimisation scheme used for the improvement of the control system
performance.
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1. Introduction

The LPV system modelling and control paradigm arises naturally as a successor of classical gain-
scheduling controller design approaches (Leith and Leithead, 2000; Shamma and Athans, 1991).
It allows modelling a wide class of nonlinear systems and the use of many tools from the linear
systems theory for analysis and control. Consequently, a number of applications has been treated
in the LPV framework recently; modelling and control of turbofan engines (W. Gilbert et al.,
2010), active braking control (G. Panzani et al., 2012) and semi-active vehicle suspension design
(C. Poussot-Vassal et al., 2008), to name just a few.
Over the last 20 years, different continuous-time LPV controller design strategies for LPV systems

with state-space description were developed (Apkarian and Adams, 1998; F. Wu et al., 1996; Sato,
2011; Wu, 2001). Some important results for the stability analysis of uncertain and LPV polytopic
discrete-time systems are presented in (J. Daafouz and J. Bernussou, 2001; M. C. de Oliveira et al.,
1999; R. C. L. F. Oliveira and P. L. D. Peres, 2005). These ideas establish a good starting point for
the LPV controller synthesis. A few recent publications cover the case of controller synthesis for
discrete-time LPV systems affected by scheduling parameters with limited variations (F. Amato
et al., 2005; J De Caigny et al., 2012; R. C. L. F. Oliveira and P. L. D. Peres, 2009), and the
observer-based controller design for the LPV system with uncertainty in the measurement of the
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scheduling parameter is considered in (W.P.M. Heemels et al., 2010) .
All enlisted methods result in a controller in either state-feedback or full-order output-feedback

form. For online reconstruction of the full-order controller, time-consuming linear algebraic opera-
tions need to be employed. Moreover, the order of the controller may be too high since it depends
on the augmented plant model order. Some methods for the LPV controller reduction are available
(Beck, 2006), but there is no guarantee of preserving stability or performance of the original LPV
system with reduced-order controller. On the other side, a state-feedback LPV controller demands
state estimation, which is a non-trivial task for LPV systems. Often, the users may have a pref-
erence for a certain controller structure. Decentralised (N.R. Sandell et al., 1978) or distributed
(R. D’Andrea and G.E. Dullerud, 2003) controller structure may be essential in order to achieve
low complexity of the overall control system. However, in both cases of state-feedback or full-order
output-feedback controller design methods, controller is restored from the optimisation results by
a nonlinear change of variables. This means that the user requested structure in the controller can-
not be preserved. As well, in most practical applications, resources available for control are highly
limited. This is why a method for the direct design of low-order fixed-structure output-feedback
LPV controllers, which are easier and cheaper to implement and with accordingly lower execution
times, is highly needed.
Some methods for the fixed-order LPV controller design in the transfer function setting are

presented in (S. Formentin et al., 2013; W. Gilbert et al., 2010; Z. Emedi and A. Karimi, 2012).
The use of transfer function models is very well aligned with industrial practice and modelling
paradigm in the SISO case (Tóth, 2010). However, the extension to the MIMO case can be highly
non-trivial comparing to its simplicity in the state-space setting.
The importance of the discrete-time LPV controller design methods comes from the fact that the

LPV models produced by identification procedures are usually in discrete-time (Toth et al., 2009; V.
Cerone et al., 2012; Verdult, 2002). As well, control is anyway implemented using digital computers
in practice. The problem is that preservation of the closed-loop stability under the discretisation
of a continuous-time LPV system could require too high sampling frequency (R. Toth et al., 2008).
In (F.D. Adegas and J. Stoustrup, 2011), authors develop a fixed-structure state-space LPV con-

troller design method with guaranteed induced l2-norm performance. Performance analysis con-
ditions from (C.E. de Souza et al., 2006) are convexified around the slack variable matrix, and
its value is updated based on its relation with Lyapunov matrix. Appropriate two-step iterative
optimisation scheme is used to improve induced l2-norm performance. As this method shares some
common assumptions with the proposed method, numerical comparison on the example from (F.D.
Adegas and J. Stoustrup, 2011) will be performed.
In this paper a class of discrete-time LPV state-space plants, affine in the scheduling parameter

vector, is considered. User imposed controller structure is preserved since controller parameters
appear directly as decision variables in the convex optimisation program. The realistic case of lim-
ited scheduling parameter variations is treated through the use of Parameter Dependent Lyapunov
Functions (PDLF) affine in the scheduling parameter vector. Uncertainty in the scheduling param-
eter vector, coming from the sensor measurement error, can be considered in design. Upper bound
on the H2 and induced l2-norm performance of a control system is enhanced through the use of
iterative convex optimisation procedure.
The paper is organised as follows. First, preliminaries about the LPV system stability and per-

formance are given in Section 2. Stabilising LPV controller design procedure is proposed in Section
3. Extensions of the procedure to H2 and induced l2-norm performance design are given in Section
4. Numerical comparison with method (F.D. Adegas and J. Stoustrup, 2011) on the simulation
example is presented in Section 5. Finally, Section 6 contains concluding remarks.
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2. Preliminaries

2.1 LPV plant and controller

The class of LPV discrete-time systems considered in this paper can be represented by the following
model:

xg(k + 1) = Ag(θ)xg(k) +Bu(θ)u(k) +Bw(θ)w(k)

z(k) = Cz(θ)xg(k) +Dzu(θ)u(k) +Dzw(θ)w(k)

y(k) = Cyx(k) +Dyww(k).

(1)

Here xg(k) ∈ R
n represents the state vector, u(k) ∈ R

nu is the control input vector, z(k) ∈ R
nz is

the vector of controlled outputs and y(k) ∈ R
ny is the vector of measured outputs. The time-varying

scheduling parameter vector θ = [θ1(k), . . . , θnθ
(k)]T is assumed to belong to a hyper-rectangle

Θ ∈ R
nθ , or equivalently

θi(k) ∈ [−θi, θi], i = 1, . . . , nθ. (2)

where, without loss of generality, symmetric bounds around θi = 0 are assumed. Scheduling pa-
rameters θi are assumed to be independent.
Strict properness of the plant model is a non-restricting assumption, since in discrete-time sys-

tems there is always a delay of at least one sampling period. For a technical reason matrices Cy and
Dyw are assumed to be independent of the scheduling parameter vector. However, similar results
could be obtained for the case of Cy and Dyw depending on θ, and Bu and Dzu being constant.
Affine dependence on the scheduling parameter vector is assumed for all θ-dependent matrices.

This can be represented, for example for Ag, as

Ag(θ(k)) = Ag0 +

nθ∑
i=1

θi(k)Agi . (3)

The following fixed-order LPV dynamic output feedback controller structure is considered:

xc(k + 1) = Ac(θ)xc(k) +Bc(θ)y(k)

u(k) = Ccxc(k) +Dcy(k),
(4)

where xc(k) ∈ R
nc represents the controller state vector. The choice of controller order nc is fully

left to user.
Matrices Ac(θ) and Bc(θ) are supposed to have an affine dependency on scheduling parameter

vector. This implies that the closed-loop matrices are as well affine in the scheduling parameters.
Closed-loop system equations can be written as

x(k + 1) = Acl(θ)x(k) +Bcl(θ)w(k)

y(k) = Ccl(θ)x(k) +Dcl(θ)w(k),
(5)
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where x(k) = [xg(k) xc(k)]
T and

Acl(θ) =

[
Ag(θ) +Bu(θ)DcCy Bu(θ)Cc

Bc(θ)Cy Ac(θ)

]

Bcl(θ) =

[
Bw(θ) +Bu(θ)DcDyw

Bc(θ)Dyw

]

Ccl(θ) =
[
Cz(θ) +Dzu(θ)DcCy Dzu(θ)Cc

]
Dcl(θ) =

[
Dzw(θ) +Dzu(θ)DcDyw

]
(6)

Remark 1: The closed-loop matrices in (6) are affine in θ as some plant matrices are limited
to be θ-independent. If this was not the case, the problem could be treated using the homogenous
polynomials relaxations (e.g. as in (J De Caigny et al., 2012). However, for the simplicity of
presentation we continue with this assumption.

2.2 Discrete-time LPV system stability conditions

Assessing the stability of an LPV system through the use of a Lyapunov function quadratic in the
state is well treated in the literature (e.g. (M. C. de Oliveira et al., 1999)). In the discrete-time case,
keeping the Lyapunov matrix P constant over Θ is too restrictive even if the scheduling parameters
can change from one extremal value to another over the course of one sampling period (J. Daafouz
and J. Bernussou, 2001). Usually in practical applications the maximum possible variation of a
scheduling parameter is bounded as in

θ+i − θi ∈ [−δi, δi], 0 < δi < 2θi, i = 1, . . . , nθ, (7)

where θ+ = θ(k+1). To exploit the bounds on scheduling parameter variation, Lyapunov matrix
affine in the scheduling parameter vector is considered:

P (θ) = P0 +

nθ∑
i=1

θiPi > 0, ∀θ ∈ Θ. (8)

Using (8) well-known stability condition for a discrete-time LPV system can be written as

P (θ)−AT
cl(θ)P (θ+)Acl(θ) > 0. (9)

This condition has to be satisfied for all admissible values of (θ,θ+). The limits on scheduling
parameters (2) and their variations (7) imply that (θi, θ

+
i ) belongs to a set presented by filling

on Fig. 1. The set of vertices of hexagon AiBiDiEiFiHi will be denoted by Ωvi . This means
that the pair (θ,θ+) always belongs to the polytope Ω whose vertex set Ωv is given by Ωv =
Ωv1 × Ωv2 × · · · × Ωvnθ

. The logic behind Fig. 1 is rather intuitive. For example, point Hi comes

from the fact that if θi = −θi, then θ+i ≤ −θi + δi, since δi is maximum possible increase of θi over
one sample. Points Bi, Di and Fi can be obtained in a similar manner.

Remark 2: There are two limit cases that are covered by this setup. First is the fixed scheduling
parameter case, which is defined by δi = 0. In this case the hexagon AiBiDiEiFiHi collapses into
a line AiEi. In the case of maximum possible variations, defined by δi = 2θi, the filled hexagon
degenerates into a square AiCiEiGi. However, the primary focus here is on the non-degenerate
case, taking its importance into account.
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θi(k + 1)

θi(k)−θi −θi + δi 0 θi − δi θi

−θi

−θi + δi

0

θi − δi

θi

Ai Bi Ci

Di

EiFiGi

Hi

Figure 1. Admissible (θi, θ
+
i ) space (filled).

Remark 3: The case of non-symmetric variation bounds could be treated straightforwardly. Sym-
metric bounds are assumed for the simplicity of presentation.

Equivalent representation of (9) in the literature (see e.g. (J. Daafouz and J. Bernussou, 2001))
is [

P (θ) AT
cl(θ)P (θ+)

P (θ+)Acl(θ) P (θ+)

]
> 0. (10)

As controller variables appearing in Acl multiply unknown Lyapunov matrix P in (10), the con-
troller synthesis problem becomes a Bilinear Matrix Inequality (BMI) optimisation program. As
it is a non-convex optimisation problem, obtaining even (good) local solution is far from trivial.
Another issue is that multiplication of θ and θ+ produces the infiinite number of constraints.
This can be substituted by a finite number of constraints by application of some relaxation tech-
nique (Scherer, 2006). The idea applied in this publication is to substitute the given infinite set of
non-convex constraints on design variables by a finite number of linear matrix inequalities in the
controller and Lyapunov function parameters.

3. Stabilising Fixed-structure Discrete-time LPV Controller Synthesis

Over the last 15 years, stability of uncertain and LPV systems is treated using different “slack
matrix variable” approaches (J. Daafouz and J. Bernussou, 2001; M. C. de Oliveira et al., 1999; R.
C. L. F. Oliveira and P. L. D. Peres, 2005). Similar conditions are developed in (M. S. Sadabadi
and A. Karimi, 2013) and applied to robust fixed-order controller design for uncertain polytopic
systems. These results will be extended to LPV systems.
First, the well-known KYP lemma needs to be recalled. KYP lemma for the discrete-time systems

states that the biproper transfer function H(z) = C(zI−A)−1B+D is Strictly Positive Real (SPR)
if and only if ∃P = P T > 0 such that

[
ATPA− P ATPB −CT

BTPA− C BTPB −D −DT

]
< 0. (11)
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The following lemma based on the theory from (M. S. Sadabadi and A. Karimi, 2013) represents
a basis for this LPV fixed-structure controller synthesis approach.

Lemma 1: A Strictly Positive Real (SPR) transfer function H(z) and H−1(z) satisfy discrete-time
Kalman-Yakubovic-Popov (KYP) lemma with a common Lyapunov matrix P .

Lemma 2: Matrix inequalities

[
P −MTPM MTP −MT + T TAT

clT
−T

PM −M + T−1AclT 2I − P

]
> 0 (12)

and [
PT −AT

clPTAcl AT
clPT −AT

clX +MT
T

PTAcl −XAcl +MT 2X − P

]
> 0, (13)

where

PT = T−TPT−1, MT = T−TMT−1, X = T−TT−1,

are equivalent.

Proof. This lemma is a consequence of Lemma 1. Inequality (12) represents the KYP lemma
inequality for

H(z) =

[
M I

M − T−1AclT I

]
(14)

Inequality (13) represents the KYP lemma inequality for

H−1(z) =

[
T−1AclT I

T−1AclT −M I

]
(15)

which is pre- and postmultiplied by block-diagonal matrix diag(T−T , T−T ) and its transpose. �
Alternatively, the equivalence of (12) and (13) can be proven using the matrix

L =

[
T−1 0

MT−1 − T−1Acl T
−1

]
. (16)

Namely, (13) is obtained as (12) pre- and post-multiplied by LT and L. Since pre- and post-
multiplication of matrix by the invertible matrix and its transpose do not change its positive
definiteness, the matrix inequalities (12) and (13) are equivalent.

Remark 4: It can be noticed that Schur stability of both matrices A and M is implied through the
positive definiteness of the upper left blocks of given matrix inequalities.

3.1 Fixed-structure LPV Controller Design Conditions

Using Lemma 2, a sufficient condition for the fixed-structure LPV controller synthesis is proposed.

Theorem 1: Assume that are given a discrete-time LPV plant affine in scheduling parameter
vector θ, bounds on the scheduling parameter vector and its variation as in Preliminaries. Fur-
thermore, assume an LPV controller structure (4). Given matrices M and T , there exists an LPV
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controller stabilising the given LPV plant for all admissible scheduling parameter trajectories if

[
P (θ)−MTP (θ+)M (∗)

P (θ+)M −M + T−1Acl(θ)T 2I − P (θ+)

]
> 0, (17)

P (θ) > 0 , ∀(θ,θ+) ∈ Ωv,

with (∗) representing the terms completing the symmetric matrix.

Proof. First it can be observed that the left-hand side of (17) is affine in pair (θ,θ+). This means
that its validity for ∀(θ,θ+) ∈ Ω can be proven using an appropriate convex combination of vertex
inequalities.
Next, it has to be proven that validity of (17) implies stability condition for the closed-loop

system ∀(θ,θ+) ∈ Ω. Similarly to the alternative proof of Lemma 2, the following matrix can be
considered:

L(θ) =

[
T−1 0

MT−1 − T−1Acl(θ) T
−1

]
. (18)

Pre- and post-multiplication of (17) by LT (θ) and L(θ) imply positive-definiteness of

[
PT (θ)−AT

cl(θ)PT (θ
+)Acl(θ) (∗)

PT (θ
+)Acl(θ)−XAcl(θ) +MT 2X − PT (θ

+)

]
(19)

for ∀(θ,θ+) ∈ Ω, with the same shorthands as in Lemma 2. The top left block of 19 represents
the stability condition (9) for the closed-loop LPV system. Since its positivity for ∀(θ,θ+) ∈ Ω is
guaranteed by the Schur complement lemma, stability of the closed-loop system is guaranteed for
all allowable scheduling parameter trajectories. �

Remark 5: The total number of constraints in the non-degenerate case corresponds to the car-
dinality of the set Ωv, which equals 6nθ . Considering that in realistic applications there are rarely
more than 3 scheduling parameters (F. Wu et al., 1996), this number of LMIs should be numerically
tractable in acceptable execution time.

3.2 Fixed-structure LPV Controller Synthesis Algorithm

In the continuous-time LPV controller design method presented in (Z. Emedi and A. Karimi, 2013),
the idea for choosing matrix M is based on the design of initial controllers for all vertices of Θ, and
solving the inverse of the synthesis problem. Similar idea can be applied here to find appropriate
values for M and T .

Remark 6: It is important to emphasise that the fixed-structure controller design is not a trivial
task even for an LTI plant, being a non-convex optimisation problem as well. A few approaches are
available in the form of Matlab R© toolbox for H∞ and H2 controller design, for example hinfstruct
(Apkarian and Noll, 2006), HIFOO (Burke et al., 2006) and FDRC (M. Sadeghpour et al., 2012).
Since we need an LTI controller just to initialise the algorithm (not necessarily an optimal one, in
any sense), one of these or similar methods should suffice.

Suppose that initial controllers Ki, i = 1, . . . , 2nθ correspond to the vertices of hyper-rectangle Θ.
This means that for each LTI system obtained by fixing θv ∈ Θv one of the above-mentioned fixed-
structure LTI controller design methods is used to design appropriate stabilising LTI controller
Ki. The next step is the choice of matrices M and T . Based on Ki, i = 1, . . . , 2nθ , closed-loop
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matrices Acl(θv) can be calculated. By introducing Acl(θv) into (19), feasible X, MT and PT can
be obtained. Then, from matrix X the similarity transform matrix T can be reconstructed by
Cholesky factorisation, and from MT and T rises M = T TMTT . Now the controller design phase
can be performed using M and T in (17).
If this method fails in the first phase, an alternative set of constraints can be used. The idea is

to replace (17) and (19) by

[
σ2P (θ)−MTP (θ+)M (∗)

P (θ+)M −M + T−1Acl(θ)T 2I − P (θ+)

]
> 0, (20)

[
σ2PT (θ)−AT

cl(θ)PT (θ
+)Acl(θ) (∗)

PT (θ
+)Acl(θ)−XAcl(θ) +MT 2X − PT (θ

+)

]
> 0. (21)

Now iterating between (21) and (20) is performed, until minimal σ is obtained. This corresponds
to the exponential decay minimisation, and σ ≤ 1 guarantees stability of the closed-loop system.
This algorithm can be summarised in the 4 following steps:

step 1 : choose small ε > 0; design the initial controllers K0
i , i = 1, . . . , 2nθ for θv ∈ Θv; set j = 0

step 2 : for ∀θv ∈ Θv calculate Acl(θv) using Kj−1; set (21) for ∀(θ,θ+) ∈ Ωv using Acl(θ)
and find feasible X, MT and PT (θ) while minimising σ by bisection; reconstruct T from
X = T−TT−1 and subsequently M = T TMTT ;

step 3 : set (20) for ∀(θ,θ+) ∈ Ωv using M and T obtained in step 2 and search for feasible
Kj+1, PT (θ) and minimal (by bisection) σj ;

step 4 : if σj − σj−1 > ε set j = j + 1 and jump to the step 2; otherwise stop.

Equivalence of (20) and (21) ensures that at worst case in step 3 we will obtain exactly the
same controller and σj as those applied in step 2. Therefore stability indicator (and exponential
decay parameter) σj is monotonically non-increasing in this synthesis procedure.
The final value of σ depends on the choice of initial controllers. In the case that the final value

is not satisfactory, or that its value is above 1, another set of initial controllers should be used.
Similar re-initialisation is proposed in both hinfstruct or HIFOO for LTI controller design.

3.3 Treatment of Scheduling Parameter Uncertainty

In reality, the exact value of the scheduling parameter θ is never available. Even if the scheduling
parameter is directly measured (i.e. not estimated), what will be available in the real-time is
the value affected by the measurement error of measurement device. Assume that the maximum
absolute error of the measurement device for the ith component of the scheduling parameter vector
is ∆ei > 0. If we denote by θ̂ measured value of the scheduling parameter and considering θ as an

exact value, this means that θ̂i − θi ∈ [−∆ei ,∆ei ], i = 1, . . . , nθ.
Current values of the controller matrices are calculated online based on the available value

of the scheduling parameter, so what will be used to control the given system is a controller
(Ac(θ̂), Bc(θ̂), Cc(θ̂),Dc(θ̂)). This means that the closed-loop system matrices are affected by both

8
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θ and θ̂ in the affine fashion as following:

Acl(θ, θ̂) =

[
Ag(θ) +Bu(θ)DcCy Bu(θ)Cc

Bc(θ̂)Cy Ac(θ̂)

]

Bcl(θ, θ̂) =

[
Bw(θ) +Bu(θ)DcDyw

Bc(θ̂)Dyw

]

Ccl(θ) =
[
Cz(θ) +Dzu(θ)DcCy Dzu(θ)Cc

]
Dcl(θ) =

[
Dzw(θ) +Dzu(θ)DcDyw

]
.

(22)

Assume again Lyapunov function quadratic in the state V (k) = x(k)TP (θ(k))x(k). Taking into
account dynamics affected by the uncertainty as in (22), Lyapunov function difference over one
sampling period is

V (k + 1)− V (k) = xT (k + 1)P (θ(k + 1))x(k + 1)− xT (k)P (θ(k))x(k) =

= xT (k)AT
cl(θ(k), θ̂(k))P (θ(k + 1))AT

cl(θ(k), θ̂(k))x(k)− x(k)TP (θ(k))x(k) =

= xT (k)[AT
cl(θ(k), θ̂(k))P (θ(k + 1))Acl(θ(k), θ̂(k))− P (θ(k))]x(k).

(23)

Consequently, the following condition has to be satisfied to guarantee the closed-loop stability:

P (θ(k))−AT
cl(θ(k), θ̂(k))P (θ(k + 1))Acl(θ(k), θ̂(k)) > 0, ∀(θ(k), θ̂(k),θ(k + 1)). (24)

Assume that for each index i the vertex set of an allowable space of (θi, θ
+
i , θ̂i) is denoted by

Ωu
vi , illustrated on Fig. 2. This means that the triplet (θ,θ+, θ̂) always belongs to the polytope Ωu

whose vertex set Ωu
v is given by Ωu

v = Ωu
v1 ×Ωu

v2 × · · · ×Ωu
vnθ

. But, as Acl(θ(k), θ̂(k)) is affine in the

couple (θ, θ̂), we can replace (20) and (21) by

[
σ2P (θ)−MTP (θ+)M (∗)

P (θ+)M −M + T−1Acl(θ, θ̂) 2I − P (θ+)

]
> 0, (25)

P (θ) > 0 , ∀(θ,θ+, θ̂) ∈ Ωu
v ,

and

[
σ2PT (θ)−AT

cl(θ, θ̂)PT (θ
+)AT

cl(θ, θ̂) (∗)
PT (θ

+)Acl(θ, θ̂)−XAcl(θ, θ̂) +MT 2X − PT (θ
+)

]
> 0, (26)

P (θ) > 0 , ∀(θ,θ+, θ̂) ∈ Ωu
v .

So, in the presence of non-negligible uncertainty in the scheduling parameter vector, stabilising DT
LPV controller can be designed using similar algorithm as in Subsection 3.2, with Ωu

v replacing Ωv,

(θ,θ+, θ̂) replacing (θ,θ+) and (25) and (26) replacing (20) and (21), respectively.
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(−θi,−θi + δi,−∆ei)

(−θi,−θi + δi,∆ei)

(−θi,−θi,−∆ei)

(−θi,−θi,∆ei)

(−θi + δi,−θi,−∆ei)

(−θi + δi,−θi,∆ei)

(θi, θi − δi,−∆ei)

(θi, θi − δi,∆ei)

(θi, θi,−∆ei)

(θi, θi,∆ei)

(θi − δi, θi,−∆ei)

(θi − δi, θi,∆ei)

Figure 2. Admissible (θi, θ
+
i , θ̂i) space is a polytope with 12 vertices.

4. Induced l2-Norm and H2 Performance Specifications

While ensuring stability of the controlled system, it is important to optimise some performance
indices of the closed-loop system. A widely used performance measure for the LPV control systems
is the induced l2-norm, an extension of the H∞ norm of LTI systems. In general, it gives a good
upper bound on the ratio of “energy” of the performance output and external excitation. The other
standard performance measure that will be considered here is H2 norm. It represents the upper
bound on the “energy” of the performance output if the external input is white noise with identity
covariance matrix.

4.1 Induced l2-Norm Performance Controller Design

A formal definition of induced l2-norm performance is given as follows (J De Caigny et al., 2012):

Definition 1: Suppose that the external input w(k) belongs to l2, the set of all discrete-time signals
with bounded 2-norm. Then γ is an upper bound on the induced l2-norm performance of the LPV
system (5) if

sup
w �=0

‖z‖22
‖w‖22

< γ (27)

for all allowable scheduling parameter trajectories.

Induced l2-norm performance of an LTI system can be characterised through the well-known
Bounded Real Lemma. Its extension to the LPV system case can be found in the literature (similar
to e.g. (C.E. de Souza et al., 2006)):

Lemma 3: γ is the upper bound on the induced l2-norm of the LPV system (5) if

P−AT
clP

+Acl−γ−1CT
clCcl−(BT

clP
+Acl+γ−1DT

clCcl)
T
(
I − γ−1DT

clDcl −BT
clP

+Bcl

)−1
(BT

clP
+Acl+γ−1DT

clCcl) > 0
(28)

is satisfied for ∀(θ,θ+) ∈ Ω, where dependence on θ is omitted, and P+ = P (θ+).

Our goal is to propose a method for fixed-structure discrete-time LPV controller design, guaran-
teeing good induced l2-norm performance for a given LPV system. Similarly to the stabilising LPV
controller design problem, constraints (28) define a non-convex set in the space of design variables.

10
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The following theorem proposes an inner convex approximation of the non-convex solution set.

Theorem 2: Assume that are given a discrete-time LPV plant affine in scheduling parameter
vector θ , bounds on the scheduling parameter vector and its variation as in Preliminaries. Fur-
thermore, suppose that the LPV controller structure is given by (4). Given decoupling matrix M and
state transformation matrix T , there exists an LPV controller stabilising the given LPV plant and
ensuring the induced l2-norm performance to be at most γ for all admissible scheduling parameter
trajectories if 


P (θ)−MTP (θ+)M (∗) (∗) (∗)

P (θ+)M −M + T−1Acl(θ)T 2I − (θ+) (∗) (∗)
0 BT

cl(θ)T
−T I (∗)

Ccl(θ)T 0 Dcl(θ) γI


 > 0, (29)

P (θ) > 0 , ∀(θ,θ+) ∈ Ωv.

Proof. As the expression (29) is affine in the pair (θ,θ+), we can conclude that its validity for
∀(θ,θ+) ∈ Ωv guarantees the validity for ∀(θ,θ+) ∈ Ω as well. Next, we will prove that validity of
(29) for ∀(θ,θ+) ∈ Ω implies the satisfaction of (28). Consider the non-singular matrix

L∞1
(θ) =

[
T−T T−TMT −AT

cl(θ)T
−T 0 −γ−1CT

cl(θ)
0 BT

cl(θ)T
−T −I γ−1DT

cl(θ)

]
. (30)

Pre- and post-multiplication of (29) by L∞1
(θ) and LT∞1

(θ), and then immediate application
of Schur complement lemma around the bottom-right block, produces exactly (28) with PT =
T−TPT−1 instead of P . This guarantees the upper bound γ on the induced l2-norm performance
for all possible scheduling parameter trajectories. �
To be able to choose M and T , we propose a matrix inequality equivalent to (29) in which

matrices M , T and P are decoupled.

Lemma 4: The matrix inequality


PT (θ)−AT
cl(θ)PT (θ

+)Acl(θ) (∗) (∗) (∗)
PT (θ

+)Acl(θ)−XAcl(θ) +MT 2X − PT (θ
+) (∗) (∗)

Bcl(θ)MT −Bcl(θ)XAcl(θ) BT
cl(θ)X I (∗)

Ccl(θ) 0 Dcl(θ) γI


 > 0 (31)

is equivalent to (29) for ∀(θ,θ+) ∈ Ω.

Proof. Observe the matrix

L∞2
(θ) =



T−T T−TMT −AT

cl(θ)T
−T 0 0

0 T−T 0 0
0 0 I 0
0 0 0 I


 . (32)

Pre- and post-multiplication of (29) by L∞2
(θ) and LT∞2

(θ) gives exactly (31). Since the matrix
L(θ) is non-singular, these two matrix inequalities are equivalent by the same argument of Lemma
2. �
Now similar algorithm to the one in Section 3 can be developed. Here the initialisation can be

performed directly using the previously designed stabilising LPV controller. The optimal cost γi
will be monotonically non-increasing for the reason of equivalence of (31) and (29).

11
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4.2 H2 Performance Controller Design

Similarly to Definition 1, we can give a formal definition of H2 performance (J De Caigny et al.,
2012).

Definition 2: Assume that the white noise with the identity covariance matrix acts as the external
input w(k). We say that η is an upper bound on the H2 performance of the LPV system (5) if

lim sup
T→∞

E

{
T∑

k=0

zT (k)z(k)

}
< η (33)

for all allowable scheduling parameter trajectories.

The following representation of the H2 performance guarantee condition can be found in the
literature (similarly to e.g. (K.A. Barbosa et al., 2002)):

Lemma 5: η is the upper bound on the H2 performance of the LPV system (5) if there exist P (θ)
and W (θ) such that

[
P (θ+)−Acl(θ)P (θ)AT

cl(θ) Bcl(θ)
BT

cl(θ) I

]
> 0,


 W (θ) Ccl(θ)P (θ) Dcl(θ)
P (θ)CT

cl(θ) P (θ) 0
DT

cl(θ) 0 I


 > 0, (34)

trace(W (θ)) < η

is satisfied for ∀(θ,θ+) ∈ Ω.

Remark 7: To avoid technical problems, we will assume here that Cz(θ) = Cz and Dzu = 0. This
leads to matrix Ccl not depending on θ nor the optimisation variables. If these assumptions are not
met, but Bw(θ) = Bw and Dyw = 0, we could write the other form of (34) in which instead of Ccl

the matrix Bcl multiplies P .

We propose the following LPV controller design conditions based on (34).

Theorem 3: Suppose that the discrete-time LPV plant, which is affine in scheduling parameter
vector θ, has bounds on the scheduling parameter vector and its variation as defined in Prelimi-
naries. Furthermore, suppose that the LPV controller structure is given by (4). Given decoupling
matrix M and state transformation matrix T , there exists an LPV controller stabilising given LPV
plant and ensuring the H2-norm to be at most η for all admissible scheduling parameter trajectories
if there exist such P (θ) and W (θ) that


 P (θ+)−MP (θ)MT (∗) (∗)
P (θ)MT −MT + T TAcl(θ)T

−T 2I − P (θ) (∗)
BT

cl(θ)T
−T 0 I


 > 0,

12
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
 W (θ) CclTP (θ) Dcl(θ)
P (θ)T TCT

cl P (θ) 0
DT

cl(θ) 0 I


 > 0, (35)

trace(W (θ)) < η,

P (θ) > 0 , ∀(θ,θ+) ∈ Ωv.

Proof. From the affineity of (35) in the pair (θ,θ+), we can conclude that (35) is valid for
∀(θ,θ+) ∈ Ω. Next, observe the non-singular matrix

L21
(θ) =

[
T TM −Acl(θ)T 0
0 0 I

]
. (36)

By pre- and post-multiplication of the first inequality in (35) by L21
(θ) and LT

21
(θ) we obtain that

[
PT (θ

+)−Acl(θ)PT (θ)A
T
cl(θ) Bcl(θ)

BT
cl(θ) I

]
> 0, (37)

with PT = TPT T , is satisfied for ∀(θ,θ+) ∈ Ω. Similarly we can define the matrix L22
(θ) =

diag(I, T, I). Pre- and post-multiplication of the second inequality in (35) by L22
(θ) and LT

22
(θ)

leads to 
 W (θ) CclPT (θ) Dcl(θ)
PT (θ)C

T
cl PT (θ) 0

DT
cl(θ) 0 I


 > 0. (38)

Finally, the third inequality of (35) with (37) and (38) ensures that (34) is satisfied ∀(θ,θ+) ∈ Ω.
�
The following lemma can be used for the initial choice of M and T .

Lemma 6: The system of matrix inequalities


 PT (θ

+)−Acl(θ)PT (θ)A
T
cl(θ) (∗) (∗)

PT (θ)A
T
cl(θ)−XAT

cl(θ) +MT
T 2X − PT (θ) (∗)

BT
cl(θ) 0 I


 > 0,


 W (θ) CclPT (θ) Dcl(θ)
PT (θ)C

T
cl PT (θ) 0

DT
cl(θ) 0 I


 > 0, (39)

trace(W (θ)) < η,

P (θ) > 0 , ∀(θ,θ+) ∈ Ωv,

with PT = TPT T , MT = TMT T and X = TT T , is equivalent to (35).

13
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Proof. By the pre-multiplication of the first inequality in (35) by

L23
(θ) =


T TM −Acl(θ)T 0
0 T 0
0 0 I


 (40)

and post-multiplication by LT
23
(θ) exactly the first inequality in (39) is obtained. As already men-

tioned, the second inequality of (39) can be obtained from the second inequality of (35) using
L22

(θ). Now, as both L22
(θ) and L23

(θ) are square and invertible, equivalence of (39) and (35) is
ensured. �
An algorithm similar to the one in Section 3 and ensuring the monotonically non-increasing

behavior of η can be used for the iterative controller improvement.

5. Simulation results

To illustrate the potential of the proposed method and compare it with the method developed in
(F.D. Adegas and J. Stoustrup, 2011), simulation example from (F.D. Adegas and J. Stoustrup,
2011) is used. Plant matrices are given as following:

A(θ) =




0.7370 0.0777 0.0810 0.0732
0.2272 0.9030 0.0282 0.1804
−0.0490 0.0092 0.7111 −0.2322
−0.1726 −0.0931 0.1442 0.7744


+ θ




0.0819 0.0086 0.0090 0.0081
0.0252 0.1003 0.0031 0.0200
−0.0055 0.0010 0.0790 −0.0258
−0.0192 −0.0103 0.0160 0.0860


 ,

Bw =




0.0953 0 0
0.0145 0 0
0.0862 0 0
−0.0011 0 0


 , Bu =




0.0045 0.0044
0.1001 0.0100
0.0003 −0.0136
−0.0051 0.0936


 ,

Cz =


1 0 −1 0
0 0 0 0
0 0 0 0


 , Cy =

[
1 0 0 0
0 0 1 0

]
,

Dzu =


0 0
1 0
0 1


 , Dyw =

[
0 1 0
0 0 1

]
, Dzw =


0 0 0
0 0 0
0 0 0


 .

Bounds on the scheduling parameter are given as θ ∈ [−1, 1]. Analysis of the system for fixed
values of the scheduling parameter shows that the number of unstable poles changes over the
interval, as all the poles lie inside the unit circle for θ = −1, but one pole is outside of it for θ = 1.
In (F.D. Adegas and J. Stoustrup, 2011), variation of the scheduling parameter is assumed to

belong to the interval [−0.01, 0.01]. Here, we assume larger bounds as δ ∈ [−1, 1], which means
that the scheduling parameter can move over the half of its bounding interval over one sampling
period. Control goal defined in (F.D. Adegas and J. Stoustrup, 2011) is to design a fourth order
decentralised controller. It is shown that the goal can be achieved after 46 iterations and that the
final 4th order decentralised controller is obtained with optimal γ equal to 4.78.
In this paper, much simpler decentralised static output-feedback controller is designed instead

of the 4th order decentralised controller. Initial decentralised static output-feedback controllers K0
1

14
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and K0
2 for θ = −1 and θ = 1 are designed using hinfstruct. Obtained controllers are

K0
1 =

[
0.0101 0

0 0.03838

]
, K0

2 =

[
1.26 0
0 0.4108

]
,

with corresponding H∞ performances of 0.0977 and 1.8392. Note that these values correspond
to the square root of the induced-l2 norm performance indicator γ used in (F.D. Adegas and J.
Stoustrup, 2011) and here, so the comparable value from (F.D. Adegas and J. Stoustrup, 2011)
is

√
4.78 = 2.1863. Starting from the presented initial controllers, in only two iterations presented

algorithm converges to a decentralised static output-feedback LPV controller

K(θ) =

[
0.7056 0

0 0.3549

]
+ θ

[
0.5549 0

0 0.0559

]
.

The controller is designed using SDPT3 (Toh et al., 1999) as a convex optimisation solver, and
obtained performance indicator is

√
γ = 1.8449.

This means that a better level of performance is reached with simpler controller than the one
obtained in (F.D. Adegas and J. Stoustrup, 2011), as well for larger possible variations of the
scheduling parameter. Also, obtained level of performance is just marginally worse than the one
obtained with the LTI decentralised static output-feedback for the second vertex (1.8392). To
further illustrate obtained level of performance and usefulness of fixed-structure controller design,
for 51 values of θ from [−1, 1] optimal full-order output-feedback LTI controllers are designed
using hinfsyn of Matlab R©. The worst-case H∞ norm obtained for these controllers is 1.6214.
Given relatively low loss of performance for the gain of much simpler controller structure (full-
order output-feedback vs. decentralised static output-feedback), it may be concluded that given
method provides a good alternative control solution.

6. Conclusion

In this paper a method for designing fixed-structure dynamic output-feedback Linear Parame-
ter Varying (LPV) controllers for discrete-time LPV systems with bounded scheduling parameter
variations is presented. Proposed controller design scheme can iteratively improve induced l2-norm
performance of the controlled system. Provided simulation comparison illustrates that good per-
formance can be achieved in a relatively low number of iterations, even for an LPV controller with
very limited order and structure.

References

Apkarian, P. and Adams, R. J. (1998). Advanced gain-scheduling techniques for uncertain systems. IEEE
Transactions on Control Systems Technology, 6(1):21–32.

Apkarian, P. and Noll, D. (2006). Nonsmooth H∞ synthesis. IEEE Transactions on Automatic Control,
51(1):71–86.

Beck, C. (2006). Coprime factors reduction methods for linear parameter varying and uncertain systems.
Systems & control letters, 55(3):199–213.

Burke, J. V., Henrion, D., and Overton, A. S. L. M. L. (2006). HIFOO : a MATLAB package for fixed-order
controller design and H∞ optimization. In Fifth IFAC Symposium on Robust Control Design, Toulouse.

C. Poussot-Vassal, O. Sename, L. Dugard, P. Gaspar, Z. Szabo, and J. Bokor (2008). A new semi-active
suspension control strategy through LPV technique. Control Engineering Practice, 16(12):1519–1534.

C.E. de Souza, K.A. Barbosa, and A. Trofino (2006). Robust H∞ filtering for discrete-time linear systems
with uncertain time-varying parameters. IEEE Transactions on Signal Processing, 54(6):2110–2118.

15



August 12, 2014 International Journal of Control IJC˙August˙2014˙Emedi˙Karimi

F. Amato, M. Mattei, and A. Pironti (2005). Gain scheduled control for discrete-time systems depending
on bounded rate parameters. International Journal of Robust and Nonlinear Control, 15:473–494.

F. Wu, X. H. Yang, A. Packard, and G. Becker (1996). Induced l2-norm control for LPV system with bounded
parameter variation rate. In Proceedings of the American Control Conference, Seattle, Washington, USA.

F.D. Adegas and J. Stoustrup (2011). Structured control of affine linear parameter varying systems. In
American Control Conference (ACC), 2011, pages 739–744. IEEE.

G. Panzani, S. Formentin, and S. M. Savaresi (2012). Active motorcycle braking via direct data-driven load
transfer scheduling. In 16th IFAC Symposium on System Identification, SYSID 2012, Brussels, Belgium.

J. Daafouz and J. Bernussou (2001). Parameter dependent lyapunov functions for discrete time systems
with time varying parametric uncertainties. System and Control Letters, 43:355–359.

J De Caigny, J. F. Camino, R. C. L. F. Oliveira, P. L. D. Peres, and J. Swevers (2012). Gain-scheduled
dynamic output feedback control for discrete-time LPV systems. International Journal of Robust and
Nonlinear Control, 22:535–558.

K.A. Barbosa, C.E. de Souza, and A. Trofino (2002). Robust H2 filtering for discrete-time uncertain
linear systems using parameter-dependent lyapunov functions. In Proceedings of the American Control
Conference, volume 4, pages 3224–3229. IEEE.

Leith, D. J. and Leithead, W. E. (2000). Survey of gain-scheduling analysis and design. International
Journal of Control, 73(11):1001–1025.

M. C. de Oliveira, J. C. Geromel, and L. Hsu (1999). LMI characterization of structural and robust stability:
the discrete-time case. Linear Algebra and its Applications, 296:27–38.

M. S. Sadabadi and A. Karimi (2013). An LMI formulation of fixed-order H∞ and H2 controller design
for discrete-time systems with polytopic uncertainty. In 52nd IEEE Conference on Decision and Control,
Florence, Italy.

M. Sadeghpour, V. de Oliveira, and A. Karimi (2012). A toolbox for robust PID controller tuning using
convex optimization. In IFAC Conference in Advances in PID Control, Brescia, Italy.

N.R. Sandell, P. Varaiya, M. Athans, and M.G. Safonov (1978). Survey of decentralized control methods for
large scale systems. IEEE Transactions on Automatic Control, 23(2):108–128.

R. C. L. F. Oliveira and P. L. D. Peres (2005). Stability of polytopes of matrices via affine parameter-
dependent lyapunov functions: Asymptotically exact LMI conditions. Linear Algebra and its Applications,
405:209–228.

R. C. L. F. Oliveira and P. L. D. Peres (2009). Time-varying discrete-time linear systems with bounded
rates of variation: Stability analysis and control design. Automatica, 45:2620–2626.

R. D’Andrea and G.E. Dullerud (2003). Distributed control design for spatially interconnected systems.
IEEE Transactions on Automatic Control, 48(9):1478–1495.

R. Toth, F. Felici, P.S.C. Heuberger, and P.M.J. Van den Hof (2008). Crucial aspects of zero-order hold
LPV state-space system discretization. In 17th IFAC World Congress, Seoul, Korea.
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Tóth, R. (2010). Modeling and identification of linear parameter-varying systems, volume 214. Springer.
Toth, R., Heuberger, P. S. C., and Van den Hof, P. M. (2009). Asymptotically optimal orthonormal basis

functions for LPV system identification. Automatica, 45(6):1359 – 1370.
V. Cerone, D. Piga, D. Regruto, and R. Toth (2012). Input-output LPV model identification with guaranteed

quadratic stability. In 16th IFAC Symposium on System Identification, Brussels, Belgium.
Verdult, V. (2002). Nonlinear system identification: A state-space approach. PhD thesis, University of

Twente, Enschede, The Netherlands.
W. Gilbert, D. Henrion, J. Bernussou, and D. Boyer (2010). Polynomial LPV synthesis applied to turbofan

engines. Control Engineering Practice, 18:1077–1083.
W.P.M. Heemels, J. Daafouz, and G. Millerioux (2010). Observer-based control of discrete-time LPV systems

with uncertain parameters. IEEE Transactions on Automatic Control, 55(9):2130–2135.

16



August 12, 2014 International Journal of Control IJC˙August˙2014˙Emedi˙Karimi

Wu, F. (2001). A generalized LPV system analysis and control synthesis framework. International Journal
of Control, 74(7):745–759.

Z. Emedi and A. Karimi (2012). Fixed-order LPV controller design for rejection of a sinusoidal disturbance
with time-varying frequency. In IEEE Multi-Conference on Systems and Control, Dubrovnik, Croatia.

Z. Emedi and A. Karimi (2013). Fixed-order LPV controller design for LPV systems by convex optimization.
In 5th IFAC Symposium on System Structure and Control, Grenoble, France.

17


