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Abstract
A reduced basis Darcy-Stokes finite element heterogeneous multiscale method (RB-

DS-FE-HMM) is proposed for the Stokes problem in porous media. The multiscale
method is based on the Darcy-Stokes finite element heterogeneous multiscale method
(DS-FE-HMM) introduced in [A. Abdulle, O. Budáč, Multiscale Model. Simul. 13
(2015)] that couples a Darcy equation solved on a macroscopic mesh, with missing
permeability data extracted from the solutions of Stokes micro problems at each macro-
scopic quadrature point. To overcome the increasingly growing cost of repeatedly solv-
ing the Stokes micro problems as the macroscopic mesh is refined, we parametrize the
microscopic solid geometry and approximate the infinite-dimensional manifold of pa-
rameter dependent solutions of Stokes problems by a low-dimensional space. This
low-dimensional (reduced basis) space is obtained in an offline stage by a greedy al-
gorithm and used in an online stage to compute the effective Darcy permeability at
a cost independent of the microscopic mesh. The discretization of the parametrized
Stokes problems relies on a Petrov-Galerkin formulation that allows for a stable and
fast online evaluation of the required permeabilities. A priori and a posteriori estimates
of the RB-DS-FE-HMM are derived and a residual-based adaptive algorithm is pro-
posed. Two- and three-dimensional numerical experiments confirm the accuracy of the
RB-DS-FE-HMM and illustrate the speedup compared to the DS-FE-HMM.

Keywords. Stokes flow, Darcy equation, numerical homogenization, reduced basis, adap-
tivity
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1 Introduction
Fluid flow in porous media is an important process that is present in many scientific and
engineering applications. It is usually described by an effective flow equation, the well-
known Darcy equation, that describes a porous medium as a homogeneous domain whose
porosity is taken into account in a macroscopic parameter, the effective permeability. For
some applications, the effective permeability can be obtained experimentally or computed
form micro-scale Darcy equations. Sometimes, however, computations or experiments at
pore scales are required. One has then to switch to another description of the fluid flow,
namely Stokes or Navier-Stokes equations. Fluid flow in porous medium typically exhibits
slow motion and inertial terms can be neglected, hence, the Stokes equation is often a good
description of the physical process at pore scales. Yet numerical simulations of the Stokes
equations at the pore scale denoted by ε in what follows (typically micrometer scale), over
a computational domain ranging from lab scale (centimeter) to field scale (meter) lead to a
number of degrees of freedom often impossible to handle even on modern supercomputers.
Such problems thus require multiscale methods combining pore scale computations on small
sampling domains of the computational domain with a macroscopic effective computation.
Such numerical methods are often based on the mathematical homogenization theory that
we briefly describe.

∗ANMC, Mathematics Section, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzer-
land, {assyr.adulle,ondrej.budac epfl.ch}
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Homogenization of fluid flow in porous media is the mathematical description of the asymp-
totic behavior of the flow when ε → 0. This mathematical theory for the Stokes equation
in periodic porous domain was first described in [40] using arguments based on asymptotic
expansion. It was shown that the macroscopic description is the Darcy equation and that
the macroscopic permeability can be computed from a microscopic computation using the
Stokes equation in a sampling domain taking into account the pore geometry. These findings
were rigorously establish by Tartar [42] and generalized by Allaire [9]. Further works include
the analysis of correctors [28], the description of stochastically homogeneous media [14], etc.
Homogenization theory has triggered the development of numerical techniques that rely on
the effective Darcy equation but recover the permeability using information about the porous
structure. Since effective permeability is a local property, these methods can avoid resolving
the full fine scale details in the whole medium.
Here we focus on methods that are based on the heterogeneous multiscale method (HMM),

reviewed in [5]. The HMM framework was successfully applied to the Stokes problem in
the Darcy-Stokes finite element heterogeneous multiscale method (DS-FE-HMM) introduced
in [2]. The DS-FE-HMM is based on the Darcy-Stokes coupling described by the homog-
enization theory. The finite element method (FEM) with numerical quadrature is used to
discretize the macroscopic Darcy problem. Around each macroscopic quadrature point, a
sampling domain is considered where the local porous structure is discretized by a micro-
scopic mesh. Based on this mesh, the pore scale Stokes equation is then computed using
a (micro) FEM. The micro solutions then provide an approximation of the local effective
permeability at the macroscopic quadrature points. As macro and micro meshes need to
be refined simultaneously to avoid error saturation, an adaptive algorithm based on an a
posteriori error analysis for the DS-FE-HMM has been developed in [2]. Precisely, adaptive
refinement of both the macro Darcy problem and the micro Stokes problems was proposed
and shown to speedup considerably the multiscale algorithm compared to mesh refinement
based on a priori error analysis. Other adaptive algorithms for the HMM focusing only on
the macroscopic elliptic problem can be found in [1, 2, 7, 32]. Other numerical method that
rely on the Stokes equation at pore scale have been proposed in [2,10,18,41]. The multiscale
approach in [10] uses the control volume method to discretize the Darcy equation, while the
multiscale FEM [18] uses a hierarchy of macroscopic grids where micro problems are solved
with various accuracy.
Due to the large number of micro Stokes problems that need to be computed with increased

precision (d problems at each macroscopic quadrature point in Rd), the DS-FE-HMM can
be still computationally expensive, especially for three-dimensional problems or if high pre-
cision is required. Departing from the the described micro-macro strategy, the idea is to
use the possible similarity of the family of the micro problems. In this paper we combine a
model order reduction techniques with the DS-FE-HMM that reduce significantly the com-
putational cost of the plain DS-FE-HMM, while maintaining the general applicability of this
method, namely the variation of the micro structure does not have to be smooth and domains
(macroscopic and microscopic) can have arbitrary (non-convex) shapes. Our new method re-
lies on the reduced basis (RB) method to efficiently solve the Stokes micro problems and is
called the reduced basis Darcy-Stokes finite element heterogeneous multiscale method (RB-
DS-FE-HMM). As in the DS-FE-HMM, the new algorithm is based on FEM with numerical
quadrature to solve the Darcy problem on a macroscopic mesh. To obtain the permeabilities,
we perform computation in a reduced basis space of representative Stokes solution in the
following way. We assume that the local porous structure at any point of the macroscopic
domain can be obtained from a reference micro domain by a known map. Hence, the Stokes
micro problems can be pulled back to a reference domain, where they become saddle-point
problems with varying coefficients. This reformulation allows us to define a single refer-
ence micro mesh that is used for the discretization of all micro problems. The model order
reduction algorithm for the Darcy-Stokes problem is then divided into two stages:
• The offline stage that can be computationally expensive but is executed only once.
A small number of representative microscopic geometries (sampling domains in the
macroscopic domain) are selected, for which the corresponding Stokes micro problems
are solved accurately on a reference micro mesh. The collection of Stokes solutions at
the selected points span the reduced basis space.
• The online stage is a fast procedure that efficiently computes an accurate approximation
of the effective permeability for any quadrature point in the macroscopic domain using
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the precomputed (micro mesh independent) reduced basis space. As the reduced basis
space is usually of low dimension and independent of the macroscopic mesh, these latter
computations are usually very fast.

The reduced basis method has been applied to the (single scale) Stokes problem in parametrized
geometry by several authors. In [24, 37, 39], a saddle-point formulation is used. When com-
bined with the reduced basis strategy, there are two issues that must be addressed, namely
the approximation stability (non-degeneracy of the Brezzi inf-sup condition) and the alge-
braic stability (bounded condition number of the reduced system). It is shown in [24,37,39]
that by enriching appropriately the pressure space both requirements can be fulfilled. The
resulting method can, however, be expensive in the online stage. Alternative methods with
smaller online systems can be constructed but its stability can no longer be guaranteed
(see [4] for a more detailed description). On the other hand, there are RB methods that
study parametrized linear non-coercive problems, see [4,22,27,36] and the references therein.
They have no assumptions on the structure of the problem and use only the Babuška inf-sup
condition as a stability indicator. This is the chosen framework to develop the reduced basis
strategy for our multiscale problem and we consider a Petrov–Galerkin RB method with a
fixed solution space and a parameter-dependent test space that was first introduced in [36]
and was recently derived for the Stokes problem in [4]. Another advantage of this formula-
tion is its flexibility to enforce additional Lagrange multipliers as used in our formulation to
normalize pressure. We derive a fully-discrete a priori error analysis of the RB-DS-FE-HMM
that reveals the contribution to the error of the various approximation steps: the microscopic
error (due to the FEM used to compute the RB functions), the RB error, and the macro-
scopic error. We also provide an adaptive strategy for our new method and derive related a
posteriori error estimates.
This paper is organized as follows. We define different types of porous media and the

model problem in section 2. A short review of the DS-FE-HMM in given in section 3. The
RB-DS-FE-HMM is explained sections 4 and 5. While the parametrization of the geometry
and the overall multiscale algorithm combining the reduced basis method with the Stokes
to Darcy approximation is detailed in section 4 we show in section 5 how the greedy con-
struction of the RB is performed and we detail the computation of rigorous a posteriori error
estimates, including the inf-sup stability constants. A priori and a posteriori error estimates
are considered in section 6 and an adaptive method is proposed in section 7. Finally, numer-
ical examples for two and three dimensional problems illustrating the theoretical estimates
and the performance of the method are presented in section 8.

1.1. Notation. Let C denote a generic constant whose value can change at any
occurrence but it depends only on explicitly indicated quantities. We consider a domain
Ω ⊂ Rd, d ∈ N and the usual Lebesgue space Lp(Ω) and Sobolev space W k,p(Ω) equipped
with the usual norms ‖ · ‖Lp(Ω) and ‖ · ‖Wk,p(Ω). On the factor space L2(Ω)/R, we define
‖q‖L2(Ω)/R = infs∈R ‖q + s‖L2(Ω). For p = 2 we apply the Hilbert space notation Hk(Ω)
and H1

0 (Ω) and define the seminorm |q|H1(Ω) = (
∑d
i=1 ‖∂iq‖2L2(Ω))1/2. The standard scalar

product on L2(Ω) is denoted by (·, ·)L2(Ω). Given a matrix A ∈ Rd×d with entries Aij , we
denote its Frobenius norm by ‖A‖F = (

∑d
i,j=1A

2
ij)1/2. Given a vector ξ ∈ Rd with entries

ξi, we define |ξ| = (
∑d
i=1 ξ

2
i )1/2.

2 Problem setting and homogenization

Let d ∈ {2, 3} and Ω ⊂ Rd be a bounded, connected domain. We consider a porous structure
in Ω by dividing Ω into a fluid part Ωε ⊂ Ω and a solid part Ω\Ωε, where ε > 0 indicates the
size of the pore scale. Fluid flow in Ωε can be modeled by the Stokes equation

−∆uε +∇pε = f in Ωε,
divuε = 0 in Ωε,

uε = 0 on ∂Ωε
(1)

with a given force field f , an unknown velocity field uε and pressure pε. Solving (1) with
mesh-based techniques requires meshsize h < ε, which can be computationally prohibitive
for ε � diam(Ω). Efficient models and numerical methods that approximate (1) rely on an
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effective equation, e.g., the Darcy law.
Homogenization theory for the Stokes problem [9, 28, 29, 40, 42] studies the limit behavior

of the solutions of (1) for ε→ 0+ under the assumption that Ωε is a periodic porous domain
(see section 2.1). The pore geometry that is periodically repeated in Ωε determines the
homogenized permeability tensor a0 ∈ Rd×d such that the following limit property is true.
The pressure solution pε of (1), defined in Ωε, can be extended to P ε, defined in Ω, such
that P ε converges strongly to p0 in L2

loc(Ω)/R, where p0 is the homogenized pressure that is
given as a solution to the Darcy equation

∇ · a0(f −∇p0) = 0 in Ω,
a0(f −∇p0) · n = 0 on ∂Ω.

(2)

Furthermore, the velocity solution uε of (1) can be extended to Uε, defined in Ω, such
that Uε/ε2 converges to u0 weakly in L2(Ω)d, where the homogenized velocity u0 satisfies
u0 = a0(f−∇p0). Homogenization theory is less developed for non-periodic media, i.e., when
the solid part can vary locally [2, 14,18]. In this situation a0 in (2) can depend on x ∈ Ω.
We continue with a brief description of periodic and locally periodic porous media. For a

comparison of the two see Figure 1.

2.1. Periodic porous media. We recall the definition of Ωε from [9]. We denote
by Y the d-dimensional unit cube (−1/2, 1/2)d. Let YS ⊂ Y and set YF = Y \YS. Here and
subsequently, the subscripts F and S stand for the fluid and solid part, respectively. Let
ε > 0 and define

Ωε = Ω\
⋃

x∈(1/2+Z)d
ε(x+ YS). (3)

It is further assumed in [9] that the set YS is closed in Y , and both YS and YF have positive
measure. Moreover, the sets YF and Rd\∪x∈Zd (x+YS) are connected, have locally Lipschitz
boundaries, and are locally located on one side of their boundaries.

2.2. Locally periodic porous media. We consider a generalization of periodic
porous media as presented in [2]. Let ϕ : Rd × Y → Y be a continuous map and assume
that ϕ(x, ·) : Y → Y is a homeomorphism such that ϕ(x, ·) and ϕ−1(x, ·) are in W 1,∞(Y ) for
every x ∈ Rd. For ε > 0 define

Ωε = Ω\
⋃

x∈(1/2+Z)d
ε(x+ ϕ(εx, YS)). (4)

The reference pore geometry (YS, YF) is thus mapped via ϕ to the local pore geometries
Y xS = ϕ(x, YS) and Y xF = Y \Y xS . If ϕ(x, y) ≡ y then the definitions (3) and (4) are equivalent.
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Figure 1: A comparison of periodic (above) and locally periodic (below) porous media.
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2.3. Model problem. Formal homogenization of the Stokes problem (1) in locally
periodic porous media gives the effective equation (2), however, the permeability a0 : Ω →
Rd×d now depends on the local pore geometries (Y xF , Y xS ). Consider the velocity space

W (Y xF ) = {v ∈ H1(Y xF )d; v = 0 on ∂Y xS ,v is Y -periodic}.

For a given x ∈ Ω and for every i ∈ {1, . . . , d} we solve the Stokes micro problem: Find
ui,x ∈W (Y xF ) and pi,x ∈ L2(Y xF )/R such that

a(ui,x,v) + b(v, pi,x) = gi(v) ∀v ∈W (Y xF ),
b(ui,x, q) = 0 ∀q ∈ L2(Y xF )/R,

(5)

where

a(u,v) =
d∑

i=1

∫

Y xF

∂u
∂yi
· ∂v
∂yi

dy, gi(v) =
∫

Y xF

vi dy,

b(v, q) = −
d∑

i=1

∫

Y xF

q
∂vi
∂yi

dy.

Then we have a0(x) =
∫
Y xF

[u1,x,u2,x, . . . ,ud,x] dy, or component-wise

a0
ij(x) =

∫

Y xF

uj,xi dy = gi(uj,x) ∀i, j ∈ {1, . . . , d}. (6)

Even for very simple micro geometries (Y xF , Y xS ) the tensor a0(x) is not known explicitly
and we can only approximate it numerically.

Well-posedness of the model problem. It can be shown (see [40]) that a0(x) is symmet-
ric and positive definite for every x ∈ Ω. However, the uniform ellipticity and boundedness
of a0(x) is more subtle as is examined thoroughly in [2]. The well-posedness of the mi-
cro problems (5) is guaranteed by an inf-sup condition (written here in the sense of Brezzi,
see [17])

βBr(x) := inf
q∈L2(Y xF )/R

sup
v∈W (Y xF )

b(v, q)
|v|H1(Y xF )‖q‖L2(Y xF )/R

> 0. (7)

Lagrange multiplier formulation. Considering numerical approximation of (5), the quo-
tient space L2(Y xF )/R can be resolved by one of the standard strategies:
• fix one degree of freedom of the pressure and normalize it afterward.
• use an iterative numerical method that does not assume that the system matrix is
regular and takes care of the normalization (e.g., the Uzawa method [33]).
• use Lagrange multipliers to enforce the average of the pressure to be zero.

While all three are applicable for solving a single problem, the third one is convenient when
combined with the reduced basis method as we will see in section 4. The system (5) with
Lagrange multipliers that is written as single equation reads: Find ui,x ∈ W (Y xF ), pi,x ∈
L2(Y xF ), and λi,x ∈ R such that

a(ui,x,v) + b(v, pi,x) + b(ui,x, q) + c(q, λi,x) + c(pi,x, κ) = gi(v) (8)

for every v ∈ W (Y xF ), q ∈ L2(Y xF ), and κ ∈ R, where c(q, κ) = κ
∫
Y xF

q dy. The problem (8)
will be later mapped into a reference domain YF and written compactly as a non-coercive
problem in the space X = W (YF)× L2(YF)× R in (20).

3 The DS-FE-HMM
In this section we briefly introduce the Darcy-Stokes finite element heterogeneous multiscale
method [2, 3] for solving the problem (2), (6), (5). Let ε > 0 and assume that Ω and Ωε are
connected bounded polygonal domains in Rd with Ωε ⊂ Ω. We recall that this numerical
method does not require Ωε to be periodic nor locally periodic.
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Macro FE space and quadrature formulas. Let {TH} be a family of conformal, shape-
regular triangulations of Ω parametrized by the mesh size H = maxK∈TH HK , where HK =
diam(K). We consider the macro FE space

SlH(Ω) = {qH ∈ H1(Ω); qH |K ∈ P l(K), ∀K ∈ TH},

where P l(K) is the space of polynomials on K of degree l ∈ N. For each element K ∈ TH
we consider a quadrature formula (xKj , ωKj )j=1,...,J with integration points xKj and weights
ωKj . Well-posedness of the DS-FE-HMM and the optimal order of accuracy rely on the
following assumption on the quadrature formula [21, Chap. 4.1], which is satisfied, e.g., for
l = 1, J = 1, ωK1 = |K|, and xK1 as the barycenter of K.

Assumption (Q). We assume that
∫
K̂
q̂(x̂) dx̂ =

∑J
j=1 ω̂j q̂(x̂j) for any q̂(x̂) ∈ Pm(K̂),

where m = max(2l − 2, l).

Micro FE spaces. Let δ ≥ ε. For each quadrature point x ∈ Ω we define the micro
sampling domain around x by

Y x,δS = (((Rd\Ωε) ∩ (x+ δY ))− x)/ε, Y x,δF = ((δ/ε)Y )\Y x,δS . (9)

Let {T xh } be a family of conformal, shape-regular triangulations of Y x,δF parametrized by
the mesh size h = maxT∈T x

h
hT , where hT = diam(T ). The shape-regularity constants are

assumed to be the same for each quadrature point x ∈ Ω and δ ≥ ε. We consider the Taylor-
Hood Pk+1/Pk finite elements for k ≥ 1, see [16]. The pressure and velocity FE spaces are
given by

Lh(Y x,δF ) = {q ∈ Skh(Y x,δF ); q is (δ/ε)Y -periodic},
Wh(Y x,δF ) = {v ∈ Sk+1

h (Y x,δF )d; v is (δ/ε)Y -periodic, v = 0 on ∂Y x,δS },
(10)

respectively. We assume that the micro meshes T xh are conformal over periodic boundaries
and periodicity can be thus enforced strongly.

Remark 1. The DS-FE-HMM can also work with other types of micro FEs (e.g., MINI)
and different boundary conditions on ∂Y (e.g., Neumann).

DS-FE-HMM. The multiscale method is defined as follows: Find pH ∈ SlH(Ω)/R such
that

BH(pH , qH) = LH(qH) ∀qH ∈ SlH(Ω)/R, (11)

where the discrete macro bilinear form and right-hand side are given by

BH(pH , qH) =
∑

K∈TH

J∑

j=1
ωKja

h(xKj )∇pH(xKj ) · ∇qH(xKj ),

LH(qH) =
∑

K∈TH

J∑

j=1
ωKja

h(xKj )fH(xKj ) · ∇qH(xKj ).

(12)

Here, fH ∈ Sl−1
dis,H(Ω)d is an appropriate interpolation of the force field f ∈ L2(Ω)d, where

Sl−1
dis,H(Ω) = {qH ∈ L2(Ω); qH |K ∈ P l−1(K), ∀K ∈ TH}, (13)

and ah(xKj ) is a numerical approximation of the tensor a0(xKj ) computed by the following
micro Stokes problems. For each i ∈ {1, . . . , d} and quadrature point x ∈ Ω we find ui,x,h ∈
Wh(Y x,δF ) and pi,x,h ∈ Lh(Y x,δF )/R such that

a(ui,x,h,v) + b(v, pi,x,h) = gi(v) ∀v ∈Wh(Y x,δF )
b(ui,x,h, q) = 0 ∀q ∈ Lh(Y x,δF )/R

(14)

and set ah(x) =
∫
Y x,δF

[u1,x,h,u2,x,h, . . . ,ud,x,h] dy, or equivalently ahij(x) = gi(uj,x,h) for
every i, j ∈ {1, . . . , d}. An illustration of the coupling in DS-FE-HMM is given in Figure 2.
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Figure 2: A sketch of the DS-FE-HMM.

Well-posedness of the DS-FE-HMM. For well-posedness of the macro problem (11) we
require that ah(x) is uniformly elliptic and bounded over all macro quadrature points, which
was studied in [2] and proved under rather generic assumptions on the geometries Y x,δF .

3.1. A priori error estimates. We describe the a priori error analysis derived in [2].
One can use triangle inequality to decompose the error into three components:

|p0 − pH |H1(Ω) ≤ emac + emod + emic. (15)

The macro error emac arises from using the macro quadrature formula instead of exact
integration. If p0 ∈ H l+1(Ω), Assumption (Q) holds, and a0(·) is uniformly elliptic, bounded,
and sufficiently smooth, then we have emac ≤ CH l, where C is independent of H and ε.
The modeling error emod quantifies the non-optimal sampling of the micro structure (using

Y x,δF instead of Y xF ). Let us denote by QH the set of all macro quadrature points xKj and
by a(x) the permeability computed with micro problems similar to (14) but solved in the
Sobolev spaces. We then have emod ≤ C‖fH‖L2(Ω) maxx∈QH ‖a0(x) − a(x)‖F. The constant
C depends only on the ellipticity and boundedness constant of a0(x) and a(x).
The micro error emic arises from the approximation of the micro problems using the FEM

and we have emic ≤ C‖fH‖L2(Ω) maxx∈QH ‖a(x) − ah(x)‖F, where C depends only on the
ellipticity and boundedness constant of a(x) and ah(x). If the micro solutions are sufficiently
regular, one can obtain emic ≤ Chk+2. Notice that due to the rescaling in (9) the convergence
rates depend on h and not h/ε, the usual scaling for the elliptic FE-HMM [1,7]).
The optimal rates emac ≤ CH l and emic ≤ Chk+2 are normally not attained in practice,

due to non-convexity of domains [2].

3.2. Computational cost. The computational cost of the DS-FE-HMM does not
depend on the pore size ε but only on δ/ε, which is usually low. Denote the number of macro-
scopic degrees of freedom (DOF) by Nmac and the (average, per micro domain) number of
microscopic DOF by Nmic. If the computational cost of solving one (micro or macro) problem
is assumed to be linear in the DOF, the total cost of the DS-FE-HMM is O(NmicNmac). To
avoid saturation of error during refinement both Nmic and Nmac need to grow in a balanced
way, leading to an optimal refinement relation Nmic ≈ Nr

mac, where r > 0 depends on the type
of the FE used and the regularity of the problem. Since uniform refinement is usually not
optimal, an adaptive strategy was studied in [2,3]. Even with adaptivity, computing a large
amount of micro problems can be too expensive, especially for three-dimensional problems.

4 The RB-DS-FE-HMM
In this section we introduce a new method, the reduced basis Darcy-Stokes finite element
heterogeneous multiscale method that addresses the high computational cost of the DS-FE-
HMM on the micro scale. On the macro scale we solve a Darcy problem that is similar to (11)
but a different tensor, denoted aRB(x), is used. We apply a reduced basis (RB) method based
on [4] to compute aRB(x). The macroscopic equation reads: Find pH,RB ∈ SlH(Ω)/R such
that

BRB
H (pH,RB, qH) = LRB

H (qH) ∀qH ∈ SlH(Ω)/R, (16)
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where

BRB
H (pH , qH) =

∑

K∈TH

J∑

j=1
ωKja

RB(xKj )∇pH(xKj ) · ∇qH(xKj ),

LRB
H (qH) =

∑

K∈TH

J∑

j=1
ωKja

RB(xKj )fH(xKj ) · ∇qH(xKj ).

(17)

For any quadrature point x = xKj the tensor aRB(x) is an approximation of a0(x) computed
in the reduced basis space (see (29) and (33) below). An illustration of the RB-SD-FE-HMM
is depicted in Figure 4.
Let us sketch here the RB method for computing aRB. We assume that the Stokes micro

problems can be mapped to a reference micro domain, where we obtain a parametric PDE.
As the geometry of the fluid and solid parts depends on the macroscopic coordinates, the
microscopic parametric PDEs depend on the macroscopic coordinates around which the mi-
croscopic snapshot is taken. For a small number of parameters we solve the mapped micro
problems in a reference micro mesh. These solutions are called the reduced basis and they
span the solution space. For an arbitrary parameter we approximate the exact FE solutions
of the micro problems by projecting them into the low-dimensional solution space. Since we
use a parameter-dependent test space, we obtain a Petrov-Galerkin method. The efficiency
of such strategy is achieved via standard offline-online splitting.
The offline stage is run only once while constructing the RB space and precomputing the

necessary quantities for the online stage. This stage is detailed in section 5.
The online stage provides a cheap evaluation of aRB(x), an approximation of the effective

permeability, for any macroscopic coordinate x ∈ Ω. The computation time of a single online
RB evaluation is independent of the reference micro mesh. Consequently, the computation
time of the online RB-DS-FE-HMM is comparable to a single-scale Darcy problem.

4.1. Parametrization of the geometry. Assume that the map ϕ(x, ·) from sec-
tion 2.2 is known for every x ∈ Ω and that it is piecewise affine. Let R ∈ N and {Y rF}Rr=1
be a disjoint partition of YF into subdomains such that the restriction ϕ(x, y)|y∈Y rF is linear
for every fixed x ∈ Ω and r ∈ {1, . . . , R}. Precisely, we assume that there are vector fields
Cr : Ω → Rd and tensor fields Gr : Ω → Rd×d such that ϕ(x, y)|y∈Y rF = Cr(x) +Gr(x)y for
every x ∈ Ω and r ∈ {1, . . . , R}. For an illustration see Figure 3.

0
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Y 1
F

Y 2
F

Y 3
F

Y 4
F

− 1
2

− 1
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2

1
2

ϕ(x, ·)

µ2(x)

µ1(x)

Y x
S

− 1
2

− 1
2 1

2

1
2

Cr(x) =
(
µ1(x)
µ2(x)

)
for r ∈ {1, 2, 3, 4},

G1(x) =
(

1 + 2µ1(x) 0
2µ2(x) 1

)

G2(x) =
(

1 −2µ1(x)
0 1− 2µ2(x)

)

G3(x) =
(

1− 2µ1(x) 0
−2µ2(x) 1

)

G4(x) =
(

1 2µ1(x)
0 1 + 2µ2(x)

)

Figure 3: A reference micro geometry YF with R = 4 subdomains. The local pore geometries
(Y xS , Y xF ) are defined by ϕ(x, ·) that maps the corner of the L-shape of YF from (0, 0) to µ(x),
where µ : Ω→ Y is a given function.

Remark 2. In the description of the RB-DS-FE-HMM we consider Ω to be the parametric
space and x ∈ Ω to be the parameter. The RB method is then used to approximate (5)
in the family of micro geometries {(Y xS , Y xF )}x∈Ω. It is sometimes convenient (see Figure 3
and section 8) to define a family of micro geometries {(Y µS , Y

µ
F )}µ∈D, where D ⊂ Rp is

a parametric domain. To define a porous structure in Ω it is then sufficient to provide a
mapping µ : Ω→ D and define local pore geometries as (Y xS , Y xF ) := (Y µ(x)

S , Y
µ(x)

F ).

Micro problems in the reference domain. We now pull back the Stokes micro prob-
lem (8) from Y xF to YF using the change of variables ϕ(x, ·)−1 : Y xF → YF. The resulting
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problem reads as follows: Find (ui,x,e, pi,x,e, λi,x,e) ∈ X = W (YF)× L2(YF)× R such that

a(ui,x,e,v;x) + b(v, pi,x,e;x) + b(ui,x,e, q;x)
+ c(q, λi,x,e;x) + c(pi,x,e, κ;x) = gi(v;x)

(18)

for every (v, q, κ) ∈ X. The superscript e stands for exact solution. The linear and bilinear
forms in (18) depend on x ∈ Ω. Indeed, we have

a(u,v;x) =
R∑

r=1

d∑

i,j=1
νr,xij

∫

Y rF

∂u
∂yi
· ∂v
∂yj

dy, c(q, κ;x) = κ

R∑

r=1
Jr(x)

∫

Y rF

q dy,

b(v, q;x) = −
R∑

r=1

d∑

i,j=1
κr,xij

∫

Y rF

q
∂vi
∂yj

dy, gi(v;x) =
R∑

r=1
Jr(x)

∫

Y rF

vi dy,

(19)

where Jr(x) = det(Gr(x)), νr,x = Jr(x)Gr(x)−1Gr(x)−T , and κr,x = Jr(x)Gr(x)−T . For
any U = (u, p, λ) and V = (v, q, κ) we can now define A(U,V;x) as the left-hand side
of (18) and Gi(V;x) = gi(v;x), which allows us to abbreviate (18) as: Find Ui,x

e =
(ui,x,e, pi,x,e, λi,x,e) ∈ X such that

A(Ui,x
e ,V;x) = Gi(V;x) ∀V ∈ X. (20)

The solutions to (20) are equivalent to those of (8) or (5) up to the change of variables, that
is, ui,x(ϕ(x, y)) ≡ ui,x,e(y). Hence, the effective permeability (6) reads

a0
ij(x) = gi(uj,x) = gi(uj,x,e;x) = Gi(Uj,x

e ;x) ∀i, j ∈ {1, . . . , d}. (21)

Well-posedness of (20). The micro problems (5), (8) and (20) are equivalent but their
stability constants are defined differently. Instead of the Brezzi inf-sup condition (7) (saddle-
point problem), one requires for (20) the Babuška inf-sup condition (non-coercive problem)

βBa(x) = inf
U∈X

sup
V∈X

A(U,V;x)
‖U‖X‖V‖X

> 0. (22)

Equivalence of these formulations and relation between the Brezzi and Babuška constants
have been studied in [23, 37, 45]. Non-degeneracy of the mapping ϕ(x, y) also ensures conti-
nuity of A(·, ·;x) and F (·;x), that is, there are γA(x), γiG(x) ∈ R such that

A(U,V;x) ≤ γA(x)‖U‖X‖V‖X ∀U,V ∈ X,
Gi(V;x) ≤ γiG(x)‖V‖X ∀V ∈ X.

(23)

Affine decomposition. Using the relations (19) we easily obtain an affine decomposition
of the micro problem (20). Consider
• symmetric bilinear forms Aq(·, ·) : X ×X → R for q ∈ {1, . . . , QA}, where QA ∈ N,
• linear forms Giq(·) : X → R for q ∈ {1, . . . , QG} and i ∈ {1, . . . , d}, where QG ∈ N,
• vector fields ΘA : Ω→ RQA and ΘG : Ω→ RQG ,

such that for any U,V ∈ X, parameter x ∈ Ω, and i ∈ {1, . . . , d} we have

A(U,V;x) =
QA∑

q=1
ΘA
q (x)Aq(U,V), Gi(V;x) =

QG∑

q=1
ΘG
q (x)Giq(V). (24)

Since the numbers QA and QG influence the time and memory requirements of the al-
gorithm, one tries to minimize them. A direct application of (24) yields QA ≈ 2Rd2 and
QG ≈ R. It is often possible to reduce this complexity by symbolic manipulation of (24). In
the example from Figure 3 we can obtain QA = 15 and QG = 3 with ΘG(x) = (1, µ1, µ2).
Another approach to reduce QA or QG is using the empirical interpolation method [13].

Discretization of (20). Let TN be a conformal, shape-regular triangulation of YF, where
N stands for the number of degrees of freedom in the equation (25) below. We further assume
that TN is a submesh of {Y rF}Rr=1, that is, for every K ∈ TN there is r ∈ {1, . . . , R} such that
K ⊂ Y rF . Consider the Taylor-Hood Pk+1/Pk FE spaces (similar to (10)) given by

LN = {q ∈ SkN (YF); q is Y -periodic},
WN = {v ∈ Sk+1

N (YF)d; v is Y -periodic, v = 0 on ∂YS}.
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A discrete equivalent of X is now XN = WN ×LN ×R. We define a numerical approximation
of the problem (20) and the output of interest a0(x) ≈ aN (x) as follows. Find Ui,x

N =
(ui,x,N , pi,x,N , λi,x,N ) ∈ XN and such that

A(Ui,x
N ,V;x) = Gi(V;x) ∀V ∈ XN , (25)
aNij (x) = Gi(Uj,x

N ;x) ∀i, j ∈ {1, . . . , d}. (26)

Scalar product on X. Stability of the RB method is measured with respect to a norm on
X that corresponds to a scalar product. It is advised (see [37,38]) that this induced norm is
uniformly equivalent to the H1-norm with respect to N . A standard choice is

(U,V)X = (∇u,∇v)L2(YF) + τ(u,v)L2(YF) + (p, q)L2(YF) + λκ, (27)

where U = (u, p, λ) and V = (v, q, κ) and τ > 0 is a numerical approximation to the
optimal constant from the Poincaré–Friedrichs inequality: |wN |H1(YF) ≥ τ‖wN ‖L2(YF) for
every wN ∈ WN . Accurate values of τ improve the efficiency of the eigensolvers needed in
section 5.3 (see [26,37]).

Well-posedness of (25). The continuity constants of A(·, ·;x) : XN × XN → R and
F (·;x) : XN → R are bounded above by the constants in (23). Using stable FE spaces
ensures that

βNBa(x) = inf
U∈XN

sup
V∈XN

A(U,V;x)
‖U‖X‖V‖X

> 0. (28)

4.2. Reduced basis formulation. We consider (25) as d independent problems in-
dexed by i ∈ {1, . . . , d}. We project (25) to a solution space Xi ⊂ XN and a parameter-
dependent test space Y xi ⊂ XN , both of dimension Ni � N . The solution space Xi

is spanned by a small number of solutions of (25) computed for parameter values Si =
{xi,1, xi,2, . . . , xi,Ni} ⊂ Ω. For every n = 1, 2, . . . , Ni we denote by Ui,n

N ∈ XN the solu-
tion to (25) with x = xi,n ∈ Si. The sequence {Ui,n

N }n is then orthonormalized by the
Gram–Schmidt method (without changing the notation) to achieve algebraic stability (sec-
tion 5.5). We then define Xi = span{Ui,1

N , . . . ,U
i,Ni
N }. The RB approximation of (25) is then

defined as follows: For any x ∈ Ω and i ∈ {1, . . . , d} we search Ui,x
RB ∈ Xi such that

A(Ui,x
RB,V;x) = Gi(V;x) ∀V ∈ Y xi . (29)

The inf-sup stability of the reduced problem (29) is guaranteed by an adequate construction
of the test space Y xi . Consider the so-called supremizer operator T : XN × Ω → XN . For
any x ∈ Ω and U ∈ XN let T (U;x) be the Riesz’s representant of A(U, ·;x), that is,

(T (U;x),V)X = A(U,V;x) ∀V ∈ XN . (30)

One can easily show that the supremizer operator T (·;x) : XN → XN is linear and

T (U;x) = arg max
V∈XN

A(U,V;x)
‖V‖X

, βNBa(x) = inf
U∈XN

‖T (U;x)‖X
‖U‖X

· (31)

We now set
Y xi = T (Xi;x) = span{T (Ui,1

N ;x), . . . , T (Ui,Ni
N ;x)}, (32)

We describe a practical construction of the sets Si in section 5.1.

Output of interest. A simple approximation of the output of interest (26) is Gi(Uj,x
RB;x),

which is optimal for i = j. However, if i 6= j, one can increase the order of accuracy with
a dual RB problem [34]. Since the right-hand sides of our problems (Gi(·;x)) are the same
linear forms as needed to obtain the outputs of interest (26), we do not need to solve any
additional dual problems. We thus define

aRB
ij (x) = Gi(Uj,x

RB;x) +Rj(Ui,x
RB;x), (33)

where the residual Rj : X × Ω→ R is given by

Rj(V;x) = Gj(V;x)−A(Uj,x
RB,V;x)

= A(Uj,x
N −Uj,x

RB,V;x).
(34)
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Figure 4: A sketch of the RB-DS-FE-HMM.

Well-posedness of (29). The boundedness of A(·, ·;x) and Gi(·;x) over XN is implied
by (23). It has been shown that the inf-sup stability constant in the reduced equation (29)
is preserved [4, 36], that is, for every x ∈ Ω and i ∈ {1, . . . , d} we have

βiBa(x) := inf
U∈Xi

sup
V∈Y x

i

A(U,V;x)
‖U‖X‖V‖X

≥ βNBa(x). (35)

4.3. RB solution evaluation. Using the affine decomposition of A(·, ·;x) from (24)
in the definition of T (·;x) from (30), we can deduce that T (U;x) =

∑QA
q=1 ΘA

q (x)T q(U),
where T q(U) is the Riesz’s representant of Aq(U, ·), that is,

(T q(U),V)X = Aq(U,V) ∀V ∈ XN . (36)
This affine decomposition of T (·;x) allows us to write the basis functions of Y xi from (32)
as linear combinations: T (Ui,n

N ;x) =
∑QA
q=1 ΘA

q (x)T q(Ui,n
N ). Hence, functions Ui,x

RB ∈ Xi and
V ∈ Y xi from (29) can be written as linear combinations

Ui,x
RB =

Ni∑

n=1
U
i,x

n Ui,n
N , V =

Ni∑

m=1
V m

QA∑

q=1
ΘA
q (x)T q(Ui,m

N ), (37)

where (U i,x1 , . . . , U
i,x

Ni )
T , (V 1, . . . , V Ni)T ∈ RNi are vectors of coefficients. Plugging (37) into

the reduced system (29), using the affine decomposition (24), and expanding and regrouping
terms gives the following problem: find U i,x ∈ RNi such that

Ai,x
U
i,x = Gi,x

, (38)

where the matrix Ai,x ∈ RNi×Ni and the right-hand side vector Gi,x ∈ RNi are given by

Ai,x =
QA∑

q,r=1
ΘA
q (x)ΘA

r (x)M iqr
, Gi,x =

QG∑

q=1

QA∑

r=1
ΘG
q (x)ΘA

r (x)N iqr
. (39)

Here, the matrices M iqr ∈ RNi×Ni and vectors N iqr ∈ RNi are given by

M
iqr

nm = Aq(Ui,n
N , T r(Ui,m

N )) = (T q(Ui,n
N ), T r(Ui,m

N ))X ,

N
iqr

m = Giq(T r(Ui,m
N )).

(40)

The values (40) are precomputed in the offline stage and the dense linear system (38) with
Ni variables is assembled (via (39)) and solved in the online stage.

4.4. RB output evaluation. Assume that we have computed U i,x for i ∈ {1, . . . , d}.
We rewrite (33) using the affine decompositions (24) and (37) to obtain

aRB
ij (x) =

QG∑

q=1
ΘG
q (x)(Sijq · U j,x + S

jiq · U i,x)−
QA∑

q=1
ΘA
q (x)T jiqU j,x · U i,x, (41)

where the vectors Sijq ∈ RNj and the matrices T ijq ∈ RNi×Nj can be precomputed in the
offline stage as

S
ijq

n = Giq(Uj,n
N ), T

ijq

nm = Aq(Ui,n
N ,Uj,m

N ). (42)
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5 Offline RB stage
In section 5.1 we recall an offline greedy algorithm to construct the parameter sets Si. This
algorithm uses a cheap a posteriori estimator of the RB error (section 5.2) that relies on a
rigorous estimate of the stability constant (28) (section 5.3). One can derive a posteriori
estimators for the output of interest (section 5.4) and a priori error analysis (section 5.5).
We conclude by an analysis of computational cost in section 5.6.

5.1. Greedy construction of the RB. For every i ∈ {1, . . . , d} we perform the
selection of the RB parameters Si once. We chose a standard greedy approach that adds
points x ∈ Ω from a training set to Si, until a suitable error tolerance is reached. The error
‖Ui,x
N −Ui,x

RB‖X is estimated by its upper bound (see Lemma 4)

∆E
i (x) =

‖Ri(·;x)‖(XN )′

βSCM(x) , (43)

where the residual Ri is defined in (34) and βSCM(x) is a cheap computable positive lower
bound of βNBa(x) that will be described in section 5.3.

Algorithm 3 (offline greedy RB construction). Given i ∈ {1, . . . , d}, training set size
NRB

train ∈ N, and tolerance εRB > 0 do:
1. Initialization. Choose randomly (Monte Carlo) or structurally (regular grid) a training

set ΞRB
train ⊂ Ω of size NRB

train. Set Si = ∅ and Ni = 0.
2. Estimate. For every x ∈ ΞRB

train compute the RB error estimator (43) and let x̃ ∈ ΞRB
train

be the argument for which ∆E
i (x̃) is maximized.

3. Stopping criterion. If ∆E
i (x̃) < εRB, then we precompute (42) and stop the algorithm.

Else, we let Ni ← Ni + 1, set xi,Ni = x̃, and update Si ← Si ∪ {xi,Ni}.
4. Update online fields. Compute Ui,Ni

N by solving (25) with x = xi,Ni and compute the
supremizers T q(Ui,Ni

N ) for q = 1, . . . , QA by solving (36). Update (40) and go to step 2.

When Algorithm 3 stops it gives Si such that the RB error is bounded by εRB in all training
points. We cannot guarantee this bound for all x ∈ Ω but one expects comparable errors if
the training set is dense enough.

5.2. A posteriori error indicator. We prove that the error indicator ∆E
i (x) defined

in (43) majorizes the RB error and we describe a cheap evaluation of ∆E
i (x).

Lemma 4. For any x ∈ Ω and i ∈ {1, . . . , d} we have ‖Ui,x
N −Ui,x

RB‖X ≤ ∆E
i (x).

Proof. Using the inf-sup condition (28), definition (34), and inequality (48), gives

‖Ui,x
N −Ui,x

RB‖X ≤
1

βNBa(x)
sup

V∈XN

A(Ui,x
N −Ui,x

RB,V;x)
‖V‖X

≤ ∆E
i (x).

The inequality (48) establishes that βNSCM(x) ≤ βNBa(x), which concludes the proof.

Evaluation of ∆E
i (x). From the error bound (43) we consider here only the evaluation of

‖Ri(·;x)‖(XN )′ , following [38]. Evaluation of βSCM(x) is presented in section 5.3. The residual
Ri(·;x) is a linear functional on the Hilbert spaceXN , hence the Riesz representation theorem
applies: there is a unique Ei,x

N ∈ XN such that (Ei,x
N ,V)X = Ri(V;x) for every V ∈ XN .

We next find an affine decomposition of Ei,x
N . Recalling that (see (34) and (24))

Ri(V;x) = Gi(V;x)−A(Ui,x
RB,V;x)

=
QG∑

q=1
ΘG
q (x)Giq(V)−

QA∑

q=1

Ni∑

n=1
ΘA
q (x)U i,xn Aq(Ui,x

RB,V;x)

and using the identity (36) we obtain

Ei,x
N =

QG∑

q=1
ΘG
q (x)Giq

N −
QA∑

q=1

Ni∑

n=1
ΘA
q (x)U i,xn T q(Ui,n

N ), (44)
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where the Riesz’s representant Giq
N ∈ XN satisfies (Giq

N ,V)X = Giq(V) for every V ∈ XN .
Expanding the equality ‖Ri(·;x)‖2(XN )′ = (Ei,x

N ,Ei,x
N )X using (44) yields

‖Ri(·;x)‖2(XN )′ =
QG∑

q,r=1
ΘG
q (x)ΘG

r (x)P iqr − 2
QG∑

q=1

QA∑

r=1
ΘG
q (x)ΘA

r (x)N iqr · U i,x

+
QA∑

q,r=1
ΘA
q (x)ΘA

r (x)M iqr
U
i,x · U i,x

=
QG∑

q,r=1
ΘG
q (x)ΘG

r (x)P iqr − 2Gi,x · U i,x + Ai,x
U
i,x · U i,x,

(45)

where we used the definition (40) for N iqr and M
iqr and the numbers P iqr ∈ R can be

precomputed in the offline stage by P iqr = (Giq
N ,Gir

N )X .

5.3. Successive constraint method (SCM). Here we describe a cheap lower bound
βSCM(x) of the inf-sup constant βNBa(x). We follow the algorithm [26] with some modifications
detailed in Remark 7. Using (28) and (31) for any x, x ∈ Ω we have

βNBa(x) ≥ inf
U∈XN

A(U, T (U;x);x)
‖U‖X‖T (U;x)‖X

≥ inf
U∈XN

‖T (U;x)‖X
‖U‖X︸ ︷︷ ︸

=βN
Ba(x)

inf
U∈XN

A(U, T (U;x);x)
‖T (U;x)‖2X︸ ︷︷ ︸

=:βN (x;x)

· (46)

The SCM uses a greedy algorithm to construct a finite set S ⊂ Ω and a family of finite sets
{Cx}x∈S ⊂ Ω such that:
• for each x ∈ S the value βNBa(x) is computed and stored,
• given a x ∈ S the values βN (x;x) are computed and stored for every x ∈ Cx. They are
used to provide cheap bounds of βN (x;x) defined in (52) that satisfy

βLB(x;x,C) ≤ βN (x;x) ≤ βUB(x;x,C) ∀x ∈ Ω (47)

for any nonempty set C ⊂ Ω.
Using (46) and (47) we obtain (and define)

βNBa(x) ≥ βSCM(x) := max
x∈S

βNBa(x)βLB(x;x,Cx). (48)

In the next subsections we explain the construction of the bounds (47).

5.3.1. Eigenproblems. The values of βNBa(x) or βN (x;x) described in (46) can be
interpreted as minimal eigenvalues of a related eigenproblem. If we denote

Ux,x
N = arg min

U∈XN





A(U, T (U;x);x)
‖T (U;x)‖2X

if x 6= x,

‖T (U;x)‖X
‖U‖X

if x = x,

(49)

we can then express

βNBa(x) = ‖T (Ux,x
N ;x)‖X

‖Ux,x
N ‖X

,

β
N (x;x) = A(Ux,x

N , T (Ux,x
N ;x);x)

‖T (Ux,x
N ;x)‖2X

=
QA∑

q=1
ΘA
q (x) A

q(Ux,x
N , T (Ux,x

N ;x))
‖T (Ux,x

N ;x)‖2X︸ ︷︷ ︸
=:zq(x;x)

·
(50)
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5.3.2. Upper and lower bounds. Let us fix a parameter x ∈ Ω. Using the affine
decomposition (24) we obtain

β
N (x;x) = inf

U∈XN

QA∑

q=1
ΘA
q (x)A

q(U, T (U;x))
‖T (U;x)‖2X

= inf
z∈Yx

QA∑

q=1
ΘA
q (x)zq, (51)

where Yx is the set of all z ∈ RQA such that zq = Aq(U, T (U;x))/‖T (U;x)‖2X for every
q ∈ {1, . . . , QA} for some U ∈ XN . Given an arbitrary nonempty set C ⊂ Ω, we can
construct a chain of sets YUB

x (C) ⊂ Yx ⊂ YLB
x (C) (for a proof see [26]) by

YUB
x (C) = {z(x̂;x) = (zq(x̂;x))QAq=1 ∈ RQA : x̂ ∈ C},
YLB
x (C) = {(s1, . . . , sQA) ∈ RQA : |sq| ≤ γq/βNBa(x) ∀q ∈ {1, . . . , QA}

and
∑QA
q=1 ΘA

q (x̂)sq ≥ βN (x̂;x) ∀x̂ ∈ C},

where γq = supU∈XN ‖T q(U)‖X/‖U‖X . We then define

βLB(x;x,C) = min
z∈YLB

x
(C)

QA∑

q=1
ΘA
q (x)zq, βUB(x;x,C) = min

z∈YUB
x

(C)

QA∑

q=1
ΘA
q (x)zq. (52)

Using (51) and the inclusion property YUB
x (C) ⊂ Yx ⊂ YLB

x (C) we immediately get (47).

5.3.3. Greedy SCM algorithm. We next present an algorithm for constructing the
set S ⊂ Ω and the family {Cx}x∈S .

Algorithm 5 (offline greedy SCM construction). Given a training size NSCM
train ∈ N , a

tolerance εSCM ∈ (0, 1), and θ ∈ (0, 1) do:
1. Initialization. Choose randomly (Monte Carlo) or structurally (regular grid) a training

set ΞSCM
train ⊂ Ω of size NSCM

train . Compute γq for q ∈ {1, . . . , QA}. Let S = ∅ and Cx = ∅
for every x ∈ Ω. Select a random x ∈ ΞSCM

train and set x̂← x.
2. Update. Set S ← S ∪ {x} and Cx ← Cx ∪ {x̂}. Compute Ux̂,x

N by solving the eigen-
problem (49) and use it to obtain zq(x̂;x) defined in (50).

3. Upper bound check. Find the training point x̂ ∈ ΞSCM
train with the smallest upper bound

estimate by
x̂← arg min

x̂∈ΞSCM
train

max
x∈S

βUB(x̂;x,Cx).

If maxx∈S βUB(x̂;x,Cx) < θ, then we let x ← x̂ and continue with the step 2, which
enlarges the set S with x.

4. Lower bound check. Find a training point x̂ ∈ ΞSCM
train and x ∈ S corresponding to the

smallest lower bound estimate by

[x̂, x]← arg min
x̂∈ΞSCM

train

max
x∈S
{βLB(x̂;x,Cx); βUB(x̂;x,Cx) ≥ θ}.

If βLB(x̂;x,Cx) < θεSCM, then we continue with the step 2, which enlarges the set Cx.
Else, we have reached the tolerance and we stop the algorithm.

When Algorithm 5 stops we have βSCM(x) > 0 for all training points. We cannot guarantee
positivity for every x ∈ Ω but we practically observe it, if the training set is dense enough.

Remark 6 (online SCM). For any x ∈ Ω we get βSCM(x) defined in (48) by computing
βLB(x;x,Cx) by solving the linear programming problem (52) for each x ∈ S.

Remark 7. In the original procedure (see [26]) for each x ∈ S a corresponding set Cx
is constructed before adding another element to S. This approach resulted in unnecessary
large sets Cx, therefore, we decided to construct all these sets concurrently. Furthermore,
the precision of the SCM in [26] was controlled by a function ϕ(x, x) that can be constructed
using the so-called SCM2 method. Since we don’t expect extreme variations of βNBa(x), we
replaced this function by a constant θ > 0. In practice we chose θ = εSCM = 0.5.
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5.4. A posteriori error estimate for aRB(x). We discuss here the error between
the permeability tensor aN (x) and its RB approximation aRB(x), defined in (26) and (33),
respectively. Using the definitions (26) and (33), the residual definition (34), the problem
statement (25), and symmetry of A(·, ·;x), we obtain the following identity

aNij (x)− aRB
ij (x) = Gi(Uj,x

N ;x)−Gi(Uj,x
RB;x)−Gj(Ui,x

RB;x) +A(Uj,x
RB,U

i,x
RB;x)

= A(Ui,x
N −Ui,x

RB,U
j,x
N −Uj,x

RB;x)
= Ri(Uj,x

N −Uj,x
RB;x).

(53)

Lemma 8. For any i, j ∈ {1, . . . , d} we have

|aNij (x)− aRB
ij (x)| ≤ 1

βSCM(x)‖R
i(·;x)‖(XN )′‖Rj(·;x)‖(XN )′ , (54)

‖aN (x)− aRB(x)‖F ≤
1

βSCM(x)

d∑

i=1
‖Ri(·;x)‖2(XN )′ =: ∆F(x). (55)

Proof. Using (53) and Lemma 4 gives

|aNij (x)− aRB
ij (x)| = |Ri(Uj,x

N −Uj,x
RB;x)| ≤ ‖Ri(·;x)‖(XN )′‖Uj,x

N −Uj,x
RB‖X

≤ ‖Ri(·;x)‖(XN )′∆E
j (x) = ∆out

ij (x).

This shows (54) and (55) follows.

The error bound (55) is quadratic with respect to the error bound for the RB solution (43).
This improvement of accuracy is due to the use of dual problem in the definition (33).

5.5. A priori error analysis. Using the inf-sup stability (35) and Y ix = T (Xi;µ)
one can obtain optimality of the RB method.
Lemma 9. For every i, j ∈ {1, . . . , d} and x ∈ Ω we have

‖Ui,x
N −Ui,x

RB‖X ≤
(

1 + γA(x)
βNBa(x)

)
inf

V∈Xi
‖Ui,x
N −V‖X ,

|aNij (x)− aRB
ij (x)| ≤ γA(x)

(
1 + γA(x)

βNBa(x)

)2
inf

V∈Xi
‖Ui,x
N −V‖X inf

W∈Xj
‖Uj,x
N −W‖X .

Proof. The proof of the first inequality is given in [12]. Using (53) we obtain

|aNij (x)− aRB
ij (x)| = |A(Ui,x

N −Ui,x
RB,U

j,x
N −Uj,x

RB;x)|
≤ γA(x)‖Ui,x

N −Ui,x
RB‖X‖U

j,x
N −Uj,x

RB‖X .
We conclude the proof of the second inequality by applying the first one.

For the practical application of the RB method, it is of great importance that the reduced
systems governed by the matrix Ai,x are numerically stable. It can be shown (see [4] for
details) that the condition number of Ai,x is bounded by γ2

A(x)(βiBa(x))−2.
Let us discuss a priori convergence rates of the RB greedy algorithm with respect to the

number of RB functions Ni. We apply the general framework for greedy approximations of
compact sets in Hilbert spaces [15]. For each i ∈ {1, . . . , d}, the RB methods approximates
the solution manifold Mi = {Ui,x

N ; x ∈ Ω} ⊂ XN with Xi ⊂ XN . Approximability of Mi

by linear subspaces of XN of dimension n is described by the Kolomogorov n-width

dn(Mi) = inf
Z⊂XN

dim(Z)=n

sup
U∈Mi

dist(U, Z),

where dist(U, Z) = minV∈Z ‖U−V‖X . Algorithm 3 is, in terminology of [15], a weak greedy
algorithm, provided that the a posteriori error estimator ∆E

i (x) is uniformly equivalent to
the exact error dist(Ui,x

RB, Xi). Indeed, by (43), (23), and Lemma 9 we have

∆E
i (x) = sup

V∈XN

A(Ui,x
N −Ui,x

RB,V;x)
βSCM(x)‖V‖X

≤ γA(x)
βSCM(x)‖U

i,x
N −Ui,x

RB‖X

≤ γA(x)
βSCM(x)

(
1 + γA(x)

βiBa(x)

)
dist(Ui,x

RB, Xi),
(56)
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and from Lemma 4 we simply obtain dist(Ui,x
RB, Xi) ≤ ∆E

i (x). The analysis in [15] then shows
that there is a constant γ ∈ (0, 1], depending only on the constants from (56), such that the
following properties are true:
• If there are constants M,α > 0 such that dn(Mi) ≤ Mn−α for all n > 0, then
dist(Ui,x

RB, Xi) ≤ CMN−αi , where C depends only on α and γ.
• If there are constants M,a, α > 0 such that dn(Mi) ≤ Me−an

α for all n ≥ 0, then
dist(Ui,x

RB, Xi) ≤ CMe−cN
β
i , where β = α/(α + 1) and the constants C, c > 0 depend

only on α and γ.

5.6. Computational cost. Here we describe the computational cost of offline and on-
line RB procedures. For a comparison to other methods see [4,24]. LetN = max{N1, . . . , Nd},
where Ni is the dimension of the RB space Xi and let Q = max{QA, QG}.

Online stage. Let x ∈ Ω be arbitrary. To obtain the RB coefficients U i,x we need to
assemble (39) and solve the dense system (38) with Ni variables, which can we do with
O(Q2N2

i +N3
i ) operations. Then, we evaluate aRB(x) via (41) in additional O(QN2).

To obtain ∆E
i (x) we evaluate (45) in O(Q2 +N2

i ) operations and we compute βSCM(x) as
described in Remark 6. Computation of βSCM(x) via (48) and (52) is dominated by solving
a linear programming problem in RQA with 2QA + |Cx| constraints for each x ∈ S.
Offline stage. The major sources of computational cost in the offline RB (Algorithm 3
and 5) stage can be split into four categories:
Solving sparse linear systems. In Algorithm 3 (step 4) we solve O(N) Stokes problems (25)

and compute O(QN) supremizers (T q(Ui,n
N ) and Giq

N ), which can be done in O(N(N+Q)N ),
assuming a linear-time solver.
Assembling online fields. In Algorithm 3 (step 4) we assemble (40) and we also need (42)

for the output of interest. This takes O(N2Q2N ).
Residual calculation. In Algorithm 3 (step 2) we compute the error estimator ∆E

i (x) in
each iteration of the algorithm at all training points, which costs O(N3(Q2 + N)NRB

train).
Furthermore, we compute (48) at NRB

train points.
SCM. In Algorithm 5 we compute several eigenproblems of sizeN . First, QA eigenproblems

are needed to obtain γ ∈ RQA . Second, we solve |S|+ J eigenproblems to obtain Ux,x
N given

in (49), where J :=
∑
x∈S |Cx|. Furthermore, in each iteration of Algorithm 5 we need to

compute the upper and lower bounds (52) in the sampling points. Hence, in the whole offline
SCM we need to solve O((J + |S|)NSCM

train ) linear programming problems.

Memory requirements. The online RB stage (excluding the the computation of βSCM(x))
has O(Q2N2) memory complexity, which is independent of N . Since one can discard the
supremizers after the step 4 in every iteration of Algorithm 3, the memory requirements of
the offline RB stage are only O((N +Q)N ).

6 A priori and a posteriori error estimates

In this section we estimate the errors between the RB-DS-FE-HMM solution pH,RB and the
homogenized solution p0. We follow the DS-FE-HMM error estimates (section 3.1), but we
need to account for the additional error caused by the RB approximation.

Well-posedness of (16). The problem (16) is well-posed if aRB(x) is uniformly elliptic
and bounded over all macroscopic quadrature points x ∈ {QH}. Uniform ellipticity and
boundedness of aN (x) for a wide range of geometries can be shown using the general criteria
developed in [2]. Uniform boundedness of aRB(x) follows from the well-posedness of the
RB approximation, see (23) and (35). By setting the tolerance εRB > 0 small enough and
using (55), we can ensure the coercivity of aRB(x) at least for x in the RB training set ΞRB

train.
If the training set is dense enough in Ω, we expect to have ellipticity of aRB(x) for any x ∈ Ω.

Preliminaries. To discuss the a priori error estimates, following [2,5,7], we introduce two
additional problems to (2) and (16) that will help us to decompose the error e = p0 − pH,RB

into three components, based on the main source of the error. Consider a DS-FE-HMM
problem that solves (11) with the tensor aN (instead of ah) in (12). Solution to this problem
is denoted by pH ∈ SlH(Ω)/R. Further, let p0,H ∈ SlH(Ω)/R be a solution to (11) but with
tensor a0 (instead of ah) in (12).
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6.1. A priori error estimates. We decompose the error to three components: macro,
micro, and RB error, which are denoted by emac, emic, and eRB, respectively. Since we are
working with the exact micro domains Y xF (compared to Y x,δF in DS-FE-HMM), the modeling
error is not present. The triangle inequality gives

|p0 − pH,RB|H1(Ω)︸ ︷︷ ︸
e

≤ |p0 − p0,H |H1(Ω)︸ ︷︷ ︸
emac

+ |p0,H − pH |H1(Ω)︸ ︷︷ ︸
emic

+ |pH − pH,RB|H1(Ω)︸ ︷︷ ︸
eRB

. (57)

Similarly to section 3.1, we can derive the following result.

Theorem 10. If p0 ∈ H l+1(Ω), Assumtion (Q) holds, and a0(·) is uniformly elliptic,
bounded, and sufficiently smooth, then we have the following bound on the macro error
emac ≤ CH l, where the constant C is independent of H. The micro error, caused by dis-
cretiziation of micro problems, is bounded as

emic ≤ C‖fH‖L2(Ω) max
x∈QH

‖a0(x)− aN (x)‖F,

where C depends only on ellipticity and boundedness constants of a0(x) and aN (x). The RB
error eRB is caused by using aRB(x) instead of aN in (16). We have

eRB ≤ C‖fH‖L2(Ω) max
x∈QH

‖aN (x)− aRB(x)‖F,

where C depends only on ellipticity and boundedness constants of aN (x) and aRB(x).

Proof. The proof is analogous to that of the a priori estimates of the DS-FE-HMM [2].

One can bound ‖a0(x)− aN (x)‖F by the L2 error of the micro solutions, which leads to

emic ≤ C‖fH‖L2(Ω)

d∑

i=1
‖Ui,x

e −Ui,x
N ‖X ≤ C‖fH‖L2(Ω)N−

k+2
d .

Such rate in N can be observed when micro meshes are adapted to the geometry (see sec-
tion 8.1.1). Furthermore, under the assumptions from section 5.5 on the Kolomogorov n-
width, we can obtain the a priori estimate eRB ≤ C‖fH‖L2(Ω)e

−cNβ
i .

6.2. A posteriori error estimates. Here we derive a posteriori error estimates that
allow us to control the macro error emac and the RB error eRB. The micro error in the RB
framework comes from the discretization error of the micro problem (25). We recall that the
number of degrees of freedom N for these problems is assumed to be large so that the offline
computations of the RB solutions are very accurate. Hence, emic will be in general negligible.

Velocity reconstruction. We reconstruct a discontinuous velocity field using piecewise
approximation of aRB(fH − ∇pH,RB) by interpolation from quadrature points. In addition
to the assumption (Q) we assume that the number of quadrature nodes J is minimal, i.e.,
J =

(
l+d−1
d

)
. Given a macro element K ∈ TH and a function q : QK → R, there is a

unique interpolant Π(q) ∈ P l−1(K) such that Π(q)(xKj ) = q(xKj ) for every j ∈ {1, . . . , J}
(see [30, Prop. 50], [8]). Therefore, for any tensor a defined on quadrature points xKj , there
is a unique operator Πa that maps Sl−1

dis,H(Ω) to itself (see (13)) and satisfies

Πa(v)(xKj ) = a(x)v(xKj ), ∀K ∈ TH , ∀j ∈ {1, . . . , J}.

We define the RB-DS-FE-HMM velocity reconstruction by uH,RB = ΠaRB(fH −∇pH,RB).
Following the a posteriori error estimates in [2] we can define the macro residual ηK by

η2
K =H2

K‖∇ ·ΠaRB(fH −∇pH,RB)‖2L2(K)

+
∑
e∈∂K

1
2He‖[ΠaRB(fH −∇pH,RB) · n]e‖2L2(e)

for any K ∈ TH . The quantity ηK is computable and will serve as an error indicator. To state
a rigorous a posteriori error estimate, we need to define additional (non-computable) errors:
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the RB error ξRB,K , the micro error ξmic,K , and the data approximation error ξdata,K by

ξ2
RB,K = ‖fH −∇pH,RB‖2L2(K) max

x∈QK
‖aRB(x)− aN (x)‖2F,

ξ2
mic,K = ‖fH −∇pH,RB‖2L2(K) max

x∈QK
‖aN (x)− a0(x)‖2F,

ξ2
data,K = ‖a0(f −∇pH,RB)−Πa0(fH −∇pH,RB)‖2L2(K).

Furthermore, for any quantity ξK that is defined for every K ∈ TH let ξ2
M =

∑
K∈M ξ2

K for
any M ⊂ TH . Finally, for any K ∈ TH define M(K) as the set of elements of TH that share
at least one edge with K. We then have the following theorem.
Theorem 11. There is a constant C depending only on Ω, on the uniform continuity and
coercivity constants of a0 and on the shape-regularity of TH , such that

|p0 − pH,RB|2H1(Ω) ≤ C
∑

K∈TH
(η2
K + ξ2

RB,K + ξ2
mic,K + ξ2

data,K).

Moreover, we have

η2
K ≤ C(|p0 − pH,RB|2H1(M(K)) + ξ2

RB,M(K) + ξ2
mic,M(K) + ξ2

data,M(K)).

Proof. The proof is analogous to that in [2].

6.3. Assessment of the RB error. Even though we are not able to improve the
RB precision in the online stage, we can assess the RB error online. Using (55) we have

ξ2
RB,K ≤ ‖fH − pH,RB‖2L2(K) max

x∈QK
∆F(x) =: η2

RB,K .

7 Adaptive method
We propose an adaptive RB-DS-FE-HMM that solves (16) by starting with a coarse macro
mesh TH that is successively refined based on the local error indicators ηK . The adaptive
process follows the standard cycle SOLVE → ESTIMATE → MARK → REFINE.
Algorithm 12 (adaptive RB-DS-FE-HMM). We assume that the offline RB stage is finished
and the user provides Ω and an initial mesh TH .

1. Solve. For each quadrature point x ∈ QH compute aRB(x) using the online RB stage.
Assemble and solve the macro elliptic problem (16).

2. Estimate. Compute ηK for every K ∈ TH .
3. Mark. Choose a subset of elements in TH by using the error indicator ηK . We used the

marking strategy E [44].
4. Refine. The marked elements are refined such that conformity and shape-regularity is

preserved. The refined mesh stays denoted as TH .
The marking strategy contains one parameter that is usually denoted θ ∈ (0, 1). Smaller

values of θ lead to more iteration steps but usually a better balancing of residuals (fewer
outliers). Since the computation of aRB is more expensive than solving the macro problem,
we chose a relatively small value θ = 0.25. Conformity and shape-regularity of the refined
meshes is guaranteed by the newest vertex bisection method in two dimensions and by the
modified longest edge bisection [11] in three dimensions.
For an efficient implementation of Algorithm 12 we save the tensors aRB(x) for all quadra-

ture points and new values of aRB(x) are computed only in the refined elements. Further,
one can check if the RB error is dominated by the macro error by computing ηRB,K and
comparing it to ηK .

8 Numerical Experiments
In this section we first validate the proposed RB method for Stokes micro problems. Second,
we test the RB-DS-FE-HMM and compare it to the DS-FE-HMM [2]. Finally, we discuss
the performance of the RB-DS-FE-HMM on a 3D problem.
On the macro scale, we will use P1, P2, or P3 elements. We only use the well-known Taylor-

Hood P2/P1 elements on the micro scale (other stable FE pairs are of course possible).
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Implementation. All experiments were performed on a single computer with two 8-core
processors Intel Xeon E5-2600 and memory 8×8 GB DDR3 SDRAM 1600 MHz. The numeri-
cal codes were written in and run by Matlab R2014a with the startup option -singleCompThread
that prohibits internal parallelization of Matlab. Some parts of the algorithm that are em-
barrassingly parallel were run using a parfor in a pool of 16 parallel single-threaded workers.
For time measurement of a parallel job, we measure the execution time on each thread and
sum the resulting times together. Hence, parallelizable parts can execute up to 16 times
faster than the shown execution time.
The finite element code, inspired by [6, 20], uses vectorization to achieve fast assem-

bling. Sparse linear systems for two-dimensional problems are solved by the Matlab rou-
tine mldivide. For three-dimensional systems we adopt the following strategy for the linear
algebra:
• Positive definite systems are solved by the algebraic multigrid solver AGMG [31].
• Stokes systems are solved by the Uzawa method [33]. In the Uzawa method, AGMG
was used as a preconditioner for the coercive part and the diagonal of the pressure mass
matrix was used as a preconditioner of the Shur’s complement.

Linear systems with the same positive definite matrix representing the scalar product on
XN are solved repeatedly in the offline algorithms1. We optimize this by precomputing a
sparse Cholesky factorization (with reordering) provided by the Matlab routine chol and
using it whenever we need to solve such system.
Eigenproblems and generalized eigenproblems from the SCM method were solved using

the Matlab package bleigifp [35], which implements a block, inverse-free Krylov subspace
method. Linear programming problems from the SCM method were run by the Matlab
routine linprog with the default settings.
Micro mesh generation in DS-FE-HMM was done by external calls to gmsh [25].

8.1. Validation of the RB method. In this section we focus on the described RB
method applied to micro problems and test its precision. Consider the two-dimensional mi-
cro geometry depicted in Figure 3, where the reference fluid part YF is L-shaped. Following
Remark 2 we choose a square parametric domain D = (−0.2, 0.2)2 and consider the family of
micro geometries {Y µS , Y

µ
F }µ∈D. The parametric domain D allows high variation of perme-

ability but also avoids degenerate micro problems. In Figure 5 we plot the velocity solution
of the micro problem in (5) for i = 1 and several different parameter values.
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Figure 5: Velocity field u1,µ = (u1,µ
1 ,u1,µ

2 ) of the micro problem (5) for i = 1 and for the four
corner cases of parameter µ ∈ D and approximate values of the corresponding tensors a0(µ).

8.1.1. Reference micro meshes and discretization error. Usually, a fine mesh
TN is defined in the reference domain YF and TN is assumed to be fine enough for the RB
calculation so that the discretization error is negligible. For testing purposes, we consider a

1We solve these systems to compute supremizers in Algorithm 3 step 4 but also when solving the eigen-
problems in Algorithm 5.
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uniform meshes graded meshes
mesh DOF (N ) rel. err. (58) mesh DOF (N ) rel. err. (58)
T 0
L 126 7.92 · 10−2

T 1
L 470 4.10 · 10−2 T 1

ad 478 6.11 · 10−2

T 2
L 1806 1.99 · 10−2 T 2

ad 1851 6.07 · 10−3

T 3
L 7070 9.50 · 10−3 T 3

ad 7265 1.68 · 10−4

T 4
L 27966 4.59 · 10−3 T 4

ad 28564 1.32 · 10−5

T 5
L 111230 2.23 · 10−3 T 5

ad 114893 1.16 · 10−6

Table 1: DOF and the relative discretization error (58) for different reference micro meshes:
uniform (T sL ) and adaptive (T sad).

variety of meshes ranging from coarse to very fine and we asses the error originating from
the RB discretization.
Let T 0

L be the coarse mesh of YF depicted in Figure 6(left). We define a family of meshes
T 0
L , T 1

L , . . . such that T sL is obtained from T s−1
L by a global uniform refinement as shown in

Figure 6 (top).

T 0
L

DOF: 126

T 1
L

DOF: 470

T 2
L

DOF: 1806

T 3
L

DOF: 7070

. . .

T 1
ad

DOF: 478

T 2
ad

DOF: 1851

T 3
ad

DOF: 7265

. . .

Figure 6: The three coarsest uniform meshes of the reference L-shaped micro domain YF.

We measure the discrepancy between the exact tensor a0(µ) and the numerically computed
tensor aN (µ) with the following numerical test. We select a uniform grid of parameters
Ξtest ⊂ D of size 17 × 17. Given a reference micro mesh T sL , we compute aN (µ) for every
µ ∈ Ξtest. Furthermore, we compute a precise approximation2 of a0(µ) for every µ ∈ Ξtest.
Then we use the value

max
µ∈Ξtest

‖a0(µ)− aN (µ)‖F
‖a0(µ)‖F

(58)

as an estimate of the maximal relative discretization error. The results of this experiment
are shown in Table 1.
Since the micro domain is not convex, one expects that uniform meshes T sL are not optimal

for the micro problem. A standard way to improve approximation properties of a mesh (when
solving a single problem) is to use an adaptive method such as [43]. However, we aim for a
mesh that would be fit not only for a single problem but a family of problems. We achieved
very small discretization errors with micro meshes in the reference domain YF with the
following approach. Starting with the coarse mesh T = T 0

L we proceed with an iterative
adaptive algorithm.

1. Map the mesh T to the domains Y µF for the four corner parameters µ ∈ D, that is
µ ∈ {(−0.2,−0.2), (0.2,−0.2), (0.2, 0.2), (−0.2, 0.2)}.

2. In each of these four meshes we solve the two micro problems and compute the energy-
based residuals (see [2, 43] for details).

2An approximation of the exact value a0(µ) is computed for every µ ∈ Ξtest just once by solving the micro
problems in Y µ

F with an adaptive FEM, where the stopping criteria were set to 5 · 105 DOF.
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3. For each element in T we take the maximal residual over the eight problems and these
values serve as residuals for marking and then refining the mesh T using the methods
described in section 7.

We repeat these three steps until we reach the number of DOF of T sL for some s ∈ N, when
we denote the current refined mesh T by T sad. The meshes T sad for s ∈ {1, 2, 3} are shown in
Figure 6. The discretization error of these meshes is shown in Table 1. It is clear from these
computations that the adaptive meshes can give much better approximation of a0(µ) with
the same number of DOF as the uniform meshes.

8.1.2. SCM test. We next test the SCM Algorithm 5 with the different reference mi-
cro meshes from the previous subsection. The SCM involves several user-defined parameters,
which were set as shown in Table 2.
The effectivity of the SCM is plotted in Figure 7, where we compared the estimated values

βSCM(µ) with numerically computed βBa(µ) for a fine grid of parameters µ ∈ D. For these
SCM computations 120–180 eigenproblems and around 1.2·106 linear programming problems
were solved.

parameter value
tolerance εSCM 0.5

θ 0.5
training set size NSCM

train 129× 129
training set ΞSCM

train regular grid in D

Table 2: Parameters for the successive constraint method (SCM) used in Algorithm 5.
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Figure 7: Effectivity of the proposed SCM Algorithm 5 for different TN . The plots show the
value βSCM(µ)/βBa(µ) for different µ ∈ D. Filled circles represent the values µ ∈ S and they
are connected to non-filled circles representing the points Cµ.

We note (see Table 3) that neither |S| nor J increase with N . However, the computational
cost of solving the eigenproblems in the offline SCM increases with N .

T 3
L T 5

L T 3
ad T 5

ad
|S| 10 10 11 11
J 103 112 119 118

Table 3: The sizes of the set S and the number J =
∑
x∈S |Cx| in Algorithm 5 for different

reference micro meshes.

8.1.3. RB Greedy test. We next test the greedy procedure of Algorithm 3 (assem-
bling of the RB functions). The parameters were set according to Table 4. The desired
tolerance was reached in Ni ≤ 70 steps for i = 1, 2 for all tested micro meshes. The conver-
gence of the greedy algorithm is plotted in Figure 8 and it appears to be exponential in Ni.
The indicator of the error in the output of interest ∆F(x) (see (55)) is quadratic with respect
to the indicators of the error of the solution ∆E

i (x) (see (43)). We note that the round-off
error can become an issue for very small residuals, which is addressed in [19].

8.2. Validation of the RB-DS-FE-HMM. In this section we validate the RB-DS-
FE-HMM and see how different sources of errors (macro, micro, RB) influence the total error.
We choose a 2D experiment based on the micro geometries and meshes that were tested in the
previous section. Let Ω ⊂ R2 be a piecewise polygonal domain as depicted in Figure 4(right)
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parameter value
tolerance εRB 10−5

training set size NRB
train 65× 65

training set ΞRB
train regular grid in D

Table 4: Parameters for the greedy RB construction used in Algorithm 3.
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Figure 8: Greedy Algorithm 3 in practice: decreasing tendency of the maximal residual for
the first micro problem for four different N .

with TH as an initial mesh and let us define a porous structure in Ω with geometries from
Figure (3) and µ : Ω→ D given by

µ(x) =
(

1
5 cos

(
π(x2 − x1)

2

)
,

1
5 cos

(
π(x2 + x1)

2

))
∈ D. (59)

We assume that the force field is constant f ≡ (0,−1) and that the edges (0, 2) × {0} and
(0, 2) × {4} in the macroscopic domain Ω are connected periodically. The homogenized
solution p0 and non-homogenized solutions of (1) are shown in Figure 9.
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Figure 9: Pressure solutions pε to (1) for varying size of ε > 0 (left). Homogenized solution
p0 to (2) (right).

We next run the RB-DS-FE-HMM with different settings (macro FE, number of RB func-
tions Ni, micro mesh) to detail the error behavior. We stop the adaptive method when the
number of macro degrees of freedom (Nmac) reaches 104.

Remark 13. Since we do not have an analytic reference solutions, all the errors from the
error decomposition (57) are only estimated as follows. We compute approximations to pH ,
p0,H , p0, which are denoted by p̃H , p̃0,H , p̃0, respectively, and substitute them into (57) to
get approximations of emac, emic, and eRB.
• p̃H is a solution obtained from the RB-DS-FE-HMM with the complete RB (setting Ni
to the maximum) but with the same macro mesh and micro reference mesh as pH,RB.
• p̃0,H is a solution obtained from the RB-DS-FE-HMM with the complete RB (setting
Ni to the maximum), the same macro mesh as pH,RB, and the finest micro mesh T 5

ad.
• p̃0 is a solution obtained from the RB-DS-FE-HMM with the complete RB (setting Ni
to the maximum), the finest micro mesh T 5

ad, and the macro mesh obtained by two
uniform refinements of the macro mesh used for the finest solution pH,RB.
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Coarse micro mesh and small RB. We first illustrate what happens if a coarse micro
mesh is taken. Let us use the mesh T 0

N for micro problems. We take only three RB functions
(N1 = N2 = 3) generated by the greedy algorithm.
We run the adaptive RB-DS-FE-HMM with two different macro FE: P1 and P3. The

results are depicted in Figure (10). We see that the micro error emic becomes soon dominant
and is the main reason for saturation of the global error e = |p0 − pH,RB|H1(Ω).
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Figure 10: Error plot of the adaptive RB-DS-FE-HMM: 3 RB functions (N1 = N2 = 3) and
the coarse micro mesh T 0

N .

Fine uniform micro mesh and small RB. In the next experiment we keep 3 RB func-
tions but take the most refined uniform micro mesh T 5

N . As before, we run the experiment
for P1 and P3 macro elements and the error rates are plotted in Figure 11. The micro error
emic is now dominated by the RB error eRB. For P3 macro FE the RB error causes the
saturation of the global error e for Nmac > 103.
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Figure 11: Error plot of the adaptive RB-DS-FE-HMM: 3 RB functions (N1 = N2 = 3) and
fine uniform micro meshes T 5

N .

Fine uniform micro mesh and a larger RB. We now increase the number of RB
functions to 10 and repeat the experiment with the most refined uniform micro mesh T 5

N .
The experiments for P1 and P3 macro FE are depicted in Figure 12. We see that the RB
error eRB is negligible compared to the other errors for Nmac up to 104. However, for P3

macro FE we see a saturation of the global error close to 104 DOF due to the micro error.

Graded micro mesh and a larger RB. We now show the advantage of a graded micro
mesh over the uniform micro meshes. We use the graded mesh T ad,3

N , which has approximately
16 times less DOF than T 5

N , and we keep 10 RB functions as in the previous experiment. We
use P3 macro FEs and stop the adaptive RB-DS-FE-HMM when we reach 104 macro DOF.
The convergence rates are depicted in Figure 13. The micro error is approximately 10 times
smaller with 16 times less DOF on micro scale. The global error saturation is not visible in
the figure and happens only after one reaches more than 2 · 104 DOF.
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Figure 12: Error plot of the adaptive RB-DS-FE-HMM: 10 RB functions (N1 = N2 = 10)
and fine uniform micro meshes T 5

N .
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Figure 13: Error plot of the adaptive RB-DS-FE-HMM: 10 RB functions (N1 = N2 = 10)
and graded micro meshes T ad,3

N .

8.3. Performance comparison: RB-DS-FE-HMM vs. DS-FE-HMM. In this
subsection we compare the performance of the RB-DS-FE-HMM and the DS-FE-HMM
(see [2]) on the problem from the previous subsection. We keep the macro domain Ω and
the initial macro mesh TH . The micro geometries are as in Figure 3 and their variation is
described by (59). The force field f has a constant value (0,−1) and we use P2/P1 Taylor-
Hood elements on the micro scale. We use adaptive mesh refinement for both methods and
use the same marking scheme with θ = 0.25 on macro scale.

Offline stage. The DS-FE-HMM is an offline/online method, where constants for the cali-
bration of the adaptive process are precomputed in the offline stage [2]. This precomputation
took 3380 s. The offline stage of the RB-DS-FE-HMM depends on many parameters, how-
ever, we decided to fix the tolerance and sampling parameters as in Table 2 and Table 4. We
plot the offline CPU time in Table 5 for some selected micro meshes.
A careful inspection of Table 5 reveals that the most costly part in the current implementa-

tion is the SCM. Both the offline part of Algorithm 5 and the evaluation of SCM lower bounds
in Algorithm 3 are very costly. However, excluding the SCM part, Algorithm 3 appears to
be quite efficient, compared to the DS-FE-HMM preprocessing.

Online stage. We further provide a comparison of the main computation. Performance of
the online RB-DS-FE-HMM does not depend significantly on the used micro mesh, hence we
chose T 5

N . We performed the adaptive methods and stopped after the number of macro DOF
reached 102, 103, and 104. The pairs of solutions from the two methods have very similar
accuracy since the macroscopic error is dominating. See Table 6 for the comparison.

8.4. A 2D experiment with more complex geometry. In this subsection we
apply RB-DS-FE-HMM to another 2D problem with a more complex micro and macro ge-
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RB-DS-FE-HMM offline CPU time [s] mesh
part subpart T 3

L T 5
L T 3

ad T 5
ad

SCM eigenproblems 480 38948 402 21509
Algorithm 5 linear programming 8913 8566 9610 9477
RB greedy assembling 5 133 6 129
Algorithm 3 fine solve (Stokes) 23 621 24 350

fine solve (supremizers) 2 85 2 43
residuals (without SCM) 30 31 37 31
SCM for residuals 567 585 641 628

Table 5: Offline CPU time for the RB-DS-FE-HMM with different micro meshes. Settings
in Table 2 and Table 4, with QA = 15, Q = 3.

DS-FE-HMM online stage RB-DS-FE-HMM online stage
Ni = 10 Ni = 89

iteration DOF CPU time(s) iteration DOF CPU time(s)
10 113 244 9 106 6 7
24 1116 4500 24 1158 19 56
38 11372 179724 37 10151 63 733

Table 6: Online CPU time of the adaptive methods. We compare solutions after reaching
102, 103, and 104 macroscopic degrees of freedom.

ometries. The macro geometry with the initial macro mesh TH is depicted in Figure 15(left).
We use periodic boundary conditions over the boundary edges (1, 2) × {0} and (1, 2) × {4}
and assume the force field f ≡ (0,−1). We set D = (−1/12, 1/12) × (−1/12, 1/12). The
reference micro domain and the mesh of its fluid part is sketched in Figure 14. Micro geom-
etry variations with respect to a two dimensional parameter µ ∈ D is depicted in Figure 15.
The micro cell Y is divided into 3× 3 grid, whose tiles are affinely deformed by ϕ(µ, ·). The
dependence of µ ∈ D on x ∈ Ω is governed by the function

µ(x) = ( cos(2π(x2 − x1)/4)/12, cos(2π(x2 + x1)/4)/12 ).
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Figure 14: Experiment from section 8.4. Initial macro mesh with periodic BC indicated by
thick lines (left) and the reference micro mesh (right).

The variation of the micro geometry is visible in Figure 16(left), where the original (non-
homogenized) pressure solutions are plotted. We observe that with decreasing ε the pressure
solutions agree with the homogenized solution in Figure 16(right).
The affine decomposition in this case resulted to QA = 12 and Q = 4 and the number

of DOF of the micro problems is equal to 6752. In the offline RB stage we used the same
settings as before, see Table 2 and Table 4. Reaching the required tolerance in Algorithm 3
yields N1 = N2 = 44 RB functions.
We run the RB-DS-FE-HMM with only N1 = N2 = 15 RB functions, which still yields the

RB error to smaller than the micro error. The convergence rates with respect to macro DOF
are as expected and plotted in Figure 17(left), where saturation of the error can be observed.
We repeated the same experiment but with once uniformly refined micro reference mesh and
the convergence rates indeed improved, see Figure 17(right).
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Figure 15: Experiment from section 8.4. Transformation ϕ(µ, ·) that maps the reference
micro geometry (left) to a local geometry (right) for any µ ∈ D.
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Figure 16: Pressure solutions pε to (1) for varying size of ε > 0 (left). Homogenized solution
p0 to (2) (right).
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Figure 17: RB-DS-FE-HMM convergence rates for the experiment from section 8.4 with
different macro elements (left). The same with finer (once uniformly refined) micro reference
mesh (right).

8.5. A 3D experiment. In this subsection we present a 3D experiment. The macro
geometry is a geometrical extrusion of the 2D macro geometry from section 8.4 and is de-
picted in Figure 18(left). The coarse macro mesh TH with 7152 elements and 1605 nodes
is plotted in Figure 18(right). We keep the structure of the previous problems and define
periodic boundary conditions between the faces (1, 2)× (0, 1)× {0} and (1, 2)× (0, 1)× {4}.
Furthermore, we assume a constant force field f ≡ (0, 0,−1).
The porous structure in Ω is given as follows. We set D = (−1/12, 1/12)3. The reference

micro geometry and its variation with respect to a three dimensional parameter µ ∈ D is
depicted in Figure 19. The micro cell Y is divided into 3× 3 grid whose tiles are dilated in
coordinate directions, depending on the parameter. The dependence of µ ∈ D on x ∈ Ω is
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Figure 18: Three-dimensional macro geometry with periodic faces in gray (left) and a the
coarse mesh (right).

governed by the function

µ(x) = ( cos(π(−x1 + x2 − x3)/2)/12,
cos(π(−x1 + x2 + x3)/2)/12,
cos(π(x1 + x2 + x3)/2)/12).
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Figure 19: Three-dimensional micro reference mesh (above left) and some mapped micro
domains Y µF with µ = (−1/12, 0, 1/12) (above right), µmax = (1/12, 1/12, 1/12) (bottom left)
and µmin = (−1/12,−1/12,−1/12) (bottom right).

We performed the RB-DS-FE-HMM experiment with P1 macro elements and N1 = N2 =
N3 = 10. We reached the expected convergence rate of N−1/3

mac , as is depicted in Figure 20.
Several additional challenges arise for such a large 3D experiment. The main problem is

that the Cholesky factorization of the scalar product matrix can be too expensive to compute
and store, when computing a fine reference micro RB problem. We resolved this by running
the AGMG solver to compute each supremizer in Algorithm 3. Furthermore, the SCM also
relies on the Cholesky factorization even more (used in 2D in each eigenproblem at each
iteration). There are various ways to address this problem:
• Apply the SCM for a coarser micro mesh than used for computing the micro functions.
• Compute βNBa(x) on a coarse grid in Ω and define βNSCM(x) for any x ∈ Ω by a linear
interpolation over the grid.
• Set a constant inf-sup estimate βNSCM(x) ≡ βNBa(xref).

While none of these approaches guarantee βNBa(x) ≥ βNSCM(x), they can perform quite well
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Figure 20: Convergence rates of the RB-DS-FE-HMM algorithm for the 3D experiment.

in practice if the function βNBa(x) is smooth and with small relative variance. In the 3D
experiment we used the second approximation method for the SCM of the test problem.

9 Conclusion
We have presented an efficient multiscale FE method for the Stokes flow in porous media. In
our new method, the RB-DS-FE-HMM, we avoid the repeated direct solution of Stokes micro
problems at each macro quadrature point, which is the main bottleneck of the DS-FE-HMM.
Instead, we map the micro problems into a reference domain and construct a Petrov-Galerkin
reduced basis method for their solutions. With a greedy alorithm we select a small number
of micro problems that are solved on a reference micro mesh. Then, a RB interpolation is
used to obtain a cheap and accurate estimate of the effective permeability for any parameter
(macro quadrature point). We have discussed an a posteriori error estimate for the selection of
representative micro solutions including the estimation of the (inf-sup) stability constant. We
have derived an a priori and a posteriori error analysis of the multiscale method, which lead
to an adaptive method for the macro discretization. The accuracy, versatility, and efficiency
of the RB-DS-FE-HMM has been illustrated by several numerical examples. Comparisons
with the DS-FE-HMM have shown significant speedup in the online stage of the methods.
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