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1. Introduction

TCA is a small tokamak device, to be built at CRPP in order to study

Alfvén wave heating. Its main parameters are as follows :

Major radius 60 cm

Minor radius 18 cm
Toroidal magnetic field 10 kG
Plasma current 75 kA
Electron temperature "~ 500 eV

Ion temperature v 250 eV
Electron density Vo2 ox 1013cm_3
Energy confinement time v 2 ms

The purpose of this report is to present the design philosophy for
the TCA toroidal field coil and to summarize the stress calculations

and heat transfer analysis.

2. Design Goals

(1) The toroidal field coil should be demountable, such that the inner
components of the machine (vacuum vessel, OH coil and vertical

field coils) can be removed vertically {1}.

(2) The coil should be made from copper plate having sufficient struc-—

tural strength to carry all induced loads {1}.

(3) The joints should be located close to the points where the bending

moment is zero {1}.



(4) The net centering force on each turn of the coil should be

reacted by a central fiberglass colummn.

(5) Out-of-plane forces (which arise from the interaction between the
vertical field and the currents in the horizontal sections of the

toroidal field coil {2}) should be reacted by a stainless—steel

machine frame.
(6) The various sections of the coil should be cut from standard 1 x 2m

copper plates, with as little waste as possible.

(7) The coil should be large enough for accommodating an elongated,

TCV-like vacuum vessel, with Ro =60 cm, a = 18 cm and b = 36cm.

(8) The cooling system should be designed in such a way that continuous

operation at a rate of one shot every 5 minutes is possible.

3. Coil Dimensions

Coil dimensions are shown in Fig. 1. They were determined through an
optimization procedure, taking into account the various design goals
mentioned above. The coil is made from 15 mm thick copper plate. It
has 72 turns, grouped in 18 bundles of 4 turns each. The maximum
current is 44 kA, which produces a toroidal magnetic field of 10.5 kG

at R = 60 cm.

4. Magnetic Forces

In this section, radial and axial magnetic forces, acting on one turn
of the toroidal field coil, are computed. Azimuthal forces have been

discussed in {2}.



The force per unit length acting on a straight current-carrying

conductor, immersed in a magnetic field, is given by

where A is the cross—sectional area at the conductor.

Beam 1 (inner vertical beam)

If I 1is the current in one turn, I(R) is the total current flowing

inside a circle of radius R and n is the number of turns, then
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Beam 2 (horizontal beam)
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Fig. 2 shows the distribution of magnetic forces as computed above.



5. Beam Model

The basic assumptions of the beam model are as follows
(1) The coil is symmetric with respect to the midplane (z = 0).
(2) The beams are connected to each other rigidly at the corners.

(3) The net radial force is reacted by a fiberglass column which

exerts a force per unit length, fc(z), on beam 1.

(4) There are no external forces acting on the system, except the

magnetic forces (fl’ f2’ f3) and the reaction force (fc).

(5) The system is free to move in all directions. There are no ex—

ternal constraints for the deformation, except the central column.

(6) Lengthening of the beams as a result of longitudinal forces is
assumed to be negligible (the validity of this assumption will be

checked in section 7.5).

The deformed system is shown schematically in Fig. 3. The lengths and

radii are given in terms of the beam dimensions (see Fig. 1) as

R, = %(p; +p,) = 0.2100 m
R, = %(93 +p,) = 1.0925m
e, = 63 = 4(z;*tz)) = 0.8225m
82 = (R2 - Rl) = 0.8825 m

The forces F1 and F3 can be computed immediately by applying the radial

force balance condition :

- = = (1)
F = F, ]33( (0933 N



Similarly, the axial force balance yields

R=h

Fg

Fy

(2)

(3)

Note that the forces FO end F5 must be parallel to the z-axis because

of the symmetry with respect to the midplane (z=0).

The boundary conditions for the displacements are :

T d €] -0
-dzjz=o

(o £, [o{?z _J
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The beams which are considered here have all rectangular cross-section,

hence their moments of inertia are given by {3}

1 ad’

2

—
—

where a

Inserting numerical values, we have
2.16 x 107 ®

18.383 x 1070 w®

9
)

The beams are made of copper having a modulus of elasticity E = 1.2x 10

and b are the width and height of the cross-section .

(4)

(5)

(6)

(7)

(8)

11

Nm
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6. Central Column

Let us assume that the central column consists of an elastic material,
such that the force which it exerts on beam 1 is proportional to the

displacement El,

fc (z2) = « fi(i*) (9)

Let us further assume that the column is a solid cylinder without any

hole in the center. The stresses and strains will then be independent

of radius.

The proportionality constant, o, can be computed as follows : Since
the length of the column is much larger than its radius, the problem
is essentially a two-dimensional one, which implies that the axial
strain must be zero, €, = 0. 1In addition, azimuthal symmetry requires
that e =€ = ¢, and 0_ = 0_ = 0,. Under these conditions, the

X y R X y R
standard stress—strain relation {3},

E¢, = Q—v(G‘gv‘G‘z)

€ ¢, 63—»(5;*—(,) (10)

Es, =G, —v (65 +6Gy)

where E is the modulus of elasticity and v is Poisson's ratio, reduce

to the single equation

Eéf{ = KR(I—-XJ—Z])z) (11)



Since pieR = El and 2ﬂp10R = nfc, we finally have

27 E
o = (12)
n(i-v-2y?)

where n 1is the number of turns (n = 72). It should be noted that,
although eq. (12) has been derived for a solid column, it will also
be approximately valid for a column with a central hole if the diameter

of the hole is small compared with the outer diameter of the column.

Using typical values for epoxy, Eg = 3.12 x 1010Nm_2 and v = 0.3 we

obtain

9 —
A =§52%Y %10 Nm ¢

7. Bending Moments and Displacements

The bending moment M(x), the displacement £(x) and the force distribu-

tion f(x) are related through the equations {3}

¢
E] O(XE = f(x) (13)

42§
E:]"d‘xl

where E is the modulus of elasticity and J is the moment of inertia

= /’I(Y-) (14)

of the beam cross section, with respect to the axis of symmetry which

is perpendicular to the force f(x).
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7.1 Beam 1 Analysis

When eq. (13) is applied to beam 1, we obtain

d's,
6]1 ofz{ = f, ) °°<f1 (2) (15)

where use has been made of eq. (9). The solution of (15) which is

symmetric with respect to z = 0 is given by

fczé- +C, oDz cohDz + Cy5in Dz sinh Dy (16)
where { e }I/‘f-

b= 4€7,
According to eq. (l4), the bending moment is written as

d*s,
M (Z') = E]i dZZ
2
- - ) ' C ) 2
.,ZEJi D { ¢, sin Dz #uh Dz + 2 Cn Dz ch D }(17)

At 23{1 , we have

f’l’ = ZEJl Dl {-—C' #n DE siwh DL, +¢, cn DX, coh D4, } (18)

and
‘{ - [;i] =D [c‘ {cn]’(l sinh DL, = 3in 124 cooh N,}
t
2=¢

+c, sin DA, cooh D(/ + Ca’JD(, sisdh D(,}:I (19)
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The radial force balance is expressed as

¢,
f(f:’qff)dz' =
0

which leads to

(¢,-¢,) cen D8, sivh DG, +(c ;) sia DY, cosh D, = - £2F0

(20)
The constants ¢ and c, can be eliminated from eqs. (18), (19) and
(20). The result is
E‘]Lél = VH +W (21)
where
2 A
. ¢+,
p{cs(ccfss)*sc(cﬁs;)}
W = "E[CC(CS-SC)+S‘S(C$+SC) }
szgcy(cc-sc)+sc(cc+rs)}
and SS = 4 D‘e, siwh D‘(,
Sc = 51 D(, coav‘\ P(,
C; = co 2E, sivh DX,
(:c = cen 1)61 Cznla ]}(

Note that in eq. (21) all quantities are known except &, and M..

1 1
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7.2 Beam 2 Analysis

Here, eq. (15) takes the form

d*§ K
E]z A_IZ‘:; = fz (R) = e (22)

where K 1is a constant. Integration yields

l
E]?_:((;:' =n(R)=K(/l(uR——R)+c3(? te, (23)

The constants cy and c, are determined by the boundary conditions,

M(Rl) = M1 and M(RZ) = M3 :

1 - -
63: -R—ZT-R—: {Mj-l‘?’—K(l?Z(n'?z R,'eh‘?' KZ+R’)} (24)

1 ~, 2
Cy = e {M,RZ-—M3R, + KR,RZ{«? } (25)

Further integration leads to

EJ df‘ =—(424.R z)—r——-é +CR +c. 26)
with the boundary conditions
-dfz— = = —r Aﬂ ——R + = R C f? +C (27)
AR AR Jegaire R ves
‘n=p,
-D‘f- K 1 C 2
€| = =€],9, = = (4R~ T )+ 2R +e R el (B
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Integration of (26) finally gives the displacement EZ

K 3 114 3 €3 o3 Cy A2
ELS =z (RWR-FTR) + 27+ 2R +c R +c,
where the boundary condition (6) must be applied :

K 11 3 C 3 c 2
TR - TR+ 2R SRR, =
K 3 1t .3 cC 3 ¢ 2 0
1 ¥+
TR AR, -FTR)+ 2R, + TR+,

The constant cg may be eliminated from eqs. (27), (28) and (30), and we

obtain

R K
ZE—Jz (JL'JI) = KR, R, e 72&, - T(Qzl—'?az) +(R2'Rl) (1‘1'1-!13) (31)

and

R, K 3
C€), (,R,-d,R,) = kR,R, (R+R, ) 4 22 — L2 (R~ R)

!

(32)
"'{M: (szzﬂ,) + My (ZRz-rfc',)}(RZ-l?,)

where we have used eqs. (24) and (25) to express the constants Cq and Cpe

Note that eqs. (31) and (32) contain four unknowns 61, Ml’ 62 and M3.
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7.3 Beam 3 Analysis

Again using eq. (13), we have

€ "’§3 =
]3 dz* "’f! (33)

The minus sign mus be introduced here because 53 and f3 are pointing
in opposite directions (Figs. 2 and 3). Integrating twice with res-—

pect to z yields

M(z) = €], 77 f?—-+c 2 + Cy (34)

Since the solution must be symmetric with respect to z = 0, we must

take c, = 0. The constant cg may be expressed in terms of the bending

moment at z = 63 :

’h—M(()—- (;+C
3 3/ T = 7!3 'TZ" b g

and we obtain

M(z) = —fg 3’—(22—{;) -M, (35)

Integrating once more yields

3
o«fg : {}_- 2
E],‘ = -—szg 3 /(3 27 — H3 2 —+ Cj (36)

and the boundary condition (8) requires that c9 = 0.
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At z = 83, we have

§ 3
E]’S [:({23]2‘{ = E]3 <§z - '3'_ 7{? {3 - M, {3 (37)

The displacement £3 is obtained by integrating (36) :

2

( 'R Z £
- — ——— —_ —_— 4 C: 38

7.4 Solution

The four equations (21), (31), (32) and (37) can now be solved for the

four unknown 61, Ml’ 62 and M3. The result is :

&l QS" - Q"f az

M, =

(40)

M = <23 624 - <Qé CQI
g @ Qy - Qr @

where

1\
N
I
~N
e
N
w
~
A
~
|
~
N




éﬁ]L’QIV/

@, = ——
1

0. = ¢].R, {5

ST
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+(R,-R,) (R, +2R,)

+ (Ra"'Rl) (ZR;_ +RI)

2 2

3
R, 1.4 Rw R, 2K _3 3
Q = é]z{ ;7{3 3 _ }«KR,RQ(R,\»Q.‘)&‘-R—T- +—(R-R")

/3

and 61 and 62

Inserting numerical

11

may be obtained from equations (21) and (37).

values, we have

M1 = 750.4 Nm

M3 = 2690.6 Nm

5, = 4.67 x 107
-5

5, = 11.45 x 10

The bending moment can now be computed at any position, using eqs. (17),

(23) and (35). The

result is shown in Fig. 4.

The displacements gl, €2 and 53 are given by eqs. (16), (29) and (38).

They are shown in Fig. 5.
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7.5 Longitudinal Forces

In this section, the forces F2 and F4 will be computed in order to
verify whether the stretching of the beams is really negligible as

was assumed in section 5.

The axial force balance for beam 2 may be expressed as

R,
)i-,—F;r = —fz(R)a{R =K‘(lr\% (41)

!
,q
and the moment balance for the point R = R1 is given by
Rl
) d kiR -k - & X2
— - = - - h —
MI—H}-,—F‘}{Z - fZ(R) (rz Rl R 2 ! !
R

(42)

{

Using the values of M, and M3 which were computed in section 7.4, we

obtain

F& = 12320 N

Fy, = 10668 N

As a result of these forces, the lengths of beams 1 and 3 will be in-

creased by Ael, and AE3, respectively. The increments are given by

A{i = i& = 4.641 *IO—;W\
c A,

-
= [.9906 x |[@ [
E A;
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where Al and A2 are beam cross-sections. Although these deformations
are very samll, they still give rise to bending moments since the en—
tire system is extremely rigid. The bending moments that are produced
by such deformations are computed as follows : Let us consider the
L-shaped system consisting of beams 2 and 3 and calculate the force
FA that would have to be applied at R = Rl’ in order to produce a dis-

placement A = Ael - AQB. The problem is analyzed using the equations

of sections 7.2 and 7.3 and assuming f1 = f3 = 0, M1 =0, J2 = J3,
gz(Rl) = A and EZ(RZ) = 0. The result is
/ E7 A
hy = J2 (43)
/
4L+ 54)
and
/
o= 1
a (44)
L,

Inserting the numerical values gives

)13’ = 60.46 N m

FA = 6%3.{1 N

These quantities are small compared to M3 and F2 and, hence, the stretch-

ing of the beams can be neglected.
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8. Maximum absolute stresses

Inspection of Fig. 4 shows that the critical points are the corners,
at R = R1 and R = Rz,as well as the locations of the joints where

the beam cross-section is locally reduced to 30% of its normal value.
The joints are located at R = 0.295 m (beam 2) and z = 0.656 m

(beam 3). Let us calculate the maximum stresses at these critical

points :

Corner R = R1 (beam 1, because J1 « le

M =M = 750.4 Nm
12320 N

— ,M:,‘ét + Fl
mex — 21, a, %

) /

e
1]
I

r -
.2 ¥1o Nm

Q
a
U]
N
N
o~

Corner R = R2 (beam 2, because F37> F

M =M, = 2690.6 Nm
F=F,=10933 N {eq. (1)}

lr13l4$3 + F;

c -
= _"2  _ 209.0 %0 Nw"?
ma.

g 2 ] a; %5

Junction at z = 0.656 m (beam 3)

M = - 1054.4 Nm
F = F, = 10668 N
a4 = 0.3 a3 = 0.0045 m
Jy = 0.3J5=5.515x 107 o
M| b F
o o 1MPa, Fi 331.0 x 10° X
max 2J aL*bL+ m2
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The junction at R = 0.295 m is not critical because the bending moment
is much smaller than the one computed above,and J2 = J3.
The yield strength of cold rolled copper is

-
6; = (300 /@ N m~

2

According to BBC experts {4}, a safety factor of at least 3 must be

assumed, so that

'
-2
Gr’n«x = 6040 % ]C N m

We conclude that the stresses in the copper (for B, = 10.5 kG) are
about a factor of 2 below the maximum allowable limit. Consequently,
the coil should be able to operate at a higher magnetic field, i.e.

up to BO = 15 kG.

9. Heat transfer

9.1 Necessity of water cooling

Assuming one shot every 5 minutes, the average power dissipation in the

toroidal field coil is :

P=¢6okW (45)

The coil consists of 9.96 tons of copper having a total heat'capacity,

Q. = 3.84 MI/°C. If the coil is not cooled, its temperature will
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increase at a rate of

o Tc r
ot @,

|

=6 °C[tour

This cannot be tolerated since the maximum operating temperature of
the fiberglass insulation is 150°C. If the coil is cooled by the

ambient air, the air temperature will increase at a rate of

AT P
At ,

where QA is the heat capacity of the air in the room, and T. = const.
has been assumed. The room measures 14.4 x 28.8 x 7.5 m; it contains
4.02 tons of air with a total heat capacity, QA = 4.06 MJ/°C. The

rate of increase of the air temperature is therefore

sz&- = °C [ tour
-3 /

which, of course, cannot be tolerated either. We conclude that the coil
must be water-cooled. For this purpose, grooves are cut into the edges
of the copper plates and copper tubes are fitted into the grooves. The
inside diameter of the copper tubes is D = 6 mm and the length for

one turn of the coil is L, = 4 m. The total surface area available for

T
cooling is therefore given by

A=TDL_n = (43 w (46)

where n is the number of turns (n = 72).
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9.2 Water Inlet Temperature

Condensation of atmospheric moisture onto the coil must be avoided
under any circumstances, since this might produce a short circuit.
The water inlet temperature must therefore always be above room
temperature. On the other hand, the coil should be kept as cool
as possible, since its electrical resistance increases with tem-

perature. We assume

T =30°C (47)

9.3 Reynolds Number

The flow in a tube can be laminar or turbulent, depending on the value

of the Reynolds number, defined as

V7D
pY

Re

i

(48)

where D is the diameter of the tube, V is the velocity and v the
kinematic viscosity of the fluid. If Re~§ 2000, the flow is laminar
and if Re & 12000, it is turbulent. The heat transfer between the

tube wall and the fluid may be characterized by the Nusselt number {5},

where P/A is the thermal power per unit area, AT is the difference bet-
ween wall and fluid temperatures, and k 1is the thermal conductivity

of the fluid. For laminar flow {5} and constant P/A,

Nu= 4.3¢ (50)
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For fully developed turbulent flow {5},

0.3 'f3
Nu = 0.023 Re Pr (51)

where Pr is the Prandtl number. Pr, k and v depend on temperature;

values for water {6} are given in the table, below :

Temperature Pr k v
{°c} {w/m °c} {mz/sec}
0 13.67 0.5642 1.79 x 10°°
20 7.01 0.5981 1.01 x 10°°
40 4.35 0.6274 0.656 x 10°°
60 3.00 0.6516 0.469 x 107°

Using the values of P, A and D as given in section 8.1, and assuming

= 40°C and Re,_ = 12000, we find

water urb
T = 2¢4.2 °C
z&iea“‘ 24%.2
and
T = I.§ °
Afw6 / C

The advantage of the turbulent flow is evident and we assume

Re

12060 (52)
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9.4 Flow Rate, Pumping Power and Copper Temperature

For a given Reynolds number, the fluid velocity, V, is obtained from

(48). The flow through one channel is given by

T 2
§1 = DYV (53)

Assuming that N turns are connected in series, the length of one

channel is given by

L = NL. (54)

where LT is the length of tubing in one turn (LT = 4m). The total

flow of water is then

-

SP = <§1 ﬁ‘ (55)

where n 1is the nuber of turns (n=72). The temperature rise,
(Tout - Tin)’ is related to the total flow by

P

—

T :
out in /a‘f qé

where u and p are the specific heat and the density of water,

(56)

respectively. The pressure drop, Ap, between inlet and outlet is given

{5} in terms of the friction factor A :

3
AP:z’ALfv (57

D
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A depends on the surface roughness and the Reynolds number. For
our conditions, A = 0.011. Finally, the power which is necessary

to pump the cooling water through the coil, is given by
P,, = %A,o (58)

Using equations (53) - (58) and assuming various N's, we obtain the

results shown in the table below :

T +T,
N L [} Tout—Tin A . Pp out2 in
{m} {lit/sec} {°c} {atm} {Watts}
{OC}2
1 4 2.67 5.4 0.25 67 32.7
2 8 1.34 10.7 0.50 67 35.3
4 16 0.67 21.5 1.01 67 40.7
8 32 0.33 43.0 2.02 67 51.5

. o}
The last column shows the average water temperature, assuming Tin = 30C
(see section 8.2). The average copper temperature is then obtained by

adding the various AT's :

T =T AT +AT + AT (59)
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ATturb has been computed in section 8.3. AT1 is the temperature
difference between the inner wall of the tube and the edge of the
copper plate, and AT2 is the difference between the temperature at
the edge of the plate and the average copper temperature. ATl and
AT2 were measured on a prototype section of the coil; they are 5.0°C

and 6.0°C, respectively. It follows that

T - T lZ-.r OC 6
Tgh. -’;‘ze * ( 0)

It is clear that all the options given in the table are feasible.
However, the best compromise, as far as flow rate and copper tempe-

rature is concerned, seems to be the case N = 2. We assume therefore

N = 2
Lo} = 1.34 liters/sec
T, = 30%
in
o
Tout = 40.7°C
Ap = 0.5 atm.
Pp = 67 Watts
— - o
TCu 47.8°C
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FIG.3: BEAM MODEL
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