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Abstract 

Understanding of metabolism in disease-causing microorganisms promotes drug design through the 

identification of the enzymes whose activity is indispensable for important cellular functions of the pathogens. 

Nowadays such understanding arises from experimental as well as computational studies. These two approaches, 

long considered as rather orthogonal, in recent years began to converge and form a new field, where they are 

utilized as complementary. In this thesis I present my endeavors in bringing closer the fields of infection and 

systems biology with a particular focus on large-scale metabolic models and their analysis. Integrative, 

interdisciplinary nature of my project also included multiple experimental inputs as well as original 

experimental efforts on investigating model-derived hypotheses. In the scope of this thesis I explored 

metabolism of two of the most experimentally amenable apicomplexan species – human parasites Plasmodium 

falciparum and Toxoplasma gondii. As a foundation for the studies included in this thesis I used standard as 

well as recently developed computational algorithms, existing experimental datasets and innovative context-

specific assumptions. I produced an extensive survey of the modeling efforts previously applied for studying 

metabolism of P. falciparum and available large-scale experimental datasets in comparison with the similar 

efforts made in other species. Further, I curated an existing model of metabolism in P. falciparum with respect 

to an up-to-date primary literature on metabolism of the parasite and addressed several important assumptions 

implicitly made in this model. Using a state-of-the-art approach, I reconstructed de novo a comprehensive 

metabolic model of T. gondii, and performed an extensive computational analysis to explore its metabolic needs 

and capabilities. I identified and classified the minimal set of substrates the parasite utilizes for growth, along 

with the genes and pairs of genes that are essential for cellular functions such as growth and energy metabolism. 

Subsequently, several of the model-driven hypotheses were confirmed experimentally, while for validation of 

the majority of the computational predictions forthcoming high-throughput approaches shall be used. Every 

confirmed hypothesis expands the scope of our knowledge on peculiarities of metabolism in apicomplexan 

parasites and hence can serve as an input for the pipeline of developing novel medicines.  

Keywords: metabolism, constraint-based modeling, model reconstruction, genome-scale metabolic model, 

thermodynamics-based flux balance analysis, gene essentiality, Toxoplasma gondii, Plasmodium 

falciparum, Apicomplexa, acetyl-CoA, riboflavin, FMN, FAD. 
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Résumé 

La compréhension du métabolisme des microorganismes pathogènes est une approche fonctionnelle pour 

identifier de nouvelles voies médicamenteuses. En effet l’identification d’enzymes dont l’activité est 

indispensable à la survie du pathogène contribue à la découverte de nouvelles cibles thérapeutiques. De nos 

jours, la compréhension du métabolisme d’un organisme provient aussi bien d’études expérimentales que 

computationnelles. Ces deux approches, bien que longtemps considérées comme concurrentes, se sont 

développées au cours des dernières années pour finalement converger et donner naissance à une nouvelle 

thématique de recherche, appelée «biologie des systèmes», où les deux approches sont exploitées de manière 

complémentaire voire synergétique. Au cours de ma thèse, je me suis efforcé de mettre en relation les domaines 

de la biologie de l’infection et de la biologie des systèmes, en portant l’accent sur les modèles métaboliques à 

grande échelle et leur analyse. La nature convergente et interdisciplinaire de mon projet m’a amené a travailler 

sur de nombreuses données expérimentales ainsi que le développement de méthodes innovantes pour répondre 

spécifiquement aux hypothèses soulevées par les modèles. Durant cette cette thèse, j’ai exploré le métabolisme 

de Plasmodium falciparum et de Toxoplasma gondii, deux des parasites les plus étudiés du phylum des 

Apicomplexes, et qui sont respectivement les agents pathogènes de la malaria et la toxoplasmose. Pour les 

travaux décrits dans cette thèse, j’ai utilisé de nombreux algorithmes computationnels considérés comme 

classiques, ainsi que d’autres développés plus récemment, en plus de données expérimentales pré-existantes. J’ai 

également été amené à faire un certain nombre d’hypothèses innovantes spécifiques au contexte de chaque 

modèle. J’ai effectué une analyse approfondie des modèles métaboliques précédemment établis et des données 

expérimentales à large échelle disponible pour P. falciparum. La mise rapport avec des méthodes et données 

existantes pour d’autres espèces a été un axe supplémentaire de ce travail. De plus, j’ai corrigé et amélioré un 

modèle métabolique de P. falciparum déjà publié en y intégrant les informations trouvées dans la littérature la 

plus récente, et ai également réévalué plusieurs hypothèses importantes faites implicitement et a priori dans ce 

modèle. 

En utilisant une approche de pointe, j’ai construit de novo un modèle métabolique complet de T. gondii et réalisé 

une analyse computationnelle approfondie afin de déterminer les capacités et besoins métaboliques de ce 

parasite. J’ai pu identifier et classifier les ensembles de substrats minimaux nécessaires au développement du 

parasite. J’ai également déterminé les gènes et couples de gènes essentiels aux fonctions cellulaires, telles que la 

croissance ou le métabolisme énergétique.  

Par la suite, plusieurs prédictions issues du modèle ont été confirmées expérimentalement. Toutefois la majorité 

des conclusions computationnelles devront être validées en utilisant des approches à haut-débit encore en cours 

de développement. Toutes ces prédictions confirmées contribuent à une meilleure compréhension des 

particularités du métabolisme des Apicomplexes, et potentiellement peuvent servir comme point de départ au 

développement de nouveaux médicaments anti-parasitiques. Mots clés : métabolisme, modélisation par 

contrainte, reconstruction de modèles, modèles métaboliques à échelle du génome, analyse par 

conservation des flux et thermodynamique, essentialité des gènes, Toxoplasma gondii, Plasmodium 

falciparum, Apicomplexes, acetyl-CoA, riboflavine, FMN, FAD.  
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1. Introduction 

The name Apicomplexa denotes the presence of apical organellar complex, a characteristic 

feature of apicomplexan parasites, which serves for invasion into a host cell. Apicomplexa is 

a phylum of eukaryotic pathogens, presumably all the members of the phylum are obligate 

intracellular parasites [1], some of which are of great medical and veterinary significance. 

Plasmodium and Toxoplasma species are causative agents of human malaria and 

toxoplasmosis respectively; Theileria, Babesia, Neospora, Eimeria spp. are veterinary 

pathogens infecting livestock, poultry, cattle, domesticated and wild animals. While the 

phylum encompasses several thousands of species only a few of them are actively studied 

and amenable for in vitro cultivation. Plasmodium falciparum and Toxoplasma gondii, the 

parasites my studies were focused at, are among the best studied apicomplexan pathogens. 

Both of the parasites have a complex life cycle, which involve intermediary and definitive 

host species and human is an intermediary host for both of the parasites (Figure 1, Figure 2). 

 

Figure 1. Schematic description of the lifecycle of malaria parasite P. falciparum 

(adapted from [2]) 

Definitive hosts, however, are different, namely, Anopheles mosquitos and feline species for 

Plasmodium spp. and T. gondii respectively. Sexual replication of the parasites occurs only in 

particular tissues of the definitive host species, while only asexual replication occurs in 

intermediary host organisms. Infection of intermediary hosts also occurs differently in case of 

malaria and toxoplasmosis. T. gondii and other coccidian pathogens are predominantly 
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ingested with infected tissues (e.g. meat contaminated with tissue cysts) or fecal 

contaminations of food by feline species (e.g. cat feces with infective oocysts). Plasmodium 

spp. as well as the other haemosporidian parasites are transmitted by arthropods (e.g. 

mosquitos or ticks). 

 

Figure 2. Schematic description of the lifecycle of T. gondii and different routes of 

transmission between the definitive and intermediate hosts (adapted from [3]) 

Toxoplasma is extremely versatile with respect to the intermediary hosts and can use almost 

any nucleated mammalian cell as a niche for an asexual replication. Notwithstanding, 

Plasmodium spp. are very specialized to the tissue type not only in the definitive but also in 

the intermediary host – five Plasmodium species can cause malaria in humans with the 

primary (asymptomatic) infection in liver and later release of merozoites to the bloodstream 

and infection of the red blood cells. It is possible that such specialization for a particular 

niche allowed further reduction of versatility in metabolic capabilities of Plasmodium spp. as 

compared to T. gondii. For example, T. gondii possesses fatty acid synthesis type I 

(eukaryotic), gluconeogenesis and methyl-citrate cycle enzymes that are apparently absent 

(potentially lost) in Plasmodium species. Despite these important differences there is also a 

large number of similarities in the metabolic capabilities of P. falciparum and T. gondii. One 

of the most prominent common features is the presence of the apicoplast – a chloroplast-like 

non-photosynthetic organelle, which harbors several metabolic pathways of bacterial origin. 

This organelle appears to be a source of isoprenoids and fatty acids in both of the parasites. 
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Importantly, experimental investigation of the role of the importance of apicoplast revealed 

that it is indispensable source of isoprenoids for both P. falciparum and T. gondii. Counter-

intuitively, apicoplast-localized fatty acid synthesis pathway has been demonstrated as 

essential for asexual replication of T. gondii (despite the presence of the fatty acid synthesis 

type I pathway in the cytosol) but not for the blood stage P. falciparum. This rather 

unexpected difference is explained by a sufficient salvage of fatty acids by the latter parasite 

on the blood stage (but not on the preceding liver stage) and it highlights non-intuitive and 

context-dependent nature of gene essentiality. One of the possibilities to address this 

uncertainty in a rigorous manner is to reconstruct a computational metabolic model for a 

specie of interest and analyze redundancies in its metabolic capabilities through in silico 

simulations. Another option is to undertake a genome-wide experimental study on 

essentiality of the genes using available molecular biology techniques for gene knockout or 

knockdown. As such experimental techniques become available for P. falciparum and T. 

gondii only in the present days, this thesis is focused primarily on the computational 

approaches to predictably delineate essentiality of genes in these parasites. 

1.1 What we do and do not know about metabolism in Apicomplexa? 

The intracellular environment in which the parasites reside offers a relatively safe niche for 

evasion of the host immune response. However, this advantage comes with the challenge of 

acquiring sufficient metabolic resources for intracellular replication. Naturally, this requires 

an uptake of a significant amount of nutrients, as well as secretion of metabolic by-products 

within the environment of a host cell. In this competition for the limited resources of the host 

cell, the parasites appear to have evolved to keep the fine balance between meeting their 

metabolic needs and sustaining their host cells from a premature lysis. The obligate nature of 

parasitism is a hallmark of the physiology in Apicomplexa; to date virtually no attempts have 

succeeded in sustainable cultivation of these parasites axenically. This may be interpreted as 

evidence of some as yet undiscovered essential host-pathogen interactions beyond simple 

“supplier-consumer” relations. 

While it is well known that Apicomplexa completely rely on the host cells and surrounding 

tissues for supply of the substrates that fuel their metabolism, the extent and flexibility of this 

dependence remain rather elusive. This is largely due to the complex nature of metabolism in 

general, as well as the technical challenges in distinguishing the metabolites of infected host 
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cells from those of the intracellular parasites. Studies included in this thesis represent a 

combination of using systems biology and experimental approaches for a better 

understanding of the intricate details about metabolism in the apicomplexan parasites 

Toxoplasma gondii and Plasmodium falciparum. 

1.2 Do we need computational modeling of apicomplexan metabolism? 

The ever-lowering cost of sequencing complete genomes creates an avalanche of genomic 

data. Extraction of knowledge from this data, however, proves to be more challenging than 

the data acquisition. This is, on the one hand, due to the challenge of functional annotation 

(i.e. assigning functions to the genes in newly sequenced genomes), which to date is solved 

only partially. On the other hand, an even bigger challenge is posed by the vast complexity 

and scale of the information encoded in genomes. Robust and exhaustive analyses of such an 

extent of information are often beyond the capabilities of human perception. Consequently, 

the “revolution of genomes” is followed by a necessary development of increasingly 

sophisticated computational methods for functional and comparative genomics. These 

methods facilitate analyses of large datasets and extraction of non-intuitive hypotheses for 

experimental validation. In particular, inhibition of metabolic enzymes is long known to be 

an efficient way to suppress growth of pathogenic microorganisms. In 2002, upon the very 

first sequencing of P. falciparum genome, it became evident, that this malaria parasite 

possesses a rather unusual metabolic network, consisting of pathways inherent to both 

prokaryotes (e.g. FAS type II, MEP/DOXP) and eukaryotes (Figure 1). The pathways of 

bacterial origin are likely inherited from the prokaryotic endosymbionts, which have evolved 

to become organelles of the eukaryotic pathogens (e.g. apicoplast, non-photosynthetic 

plastid-like organelle that is characteristic for Apicomplexa). 

The enzymes and pathways that are not present in human metabolism may represent potential 

targets for novel antimalarials, but inhibition of the growth will only be observed if the 

targeted enzyme is essential for the parasite. The notion of essentiality in this context 

describes the absence of an alternative metabolic route that bypasses the targeted enzyme by 

using other enzymes and/or by salvage of additional substrates. Large-scale computational 

and experimental studies, however, indicate that metabolism is, in general, very redundant, 

and essential metabolic enzymes constitute only a modest fraction [4]. While metabolism of 

obligate pathogens is often significantly reduced when compared to free-living cells [5], this 
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reduction may be backed up by the capabilities of salvaging necessary metabolites from the 

host [6,7]. Due to the complexity and redundancy of metabolism the essentiality of an 

enzyme, as a rule, is neither apparent nor can be easily inferred from a genome sequence of 

an organism. For genetically tractable organisms, such as Escherichia coli and 

Saccharomyces cerevisiae, there already exist large genome-wide libraries of phenotypes 

observed upon deletion of every single gene, which indicate that only up to 18% of all the 

genes in these species are essential for their growth on a nutrient-rich medium [8-11]. Such 

genome-wide studies have not yet been done in any of the apicomplexan parasites. 

Nevertheless, genetic manipulations in several species are routinely possible in a low-

throughput manner, which allows conditional and permanent disruption of individual genes 

[12]. This represents one of the important aspects where computational metabolic modeling 

can facilitate experimental efforts by predicting sets of genes and enzymes which are likely to 

be essential, as described below. 

  
Figure 3. Graphical representation of key metabolic pathways in P. falciparum and 

antimalarial drugs targeting metabolic enzymes (adapted from [13]). 
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Apart from prediction of essential genes, the holistic approach of metabolic modeling also 

gives global insights into metabolism of a species of interest. These include but are not 

limited to: (1) identification of gaps or inconsistencies in the knowledge of particular aspects 

of metabolism; (2) improvement of functional annotations of metabolic enzymes; (3) 

elucidation of their putative subcellular localizations. Part of the input information for 

building large-scale models is produced in an automated and high-throughput manner (e.g. 

genome annotation), while the other part comes through results of more targeted research on 

some particular gene(s) or enzyme(s). Large-scale metabolic models are built to encompass 

and reconcile both types of the information in a concise and consistent manner to facilitate its 

further analyses.  

1.3 What are genome-scale metabolic models? 

Computational modeling of metabolic pathways is a rapidly developing field with numerous 

practical applications. One of the prominent directions in the field is reconstruction and 

analysis of large-scale constraint-based models (CBMs). This approach combines the 

advantages of modest prerequisites for reconstruction of a CBM and a relative simplicity of 

its computational analysis with a potential to integrate various available datasets as additional 

constraints. When a CBM is reconstructed with the aim to encompass a complete set of the 

metabolic capabilities encoded in a certain genome, such a model is termed a genome-scale 

CBM. In principle, genome-scale CBMs may contain only genes and biochemical reactions 

that correspond to the enzymes encoded by those genes. Additionally, there is also a plethora 

of methods for integration of various types of high-throughput data from the different levels 

[14], such as transcription for the enzyme-coding genes and abundances of enzymes and 

metabolites (Figure 2). 
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Figure 4. Genome-scale metabolic models include information from multiple levels (adapted 

from [15]) 

Genome-scale CBMs are, to some extent, a mathematical expression of the central dogma of 

molecular biology applied to metabolism of small molecules. These models encompass the 

knowledge about metabolism-related genetic content in a species of interest; the scope of this 

knowledge is based on the functional annotation of the genes. The genes are linked to 

biochemical knowledge represented by the reaction equations that describe the action of 

corresponding metabolic enzymes. The relations between genes and reactions in CBMs are 

denoted as gene-protein-reaction associations (GPRs), which capture the knowledge about 

the genes (and, implicitly, the proteins) necessary for each reaction to occur. GPRs can 

readily express simple one-to-one relations between gene-protein-reactions, as well as more 

complex cases, such as: (1) presence of several enzymes that can catalyze the same reaction 

(i.e. isoenzymes); (2) need for several different proteins to combine into a multi-enzyme 

complex for a certain reaction to occur. Built in such way, the models are repositories of the 

knowledge on the putative metabolic capabilities encoded in a genome of interest. 

One of the most fundamental functions of metabolism is transformation of nutrients taken up 

by a cell into a specific set of molecules and energy, which are necessary for the replication 

of all the cellular components and, ultimately, cell division (Figure 3).  
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Figure 5. Schematic illustration of metabolism as machinery that transforms substrates into 

biomass building blocks, biological macromolecules and enables growth (adapted from [14]). 

The grey circles represent metabolites and the lines – corresponding metabolic reactions.  

In the case of CBMs, this set of the molecules-precursors of major cellular components is 

(approximately) represented as a synthetic biomass reaction, which describes the metabolites 

necessary for the production of 1 gram of the dry-weight biomass. Such representation of 

growth by flux through biomass reaction allows simulation of gene deletions as explained 

below, and assessment of the dispensability of each enzyme and gene for growth in any 

defined conditions. 

1.4 What is flux balance analysis? 

In this chapter, I illustrate, using a simple example, the essence of the flux-balance analysis – 

a computational method used for studies on CBMs throughout this thesis. A more in-depth 

description of the method is published elsewhere [16] and provides further explanations and 

examples not covered herein.  

For the sake of simplicity and clarity, let us consider a simplified metabolic model as shown 

in on Figure 4 with two reactions (AA and DD) that cross the boundaries of our fictional cell 

and four reactions (AB, BC, AC and BCD) that constitute an intracellular metabolic network. 

The  reactions AA and DD are respectively an inlet and an outlet for the metabolites A and D 
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– such reactions are called exchange reactions. Herein, we consider that A is a unique single 

substrate that our cell takes up using reaction AA, and D is a product that the cell produces 

and excretes using reaction DD. Graphical representation of our simple metabolic model can 

be transformed into a two-dimensional matrix where every row corresponds to a metabolite 

and every column to a reaction (Figure 4, panel 2). As the reaction AB consumes one 

molecule of A it has a “-1” on the intersection of the row A and column AB, and positive “1” 

on the intersection of B and AB as one molecule of B is produced. Intersections on AB with 

C and D contain zeros because these metabolites do not participate in the reaction AB. In a 

similar way every reaction of the model is described and together they all form the so-called 

stoichiometric matrix. Assuming that all the intracellular reactions are reversible, there are at 

least three ways (solutions) that metabolite D can be produced from A (Figure 4, panel 3). 

These three solutions differ in utilization of the reaction BC; it is not used in the solution V1 

(zero at the vector denotes no flux through the reaction), while V2 and V3 use this reaction in 

its positive and negative direction respectively. Such multiplicity of routes that one product 

can be produced from a given substrate denotes flexibility of metabolic networks and creates 

the need for exhaustive accounting for all the possibilities in order to define whether a certain 

reaction (and corresponding gene/enzyme) is essential.  

  

Figure 6. The concept of flux balance analysis applied to a simple system.  

Graphical description of a simplest metabolic model (panel 1), corresponding (stoichiometric) matrix representation for FBA (panel 2) and 

alternative solution vectors V1, V2, V3 (panel 3). 



 

 24 

Note that the product of the stoichiometric matrix S multiplied by each of the solution vectors 

(V1, V2 and V3) gives a vector of zeros. This is because all the three solutions satisfy quasi-

steady-state assumption, which implies no net change in the concentrations of intracellular 

metabolites. This assumption is necessary to simulate metabolism using large-scale CBMs in 

the absence of the information about kinetic properties for the majority of the enzymes. 

Biologically, quasi-steady-state denotes a homeostatic state of cellular metabolism at the 

timescale that exceed time at which cyclic fluctuations of metabolite concentrations occur. 

Given the model described above, I now illustrate the concept of gene-essentiality 

simulations using flux-balance analysis. Suppose that production and secretion of metabolite 

D is a vital function of our imaginary cell. In the simplest case shown in panel 1 of Figure 5, 

only two reactions (AB and AC) require corresponding enzymes encoded by the genes ab 

and ac. As a result of the reversibility of the reaction BC, neither of these two genes is 

essential (see the alternative solutions V2 and V3 above). The same is not true in the case of 

reaction BC being irreversible, as shown in panel 2 of Figure 5. Now, when metabolite B can 

only be produced using reaction AB corresponding gene ab is essential, while metabolite C 

can still be produced by two reactions, thus, the gene ac is not essential. To illustrate gene 

essentiality in the case of more complex gene-protein-reaction associations we will make the 

assumptions schematically, as shown in panel 3 of Figure 5. There, the reaction AB requires 

a multi-enzyme complex that consists of two subunits encoded by two different genes, ab1 

AND ab2. The reaction AC is also associated to two different genes, but through the logical 

operator OR that denotes presence of isoenzymes encoded by two different genes ac1 and 

ac2. Presence of either enzyme encoded by ac1 or ac2 is sufficient for the reaction AC to 

occur. In this case, both ab1 and ab2 are essential because deletion of either of them blocks 

reaction AB and makes production of B impossible. Conversely, neither ac1 nor ac2 is 

essential for the reason described above. Simulation of a pairwise withdrawal of the genes 

(i.e. double gene deletion) will identify the pair of ab and ac as double (or synthetically) 

essential in the case shown in panel 1 of Figure 5, while in the case shown in panel 2, this 

pair will be a trivial double essential, since ab is essential in its own right. 
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Figure 7. Illustration of the concepts of gene essentiality prediction using FBA 

In a simple case, when gene-protein-reaction associations (GPR) are one-to-one, essentiality 

of reactions is equivalent to essentiality of the enzymes that uniquely catalyze these reactions 

as well as the genes that uniquely encode these enzyme.  However, in the case of a GPR 

describing one-to-many (enzyme with broad substrate specificity) or many-to-one 

(heteropolymeric multienzyme complex) relations, essentiality of a reaction corresponding 

enzyme(s) and gene(s) may not coincide. Thus, GPRs, using Boolean operators “AND” and 

“OR”, explicitly describe relations between genes and reactions in a model to enable 

systematic gene-knockout simulations. Technically, such simulation is performed by 

enforcing zero flux through reaction(s) associated with a knocked-out gene, provided that in 

the corresponding GPR there is no alternative gene assigned with the Boolean rule “OR”.  

Double gene deletions are simulated in the same manner for all non-trivial pairs of genes: i.e. 

those that contain only the genes which are not essential on their own. Similarly to the single 

gene knockout simulations, each pair of genes’ corresponding GPRs are evaluated and if 

there are reactions that exclusively depend on either of these genes (or on both of them) – 

fluxes through such reactions are blocked. 

The simplified example we considered in this chapter only illustrates the concept of flux- 

balance analysis and gene deletion simulations. However, it does not demonstrate complexity 

of the analyses of a real genome-scale CBM where hundreds of genes, reactions and 

metabolites are involved as well as additional complexity arises from compartmentalization 

and other physiological constraints. In the following chapter, I review the metabolic 
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modeling efforts made in the malaria parasite P. falciparum, which are largely based on the 

concepts described above. 

1.5 The landscape of functional genomics of studies in P. falciparum using 

metabolic modeling and analysis (based on the review manuscript by 

Tymoshenko et al., Brief Funct Genomics. 2013 Jul;12(4):316-27) 

According to the recent “World Malaria Report” by the World Health Organization, malaria 

remains a major healthcare issue, being responsible for over 200 million infections and 

hundreds of thousands of deaths in 2010 alone [17]. An efficient and cost-effective 

artemisinin-based treatment is now available, but the emergence of resistance in malaria 

parasites, primarily as a result of drug treatments, urges the development of medicines with 

new targets and novel mechanisms of action. Despite tremendous research efforts and the 

passing of a decade since the publication of the P. falciparum genome sequence [13], about 

half of the genes still remain annotated as coding for ‘hypothetical proteins’ or ‘conserved 

hypothetical proteins’ [12]. These genes, and especially those restricted to Plasmodium or 

apicomplexan species, are of particular interest as their unique amino acid sequences may 

provide higher selectivity for new antiparasitic drugs. However, in the absence of tools for 

high-throughput gene knockdown, e.g. RNAi [18], the identification and validation of the 

essentiality to these genes for the parasite remains a major bottleneck [12]. Available 

experimental approaches for establishing gene essentiality in P. falciparum are cumbersome 

due to several unique properties of the pathogen. Firstly, it possesses an extremely AT-rich 

genome along with an unusually low frequency of homologous recombination, which makes 

it refractory to genetic manipulation such as gene replacement [12]. Secondly, in vitro 

cultivation is a delicate process [19] that is still mainly restricted to the intraerythrocytic 

stages. Thirdly, the limitation of using primates as an animal model makes the in vivo 

assessment of gene essentiality very limited and expensive. Nevertheless, emerging 

experimental breakthroughs show promise for cost-effective gene knockdown strategies of P. 

falciparum essential genes at a high-throughput scale [20,21]. In this context, there is a need 

to list genes of immediate interest, which should be validated as antimalarial targets once 

affordable experimental means are available.  
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Metabolic modeling is a modern approach of systems biology that, among several other 

applications, has been extensively exerted to predict gene essentiality in various bacteria, 

including a number of pathogenic species [22]. Computational (i.e. in silico) metabolic 

models offer a cost-effective pipeline to identify putatively indispensable metabolic functions 

that, in the case of pathogens, represent potential targets for medical intervention [23]. Eight 

years after the publication of the first computational model of a tentative metabolic network 

of P. falciparum, it has become evident that reconstruction and analysis of in silico models is 

a valuable tool for studying various aspects of the physiology of the pathogen [24-28]. In this 

study, we aim to review and provide an outlook on the current state and contribution of in 

silico metabolic modeling efforts to functional genomics studies on the malaria parasite. 

1.5.1 The path from metabolic maps to “context for content” models 

With the constantly decreasing cost of high-throughput measurements, the tendency to 

generate very large -omics datasets is emerging and this holds true for P. falciparum [29]. 

There are two distinct approaches to high-throughput measurements: hypothesis-driven 

studies generate large datasets in order to prove or falsify a hitherto existing hypothesis, 

while hypothesis-free studies primarily rely on a thorough analysis of datasets without 

presumptions aiming at the formulation of conclusions and testable hypotheses. Importantly, 

hypothesis-free approaches require an appropriate context, i.e. a framework of related prior 

knowledge, within which an obtained dataset can be interpreted. In the case of functional 

genomic studies, in silico metabolic models have been shown to provide such context, thus 

enabling researchers to use available datasets (i.e. content) to improve and challenge the 

models, as well as to derive additional, non-intuitive insights. In particular, this need for an 

explicit, up-to-date context is a driving force for the progress from a scope of generic 

biochemical knowledge to organism-specific (or life stage specific) metabolic networks, 

discussed further below. 

In the last two decades, several databases of biochemical reactions and metabolic pathways 

have been developed in order to provide a systematic and comprehensive overview of 

metabolism. A pertinent example is the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Pathway Database [30], which has established itself as an encyclopedia of biochemical 

knowledge and is the first point of reference for numerous academic and industrial research. 

However, KEGG and similar large databases are more universal than organism-specific, thus 

they do not cover some crucial aspects of the P. falciparum metabolism, such as a cofactor 
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utilization, compartmentalization, and proteins involved in the transport of metabolites. The 

web-resource Malaria Parasite Metabolic Pathways (MPMP) is essentially the product of an 

extensive manual revision of KEGG maps according to known, as well as recently 

established, metabolic features of the P. falciparum intraerythrocytic life stage. Furthermore, 

integration with other web-resources facilitates quick access to additional information and 

related primary literature [31]. MPMP is probably the most comprehensive and up-to-date 

knowledge database on P. falciparum’s metabolism, but unfortunately, the lack of any 

application-programming interface (API) limits the access of a broad research community to 

this high-quality data. Utility of MPMP for research purposes has been demonstrated via 

interpretation of the expression patterns of the genes involved in the pentose-phosphate 

pathway using the corresponding maps [32]. This led the authors to postulate that the 

oxidative part of the pathway is predominantly active during the early stage of the 

intraerythrocytic replication cycle, while the non-oxidative part is activated only during the 

later stages [32]. In contrast to this approach, further attempts to comprehend metabolic 

fluxes in the malaria parasite aimed at going beyond the study of a particular pathway and 

ultimately led to the reconstruction of large-scale models with hundreds of metabolites and 

interconnected reactions involved [24-28]. 

Graph-based models (GBMs) were built to comprehend and analyze the metabolic 

capabilities of P. falciparum in a systematic manner. GBMs represent metabolism as graphs 

with nodes (to denote metabolites) and links between them (respective metabolic reactions) 

[33]. The links only represent the possibility of interconversion for a particular metabolite 

into another one (justified by the correspondingly annotated genes), regardless of all the 

properties of the reaction, including its stoichiometry. A natural advantage of GBMs is that 

they require minimal input information and can assess well-annotated parts of a given 

metabolic network while skipping unclear ones. However, such representation of a metabolic 

network without capturing its mass-balance property is not a suitable framework for 

incorporation of experimental information, thus making the scope of GBM-based methods in 

metabolic modeling rather limited. Nowadays, graph-based metabolic reconstructions and 

topological analyses are largely obsolete and have been replaced by more comprehensive 

constraint-based approaches. 

Over the past decade, flux-balance analysis (FBA) has been established as a leading 

approach for studying constraint-based models (CBMs) of cellular metabolism [34]. 

Constraint-based metabolic models for FBA are based on two-dimensional arrays, where 
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each row represents a metabolite and each column corresponds to a reaction which, as a rule, 

is linked to a certain enzyme and gene in the organism [35]. Each intersection of row and 

column contains a numerical value standing for the stoichiometric coefficient of a given 

metabolite in a given reaction. Such notation enables the explicit and quantitative description 

of a metabolic network and allows the imposing of the first basic constraint – mass balance. 

A model that only accounts for mass balance is largely undefined and further constraints are 

imposed to enrich the range of feasible solutions with biologically realistic ones. The scope 

of additional constraints is constantly growing and currently includes thermodynamic 

(TFBA/TMFA), regulatory (rFBA), and other constraints inherent in cellular metabolism 

(reviewed in [14]), as well as constraints inferred from experimental data. 

CBMs, unlike GBMs, do require a pre-defined objective towards which utilization of 

available substrates should be optimized [36]. A common objective function for fast-growing 

cells is the biomass reaction (other plausible objectives are reviewed in [37]). It represents 

cellular replication as a reaction that consumes pre-defined amounts of metabolites referred 

to as precursors of biomass. Existence of a solution implies that the stoichiometric array 

describes at least one uninterrupted route that leads to the transformation of externally 

supplied substrates into the metabolites specified as biomass precursors. To satisfy this 

requirement, the model-building process often involves the inclusion of “orphan reactions”, 

for which no enzyme-coding gene has been yet annotated [38].  

A conventional reconstruction workflow shown in [38] clearly defines the list of enzymes 

that should be found in the genome to complete the pathways and meet experimentally 

observed metabolic behavior. With this approach, putative metabolic functions have been 

proposed for 17 genes of Leishmania major, which previously had no functional annotations 

[39]. Although these assignments, often based on moderate sequence identity, are not 

sufficient proofs of the suggested functions, they do represent a set of testable hypotheses for 

experimental validation. Such a list of orphan reactions provides invaluable guidance for 

functional genomics studies in P. falciparum, an organism that has over 2000 genes without 

even a putative functional annotation. 

One of the most important applications for a CBM of pathogenic species is its capability to 

predict potential vulnerabilities in their metabolism [23]. Often metabolic networks are 

redundant and contain more than one chain of reactions to produce certain biomass 

precursors. To explore this redundancy, FBA enables an attempt at the simulation of growth 
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when each of the reactions in the model is removed in a one-at-a-time manner. Whenever 

production of biomass is blocked without a certain reaction, the latter is classified as essential. 

In a similar manner, FBA can simulate outcomes of withdrawal of enzymes or genes by 

attempting to simulate growth when utilization of all the reactions associated with an enzyme 

or gene are disabled. We refer the reader to a comprehensive publication on in silico 

essentiality studies in the CBM of  [40] for further details and examples. S. cerevisiae

1.5.2 Outlook of in silico metabolic models for P. falciparum  

Several studies to date have focused on the comprehensive reconstruction of the metabolic 

network of P. falciparum (Table 1). Early studies produced several GBMs [25,28,41] that 

considered the set of metabolic activities reported at the time without taking into account 

information about the compartments in which they occur or the differences in life stage 

specific metabolism of the pathogen. As mentioned before, without consistency in mass 

balance relationships, these models were not suitable for integration of experimental data and 

allowed only qualitative predictions of gene essentiality. Nevertheless, during the 

reconstruction process putative functions were suggested for hundreds of genes previously 

annotated as coding for a “hypothetical protein” [28]. These first modeling efforts gave a 

broad overview of the potential metabolic capabilities of P. falciparum annotated in its 

genome compared to the expected ones, and provided a solid foundation for building the 

modern, more comprehensive reconstructions discussed hereafter. 

Using a constraint-based approach, Huthmacher and co-workers assembled the first 

compartmentalized, mass-balanced and life stage-specific model of P. falciparum metabolism 

[26]. Through in silico simulations, the authors identified enzymatic activities that are 

essential for proliferation of the parasite. Thirty of the in silico essential reactions were 

catalyzed by enzymes with no homologs in the human proteome (e-value > 0.075). These 

were ranked as targets of particular interest, based on evidence of activity during the multiple 

stages of the P. falciparum life cycle studied and/or the presence in the SuperTarget database 

[42] as candidates for treatment of other infections [26]. Furthermore, the natural 

environment of the parasite was simulated by embedding its CBM into the metabolic 

reconstruction of a human erythrocyte. This limited the substrate accessibility to only those 

available in the host cell milieu. Such constraints at the cellular interface and constraints on 

reaction fluxes, deduced from gene expression profiles (obtained in different life stages), not 

only allowed the model to retrieve known directions of metabolite exchanges between the 
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host cell and the parasite, but also identified several inconsistencies with experimental data, 

which need further investigation [26]. 

Authors (year of publication) 
Information about the model* 

Metabolites Reactions Genes Compartments** 

Yeh et al. (2004) [28] 525 696 − − 
Fatumo et al. (2009) [25] 554 575 − − 

Huthmacher et al. (2010) [26] P: 1622         

E: 566 

P: 1375      

E: 437 

P: 579 P:  c, m, a, n, r, v, g         

E: e, c 
Plata et al. (2010) [27] 915 1001 366 P: e, c, m, a  

Bazzani et al. (2012) [24] P: 1622        

H: 1149  

P: 1395     

H: 2539 

P: 579       

H: 704 

P: c, m, a, n, r, v, g          

H: c, r, g, l, m, n, p, b, s 
* - "P" denotes the model of the parasite, "E" - human erythrocyte, "H" - human hepatocyte 

** - abbreviated names of compartments: e - extracellular space, c - cytosol, m - mitochondrion, a - apicoplast, n - nucleus, v - digestive 

vacuole, r - endoplasmic reticulum, g - Golgi complex, l - lysosome, p - peroxisome, b - bile canaliculus, s - sinusoidal space. 

Table 1. Comparison of the in silico metabolic reconstructions of P. falciparum. 

The second CBM developed independently by Plata et al [27] also took account of 

compartmentalization of the intracellular space as well as mass-balance constraints. The 

results of gene deletions performed in silico were found to be in correspondence with reports 

in the primary literature: 100% agreement when compared to gene deletion studies and 70% 

in the case of enzymatic inhibition experiments. Comparison of the number of essential genes 

in the models of P. falciparum and S. cerevisiae confirmed the notion that the parasite likely 

possesses significantly lower metabolic flexibility to bypass single gene deletions as 

compared to free living organisms with similar genome sizes [27]. Forty genes were 

suggested as potential drug targets due to their in silico essentiality and extremely low or 

absent sequence identity to human proteins [27]. The essentiality of one of these genes 

encoding the nicotinate mononucleotide adenylyltransferase (NMNAT) was verified by using 

an experimental inhibitor, which caused an arrest of P. falciparum proliferation at an IC50 of 

50 µM in in vitro culture [27]. In addition, Plata et al [27] were the first to report in silico 

double gene deletion simulations in P. falciparum, leading to the identification of 16 pairs of 

genes that were predicted as non-essential by single-gene knockout simulation but resulted in 

a dramatic impairment of the metabolism if targeted simultaneously. 

Holzhutter and colleagues have developed the most recent CBM of the P. falciparum 

metabolic network [24] by updating their previous PlasmoNet1 model [26]. In PlasmoNet2 

[24], they have added new transport reactions based on metabolomics data [43] and removed 
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one reaction according to an updated version of the KEGG database. Through integration of 

PlasmoNet2 with the CBM of the human hepatocyte [44], they evaluated in silico the 

essentiality of P. falciparum genes in the liver stage and assessed, using a “reduced fitness” 

approach, effects of targeting enzymes that are homologous and predicted to be essential both 

in the host and the pathogen [24]. 

Comparison of the essentiality predictions made by the afore-mentioned models is not a 

trivial task. Firstly, because the study by Plata et al aimed at predicting the essentiality of 

genes, while the other studies assessed the essentiality of enzymes, the predictions made do 

not overlap when gene-to-enzyme relations are not one-to-one. Secondly, a gene or enzyme 

may be absent from the list of “predicted as essential” not only because it has been predicted 

as non-essential but, possibly, also due to the fact that the corresponding metabolic process 

simply is not included in the model of interest. Thirdly, essentiality predictions in CBMs are 

directly dependent on the set of metabolites included into their biomass reaction, so that 

differences in assumed biomass composition directly affect the results of in silico simulations. 

For an overview of P. falciparum genes and enzymes predicted as essential in existing 

models see the table in Appendix 1. The table also provides the reader with literature 

references on the experimental assessment of genes/enzymes predicted to be essential by the 

different models.  

An important simplification common to all of the aforementioned models is the ad hoc 

assignment of directionality to the reactions, which are pre-set either as all reversible [26] or 

assumed to have the same reversibility as in the metabolic models of non-related organisms 

[27]. In principle, the directionality of a reaction is subject to its thermodynamic properties 

and spurious ad hoc assignments might violate this fundamental constraint. This issue has 

been addressed rigorously in genome-scale metabolic networks of several organisms [45-47] 

by implementation of thermodynamic constraints on reaction directionality as an extension to 

conventional FBA methodology. 

Overall, metabolic modeling of P. falciparum to date lags several years behind the similar 

efforts for the model eukaryote S. cerevisiae; there exist a few independently reconstructed 

models which often lack consistency with each other due to the differences in the 

reconstruction workflows, the sources of primary information, the level of complexity, and 

the varying degree of comprehensiveness. Similarly to the trends in modeling of the yeast 

metabolism, we expect the emergence of reconciliation efforts that will aim at obtaining a 

consensus, up-to-date CBM of P. falciparum. Recently developed workflows for manual [48] 
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and semi-automated [49] reconciliations of existing metabolic models may significantly 

facilitate these efforts. There are several other areas in which we foresee room for upcoming 

improvements: the first, as mentioned before, is a systematic implementation of 

thermodynamic constraints in the models of P. falciparum; the second is a deliberate revision 

of the objective function (i.e. biomass reaction) to make it consistent with the actual biomass 

composition of the parasite at the life stage of interest; the third is an experimental 

verification and quantification of the uptake fluxes present in the models. These 

improvements are likely to make in silico predictions of gene essentiality more reliable and 

also expand the number of metabolic functions currently known to be essential for P. 

falciparum.  

Metabolic reconstruction efforts to date have summarized the results of decades of 

experimental research on the metabolism of P. falciparum in the form of in silico models, 

which not only reproduce the prior knowledge but also provide novel insights. Nevertheless, 

the fact that cultivation of the parasite in a fully-defined medium is still impossible clearly 

highlights that some important metabolic peculiarities remain to be discovered. The 

utilization of the CBMs as frameworks of current knowledge, which can then be challenged, 

refined and constrained by various high-throughput datasets is discussed in the following 

section.  

1.5.3 High-throughput data and metabolic models: “content for context” 

As mentioned above, CBMs hold a great potential to incorporate various types of 

experimental data as content for the context of computational metabolic networks. This 

section provides an outlook of the currently published studies that have integrated 

computational modeling and experimental research efforts for each type of high-throughput 

data introduced in Figure 6.  
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Figure 8. An overview of the high-throughput methods applied for functional genomics of P. 

falciparum 
The maximal achieved to date coverage of the expected amount of information on each level is given in square brackets. The pyramid 

denotes the increasing likelihood of one-to-many relations on the route from a gene to its transcript(s), encoded enzyme(s), catalyzed 

reaction(s) and participating (transformed) metabolites. 

Genomics 

Genomics studies of P. falciparum have so far yielded several complete genome sequences 

(for 3D7 and IT strains [50]). However, their functional annotation remains far from 

complete [12]. Nonetheless, these partially annotated genomes gave rise to numerous 

genome-wide transcriptomics and large-scale proteomics studies, as well as making possible 

the reconstruction of the parasite’s metabolic network in silico. 

High-throughput functional genomics of P. falciparum is a nascent field in malaria research 

since only a limited number of studies have succeeded in generating single-gene mutant 

parasite clones at a large scale. The largest coverage reported to date was achieved with a 

forward genetics approach based on transposon mutagenesis using the transposable element 

piggyBac [51]. The collection regroups about 200 mutant parasite lines that cover only a 

modest part of the P. falciparum genome. Among those, 24 single-gene disruptions caused 

severe growth defects in vitro, which might lead to lethal phenotypes in vivo [51]. A major 

drawback of this method is its inability to reveal essential genes due to the haploid state of 
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the malaria parasite throughout most of its life stages. Although specific design of the 

transposon with an integrated inducible promoter has been proposed to assess essential genes 

[20], it still remains to be proved as being practicable. In contrast, in vitro essentiality data of 

the genetically tractable parasite Trypanosoma brucei has been obtained for nearly all the 

coding sequences of its genome using the RNA-interference target sequencing (RIT-seq) 

approach [52]. 

The value of the gene essentiality datasets is reinforced by the possibility of in silico 

simulation of similar genetic perturbations. This offers reciprocal benefits for experimental 

and computational research: CBMs can often suggest the underlying reason for viable/non-

viable phenotypes of knockout strains or, otherwise, reveal the weak points where the model 

should be improved. Accordingly, the algorithm GrowMatch [53] has been applied for 

comparison of the high-throughput datasets of viable/non-viable single and double gene 

knockout mutants in S. cerevisiae with in silico gene essentiality predictions [40]. This 

approach has led to over a hundred corrections in the model (e.g. inclusion of additional 

reactions, compounds and genes as well as changes in biomass reaction, etc), each supported 

by literature evidence, and largely improved the consistency of the model with the existing 

experimental data [40]. Once a successful high-throughput forward or reverse genetic 

technique is established for P. falciparum, GrowMatch or a similar algorithm could validate 

the computational model, improving understanding of the obtained results and producing 

hypotheses for experimental investigation applicable to malaria drug research. 

Transcriptomics 

Transcriptomic profiling appears to be the one of most common high-throughput methods 

applied in malaria research; numerous gene expression datasets are available in PlasmoDB 

database (http://www.plasmodb.org) for different lineages of the parasite under various 

conditions. While the scope of gene expression data is growing, new increasingly advanced 

algorithms to integrate these datasets into CBMs are also being developed [54]. To date, two 

models of P. falciparum metabolism have incorporated available transcriptomics data as 

constraints [26,27] to represent life stage specific metabolic features of the parasite. 

Huthmacher et al integrated their model with several life stage specific gene expression 

profiles [55-59] to avoid, whenever possible, utilization of reactions that are likely to be 

inactive based on the abundance of the corresponding mRNAs [26]. This approach has 

allowed the authors to infer plausible metabolite exchanges between the human erythrocyte 
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and the parasite, as well as to predict directionality of the pathways that cannot be easily 

inferred from gene-expression data alone. The predictions of the host-parasite metabolite 

exchanges were in significantly better agreement with the physiology reported in literature 

when fluxes were allowed through any reaction for which the mRNA was absent at the life 

stage specific transcriptome but had been present earlier (up to 12 preceding hours) [26]. This 

observation is consistent with an earlier study that found a significant time delay between 

maximal gene expression and peak of accumulation of the corresponding proteins [60]. 

Plata et al [27] also attempted to integrate gene expression data [43,61] into their model to 

predict the shifts in the extracellular (intraerythrocytic) abundance of some metabolites 

between ring to trophozoite and trophozoite to schizont stages. The authors assumed that a 

higher influx of a metabolite into the parasite would lower the abundance of the substrate 

molecule in the cytosol of the infected erythrocyte, whereas a higher efflux rate of a 

metabolite from the parasite will increase its intraerythrocytic abundance. The computational 

predictions were verified against the existing metabolomics data [43] and had an average 

accuracy of 70%. 

With the major improvements in accuracy and sensitivity thresholds that can be achieved by 

modern RNA-seq approaches [62], utility of transcriptomics studies will increase 

significantly for experimental and in silico functional genomics. 

Proteomics 

The first two large-scale proteomics datasets published in 2002 [63,64] provided a relatively 

high coverage (c.a. 45% and 23% respectively) of the expected proteome of P. falciparum 

[65]. While delivering only semi-quantitative results, these studies provided the unique 

possibility to verify and correct the genome annotation in terms of assignments of open 

reading frames and splicing patterns, as well as confirming the presence of particular 

enzymes in different stages of infection.  

Several approaches have been used to generate quantitative proteomics datasets. Nirmalan 

and coworkers have established a method for fully quantitative proteomics using [13C6 15N1]-

labeled isoleucine to recognize de novo synthetized proteins [66]. Following this method, 

Prieto et al quantified 1253 proteins in P. falciparum trophozoites before and after exposure 

of the parasite to chloroquine and artemisinin, allowing identification of proteins involved 

into the parasite’s response to treatment with these conventional antimalarial drugs [67]. A 
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recent alternative method for quantitative proteomics relies on externally supplied known 

amounts of proteins of interest, obtained using the QconCAT technique [68]. QconCAT-

derived proteins are labeled with heavy isotopes and serve both as markers for identification 

of the similar unlabeled proteins as well as a scale for their quantification [68]. This approach 

offers a new level of sensitivity and holds promise for comprehensive high-resolution 

quantitative proteomics in P. falciparum. 

Taking into account the complexity of the interplay between mRNA and protein abundances 

(thoroughly examined in [69]), the studies that combine both transcriptomic and proteomic 

measurements are of particular interest. As a result of such an integrated approach applied to 

P. falciparum, time-delayed correlation between peaks of transcription and maximal 

abundance of the proteins has been observed for all the glycolytic enzymes with the 

exception of enolase [60]. However, for several enzymes, accumulation of the mRNA did not 

correlate with the changes in the abundance of the corresponding enzymes over a complete 

intraerythrocytic replication cycle [60]. Mair et al demonstrated that in the Plasmodium 

species some genes can be transcribed but not expressed due to translational repressions [70]. 

Despite the availability of the data and necessary computational methods, proteomics has not 

been used systematically in the development and analysis of CBMs of P. falciparum. 

However, it has been extensively used for the intercellular pathogen Trypanosoma cruzi: 

Roberts et al have integrated in their CBM a proteomics dataset that constrains fluxes through 

reactions whenever the corresponding enzyme is not detected in life stage specific proteome 

[71]. Using this constraint the authors aimed at making the model as representative as 

possible of the metabolic state of the pathogen at a particular stage of its life cycle. Initially, 

this resulted into an over-constrained model that was unable to simulate growth, suggesting 

that, even though enzymes for some reactions were not detected in the proteome, they were 

likely to be present. On the other hand, constraints inferred from the proteomics data 

corrected those reaction essentiality predictions that were not in agreement with experimental 

data without these constraints [71]. 

While a complex interplay between concentrations of mRNAs and enzymes with the fluxes 

through the corresponding reactions remains to be elucidated, utilization of transcriptomics 

and proteomics information together can ensure higher confidence that an enzyme of interest 

is (or is not) present in the lifecycle stage of interest. For instance, it is reasonable to assume 
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that a reaction for which both enzyme and transcripts cannot be detected is most likely not to 

occur and should be tightly constrained in the stage-specific CBMs. 

Metabolomics 

Several recent reviews discuss in detail the methodologies and techniques that are currently 

employed for metabolomics of various organisms [72-74] and malaria parasites in particular 

[75]. The largest metabolomics profile to date was obtained by liquid chromatography 

coupled to a tandem mass-spectrometry (LC-MS/MS) analysis of both uninfected and P. 

falciparum-infected human erythrocytes [43]. Relative changes in the concentrations of about 

90 metabolites were monitored in both the medium and cell lysates within a whole replication 

cycle, with measurements every 8 hours [43]. A further attempt to correlate these results with 

gene expression data obtained at the same time points of the infection revealed that, despite a 

common periodic pattern in gene expression, only less than a third of the measured 

metabolite abundances fluctuated periodically [43]. The coverage of the P. falciparum 

putative metabolome achieved in this study is between 15 and 20% (estimated similarly to 

[76]) and compares with the metabolomics of Leishmania donovani promastigotes [76]. 

Currently, no algorithm is available to directly incorporate the relative concentration values 

into CBMs. Even so, Plata et al used this data as a reference to verify their in silico 

predictions as discussed above. Furthermore, the dataset [43] gives a valuable insight into 

actively consumed and secreted metabolites, an aspect of the metabolic fate that can be 

utilized as a constraint by CBMs.  

Quantification of absolute concentration values using MS is technically possible, although it 

is hampered by the need for a standard solution for each metabolite [77,78]. On the contrary, 

NMR techniques do not require external standards, either for identification or for 

quantification of metabolites, since the integral of the output signal is proportional to the 

concentration of the studied nuclei. Despite its lower sensitivity compared to the modern MS 

methods [74], 13C-NMR can identify metabolites which are otherwise undetectable by MS 

due to their low ionization potential or lost during sample preparation (e.g. glycerol as 

reported in [79]). Using 1H-NMR, the concentrations of over 50 metabolites were measured 

in cell extracts of P. falciparum trophozoites [80]. The unbiased nature of the method also 

enabled identification of some unexpected metabolites (e.g. amino butyric acid and the 

buffering agent HEPES) present in relatively high concentrations in lysates of the parasite 

cells [80].  
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An important drawback of the current metabolomics studies of P. falciparum is that, for 

metabolites present in more than one compartment (e.g. cytosolic and mitochondrial 

adenosine diphosphate), the measured concentration only reflects an average value, which 

may differ significantly from the actual concentration in each of the compartments. 

Metabolomics on individual organelles is an emerging field in functional genomics research, 

as exemplified in algea [81], that will enrich and verify current knowledge on the subcellular 

localization of various metabolic processes. The issue of compartmentalization is especially 

complex in the case of Apicomplexa. Indeed, these obligate intracellular parasites develop in 

either hepatocytes or erythrocytes in the intermediate host. Moreover, the parasite harbors 

two symbiotic organelles of prokaryotic origin: the mitochondrion and the apicoplast (relic of 

a plastid organelle acquired by engulfment of an alga), both of which host metabolic 

pathways that are crucial to the central carbon metabolism of P. falciparum. 

Fluxomics 

Fluxomics is a largely unexplored area in malaria research, while for experimentally 

amenable species it represents a relatively well established and rapidly developing field 

[82,83]. Incorporation of the measured values of flux through the reactions present in CBMs 

can significantly improve the accuracy of the models by reducing the uncertainty in the 

ranges and distributions of metabolic fluxes. To the best of our knowledge, the only 

fluxomics studies in P. falciparum to date are the assessments of influx rates for single 

substrates: glucose (in infected and non-infected human erythrocytes [84,85]), isoleucine [86], 

pantothenate [87] and inorganic phosphate [88]. Due to the indispensability of these 

substrates for the parasite, incorporation of these flux values may represent overriding 

constraints for the CBMs. 

In the case of model organisms, e.g. S. cerevisiae, measured metabolic fluxes were included 

into the CBMs and allowed in silico resolution of experimentally observed metabolic features 

that could not be inferred otherwise - neither from transcriptomics nor proteomics data [83]. 

A relevant example is a large increase in glycolytic flux, which can be maintained by the 

yeast exposed at low levels of oxygen without changing the expression levels for involved 

genes [89]. This led to an important conclusion that fluxes in primary metabolism are perhaps 

more likely to be controlled via regulation of enzymatic activities and not by changes in gene 

expression as in secondary metabolism [83]. 
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Overall, out of numerous methods developed for the integration of experimental data with 

CBMs, only a modest proportion have hitherto been applied to pathogenic organisms, and P. 

falciparum in particular. We argue that this is due not only to the complexity of the 

experimental study of pathogens, but also to the fact that a majority of the in silico methods 

discussed above was initially designed for free-living organisms. Although the methods are, 

in principle, applicable to intracellular pathogens, some aspects unique to the parasites may 

be crucial for obtaining relevant computational results. Examples of such aspects would be 

the common absence of a clearly defined set of substrates and by-products for the metabolism 

of intracellular parasites, the changes in composition of biomass across multiple stages of 

their life cycles or sub-optimal utilization of available substrates, etc. These issues, as well as 

the afore-mentioned experimental challenges, represent the area where we expect future 

improvements, leading to a better understanding of the metabolic peculiarities encoded in the 

genome of P. falciparum, and other parasitic pathogens. 



 

 

2. Systematic curation of the genome-scale metabolic model of P. 

falciparum 

Over the past decade, several computational approaches have been applied in the studies in P. 

falciparum to extract the most out of the available results by collecting, reconciling and 

analyzing them in the form of large-scale models [90]. Aiming at a whole-system view and a 

rigorous analysis, such models enabled generating of novel non-intuitive hypotheses as well 

as highlighted the points of controversy between the existing experimental results. Metabolic 

models also have been successfully employed for facilitation of the discovery of essential 

genes (i.e. potential drug targets) for a number of human pathogens, including several 

protozoan parasites [91,92]. 

Growing interest of the malaria research community in systems biology approaches led to 

reconstruction of at least five in silico metabolic models for P. falciparum seeking for better 

understanding of its metabolism and vulnerable points for novel drug intervention [25-28,93]. 

While being undoubtedly useful, all these models contain a number of important 

simplifications, which are, unfortunately, not always clearly stated and justified. Some of the 

simplifications are made to maintain computational feasibility of the simulations. However, 

there are also those, which reflect the lack of detailed knowledge about simplified aspects at 

the time a model was created. One of such simplifications, very common in genome-scale 

metabolic models, is a unidirectionality (irreversibility) pre-assigned to biochemical reactions 

and to the equations that describe transport of metabolites across cellular membranes. 

Notably, in a number of cases, such ad hoc assignment denotes an experimentally observed 

irreversibility; indeed, some enzymes facilitate transformation of metabolites exclusively in 

one direction (i.e. catalytic irreversibility). However, the majority of metabolic enzymes 

catalyze both forward as well as reverse reaction and, in principle, the direction, in which 

such a reaction occurs, is defined by its thermodynamic properties and conditions. As a 

simplification, rigorous assessment of the constraints imposed by thermodynamic laws are 

often omitted in metabolic models and replaced with ad hoc assignments of some reactions as 

unidirectional. Such assignments are important constraints, which may prevent fluxes 

through reactions in thermodynamically unfeasible directions or, if made spuriously, may 

lead to incorrect in silico predictions. One of the potential consequences of an incorrect 

assignment of reaction directionality is alteration of in silico gene essentiality predictions, 
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which may change if an irreversible reaction is assigned as reversible or vise versa [46]. In 

the case of well-studied model organisms, such as E. coli or S. cerevisiae, wealth of 

experimental information about reversibility of metabolic reactions in vitro can be found in 

primary literature as well as textbooks and databases. Notwithstanding, for an organism 

which is not readily amenable for protein isolation and orthologous gene expression (e.g. P. 

falciparum), the biochemical properties of a large amount of the enzymes remain unknown. 

As an implicit simplification, current metabolic models of P. falciparum contain 

unidirectionality constraints taken from the models of completely unrelated, but well-studied 

organisms [27] or assume all the reactions reversible [26]. In this study, we endeavor to 

address in a rigorous way the uncertainty about unidirectionality of the reactions in the 

models of P. falciparum using thermodynamics-based flux balance analysis (TFBA).  

Further, we demonstrate how the model reconstruction capabilities of the RAVEN Toolbox 

[94] can aid in addressing another important simplification of the metabolic models – 

assignment of metabolic functions to genes without explicitly providing evidence or 

reliability measures. We apply the RAVEN Toolbox for an automated annotation of 

metabolic capabilities in four different malaria parasites and compare their metabolic 

capabilities. 

2.1 Thermodynamics-based flux balance analysis of metabolism in P. 

falciparum 

2.1.1 What is TFBA and why do we need it? 

Unidirectionality or bidirectionality of metabolic reactions represent an important constraint 

in metabolic models. The importance of it has been recognized and first addressed in the 

context of the genome-scale metabolic model of E. coli iAF1260 by Feist et al [95]. In this 

study thermodynamic information was not part of the model per se but was treated as an 

additional point of reference for confirmation of unidirectionality assigned ad hoc to the 

reactions in the model. In the following years several algorithms for a systematic 

implementation of thermodynamics-based constraints in the genome-scale metabolic models 

were developed [96-100]. In this study, we used an automated algorithm developed by Soh & 

Hatzimanikatis [99] as an extension to the standard formulation of FBA in the COBRA 

Toolbox [101].  
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The model presented in this study was created based on iTH366, 

(http://www.ebi.ac.uk/biomodels-main/MODEL1007060000) by thorough manual curation 

with the aim to update it with respect to the current knowledge about metabolism of P. 

falciparum. A considerable amount of additional information (i.e. metabolite formula, 

charges, pKa values etc.) was included in the model to prepare it for incorporation of 

thermodynamic constraints. On the other hand, inactive (“out of the current scope”) part of 

the model, blocked reactions detected by flux-variability analysis [102] with all the reactions 

set as reversible, had been removed, thus, leaving only the reactions that could carry flux. 

Some of the further changes correspond to the latest knowledge about metabolism of the 

parasite e.g., BCKDH-enzyme complex acts as a pyruvate dehydrogenase in mitochondrion 

thus providing a missing link between glycolytic pyruvate and tricarboxylic acid cycle [103] 

(for all the modifications see Table 4, Appendix 2). While all the reactions in iTH366 were 

pre-defined as uni- or bidirectional, only one out of the all sources of biochemical 

information mentioned by the authors, namely iAF1260 model [95], contained 

thermodynamic information. This means that at best the unidirectionality constraints were 

copied from the model of unrelated organism with an implicit assumption that they are the 

same in P. falciparum. However, despite a certain degree of similarity in terms of the 

biochemical pathways present in E. coli and P. falciparum, directionality and reversibility of 

the reactions in these pathways may indeed differ between such non-related organisms. We 

foresee at least two reasons for such potential dissimilarities: firstly, non-orthologous 

enzymes that carry out the same enzymatic function may not have the same catalytic 

(ir)reversibility; secondly, even homologous enzymes may catalyze the same reaction in 

opposite directions in unrelated species. One such example is NADP-dependent isocitrate 

dehydrogenase (ICDH), which in many eukaryotes operates in a reductive direction (while 

NAD-dependent ICDH in the oxidative [104]); in Apicomplexa mitochondrial NAD-

dependent ICDH is absent, thus, the NADP-dependent form catalyzes the reaction in an 

oxidative direction [105]. Such mode of action was observed for NADP-dependent ICDH 

under an oxidative stress conditions in Mus musculus embryo cells [106]. Thermodynamic 

constraints allow us to assess the ad hoc assignments that were brought to iTH366 from the 

other models and use thermodynamic properties to define directionality and reversibility of 

the reactions.  

According to the second principle of thermodynamics, any chemical reaction in order to 

occur must result in a negative change of Gibbs free energy. Standard Gibbs free energy 
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change of a reaction (ΔrG°) is a sum of the standard Gibbs free energy changes of formation 

(ΔfG°) for the participating molecules respectively multiplied by the stoichiometric 

coefficients with a positive sign for the reactants and a negative one for the products. In the 

case of non-standard conditions, ΔrG depends on the standard Gibbs free energy changes of 

formations for the reactants and the products (∆fGi
°), their concentrations ci as well as 

corresponding stoichiometric coefficients vi  and an absolute temperature T (R is a universal 

gas constant equal to 1.987 cal mol-1 K-1): 

  

Experimentally measured ΔfG° values exist for a limited number of compounds. However, 

using a computational group-contribution method (GCM) [45,107,108], such values could be 

estimated for a very large number of metabolites, which encompasses a majority of the 

molecules present in genome-scale models. Notably, ΔrG° imply 1 mol/l concentrations for 

the reactants and products, which is an unrealistically high concentration for the case of 

intracellular environments. Thus, in the previous studies, transformed values of ΔrG’ were 

calculated for 1 mmol/l concentrations of the metabolites [95]. Ideally, ΔrG’" should be 

estimated for experimentally measured concentrations of metabolites, however in the absence 

of such data, a generic broad range of experimentally observed concentrations can be 

assumed [45]. Due to this uncertainty in the concentrations, ΔrG’" is estimated as a range and 

not a unique value. If the range of ΔrG’ for a given reaction encompasses only negative 

values, this reaction is thermodynamically irreversible and occurs only in the forward 

direction under the given conditions. Conversely, if the range only includes positive values 

this reaction can exclusively occur in its reverse direction. In the case of the range spanning 

over positive and negative values the reaction is thermodynamically reversible and can occur 

in either direction depending on the concentrations of its reactants and products. In a similar 

way ΔrG’"of transport reactions can be estimated subject to the concentration gradient of the 

transported metabolite(s) across a membrane, charge of the membrane and the gradient of pH 

[99,109]. 

In this study, we used a computational algorithm for automated implementation of 

thermodynamic information into genome-scale CBMs as well as TFBA [99,109]. The 

algorithm, based on data from GCM, estimated ΔrG’"for the reactions included in our model 
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and formulated additional constraints that assured thermodynamic feasibility of the results 

obtained in this study. 

 

2.1.2 TFBA of the P. falciparum metabolic model with unknown 

concentrations of metabolites 

To date, only a part of the experimental information that is required for TFBA could be found 

in literature. For this study we used the conditions that are schematically described on the 

Figure 7. Acidity of the cytosol and the parasitophorous vacuole space in P. falciparum had 

been reported [110] as pH 7.3 and 6.8 respectively, while the values for the lumen of 

mitochondrion and a plastid-derived organelle (apicoplast) have not been assessed 

experimentally. Consequently, we assumed the pH in mitochondrion to be in the range 7 to 8, 

and in the apicoplast – 6 to 8 units. The mitochondrial membrane potential of P. falciparum 

also had not been measured experimentally, thus, we assumed the same potential of -180 mV 

as reported for mitochondria of S. cerevisiae [111]. More precise values can be readily 

incorporated in the model once they are available. The charge of the endoplasmic membrane 

of the parasite was set to 95 mV [112]. To reflect biologically realistic concentration of 

metabolites in the absence of experimental data, we assumed the same concentration ranges 

as previously used for TFBA by Henry et al [45], namely 10-3 to 20 mM for intracellular 

metabolites and 10-5 to 100 mM for extracellular ones. 

 

Figure 9. Physicochemical parameters used for different compartments of the model. 
Plastid denotes an apicoplast compartment. Analysis of the influence of pH ranges (shown on the figure) on thermodynamic properties 
(ΔrG’) of the reactions in these compartments indicated that change of pH within the ranges do not affect ΔrG’ considerably.  
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Based on these concentration ranges and group-contribution method, the algorithm [99,109] 

estimated thermodynamic properties for 514 reactions present in the model (c.a. 80% of all 

the non-exchange reactions). Among these 514 reactions, 342 were metabolic reactions; 268 

of them were ad hoc assigned as irreversible in the iTH366 model and only 74 as reversible 

(Figure 8). In order to compare these assignments with the thermodynamic reversibility we 

explored the ranges of ΔrG’ for these reactions using thermodynamics-based variability 

analysis (TVA [45]). According to the TVA results, only 27 out of 268 ad hoc irreversible 

reactions are thermodynamically irreversible given the assumed ranges of metabolite 

concentrations (exact values in the Table 5, Appendix 2). When considered each separately, 

over 90% of the 342 metabolic reactions can have both negative and positive free-energy 

change depending on the concentrations of their reactants and products within the ranges 

introduced above.  

 

Figure 10. Comparison of the number of ad hoc reversible reactions, the irreversibility 

defined by ranges of free energy change (ΔrG’), and constraints imposed by simulation of 

growth 

 

Importantly, 62 reactions, albeit thermodynamically reversible, appeared to be essentially 

unidirectional for production of biomass in the model and for 2 reactions ΔrG’ ranges shrunk 

to only negative values rendering them thermodynamically irreversible under this constraint 
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(Figures 8 and 9). Taken together, these results indicated that numerous ad hoc assignments 

of reactions as unidirectional in iTH366 were not supported by our thermodynamic estimates. 

 

 

Figure 11. The ranges of free energy change (ΔrG’) for the cytosolic reactions with and 

without requirement of biomass production.  
Each vertical bar corresponds to one of the reactions: white parts show the values feasible only when no growth is required, while the blue 

ones denote overlapping parts of the ΔrG’ ranges feasible with and without production of biomass. Requirement of growth forces a number 

of reactions to operate only in one direction (the ranges that are divided into blue and white part by x-axis). 

 

One of the reactions in MEP/DOXP pathway (MECDPS_ap) localized in the apicoplast 

caused thermodynamic unfeasibility of isoprenoid production. This linear pathway produces 

key precursors of several biomass building blocks and thus is essential for growth of the 

parasite. Such inconsistency between the thermodynamics-based and growth-allowing 

directionality had been previously noticed in the model of E. coli [45]. The authors estimated 

standard ΔrG0 of this reaction as a largely positive (25.09 ± 2.67 kcal/mol) that does not 

allow the reaction to proceed in its experimentally observed direction [113]. Herein, we 

report that this ΔrG’"remains positive within the whole span of the considered concentrations 

and ranges from 4.57 to 38.6 kcal/mol. Interestingly, the enzyme that catalyzes this reaction 

in E. coli (IspF) was found to be fused with another one, IspD, responsible for the one-

before-preceding step of the pathway. Such a bifunctional enzyme might allow so-called 
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substrate channeling [114] and increase thermodynamic favorability of the reaction in the 

necessary direction. Nevertheless, further studies of similarly fused enzyme of 

Agrobacterium tumifaciens did not yield any evidence of substrate channeling between these 

two enzymatic steps [115]. Our analysis shows that negative value of Gibbs free energy 

change for this reaction could be achieved either when uncertainty bounds in the estimated 

standard Gibbs free energies of formation for the metabolites is increased by a factor of 1.6, 

or, alternatively, by allowing much higher concentrations for the reactants (0.05M instead of 

0.02M) and much lower concentration of the product (2×10-8 M instead of 10-6 M). Such 

unprecedented assumptions are outside the scope of TFBA and, hence the question how 

MECDPS reaction occurs in a thermodynamically unfavorable direction remains open. 

Using TVA, we estimated critical (the lowest and the highest) concentrations of all the 

metabolites that sustain thermodynamic feasibility of each separate reaction (in the directions 

necessary for growth), as well as a whole model. For several metabolites (18) these ranges 

were not equal to the assumed wide ranges of metabolite concentrations (Figure 10). These 

represent critical concentrations of the metabolites across the membranes; beyond these 

concentrations on each side of the respective membranes the transport process becomes 

thermodynamically unfeasible.  

 

                                    natural logarithm of the concentration values  

Figure 12. Logarithmic ranges of the metabolite concentrations, which do not reach lower or 

upper bound while maintaining thermodynamic feasibility of the model.  
The blue bars highlight that part of the ranges that are compatible with production of biomass; conversely, the red parts are incompatible and 

together with the ranges in blue show the complete assumed concentration intervals. 

 

1) 4-hydroxybenzoate (cytosolic) 
2) 4-hydroxybenzoate (mitochondrial) 
3) carbamoyl-aspartate (cytosolic) 
4) dihydroxyacetone phosphate (in apicoplast) 
5) dihydroxyacetone phosphate (cytosolic) 
6) dihydroorotate (cytosolic) 
7) dihydroorotate (mitochondrial) 
8) glyceraldehyde-3-phosphate (in apicoplast) 
9) glucose (extracellular) 
10) isoleucine (extracellular) 
11) nitrate (extracellular) 
12) all-trans-octaprenyl diphosphate (cytosolic) 
13) all-trans-octaprenyl-diphosphate 
(mitochondrial) 
14) phosphate (extracellular) 
15) pantothenate (extracellular) 
16) sulfate (cytosolic) 
17) sulfate (extracellular) 
18) thiamin (extracellular) 
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Note that these results are subject to our assumptions on the charges of the membranes, the 

gradient of pH across them, as well as the transport mechanism specified for each of these 

molecules in the iTH366. These metabolites represent essential substrates that the model 

cannot obtain from any route that bypasses corresponding transport reactions (e.g. transport 

of 4-hydroxybenzoate between cytosol and mitochondrion). 

 

In addition to the prediction of feasible metabolite concentration ranges, implementation of 

thermodynamic constraints also enables incorporation of the concentration values that were 

measured experimentally as described in the following section.  

2.1.3 Integration of metabolomics data as constraints in the CBMs of P. 

falciparum 

To explore the possibility to integrate metabolomics data as additional constraints, we used 

the results of H1 NMR-based in vitro study on the blood stage infection by P. falciparum, 

where the authors quantified over 40 intracellular metabolites [80], the majority of which 

were present in our model. According to the authors, the metabolite extraction with 

perchloric acid was the most efficient, thus, we used the values acquired with this method 

allowing for the error ranges reported in the publication [80]. Based on these values, we 

estimated logarithmic ranges of the concentrations (Table 2) and used them in our model 

instead of the previously assumed wide ranges for these metabolites. An important 

assumption we made here was that the measured concentrations were representative of 

cytosolic as well as mitochondrial and apicoplast values. 

Upon incorporation of the concentration ranges the production of biomass in the model 

remained to be thermodynamically feasible, which proves the model’s consistency with this 

experimental data. Using TVA we again estimated concentration ranges of all metabolites 

which maintain thermodynamic feasibility of the biomass production in the model. Apart 

from the metabolomics-based experimental ranges, we also observed additional ranges that 

were no longer the same as generic ranges (Figure 11). This represents the phenomenon of 

propagation of the constraints in the network and a downstream effect of the incorporation of 

the metabolomics data.  
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Metabolite 

Concent
ration 

value, Ci 

(mM) 

Concent
ration 
error 

range, δi 

Min. 
concentr

ation, 
(Ci − δi) 

Max. 
concentr

ation, 
(Ci + δi) 

loge of min. 
concentration 

ln(Ci − δi) 

loge of max. 
concentration 

ln(Ci + δi) 

Metabolite identifiers 

SEED 
database 

iTH366 
model 

 cytosolic compartment 
Alanine 0.48 0.12 0.36 0.6 -7.9294 -7.4186 cpd00035 ala_L_c 
Arginine 4.2 1.1 3.1 5.3 -5.7764 -5.2400 cpd00051 arg_L_c 

Asparagine 0.7 0.4 0.3 1.1 -8.1117 -6.8124 cpd00132 asn_L_c 
Aspartate 2 0.5 1.5 2.5 -6.5023 -5.9915 cpd00041 asp_L_c 

4-Aminobutanoate  2.3 0.5 1.8 2.8 -6.3200 -5.8781 cpd00281 gaba_m 
Glutamate 11 4 7 15 -4.9618 -4.1997 cpd00023 glu_L_c 
Glutamine 1.34 0.3 1.04 1.64 -6.8685 -6.4131 cpd00053 gln_L_c 

Glycine 0.43 0.08 0.35 0.51 -7.9576 -7.5811 cpd00033 gly_c 
Histidine 0.16 0.04 0.12 0.2 -9.0280 -8.5172 cpd00119 his_L_c 
Isoleucine 0.16 0.05 0.11 0.21 -9.1150 -8.4684 cpd00322 ile_L_c 
Leucine 0.37 0.12 0.25 0.49 -8.2940 -7.6211 cpd00107 leu_L_c 
Lysine 1.3 0.3 1 1.6 -6.9078 -6.4378 cpd00039 lys_L_c 

Methionine             cpd00060 met_L_c 
Phenylalanine 0.16 0.05 0.11 0.21 -9.1150 -8.4684 cpd00066 phe_L_c 

Serine − − − −     cpd00054 ser_L_c 
Threonine 0.43 0.1 0.33 0.53 -8.0164 -7.5426 cpd00161 thr_L_c 
Tyrosine 0.19 0.04 0.15 0.23 -8.8049 -8.3774 cpd00069 tyr_L_c 
Valine 0.29 0.08 0.21 0.37 -8.4684 -7.9020 cpd00156 val_L_c 

Reduced glutathione 0.6 1.2 0.001 1.8 -13.8155 -6.3200 cpd00042 gthrd_c 
Oxidised glutathione 1.7 0.7 1 2.4 -6.9078 -6.0323 cpd00111 gthox_m 

myo-Inositol 0.24 0.08 0.16 0.32 -8.7403 -8.0472 cpd00121 inost_c 
Phosphocholine 1.49 0.32 1.17 1.81 -6.7508 -6.3144 cpd00457 cholp_c 

Phosphoethanolamine 4.5 1.5 3 6 -5.8091 -5.1160 cpd00285 ethamp_c 
AMP 0.36 0.15 0.21 0.51 -8.4684 -7.5811 cpd00018 amp_c 
ADP 1.1 0.4 0.7 1.5 -7.2644 -6.5023 cpd00008 adp_c 
ATP 2 0.9 1.1 2.9 -6.8124 -5.8430 cpd00002 atp_c 
NAD 2.2 0.5 1.7 2.7 -6.3771 -5.9145 cpd00003 nad_c 

Acetate 0.36 0.12 0.24 0.48 -8.3349 -7.6417 cpd00029 ac_c 
Formate 0.22 0.07 0.15 0.29 -8.8049 -8.1456 cpd00047 for_c 
Fumarate 0.16 0.04 0.12 0.2 -9.0280 -8.5172 cpd00106 fum_c 

α-Ketoglutarate 0.24 0.07 0.17 0.31 -8.6797 -8.0789 cpd00024 akg_c 
Lactate 1.1 0.8 0.3 1.9 -8.1117 -6.2659 cpd00159 lac_L_c 
Malate 1.8 0.5 1.3 2.3 -6.6454 -6.0748 cpd00130 mal_L_c 

Succinate 0.41 0.07 0.34 0.48 -7.9866 -7.6417 cpd00036 succ_c 
Putrescine 2.9 0.8 2.1 3.7 -6.1658 -5.5994 cpd00118 ptrc_c 
Spermidine 5.7 1.6 4.1 7.3 -5.4968 -4.9199 cpd00264 spmd_c 

mitochondrial compartment 
Alanine 0.48 0.12 0.36 0.6 -7.9294 -7.4186 cpd00035 ala_L_m 

Aspartate 2 0.5 1.5 2.5 -6.5023 -5.9915 cpd00041 asp_L_m 
Glutamate 11 4 7 15 -4.9618 -4.1997 cpd00023 glu_L_m 

Glycine 0.43 0.08 0.35 0.51 -7.9576 -7.5811 cpd00033 gly_m 
Tyrosine 0.19 0.04 0.15 0.23 -8.8049 -8.3774 cpd00069 tyr_L_m 
Reduced 0.6 1.2 0.001 1.8 -13.8155 -6.3200 cpd00042 gthrd_m 

ADP 1.1 0.4 0.7 1.5 -7.2644 -6.5023 cpd00008 adp_m 
ATP 2 0.9 1.1 2.9 -6.8124 -5.8430 cpd00002 atp_m 
NAD 2.2 0.5 1.7 2.7 -6.3771 -5.9145 cpd00003 nad_m 

Fumarate 0.16 0.04 0.12 0.2 -9.0280 -8.5172 cpd00106 fum_m 
α-Ketoglutarate  0.24 0.07 0.17 0.31 -8.6797 -8.0789 cpd00024 akg_m 

Malate 1.8 0.5 1.3 2.3 -6.6454 -6.0748 cpd00130 mal_L_m 
Succinate 0.41 0.07 0.34 0.48 -7.9866 -7.6417 cpd00036 succ_m 

 apicoplast compartment 
ADP 1.1 0.4 0.7 1.5 -7.2644 -6.5023 cpd00008 adp_ap 
ATP 2 0.9 1.1 2.9 -6.8124 -5.8430 cpd00002 atp_ap 
NAD 2.2 0.5 1.7 2.7 -6.3771 -5.9145 cpd00003 nad_ap 

 

Table 2. Logarithmic concentration ranges estimated based on the metabolomics dataset [80] 

The second and third columns contain the values of concentrations and error ranges respectively in mM, taken directly from the reported 

experimental results [80]. By addition and subtraction of the corresponding values of second and third column the values of minimal and 

maximal concentrations and corresponding logarithmic values were estimated. 
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                                    natural logarithm of the concentration values  

Figure 13. Logarithmic ranges of the metabolite concentrations that are constrained by 

incorporation of the metabolomics dataset.  
The red and blue parts for each range add up to the complete allowed span (wider of extracellular metabolites than for intracellular ones). 

The blue parts denote thermodynamically feasible ranges and unfeasible parts are in red. 

 

As a result of the tighter concentration ranges (both directly incorporated (Table 2) and 

indirectly affected ones, Figure 11), ΔrG’ spans shrank for the reactions that involved these 

metabolites: spans of ΔrG’ for 214 reactions changed (c.a. 41.6% of all the reactions with 

estimated thermodynamic properties in our model; exact values in the Table 5, Appendix 2). 

In several cases, the new ranges did not include both positive and negative values any more, 

implying that these reactions are thermodynamically irreversible in the given conditions 

(Figure 12). For instance, the reaction R00261 (glutamate carboxylase) could either produce 

glutamate from 4-aminobutanoate (GABA) and carbon dioxide or split a molecule of 

glutamate into these two compounds when we considered the generic concentration range for 

the reactants and products. This reaction becomes thermodynamically irreversible in the 

direction of glutamate decarboxylation upon incorporation of the measured concentrations of 

glutamate and GABA. However, the absence of known genes encoding 4-aminobutanoate 

aminotransferase and succinate-semialdehyde dehydrogenase (enzymes of the so-called 

GABA-shunt, both present and functional in T. gondii) in P. falciparum makes the 

downstream metabolic fate of this non-proteinogenic amino acid uncertain. In plants, 

glutamate decarboxylase reaction is used as a countermeasure in the case of acidification of 

1) cis-aconitate (mitochondrial) 
2) citrate (mitochondrial) 
3) N6-1,2-dicarboxyethyl-AMP 
(cytosolic) 
4) dihydroxyacetone phosphate 
(in apicoplast) 
5) dihydroxyacetone phosphate 
(cytosolic) 
6) dihydroorotate (mitochondrial) 
7) fumarate (extracellular) 
8) glyceraldehyde-3-phosphate (in 
apicoplast) 
9) isoleucine (extracellular) 
10) oxaloacetate (cytosolic) 
11) oxaloacetate (mitochondrial) 
12) pyruvate (cytosolic) 
13) spermidine (extracellular) 
14) pyruvate (mitochondrial) 
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1) arginase 
2) asparagine synthase 
3) glutamate synthase  
4) thiamine diphosphokinase 
5) pyridoxal kinase 
6) choline kinase 
7) ethanolamine kinase 
8) CDP-diacylglycerol-serine-
phosphatidyltransferase 
9) AMP deaminase 
10)carbamoyl-phosphate 
synthase  
Mitochondrial reactions: 
11) ATP/ADP exchanger 
12) ATP synthase 
13) aspartate transporter 
14) fumarate transporter 
15) succinate transporter 
16) glutamate carboxylyase 
17) GABA transporter  

cytosol [116], but whether this might be a potential function of GABA in malaria parasites 

remains to be investigated. 

Comparison of the gene essentiality predictions obtained using TFBA in the presence and 

absence of measured metabolite concentrations revealed several differences. For example, 

only upon integration of the metabolomics data did the model predict the following three 

enzymes of TCA cycle to be essential: citrate synthase (PF10_0218, PF3D7_1022500), 

aconitate hydratase (PF13_0229, PF3D7_1342100) and NADP-dependent isocitrate 

dehydrogenase (PF13_0242, PF3D7_1345700). Interestingly, the essentiality prediction for 

aconitate hydratase is consistent with the latest experimental results on assessment of 

essentiality of TCA cycle enzymes in P. falciparum [117]. This match represents an 

appealing instance for further investigation, as the reasons for an experimentally observed 

essentiality of this particular enzyme and not the preceding citrate synthase and the 

succeeding isocitrate dehydrogenase remain unclear. 

 

 

 Gibbs free energy change, kcal/mol 

Figure 14. ΔrG’ spans of the reactions that were thermodynamically reversible with the 

assumed range of concentrations (blue and red parts of the bars together) yet became 

irreversible when experimentally measured concentrations were incorporated (red parts of the 

bars).  
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Notably, incorporation of the experimentally measured concentrations also restricted reversibility of several kinase reactions and 

mitochondrial transporters as well as prevented a bidirectionality in utilization of ATP/ADP exchanger and ATP-synthase. 

 

As a summary of these TFBA studies on the iTH366-based, CBM we conclude that initially 

present ad hoc constraints were much more restrictive than thermodynamics-based ones 

given the wide concentration ranges assumed. This is similar to what had been previously 

observed in the comparison of ad hoc assigned unidirectionality with the thermodynamic 

estimates in the iAF1260 model, where the authors claimed that “reversibility set forth for the 

reactions in the reconstruction is often based on the physiological behavior of the reactions 

in the cell, not using the relatively broad concentration range achievable for metabolites 

along with the uncertainty inherent in the utilized method [for estimating thermodynamic 

properties]” [95]. Indeed, in the case when such experimental data is available for the 

organism of interest, this information may be used for adding ad hoc constraints. However, 

the same may not be valid when unidirectionality is pre-assigned based on experimental 

information for unrelated species. Thus, we emphasize that pre-assigned directionality of 

reactions in the models of P. falciparum needs careful consideration and TFBA analysis 

provides means for this. We demonstrated that incorporation of the metabolomics data as 

further constraints additionally shrinks the feasible concentration ranges for some metabolites 

and Gibbs free energy change spans for reactions, ultimately indicating that some of them are 

thermodynamically irreversible in these conditions. Recently published [75][114] as well as 

forthcoming larger metabolomics datasets will be instrumental for more precise assessment 

every ad hoc assignment in the model with respect to the thermodynamics-based reversibility. 

2.2 Automated de novo reconstruction of genome-scale metabolic 

networks of apicomplexan species: comparison of malaria parasites 

Using the reconstruction algorithm described below, I generated functional annotation that 

represents the metabolic capabilities of four malaria parasites: P. falciparum, P. vivax, P. 

berghei, P. cynomolgi. Among these P. falciparum and P. vivax are the most life-threatening 

human malaria parasites, while P. berghei and P. cynomolgi are of interest as the related (i.e. 

to some extent representative) animal-infecting species. The information about the metabolic 

capabilities of these parasites presented herein has at least two eventual applications: (1) it 

serves as an independent source of functional annotation of P. falciparum genes, which is 

invaluable input for reconciliation and building an up-to-date CBM of metabolism in this 
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parasite; (2) comparison of the enzymatic activities present in different malaria parasites 

gives knowledge about common, as well as unique, features of their metabolism, which 

highlights the aspects in which animal-borne parasites are not representative of their human 

counterparts. 

Using the model reconstruction capabilities of the RAVEN Toolbox [94], I herein illustrate 

how we can address another concern inherent to all the models of P. falciparum published to 

date, namely, reliance on external sources of functional annotation of the genes. As a 

consequence, these models do not contain any information on reliability of the functional 

annotations they were built upon. Using only the amino acid sequences of the ORFs extracted 

from PlasmoDB for the aforementioned malaria species, I obtained an independent and 

metabolic-model oriented functional annotation. Note, that independent in this case means 

that the assignment of functions to the ORFs was completely independent from the functional 

annotation existing in PlasmoDB. These annotations are based on (and, thus, linked to) the 

KEGG database of biochemical pathways through KEGG orthology identifiers (K-ids). 

For reconstruction of metabolic networks using the RAVEN Toolbox only a subset of all 

existing K-ids is selected, namely those which are associated with at least one fully-defined 

biochemical reaction (i.e. not marked as generic, incomplete or unclear). These K-ids are 

similar to E.C. numbers, yet more precise in the definition of the relation between a 

biochemical (catalytic) activity they denote with a type of enzyme that catalyzes this activity. 

Thus, as a rule, for one E.C. identifier there is one or more K-id in KEGG, each 

encompassing the genes that not only share the same catalytic activity but also have a 

common evolutionary origin (i.e. orthology). The information from the KEGG database is 

downloaded and treated such that for each K-id all the associated gene sequences from all the 

available species are assembled in individual files. The sequences in these files are further 

aligned between themselves, which is a computationally intensive process. However, the task 

of such alignment for each K-id is a completely independent process. Thus, for these tasks it 

is suitable to use parallel computing to perform alignments for each K-id independently and 

simultaneously. From the resulting multi-sequence alignments, hidden Markov models 

(HMM) are generated by HMMer software [118] for each K-id. These HMMs represented 

unique sequence “fingerprints” for each K-id (therefore an enzymatic activity) and are further 

used for functional annotation of a genome. The process of functional annotation relies on 

pairwise comparisons of every HMM with every ORF amino acid sequence present in a 

genome of interest. This step also requires significant computational resources and can be 
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expedited by means of a parallel computing. The result of the comparisons is an output file 

created for each K-id, which contains the identifiers of the ORFs matching to the 

corresponding HMM. These matches are described using two reliability measures – bit-score 

and expect value (e-value) for each ORF (Figure 13). A scope of these output files constitutes 

a new, independent, functional annotation of a genome, based on which a metabolic network 

can be reconstructed. 

  

  

Figure 15. Example of the output data of the annotation pipeline in the RAVEN Toolbox 

 

Two extracts of the output files in the Figure 13 show the results of the matching process 

between the ORFs of P. falciparum (top 5 best hits shown) to the HMMs of two KEGG 

orthology groups. Both of the K-ids are associated to the E.C. number 2.7.7.2 (FMN 

adenylyltransferase activity), but K00953 groups monofunctional enzymes that catalyze only 

one reaction, while K11753 is a group of bifunctional enzymes that combine the activities 

E.C. 2.7.7.2 and E.C. 2.7.1.26 (riboflavin kinase) in one protein. As evident from the 

matching scores, the gene PF3D7_1015000 most likely encodes a monofunctional protein 

and not the bifunctional one. The second match (PF3D7_1359100) represents an interesting 

unclear case, where the gene shows significant similarity to two K-ids: K00953 (Figure 13) 

but also K00861 monofunctional riboflavin kinases (not shown, e-value of 4.1e-56). While 

this is implying a putative bifunctionality, there is no similarity detected to the orthology 
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group K11753 of bifunctional riboflavin kinases/FMN adenylyltransferases. Consistently 

with our findings, PF3D7_1359100 is annotated in PlasmoDB as “riboflavin kinase / FAD 

synthase family protein, putative”. In this controversial situation, only isolation and 

biochemical characterization of the enzyme can definitively confirm presence or absence of 

the second catalytic function. 

The network reconstruction process relies on a user-defined e-value threshold that 

differentiates between the reliable matches (i.e. resulting in annotation of an ORF with the 

function corresponding to the best matching K-id) and insignificant matches that result in no 

assignment of a functional annotation. There are also two other user-defined parameters that 

are necessary to process the cases of (i) multiple genes matching to the same K-id and (ii) one 

gene matching to multiple K-ids with different confidence scores. Based on these thresholds 

and the output files described above, a metabolic network is built by inclusion of the 

reactions associated in the KEGG database with the K-ids assigned to all the annotated ORFs. 

All four malaria parasites considered in this study possess a remarkably similar set of 

metabolic enzymes, despite the difference in intermediate host organisms (Figure 14, Table 

6). This observation is in accordance with the previous comparative genomics study [119]. 

Our results also corroborate an earlier report on the absence of several enzymes in P. berghei, 

which are present in primate malaria species [119]. Importantly, among these are 

phosphoethanolamine N-methyltransferase (phospholipid metabolism) and five enzymes 

necessary for the de novo biosynthesis of thiamine pyrophosphate. We also confirm that the 

enzyme aspyrase can be reliably annotated in the genome of P. falciparum (PF3D7_1431800 

bit-score 436.7 e-value 1.9e-128), while in the three other species the best matching scores are 

over 10 folds lower and therefore do not allow trustworthy assignment of a function. All 

these cases of consistencies with the previously published findings represent the first 

validation of our independent annotation approach. Further, our comparative study is focused 

specifically on metabolism thus provides more exhaustive coverage of potential differences 

in metabolic capabilities. In particular, we report that P. cynomolgi apparently lacks 

cytochrome oxidase subunit I, which is encoded in the mitochondrial genomes of P. 

falciparum, P. berghei and P. vivax. We also could not detect genes encoding N-

acetylglucosaminyl-phosphatidylinositol deacetylase, phosphatidylinositol bisphosphatase 

and 1-phosphatidylinositol-5-phosphate 4-kinase in P. cynomolgi, unlike in the three other 

species. Indeed, these examples are just a little snapshot of all the putative differences our 

comparison identified. Further reconstruction of the corresponding genome-scale metabolic 
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models is necessary to assess the consequences of these differences. Only a rigorous analysis 

with respect to an appropriate host cell environment can unravel the implications of these 

dissimilarities for the overall metabolic capabilities of the parasites. 

 

Figure 16. Comparison of the scopes of metabolic functions (expressed as KEGG orthology 

identifiers) annotated by the RAVEN Toolbox in the genomes of 4 Plasmodium spp. 
In this comparison we used a permissive e-value cut-off equal to 1e-5; see Table 6 for a full list of the common and unique identifiers. This 

diagram was generated by the web-based software accessible at http://bioinformatics.psb.ugent.be/webtools/Venn/ 

Studies described in this chapter were aimed at curation and further improvement of the 

existing genome-scale metabolic models of P. falciparum. Using thermodynamics-based flux 

balance analysis, we demonstrated a power of the method to extend the scope of CBMs with 

incorporation of metabolomics datasets and to thoroughly re-evaluate the ad hoc reaction 

unidirectionality assignments. This, taken together with a careful revision of the metabolic 

capabilities of the parasite and understanding differences in these capabilities between 

malaria species, creates a foundation for next-generation CBMs to be reconstructed for P. 

falciparum and other Plasmodium spp.  



 

 

3. Metabolic needs and capabilities of T. gondii through combined 

computational and experimental analysis 

This publication contributes the first genome-scale computational model of metabolism in T. 

gondii coupled with rigorous computational analyses and an experimental validation of 

several model-based hypotheses.  

The main outcomes of this work are summarized as follows: 

1 ToxoNet1, a comprehensive metabolic model of T. gondii was built using a state-of-the-

art semi-automated approach. 

2 A number of aspects of the metabolism of the parasite that are not currently well 

understood were highlighted as a result of the reconstruction process. 

3 Computational analyses of the model delivered several important insights into metabolic 

needs and capabilities of the parasite, as well as a list of genes that are putatively 

essential for its replication. 

4 Experimental investigation of the routes leading to production of acetyl-CoA in the 

cytoplasm of the parasite clarified this important aspect of its metabolism and 

corroborated in silico predictions on individual dispensability yet synthetic essentiality of 

the enzymes ATP-citrate lyase and acetyl-CoA synthetase.  

This study has broad implications for future studies as well, as a general understanding of the 

metabolism in the apicomplexan parasite T. gondii, which will ultimately lead to 

development of novel antiparasitic medicines. 

Author contributions: VH and DSF conceived and designed the study; ST performed model 

reconstruction and computational studies and analyzed their results; ST, RDO, DSF, RA, JN, 

and VH helped curating the model; RDO generated and characterized the transgenic parasites 

and analyzed the phenotypes; ST, RDO, DSF and VH wrote the manuscript. 
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Abstract
Toxoplasma gondii is a human pathogen prevalent worldwide that poses a challenging and
unmet need for novel treatment of toxoplasmosis. Using a semi-automated reconstruction
algorithm, we reconstructed a genome-scale metabolic model, ToxoNet1. The reconstruc-
tion process and flux-balance analysis of the model offer a systematic overview of the meta-
bolic capabilities of this parasite. Using ToxoNet1 we have identified significant gaps in the
current knowledge of Toxoplasmametabolic pathways and have clarified its minimal nutri-
tional requirements for replication. By probing the model via metabolic tasks, we have fur-
ther defined sets of alternative precursors necessary for parasite growth. Within a human
host cell environment, ToxoNet1 predicts a minimal set of 53 enzyme-coding genes and 76
reactions to be essential for parasite replication. Double-gene-essentiality analysis identi-
fied 20 pairs of genes for which simultaneous deletion is deleterious. To validate several
predictions of ToxoNet1 we have performed experimental analyses of cytosolic acetyl-CoA
biosynthesis. ATP-citrate lyase and acetyl-CoA synthase were localised and their corre-
sponding genes disrupted, establishing that each of these enzymes is dispensable for the
growth of T. gondii, however together they make a synthetic lethal pair.

Author Summary
Understanding the metabolism of disease-causing microorganisms can guide drug design
through the identification of metabolic enzymes whose activity is indispensable for impor-
tant cellular functions. Such understanding can come from the reconstruction and compu-
tational analysis of metabolic networks. In this study we have focused on the metabolism
of an opportunistic human pathogen, Toxoplasma gondii, which chronically infects about
30% of humans worldwide. Through a semi-automatic reconstruction we have developed
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ToxoNet1, a comprehensive metabolic model of Toxoplasma gondii, and we have per-
formed an extensive computational analysis to explore the properties of Toxoplasmame-
tabolism. In particular, we have identified and classified the minimal set of substrates the
parasite utilizes for growth, along with the genes and pairs of genes that are essential for
cellular functions such as growth and energy metabolism. We have validated our computa-
tional predictions that the genes encoding acetyl-CoA synthase and ATP-citrate lyase en-
zymes serve complementary function but their simultaneous disruption does not allow
cell growth. This study presents a number of hypotheses generated using ToxoNet1, which
can lead to the discovery of novel antiparasitic drug targets.

Introduction
The phylum of Apicomplexa comprises a large number of obligate intracellular parasites that
can infect organisms across the whole animal kingdom. An important member of this phylum,
Toxoplasma gondii, is a ubiquitous opportunistic pathogen responsible for one of the most
common parasitic infections in humans and warm-blooded animals. It is estimated that up to
30% of the human population is chronically infected [1]. Toxoplasmosis is largely asymptom-
atic in healthy adults but can cause severe disease or even death in immunocompromised indi-
viduals and can lead to complications in development of the foetus, if primary infection occurs
during pregnancy [2].

T. gondii possesses a complex life cycle, which is composed an asexual replicative stage in
the intermediate host and a sexually replicative stage within the definitive feline host. During
the asexual phase, T. gondii can switch from a fast-replicative tachyzoite form, which causes
acute disease, to a slow-growing bradyzoite stage, which forms cysts that are characteristic of
chronic infection. The encysted, slow growing form is resistant to commonly used drugs and
immune system attack. Few efficient medicines are available to treat toxoplasmosis and they
mainly treat the acute phase of the disease. Furthermore, poor tolerance of these drugs pro-
motes the search for novel drug targets.

Unlike other notorious apicomplexan parasites that infect a narrow range of host cell types,
such as the Plasmodium species, T. gondii is able to invade and asexually replicate within virtu-
ally any nucleated cell of warm-blooded animals. The broad range of cells amenable to infec-
tion by T. gondii reflects the plasticity of the parasite’s metabolism and versatility in accessing
and utilising nutrients to support its intracellular growth [3,4]. The complexity of decoupling
the metabolic processes of this intracellular pathogen from those of the infected host limits the
depth of our understanding about the metabolic capabilities of T. gondii.

Currently, no adequate experimental approaches exist to answer comprehensively the fol-
lowing important questions: 1) what substrates are available within the host cell that are neces-
sary for T. gondii replication and which of these are dispensable; 2) in which intracellular
compartments do the enzymatic activities annotated at the genome level occur; 3) which of
these enzymatic activities are indispensable for replication or other vital processes of the para-
site. While achievable, the application of high-throughput gene knockout or knockdown strate-
gies to globally determine gene essentiality in T. gondii remains a major undertaking.

Computational (i.e. in silico) metabolic modelling coupled with systematic analyses facili-
tates the study of biological systems. This modern approach of systems biology has been exten-
sively exerted to predict gene essentiality in various bacteria, including numerous pathogenic
species [5]. In silicometabolic models offer a cost-effective pipeline to identify putatively indis-
pensable metabolic processes that, in the case of pathogens, represent potential targets for
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therapeutic intervention [6]. Recently, models have been constructed for eukaryotic pathogens
including for members of the phylum Apicomplexa [7–10].

In this study we have reconstructed a genome-scale metabolic model of T. gondii, ToxoNet1,
aiming to address the abovementioned questions in a systematic way and to the extent possible
with the currently available knowledge. Using flux-balance analysis we have identified genes,
reactions and pairs of genes for which deletion renders production of biomass components im-
possible. Furthermore, we have assessed which precursors are necessary for each of the biomass
components and have defined minimal sets of such precursors that allow in silico simulation of
growth. To illustrate the applicability of ToxoNet1 in filling knowledge gaps regarding parasite
metabolism, we experimentally challenged the model prediction regarding the alternative
routes for generation of cytosolic acetyl-CoA. We have confirmed in vitro the functional re-
dundancy and synthetic lethality within the two biosynthetic routes that involve the ATP-cit-
rate lyase and acetyl-CoA synthase enzymes.

Results
Here we present the full genome-scale in silico reconstruction of metabolism in T. gondii with
manually refined gene-reaction associations—ToxoNet1. The model reconstruction process re-
quired completion of the following major steps (schematically shown in Fig 1): (1) reconstruc-
tion of the draft metabolic network; (2) compartmentalization of the intracellular space; (3)
verification of the metabolic capabilities and manual literature-based corrections; (4) represen-
tation of the plausible exchanges of metabolites between the infected host cell and the parasite.
In general terms, the reconstruction process was consistent with the workflow that has been
previously used for semi-automated reconstruction of a genome-scale metabolic model for
Penicillium chrysogenum by means of the RAVEN Toolbox [11]. All the necessary manual cor-
rections were made in accordance to the conventional model reconstruction protocol [12].

For the compartmentalization process we consulted the models of Plasmodium falciparum
[9,13] and used sequence-based predictors of subcellular localization [14–16] as well as the
ApiLoc (http://apiloc.biochem.unimelb.edu.au/apiloc/apiloc) database. The databases used for
identification of “gap” reactions were KEGG [17] and LLAMP [18]. Recon 2 [19] was used as a
model of host cell metabolism to define the list of putatively host-supplied substrates.

Reconstruction of the ToxoNet1
Reconstruction of the metabolic network was achieved by combination of the state-of-the-art
algorithm for a semi-automated generation of metabolic networks [11] and a comprehensive
manual curation based on the relevant primary literature. Details of the reconstruction process
are provided in the materials and methods section and the most important steps are discussed
below.

The reconstructed metabolic network accounted for 527 open-reading frames (ORFs) that
were linked to 867 unique metabolic reactions present in the KEGG [17] database. Each func-
tional annotation in the model was assigned with two estimates (namely a bit-score and e-value),
which indicated confidence of association for a given ORF with a corresponding enzymatic
function.

In ToxoNet1, the majority of reactions were associated with genes that encode correspond-
ing metabolic enzymes (Fig 2A). Intracellular metabolic reactions not associated with any
genes comprised only 9.6% of all the metabolic reactions present in the model (6.7% of all the
reactions in the model); they include spontaneous reactions (not enzyme-catalysed) and so-
called gap-filling reactions that were added for correct functioning of the model. Most of the
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Fig 1. Reconstruction workflow for ToxoNet1 summarized as a flowchart illustration.

doi:10.1371/journal.pcbi.1004261.g001
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metabolite transport reactions, which were added to connect pathways segregated between
subcellular compartments, also lacked known gene associations.

Among the metabolic enzymes encoded in the genome of T. gondii and present within Tox-
oNet1, the transferases (class 2) and oxidoreductases (class 1) were the most numerous (over
60% of all the enzymes). Hydrolases (class 3), lyases (class 4) and ligases were significantly less
represented (Fig 2B). The least frequent were isomerases (class 5), which is in accordance with
the models of other pathogens, such as Leishmania major [20] and Plasmodium falciparum [8].

Compartmentalization of the ToxoNet1
Relatively straightforward experimental methods exist to determine the localization of proteins
in T. gondii [21], however, it would be laborious and expensive to apply such methods for hun-
dreds of enzymes. According to the ApiLoc database (http://apiloc.biochem.unimelb.edu.au/
apiloc/apiloc), experimental data was available only for a limited number of proteins: 60 out of
the 527 included in ToxoNet1. Thus the only reasonable option for building a compartmental-
ized metabolic model was to make use of sequence-based localization predictors. To define pu-
tative localizations of the enzymes with no experimental evidence we generated sequence-
based predictions using three software algorithms: TargetP [16], MitoProt II [15], and Api-
coAP [14]. We then manually reconciled output data of the three independent predicting algo-
rithms and assigned the localization based on the manually determined consensus prediction,
also considering recent primary literature whenever it was available (S1 Table).

Comparison of these predictions with 60 experimentally established subcellular localiza-
tions available from ApiLoc uncovered two issues: (i) not all the computational predictions
matched their experimental data (highlighted in the S1 Table); (ii) some of the enzymes were
reported to be present in two and, in one case (glutathione/thioredoxin peroxidase [22]), three
different subcellular compartments defined in ToxoNet1. In these cases the sequence-based
predictors were not efficient and suggested only one of the compartments. Therefore, we as-
signed compartments in a supervised manner considering all available evidence.

The information on compartmentalisation organised according to the global metabolic sub-
systems of ToxoNet1 is shown in the Table 1.

Fig 2. Breakdown of the metabolic network. A) By presence of gene-reactions association; B) By enzyme classes encoded in the genome of T. gondii (EC
nomenclature, class 1: oxidoreductases, class 2: transferases, class 3: hydrolases, class 4: lyases, class 5: isomerases, class 6: ligases).

doi:10.1371/journal.pcbi.1004261.g002
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In ToxoNet1 a majority of the reactions (c.a. 69%) occur in the cytosolic compartment. We
also considered this compartment as a default for enzymes with a subcellular localization re-
maining unclear from the in silico predictions. The mitochondrion accommodates 19% of all
metabolic reactions of the model. The remaining 12% are localized to the apicoplast, a plastid-
like non-photosynthetic organelle [23]. We connected these two compartments to the cytosol
by 223 transport reactions. This enabled the corresponding number of metabolites to be trans-
ported across these boundaries, which delineate the organellar membranes (for further details
see the materials and methods section). We allowed the metabolites present in the mitochon-
drion or apicoplast to be reversibly transported to and from the cytosol if they satisfied the fol-
lowing requirements: (i) metabolite has to be present (i.e. participate in at least one reaction) in
both the cytosol and corresponding non-cytosolic compartment; (ii) it should be neither phos-
phorylated nor containing an acyl-carrier-protein or CoA moiety, unless supporting evidence
of such transport is available. We also allowed: (i) import of phosphoenolpyruvate and dihy-
droxyacetone phosphate from the cytosol to the apicoplast [24]; (ii) export of ATP from the
mitochondrion to the cytosol (TGME49_249900); (iii) export of isopentenyl pyrophosphate
(IPP) and dimethylallyl pyrophosphate (DMAPP) from the apicoplast to the cytosol. The latter
allowed us to observe an unusual feature of the isoprenoid biosynthesis pathway in T. gondii re-
garding the isopentenyl pyrophosphate isomerase (EC 5.3.3.2). This enzyme interconverts IPP
into its more reactive isomer—DMAPP. In T. gondii, as well as in Plasmodium spp. this enzyme
is absent [25]. Thus, both IPP and DMAPP have to be produced and transported from the api-
coplast as separate entities for synthesis of long isoprenoid chains in the cytosol.

Verification of the metabolic capabilities of ToxoNet1
Amajor limitation of all algorithms for automatic reconstruction of metabolic models is the
number of missing reactions (so-called gaps) that disrupt metabolic pathways. The RAVEN
Toolbox offers a functionality called metabolic tasks (checkTasks and fitTask functions), which
verifies that specific tasks are fulfilled and, if necessary, it fills the gaps in the metabolic path-
ways to meet the required functionality.

We created metabolic tasks for the synthesis of every metabolite included in the biomass re-
action (complete formulation of all the tasks is provided in the S2 Table). The outcomes of the
tasks were categorized in three groups shown in Table 2. The first group contains the metabo-
lites that could be produced from glucose and inorganic compounds (i.e. de novo synthesis was
possible in the model). The second group contains the metabolites whose synthesis required a
precursor with a specific moiety (e.g. hypoxanthine or other source of purine moiety for purine
nucleotides and their derivatives). The third group are the biomass constituents that could not

Table 1. Breakdown of ToxoNet1 by metabolic subsystems and subcellular compartments.

Metabolicsubsystems Genes Reactions Reactions by compartments (non-unique)

(unique) cytosol mitochondrion apicoplast

Carbohydrates 88 114 101 32 16

Amino acids 105 163 140 56 8

Nucleic acids 74 105 93 8 19

Fatty acids 50 99 59 41 45

Vitamins, Co-factors 78 114 111 29 22

Phospholipids 34 42 44 3 2

Miscellaneous 98 230 194 38 28

Total 527 867 742 207 140

doi:10.1371/journal.pcbi.1004261.t001
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be produced even with the maximum set of host-supplied substrates, and therefore they were
directly taken up from the host (e.g. choline, arachidonic acid, cholesterol).

According to ToxoNet1, T. gondii has the capability to produce de novo a number of bio-
mass precursors such as pyrimidine nucleotides and their derivatives, fatty acids, isoprenoids
and about half of the proteinogenic amino acids (Table 2). When tasks of de novo production
for certain biomass constituents failed we attempted to produce them by supplying additional
precursors. In some cases uptake of one or more molecule(s) from the list of host-supplied
molecules, enabled production of the necessary biomass precursors in ToxoNet1. Nevertheless,
several biomass building blocks could not be produced in the model even when all the 230
host-supplied substrates were provided simultaneously, indicating that the parasite is likely
auxotrophic for these molecules.

In the cases when metabolic tasks could not be accomplished despite literature evidence
(mainly acquired from the LLAMP database [18]), we performed gap-filling. This is a conven-
tional part of building genome-scale metabolic models [12] and it implies inclusion of a

Table 2. Nutritional requirements of T. gondii predicted in silico.

Produced de novo (from glucose and inorganic
substrates)

Production requires specific precursors
(secondary production)

No production from
any of the available
precursors

Amino acids Alanine; Asparagine; Aspartate; Cysteine; Glutamate;
Glutamine; Proline; Serine; Threonine

Tyrosine1; Glycine2; Lysine3; Valine4; Leucine5;
Isoleucine6; Methionine7,8; Phenylalanine8

Arginine; Histidine;
Tryptophan

Nucleotides dCTP; dTTP; CTP; UTP dATP9; dGTP9; ATP9; GTP9

Fatty acids Dodecanoate; Tetradecanoate; Octadecanoate;
Hexadecanoate; Octadecenoate

Linoleate;
Arachidonate

Cofactors Pyridoxal phosphate; Protein-N6-(lipoyl)lysine[apicoplast]15 Glutathione2, 9; CoA9,10; FMN11; NAD9,12

NADP9, 12; Thiamin diphosphate13; S-Adenosyl-
L-methionine2, 7,9; Protein N6-(lipoyl)lysine
[mitochondrial]16; Tetrahydrofolate2;
Tetrahydrobiopterin14

Other
membrane
precursors

UDP-N-acetyl D-glucosamine; Geranylgeranyl-PP;
Undecaprenyl-PP;
PhosphatidylethanolaminePhosphatidylserine

Phosphatidylcholine17; Sphingomyelin17; ADP-
glucose3 GDP-mannose2; 1-Phosphatidyl-D-
myo-inositol18

Cholesterol

Required precursors:
1—phenylalanine or phenylpyruvate;
2—folic acid or its derivatives;
3—l-2-aminoadipate 6-semialdehyde;
4–3-methyl-2-oxobutanoic acid;
5–4-methyl-2-oxopentanoate;
6 –(s)-3-methyl-2-oxopentanoic acid;
7—l-homocysteine;
8—phenylpyruvate;
9—a source of purine moiety: hypoxanthine, adenine, adenosine or similar;
10—pantothenate or valine+β-alanine;
11—riboflavin;
12—nicotinic acid or its derivatives;
13—thiamine;
14–4-hydroxybenzoate;
15—an undefined”sulfur donor” molecule;
16—lipoic acid;
17—choline;
18—myo-inositol.

doi:10.1371/journal.pcbi.1004261.t002
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minimal number of reactions to complete pathways of interest. We used both the automated
gap-filling function of the RAVEN Toolbox (fillGaps) and manual gap-filling based on the in-
formation from the LLAMP database [18]. For instance, the threonine biosynthesis pathway in
ToxoNet1 was nearly complete but lacked a single enzyme, the homoserine dehydrogenase (E.
C. 1.1.1.3). The corresponding reaction (R01773) was included in the model without a gene as-
signed (i.e. as a “gap-fill”) justified by the presence of four other enzymes in the pathway and
the fact that the immediate downstream enzyme was identified in a proteomics study [26].
ToxoNet1 also retrieved a known issue of the lysine biosynthesis pathway: the bacterial-type
pathway consisting of 9 enzymatic steps lacks enzymes annotated for 4 sequential steps, mak-
ing the presence of the functional pathway debatable. While this issue remains unresolved, we
decided not to gap-fill this pathway in the model, thus, leaving lysine an essential amino acid.
The full list of gap-fill reactions included in ToxoNet1 is provided in S3 Table.

Importantly, some of the information necessary for a metabolic model could not be easily
deduced from the genome sequences alone. This is why we merged the draft output metabolic
network from the RAVEN Toolbox with a small-scale model of central carbon metabolism in
T. gondii. We manually built such a model prior to this study based on the genome annotation
from ToxoDB and refined it according to the relevant primary literature. This model contained
a number of recent experimental findings as well as manually assembled complex gene-reac-
tion associations. Among these were the pyruvate dehydrogenase activity that can be carried
out by the branched-chain keto-acid dehydrogenase complex (BCKDH) in the mitochondrion
[27], mitochondrial pyruvate transporter [28–30] and the GABA-shunt connected to the tri-
carboxylic acid (TCA) cycle [3].

Substrate dispensability based on ToxoNet1
One of the major challenges in simulation of parasite metabolism in silico is the unknown
range of metabolites available for the parasite within the host cell. As extracellular replication
(axenic cultivation) of T. gondii is not possible, it remains undefined which of the substrates
are dispensable for the parasite and which are not.

To address this issue in silico, we developed a method to enumerate all of the smallest/ mini-
mal metabolite sets (further referred to as in silicominimal medium or IMM), which could en-
able simulation of growth in ToxoNet1. In brief, the algorithm applied iterative rounds of
biomass production using the fewest number of substrates possible. After each of the iterations
we added a constraint to ensure that the next IMM included at least one substrate uncommon
from the preceding ones (further details on the formulation of the algorithm are described in
the materials and methods section).

The results of these simulations showed that as few as 19 substrates were sufficient for simu-
lation of T. gondii replication in ToxoNet1. We also observed a relatively large number (2592)
of alternative sets of 19 substrates with 10 metabolites being constitutively present in all the
IMMs. The other 9 substrates could be substituted by at least one other host-supplied metabo-
lite (Table 3). Despite the very large theoretical number of combinations (in the case of 9 vari-
able substrates picked from 220) we observed only 2592 alternative IMM of 19 substrates. This
indicates the ability of ToxoNet1 to substitute one substrate with another from the set of 230 is
rather limited. Indeed, the majority of the 2592 IMMs arise from flexibility in the carbon source
(one out of 7 available) and a source of nicotinate moiety (one out of 3). The other metabolites
are either non-substitutable (10) or substitutable with one single alternative. However, in this
particular analysis, we excluded the possibility of substituting one metabolite with simulta-
neous uptakes of several others, as it would lead to more than the minimal number of
substrates used.
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Gene essentiality predicted by ToxoNet1
We simulated in silico the outcomes of systematic removal of genes and reactions in ToxoNet1
to explore which of them represent indispensable metabolic functions. With the full set of 230
host-supplied substrates out of the 527 genes in ToxoNet1, 53 genes were predicted to be essen-
tial (Table 4 and literature evidence [31–38]). Considering that most of the transport reactions
do not have known gene-reaction associations, we also simulated single reaction deletions.
This allowed us to assess the dispensability of metabolite transport across the compartments,
as well as metabolite exchanges between T. gondii and its host cell (Table 4 and S5 Table).

In addition to single gene and reaction essentiality, we also simulated double gene deletions
to reveal the pairs in which genes are not essential for replication on their own, yet deleterious
when disrupted together. A total of 20 pairs that caused such synergistic effect (synthetic lethal-
ity) are listed in S5 Table.

Gene essentiality predictions depend on the following important aspects of metabolism as rep-
resented in the model: (1) range of substrates that can enter the model (i.e. molecules that the par-
asite can take up from the infected host cell); (2) composition of the parasite cell represented as a
set of biomass precursor molecules (the concept of biomass objective functions is explained in
[39]); (3) the presence of alternative metabolic routes to produce biomass building blocks from
the different substrates. Assuming a very permissive range of 230 substrates as potentially accessi-
ble for the parasite we predicted a minimal set of essential genes and reactions. In consequence,
the number of genes predicted by ToxoNet1 as non-essential is likely to be overestimated. Yet
with this assumption the probability of incorrect prediction of genes to be essential is lower.

ToxoNet1 as a framework for in silico assessment of experimental
research questions
In order to evaluate whether ToxoNet1 predictions closely reflect the metabolic capabilities of
T. gondii observed experimentally in tissue culture, we chose to assess the importance of the

Table 3. Composition of the minimal in silicomedia that allows ToxoNet1 to simulate replication of T.
gondii.

Indispensable (biomass precursor for which it is necessary)

5,10-methyltetrahydrofolate (THF); cholesterol (itself); choline (phosphatidylcholine); L-arginine (proteins);
L-histidine (proteins); L-tryptophan (proteins); lipoate (lipoylation in mitochondrion); riboflavin (FAD); S-

adenosyl-L-homocysteine (purine nucleotides, methionine, SAM); thiamine (TPP)

Dispensable (multiple alternative precursors present in different minimal media sets)

C6 or C5 carbon source D-fructose or D-glucosamine or D-glucose or D-mannose or D-ribose or D-
sorbitol or 2-Deoxy-D-ribose

NAD/NADP precursors nicotinate or nicotinate-D-ribonucleoside or nicotinamide

Amino acids or
precursors

L-lysine or L-2-aminoadipate 6-semialdehyde

L-isoleucine or (S)-3-methyl-2-oxopentanoate

L-valine or 3-methyl-2-oxobutanoate

L-leucine or 4-methyl-2-oxo-pentanoate

L-phenylalanine or phenylpyruvate

Source of inorganic iron Fe2+ or heme

Source of inorganic
phosphate

orthophosphate or diphosphate

Abbreviations: FAD—flavine-adenine dinucleotide, NAD—nicoticamide-adenine dinucleotide, NADP—NAD
phosphate, TPP—thiamine pyrophosphate, SAM—S-adenosyl-methionine, THF—tetrahydrofolate.

doi:10.1371/journal.pcbi.1004261.t003
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Table 4. Gene essentiality predictions of ToxoNet 1 and available literature evidence.

Gene identifiers Metabolic subsystem E.C.
identifier

Essentiality of ortholog(s) in P.
falciparum*

Essentiality evidence

TGME49_264780 Amino sugar and nucleotide sugar
metabolism

2.7.7.23 no NA

TGME49_264650 5.4.2.3 NA

TGME49_309730 Antioxidative metabolism 1.8.1.7 yes NA

TGME49_298990 Biosynthesis of terpenoids 1.18.1.2 no Inhibition of the pathway [31],[32]

TGME49_316770 2.5.1.- NA

TGME49_269430 2.5.1.1 yes Inhibition of the pathway [31],[32]

TGME49_227420 1.17.1.2

TGME49_306260 2.7.7.60

TGME49_255690 4.6.1.12

TGME49_306550 2.7.1.148

TGME49_262430 1.17.7.1

TGME49_214850 1.1.1.267

TGME49_208820 2.2.1.7

TGME49_224490 2.5.1.1
2.5.1.10

TGME49_290600 Citrate cycle(TCA cycle) 6.2.1.5 no Growth reducing knockout [33]

TGME49_278910 Cysteine and methionine
metabolism

2.5.1.47 no orthologs NA

TGME49_225990 Fatty acid biosynthesis
(apicoplast)

2.3.1.39 no (not essential on blood- and
essential in liver stage)

Conditional knockout of apicoplast-
targeted acyl-carrier protein [34]TGME49_217740 1.1.1.100

TGME49_206610 2.3.1.12

TGME49_231890 2.3.1.180 yes

TGME49_251930 1.3.1.9

TGME49_321570 4.2.1.-

TGME49_293590 2.3.1.179

TGME49_221320 6.4.1.2
6.3.4.14

TGME49_239710 Fructose and mannose
metabolism

5.4.2.8 no NA

TGME49_239250 Glycerolipid metabolism 2.7.1.107 no orthologs NA

TGME49_310280 Glycerophospholipid 2.7.7.14 no NA

TGME49_261480 metabolism 2.7.8.- Growth arrest upon inhibition [35]

TGME49_212130 3.1.1.3
2.3.1.-

no orthologs NA

TGME49_216930 2.7.7.15 yes Growth reducing knockout res-cued by
salvage from host [36]

TGME49_281980 2.7.7.41 NA

TGME49_233500 Glycolysis / Gluconeogenesis 5.3.1.1 yes NA

TGME49_207710 Inositol phosphate metabolism 2.7.8.11 yes NA

TGME49_315640 Lipoic acid biosynthesis 2.3.1.181 no Conditional knockout of apicoplast-
targeted acyl-carrier protein [34]

TGME49_226400 2.8.1.8

TGME49_271820 Lipoic acid metabolism in
mitochondrion

2.7.7.63 no NA

TGME49_269800 Nicotinate and nicotinamide
metabolism

6.3.5.1 yes NA

TGME49_244700 2.7.1.23

TGME49_224900 Purine metabolism 2.7.4.3 no NA

(Continued)
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two independent routes of cytosolic acetyl-CoA production in the rapidly dividing tachyzoite
stage (Fig 3A). Acetyl-CoA is an important molecule in central carbon metabolism that is in-
volved in many biochemical processes such as fatty acid synthesis (FAS type I pathway), fatty
acid chain elongation and acetylation of proteins, in particular histones. ToxoNet1 identified
two enzymes that can produce acetyl-CoA in the cytosol: (1) from acetate through the acetyl-
CoA synthase (ACS) reaction (TGME49_266640), (2) from TCA-derived citrate by ATP-cit-
rate lyase (ACL) (TGME49_223840), as shown in Fig 3A. Acetoacetate-CoA ligase
(TGME49_219230) produces acetoacetyl-CoA that can be converted to acetyl-CoA by the ace-
tyl-CoA acetyltransferase (TGME49_301120), which belongs to the fatty acid degradation
pathway in mitochondrion. We thus concluded that this is unlikely to be producing cytosolic
acetyl-CoA production due to the predicted mitochondrial localization of the two enzymes. In
further support of the importance of cytosolic acetyl-CoA production is the presence of a puta-
tive ortholog of the human acetyl-CoA transporter (AT1) in the T. gondii genome [40]. This
transporter was shown to localize at the endoplasmic reticulum (ER) membrane and to be es-
sential for the survival of eukaryotic cells by allowing import of acetyl-CoA from the cytosol to
the ER to acetylate proteins within this compartment. ToxoNet1 predicted ACS- and ACL-en-
coding genes to be fully dispensable when knocked out individually, however, their simulta-
neous knockout was predicted to be lethal (S5 Table).

Experimental investigation of acetyl-CoA biosynthesis in the cytosol and
its essentiality
To determine the localization and level of expression of ACS and ACL in T. gondii, we modi-
fied the endogenous locus (knock-in) by introducing a 3xTy-epitope tag at the C-terminal end
of both genes in the RHku80ko (Ku80ko) background strain, which limits random integration
in the genome hence facilitating recovery of homologous recombination events (Fig 3B). ACS

Table 4. (Continued)

Gene identifiers Metabolic subsystem E.C.
identifier

Essentiality of ortholog(s) in P.
falciparum*

Essentiality evidence

TGME49_233110 1.1.1.205 yes NA

TGME49_242730 2.7.4.8

TGME49_230450 6.3.5.2

TGME49_257740 Pyrimidine metabolism 2.7.4.-
2.7.4.14

no NA

TGME49_249180 1.5.1.3
2.1.1.45

yes [37]

TGME49_306970 2.7.4.9 NA

TGME49_299210 6.3.4.2 NA

TGME49_305980 Pyruvate metabolism in apicoplast 1.8.1.4 no** NA

TGME49_299070 2.7.1.40 yes NA

TGME49_216740 Riboflavin metabolism 2.7.1.26 yes NA

TGME49_214280 2.7.7.2

TGME49_237200 Sphingolipid metabolism 1.14.-.- no orthologs NA

TGME49_316450 2.3.1.24 yes

TGME49_215250 Thiamine metabolism 2.7.6.2 yes NA

(NA denotes the cases when neither supporting nor contradicting literature reference could be found). Gene essentiality in P. falciparum is based on the
Supplementary Table 1 of the review manuscript [38].

doi:10.1371/journal.pcbi.1004261.t004
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Fig 3. Both ACS and ACL are dispensable in the tachyzoite stage of T. gondii. (A) Schematic representation of the two pathways to produce acetyl-CoA
in the cytosol of T. gondii. Abbreviations: AcCoA, acetyl-CoA; α-KG, α-ketoglutarate; Cit, citrate; Glc, glucose; Lac, lactate; Mal, malate; OAA, oxaloacetic
acid; Pyr, pyruvate; Suc, succinate. Enzymes in red: ACL, ATP-citrate lyase; ACS, Acetyl-CoA synthetase. (B) Scheme of the knock-in strategy used to
introduce a 3Ty-tag in the endogenous loci of ACS, ACL and AT1. (C) Localization of endogenous ACS, ACL and AT1 C-terminally Ty-tagged (ACS-3Ty,
ACL-3Ty and AT1-3Ty) in the cytoplasm, cytosol and endoplasmic reticulum respectively of intracellular parasites using anti-Ty as well as anti-GAP45 that
stains the periphery and DAPI which stains the nucleus of the parasite. (D) Immuno-blot of total lysates from Ku80ko parasites expressing the C-terminally
Ty-tagged endogenous ACS, ACL and AT1 proteins byWestern blot using anti-Ty antibodies. Anti-Profilin (Prf) represents a loading control. (E) Schematic
representation of the direct knockout strategy by double homologous recombination where ACS was replaced by the chloramphenicol resistance cassette
and ACL by the HXGPRT selection cassette. The position of the primers used to confirm the integration and the length of the PCR products are indicated.
PCRs performed on genomic DNA extracted from Ku80ko, ACSko and ACLko strains to confirm the integration of the selection cassette and loss of the
corresponding gene locus. The sequences of the primers can be found in S7 Table. (F) Plaque assays performed with Ku80ko, ACSko and ACLko parasite
lines fixed after 7 days. No significant defect in the lytic cycle could be observed. (G) Intracellular growth assay performed on Ku80ko, ACSko and ACLko
strains by determining the number of parasites per vacuole 24h post infection. Data are represented as mean ± SD from 3 biological replicates.

doi:10.1371/journal.pcbi.1004261.g003
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is clearly cytosolic and nuclear whereas ACL appears to localize mostly to the cytosol, whilst a
fainter nuclear staining can also be detected by indirect immunofluorescence assay (IFA) (Fig
3C). Localization of the acetyl-CoA transporter AT1 in the perinuclear region of the ER in T.
gondii was validated using the same knock-in tagging strategy (Fig 3B and 3C). Expression of
the epitope-tagged proteins was further validated by Western blot analyses, where ACS runs at
the expected molecular weight of ~80 kDa, ACL at ~140 kDa and AT1 at ~65 KDa (Fig 3D).
Comparative signal intensity observed onWestern blots suggests that ACS is significantly
more abundant than ACL and AT1.

To functionally assess the importance of both routes to produce cytosolic acetyl-CoA and
challenge the predictions made by ToxoNet1, individual deletion of the genes encoding ACL
and ACS were achieved using a double homologous recombination strategy (ACLko and
ACSko respectively) in Ku80ko (Fig 3E). For both genes, transgenic parasites were readily ob-
tained and cloned. Absence of the ACL and ACS ORFs and their replacement by a selection
cassette in individual clones was validated by genomic PCR (Fig 3E), thus, supporting the pre-
diction made by the model that these genes are both dispensable for the survival of T. gondii
tachyzoites. No significant defect could be observed in the overall lytic cycle of these knockout
mutants as represented by plaque assays performed in human foreskin fibroblast (HFF) mono-
layers. Indeed, both ACLko and ACSko parasites formed lysis plaques of similar sizes when
compared to wild type (Ku80ko) parasites (Fig 3F). Moreover, after 24h of intracellular growth,
most vacuoles of the ACLko strain contained 4 to 8 parasites, which is comparable to the num-
ber of parasites per vacuole for cells infected with Ku80ko or ACSko (Fig 3G). Finally, growth
competition assays between mutants and wt parasites, which would detect mild loss of fitness,
showed no significant defect either.

In order to assess whether a double knockout of ACS and ACL is lethal for T. gondii as sug-
gested by ToxoNet1, we first attempted to disrupt ACL by single homologous recombination
in the middle of the ORF in the ACSko parasite background (same strategy as presented in Fig
3B but leading to a truncation of the protein and removal of the catalytic site). While we were
able to interrupt the ACL gene in Ku80ko parasites, we failed to generate such a mutant in the
ACSko background. This result strongly suggested that ACS and ACL together are critical for
the biosynthesis of cytosolic acetyl-CoA. To further confirm the synthetic lethality between
ACS and ACL we generated a conditional knockdown of ACL in Ku80ko and in ACSko by U1
snRNP-mediated gene silencing with Cre-recombinase dependent positioning of U1, as has
been recently developed in T. gondii [41] (generating ACL-lox and ACSko/ACL-lox respective-
ly; Fig 4A). Following Cre-mediated recombination, the endogenous 3’untranslated region is
excised and a U1 recognition site is placed adjacent to the termination codon. Consequently
the ACL pre-mRNAs are cleaved at the 3’-end and degraded, leading to a highly efficient
knockdown of the gene. Loss at the protein level can be assessed by immuno-detection of the
C-terminal 3Ty-tag (Fig 4A). Correct integration of the construct was confirmed by genomic
PCR (Fig 4B). Importantly, upon deletion of ACS the level of endogenous ACL protein was sig-
nificantly increased compared to ACL-lox (Fig 4C). This change in level of ACL in the absence
of ACS was reproducibly confirmed by generation of a second independent transgenic parasite
line where the ACS gene was disrupted in the ACL-lox background strain (Fig 4D).

To conditionally disrupt ACL in the ACSko, the ACL-lox and ACSko/ACL-lox parasites
were transfected with a plasmid transiently expressing the Cre recombinase. While ACL-lox
excised parasites could be readily propagated in culture the ACSko/ACL-lox excised parasites
were lost after the first passage as monitored by genomic PCR analyses of the two excised para-
site populations. While genomic recombination of excised parasites could be readily detected
in the original transfected parasites (P0), the signal was lost immediately after the first passage
of these cultures (P1 and P2) (Fig 5A) indicating a rapid deleterious effect. Thirty hours post

Metabolic Needs and Capabilities of T. gondii

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004261 July 20, 1969 13 / 28



 

 72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

transfection of Cre recombinase, the loss of ACL-3Ty-tagged protein was evident by IFA in
about 50% of the ACL-lox and ACSko/ACL-lox vacuoles. While ACL-lox parasites lacking
ACL could be propagated in culture, parasites lacking ACL in the ACSko/ACL-lox strain were
immediately lost in the first culture passage (Fig 5B). While ACL-lox excised parasites ap-
peared normal, most vacuoles from excised ACSko/ACL-lox parasites exhibited a severe mor-
phological defect and impairment in the parasite division process with a loss of pellicle
integrity as seen by perturbation of GAP45 staining (Fig 5C). Furthermore these parasites ap-
pear to continue dividing their nuclei, mitochondrion and apicoplast, but fail to form daughter
cells, resulting in organelle accumulation in the vacuolar space (Fig 5C).

To determine whether the deleterious phenotype and loss of pellicle integrity could be at-
tributed to a block in type I fatty acid synthesis following depletion in cytosolic acetyl-CoA, the
gene coding for T. gondii FASI was disrupted in wild type RH strain parasites by CRISPR/Cas9
mediated genome editing [42]. Trangenic parasites were obtained following double-stranded
breaks generated by Cas9 at a position downstream of the FASI ATG. Two independent clones
were sequenced to confirm the introduction of frame shift mutations (S1A Fig) No defect in
the lytic cycle could be observed in these parasites (S1B Fig), which is in accordance with the
ToxoNet1 prediction that FASI activity is not essential for parasite survival. Taken together,
these data firmly support the predictions made by the model regarding the individual dispens-
ability of ACS and ACL and the synthetic lethality of ACL in the absence of ACS.

Fig 4. Generation of an inducible ACL knockdown in ACSko parasites. (A) Schematic representation of the U1 snRNP-mediated ACL gene silencing
with Cre-recombinase dependent positioning of U1 in Ku80ko wildtype and ACSko parasites. (B) PCRs performed on genomic DNA extracted from Ku80ko,
ACL-lox, ACSko/ACL-lox validating integration of the pKI-ACL-3TyLox3’UTRLoxU1 construct to knock down ACL in the different strains. The sequences of
the primers can be found in (S7C and S7D) and S7 Table. Immuno-blot of total lysates from ACL-lox, ACSko/ACL-lox where ACL-lox was integrated in the
ACSko strain or ACS was knocked out in ACL-lox. Both independent lines show increased levels of ACL when ACS is absent. Western blot was performed
using anti-Ty antibodies. Anti-TgProfilin (Prf) represents a loading control.

doi:10.1371/journal.pcbi.1004261.g004
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Fig 5. ACS and ACL are dually essential. (A) Following transfection of ACL-lox and ACSko/ACL-lox with
Cre recombinase, excision and repositioning of U1 is followed by genomic PCRs over several culture
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Discussion
ToxoNet1 constitutes a full genome-scale reconstruction of metabolism within T. gondii,
which can simulate growth of the parasite in silico and infer essentiality of its genes. It consider-
ably extends the scope of previous work [10] and contributes to better understanding of the
limits in the metabolic capabilities of this opportunistic human and animal pathogen. While
the modelling efforts of Song et al were aiming to reveal strain-type specific differences in me-
tabolism of T. gondii, in the present study we reconstructed an independent model that repre-
sents the potential scope of the metabolic capabilities of the parasite independently of the life-
stage and strain-type. Aiming at the most reliable gene essentiality predictions we used many
alternative assumptions on the range of accessible substrates and transportability of metabo-
lites. We have also achieved more comprehensive coverage of all the metabolic capabilities of
the parasite and implemented functional gene-protein-reaction associations enabling rigorous
gene deletions studies. Hereafter we provide a more in depth discussion on the key aspects of
our approach.

There are two distinct approaches for model reconstruction process that are commonly re-
ferred to as top-down and bottom-up [43]. The top-down approach is usually applied when de-
tailed experimental data about the majority of individual system components is scarce.
Conversely, for the bottom-up approach, a significant body of relevant primary literature is a
necessary prerequisite. These two approaches are very much complementary and this is why
increasingly more studies combine them in order to achieve the best results. This was also the
case in the ToxoNet1 reconstruction efforts: the first draft model was a hybrid of the output
generated by RAVEN Toolbox and a significantly smaller manually reconstructed (and highly
curated) model, which was built upon the similar model of P. falciparum [44] used as a tem-
plate. This bottom-up small-scale model allowed capturing of the features that were not identi-
fied by functional annotations, such as formation of multi-enzyme complexes for certain
enzymatic activities (e.g. the mitochondrial BCKDH complex that carries out the pyruvate de-
hydrogenase function [27]) as well as cofactor specificities for the enzymes.

Genes with metabolic functions in ToxoNet1 represent a modest fraction (c.a. 9%) of the T.
gondii protein-coding genes, which is comparable but greater than in the genome-scale models
of P. falciparum (7%) [8], L.major (6.7%) [20] and Cryptosporidium hominis (5.5%) [7]. Tox-
oNet1 provides a broader and more complete coverage of the metabolic capabilities of the para-
site with 145 additional enzyme-coding genes (38% greater) compared to the earlier metabolic
model of T. gondii [10]. Comparison of the number of metabolic reactions with the genome-
scale models of the malaria parasite P. falciparum [8,9,13] confirms the common view that T.
gondii possesses broader metabolic capabilities (Table 5). These differences in metabolic capa-
bilities could be partially responsible for the observations that T. gondii can infect a very broad

passages (every 48h) using primers P17/P18 as depicted in Fig 4A (P0, extracellular parasites 48h after Cre
transfection; P1, extracellular parasites passaged once ~96h post transfection; P2, extracellular parasites
passaged twice ~140h post transfection). (B) Histogram showing percentage of excised parasites over
several passages (every 48h) in ACL-lox and ACSko/ACL-lox populations following transfection with Cre
recombinase. Excised parasites were visualized by IFA looking for loss of ACL-3Ty signal. Due to fluctuation
in transfection efficiency, data from one biological replicate is shown and represents mean ± SD from 3
technical replicates. 3 biological replicates were done and gave the same results. (P0, intracellular parasites
30h after Cre transfection; P1, intracellular parasites passaged once ~72h post transfection; P2, intracellular
parasites passaged twice ~100h post transfection). (C) Immunofluorescence assay confirms the loss of ACL-
3Ty and parasite pellicle integrity in a subset of vacuoles 30h following transfection of ACL-lox and ACSko/
ACL-lox strains with a Cre recombinase expressing plasmid. IFAs were stained using anti-Ty, anti-GAP45
(Pellicle), anti-5F4 (mitochondrion) or anti-Atrx1 (apicoplast) antibodies and DAPI (nucleus). Arrowheads
highlight nuclear and mitochondrial material lost in the vacuolar space and loss of the apicoplast due to loss
of pellicle integrity.

doi:10.1371/journal.pcbi.1004261.g005
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range of cell types for asexual replication, while Plasmodium spp. can only replicate within
specific tissues.

ToxoNet1 contains confidence estimates (e-values and bit-scores) for each gene annotated as
encoding certain metabolic activities. This has allowed us to suggest a number of metabolic
functions for genes that did not have annotations with E.C. numbers in the ToxoDB database
(S4 Table). For example, TGME49_237140 (an “ethylene-inducible protein” in ToxoDB without
an E.C. identifier) was annotated as pyridoxal 5'-phosphate synthase pdxS subunit (E.C. 4.3.3.6)
with very high confidence estimates (e-value 5.30x10-141 and bit-score 479). Accordingly, an
orthologous gene (PF3D7_0621200) is annotated as pyridoxine biosynthesis protein (PDX1) in
P. falciparum, yet without an E.C. number assigned. There was also a set of genes with low confi-
dence in their function, despite their annotation in ToxoDB (e.g. TGME49_305840 had a low
sequence identity to known nicotinate-nucleotide adenylyltransferases with an e-value of
4.70x10-15 and a bit-score of 60.6). These two examples demonstrate the potential of the
RAVEN Toolbox to improve genome annotation and produce models with confidence esti-
mates that enable evaluation and, potentially, future corrections of the existing models.

ToxoNet1 contains 260 unique dead-end metabolites, which currently can be only produced
or only consumed in the network. We kept them in the model in order to allow future develop-
ments and expansion of the scope of the model. Further definition of the metabolic routes can
utilise these dead-end metabolites and contribute to a more complete understanding of the
metabolic capabilities of the parasite. For instance, the tRNAs loaded with the respective amino
acids were included to enable future extension of the model to the representation of protein
synthesis.

We chose to impose relaxed constraints in terms of subcellular compartments due to rather
high uncertainty in subcellular localisation of the enzymes as well as largely unknown capabili-
ties of the parasite to transport metabolites across its organellar membranes. We assigned the
enzymes with the corresponding reactions to their putative compartments and allowed a broad
range of metabolites to be transported across the compartment boundaries. This approach to
compartmentalisation ensures minimal bias in our results due to underestimated transport ca-
pabilities or incorrect assignment of enzymes to subcellular compartments. We expect subse-
quent refinements of ToxoNet1 with more stringent compartmentalisation as more reliable,
high-throughput computational and experimental methods are becoming available for subcel-
lular localisation of enzymes and functional annotation of transporter proteins in T. gondii.
Our objective of this work is to provide ToxoNet1 as a resource for the community and there-
fore we avoided imposing constraints and hypotheses, which are not well-tested and confirmed
that could contaminate the model and our results.

Table 5. Comparison of the number of metabolites, reactions and genes between the models for T. gondii and P. falciparum.

Metabolic models of apicomplexan parasites Information about the models

Metabolites Reactions Genes Compartments

P. falciparum [9] 850 998 579 c, m, a, er, n, v, g

P. falciparum [8] 616 656 366 e, c, m, a

T. gondii [10] 384 400 382 c, m, a, er, im

T. gondii, this study 1019 1089 527 e, c, m, a

Abbreviations: e—extracellular space, c—cytosol, m—mitochondrion, a—apicoplast, n—nucleus, er—endoplasmic reticulum, g—Golgi complex, v—
digestive vacuole, im—mitochondrial intermembrane space.

doi:10.1371/journal.pcbi.1004261.t005
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To understand the nutritional requirements of T. gondii, we implemented an algorithm that
identifies and ranks the minimal number of substrates required for growth in ToxoNet1. The re-
sults indicate that uptake of as few as 19 of 230 substrates allows the model to produce all bio-
mass building blocks. Moreover, we identified 2592 sets of 19 substrates that can allow growth,
and 10 substrates common to all these sets (Table 3). These 10 substrates are compounds that
are not synthesized de novo by T. gondii and are the precursors for biomass building blocks and
essential cofactors. Interestingly, the uptake of S-adenosyl-homocysteine provided precursors
for multiple biomass building blocks simultaneously (purine nucleotides, threonine, methionine
and their derivatives). Among the alternative substrates we identified 7 carbon sources: five hex-
oses and two pentoses (ribose and deoxyribose), which can be incorporated into the metabolism
by a ribokinase enzyme. Uptake of pentoses through a hexose transporter has been reported in
the protozoan parasite L.major and may potentially represent an additional level of versatility
in meeting the need of a carbon source, similarly to the previously observed in T. gondii utiliza-
tion of glutamine [45,46]. We could envision such need as the parasite uses various host cells,
where the set of available substrates may vary between cell types.

Validation of genome-scale models using metabolic tasks is an approach developed to evalu-
ate metabolic capabilities of the models in a systematic manner. To date it has been applied to
several models [11,47,48] for testing whether the major metabolic functions can be fulfilled
and the biochemical pathways that support these functions were represented correctly. Tox-
oNet1 is the first metabolic model of an apicomplexan parasite where the reconstruction pro-
cess involved the validation of metabolic tasks. Using this approach we explored the capability
of this pathogen to produce de novo biomass building blocks from glucose and inorganic sub-
stances. Interestingly, almost all the cofactors of metabolic enzymes, with the exception of pyri-
doxal phosphate cannot be produced de novo. Their synthesis required precursors that
contained certain chemical moieties (Table 2). This suggests that virtually all the metabolic
functions of the parasite depend on an adequate supply of specific precursors by the infected
host cell. Furthermore, we found that T. gondii requires uptake of almost all the amino acids,
which are essential for the host, with the possible exception of threonine (discussed below). No-
tably, T. gondii lacks the pathway for arginine synthesis, which can be produced by human
cells, however arginine is growth limiting for human cells because its de novo synthesis is insuf-
ficient and thus supplemental uptake is required [49]. This suggests that during infection and
growth of the parasite, the biosynthetic capabilities of the host can be significantly compro-
mised due to competition for essential and growth limiting amino acids and vitamins.

Threonine is the only amino acid essential for human cells and which T. gondii can poten-
tially produce. However, this pathway includes the enzyme homoserine dehydrogenase (E.C.
1.1.1.3), the encoding gene for which is not identified to date in the genome of the parasite.
Data from ToxoDB suggests that the genes encoding the enzymes of the threonine biosynthesis
pathway, namely aspartokinase (TGME49_227090), threonine synthase (TGME49_220840),
homoserine kinase (TGME49_216640) and aspartate-semialdehyde dehydrogenase
(TGME49_205420), are expressed at low levels in the tachyzoite stage. Homoserine kinase has
been detected in the proteome of oocysts [50], the infective forms of the parasite that can sur-
vive for extensive periods of time outside the host cell [51]. Taken together, these observations
indicate that the whole pathway from aspartate to threonine might be not functional in certain
life stages and therefore T. gondii could be a conditional threonine auxotroph. Should threo-
nine biosynthesis also be active in the other life stages it could represent a selective drug target
for inhibition of parasite replication without affecting the mammalian host cells. Maintenance
of some metabolite pools in T. gondiimay be a result of both uptake and de novo production.
Hence, if the complete set of genes of a metabolic pathway is present in the genome of the para-
site, this pathway is not necessarily active and will not meet the demands of the parasite
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regarding the products of the pathway. Fox et al. showed that salvage of pyrimidine nucleotides
from the host cell can support in vitro but not in vivo survival of T. gondiimutants with dis-
rupted de novo pyrimidine synthesis pathways [52]. Therefore, accurate consideration of me-
tabolism in the host and pathogen together is central for a better understanding of the
metabolic needs and capabilities of T. gondii.

Our study represents the first model-based gene essentiality predictions for T. gondii. The
earlier efforts to infer essentiality of genes in this parasite were reported by Gautam et al. [53].
Their approach for producing the list of putatively essential genes was largely dissimilar to ours
and relied on conservation of the enzymes across parasitic and free-living species with further
pruning based on the literature data. We believe that our modelling approach, which takes into
account many more inputs and constraints, produces more reliable gene essentiality predic-
tions, and it follows the standard modelling procedures established by the community [12,54].
Nevertheless, we consider that the part of the workflow proposed by Gautam et al. can be com-
plementary to our study, which also includes larger number genes with the updated functional
annotation we performed here. This future study will prioritise the putatively essential genes
according to their apparent utility as drug targets with minimal risk of off-target effects on the
host cell metabolism.

Using ToxoNet1 we predicted a minimal set of 53 enzyme-encoding genes to be indispens-
able for parasite replication within human cells. The majority of these genes (49 out of 53) have
orthologs in the malaria parasite P. falciparum and 32 of them were predicted as essential in
the existing metabolic models [38]. Evidence of essentiality for metabolic enzymes in T. gondii
is currently scarce, thus, we could not test the majority of our essentiality predictions (Table 5).
However, new technologies such as CRISPR/Cas9-mediated genome editing, hold promise of
forthcoming high-throughput gene knockout studies in various organisms including T. gondii
[42]. The dataset of experimentally established gene essentiality will provide an important vali-
dation of ToxoNet1 and a prerequisite for its further refinement and expansion.

We predicted synthetic essentiality of 20 pairs of genes, which represent two distinct cases.
In the first case the pair of genes encode two isoenzymes that catalyse the same reaction in the
same compartment. For example, the genes TGME49_318580 and TGME49_285980 encode
isoenzymes, which catalyse the phosphoglucomutase reaction (E.C. 5.4.2.2) and both were ex-
perimentally localised to the cytosol [33]. This reaction produces glucose-1-phophate in the cy-
tosol, which is an indispensable precursor for starch and nucleotide-sugar metabolism.
Therefore, simultaneous deletion of these two genes is a synthetic lethal. In the second case of
synthetic essentiality each gene encodes for an enzyme of a different reaction but with a com-
mon product, which is necessary for biomass synthesis. Thus, the two different enzymes can
substitute for each other (sometimes indirectly) for production of an essential metabolite. For
example, we established experimentally the synthetic lethality between the genes encoding ace-
tyl-CoA synthase (ACS) and ATP-citrate lyase (ACL), both of which produce acetyl-CoA in
the cytosol of the parasite. This central metabolite participates notably in fatty acid synthesis,
fatty acid chain elongation and in acetylation of proteins. We were able to rule out experimen-
tally that the severe phenotype observed upon depletion of cytosolic acetyl-CoA was due to an
impact on FASI since parasites lacking FASI did not exhibit any significant impairment in the
lytic cycle.

Moreover given that deletion of the genes coding for elongases previously reported [55] did
not phenocopy the lethality observed when attempting to delete ACS and ACL simultaneously,
we suspect that blockage of protein acylation might be responsible for the severe consequences
of deletion of cytosolic acetyl-CoA. In this context, we experimentally confirmed that the T.
gondii acetyl-CoA transporter (AT1) is localized in the membrane of the ER and is anticipated
to deliver acetyl-CoA to the secretory pathway. It would be interesting to examine the
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importance AT1 for parasite survival. In contrast, the mitochondrion and the apicoplast should
not be affected since these compartments have their own routes for production of acetyl-CoA:
(i) in the apicoplast it is produced by the pyruvate dehydrogenase (PDH) complex [56], and
(ii) in the mitochondrion synthesis of acetyl-CoA is carried out by the BCKDH complex [27].
The predicted synthetic lethality between ACS and ACL suggests that these are the only two
significant sources of acetyl-CoA in the cytosol, which was not assessed by previous experi-
mental studies and is formally demonstrated here.

Furthermore this synthetic lethality suggests that there is no, or no significant, transport of
acetyl-CoA to the cytosol from the mitochondrion or the apicoplast. This further confirms
that, unlike acetate, acetoacetate could not be a source of cytosolic acetyl-CoA and therefore
the metabolic role of acetoacetyl-CoA, considered to be a dead-end metabolite in ToxoNet1, re-
quires further investigation. Unexpectedly, the deletion of the gene coding for ACS leads to a
reproducible and immediate increase in abundance of ACL protein, a possible compensatory
adaptation that has not been reported previously. It is unclear whether the capacity of the para-
site to respond to the absence of ACS results from an increase at the level of transcription or
protein stability but this intriguing mechanism of adaptation deserves further investigation.
ToxoNet1 can assist in comprehensively embracing the various routes that T. gondii employs
to produce acetyl-CoA in different subcellular compartments.

Beyond this study ToxoNet1 can be used as a global metabolic context for integration and
interpretation of various high-throughput experimental data, similarly to the studies made in
P. falciparum and other eukaryotic pathogens [38]. Of particular interest is the integration of
experimental data collected on different life stages of T. gondii that will allow the model to
yield context-specific predictions and, potentially, reveal valid drug targets as well as funda-
mental knowledge regarding the stages implicated in persistence and transmission of this im-
portant human and animal pathogen.

Materials and Methods
Draft reconstruction of ToxoNet1
The reconstruction process started with generation of a draft metabolic network of T. gondii
based on the annotation of its protein sequences as extracted from the ToxoDB database [57].
Within the framework of the RAVEN Toolbox these protein sequences were compared to the
hidden Markov models (HMM) generated for each KEGG [17] orthology group [11]. In the
cases when e-values for the matches between a T. gondii protein and an HMM were smaller
than the specified e-value cutoff (10–20), the enzymatic reactions associated with the corre-
sponding KEGG orthology ID were added to the draft metabolic network. As a result we have
obtained a set of metabolic reactions linked to genetic loci of T. gondii. At this stage the model
did not contain information about either subcellular compartments, or about transport of me-
tabolites. We next merged this model with a manually curated, small-scale metabolic recon-
struction that we previously built based on the P. falciparummodel [44].

Similarly to Huthmatcher et al [9]., we removed reactions with generic metabolites (such as
“protein”, “dNTP”) and replaced non-unique metabolite identifiers with unique ones when
they corresponded to the biochemically equivalent entities (e.g. (S)-Lactate and L-lactate were
replaced with L-lactate).

Compartmentalization
The parasitophorous vacuole (PV) space, which secludes T. gondii from the host cell cytosol, is
the outermost compartment represented in ToxoNet1. Extracellular compartment of the
model corresponds to the PV space. A eukaryotic organization of intracellular space of the
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parasite also includes a number of compartments, among which we chose to represent in Tox-
oNet1 the most relevant to metabolism, namely: mitochondrion, apicoplast and cytosol. The
following sequence-based localization predictors were used to suggest putative subcellular lo-
calization of the enzymes: TargetP [16] (version 1.1), MitoProt II [15] (version 1.101) and Api-
coAP [14] (version 1)). As an input data we used sequences of ORFs extracted from ToxoDB
(v.9, strain ME49) for the genes included in ToxoNet1. Computational localization predictions
were reconciled with the literature evidence for T. gondii and P. falciparum in the cases when
the latter were available (see S1 Table).

Transport reactions were included to link the majority of the metabolites in non-cytosolic
intracellular compartments with their cytosolic counterparts; such transports were not created
for phosphorylated metabolites or those that contained [acyl-carrier protein] ([ACP]) or Coen-
zyme A (CoA) moiety attached (with the exception of the apicoplast-to-cytosol transport of
IPP, and DMAPP as well as the mitochondrion-to-cytosol transport of ATP).

Metabolic tasks
Testing metabolic tasks is a built-in functionality of the RAVEN Toolbox [11] meant for verifi-
cation of correct metabolic capabilities in genome-scale models. Formulation of this function
allows one to test production of a certain metabolite(s) (or flux through particular reactions)
with strictly specified inlet and outlet of metabolites. For instance, a metabolic task “de novo
synthesis of ATP” was formulated as following: given unlimited uptake of glucose, oxygen, in-
organic phosphate, sulfate and ammonium, can the model produce ATP. The model failed to
accomplish this task, which is consistent with the literature knowledge about auxotrophy of T.
gondii for purines [58]. Thus, the task could be passed only when we added to the list of avail-
able compounds hypoxanthine, adenine or another molecule containing a purine moiety. In a
similar manner we have tested over a 60 metabolic tasks (all in S2 Table) to ensure realistic
metabolic capabilities of the model.

The range of available substrates
We simulated metabolism of the host cell using the most recent tissue-unspecific model of
human metabolism [19]. The Recon2 model was modified in terms of available substrates to
reflect growth on the defined minimal medium (Dulbecco's Modified Eagle's Medium with glu-
tamine and glucose). The PV which secludes the parasite from the host cell cytosol had been re-
ported as being permeable to small-molecule metabolites with molecular weights below 1500
Da [59] and thus imposes no relevant constraint to the metabolites we considered in ToxoNet1.
Thus, all the molecules that could be produced from the medium components in the cytosol of
the host cell were assumed to be potentially accessible for the parasite provided that they satisfy
the following criteria: host-supplied substrates were only small molecules (below 1.5 kDa) that
were not phosphorylated or bound to-CoA,-[ACP] or carnitine. We also assumed that the par-
asite could potentially dispose of a wide range of metabolic by-products from its cytosol into
the host cell. Thus, we added sink reactions for the same 230 metabolites that were assumed to
be host-supplied. As an exception we also allowed direct uptake into the cytosol of the follow-
ing five generic metabolites: “reduced acceptor”, “sulfur donor”, “acyl-CoA”, “carboxylate” and
“1-acylglycerol”; two non-generic metabolites: selenite and myo-inositol, and the appearance
of apoprotein in the mitochondrion and the apicoplast.

Biomass composition
In order to simulate replication of the parasite and assess the essentiality of genes, reactions
and substrates, we assumed maximisation of flux through the biomass reaction to be the
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objective function of ToxoNet1. It represents cellular replication as a reaction that consumes
pre-defined amounts of metabolites defined as small-molecule biomass precursors as well as
energy in the form of ATP. We used the biomass reaction from the previous study [10] as a
template and introduced the following modifications: we extended this biomass reaction with
the following cofactors—NAD, NADP, FAD and lipoylated protein necessary for pyruvate de-
hydrogenase (PDH) activity in the mitochondrion and the apicoplast; we changed the com-
partment for lipid precursors from endoplasmic reticulum (in Song et al. [10]) to the cytosol
(no ER compartment in ToxoNet1), and for L-lysine from mitochondrial to cytosol. The pres-
ence of the mitochondrial pathway for L-lysine production remained obscure, thus in Tox-
oNet1 it is acquired from the host instead of gap-filled de novo production in the parasite and
sequestered towards biomass from the cytosol.

Flux balance analysis (FBA) and substrate dispensability simulation
FBA is a standard computational approach for exploration of the metabolic capabilities repre-
sented in constraint-based models; principles, computational implementation of FBA as well
as the key assumptions are extensively described elsewhere [60].

In the absence of clear knowledge on the scope of substrates that the parasite can take up
from the host we made the following assumption: all the metabolites present in the host cell cy-
tosol are potentially accessible for the parasite except those that are phosphorylated, bound to
coenzyme A, acyl-carrier protein or carnitine. A list of molecules that satisfy these criteria was
generated using the recent tissue-unspecific model of human metabolism Recon2 [19] (the list
of the substrates is in S6 Table).

Minimal sets of metabolites necessary for the production of biomass were explored using an
in-house developed mixed-integer linear programming algorithm. For each of the exchange re-
actions that allowed uptake of a substrate into the model (i.e. 230 host-supplied metabolites)
we added one binary variable that denoted its utilization. Our algorithm solved the model sub-
ject to minimization of the sum of the binary variables thus yielding a minimal set of uptakes
that allowed the model to simulate growth. After each iteration the algorithm added one new
constraint to the model to assure that the following set would include at least one different up-
take reaction compared to all the previously generated ones. The iterations were repeated until
no more alternative sets of the same length could be found.

Essentiality studies
We performed simulation of gene deletion using a conventional approach [61] that implies
evaluation of gene-reaction associations that include the gene of interest, preventing flux
through corresponding metabolic reactions and an attempt to achieve a doubling time of 4.5
hours (specific growth rate of 0.15 h-1). Similar approaches were used for double gene deletion
studies—simultaneously blocking reactions associated with all pairs of genes that were not pre-
dicted as singularly essential. In reaction deletion simulations we blocked flux through every
single reaction in ToxoNet1 one at a time. Subsequent attempts at achieving the wild-type dou-
bling time in the absence of the reaction indicated whether the gene was dispensable or not.

T. gondii strains and culture
T. gondii tachyzoites (RHku80-ko (Ku80ko), RHku80-ko/ACS-ko (ACSko), RHku80-ko/ACL-
ko (ACLko), RHku80-ko/ACL3Ty-LoxP3’UTRLoxP-U1 (ACL-lox), RHku80-ko/ACS-ko/
ACL3Ty-LoxP3’UTRLoxP-U1 (ACSko/ACL-lox), RH/FASIko (FASIko)) were grown in con-
fluent Human Foreskin Fibroblasts (HFF) and maintained in Dulbecco’s Modified Eagle’s
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Medium (DMEM, Life technology, Invitrogen) supplemented with 5% foetal calf serum, 2 mM
glutamine and 25 μg/ml gentamicin in a humidified incubator at 37°C with 5% CO2.

Cloning of DNA constructs
All amplifications were performed with LA Taq (TaKaRa) polymerase and primers used are
listed in S7 Table.

Knock-in of ACS: (pKI-ACS-3Ty) The genomic fragment of ACS (TGME49_266640) was
amplified using primers ACS-1 and ACS-2 prior to digestion with with KpnI and SbfI and sub-
sequent cloning in the same sites of pTub8MIC13-3Ty-HXGPRT [62] to introduce 3 Ty-tags
at the C-terminus of the endogenous locus. Before transfection pKI-ACS-3Ty was linearized
with SnaBI.

Knock-in of AT1: (pKI-AT1-3Ty) The genomic fragment of AT-1 (TGME49_215940) was
amplified using primers AT1-1 and AT1-2 prior to digestion with KpnI and NsiI and subse-
quent cloning in the same sites of pTub8MIC13-3Ty-HXGPRT [62] to introduce 3 Ty-tags at
the C-terminus of the endogenous locus. Before transfection pKI-AT1-3Ty was linearized with
HindIII.

Knock-in and knock-down of ACL: (pKI-ACL-3Ty and pKI-ACL-3Ty-LoxP-3’UTR-LoxP-U1)
Genomic fragment of ACL (TGME49_223840) was amplified using primers ACL-1/ACL-2
and subsequently digested with KpnI and NsiI prior to cloning in the same sites of the pTub8-
MIC13-3Ty-HXGPRT for 3Ty-tag knock-in [62], or the modified C-terminal destabilization
vector pG152-3Ty-LoxP-3’UTRSag1-HXGPRT-LoxP-U1 [41]. Prior to transfection both plas-
mids were linearized with XhoI.

Knockout of ACS: (pTub-CAT-ACS-ko) around 1.5kb of the 5’ and 3’ flanking regions of
ACS were amplified using primers ACS-3/ACS-4 and ACS-5/ACS-6 respectively. The 5’ flank-
ing region was then cloned between KpnI and XhoI restriction sites of the pTub5-CAT and the
3’ flanking region between the BamHI and NotI sites. The plasmid was cut with KpnI and NotI
prior to transfection.

Knockout of ACL: (pTub-HXGPRT-ACL-ko) around 1.5kb of the 5’ and 3’ flanking regions
of ACL were amplified using primers ACL-3/ACL-4 and ACL-5/ACL-6 respectively. The 5’
flanking region was then cloned between the KpnI and XhoI sites of the p2855-HXGPRT plas-
mid and the 3’ flanking region between the BamHI and NotI sites. The plasmid was cut with
KpnI and NotI restriction enzymes prior to transfection.

Frameshift knockout of FASI using CRISPR/CAS9 plasmid [42]: This vector has been gener-
ated using the Q5 site-directed mutagenesis kit (New England Biolabs) with the vector pSAG1::
CAS9-U6::sgUPRT as template (a gift from Dr. L.D. Sibley). The UPRT-targeting gRNA was
replaced by the FASI (TGME49_294820) specific gRNA using the primer pairs gRNA-FASI/
gRNA-rev (gRNA highlighted in red in S7 Table).

Parasite transfection and selection of stable transformants
Parasite transfections were performed by electroporation as previously described [63].The
hxgprt gene was used as a positive selectable marker in the presence of mycophenolic acid
(25 μg/mL) and xanthine (50 μg/mL) for pKI-ACS-3Ty, pKI-AT1-3Ty, pKI-ACL-3Ty,
pKI-ACL-3Ty-LoxP-3’UTR-LoxP-U1 and pTub-HXGPRT-ACL-ko vectors transfected in
Ku80ko or ACSko, as previously described [64].

Ku80ko was transfected with pTub-CAT-ACS-ko and 20μM chloramphenicol was used to
select resistant parasites.

Resistant parasites were cloned by limiting dilution in 96 well plates and clones were as-
sessed by genomic PCR.
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To efficiently disrupt the FASI locus, 30 ug of the FASI gRNA-specific CRISPR/CAS9 vector
was transfected into wild type RH parasites. 24 hours after transfection, GFP positive parasites
were sorted by flow cytometry and cloned into 96-well plates using a Moflo Astrios (Beckman
Coulter). Individual clones were then analysed by sequencing.

Preparation of T. gondii genomic DNA
Genomic DNA was prepared from tachyzoites using the Wizard SV genomic DNA purification
system (Promega). Correct integration of the different constructs into the genome of the vari-
ous strains was determined by genomic PCR using GoTaq Green Master Mix (Promega).

Antibodies
The antibodies used in this study were described previously as follows: polyclonal rabbit anti-
GAP45, rabbit anti-TgProfilin [65], monoclonal mouse anti-Ty (BB2), mouse monoclonal
anti-F1-ATPase beta subunit (P. Bradley, unpublished) (5F4), mouse monoclonal anti-ATrx1
11G8 [66]. For Western blot analyses, secondary peroxidase conjugated goat anti-rabbit or
mouse antibodies (Molecular Probes) were used. For immunofluorescence analyses, the sec-
ondary antibodies Alexa Fluor 488 and Alexa Fluor 594-conjugated goat anti-mouse or rabbit
antibodies (Molecular Probes) were used.

Immunofluorescence assay (IFA) and confocal microscopy
Parasite-infected HFF cells seeded on cover slips were fixed with 4% paraformaldehyde/0.05%
glutaraldehyde (PFA/Glu) in PBS. Fixed cells were then processed as previously described [67].
Confocal images were generated with a Zeiss (LSM700, objective apochromat 63x/1.4 oil) laser
scanning confocal microscope at the Bioimaging core facility of the Faculty of Medicine, Uni-
versity of Geneva. Stacks of sections were processed with ImageJ and projected using the maxi-
mum projection tool.

Western blot analyses
Parasites were lysed in PBS-1% Triton X-100 and mixed with SDS–PAGE loading buffer under
reducing conditions. The suspension was subjected to sonication on ice. SDS-PAGE was per-
formed using standard methods. Separated proteins were transferred to nitrocellulose mem-
branes and probed with appropriate antibodies in 5% non-fat milk in PBS-0.05% Tween20.
Bound secondary peroxidase conjugated antibodies were visualized using the SuperSignal
(Pierce).

Phenotypic analyses
Plaque assays: HFF monolayers were infected with parasites and let to develop for 7 days before
fixation with PFA/GA and Crystal Violet staining to visualize plaques.

Intracellular growth assays: HFFs were inoculated with parasites, washed 4h post infection
and coverslips were fixed at 24 h post-infection with 4% PFA/Glu and stained by IFA with rab-
bit anti-TgGAP45. Number of parasites per vacuole was counted in triplicate for each condi-
tion (n = 3). More than 200 vacuoles were counted per replicate.

Software and databases
Flux-balance analysis was performed usingMATLAB (Version R2012b, TheMathWorks) with
CPLEX (ILOG IBM, version 12.51) andMosek (version 7) solvers; RAVENToolbox was used with-
inMatlab environment (version 1.07, downloaded from http://129.16.106.142/tools.php?c = raven).
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Input data was taken from KEGG database (www.kegg.jp, up to date as of 18/11/2013), ToxoDB
(www.toxodb.org, version 9), ApiLoc database (http://apiloc.biochem.unimelb.edu.au/apiloc/apiloc,
version 3), and LLAMP portal (www.llamp.net, no evident version tracking).

Supporting Information
S1 Fig. (A) Sequencing from translational start (ATG) of 2 independent clones confirms
disruption of the FASI ORF induced by CAS9. PCR for sequencing was done using primers
FAS-1/FAS-2 (S7 Table). The gRNA used is written in red. (B) Plaque assays performed with
RH, FASIko clone 8 and 10 parasite lines and fixed after 7 days. No significant defect in the
lytic cycle could be observed.
(EPS)

S1 Table. Subcellular localization of enzymes in ToxoNet1.
(XLSX)

S2 Table. Metabolic tasks performed on the metabolic network of T. gondii.
(XLSX)

S3 Table. Gap-filling reactions introduced in the model and their description.
(XLSX)

S4 Table. New putative functional annotation for the genes not annotated with E.C. identi-
fiers in ToxoDB.
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S5 Table. Essentiality predictions (genes, gene pairs, reactions).
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S6 Table. The list of 230 metabolites assumed as host-supplied substrates in ToxoNet1.
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S7 Table. Oligonucleotide primers used in this study for cloning and PCR analyses.
(PDF)
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4. Opening the black box of flavin-dependent metabolism in 

Apicomplexa  

Cofactors are non-protein molecules that are required for biological activity of proteins, most 

frequently of enzymes. Most of the cofactors are derivatives of vitamins or pro-vitamins, 

which contain a partial or complete chemical moiety necessary for the biosynthesis of a 

cofactor. Enzymes in the inactive form, without necessary cofactor(s) attached, are called 

apoenzymes, as opposed to catalytically active holoenzymes, which contain the relevant 

cofactor(s). Certain enzymes and multi-enzyme complexes involve multiple cofactors. For 

instance, the pyruvate dehydrogenase complex requires thiamine pyrophosphate, lipoamide, 

flavin-adenine dinucleotide, coenzyme A and magnesium ions. Among these, there are 

cofactors that belong to two distinct groups – coenzymes and prosthetic groups. This 

distinction of cofactors denotes to the mode of their interaction with apoenzymes: when the 

holoenzyme exists only in the process of the reaction and easily dissociates liberating the 

cofactor, the latter is called a coenzyme. Coenzymes can be detected in a free form in the 

solution and participate in biochemical reactions in a manner similar to the reactants and 

products (for example, NAD, NADP, CoA, THF). Conversely, a cofactor is called a 

prosthetic group when it is permanently (sometimes even covalently) bound to its enzyme, 

forming a stable holoenzyme complex. Examples of such cofactors are biotin, lipoamide, 

heme, pyridoxal phosphate, flavin mononucleotide (FMN), flavin-adenine dinucleotide 

(FAD) etc. These molecules exist preferentially in the protein-bound form and generally are 

not part of the equations that describe biochemical reactions. Permanent binding of FMN and 

FAD to flavoenzymes is explained by their propensity to produce the reactive radicals 

necessary for the catalysis, yet highly deleterious for living cells if produced in an 

uncontrolled manner. Accordingly, recent experimental study on a human enzyme that 

produces FAD indicated that, upon its production, the coenzyme remains tightly bound to the 

enzyme and is likely passed directly to an acceptor apoenzyme rather than released in 

solution [120]. 



 

 88 

4.1 Metabolism of cofactors – potential source for drug targeting  

Production of cofactors is a fundamental and an imperative function of metabolism in 

virtually any living organism. This is because activity of many metabolic enzymes strictly 

depends on availability of their active cofactors. Such availability is a result of either de novo 

production or salvage of necessary precursors (vitamins, pro-vitamins) with the subsequent 

transformation to an active form of the cofactor by phosphorylation, adenylation, oxidation, 

reduction, etc. 

Organisms that evolved within niches which constitutively contained sufficient amounts of 

certain cofactor precursors (vitamins) acquired efficient uptake and storage mechanisms, 

while other species remain reliant on internal de novo production. However, it is also 

common that organisms possess metabolic capabilities of producing coenzymes de novo as 

well as from the precursors taken up from the surrounding milieu in a condition-specific 

manner. This is the case, for example, in T. gondii and some other Apicomplexa, which are 

capable of de novo synthesis and salvage of folates for the production of THF. Despite this 

evident redundancy, THF-dependent metabolism is a primary target of current anti-

toxoplasmosis treatment. Detailed knowledge about the metabolism of folic acid and its 

derivatives in the parasite allowed design of a highly efficient combination therapy, where 

one component interferes with the de novo synthesis and the other with the reduction of 

folates, which are downstream of the salvaged precursors. In this manner, combined action of 

pyrimethamine and sulfonamides produces a synergistic detrimental effect on fast-replicating 

T. gondii tachyzoites. This case illustrates how detailed knowledge of a cofactor-dependent 

metabolism can be used for design of successful treatment strategies for apicomplexan 

infections. Yet many pathways and transport capabilities remain far less well studied and 

understood comparing to folate-dependent metabolism and potentially may hold promise for 

the discovery of further antiparasitic drug targets. 

4.2 Role and peculiarities of flavin-dependent metabolism 

Riboflavin (from the Latin flatus - yellow) is a polycyclic molecule, an essential part of two 

important cofactors – flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD). 

Riboflavin and the flavin-cofactors contain an isoaloxasine moiety, a three-member, 

nitrogen-containing ring system, which is responsible for the redox activity (Figure 15). 
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Isoaloxasine can be a donor and an acceptor of one or two hydrogens and electrons, and thus, 

a vast majority (c.a. 90%) of flavoenzymes belongs to the oxidoreductases, with only a small 

part to the other classes of enzymes. Interestingly, presence of this moiety in riboflavin does 

not make it a redox-active cofactor. On the contrary, riboflavin is considered as an inert, and 

often a storage, form of flavins. FAD-dependent enzymes are generally more abundant than 

FMN-dependent ones, 75% and 25% respectively [121]. Nevertheless, it is thought that the 

AMP moiety, which differs between these two cofactors, does not play a direct role in 

catalysis, but only in stabilization of the protein-cofactor complex [122]. Despite the covalent 

binding to flavins being observed only in about 10% of the flavin-dependent enzymes, in all 

cases FMN and FAD are firmly attached to the proteins [121,123]. Consequently, they 

belong to prosthetic groups and not coenzymes as for example NAD and NADP. 

 
Figure 17. Structure of FAD, FMN and riboflavin with an oxidised and reduced form of the 

isoaloxasine moiety (adapted from [121]) 

 

The percentage of genes related to flavin-dependent metabolism varies between species and 

ranges from less than 0.1% to over 3% (Figure 16B) of all enzymes being dependent on 

either FMN or FAD [124]. T. gondii has a similar amount of flavoenzymes as Homo sapiens, 

however, in relative proportion to the overall number of genes, this constitutes nearly a 3-fold 

higher relative abundance of them in the parasite (Figure 16A). Both T. gondii and P. 
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falciparum seem to moderately rely on flavin-dependent enzymes, while some species 

reduced their repertoire of flavoenzymes to the most basic set, consisting of a dozen proteins 

(e.g. Pyrococcus abyssi, Thermotoga maritima). 

   
Figure 18. Distribution of the apparent number of flavoenzymes in different species (adapted 

from [121]) 
(A) number of all flavoenzymes annotated in genomes of different species;  
(B) percent of flavoprotein-coding genes in the total number of genes in the organisms 

Flavin-dependent metabolism is clearly an important part of the overall metabolic network in 

Apicomplexa and is present across at least three organellar compartments (Table 3). 

Therefore, interference with the metabolism of flavin cofactors should be expected to have a 

strong and multi-target effect on the parasites. 

Among the flavoenzymes listed at the Table 3 of a special interest is ferredoxin reductase 

(FNR), an enzyme implicated in apicoplast-localized MEP/DOXP pathway of isoprenoid 

biosynthesis. The action of this enzyme is dependent two redox cofactors: FAD and NADP 

[125]. In photosynthetically active plastids, ferredoxin and FNR serve for electron transport 

from photosystem I to NADP, but reverse transfer of the reducing power is also possible and 

plays a key role in non-photosynthetic organelles such as apicoplast [126]. Unexpectedly, 

FNR and ferredoxin are also present in Cryptosporidium species, which lost their apicoplast, 

as well as the enzymes of the MEP/DOXP pathway. This may indicate that at least in these 

species, ferredoxin and FNR may have another, yet-to-discover role, resulting in preservation 

of them, even in the absence of an apicoplast. 
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Names of the 
enzymes 

Metabolic 
subsystem 

Toxoplasma 
gondii 

Plasmodium 
falciparum 

Eimeria tenella Babesia bovis Theileria 
annulata 

Cryptosporidiu
m muris 

Cytosol 

glutathione 
reductase 

antioxidative 
defense 

TGME49_219130 
TGME49_246920 

PF3D7_1419800 
(two isoforms) 

ETH_00003395 absent? absent? absent? 

thioredoxin 
reductase  

synthesis of 
deoxyribo-
nucleotides 

TGME49_309730 PF3D7_0923800
(two isoforms) 

ETH_00014915 
ETH_00021540 

BBOV_I002190 TA04645 CMU_002600 

glycerol-3-
phosphate 

dehydrogenase 

shuttling of 
reducing power 

to ETC 

TGME49_263730 PF3D7_0306400 ETH_00022360 BBOV_III000930 TA17925 absent 

Mitochondrion 

dihydroorotate 
dehydrogenase 

(FMN-dependent) 

synthesis of 
pyrimidine 
nucleobases 

TGME49_210790 PF3D7_0603300 ETH_00004975 BBOV_II007190 TA11695 absent 

E3 subunit of 
BCKDH and KDH  

TCA cycle TGME49_206470 PF3D7_1232200 ETH_00028950 BBOV_IV007190 TA03445 CMU_023430 

malate-quinone 
oxidoreductase  

TCA cycle TGME49_288500 PF3D7_0616800 ETH_00035175 BBOV_III000580 TA18100 CMU_024300 

succinate 
dehydrogenase  

TCA cycle TGME49_215590 PF3D7_1034400 ETH_00013335 BBOV_IV007210 TA03455 CMU_043190 

protoporphyrinogen 
oxidase 

heme 
biosynthesis 

TGME49_272490 PF3D7_1028100 absent absent absent absent 

acyl-CoA 
dehydrogenase 

[127] 

β-oxidation of 
fatty acids 

TGME49_315480 
TGME49_247500 

absent ETH_00032045 
ETH_00015865 absent absent absent 

glutathione 
reductase 

antioxidative 
defense 

TGME49_219130 
TGME49_246920 

PF3D7_1419800 
(two isoforms) 

ETH_00014915 
ETH_00021540 absent? absent? absent? 

Apicoplast 

E3 subunit of PDH  FAS II TGME49_305980 PF3D7_0815900 ETH_00041205 absent absent absent 

NADP-dependent 
ferredoxin 

reductase [125] 

biosynthesis of 
isoprenoids 

(MEP/DOXP) 
TGME49_298990 PF3D7_0623200 ETH_00024565 BBOV_IV011290/

BBOV_I000680 
TA09580
TA15585 CMU_026730 

Table 3. List of the flavoenzymes in Apicomplexa related to central metabolic pathways  

This comparasitve table is based on the functional annotations of the respective apicomplexan genomes in EuPathDB database [50] 

Plants, yeast and most prokaryotes can produce riboflavin de novo, while many animals – 

including humans – lack this ability and thus they rely on acquisition of riboflavin from 

nutrition. Similarly to animals, apicomplexan parasites are also riboflavin auxotrophs and are 

thought to salvage this vitamin from their host cells. Notwithstanding, T. gondii possesses the 

pathway for de novo synthesis of molybdopterin, a coenzyme structurally reminiscent of 

riboflavin and similarly implicated in oxidation/reduction processes (e.g. the enzyme sulfite 

reductase, TGME49_295720, is molybdopterin-dependent). 

Production of the flavin cofactors from an exogenously supplied riboflavin requires several 

enzymatic steps. At the first step, riboflavin is phosphorylated by riboflavin kinase (RK) and 

becomes a redox-active cofactor – flavin mononucleotide (FMN). Subsequently, FMN 

adenylyltransferase (FMNAT) attaches an AMP moiety to FMN, forming flavin-adenine 
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dinucleotide (FAD), the second and the most common flavin-cofactor (Figure 17). Although 

both of the reactions use ATP, in the case of RK only phosphate is attached and ADP moiety 

is released as a product of the reaction, while FMNAT consumes AMP moiety to produce 

FAD, releasing pyrophosphate as a second product. 

 
Figure 19. Transformation of riboflavin into active cofactors FMN and FAD through two 

enzymatic steps (adapted from [128]).  
Unlike the reaction catalyzed by FMNAT, riboflavin kinase reaction is generally considered as irreversible [129]. It has been proposed that 

due to the concentration of PPi in intracellular conditions, FMNAT can also proceed only in its forward direction, as shown in the figure. 

Hence, for both reactions enzymes, that catalyze essentially the reverse reactions exist: namely FMN hydrolase (acid phosphatase) and FAD 

diphosphatase (FADase, hydrolyses FAD to FMN and AMP); shown on the Figure 18. Abbreviations: RFK – riboflavin kinase, FMNAT – 

FMN adenylyltransferase. 

In eubacteria, RK and FMNAT enzymatic steps are commonly carried out by a single 

bifunctional enzyme, which has been proposed as a novel antimicrobial drug target [130]. 

This enzyme is often referred to as FAD synthase (or synthetase). However, due to a rather 

common use of this name as a synonym of FMNAT, I will not use it here to avoid any 

confusion. Similar bifunctional enzymes are also present in plants, but Archeae, animals and 

fungi possess separate enzymes for producing FMN and FAD. Presence of secluded 

organellar compartments in eukaryotes creates the need for either targeting of these nuclear-

encoded enzymes to multiple compartments or inter-compartment transport of the flavin-

cofactors across intracellular membranes (Figure 18). Although FMN and FAD are important 

cofactors of mitochondrial oxidation/reduction reactions, localization of the enzymes that 
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produce them remains not fully clarified, even in some experimentally amenable model 

species such as S. cerevisiae [123]. In human cells, the studies on the FMNAT enzyme 

revealed multiple isoforms of the enzyme transcribed from the same gene, which are 

responsible for this enzymatic activity in the cytosol and mitochondria [131,132]. Dual 

localization of this activity was also demonstrated in rat liver cells [133,134], S. cerevisiae 

[135,136] and Nicotiana tabacum [137]. 

 

 

Figure 20. Intracellular localization of the flavin-cofactor producing enzymes in different 

species (adapted from [138]). 
Abbreviations: RF – riboflavin, RFK – riboflavin kinase, FADS – FAD synthase (synthetase), FHy – FMN hydrolase, FADpp – FAD 

pyrophosphatase, RFK – riboflavin kinase, FMNAT – FMN adenylyltransferase. 

In Apicomplexa, synthesis of FMN and FAD has not been studied in detail, despite their 

important role for a number of key metabolic pathways in the parasites. Furthermore, no 

transporter responsible for riboflavin uptake has been annotated in the genomes of 

Apicomplexa. Nevertheless, the apparent absence of the genes for its de novo synthesis 

suggests that a yet-to-discover uptake mechanism(s) for riboflavin is present. As for the 

intracellular transport of flavin-cofactors, it also remains elusive which protein(s) are 

responsible for this function. Our BLAST-search for the proteins similar to the yeast putative 

mitochondrial carrier of FAD (FLX1) revealed a significant match in T. gondii genome 

currently annotated as “mitochondrial carrier superfamily protein”. Apart from the matching 

region, the protein encoded by the gene TGME49_228680 has large extensions both on the 

N-terminal and C-terminal part as compared to the yeast counterpart (Figure 19). Indeed, as 

any sequence-based prediction, this match only represents a testable hypothesis that needs an 

experimental validation. 

Apicomplex
a A 

Apicomplexa 

  
Mitochondrion Apicoplast 

? ? ? 
cytosol cytosol 
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Figure 21. Alignment of the putative yeast mitochondrial carrier of FAD (FLX1) and T. 

gondii candidate TGME49_228680 annotated as “mitochondrial carrier superfamily protein” 

 

In this study, I collected, produced and analyzed in silico and in vitro results to contribute to a 

clearer understanding of FMN and FAD-dependent metabolism in apicomplexan parasites 

using T. gondii as an experimentally amenable model species. 

4.3 Subcellular localization and essentiality of FMN and FAD production 

in T. gondii 

As highlighted by reconstruction and analysis of ToxoNet1, flavin-cofactors are necessary for 

metabolic processes in multiple sub-cellular compartments: at least in the cytosol, 

mitochondrion and apicoplast. Sequence-based predictions from Mitoprot [139] and TargetP 

[140] suggested presence of signal peptides in the genes encoding riboflavin kinase 

(TGME49_216740) and FMNAT (TGME49_214280), which was likely present there to 

target these enzymes to an organellar compartment. MitoProt [139] and ApicoAP [141] 

algorithms predicted that those bipartite signal peptides are leading the enzymes to the 

apicoplast, while TargetP predictions were in favor of the mitochondrial localization for both 

enzymes. Comparison of the RK and FMNAT sequences with the human orthologous 

enzymes revealed extra-large N-terminal extensions in both proteins, which were moderately 

conserved when comparing to a very closely related parasite Neospora caninum (Figures 20 

and 21). Alignments of protein sequences here and thereafter were obtained using a web-

interface of the Multalin algorithm [142]. 
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Figure 22. Alignment of the sequences of TgRK with the orthologous genes of closely related 

pathogen Neospora caninum and human RK. 
Sequences belonging to T. gondii, N. caninum and H. sapiens are labeled as T, N and H respectively. BLASTp-algorithm detected no 

putative conserved domains at the stretch of the amino acids preceding the sequence matching to the human enzyme; apparently, the 

sequence of this extra-large N-terminal extension is highly unique to Toxoplasma, Neospora and Hammondia spp. 

 

In the ToxoNet1, we allocated both of the enzymes to the mitochondrion because of the 

apparent presence of N-terminal extensions, TargetP predictions, and the fact that 

mitochondria contain bulk of the flavin-dependent enzymes. Probing the model with 

metabolic tasks indicated its incapability to produce FAD in the mitochondrial compartment 

despite the presence of the whole set of reactions leading from uptake of riboflavin to FAD. 

In contrast, the task of production of mitochondrial FMN was passed. This was the first 

indication of an apparent gap in our current knowledge on how flavin-cofactors are actually 

produced in Apicomplexa and how the need for them in multiple compartments is satisfied. 

Detailed investigation of this issue indicated that net production of FAD in mitochondrion 

required a net transport of AMP, ADP or ATP to this compartment. Consistently with the fact 
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that such a transporter had not been reported in Apicomplexa, the corresponding transport 

reaction was absent in the ToxoNet1. A mitochondrial ATP/ADP exchanger present in the 

parasites (TGME49_300360) cannot serve this purpose, as it does not result in a net transport 

of adenylate moieties across the membrane. Therefore, it is more likely that FMNAT 

produces FAD in cytosol, where the need for AMP moieties can be met by the purine salvage 

pathway. FAD can then be transported to the mitochondrion using FLX1-like carrier of 

flavins or a similar transporter. This represents a model-derived hypothesis that could not be 

deduced from the structure of the metabolic network alone and only formulated upon 

reconstruction and analysis of the compartmentalized metabolic model. 

 

Figure 23. Alignment of the sequences of TgFMNAT with the orthologous genes of closely 

related pathogen Neospora caninum and human FMNAT.  
Sequences belonging to T. gondii, N. caninum and H. sapiens are labeled as T, N and H respectively. 

4.3.1 Localization and essentiality of TgRK 

To assess subcellular localization of TgRK and TgFMNAT enzymes, we experimentally 

sought to modify corresponding genomic loci so that C-terminal parts of the proteins 

contained Ty-tag sequence. These tags, specifically recognized by anti-Ty antibodies, provide 

means to detect the proteins of interest by Western blotting (WB) and indirect 

immunofluorescence assay (IFA), as discussed in the following sections. Further, we 

attempted to knockdown and knockout FMN- and FAD-producing enzymes to validate 

predictions of ToxoNet1 on their essentiality. 
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We first used the two-step strategy for C-terminal tagging and subsequent knockdown of 

TgRK (essentially, as described in the previous chapter for ACS and ACL double knockout). 

This strategy appears to be especially suitable for studying the genes that might be essential. 

At the first step, the transfection plasmid is integrated in the gene of interest (GOI) such that 

the gene remains intact and can be expressed as in the wild-type strains. This step confirms 

that the GOI can be efficiently targeted and changed in the 3’-end; it also gives a possibility 

to attach tag-sequence at the extreme C-terminus of the protein for elucidating its subcellular 

localization (IFA) and expression level (WB). At the second step, part of the construct can be 

selectively excised leading to degradation of mRNA transcribed from the GOI and 

consequently knockdown of its expression. 

We amplified a 3’-fragment of the gene encoding RK (c.a. 1100 nt) by PCR using primers 

4869 and 4870 (see Appendix 4). This fragment subsequently was cut by endonucleases (SbfI 

and KpnI) and ligated with the pG152 plasmid containing 3 Ty-tag sequences, loxP-sequence, 

3’-UTR of sag1, HXGPRT selection cassette, a second loxP-sequence, and U1-degradation 

sequence (Figure 22A). This region of homology to the 3’-end of the TgRK promoted 

integration of the plasmid in the targeted locus. The plasmid was linearized using NsiI 

enzyme, resulting in a single homology arm of c.a. 300 nt. Linearized plasmid was 

transfected into Ku80ko HXGPRTko tachyzoites of T. gondii by electroporation, essentially 

as described before [143]. After 24 hours of cultivation in a monolayer of HFF cells using 

DMEM medium with glucose and 5% FCS, the medium was replaced by fresh medium with 

mycophenolic acid (MPA) and xanthine added. Addition of the MPA results in an efficient 

inhibition of IMP-dehydrogenase activity in the parasites, which can be rescued by HXGPRT 

activity present as a selection marker on the plasmid. Consequently, only the parasites, which 

successfully integrated the plasmid in cis could survive prolonged (c.a. 10 days) cultivation 

on this selection medium. Following the selection period and full lysis of the host cells, we 

infected a 96-well plate with serial dilutions of the parasite suspension. 10 days later from 

this plate we selected wells with a single plaque formed by one parasite cell to obtain several 

pure clonal populations. Using PCR analysis (with the primer pairs 4950-p30a, 4851-M13F, 

4950-4951, Figure 22B) with the genomic DNA extracted from these clonal populations we 

identified the clones which had successfully integrated the plasmid in the correct locus, as 

confirmed by PCR products of the expected sizes. 

Further, we did an IFA to identify sub-cellular localization of the RK enzyme. For this we 

grew the parasites on a monolayer of HFF cells attached to thin glass slides. 24 hours post 
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infection, we fixed and permeabilized the cells with paraformaldehyde and glutaraldehyde 

treatment and applied corresponding primary antibodies (α-Ty for detection of RK, α-HSP70 

as a mitochondrial marker and α-GAP45 to visualize parasite pellicle). Secondary antibodies 

against α-Ty (anti-mouse), α-GAP45 and α-HSP70 (both anti-rabbit) were bound to 

fluorescent dyes and allowed optical visualization of the corresponding proteins. IFA on the 

parasites with Ty-tagged TgRK repeatedly failed to detect any significant fluorescence above 

the background level. However, the hypothesis that the protein was in very low abundance 

was not concurred by immunoblot, which instead revealed at least two major bands (Figure 

22C). One of the bands had an expected size of about 130 kDa, although another one had a 

molecular weight of ca. 55 kDa. This could be considered as an evidence of potentially two 

isoforms of TgRK one with and another without an extra-large N-terminal extension. 

 

Figure 24. Two-step strategy used for C-terminal tagging-knockdown of the TgRK 
(A) Wild-type and modified loci of TgRK, integrated (RK-G6) and excised construct; (B) PCR confirming correct integration of the 

construct in RK-G6 clone; (C) Immunoblot of total lysates from Ku80ko parasites (WT, control) and the clone with tagging/knockdown 

construct integrated; Western blot was performed using anti-Ty antibodies with anti-TgProfilin (Prf) as a loading control; (D) PCR on the 

gDNA extracted from the parasites prior to the transfection with Cre-recombinase encoding plasmid (RK-G6, control) and at each passage 

after the transfection; two independently transfected populations were controlled (with the primers 4950-M13F). 

 

Despite the inability to detect TgRK by IFA, we could still perform the second step of the 

strategy – excise a part of the construct and study the effect of the gene knockdown. For this, 
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we transiently transfected the parasites with a plasmid expressing Cre-recombinase enzyme, 

which led to recombination and excision of the part of the construct that was between two 

loxP-sites. The transfected pool of the parasites was cultivated on the DMEM medium with 

glucose and 5% FCS until full lysis of the monolayer of host cells. Extracellular parasites 

were resuspended and a 96-well plate was infected with the serial dilutions of the suspension. 

We also extracted genomic DNA for PCR analysis and confirmed that the pool consisted of 

parasites with the excised loci and, undetectable levels of those with non-excised loci. Further, 

we performed the same extractions at each passage of the pool and observed slowly 

weakening signal of the excised locus (Figure 22D). The same PCR analysis performed on 

the individual clonal populations isolated from the pool did not detect any populations with 

the excised loci. This strongly suggests that the excision event and the knockdown of the 

TgRK expression was deleterious for the parasites and only the parasites with non-excised 

loci survived the prolonged cloning process. To further confirm that the knockdown of the 

TgRK is detrimental we used the Cre-recombinase expressing plasmid, which was also 

encoding green fluorescent protein (GFP). Presence of this fluorescent marker allowed us to 

avoid the time-consuming step of cloning by using cell-sorting (FACS, see Appendix 3) and 

select for analyses only the viable parasites that expressed the Cre-GFP plasmid. Consistently 

with our previous results, this approach also resulted in detection (by PCR with the 4869-

M13F and 4950-M13F) of only clonal populations with non-excised TgRK locus. Although 

this strategy likely results in a knockdown rather than a knockout of the gene expression, our 

results are consistent with essentiality of TgRK in T. gondii tachyzoites. If the essentiality is 

confirmed by a direct or an inducible knockout this enzyme can be considered as a candidate 

target for development of new anti-toxoplasmosis treatment. 

In order in investigate further the possibility of multiple TgRK isoforms being targeted to 

several sub-cellular compartments, we used a fractionation assay (Appendix 3). We prepared 

and analyzed by immunoblot total cell lysates of the parasites with C-terminally-tagged RK, 

as well as their cytosolic and organellar fractions separately (Figure 23). No signal could be 

detected by anti-Ty antibodies in the organellar fraction in two independent trials performed 

with different concentrations of the detergent. However, a strong indication of cytosolic 

localization is apparent. Both the upper band of the size corresponding to TgRK and 

previously observed (Figure 22C) lower band were detected only in the total lysates and 

cytosolic fractions. 
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Figure 25. Fractionation assay detects no indications of organellar localization of TgRK. 
Extracellular tachyzoites were treated with digitonin to permeabilize their membranes and obtain soluble cytosolic fraction of proteins (by a 
short-term exposure to the detergent) separately from the organellar fraction (protected by additional membranes) isolated by centrifugation. 
Prolonged treatment with the detergent resulted in permeabilization of all the membranes and yielded a total extract. Anti-Ty antibodies were 
used to detect tagged RK enzyme; anti-HSP70 and anti-Cpn60 – as markers of successful separation of the organellar fraction; anti-profilin 
(Prof) – as loading control for the total and cytosolic fractions (see Appendix 3). 

These results all but confirm cytosolic localization of TgRK, however also raise further 

questions: (1) why there is an extra-large N-terminal extension in a cytosolic protein? (2) 

why there is more than one band reproducibly detected by anti-Ty antibodies? Additional 

studies are necessary to address these questions and ultimately solve the puzzle of N-

terminally extended cytosolic enzymes in Apicomplexa. 

4.3.2 Localization and essentiality of TgFMNAT 

The two-step knockdown strategy described above for TgRK repeatedly failed when applied 

to TgFMNAT. Due to an unknown reason we could achieve integration the pG152-based 

construct at the 3’-end of the ORF (3’-fragment of TgFMNAT was obtained by PCR in the 

same way as for TgRK, but using the primers 4871-4872). Repeatedly, after the selection 

period, all the isolated clones had PCR products (obtained using primers 4952-p30a, 4953-

M13F, 4952-4953) inconsistent with a correct integration of the plasmid. To overcome this 

issue, and in view of the failure to detect TgRK by IFA, we employed two alternative and 

separate strategies for knockout and localization of the enzyme encoded by TgFMNAT. 

To elucidate sub-cellular localization of the enzyme, we produced a mutant strain with an 

additional copy of the gene encoding a C-terminally tagged version of the protein. We first 

used RT-PCR to amplify cDNA encoding TgFMNAT (with the primers 4993-4994). We 

obtained a single PCR product of an expected molecular weight, and digested it with EcoRI 

and NsiI enzymes. We then ligated this cDNA with the knockin plasmid containing the 
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pTub8-promotor immediately upstream of the TgFMNAT cDNA sequence and 3 Ty-tags, as 

well as a downstream HXGPRT selection cassette. This plasmid was amplified in competent 

bacteria, isolated, and checked by sequencing for absence of mistakes in the cDNA region. 

Subsequently, we transfected T. gondii tachyzoites with this plasmid by electroporation 

(Appendix 3).  

IFA of the transiently transfected pool of the parasites showed significant level of cytosolic 

second-copy tagged FMNAT (Figure 24), which did not co-localize with the fluorescence 

from the mitochondrial marker. These results indicate cytosolic presence of the FMNAT, yet 

does not allow us to draw conclusion about the organellar localization of the enzyme. 
 

 
Figure 26. Cytosolic localization of the transiently expressed second copy of TgFMNAT 

IFAs were made using anti-Ty, anti-GAP45 (pellicle), anti-HSP70 (mitochondrion) antibodies and DAPI (nucleus). 

To rule out possible artefacts in the localization of the enzyme second copy due to high 

expression levels, we isolated from the pool 12 clonal populations of the parasites using the 

HXGPRT selection process. For this, we cultivated transfected pool of the parasites on 

HXGPRT selection medium starting from 24 hours after transfection. A selection period 

lasting c.a. 10 days ensured that the parasites resistant to MPA was not due to HXGPRT 

expressed in trans but in cis (integrated in the nuclear genome). We then isolated clonal 

populations of the parasites on a 96 well plate by cultivation of the limiting dilutions of the 

parasite suspension obtained after the selection process. 

Unexpectedly, IFA of the clonal populations showed very low (and occasionally moderate) 

abundance of the tagged protein in most of the parasites. Expression levels were also variable 
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between the parasites within the clonal populations. This may indicate that prolonged 

overexpression of TgFMNAT causes a deleterious effect for the parasites and hence we can 

only observe viable cells, which inhibited the over-expression of the enzyme. Notably, 

overexpression of the gene encoding RK, the preceding enzyme, was observed to suppress 

the growth of S. cerevisiae [144]. However, we cannot rule out the possibility that this 

phenomenon could be related to the one we observed for the overexpression of TgFMNAT. 

Based on the results of the IFA, we cannot draw conclusions about the absence of the 

TgFMNAT in the non-cytosolic compartments. Western blot results confirmed very low 

abundance of the enzyme, even in the case of in trans expression driven by pTub8 promotor. 

Otherwise, a fractionation assay could be instrumental in resolving the possibility of 

mitochondrial and apicoplast localization of the enzyme in addition to the cytosol. 

We also assessed the possibility of TgFMNAT translation starting at a site different to the one 

annotated in ToxoDB [144]. An extremely large N-terminal extension of TgFMNAT could be 

a result of mis-annotation of the starting cite in the ORF. Importantly, correct localization of 

the second copy of TgFMNAT to the relevant subcellular compartment(s) was heavily relying 

on the fact that the transcription start site had been assigned correctly. We performed PCR 

analysis of the N-terminal part of the TgFMNAT using the forward primer upstream of all the 

stop codons. As reverse primers, we used one in the middle of the ORF and at the end of it 

(primers 5104-4994 and 5104-4995). We sequenced obtained PCR products with the forward 

primer 5104 used for the PCR. The analysis of sequencing results suggested that the start 

codon annotated as the start of translation in ToxoDB was likely correct. However, there was 

also a possibility that the subsequent start codon could be an alternative transcription start. 

Interestingly, sequence-based localization predictions by TargetP are very different for the 

two proteins produced from these two transcription start sites. The longer polypeptide (680 

amino acids, as it is annotated in ToxoDB) is predicted to have mitochondrial-targeting 

peptide (score 0.559 using plant networks and 0.843 with the non-plant ones), while the 

putative shorter one (648 amino acids) is predicted to be targeted to the plastid (score 0.831, 

plant networks). Presence of the N-terminal extensions in mRNA transcribed from TgRK and 

TgFMNAT was independently confirmed by RNA-sequencing results obtained by Sunil 

Kumar Dogga (personal communication, University of Geneva). Thus, this unusual extra-

large extension is unlikely a rudiment of incorrect annotation of the ORF and possibly plays a 

specific role, which remains to be discovered. A similar kind of an extension had been 

previously reported in thiamine pyrophosphokinase of P. falciparum and, as in our case, this 
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enzyme appeared to be cytosolic [145]. 

To assess essentiality of TgFMNAT we used CRISPR/Cas9-mediated genome editing 

technique [146] (conceptually shown on the Figure 25). The strategy used in this study, albeit 

similar to the one we used for introducing a frame-shift mutation in a TgFASI-coding gene 

(see the previous chapter), has an important distinction. In this case, we exploited 

homologous recombination to introduce DHFR-selection cassette in the place where a 

double-strand DNA break was made by Cas9. In order to promote this site-specific insertion, 

we introduced 20 base-long homology regions on each side of the insert (Appendix 4). The 

DHFR-insert had a promotor in the opposite direction to the TgFMNAT ORF, in order to 

disrupt transcription of the gene once this selection cassette was integrated. 

  

Figure 27. Illustration of the concept of CRISPR/Cas9 methodology (adapted from [147]) 

 

Wild type RH parasites were transfected with 8 µg of the CRISPR/Cas9 vector containing 

gRNA sequence specific to TgFMNAT (4997, Table 7, Appendix 4) together with 30 µg of 

the DHFR selection cassette with two 28 nt homology arms. We used GFP-fluorescence of 

the CRISPR/Cas9 plasmid to apply cell sorting after the transfection and so select only those 

in which the plasmid was expressed. 48 hours after transfection, GFP positive parasites were 

sorted by flow cytometry and cloned into 96-well plates using a Moflo Astrios (Beckman 

Coulter) FACS-machine. After cultivation of such parasites on the DMEM medium with 

pyrimethamine (0.25 uM), we isolated 6 clonal populations of the parasites which survived 

the selection process. To confirm that integration of the cassette occurred in the TgFMNAT 

coding sequence, we performed PCR analyses with the primers specific to this region (2087-



 

 104 

4996 and 2018-4872). In all the analyzed clones, PCR repeatedly failed to amplify a product 

that would confirm integration of the selection cassette in the TgFMNAT ORF. This suggests 

that the disruption of the TgFMNAT sequence was highly deleterious or lethal for the 

parasites and only those that repaired double strand break without integration of the selection 

cassette remained viable. 

Based on the presented evidence, we speculate that T. gondii is sensitive to the expression 

level of the TgFMNAT and knockout of the gene encoding this enzyme is apparently lethal. T. 

gondii is one of the most experimentally amenable organisms among the Apicomplexa, yet 

even in this parasite studying the genes and enzymes responsible for the production of FMN 

and FAD proved to be very challenging. In the presented studies we admittedly did not 

exhaust all the available approaches and further efforts are necessary to substantiate and 

expand the body of evidence we obtained. 

4.4 RK and FMNAT – putative targets against apicomplexan infections 

Many animal species, such a mammals, solely rely on uptake of riboflavin from the diet, 

while other organisms (e.g. plants, yeast) are capable of de novo production from GTP and 

ribulose 5-phosphate. However, in the both cases enzymatic action of RK and FMNAT 

remains indispensable for production on the flavin-cofactors FMN and FAD. Accordingly, S. 

cerevisiae (riboflavin prototroph) becomes inviable upon knockout of either of these enzymes 

[148]. RNAi-mediated knockdown of FMNAT in C. elegans (riboflavin auxotroph) causes 

severe phenotypic abnormalities instigated by reduced levels of FMN, FAD, ATP, drastically 

perturbed proteome, and increased oxidative stress [149]. 

Apicomplexa, similar to their vertebrate hosts, are riboflavin auxotrophs, and as such rely on 

the salvage of this vitamin form the host cells. Thus, selective targeting of the flavin-

dependent metabolism in the parasites requires precise knowledge about the dissimilarities in 

this aspect with the host cells. So far, there are two mechanisms known for antimicrobial 

action of riboflavin analogs. Firstly, a direct interference with flavoenzymes when they bind a 

riboflavin analog that is not catalytically active and thus lose enzymatic activity. The 

permanent nature of binding flavin-cofactors favors of such a mode of inhibition. However, 

the inhibitor should be designed to selectively bind the flavoenzymes of the parasites and not 

the human enzymes. Another mechanism of action is interference with FMN-dependent 
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riboswitches, which regulate metabolism of flavin nucleotides in some bacteria and fungi 

[150]. These riboswitches are sensitive to the concentration of FMN in cells and suppress de 

novo production of the riboflavin when FMN concentration is high. Riboflavin analogs, such 

as the naturally occurring antibiotic roseoflavin, can be recognized by riboswitches and lead 

to suppressed riboflavin production in addition to the first mode of action, described above. 

While riboswitches are not known to be present in Apicomplexa, successful growth 

suppression through interference with the flavin-dependent metabolism had been reported in 

several parasites of the phylum as discussed below. 

Riboflavin deficiency is long known to have a protective effect against malaria in humans 

[151]. It has also been shown that the red blood cells infected with P. falciparum have a 

significant increase in the uptake of riboflavin from the medium, the magnitude of which was 

proportional to parasitemia [152]. This is consistent with the hypothesis of riboflavin 

auxotrophy of malaria parasites and Apicomplexa in general.  

The antimalarial action of riboflavin analogs was first proposed in 1946 [153]. Several 

decades later, suppression of the malaria caused by Plasmodium vinkey was reported in vivo 

upon administration of synthetic 10-(4’-chlorophenyl)-3-substituted flavins without an 

apparent toxicity for the animals [154,155]. As for the other Apicomplexa, Graham et al. 

reported an anticoccidial effect of 5-deazariboflavin and several other riboflavin analogues 

[156], some of which were subsequently patented as effective inhibitors of Eimeria infection 

for poultry [157]. A profound inhibitory effect of 5-deazariboflavin and other flavin-

derivatives was also observed in vitro in blood-stage cultures of P. falciparum [158,159]. 

While these scarce studies provide clues on potential suitability of flavoenzymes as drug 

targets in Apicomplexa, our study presents the preliminary endeavor for a more global 

understanding of the extent and sub-cellular localization of flavin-dependent metabolism in 

the parasites. Furthermore, herein we report for the very first time genetic evidence of 

essentiality of FMN and FAD-producing enzymes in Apicomplexa. These results imply that it 

is unlikely that the salvage of FMN or FAD from host cell is possible and thus RK and 

FMNAT may represent promising antiparasitic drug targets. 



 

 

5. Outlook and future prospective 

This thesis describes the studies on metabolism of the apicomplexan parasites P. 

falciparum and T. gondii using a combination of systems biology and molecular biology 

approaches. At the beginning of these studies genomes of multiple strains of those parasites 

were sequenced, annotated and publically available through EuPathDB online repository 

[160]. Sequencing and annotation of the genomes, among other insightful applications, 

scratched the surface of the metabolic capabilities of the parasites. Further, based on the 

genomics data and a body of primary literature, several genome-scale metabolic models of P. 

falciparum had been reconstructed before the beginning of this project [26,27]. On the 

contrary, no such model existed at the time for metabolism of T. gondii. Thus, the aims of 

this project were to utilize the state-of-the-art approaches to improve and extend the scope of 

the existing metabolic models of P. falciparum and to reconstruct de novo a metabolic model 

of T. gondii. 

Genome-scale metabolic models have various applications focused on thorough analysis of 

possible distributions of metabolic fluxes in species of interest. As metabolism maintains a 

number of vital functions in living cells, understanding of metabolism of pathogenic species 

can serve as a foundation for development of new anti-infective medicines. Various types of 

metabolic modeling and analyses exist to represent and explore metabolic needs and 

capabilities of living cells. In this thesis I focused on a genome-scale approach as particularly 

GSMs were shown to be suitable for predicting essentiality of genes and enzymes. A major 

advantage of a genome-scale approach is a holistic manner of the analysis, encompassing a 

maximum of the metabolic capabilities experimentally observed or inferred to be present in 

the specie. As a downside, genome-scale approach requires a number of simplifications, 

scope of which slowly shrinks with the development of innovative computational and 

experimental methods. In this thesis I applied two of state-of-the-art computational methods 

to address simplifications made in P. falciparum models that concern reaction uni-

/bidirectionality and functional annotations of the genome. I also used one of these methods 

to facilitate reconstruction of ToxoNet1, the first genome-scale metabolic model of T. gondii. 

 

In view of the rather significant challenges P. falciparum poses for the global health, whole 

arsenal of experimental and computational methods must be engaged in the major endeavor 
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of malaria eradication. In the first chapter of this thesis, I review evolution of the metabolic 

models of this parasite, which is by far the best-studied malaria species. Over the decade 

since the first reconstruction and analysis of a graph-based metabolic network of P. 

falciparum in 2004, we witnessed increasingly more elaborate and sophisticated systems 

biology approaches applied to study metabolic peculiarities of this parasite. These approaches 

are aimed at bridging the area of computational metabolic modeling and the area of 

experimental research on metabolism. Such efforts have a synergistic effect and enable 

deduction of additional insights, which could not revealed by computational or experimental 

studies alone. Although, metabolic modeling efforts in Plasmodium spp. are not limited to 

large-scale models and also include small-scale mechanistic (i.e. kinetic) models of particular 

pathways [161,162], I chose to focus my attention on the large-scale approaches. From the 

side of experimental studies, my primary focus was also on those, which produced large-

scale, high-throughput datasets that are the most complimentary to the large-scale modeling. 

One important learning point is that the coverage of estimated proteome and metabolome of 

P. falciparum by the existing high-throughput studies is far from being complete and 

exhaustive as, for example, in the case of transcriptomics studies. While the analytical 

challenges remain to be resolved, more and more methods are being developed for utilization 

of transcriptomics data as a source of additional constraints for metabolic models. This relies 

on an implicit assumption that there is a correlation between expression levels of the genes 

encoding metabolic enzymes and the fluxes through corresponding metabolic reactions. 

Considering the outmost importance of this assumption for development of future metabolic 

models I am discussing it in further details below. 

Indeed, if expression of a particular enzyme-coding gene is reproducibly undetectable under 

certain conditions one can assume absence of a flux though corresponding metabolic 

reaction(s). Ideally, the fact of absence of that enzyme under given conditions should be 

independently confirmed by proteomics analysis. However, for the majority of metabolic 

enzymes non-zero level of expression of their corresponding genes can be detected across 

multiple conditions. In this case reaction fluxes cannot be simply blocked as in the case of no 

expression. This constitutes the major challenge of translating gene transcription levels (e.g. 

RPKM values from RNA-seq analysis) into relevant constraints for their corresponding 

reaction fluxes. To date, there is no universal description of this correlation and all the 

existing methods use different (discrete or continuous) approaches to describe it. Many of the 

methods rely on setting ad hoc thresholds, which define “highly expressed” and “low-
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expression” genes. An alternative approach could be a comparison of the expression levels of 

the same gene across as many different conditions as possible to deduce whether the 

expression of this gene is high or low individually, without applying generic thresholds to all 

genes. Even partial proteomics and metabolomics data can further improve the accuracy of 

the inferred constraints by indicating whether the higher/lower expression of a gene indeed 

translates into higher/lower abundance of the protein and if that causes a perturbation in the 

stead-state concentration of the molecules this enzyme acts upon. To this end, metabolic 

models can serve as a scaffold for consolidation of all the available pieces of data and further 

analysis within the appropriate context. Such integrative studies, with multiple 

complementary –omics datasets used, still remain to be undertaken for P. falciparum and 

other apicomplexan species. Necessary prerequisites for such studies, however, exist, and 

thus, one should expect such efforts as a next logical step in the area of metabolic modeling 

of Apicomplexa. 

From another perspective, incorporation of constraints based on high-throughput 

experimental datasets can be also viewed as an opportunity for reconstruction of context-

specific rather than standard genome-scale models. Such models would simulate a particular 

state of metabolism under the conditions of interest, and, consequently, can be used for a 

rigorous analysis of particular metabolic state(s) rather then general metabolic capabilities. 

 

As I pointed out above, a genome-scale approach is used with a number of simplifications 

some of which were necessary at the time the models were reconstructed and analyzed. 

Within the studies described at the second chapter I used two recently established 

computational methods to address simplifications made in the most recent at the time model 

of P. falciparum. 

Several prominent examples of the simplifications currently used for the analysis of genome-

scale metabolic models are: (1) quasi-steady state approximation that allows us to analyze 

distributions of metabolic fluxes in the absence of the detailed knowledge about the kinetic 

properties of metabolic enzymes and concentrations of metabolites; (2) subcellular 

localization of metabolic enzymes and transportability of intracellular metabolites across 

subcellular compartments in the absence of reliable high-throughput methods to define these 

properties; (3) assumptions on uni-/bidirectionality of metabolic and transport reactions pre-

assigned ad hoc. 
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The latter two may not appear to be simplifications per se as enzyme localizations, metabolite 

transportability and uni-/bidirectionality of reactions are unambiguously defined in the 

models. However, these definitions indeed constitute implicit simplifications as in majority of 

the cases they are not backed up by any conclusive evidence. 

In the presented studies I attempted to address the simplification concerning uni-

/bidirectionality of the reactions through estimation of their thermodynamic properties to 

confirm or reject possibility of bidirectionality based on the natural driving force of 

(bio)chemical reactions – change of the Gibbs free energy. Constraints based on such 

thermodynamic estimates appeared to be significantly less restrictive then the ad hoc 

assigned constraints. This largely reflects our assumption about the very wide range of 

metabolite concentrations used for the estimates. Accordingly, once I replaced these ranges 

with the experimentally measured concentrations from metabolomics dataset, additional 

reactions appeared to be unidirectional. Indeed, the number of metabolites, concentrations on 

which were measured is small when compared to the number of metabolites in the genome-

scale models of P. falciparum. Thus, while the method is present for addressing in a rigorous 

way the uncertainty in uni-/bidirectionality of the reactions, more information about the 

actual concentrations of metabolites is necessary to eliminate the need for the ad hoc 

assignments.  

Acquisition of such data requires resolution of at least three major challenges: (1) reliable 

technique for separation of the parasites from their host cells that excludes mixing of the 

parasite and host cell metabolomes; (2) metabolomics technique that enables detection and 

quantification of several hundreds of intracellular metabolites; (3) advanced extraction 

technique for metabolites, which are present in more than one subcellular compartment, to 

estimate their concentration in each of the compartments. 

 

To date only P. falciparum was in the main focus of metabolic modeling of malaria parasites, 

while this disease in humans also can be caused by four other Plasmodium spp. (P. vivax, P. 

ovale, P. malariae and monkey malaria parasite P. knowlesi). No metabolic models have 

been developed to date for these species, which highlights an implicit assumption that the 

differences in their metabolic capabilities compared to P. falciparum are minor. P. 

falciparum is also responsible for the majority of malaria-associated mortality, thus, 

particularly this species is in the main focus of experimental research efforts. This, together 
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with the possibility of in vitro cultivation of the blood stage of P. falciparum, resulted in a 

significant body of primary literature being available particularly for this parasite, leaving the 

other species significantly less studied. Nonetheless, outside sub-Saharan Africa region 

malaria is predominantly caused by species other than P. falciparum and infections with P. 

vivax have been also reported to cause acute malaria albeit less frequently [163]. The other 

significant reason why research on P. vivax should gain more attention of the malaria 

research community is the ability of this species to establish dormant forms (hypnozoites) in 

liver of the infected humans. These dormant forms cause a long-lasting chronic infection with 

recurring relapses of the disease. Currently there is only one drug is known to act on the 

parasites at hypnozoite stage (primaquine and its derivatives) and the mechanism of its action 

is not well understood. Experimental research in P. vivax is hampered by inability to culture 

the parasites in vitro in the way similar to P. falciparum. Consequently, limited information 

we can currently access comes from the analysis of the samples of humans, who contracted 

infection with this parasite. Taken all together, this creates a clear need for using systems 

biology approaches to consolidate scarce experimental information in the form of a model, 

which can be further analyzed in an independent as well as comparative (with P. falciparum) 

manner to gain new insights about the metabolism in P. vivax. Importantly, representation of 

the environment in which the pathogen replicates is crucial for modeling growth of the blood 

stage P. vivax parasites. This is due to the fact that this malaria parasite can only use 

reticulocytes (immature red blood cells) and not erythrocytes (mature ones) as a niche for 

replication [164]. One of the fundamental differences between these two cell types is 

significantly more active metabolism in reticulocytes and presence of metabolic enzymes, 

which are degraded upon their maturation into erythrocytes. Ideally, to study blood stage of 

P. vivax a combined host-pathogen metabolic model should be developed to account for 

metabolic capabilities of not only the parasite but also of its host cell. This, however, will 

require reconstruction of the first metabolic model of human reticulocytes. 

P. berghei is a rodent malaria parasite, which is commonly used as a model specie for in vivo 

studies. P. berghei infects rats and mice, and, thus significant body of experimental data is 

available for liver and mosquito stages, which are rather inaccessible in the case of human 

parasites. No metabolic model exists to date for P. berghei, while comparative genomics 

studies revealed several differences in the metabolic capabilities of rodent and human malaria 

species [119]. Consequently, there is a need for development of such model, which can be 
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either based on existing models of P. falciparum with necessary modifications or 

reconstructed de novo (e.g. using metabolic capabilities of the RAVEN Toolbox). 

 

Conversely to the development of new models, there is also a clear need for reconciliation of 

the two existing lineages of the models that have been independently reconstructed to study 

metabolism of P. falciparum. The RAVEN Toolbox can facilitate such reconciliation efforts 

by producing a template metabolic network with confidence scores for every functional 

annotation. As an independent dataset, it would facilitate the decisions whether each of the 

genes and enzymatic activities present in the existing models should be retained in the 

consensus model or rejected as such that have no sufficient evidence to support their 

presence. Consensus model should ideally contain confidence scores and literature evidence, 

based on which each of the reactions was included in the model, set as unidirectional and 

localized in a certain subcellular compartment. Presence of a high-quality consensus model 

for P. falciparum will expedite development of the models for other Plasmodium spp. as well 

as other closely related haemosporidia. 

 

It is also likely that the first libraries of single gene-knockout phenotypes will be soon created 

for T. gondii and P. berghei. Technologies that enable such studies are already available 

[146,165-167] yet remain rather tedious and expensive to be used in a high-throughput 

manner. Importantly, both of these technologies abolish (knockout) expression of the 

corresponding genes completely, unlike RNAi-based methods that only suppress 

(knockdown) expression of the genes to a certain extent. Only complete knockout of a gene 

encoding a metabolic enzyme can be directly translated to exclusion of the corresponding 

metabolic activity from the CBM. Reconciliation of CBMs with such upcoming genome-

wide gene essentiality studies is possible using the algorithms such as GrowMatch [53]. 

Based on the similar studies done in S. cerevisiae [40], it is clear that such reconciliation will 

considerably improve accuracy of the predictions made by the model. On the other hand, it 

will also provide a set of hypotheses on potential reasons for essentiality of the genes, 

knockout of which was observed to be lethal or detrimental for the parasites. Moreover, the 

models reconciled with the single gene essentiality dataset are likely to predict more 

accurately the sets of synthetically essential pairs of genes, which will facilitate further 

exploration of the limits in the metabolic capabilities of the parasites. 
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In the third chapter of this thesis, I describe development of ToxoNet1 model, which 

illustrates how reconstruction capabilities of the RAVEN Toolbox facilitate model-building 

efforts. The completeness I aimed for when reconstructing the metabolic network of T. gondii 

led to identification of a number of “gray zones” in our current knowledge about the 

metabolic capabilities of this parasite. In all these cases, I made assumptions based on 

currently available information but each of these assumptions needs further targeted research 

for its validation. Further, under the assumptions made for the human host cell environment, I 

analyzed ToxoNet1 to predict minimal nutritional requirements for replication of the parasite 

as well as the genes which are essential and the synthetically lethal. I used two 

complementary approaches to study flexibility in nutritional requirements of the parasite by 

enumeration of all: (1) alternative precursor molecules necessary for production of each 

biomass building block separately; (2) alternative compositions of “in silico minimal media” 

that allow production of all the biomass building blocks simultaneously. The results of these 

studies contribute to better understanding of the limits in metabolic capabilities of the parasite 

and to obtaining a shortlist of indispensable metabolic functions to be considered as potential 

drug targets. 

 

ToxoNet1 model is largely similar to the model by Song et al. [168] but our studies were 

focused on scrutinizing different properties of the same system using rather distinct 

approaches. In particular, our primary aim was to achieve reliable gene essentiality 

predictions. Thus, we used different assumptions on the range of accessible substrates, 

transportability of metabolites, and aimed for as complete as possible coverage of the 

metabolic capabilities. For the very same purpose we also made efforts to implement gene-

protein-reactions associations in ToxoNet1 that were not present in the pervious study. Our 

gene essentiality predictions represent a conservative minimal set of essential genes, 

reactions and substrates that should be common for all the strain types. Additional, strain- or 

stage- specific gene essentiality predictions can be made using ToxoNet1 in future upon 

integration of the corresponding experimental data as further constraints (e.g. transcriptomics, 

proteomics, metabolomics etc.). To this end, an immediate extension of this work is the 

development and analysis of context-specific metabolic models for the apicomplexan 

parasite. ToxoNet1 can serve as a scaffold for integration of additional constraints, for 
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instance, the ones inferred from stage-specific transcriptomics and metabolomics data. 

Algorithms for such integration and analyses of the context-specific models are readily 

available (e.g. EXAMO [169] uses transcriptomics data and performs condition-specific 

assessment of gene essentiality). 

Of a particular interest is reconstruction of the context-specific models that reflect 

metabolism of T. gondii on the life-stages other than tachyzoites, and, consequently, are less 

experimentally accessible. Transcriptomics and proteomics datasets are available for multiple 

life-stages of the parasite and freely accessible online in the ToxoDB database. With the 

reservations discussed above, this data can be used to infer context-specific constraints for 

ToxoNet1, which will make it representing metabolism on merozoite or bradyzoite stage. The 

latter one, however, will also require some careful re-evaluation of the objective function of 

the model, as no active proliferation is observed on bradyzoite stage. Alternative, and, 

potentially, multiple, objective(s) should be defined to describe the “maintenance of 

viability” phenotype of bradyzoites. The constraints inferred from the stage-specific 

transcriptomics data may also shed light on the identity of the carbon sources that T. gondii 

uses at this life-stage. Such knowledge about the pathways, which are active and essential for 

survival of bradyzoites, can be used for design of novel antiparasitic treatments effective 

against the dormant apicomplexan infection. 

 

The workflow used for the reconstruction of the ToxoNet1 model using the RAVEN 

Toolbox, is in principle, applicable to any apicomplexan parasite whose genome is fully 

sequenced. Even in the absence of a functional annotation, a draft metabolic network can be 

reconstructed in a matter of weeks. Indeed, further steps, such as compartmentalization, 

inclusion of transporters and model refinement still remain time-consuming and laborious. 

The time and quality of reconstruction of the models can improve considerably when an 

existing model from very closely related species can be used as a template [94]. For example, 

ToxoNet1 can be readily used as such template for expedited reconstruction of a genome-

scale CBM of Neospora caninum or other closely related coccidian species.  

 

Experimental validation of hypotheses obtained through computational modeling is a 

necessary part of gaining confirmed knowledge. Accordingly, in the third and fourth chapters 
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of this thesis, several prominent model-derived hypotheses were assessed experimentally. 

Namely, localization and synthetic essentiality of ACS and ACL enzymes together with the 

localization of apparently the only acetyl-CoA transporter fill a gap of knowledge about 

acetyl-CoA biosynthesis in T. gondii. While this study provides a missing piece of knowledge 

anout the sources of acetyl-CoA in cytosol and ER, it nevertheless leaves several important 

questions open. In particular, additional studies are necessary to rule out the primary cause of 

the lethal outcome upon depletion of the cytoplasmic pool of acetyl-CoA. Such potential 

reasons can be: (1) impossibility of fatty acid synthesis through type I pathway in cytosol; (2) 

impossibility of the elongation of fatty acids; (3) interference with the acetylation of proteins 

and, particularly, histones. It also remains to be elucidated what are the sources of the 

substrates for ACS and ACL enzymes in cytoplasm. Could acetate and citrate be taken up 

from the host cell resources and if so how much such salvage contributes to the cytosolic 

pools of these molecules in the parasite. Finally, the reasons for accumulation of the ACL 

upon knockout of ACS are also not intuitive and need further targeted research. 

 

Experimental assessment of RK and FMNAT and their corresponding genes described in the 

fourth chapter of this thesis contribute to better understanding of flavin-dependent 

metabolism in T. gondii. These enzymes were long assumed as potential drug targets in the 

different species, but until present studies had not been validated as essential in Apicomplexa. 

I demonstrated that the knockdown of RK and the knockout of FMNAT were deleterious and 

potentially lethal for T. gondii tachyzoites. This constitutes the very first genetic evidence for 

the essentiality of FMN- and FAD-producing enzymes in an apicomplexan parasite. Further, 

antiparasitic activity of natural and synthetic riboflavin analogs (e.g. roseoflavin and 

deazariboflavin) should be evaluated on a range of Apicomplexa to assess whether these 

enzymes can be selectively inhibited in the parasites without significant side effects for the 

uninfected tissues.  

Taken together, these efforts illustrate the complete cycle from a model reconstruction, 

curation and analysis to generation of a model-based hypothesis, its experimental assessment 

and acquisition of knowledge, which can be incorporated by the model as well as used for 

practical applications. 
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Studies included in this thesis summarize and extend the scope of our current knowledge of 

metabolism in the apicomplexan parasites T. gondii and P. falciparum.  Admittedly, many of 

the presented hypotheses and predictions remain to be assessed experimentally, due to the 

absence of suitable experimental resources. Validation of these model-based hypotheses, 

particularly on gene essentiality, will foster the efforts for the identification of novel and 

potent targets for the treatment of Apicomplexa-caused infections. 
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+ 

− 
N

o evidence 
  

PFI1105w
/PF3D

7_0922500 
Phosphoglycerate kinase 

2.7.2.3 
− 

− 
− 

+ 
− 

N
o evidence 

  

PFI1420w
/PF3D

7_0928900 
G

uanylate kinase 
2.7.4.8 

− 
− 

− 
+ 

− 
N

o evidence 
  

PFL2465c/PF3D
7_1251300  

dTM
P kinase 

2.7.4.9 
− 

+ 
− 

+ 
− 

N
o evidence 

  

PF13_0157/PF3D
7_1327800 |  

PF13_0143/PF3D
7_1325100 

phosphoribosyl pyrophosphate synthase 
2.7.6.1 

− 
− 

− 
+ 

+ 
N

o evidence 
  

PFI1195c/PF3D
7_0924300 

Thiam
ine diphosphokinase 

2.7.6.2 
− 

− 
− 

+ 
− 

N
o evidence 
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M
A

L13P1.86/PF3D
7_1316600  

choline-phosphate cytidylyltransferase 
2.7.7.15 

− 
− 

+ 
SG

R
 

+ 
N

o evidence 
  

PF13_0159/PF3D
7_1327600 

N
icotinate-nucleotide adenylyltransferase 

2.7.7.18 
− 

− 
− 

+ 
− 

[27]  
  

M
A

L13P1.292/PF3D
7_1359100 

FA
D

 synthetase, riboflavin kinase 
2.7.7.2, 
2.7.1.26 

− 
+ 

+ 
+ 

− 
N

o evidence 
  

PF07_0018/PF3D
7_0704700 

Pantetheine-phosphate adenylyltransferase 
2.7.7.3 

− 
− 

+ 
+ 

− 
N

o evidence 
  

PF14_0097/PF3D
7_1409900 

phosphatidate cytidylyltransferase 
2.7.7.41 

− 
− 

− 
SG

R
 

− 
N

o evidence 
  

m
ultiple genes 

R
N

A
 polym

erase 
2.7.7.6 

+ 
− 

− 
− 

− 
[231] 

  

PFA
0340w

/PF3D
7_0106900 

2-C
-m

ethyl-D
-erythritol 4-phosphate 

cytidylyltransferase 
2.7.7.60 

− 
− 

+ 
+ 

− 
N

o evidence 
  

m
ultiple genes 

D
N

A
 polym

erase 
2.7.7.7 

+ 
− 

− 
− 

− 
N

o evidence 
  

PFF1375c/PF3D
7_0628300 

Ethanolam
inephosphotransferase, diacylglycerol 
cholinephosphotransferase 

2.7.8.1, 
2.7.8.2 

− 
− 

− 
SG

R
 

− 
N

o evidence 
  

M
A

L13P1.82/PF3D
7_1315600 

C
D

P-diacylglycerol-inositol 3-
phosphatidyltransferase 

2.7.8.11 
− 

+ 
− 

SG
R

 
− 

N
o evidence 

  

PFF1215w
/PF3D

7_062510 
Sphingom

yelin synthase 
2.7.8.27 

− 
− 

− 
SG

R
 

− 
[232] 

  

PFF1210w
/PF3D

7_0625000.1  
sphingom

yelin synthase/phosphatidic acid 
phosphatase check the new

 annotation 
2.7.8.3 

− 
− 

+ 
− 

+ 
[206] 

D
rug 

PF14_0511/PF3D
7_1453800  

6-phosphogluconolactonase, glucose-6-phosphate 
dehydrogenase 

3.1.1.31, 
1.1.1.49 

− 
− 

− 
SG

R
 

− 
[233, 234] 

R
N

A
i - D

rug 

m
ultiple genes 

lysophospholipase 
3.1.1.5 

+ 
− 

− 
− 

− 
Zidovetzki R

, Sherm
an IW

, 
Prudhom

m
e J, Parasitology. 

1994 A
pr;108 ( Pt 3):249-55 

D
rug 

M
A

L8P1.151/PF3D
7_0802500 | 

PF11_0122/PF3D
7_1111600(endonucleas

e/exonuclease/phosphatase fam
ily protein) 

|  PF13_0285/PF3D
7_1354200 

Inositol-1,4,5-trisphosphate 5-phosphase 
3.1.3.56 

− 
+ 

− 
− 

− 
[235] 

D
rug 

PFL1870c/PF3D
7_1238600 

sphingom
yelinase 

3.1.4.12 
+ 

+ 
− 

SG
R

 
− 

[236, 237] 
D

rug 

m
ultiple genes 

3',5'-cyclic-nucleotide phosphodiesterase 
3.1.4.17 

− 
+ 

− 
− 

− 
[238] 

G
enetic 

PFE1050w
/PF3D

7_0520900 
S-adenosyl-L-hom

ocysteine hydrolase 
3.3.1.1 

+ 
+ 

+ 
− 

+ 
[239-241] 
 

D
rug 

PFF1190c/PF3D
7_0624700 | 

PFI0535w
/PF3D

7_0911000 
N

-acetylglucosam
inylphosphotidylinositol 

deacetylase 
3.5.1.89 

− 
− 

+ 
− 

− 
N

o evidence 
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PF14_0697/PF3D
7_1472900  

dihydroorotase 
3.5.2.3 

− 
− 

+ 
+ 

+ 
[242, 243] 
 

D
rug 

PF13_0259/PF3D
7_1349400 

dC
TP deam

inase 
3.5.4.13 

− 
− 

− 
SG

R
 

− 
N

o evidence 
  

PF10_0289/PF3D
7_1029600  

adenosine deam
inase 

3.5.4.4 
− 

+ 
− 

+ 
+ 

[244, 245]  
D

rug 

PFE1035c/PF3D
7_0520600 

bis(5'-nucleosyl)-tetraphosphatase 
3.6.1.17 

(3.6.1.41) 
− 

+ 
− 

− 
− 

N
o evidence 

  

PFF0370w
/PF3D

7_0607500 
3-octaprenyl-4-hydroxybenzoate carboxy-lyase 

4.1.1.- 
− 

− 
− 

+ 
− 

N
o evidence 

  

O
R

PH
A

N
 

3-octaprenyl-4-hydroxybenzoate carboxy-lyase 
4.1.1.- 

− 
− 

− 
+ 

− 
N

o evidence 
  

PF10_0322/PF3D
7_1033100  

ornithine decarboxylase 
4.1.1.17 

− 
+ 

− 
+ 

+ 
[246-248] 

D
rug 

PF10_0225/PF3D
7_1023200 

orotidine-5'-phosphate decarboxylase 
4.1.1.23 

− 
+ 

+ 
+ 

+ 
[249-251] 

D
rug 

M
A

L8P1.81/PF3D
7_0816100 

Phosphopantothenoylcysteine decarboxylase 
4.1.1.36 

− 
− 

− 
+ 

− 
N

o evidence 
  

PFF0360w
/PF3D

7_0607300  
U

roporphyrinogen decarboxylase 
4.1.1.37 

− 
− 

+ 
+ 

− 
N

o evidence 
  

PF10_0322/PF3D
7_1033100 

S-adenosylm
ethionine decarboxylase 

4.1.1.50 
+ 

+ 
− 

+ 
+ 

[247, 248, 252, 253] 
 

D
rug 

PF14_0425/PF3D
7_1444800 

aldolase 
4.1.2.13 

+ 
+ 

− 
G

R
 

+ 
[254] 

antisense O
D

N
 

O
R

PH
A

N
 

C
horism

ate lyase 
4.1.3.40 

− 
− 

− 
+ 

− 
N

o evidence 
  

PF11_0411/PF3D
7_1140000 

(PF11_0410/PF3D
7_1140000) 

carbonate dehydratase 
4.2.1.1 

− 
− 

+ 
+ 

+ 
[255] 
 

D
rug 

O
R

PH
A

N
 

3-dehydroquinate dehydratase 
4.2.1.10 

− 
− 

− 
+ 

− 
N

o evidence 
  

PF10_0155/PF3D
7_1015900 

Phosphopyruvate hydratase / enolase 
4.2.1.11 

− 
− 

− 
+ 

− 
[256]8. 

A
ntibody 

PF14_0381/PF3D
7_1440300 

delta-am
inolevulinate dehydratase 

4.2.1.24 
− 

+ 
+ 

+ 
+ 

[185, 257] 
D

rug 
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PF13_0128/PF3D
7_1323000 

3-hydroxyacyl-A
C

P dehydratase 
4.2.1.58 – 61 

− 
− 

+ 
+ 

− 
[183, 258] 
 

D
rug - G

enetic 

PFL0480w
/PF3D

7_1209600 
U

roporphyrinogen-III synthase 
4.2.1.75 

− 
− 

− 
+ 

− 

N
o evidence (reported by Plata 

et al as an orpahn w
e assign 

gene based on PM
ID

: 
17962188) 

  

O
R

PH
A

N
 

3-dehydroquinate synthase 
4.2.3.4 

− 
− 

− 
+ 

− 
N

o evidence 
  

PFF1105c/PF3D
7_0623000 

chorism
ate synthase 

4.2.3.5 
+ 

+ 
− 

+ 
− 

[259]  
R

N
A

i 

PFB
0295w

/PF3D
7_0206700 

adenylosuccinate lyase 
4.3.2.2 

− 
− 

− 
+ 

+ 
[260] 

D
rug 

PFF0230c/PF3D
7_0604700 | 

PF11_0145/PF3D
7_1113700 

glyoxylase 
4.4.1.5 

+ 
+ 

+ 
− 

− 
[261, 262] 

D
rug 

PFB
0420w

/PF3D
7_0209300 

2C
-m

ethyl-D
-erythritol 2,4-cyclodiphosphate 

synthase 
4.6.1.12 

− 
− 

+ 
+ 

− 
[263] 

D
rug 

M
A

L13P1.326/PF3D
7_1364900 

Ferrochelatase 
4.99.1.1 

− 
− 

− 
+ 

− 
N

o evidence  
  

PFL0960w
/PF3D

7_1219900 
R

ibulose-phosphate 3-epim
erase 

5.1.3.1 
− 

− 
− 

G
R

 
− 

N
o evidence 

  

PF14_0378 / PFC
0831w

 
triosephosphate isom

erase 
5.3.1.1 

− 
− 

− 
G

R
 

+ 
[264] 
 

antisense 
oligodeoxynuc

leotides 

PF14_0341/PF3D
7_1436000 

G
lucose-6-phosphate isom

erase 
5.3.1.9 

− 
− 

− 
SG

R
 

− 
N

o evidence 
  

PF10_0122/PF3D
7_1012500  

Phosphoglucom
utase 

5.4.2.2 
− 

− 
− 

SG
R

 
− 

N
o evidence 

  

PFE0520c/PF3D
7_0510500 

topoisom
erase I 

5.99.1.2 
− 

− 
+ 

− 
− 

[265] 
D

rug 

PFE0520c/PF3D
7_0510500 | 

PF13_0251/PF3D
7_1347100 

topoisom
erase II 

5.99.1.3 
− 

− 
+ 

− 
− 

[266-268] 
 

D
rug 

PF11_0270/PF3D
7_1126000 

threonine-tR
N

A
 ligase 

6.1.1.3 
− 

+ 
+ 

− 
− 

N
o evidence 

  

PF13_0354/PF3D
7_1367700 

alanine-tR
N

A
 ligase 

6.1.1.7 
− 

+ 
+ 

− 
− 

N
o evidence 

  

PFF1350c/PF3D
7_0627800  

acetyl-C
oA

 synthetase 
6.2.1.1 

− 
− 

− 
− 

+ 
N

o evidence 
  

m
ultiple genes 

acyl-C
oA

 synthetase 
6.2.1.3 

− 
+ 

− 
− 

+ 
N

o evidence 
  

PF13_0140/PF3D
7_1324800 

dihydrofolate synthase 
6.3.2.12 

− 
− 

− 
+ 

− 
[269] 

D
rug 

PF13_0140/PF3D
7_1324800 

folylpolyglutam
ate synthase 

6.3.2.17 
− 

− 
− 

+ 
+ 

[269, 270] 
D

rug 
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 A
bbreviations: G

R
: G

row
th R

educing, SG
R

: Slight G
row

th R
educing, "+": predicted as essential, "−": predicted as non-essential or not present in the m

odel; " | ":  delim
iter 

for genes that code isozym
es, "&

": delim
iter for genes that code subunits of m

ultienzym
e com

plex, "O
R

PH
A

N
": no gene encoding this enzym

e has been identified yet. 

 PFI0925w
/PF3D

7_0918900  
gam

m
a-glutam

ylcysteine synthetase 
6.3.2.2 

+ 
+ 

+ 
− 

+ 
[197, 271, 272] 
 

D
rug 

PF14_0100/PF3D
7_1410200 

C
TP synthase 

6.3.4.2 
− 

− 
− 

− 
+ 

N
o evidence 

  

PF13_0287/PF3D
7_1354500 

adenylosuccinate synthase 
6.3.4.4 

− 
− 

+ 
+ 

+ 
[273]  

  

PFI1310w
/PF3D

7_0926700  
N

A
D

+ synthase (glutam
ine-hydrolysing) 

6.3.5.1 
− 

− 
− 

+ 
− 

N
o evidence 

  

PF10_0123/PF3D
7_1012600  

G
M

P synthase 
6.3.5.2 

− 
− 

− 
− 

+ 
[274] 

  

PF13_0044/PF3D
7_1308200 

carbam
oyl phosphate synthetase 

6.3.5.5 
+ 

+ 
+ 

+ 
+ 

[275] 
R

ibo -zym
e 

PF10_0409/PF3D
7_1026900 | 

PF14_0664/PF3D
7_1469600 

acetyl-C
oA

 carboxylase 
6.4.1.2 

− 
− 

+ 
− 

+ 
[209]  

D
rug 

m
ultiple genes 

histone deacetylase 
none 

+ 
− 

− 
− 

− 
[276, 277] 

D
rug 



 

 

Appendix 2. Supplementary data for curation of Plasmodium models 

modification name change as a Cobra Toolbox command reversibility 
assignments 

results in reference to the previous change 
biomass 

yield 
gene 

essentiality 
reaction essentiality 

PCt model=addReaction(model, 'PCt', 'atp[c] + h2o[c] + 
pc[e] <=> adp[c] + h[c] + pc[c] + pi[c]'); rev 0.5% 

decrease No effect No effect 

PIOHex_mt model=addReaction(model,'PIOHex_mt', 'h[c] + pi[c] 
<=> h[m] + pi[m]'); 

irrev 52.2% 
increase 

+3 essential   
PF10_0155, 
PF14_0598, 
PFI1105w 

5 less essential Rxns: 
'ENO', 'GAPD', 
'PGK', 'PGM', 

'NDPK1' PIOHex_mt model=changeRxnBounds(model, 'PIOHex_mt', -1000, 
'l'); 

rev 0.01% 
increase 

+1 essential  
PF13_0121 

1 less essential Rxn: 
'AKGDH_mt' 

H2Ot_mt model=addReaction(model, 'H2Ot_mt', 'h2o[c] <=> 
h2o[m]'); rev No effect No effect No effect 

Pyr_mt model=addReaction(model,'Pyr_mt', 'pyr[c] <=> 
pyr[m]'); rev No effect No effect No effect 

PDH_mt model=addReaction(model,'PDH_mt', 'nad[m] + coa[m] 
+ pyr[m] <=> accoa[m] + co2[m] + nadh[m]'); irrev No effect No effect 

4 less essential Rxn: 
'LDH_L', 

'EX_lac_L(e)', 
'L_LACt2r', 'Htmt' 

PDH_mt model=changeRxnBounds(model, 'PDH_mt', 0, 'l'); not applicable No effect No effect No effect 

ACCOAtm model=changeRxnBounds(model,'ACCOAtm',0,'b'); not applicable No effect No effect 2 additional essential 
Rxns: 'COAtap', 

'Htmt' 
ACCOAtap model=changeRxnBounds(model,'ACCOAtap', 0, 'b'); not applicable No effect No effect 1 additional essential 

Rxn: 'PItap' 

R00261 model=addReaction(model, 'R00261', 'glu_L[c] <=> 
4abut[c] + co2[c]'); 

rev 3.27% 
increase 

No effect No effect 

R00713 model=addReaction(model, 'R00713', 'h2o[m] + nad[m] 
+ sucsal[m] <=> 2 h[m] + nadh[m] + succ[m]'); 

rev No effect No effect No effect 

R01648 model=addReaction(model, 'R01648', '4abut[m] + 
akg[m] <=> sucsal[m] + glu_L[m]'); 

rev No effect No effect No effect 

GABAt_mt model=addReaction(model, 'GABAt_mt', '4abut[c] <=> 
4abut[m]'); 

rev No effect No effect 1 less essential Rxn: 
'Htmt' 

CYOOm_mt model=addReaction(model, 'CYOOm_mt', '4 focytc[m] 
+ 6 h[m] + o2[m] -> 4 ficytc[m] + 2 h2o[m] + 2 h[c]'); irrev No effect No effect No effect 

CYOR_u6m_mt model=addReaction(model, 'CYOR_u6m_mt', '1.5 h[m] 
+ 2 ficytc[m] + q8h2[m] -> 3.5 h[c] + 2 focytc[m] + 

q8[m]'); 

irrev No effect No effect No effect 

ReactionsDeleted 
(look) 

[Dups, nDups, model] = checkDuplicateRxn(model, 
'true'); 

not applicable No effect No effect No effect 

DAGCPT model=addReaction(model,'DAGCPT', 'cdpchol[c] + 
dag[c] => cmp[c] + pc[c]'); 

irrev 0.12% 
decrease 

No effect No effect 

DAGCPT model=changeRxnBounds(model, 'DAGCPT', -1000, 
'l'); 

rev No effect No effect No effect 

PINOS model=addReaction(model,'PINOS', 'cdpdag[c] + 
inost[c] <=> cmp[c] + ptd1ino[c]'); 

irrev 0.42% 
decrease 

+2 essential 
MAL13P1_2

06, 
PF14_0100 

2 additional essential 
Rxns: 'CTPS2', 'PIt2r' 

PINOS model=changeRxnBounds(model, 'PINOS', -1000, 'l'); rev 0.77% 
increase 

+2 essential 
MAL13P1_2

06, 
PF14_0100 

2 less essential Rxns: 
'CTPS2', 'PIt2r' 

R07456 
model=addReaction(model,'R07456', 'g3p[c] + gln_L[c] 

+ ru5p_D[c] <=> glu_L[c] + pydx5p[c] + 3 h2o[c] + 
pi[c]'); 

rev No effect No effect No effect 

ETHAPT model=addReaction(model, 'ETHAPT', 'cdpea[c] + rev No effect No effect No effect 
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dag[c] <=> cmp[c] + pe[c]'); 

2_7_8_3 model=addReaction(model,'2_7_8_3', 'cdpchol[c] + 
crm[c] <=> cmp[c] + sphmyln[c]'); 

irrev No effect No effect No effect 

2_7_8_3 model=changeRxnBounds(model, '2_7_8_3', -1000, 'l'); rev No effect No effect No effect 

SMPD3l model=addReaction(model, 'SMPD3l' , 'h2o[c] + 
sphmyln[c] <=> cholp[c] + crm[c]'); 

irrev No effect No effect No effect 

SMPD3l model=changeRxnBounds(model, 'SMPD3l', -1000, 'l'); rev No effect No effect No effect 

PTHPS2 model=addReaction(model,'PTHPS2','ahdt[c] + h2o[c] -
> 6hmhpt[c] + pppi[c] + ac[c]'); 

irrev No effect No effect No effect 

PTHPS2 model=changeRxnBounds(model, 'PTHPS2', -1000, 'l'); rev No effect No effect No effect 

255 Dead-end 
reactions 

[blocked]=findBlockedReactions(model*); newmodel = 
removeRxns(model,blocked); 

all reactions 
set reversible 

No effect No effect No effect 

change bounds to -
100/100 

[A,B]=ismember(newmodel.lb,-1000); 
newmodel.lb(find(A))=-100; 

not applicable 90% 
decrease 

No effect No effect 

71 blocked 
reactions 

[blocked]=findBlockedReactions(newmodel); 
model=removeRxns(newmodel,blocked); 

not applicable No effect No effect No effect 

MET_SLV model=removeRxns(model,'MET_SLV'); not applicable No effect No effect 
+2 essential rx: 
'EX_spmd(e)', 

'SPMDt2' 

4 blocked 
reactions 

[blocked]=findBlockedReactions(model); 
model=removeRxns(model,blocked); 

not applicable No effect No effect No effect 

THZPSN_mt 
model=addReaction(model,'THZPSN_mt', 'cys_L[m] + 

dxyl5p[m] + tyr_L[m] -> 4hba[m] + 4mpetz[m] + 
ala_L[m] + co2[m]  + h2o[m]'); 

irrev No effect -1 essential: 
PFI1195c 

2 additional essential 
Rxns: 'TMDPK', 

'EX_thm(e)', 'THMt3' 

THZPSN_mt [~,b]=ismember('THZPSN_mt', model.rxns); 
model.grRules(b)={'((MAL7P1_150) or (PF07_0068)) 

and ((PFF1335c) or (PFL1920c))'}; 

not applicable No effect No effect No effect 

4MPETZ_mt 
model=addReaction(model,'4MPETZ_mt',  '4mpetz[m] 

<=> 4mpetz[c]'); [~,b]=ismember('4MPETZ_mt', 
model.rxns); model.lb(b)=-100; 

rev No effect +1 essential: 
PFI1195c 

2 less essential Rxns: 
'TMDPK', 

'EX_thm(e)', 'THMt3' 

2 blocked 
reactions 

[blocked]=findBlockedReactions(model); 
model=removeRxns(model,blocked); 

not applicable No effect No effect No effect 

metSEEDID 
vector 

[metSEEDIDs]=mapMetIDs(model,DB_AlbertyUpdate
); model.metSEEDID=metSEEDIDs; 

not applicable No effect No effect No effect 

metCompSymbol 
vector 

model.metCompSymbol=metCompSymbol; not applicable No effect No effect No effect 

CompartmentData created not applicable No effect No effect No effect 

Preparation to 
tFBA 

tmodel = 
prepModelforTFBA(newmodel,DB_AlbertyUpdate, 

newmodel.CompartmentData); 
not applicable No effect No effect No effect 

Conversion to 
tFBA 

tmodel = 
convToTFBA(tmodel,DB_AlbertyUpdate,1,true); 

not applicable No effect No effect No effect 

Removing one 
thermoconstrain 

[~,b]=ismember(={'MECDPS_ap';'Htap'}π,tmodel.rxns)
; tmodel.rxnThermo(b)=0; 

not applicable No effect No effect No effect 

Conversion to 
tFBA 

tmodel = convToTFBA(tmodel,DB_AlbertyUpdate,1); not applicable No effect No effect 1 less essential Rxn: 
'Htap' 

FBA final versus 
the initial model   

84.3% 
increase 

-4 essential 
PF10_0155, 
PF13_0121, 
PF14_0598, 
PFI1105w 

15 less essential Rxn: 
'ENO', 'GAPD', 
'LDH_L', 'PGK', 

'PGM', 'EX_fe2(e)', 
'EX_ile_L(e)', 
'EX_lac_L(e)', 

'EX_pnto_R(e)', 
'EX_so4(e)', 

'NDPK1', 
'AKGDH_mt', 

'L_LACt2r', 'Htap', 
'Htmt', but 3 

additional ones: 
'SPMDt2', 'PItap', 

'COAtap' 

TFBA solution 
(versus FBA final)   

No effect +1 essential: 
PF13_0121  

Table 4. Table of the modifications made in iTH366 model prior to the TFBA 
studies 
The table and contained information was produced by Anush Chiappino Pepe based on the initial studies done by Stepan Tymoshenko  



 

145 

Reaction ID ad 
hoc 

without biomass production with biomass production with metabolomics data  

ΔrG’min ΔrG’max 
 

ΔrG’min ΔrG’max 
 

ΔrG’min ΔrG’max 
 

ARGN  => -19.96 1.66 <=> -19.96 1.66 <=> -19.18 -3.10  => 

G5SADr <=> -22.04 -6.92  => -22.04 -6.92  => -22.04 -6.92  => 

ORNTA  => -18.34 8.08 <=> -18.34 8.08 <=> -10.63 4.86 <=> 

P5CR  => -27.29 17.33 <=> -17.82 17.25 <=> -17.82 17.25 <=> 

ASNS1  => -41.36 8.88 <=> -41.36 7.76 <=> -25.72 -7.78  => 

GLUSx  => -48.69 6.18 <=> -48.69 6.18 <=> -29.85 -2.50  => 

CBPSam  => -38.72 20.62 <=> -36.51 11.17 <=> -28.67 4.16 <=> 

GLNS  => -20.79 22.79 <=> -19.36 18.00 <=> -11.49 7.70 <=> 

GLUDxi  => -17.81 32.11 <=> -17.81 32.10 <=> -13.41 19.99 <=> 

GLUDy <=> -11.40 38.48 <=> -11.21 26.88 <=> -8.00 19.17 <=> 

GF6PTA  => -32.82 -1.93  => -32.82 -1.93  => -26.10 -6.22  => 

GLUCYS  => -24.58 20.72 <=> -24.00 15.93 <=> -19.39 7.11 <=> 

GLYCL_mt  => -40.39 34.08 <=> -40.39 33.96 <=> -37.04 26.20 <=> 

ADMDC  => -25.07 9.24 <=> -25.07 9.23 <=> -25.07 9.23 <=> 

METAT  => -32.94 14.18 <=> -32.94 -0.01  => -31.80 -0.01  => 

ORNDC  => -18.76 2.93 <=> -18.76 2.93 <=> -14.23 1.93 <=> 

SPMS  => -31.17 9.40 <=> -31.17 9.40 <=> -25.24 4.28 <=> 

1_7_1_1_mt  => -56.15 -13.26  => -56.15 -13.26  => -51.74 -14.45  => 

1_7_1_3_mt  => -62.11 -19.27  => -62.11 -19.27  => -51.84 -19.27  => 

NTRIR2x_mt  => -141.96 -41.12  => -141.96 -41.12  => -128.74 -44.68  => 

ENO <=> -8.34 5.75 <=> -8.34 5.75 <=> -8.34 5.75 <=> 

FBA <=> -12.01 6.78 <=> -11.11 6.78 <=> -11.11 6.78 <=> 

G3PD_mt  => -23.15 22.02 <=> -23.15 22.02 <=> -23.15 22.02 <=> 

GAPD <=> -18.85 28.98 <=> -18.85 27.00 <=> -17.66 22.60 <=> 

GLYK  => -20.57 9.31 <=> -20.57 4.45 <=> -15.55 0.66 <=> 

HEX1  => -23.20 11.14 <=> -23.20 -0.01  => -18.17 2.52 <=> 

LDH_L <=> -15.07 26.66 <=> -12.96 26.66 <=> -10.38 18.88 <=> 

PFK  => -22.74 10.71 <=> -22.74 5.89 <=> -17.72 2.11 <=> 

PGI <=> -9.56 7.41 <=> -9.56 7.41 <=> -9.56 7.41 <=> 

PGK <=> -14.13 15.51 <=> -14.13 10.71 <=> -9.11 6.95 <=> 

PGM <=> -6.50 6.39 <=> -6.50 6.39 <=> -6.50 6.39 <=> 

SBTR  => -31.27 13.53 <=> -24.12 13.45 <=> -22.66 13.45 <=> 

TPI <=> -5.03 7.95 <=> -5.03 7.05 <=> -5.03 7.05 <=> 

TPI_ap <=> -5.03 7.95 <=> -4.97 -0.01  => -4.97 -0.01  => 

G3PD1ir  => -23.22 19.18 <=> -23.22 18.28 <=> -18.81 17.09 <=> 

G3PD1ir_ap  => -23.73 18.66 <=> -23.73 17.82 <=> -19.33 16.64 <=> 

HEX7  => -22.94 10.51 <=> -22.94 5.71 <=> -17.92 1.94 <=> 

PYK  => -19.02 11.61 <=> -15.01 11.61 <=> -9.40 6.59 <=> 

PYK_ap  => -22.45 14.38 <=> -22.45 -0.01  => -16.77 -0.01  => 

HEX8  => -22.80 11.53 <=> -22.80 6.69 <=> -17.78 2.91 <=> 

MAN6PI <=> -9.96 7.02 <=> -9.96 7.02 <=> -9.96 7.02 <=> 

G6PDH2r <=> -18.36 27.10 <=> -18.17 15.00 <=> -18.17 15.50 <=> 

GND  => -23.59 27.04 <=> -22.96 15.44 <=> -22.96 15.44 <=> 

PGL  => -13.32 1.69 <=> -13.32 1.69 <=> -13.32 1.69 <=> 

PGMT_2 <=> -8.31 8.69 <=> -8.31 8.69 <=> -8.31 8.69 <=> 
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PRPPS <=> -21.68 10.40 <=> -21.68 -0.01  => -17.37 -0.01  => 

RPE <=> -7.00 7.00 <=> -7.00 7.00 <=> -7.00 7.00 <=> 

RPI <=> -6.30 7.71 <=> 0.01 7.71 <= 0.01 7.71 <= 

TALA <=> -16.29 14.27 <=> -16.29 12.24 <=> -16.29 12.24 <=> 

TKT1 <=> -13.37 15.06 <=> -13.37 15.06 <=> -13.37 15.06 <=> 

TKT2 <=> -18.63 11.33 <=> -18.63 11.33 <=> -18.63 11.33 <=> 

ACACT1r <=> -16.57 32.44 <=> -16.57 32.44 <=> -16.57 32.44 <=> 

ACCOAL  => -28.66 26.63 <=> -28.08 21.84 <=> -21.43 15.02 <=> 

ACS  => -31.33 25.31 <=> -31.33 24.97 <=> -24.56 14.74 <=> 

MDH2_mt  => -32.89 10.46 <=> -32.89 10.46 <=> -31.61 1.71 <=> 

PPC  => -20.51 6.35 <=> -20.51 6.16 <=> -15.59 6.16 <=> 

PPCK  => -25.10 13.06 <=> -25.10 8.35 <=> -20.08 0.04 <=> 

ASPTA <=> -14.33 12.04 <=> -14.33 12.04 <=> -0.47 4.50 <=> 

ASPTA_mt <=> -14.32 12.04 <=> -14.32 12.04 <=> -5.38 -0.01  => 

FUM_mt <=> -7.11 5.86 <=> -7.11 5.86 <=> -0.13 1.75 <=> 

MDHc <=> -15.16 26.77 <=> -15.16 26.77 <=> -7.78 16.23 <=> 

PDH_ap  => -42.94 25.45 <=> -42.94 25.45 <=> -41.75 21.05 <=> 

SUCOAS_mt <=> -34.17 29.39 <=> -34.17 29.39 <=> -26.94 20.26 <=> 

FRD_mt  => -34.97 11.15 <=> -34.97 11.15 <=> -28.79 6.11 <=> 

DPCOAK_ap  => -29.39 20.01 <=> -28.43 -0.01  => -22.62 -0.01  => 

PNTK  => -21.42 10.19 <=> -21.42 -0.01  => -16.39 -0.01  => 

PPCDC  => -20.86 5.03 <=> -20.86 -0.01  => -20.86 -0.01  => 

PPNCL2  => -28.17 22.98 <=> -28.17 -0.01  => -28.17 -0.01  => 

PTPATi  => -18.12 20.59 <=> -18.12 -0.01  => -16.97 -0.01  => 

DHFR <=> -33.03 19.91 <=> -22.04 -0.01  => -19.62 -0.01  => 

DHFS  => -29.86 23.34 <=> -29.27 -0.01  => -24.67 -0.01  => 

DHPS2  => -29.15 7.44 <=> -29.15 -0.01  => -29.15 -0.01  => 

GTPCI  => -37.58 -7.54  => -37.58 -7.54  => -34.62 -10.05  => 

HPPK2  => -24.76 13.31 <=> -24.76 -0.01  => -20.45 -0.01  => 

MTHFC <=> -8.38 16.18 <=> -8.38 -0.01  => -8.38 -0.01  => 

MTHFD <=> -23.10 29.86 <=> -16.99 -0.01  => -16.99 -0.01  => 

ADCL  => -49.51 -26.94  => -49.51 -26.94  => -47.40 -26.94  => 

ADCS  => -31.05 -0.43  => -31.05 -0.43  => -24.33 -4.71  => 

NADK  => -34.91 10.73 <=> -33.75 -0.01  => -27.54 -2.27  => 

NADS2  => -44.86 14.39 <=> -44.86 -0.01  => -29.42 -0.01  => 

NAMNPP  => -45.34 10.53 <=> -44.01 -0.01  => -40.31 -0.01  => 

NNAM  => -22.61 2.66 <=> -22.61 2.31 <=> -22.61 2.31 <=> 

NNATr <=> -18.58 21.64 <=> -18.58 -0.01  => -17.43 -0.01  => 

THD2pp  => -28.31 29.61 <=> -28.12 18.01 <=> -23.72 16.83 <=> 

NADTRHD  => -35.35 22.56 <=> -27.76 22.49 <=> -26.57 18.09 <=> 

ALAS_mt  => -29.84 16.85 <=> -29.84 -0.01  => -27.67 -0.01  => 

HMBS_ap  => -37.91 42.01 <=> -37.91 -0.01  => -37.91 -0.01  => 

PPBNGS_ap  => -17.49 6.35 <=> -17.49 -0.01  => -17.49 -0.01  => 

ACP1  => -23.05 8.08 <=> -23.05 7.90 <=> -20.11 7.90 <=> 

FMNAT  => -34.42 8.31 <=> -34.42 -0.01  => -33.27 -0.01  => 

RBFK  => -25.49 14.25 <=> -25.49 -0.01  => -20.47 -0.01  => 

CHORS  => -31.28 -6.06  => -31.28 -6.25  => -31.28 -6.25  => 
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DDPA  => -26.28 1.97 <=> -26.28 -0.01  => -26.28 -0.01  => 

DHQS  => -33.88 -10.60  => -33.88 -10.79  => -33.88 -10.79  => 

DHQTi  => -16.19 -0.76  => -16.19 -0.76  => -16.19 -0.76  => 

PSCVT <=> -14.41 15.84 <=> -14.41 -0.01  => -14.41 -0.01  => 

SHK3Dr <=> -29.05 15.61 <=> -20.19 -0.01  => -20.19 -0.01  => 

SHKK  => -21.59 10.41 <=> -21.59 -0.01  => -16.56 -0.01  => 

HETZK  => -22.27 11.05 <=> -22.27 6.24 <=> -17.25 2.47 <=> 

HMPK1  => -23.03 11.95 <=> -23.03 7.14 <=> -18.00 3.37 <=> 

PMPK  => -18.08 18.12 <=> -18.08 12.86 <=> -13.05 8.94 <=> 

THMDP  => -30.77 2.46 <=> -30.77 2.46 <=> -30.77 2.34 <=> 

THMP  => -13.87 13.65 <=> -13.87 13.65 <=> -13.87 13.22 <=> 

TMDPK  => -29.31 4.87 <=> -29.31 -0.01  => -25.00 -1.45  => 

TMPK  => -17.11 18.99 <=> -17.11 14.98 <=> -12.09 11.48 <=> 

TMPPP  => -25.10 10.19 <=> -25.10 10.19 <=> -24.78 10.19 <=> 

CHRPL  => -52.16 -29.79  => -49.70 -29.79  => -47.59 -29.79  => 

HBZOPT_mt  => -38.31 3.89 <=> -33.04 -0.01  => -33.04 -0.01  => 

OMMBLHX_mt  => -55.40 -22.23  => -55.40 -22.23  => -55.40 -22.23  => 

OMMBLHX3_mt  => -73.32 47.89 <=> -73.32 47.89 <=> -62.09 32.12 <=> 

OPHBDC_mt  => -23.40 12.74 <=> -23.40 -0.01  => -23.40 -0.01  => 

OPHHX_mt  => -54.73 -22.93  => -54.73 -22.93  => -54.73 -22.93  => 

HYPOE  => -12.94 13.31 <=> -12.94 13.13 <=> -12.94 13.13 <=> 

PDXPP  => -20.64 5.66 <=> -20.64 5.47 <=> -20.64 5.47 <=> 

PYDAMK  => -30.73 4.15 <=> -30.73 -0.67  => -25.71 -4.44  => 

PYDXK  => -23.09 11.81 <=> -23.09 6.99 <=> -18.07 3.22 <=> 

PYDXNK  => -23.07 11.84 <=> -23.07 7.02 <=> -18.05 3.24 <=> 

PYDXPP  => -20.60 5.68 <=> -20.60 5.49 <=> -20.60 5.49 <=> 

R07456 <=> -78.83 -33.48  => -77.99 -33.67  => -72.11 -37.95  => 

PTD1INOt <=> -18.70 11.32 <=> -18.70 11.32 <=> -18.70 11.32 <=> 

FEROpp  => -31.62 29.15 <=> -31.62 -0.01  => -31.62 -0.01  => 

ACCOAC_ap  => -33.45 30.04 <=> -33.44 30.04 <=> -26.68 22.97 <=> 

KAT1  => -30.27 14.39 <=> -30.27 14.39 <=> -30.27 14.39 <=> 

MI1PP  => -20.21 5.38 <=> -20.21 5.19 <=> -17.21 2.74 <=> 

MI1PS  => -10.10 7.43 <=> -10.10 7.43 <=> -10.10 7.43 <=> 

CDPMEK_ap  => -27.24 16.61 <=> -26.32 -0.01  => -20.47 -0.01  => 

DMPPS_ap  => -43.70 -0.63  => -43.70 -0.63  => -43.70 -0.63  => 

DXPRIi_ap  => -32.71 10.41 <=> -32.71 -0.01  => -32.71 -0.01  => 

DXPS_ap  => -20.58 6.81 <=> -18.94 -0.01  => -18.94 -0.01  => 

IPDPS_ap  => -44.41 -1.25  => -44.41 -1.25  => -44.41 -1.25  => 

MECDPDH2_ap  => -69.24 -26.16  => -69.24 -26.16  => -69.24 -26.16  => 

MEPCT_ap  => -15.78 18.04 <=> -15.78 -0.01  => -15.78 -0.01  => 

CHLPCTD  => -9.49 27.10 <=> -9.49 27.10 <=> -8.06 22.92 <=> 

CHOLK  => -31.29 4.83 <=> -31.29 0.02 <=> -22.08 -5.18  => 

DAGK120  => -22.40 12.88 <=> -22.40 8.02 <=> -17.38 4.24 <=> 

DAGK140  => -22.40 12.88 <=> -22.40 8.02 <=> -17.38 4.24 <=> 

DAGK141  => -22.88 13.36 <=> -22.88 8.50 <=> -17.85 4.71 <=> 

DAGK160  => -22.40 12.88 <=> -22.40 8.02 <=> -17.38 4.24 <=> 

DAGK161  => -22.40 12.88 <=> -22.40 8.02 <=> -17.38 4.24 <=> 
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DAGK180  => -22.40 12.88 <=> -22.40 8.02 <=> -17.38 4.24 <=> 

DAGK181  => -22.40 12.88 <=> -22.40 8.02 <=> -17.38 4.24 <=> 

DASYN120  => -18.30 18.96 <=> -18.30 18.96 <=> -18.30 18.96 <=> 

DASYN140  => -18.80 19.46 <=> -18.80 19.46 <=> -18.80 19.46 <=> 

DASYN141  => -18.61 19.27 <=> -18.61 19.27 <=> -18.61 19.27 <=> 

DASYN160  => -19.33 20.00 <=> -19.33 20.00 <=> -19.33 20.00 <=> 

DASYN161  => -19.08 19.75 <=> -19.08 19.75 <=> -19.08 19.75 <=> 

DASYN180  => -19.90 20.56 <=> -19.90 20.56 <=> -19.90 20.11 <=> 

DASYN181  => -19.60 20.26 <=> -19.60 20.26 <=> -19.60 20.11 <=> 

ETHAK  => -27.90 1.53 <=> -27.90 -3.26  => -18.14 -7.75  => 

PETHCT  => -7.95 25.46 <=> -7.95 25.46 <=> -7.23 20.72 <=> 

PSD120  => -10.78 16.87 <=> -10.78 16.87 <=> -10.78 16.87 <=> 

PSD140  => -10.78 16.87 <=> -10.78 16.87 <=> -10.78 16.87 <=> 

PSD141  => -11.58 17.67 <=> -11.58 17.67 <=> -11.58 17.67 <=> 

PSD160  => -10.78 16.87 <=> -10.78 16.87 <=> -10.78 16.87 <=> 

PSD161  => -10.78 16.87 <=> -10.78 16.87 <=> -10.78 16.87 <=> 

PSD180  => -13.38 19.48 <=> -13.38 19.47 <=> -13.38 19.47 <=> 

PSD181  => -13.02 19.12 <=> -13.02 19.11 <=> -13.02 19.11 <=> 

PSSA120  => -36.02 3.35 <=> -36.02 3.35 <=> -33.87 -0.09  => 

PSSA140  => -36.52 3.85 <=> -36.52 3.85 <=> -34.37 0.41 <=> 

PSSA141  => -36.33 3.66 <=> -36.33 3.66 <=> -34.18 0.22 <=> 

PSSA160  => -37.06 4.38 <=> -37.06 4.38 <=> -34.91 0.95 <=> 

PSSA161  => -36.81 4.13 <=> -36.81 4.13 <=> -34.66 0.70 <=> 

PSSA180  => -37.62 4.95 <=> -37.62 4.95 <=> -35.47 1.51 <=> 

PSSA181  => -37.32 4.65 <=> -37.32 4.65 <=> -35.18 1.22 <=> 

GPDDA2pp  => -21.07 -0.80  => -21.07 -0.80  => -21.07 -0.80  => 

GPDDA4pp  => -21.38 -0.50  => -21.38 -0.50  => -21.38 -0.50  => 

LPLIPAL1A120pp  => -20.03 2.64 <=> -20.03 2.64 <=> -20.03 2.64 <=> 

LPLIPAL1A140pp  => -20.37 2.99 <=> -20.37 2.99 <=> -20.37 2.99 <=> 

LPLIPAL1A141pp  => -21.00 2.30 <=> -21.00 2.30 <=> -21.00 2.30 <=> 

LPLIPAL1A160pp  => -20.72 3.34 <=> -20.72 3.34 <=> -20.72 3.34 <=> 

LPLIPAL1A161pp  => -20.58 3.20 <=> -20.58 3.20 <=> -20.58 3.20 <=> 

LPLIPAL1A180pp  => -21.07 3.69 <=> -21.07 3.69 <=> -21.07 3.69 <=> 

LPLIPAL1A181pp  => -20.90 3.52 <=> -20.90 3.52 <=> -20.90 3.52 <=> 

LPLIPAL1E120pp  => -19.72 4.09 <=> -19.72 4.09 <=> -19.72 4.09 <=> 

LPLIPAL1E140pp  => -20.07 4.44 <=> -20.07 4.44 <=> -20.07 4.44 <=> 

LPLIPAL1E141pp  => -20.04 4.41 <=> -20.04 4.41 <=> -20.04 4.41 <=> 

LPLIPAL1E160pp  => -20.42 4.78 <=> -20.42 4.78 <=> -20.42 4.78 <=> 

LPLIPAL1E161pp  => -20.28 4.65 <=> -20.28 4.65 <=> -20.28 4.65 <=> 

LPLIPAL1G120pp  => -20.02 4.39 <=> -20.02 4.39 <=> -20.02 4.39 <=> 

LPLIPAL1G140pp  => -20.37 4.74 <=> -20.37 4.74 <=> -20.37 4.74 <=> 

LPLIPAL1G141pp  => -20.34 4.71 <=> -20.34 4.71 <=> -20.34 4.71 <=> 

LPLIPAL1G160pp  => -20.72 5.09 <=> -20.72 5.09 <=> -20.72 5.09 <=> 

LPLIPAL1G161pp  => -20.58 4.95 <=> -20.58 4.95 <=> -20.58 4.95 <=> 

LPLIPAL1G180pp  => -21.07 5.43 <=> -21.07 5.43 <=> -21.07 5.43 <=> 

LPLIPAL1G181pp  => -20.90 5.27 <=> -20.90 5.27 <=> -20.90 5.27 <=> 

LPLIPAL2E120  => -19.72 4.09 <=> -19.72 4.09 <=> -19.72 4.09 <=> 
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LPLIPAL2E140  => -20.07 4.44 <=> -20.07 4.44 <=> -20.07 4.44 <=> 

LPLIPAL2E141  => -20.70 3.75 <=> -20.70 3.75 <=> -20.70 3.75 <=> 

LPLIPAL2E160  => -20.42 4.78 <=> -20.42 4.78 <=> -20.42 4.78 <=> 

LPLIPAL2E161  => -20.28 4.65 <=> -20.28 4.65 <=> -20.28 4.65 <=> 

LPLIPAL2E180  => -20.77 5.13 <=> -20.77 5.13 <=> -20.77 5.13 <=> 

LPLIPAL2E181  => -20.60 4.97 <=> -20.60 4.97 <=> -20.60 4.97 <=> 

LPLIPAL2G120  => -20.02 4.39 <=> -20.02 4.39 <=> -20.02 4.39 <=> 

LPLIPAL2G140  => -20.37 4.74 <=> -20.37 4.74 <=> -20.37 4.74 <=> 

LPLIPAL2G141  => -21.00 4.05 <=> -21.00 4.05 <=> -21.00 4.05 <=> 

LPLIPAL2G160  => -20.72 5.09 <=> -20.72 5.09 <=> -20.72 5.09 <=> 

LPLIPAL2G161  => -20.58 4.95 <=> -20.58 4.95 <=> -20.58 4.95 <=> 

LPLIPAL2G180  => -21.07 5.43 <=> -21.07 5.43 <=> -21.07 5.43 <=> 

LPLIPAL2G181  => -20.90 5.27 <=> -20.90 5.27 <=> -20.90 5.27 <=> 

PLIPA2A120pp  => -18.72 3.09 <=> -18.72 3.09 <=> -18.72 3.09 <=> 

PLIPA2A140pp  => -18.72 3.09 <=> -18.72 3.09 <=> -18.72 3.09 <=> 

PLIPA2A141pp  => -19.62 2.67 <=> -19.62 2.67 <=> -19.62 2.67 <=> 

PLIPA2A160pp  => -18.72 3.09 <=> -18.72 3.09 <=> -18.72 3.09 <=> 

PLIPA2A161pp  => -18.72 3.09 <=> -18.72 3.09 <=> -18.72 3.09 <=> 

PLIPA2A180pp  => -18.72 3.09 <=> -18.72 3.09 <=> -18.72 3.09 <=> 

PLIPA2A181pp  => -18.72 3.09 <=> -18.72 3.09 <=> -18.72 3.09 <=> 

PLIPA2E120pp  => -19.29 3.66 <=> -19.29 3.66 <=> -19.29 3.66 <=> 

PLIPA2E140pp  => -19.29 3.66 <=> -19.29 3.66 <=> -19.29 3.66 <=> 

PLIPA2E141pp  => -20.61 2.34 <=> -20.61 2.34 <=> -20.61 2.34 <=> 

PLIPA2E160pp  => -19.29 3.66 <=> -19.29 3.66 <=> -19.29 3.66 <=> 

PLIPA2E161pp  => -19.29 3.66 <=> -19.29 3.66 <=> -19.29 3.66 <=> 

PLIPA2G120pp  => -19.59 3.96 <=> -19.59 3.96 <=> -19.59 3.96 <=> 

PLIPA2G140pp  => -19.59 3.96 <=> -19.59 3.96 <=> -19.59 3.96 <=> 

PLIPA2G141pp  => -20.91 2.64 <=> -20.91 2.64 <=> -20.91 2.64 <=> 

PLIPA2G160pp  => -19.59 3.96 <=> -19.59 3.96 <=> -19.59 3.96 <=> 

PLIPA2G161pp  => -19.59 3.96 <=> -19.59 3.96 <=> -19.59 3.96 <=> 

PLIPA2G180pp  => -19.59 3.96 <=> -19.59 3.96 <=> -19.59 3.96 <=> 

PLIPA2G181pp  => -19.59 3.96 <=> -19.59 3.96 <=> -19.59 3.96 <=> 

PGSA120  => -23.36 14.36 <=> -23.36 14.36 <=> -23.36 14.36 <=> 

PGSA140  => -23.86 14.86 <=> -23.86 14.86 <=> -23.86 14.86 <=> 

PGSA141  => -23.67 14.67 <=> -23.67 14.67 <=> -23.67 14.67 <=> 

PGSA160  => -24.40 15.40 <=> -24.40 15.40 <=> -24.40 15.40 <=> 

PGSA161  => -24.15 15.15 <=> -24.15 15.15 <=> -24.15 15.15 <=> 

PGSA180  => -24.96 15.96 <=> -24.96 15.96 <=> -24.96 15.96 <=> 

PGSA181  => -24.66 15.66 <=> -24.66 15.66 <=> -24.66 15.66 <=> 

PGPP120pp  => -22.47 5.78 <=> -22.47 5.59 <=> -22.47 5.59 <=> 

PGPP140pp  => -22.47 5.78 <=> -22.47 5.59 <=> -22.47 5.59 <=> 

PGPP141pp  => -23.24 6.54 <=> -23.24 6.36 <=> -23.24 6.36 <=> 

PGPP160pp  => -22.47 5.78 <=> -22.47 5.59 <=> -22.47 5.59 <=> 

PGPP161pp  => -22.47 5.78 <=> -22.47 5.59 <=> -22.47 5.59 <=> 

PGPP180pp  => -22.47 5.78 <=> -22.47 5.59 <=> -22.47 5.59 <=> 

PGPP181pp  => -22.47 5.78 <=> -22.47 5.59 <=> -22.47 5.59 <=> 

DMATT  => -28.18 1.41 <=> -28.18 -0.01  => -28.18 -0.01  => 
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GRTT  => -29.17 2.41 <=> -29.17 -0.01  => -29.17 -0.01  => 

OCTDPS  => -115.52 -18.31  => -110.47 -18.31  => -110.47 -18.31  => 

LPLIPAL2ATE120  => -19.66 19.66 <=> -19.66 19.66 <=> -19.66 19.66 <=> 

LPLIPAL2ATE140  => -20.63 20.63 <=> -20.63 20.63 <=> -20.63 20.63 <=> 

LPLIPAL2ATE141  => -20.27 20.27 <=> -20.27 20.27 <=> -20.27 20.27 <=> 

LPLIPAL2ATE160  => -21.62 21.62 <=> -21.62 21.62 <=> -21.62 21.62 <=> 

LPLIPAL2ATE161  => -21.17 21.17 <=> -21.17 21.17 <=> -21.17 21.17 <=> 

LPLIPAL2ATE180  => -22.62 22.62 <=> -22.62 22.62 <=> -22.62 22.62 <=> 

LPLIPAL2ATE181  => -22.10 22.10 <=> -22.10 22.10 <=> -22.10 22.10 <=> 

LPLIPAL2ATG120  => -19.84 19.84 <=> -19.84 19.84 <=> -19.84 19.84 <=> 

LPLIPAL2ATG140  => -20.48 20.48 <=> -20.48 20.48 <=> -20.48 20.48 <=> 

LPLIPAL2ATG141  => -20.58 20.58 <=> -20.58 20.58 <=> -20.58 20.58 <=> 

LPLIPAL2ATG160  => -21.12 21.12 <=> -21.12 21.12 <=> -21.12 21.12 <=> 

LPLIPAL2ATG161  => -20.82 20.82 <=> -20.82 20.82 <=> -20.82 20.82 <=> 

LPLIPAL2ATG180  => -21.78 21.78 <=> -21.78 21.78 <=> -21.78 21.78 <=> 

LPLIPAL2ATG181  => -21.43 21.43 <=> -21.43 21.43 <=> -21.43 21.43 <=> 

PAPA120pp  => -22.07 5.38 <=> -22.07 5.29 <=> -22.07 5.29 <=> 

PAPA140pp  => -22.07 5.38 <=> -22.07 5.37 <=> -22.07 5.37 <=> 

PAPA141pp  => -22.55 5.86 <=> -22.55 5.75 <=> -22.55 5.75 <=> 

PAPA160pp  => -22.07 5.38 <=> -22.07 5.37 <=> -22.07 5.37 <=> 

PAPA161pp  => -22.07 5.38 <=> -22.07 5.37 <=> -22.07 5.37 <=> 

PAPA180pp  => -22.07 5.38 <=> -22.07 5.37 <=> -22.07 5.37 <=> 

PAPA181pp  => -22.07 5.38 <=> -22.07 5.37 <=> -22.07 5.37 <=> 

ADA  => -28.10 1.45 <=> -28.10 1.44 <=> -27.98 1.44 <=> 

ADK1 <=> -16.05 16.37 <=> -16.05 -0.01  => -4.97 -0.01  => 

ADNCYC  => -20.09 10.31 <=> -20.09 10.31 <=> -18.94 5.74 <=> 

ADSL1r <=> -11.18 15.26 <=> -11.18 -0.01  => -4.60 -0.01  => 

AMPDA  => -27.21 0.65 <=> -27.02 0.65 <=> -24.19 -2.61  => 

DADA  => -28.50 1.85 <=> -28.50 1.85 <=> -28.50 1.85 <=> 

DGK1 <=> -20.01 20.16 <=> -20.01 14.90 <=> -14.99 10.98 <=> 

GK1 <=> -20.13 20.28 <=> -20.13 -0.01  => -15.11 -0.01  => 

GUACYC  => -21.86 11.99 <=> -21.86 11.99 <=> -21.86 11.99 <=> 

GUAPRT  => -20.60 13.82 <=> -20.60 13.82 <=> -20.60 13.82 <=> 

HXPRT  => -20.86 14.08 <=> -20.86 -0.01  => -20.86 -0.01  => 

IMPD  => -23.71 25.47 <=> -23.71 25.47 <=> -22.52 20.97 <=> 

NDP3  => -28.45 2.10 <=> -24.73 1.91 <=> -21.29 1.91 <=> 

NDP4  => -28.34 1.99 <=> -28.34 1.80 <=> -28.34 1.80 <=> 

NTD10pp  => -22.04 7.10 <=> -22.04 7.10 <=> -22.04 7.10 <=> 

NTD11pp  => -21.87 6.93 <=> -21.87 6.93 <=> -21.87 6.77 <=> 

NTD1pp  => -20.87 5.93 <=> -20.87 5.75 <=> -20.87 5.75 <=> 

NTD2pp  => -21.06 6.12 <=> -21.06 5.93 <=> -21.06 5.93 <=> 

NTD3pp  => -20.94 6.00 <=> -20.94 5.82 <=> -20.94 5.82 <=> 

NTD4pp  => -31.08 -3.77  => -31.08 -3.95  => -31.08 -3.95  => 

NTD5pp  => -20.81 5.87 <=> -20.81 5.68 <=> -20.81 5.68 <=> 

NTD7pp  => -20.68 5.83 <=> -20.01 5.83 <=> -17.18 1.89 <=> 

NTD8pp  => -22.64 7.70 <=> -22.64 7.51 <=> -22.64 7.51 <=> 

NTD9pp  => -22.09 7.15 <=> -22.09 7.15 <=> -22.09 7.00 <=> 
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PDE1  => -19.06 -1.36  => -19.06 -2.03  => -15.31 -4.86  => 

PDE4  => -21.51 1.18 <=> -21.51 1.18 <=> -21.18 1.18 <=> 

PPA  => -21.57 -0.98  => -21.57 -1.35  => -21.57 -1.35  => 

PUNP1 <=> -16.91 19.34 <=> -16.91 19.34 <=> -16.43 18.53 <=> 

PUNP2 <=> -18.31 20.78 <=> -18.31 20.78 <=> -18.31 20.78 <=> 

PUNP3 <=> -16.34 18.76 <=> -16.34 18.76 <=> -16.34 18.76 <=> 

PUNP4 <=> -17.88 20.35 <=> -17.88 20.35 <=> -17.88 20.35 <=> 

PUNP5 <=> -16.34 18.76 <=> -16.34 18.76 <=> -16.34 18.76 <=> 

PUNP6 <=> -17.89 20.36 <=> -17.89 20.36 <=> -17.89 20.36 <=> 

PUNP7 <=> -16.16 18.94 <=> -16.16 18.94 <=> -16.16 18.94 <=> 

XPRT  => -20.78 13.64 <=> -20.78 13.64 <=> -20.78 13.64 <=> 

ADSS  => -29.49 27.20 <=> -26.78 -0.01  => -16.35 -0.01  => 

GMPS2  => -42.72 12.30 <=> -42.72 11.18 <=> -31.68 0.50 <=> 

NDPK2 <=> -18.42 18.61 <=> -18.42 -0.01  => -13.40 -0.01  => 

NDPK3 <=> -18.48 18.68 <=> -18.42 13.42 <=> -13.40 9.49 <=> 

NDPK4 <=> -18.19 18.38 <=> -18.19 -0.01  => -13.17 -0.01  => 

NDPK5 <=> -20.01 20.20 <=> -20.01 -0.01  => -14.98 -0.01  => 

NDPK6 <=> -18.25 18.44 <=> -18.25 13.18 <=> -13.23 9.26 <=> 

NDPK7 <=> -18.31 18.51 <=> -18.31 -0.01  => -13.29 -0.01  => 

NDPK8 <=> -20.60 20.80 <=> -20.60 -0.01  => -15.58 -0.01  => 

NDPK1 <=> -20.12 20.32 <=> -20.12 10.98 <=> -14.85 7.27 <=> 

ATPH1e  => -41.22 -11.52  => -41.22 -11.62  => -35.69 -18.20  => 

ATPH2e  => -25.05 -1.48  => -20.87 -1.66  => -18.32 -8.07  => 

ATPM  => -24.89 -1.32  => -24.30 -6.11  => -19.86 -9.69  => 

CTPS2  => -45.36 10.89 <=> -43.87 -0.01  => -33.56 -1.76  => 

CYTK1 <=> -18.48 18.63 <=> -18.48 13.37 <=> -13.46 9.45 <=> 

CYTK2 <=> -18.31 18.46 <=> -18.31 13.20 <=> -13.29 9.28 <=> 

DCTPD  => -23.40 3.45 <=> -23.40 3.45 <=> -23.40 3.45 <=> 

DHORTS <=> -13.55 2.12 <=> 0.01 0.83 <= 0.01 0.83 <= 

DTMPK <=> -18.18 18.33 <=> -18.18 -0.01  => -13.16 -0.01  => 

DUMPK <=> -18.23 18.38 <=> -18.23 13.13 <=> -13.21 9.21 <=> 

DUTPDP  => -28.49 -1.71  => -28.49 -1.71  => -28.49 -1.71  => 

OMPDC  => -19.78 7.35 <=> -19.78 -0.01  => -19.78 -0.01  => 

ORPT <=> -14.20 20.76 <=> 0.01 20.76 <= 0.01 20.76 <= 

UMPK <=> -18.42 18.56 <=> -18.42 -0.01  => -13.40 -0.01  => 

ASPCT  => -20.62 8.78 <=> -11.65 -0.01  => -10.41 -0.01  => 

CBPS  => -56.50 10.20 <=> -54.29 -0.01  => -39.74 -10.54  => 

GHMT2r <=> -18.33 18.44 <=> -15.97 14.60 <=> -10.35 9.00 <=> 

HCO3E <=> -8.19 5.53 <=> -8.19 -0.01  => -8.19 -0.01  => 

TMDS  => -37.16 5.40 <=> -37.16 -0.01  => -37.16 -0.01  => 

DHORD2_mt  => -36.77 11.41 <=> -31.72 -0.01  => -31.72 -0.01  => 

DURIPP <=> -15.92 18.39 <=> -15.92 18.39 <=> -15.92 18.39 <=> 

SUCD2_u6m_mt <=> -24.83 19.99 <=> -24.83 19.99 <=> -19.78 13.82 <=> 

SUCD3_u6m_mt <=> -46.07 17.41 <=> -46.07 17.41 <=> -46.07 17.41 <=> 

NADH2_u6cm_mt  => -47.12 12.26 <=> -47.12 12.26 <=> -42.71 11.08 <=> 

ACONTam_mt <=> -5.78 8.95 <=> -5.78 8.95 <=> -5.78 -0.01  => 

ACONTbm_mt <=> -6.99 6.65 <=> -6.99 6.65 <=> -6.23 -0.01  => 
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AKGDH_mt  => -42.99 25.50 <=> -42.99 -0.01  => -39.33 -0.01  => 

CS_mt  => -28.08 11.16 <=> -28.08 11.16 <=> -22.79 -0.01  => 

SUCOAS1m_mt <=> -33.65 28.74 <=> -33.65 28.74 <=> -31.44 25.29 <=> 

ICDHyr_mt <=> -20.94 28.94 <=> -20.94 28.94 <=> -17.90 -0.01  => 

ACCOAL2  => -30.23 25.12 <=> -29.65 20.33 <=> -25.21 16.75 <=> 

ACCOALm  => -32.49 23.39 <=> -32.49 23.39 <=> -28.18 16.48 <=> 

GTHOr_mt <=> -41.78 14.19 <=> -41.78 14.19 <=> -30.26 7.25 <=> 

GTHP_mt <=> -83.38 -44.60  => -83.38 -44.60  => -76.44 -45.86  => 

SPODMc  => -30.29 -1.84  => -30.29 -1.84  => -30.29 -1.84  => 

GTHS  => -31.04 16.04 <=> -30.56 11.34 <=> -23.84 2.91 <=> 

ABUTt2r <=> -15.76 11.65 <=> -15.76 11.65 <=> -8.26 9.68 <=> 

ACt2r <=> -13.19 14.83 <=> -13.19 14.83 <=> -7.71 11.10 <=> 

AKGMAL <=> -27.39 27.42 <=> -27.39 27.42 <=> -16.06 20.12 <=> 

AKGt2r <=> -10.77 16.78 <=> -10.77 16.78 <=> -5.63 12.62 <=> 

CHOLtu <=> -15.70 14.32 <=> -15.70 14.32 <=> -15.70 14.32 <=> 

CO2t <=> -12.51 15.51 <=> -12.51 15.50 <=> -12.51 15.50 <=> 

ETHAt2pp  => -17.16 10.03 <=> -17.16 10.03 <=> -17.16 10.03 <=> 

F6Pt6_2pp  => -50.49 31.57 <=> -19.63 31.57 <=> -19.63 31.57 <=> 

FE2t  => -16.89 11.13 <=> -16.89 -0.01  => -16.89 -0.01  => 

FORt <=> -10.32 17.70 <=> -10.32 17.70 <=> -5.31 13.47 <=> 

FRUt1r <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

FUMt2r <=> -11.44 17.45 <=> -3.12 17.45 <=> 0.01 12.85 <= 

G6Pt6_2pp  => -50.46 31.60 <=> -19.60 31.60 <=> -19.60 31.60 <=> 

GAM6Pt <=> -14.64 15.38 <=> -14.64 15.38 <=> -14.64 15.38 <=> 

GLCt1r <=> -13.51 16.51 <=> -13.51 -0.01  => -13.51 16.51 <=> 

GLYCt <=> -15.40 12.40 <=> -15.40 12.40 <=> -15.40 12.40 <=> 

GTHRDti <=> -12.04 17.98 <=> -12.04 17.98 <=> -12.04 15.57 <=> 

H2O2t <=> -12.51 15.51 <=> -12.51 15.51 <=> -12.51 15.51 <=> 

Ht <=> 2.87 2.87 <= 2.87 2.87 <= 2.87 2.87 <= 

L_LACt2r <=> -12.70 14.33 <=> -12.70 14.33 <=> -6.99 11.98 <=> 

MALt2r <=> -10.61 16.65 <=> -10.61 16.65 <=> -3.44 14.49 <=> 

MANt1r <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

NH4t <=> -14.70 13.32 <=> -14.70 13.31 <=> -14.70 13.31 <=> 

NO2t2rpp <=> -13.19 14.83 <=> -13.19 14.83 <=> -13.19 14.83 <=> 

NO3t2rpp <=> -13.19 14.83 <=> -13.19 14.83 <=> -13.19 14.83 <=> 

O2St <=> -15.51 12.51 <=> -15.51 12.51 <=> -15.51 12.51 <=> 

O2t <=> -12.51 15.51 <=> -12.50 15.51 <=> -12.50 15.51 <=> 

ORNtiDF  => -14.72 13.34 <=> -14.72 13.34 <=> -14.72 13.34 <=> 

OXAHCOtex  => -42.77 39.29 <=> -42.77 39.29 <=> -42.77 39.29 <=> 

PIt2r <=> -10.60 17.42 <=> -10.60 -0.01  => -10.60 -0.01  => 

PTRCt2  => -19.82 8.31 <=> -19.82 8.31 <=> -12.17 6.62 <=> 

PYRt2r <=> -12.79 14.43 <=> -12.79 14.43 <=> -9.23 14.43 <=> 

SBT_Dt <=> -13.49 16.49 <=> -13.49 16.49 <=> -13.49 16.49 <=> 

SO4HCOtex  => -42.77 39.29 <=> -42.77 19.39 <=> -42.77 19.39 <=> 

SO4OXAtex2  => -35.15 46.91 <=> -35.15 9.11 <=> -35.15 9.11 <=> 

SO4ti  => -8.13 19.89 <=> -8.13 -0.01  => -8.13 -0.01  => 

SPMDt2  => -22.96 7.06 <=> -22.96 -0.01  => -14.64 -0.01  => 
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SUCCt2r <=> -10.54 16.61 <=> -10.54 16.61 <=> -4.71 12.88 <=> 

TTDCAt  => -11.32 18.71 <=> -11.32 18.71 <=> -11.32 18.71 <=> 

UREAt <=> -12.51 15.51 <=> -12.51 15.51 <=> -12.51 15.51 <=> 

ALAGLNexR <=> -27.82 27.82 <=> -27.82 27.82 <=> -19.43 17.37 <=> 

ALAGLYexR <=> -27.09 27.09 <=> -27.09 27.09 <=> -17.54 17.73 <=> 

ALAt2r <=> -14.97 12.22 <=> -14.97 12.22 <=> -9.09 8.72 <=> 

ARGLYSex  => -28.02 28.02 <=> -28.02 28.02 <=> -17.46 19.79 <=> 

ARGt2r <=> -18.58 11.45 <=> -18.58 11.45 <=> -10.54 10.12 <=> 

ASNt2r <=> -15.56 12.81 <=> -15.56 12.81 <=> -9.86 9.91 <=> 

ASPt2r <=> -13.56 13.84 <=> -13.56 13.84 <=> -6.24 11.76 <=> 

CYSGLUexR <=> -28.74 27.31 <=> -28.74 27.31 <=> -26.23 20.36 <=> 

CYSGLYexR <=> -27.19 28.61 <=> -27.18 28.61 <=> -21.32 24.94 <=> 

CYSt2r <=> -16.49 12.32 <=> -16.49 12.32 <=> -16.49 12.32 <=> 

CYSTGLUex  => -29.53 26.51 <=> -29.53 26.51 <=> -29.24 17.66 <=> 

CYSTSERex  => -28.02 28.02 <=> -28.02 28.02 <=> -24.39 22.22 <=> 

GLNt2r <=> -15.60 12.85 <=> -15.60 12.85 <=> -8.65 10.35 <=> 

GLUt2r <=> -13.63 13.90 <=> -13.63 13.90 <=> -4.77 13.61 <=> 

GLYt2r <=> -14.87 12.12 <=> -14.86 12.12 <=> -9.00 8.45 <=> 

HISt2r <=> -16.39 13.64 <=> -16.39 13.64 <=> -11.60 9.03 <=> 

ILEt2r <=> -15.28 12.53 <=> -15.28 -0.01  => -10.58 -0.01  => 

LEUt2r <=> -15.28 12.53 <=> -15.28 12.53 <=> -9.76 8.82 <=> 

LYSt2r <=> -17.69 10.56 <=> -17.69 10.56 <=> -10.79 8.04 <=> 

METLEUex  => -28.02 28.02 <=> -28.02 15.27 <=> -24.31 14.52 <=> 

METt2r <=> -16.02 13.27 <=> -16.02 13.27 <=> -16.02 13.27 <=> 

PHEt2r <=> -16.04 13.29 <=> -16.04 13.29 <=> -11.34 8.73 <=> 

PROt2r <=> -14.08 15.71 <=> -14.08 15.71 <=> -14.08 15.71 <=> 

SERGLNexR <=> -27.86 27.86 <=> -27.86 27.86 <=> -19.56 17.28 <=> 

SERGLYexR <=> -27.13 27.13 <=> -27.13 27.13 <=> -17.66 17.64 <=> 

SERt2r <=> -15.01 12.26 <=> -15.01 12.26 <=> -9.21 8.63 <=> 

THRGLNexR <=> -28.02 28.02 <=> -28.02 28.02 <=> -25.52 21.07 <=> 

THRGLYexR <=> -27.33 27.33 <=> -27.33 27.33 <=> -23.67 21.48 <=> 

THRt2r <=> -15.22 12.47 <=> -15.22 12.47 <=> -15.22 12.47 <=> 

TRPt2r <=> -16.39 13.64 <=> -16.39 13.64 <=> -16.39 13.64 <=> 

TYRt2r <=> -16.19 13.44 <=> -16.19 13.44 <=> -11.18 8.97 <=> 

VALt2r <=> -15.26 12.51 <=> -15.26 12.51 <=> -9.91 8.52 <=> 

DPCOAtap <=> -11.90 11.90 <=> 0.01 11.90 <= 0.01 11.90 <= 

NADPtap <=> -12.61 11.20 <=> -12.61 -0.01  => -12.61 -0.01  => 

NADtap <=> -11.90 11.90 <=> -11.90 11.90 <=> -2.46 2.46 <=> 

NH4tap <=> -10.90 10.90 <=> -10.90 -0.01  => -10.90 -0.01  => 

O2tap <=> -10.90 10.90 <=> -10.89 10.90 <=> -10.89 10.90 <=> 

PA120tap <=> -11.90 11.90 <=> -11.90 11.90 <=> -11.90 11.90 <=> 

PA140tap <=> -11.90 11.90 <=> -11.90 11.90 <=> -11.90 11.90 <=> 

PA141tap <=> -11.90 11.90 <=> -11.90 11.90 <=> -11.90 11.90 <=> 

PA160tap <=> -11.90 11.90 <=> -11.90 11.90 <=> -11.90 11.90 <=> 

PA161tap <=> -11.90 11.90 <=> -11.90 11.90 <=> -11.90 11.90 <=> 

PA180tap <=> -11.90 11.90 <=> -11.90 11.90 <=> -11.90 11.90 <=> 

PA181tap <=> -11.90 11.90 <=> -11.90 11.90 <=> -11.90 11.90 <=> 
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PItap <=> -10.68 11.12 <=> 0.01 8.39 <= 0.01 8.39 <= 

PPItap <=> -11.20 10.61 <=> -11.20 -0.01  => -11.20 -0.01  => 

ACCOAtap <=> -12.20 11.61 <=> -12.20 11.61 <=> -12.20 11.61 <=> 

ADPtap <=> -12.10 11.71 <=> -12.10 11.71 <=> -2.96 2.57 <=> 

ATPtap <=> -12.01 11.80 <=> -12.01 11.80 <=> -3.08 2.86 <=> 

CMPtap <=> -12.19 11.62 <=> -12.19 -0.01  => -12.19 -0.01  => 

CO2tap <=> -10.90 10.90 <=> -10.90 -0.01  => -10.90 -0.01  => 

COA3tap <=> -11.09 10.28 <=> 0.01 10.28 <= 0.01 10.28 <= 

COAtap <=> -11.93 11.88 <=> -11.93 -0.01  => -11.93 -0.01  => 

CTPtap <=> -11.99 11.82 <=> 0.01 11.82 <= 0.01 11.82 <= 

DHAPtap  => -20.84 22.07 <=> -8.39 -0.01  => -8.39 -0.01  => 

DMPPtap <=> -11.23 10.80 <=> -11.23 -0.01  => -11.23 -0.01  => 

FE2tap <=> -10.90 10.90 <=> -10.90 10.90 <=> -10.90 10.90 <=> 

HCO3tap <=> -10.84 10.96 <=> -10.84 10.96 <=> -10.84 10.96 <=> 

IPDPtap <=> -11.27 10.85 <=> -11.27 -0.01  => -11.27 -0.01  => 

NADHtap <=> -11.90 11.90 <=> -11.90 11.90 <=> -11.90 11.90 <=> 

NADPHtap <=> -12.20 11.60 <=> 0.01 11.60 <= 0.01 11.60 <= 

PEPPItap  => -21.35 22.27 <=> -10.83 -0.01  => -10.83 -0.01  => 

ADEt <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

ADNt <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

CYTDt <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

DADNt4 <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

DCYTt <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

DGSNt <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

DINt <=> -13.52 16.50 <=> -13.52 16.50 <=> -13.52 16.50 <=> 

DURIt <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

GSNt <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

GUAt <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

HYXNt <=> -13.52 16.50 <=> -13.52 16.50 <=> -13.52 16.50 <=> 

INSt <=> -13.52 16.50 <=> -13.52 16.50 <=> -13.52 16.50 <=> 

THYMDt1  => -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

URAt <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

URIt <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

XANt <=> -13.58 16.44 <=> -13.58 16.44 <=> -13.58 16.44 <=> 

NACUP  => -11.32 18.70 <=> -11.32 18.70 <=> -11.32 18.70 <=> 

PNTOt2 <=> -13.89 15.53 <=> -13.89 -0.01  => -13.89 -0.01  => 

RIBFLVt2  => -17.01 13.01 <=> -17.01 -0.01  => -17.01 -0.01  => 

THMt3 <=> -12.83 17.19 <=> -12.83 -0.01  => -12.83 -0.01  => 

EX_nicotinamide2 <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

EX_folate2 <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

HDCAtr <=> -11.32 18.71 <=> -11.32 18.71 <=> -11.32 18.71 <=> 

HDCEAtr <=> -11.32 18.70 <=> -11.32 18.70 <=> -11.32 18.70 <=> 

INSTt2r <=> -16.39 13.64 <=> -16.39 13.64 <=> -11.31 9.50 <=> 

OCDCAtr <=> -11.32 18.71 <=> -11.32 18.71 <=> -11.32 18.71 <=> 

OCDCEAtr <=> -11.32 18.70 <=> -11.32 18.70 <=> -11.32 18.70 <=> 

PEFLIP  => -34.21 15.38 <=> -33.74 -0.01  => -29.19 -0.01  => 

DHAPtmt <=> -15.10 6.00 <=> -13.57 6.00 <=> -13.57 6.00 <=> 



 

155 

ATPADPex_mt  => -25.87 17.75 <=> -24.55 17.75 <=> -7.79 -0.33  => 

ATPtmt  => -28.69 3.04 <=> -28.69 3.04 <=> -23.67 -2.64  => 

PIOHex_mt  => -6.56 15.24 <=> -6.56 15.24 <=> -6.56 15.24 <=> 

4HBAtmt <=> -11.68 11.68 <=> -11.68 11.68 <=> -11.68 11.68 <=> 

4HBZtmt <=> -15.84 7.54 <=> 0.01 7.54 <= 0.01 7.54 <= 

5AOPtmt <=> -11.09 10.28 <=> -10.67 -0.01  => -10.67 -0.01  => 

AKGtmt  => -21.20 21.19 <=> -21.20 21.19 <=> -2.56 2.55 <=> 

ALALtmt <=> -10.49 10.49 <=> -10.49 10.49 <=> -1.10 1.10 <=> 

ASPtmt <=> -15.15 6.04 <=> -15.15 6.04 <=> -5.76 -3.36  => 

CO2tmt <=> -10.90 10.90 <=> -10.90 -0.01  => -10.90 -0.01  => 

COAtmt <=> -24.38 -0.57  => -24.38 -0.57  => -24.38 -0.57  => 

CYSLtmt <=> -11.73 10.87 <=> -11.73 10.87 <=> -11.73 10.87 <=> 

DHORtmt <=> -16.05 7.75 <=> 0.01 1.39 <= 0.01 1.39 <= 

DXYL5Ptmt <=> -15.31 6.43 <=> -15.31 6.43 <=> -15.31 6.43 <=> 

FUMtmt <=> -19.64 3.04 <=> -19.64 3.04 <=> -10.25 -6.36  => 

GDPtmt <=> -20.42 3.39 <=> -20.42 3.39 <=> -20.42 3.39 <=> 

GLUASPtmt  => -21.25 21.25 <=> -21.25 21.25 <=> -2.71 2.72 <=> 

GLYC3Ptmt <=> -15.10 6.22 <=> -15.10 6.22 <=> -15.10 6.22 <=> 

GLYtmt <=> -10.39 10.39 <=> 0.01 10.39 <= 0.01 0.86 <= 

GTPtmt <=> -24.44 -0.64  => -24.44 -0.64  => -24.44 -0.64  => 

H2O2tmt <=> -10.90 10.90 <=> -10.90 10.90 <=> -10.90 10.90 <=> 

Htmt <=> 3.74 3.74 <= 3.74 3.74 <= 3.74 3.74 <= 

MLTHFtmt <=> -20.21 3.60 <=> -20.21 3.60 <=> -20.21 3.60 <=> 

NH4tmt <=> -6.75 15.05 <=> -6.75 15.04 <=> -6.75 15.04 <=> 

NO2tmt <=> -15.05 6.75 <=> -15.05 6.75 <=> -15.05 6.75 <=> 

NO3tmt <=> -15.05 6.75 <=> -15.05 6.75 <=> -15.05 6.75 <=> 

O2tmt <=> -10.90 10.90 <=> 0.01 10.90 <= 0.01 10.90 <= 

OAAtmt <=> -18.90 2.30 <=> -18.90 2.30 <=> 0.01 2.30 <= 

OCTDPtmt <=> -20.42 3.39 <=> 0.01 3.39 <= 0.01 3.39 <= 

OROTtmt <=> -16.07 7.73 <=> -16.07 -0.01  => -16.07 -0.01  => 

PPItmt <=> -19.50 2.30 <=> -19.50 -0.01  => -19.50 -0.01  => 

SUCCtmt <=> -18.76 2.18 <=> -18.76 2.18 <=> -9.20 -7.38  => 

THFtmt <=> -20.21 3.60 <=> -20.21 3.60 <=> -20.21 3.60 <=> 

TYRLtmt <=> -11.71 11.71 <=> -11.71 11.71 <=> -2.23 2.23 <=> 

4AHMMPtr <=> -13.51 16.51 <=> -13.51 16.51 <=> -13.51 16.51 <=> 

DXYL5Ptap <=> -11.16 10.58 <=> -11.16 10.58 <=> -11.16 10.58 <=> 

4MHETZtmt <=> -11.90 11.90 <=> -11.90 11.90 <=> -11.90 11.90 <=> 

MTAADA  => -28.80 2.15 <=> -28.80 2.15 <=> -28.80 2.15 <=> 

PUNP8  => -18.53 20.95 <=> -18.52 20.95 <=> -18.52 20.95 <=> 

ACCOAtm <=> 0.85 24.65 <= 0.85 24.65 <= 0.85 24.65 <= 

Pyr_mt <=> -6.35 14.65 <=> -6.35 14.65 <=> -6.35 -0.01  => 

PDH_mt <=> -42.94 25.45 <=> -42.94 19.47 <=> -39.31 -0.01  => 

R00261 <=> -18.05 2.93 <=> -18.05 2.92 <=> -13.44 -3.49  => 

R00713 <=> -30.68 10.98 <=> -30.68 10.98 <=> -26.05 4.36 <=> 

R01648 <=> -14.36 11.66 <=> -14.36 11.66 <=> -5.49 4.01 <=> 

GABAt_mt <=> -13.93 7.26 <=> -13.93 7.26 <=> -4.47 -2.20  => 
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Table 5. Table of ΔrG’"ranges obtained as a result of TVA studies 

* − minimal growth yield was fixed to 0.042 that was 1% of the maximal yield model predicted with unconstrained uptake rates 
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List of the KEGG orthology identifiers that were annotated not in all four malaria species 
K04748 nitric-oxide reductase NorQ protein [EC:1.7.99.7] 
K00472 prolyl 4-hydroxylase [EC:1.14.11.2] 
K14582 cis-1,2-dihydro-1,2-dihydroxynaphthalene/dibenzothiophene 
dihydrodiol dehydrogenase [EC:1.3.1.29 1.3.1.60] 
K15238 2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase 2 
[EC:1.3.1.-] 
K14373 C-5 ketoreductase 
K10247 elongation of very long chain fatty acids protein 1 
K02827 quinol oxidase polypeptide I [EC:1.9.3.-] 
K14746 (S)-1-phenylethanol dehydrogenase [EC:1.1.-.-] 
K03434 N-acetylglucosaminylphosphatidylinositol deacetylase 
[EC:3.5.1.89] 
K15237 2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase 1 
[EC:1.3.1.-] 
K15373 sulfoacetaldehyde reductase [EC:1.1.1.313] 
K00081 prostaglandin-E2 9-reductase [EC:1.1.1.189] 
K10617 p-cumic alcohol dehydrogenase 
K07441 beta-1,4-N-acetylglucosaminyltransferase [EC:2.4.1.141] 
K09882 cobaltochelatase CobS [EC:6.6.1.2] 
K13070 momilactone-A synthase [EC:1.1.1.295] 
K13657 alpha-1,3-mannosyltransferase [EC:2.4.1.-] 
K11991 tRNA-specific adenosine deaminase [EC:3.5.4.-] 
K11146 dehydrogenase/reductase SDR family member 3 [EC:1.1.-.-] 
K02276 cytochrome c oxidase subunit III [EC:1.9.3.1] 
K10620 2,3-dihydroxy-2,3-dihydro-p-cumate dehydrogenase 
[EC:1.3.1.58] 
K08281 nicotinamidase/pyrazinamidase [EC:3.5.1.19 3.5.1.-] 
K08723 5'-nucleotidase [EC:3.1.3.5] 
K13775 citronellol/citronellal dehydrogenase 
K01511 ectonucleoside triphosphate diphosphohydrolase 5/6 
[EC:3.6.1.6] 
K11151 retinol dehydrogenase 10 [EC:1.1.1.-] 
K00920 1-phosphatidylinositol-5-phosphate 4-kinase [EC:2.7.1.149] 
K11150 retinol dehydrogenase 8 [EC:1.1.1.-] 
K13606 chlorophyll(ide) b reductase [EC:1.1.1.294] 
K03524 BirA family transcriptional regulator, biotin operon repressor / 
biotin-[acetyl-CoA-carboxylase] ligase [EC:6.3.4.15] 
K01510 apyrase [EC:3.6.1.5] 
K01609 indole-3-glycerol phosphate synthase [EC:4.1.1.48] 
K13298 dual 3',5'-cyclic-AMP and -GMP phosphodiesterase 11 
[EC:3.1.4.17 3.1.4.35] 
K00231 protoporphyrinogen oxidase [EC:1.3.3.4] 
K12343 3-oxo-5-alpha-steroid 4-dehydrogenase 1 [EC:1.3.99.5] 
K05711 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase 
[EC:1.3.1.-] 
K01106 inositol-1,4,5-trisphosphate 5-phosphatase [EC:3.1.3.56] 
K01500 N/A 
K02274 cytochrome c oxidase subunit I [EC:1.9.3.1] 
K08261 D-sorbitol dehydrogenase (acceptor) [EC:1.1.99.21] 
K02502 ATP phosphoribosyltransferase regulatory subunit 
K13367 non-specific polyamine oxidase [EC:1.5.3.17] 
K15730 cytosolic prostaglandin-E synthase [EC:5.3.99.3] 
K16269 cis-1,2-dihydrobenzene-1,2-diol dehydrogenase [EC:1.3.1.19] 
K12344 3-oxo-5-alpha-steroid 4-dehydrogenase 2 [EC:1.3.99.5] 
K09186 histone-lysine N-methyltransferase MLL1 [EC:2.1.1.43] 
K01495 GTP cyclohydrolase I [EC:3.5.4.16] 
K13712 phosphatidylinositol-4-phosphate 5-kinase-like protein 1 
[EC:2.7.1.68] 
K09841 xanthoxin dehydrogenase [EC:1.1.1.288] 
K01954 carbamoyl-phosphate synthase [EC:6.3.5.5] 
K01256 aminopeptidase N [EC:3.4.11.2] 
K00264 glutamate synthase (NADPH/NADH) [EC:1.4.1.13 1.4.1.14] 
K11420 euchromatic histone-lysine N-methyltransferase [EC:2.1.1.43] 
K03688 ubiquinone biosynthesis protein 
K00525 ribonucleoside-diphosphate reductase alpha chain [EC:1.17.4.1] 
K07758 pyridoxal phosphatase [EC:3.1.3.74] 
K00265 glutamate synthase (NADPH/NADH) large chain [EC:1.4.1.13 
1.4.1.14] 
K10808 ribonucleoside-diphosphate reductase subunit M2 [EC:1.17.4.1] 
K01872 alanyl-tRNA synthetase [EC:6.1.1.7] 
K01968 3-methylcrotonyl-CoA carboxylase alpha subunit [EC:6.4.1.4] 
K10526 OPC-8:0 CoA ligase 1 [EC:6.2.1.-] 
K00941 hydroxymethylpyrimidine/phosphomethylpyrimidine kinase 
[EC:2.7.1.49 2.7.4.7] 
K00788 thiamine-phosphate pyrophosphorylase [EC:2.5.1.3] 
K11157 patatin-like phospholipase domain-containing protein 4 
[EC:3.1.1.-] 
K15095 (+)-neomenthol dehydrogenase [EC:1.1.1.208] 

K05929 phosphoethanolamine N-methyltransferase [EC:2.1.1.103] 
K10245 fatty acid elongase 2 [EC:2.3.1.-] 
K11423 histone-lysine N-methyltransferase SETD2 [EC:2.1.1.43] 
K14154 thiamine-phosphate diphosphorylase / hydroxyethylthiazole 
kinase [EC:2.5.1.3 2.7.1.50] 
K05928 tocopherol O-methyltransferase [EC:2.1.1.95] 
K00878 hydroxyethylthiazole kinase [EC:2.7.1.50] 
K00911 1D-myo-inositol-triphosphate 3-kinase [EC:2.7.1.127] 
K02613 phenylacetic acid degradation NADH oxidoreductase 
K00877 hydroxymethylpyrimidine/phosphomethylpyrimidine kinase 
[EC:2.7.1.49 2.7.4.7] 
K07537 cyclohexa-1,5-dienecarbonyl-CoA hydratase [EC:4.2.1.100] 
K14338 cytochrome P450 / NADPH-cytochrome P450 reductase 
[EC:1.14.14.1 1.6.2.4] 
K10203 elongation of very long chain fatty acids protein 6 [EC:2.3.1.-] 
K12454 CDP-paratose 2-epimerase [EC:5.1.3.10] 
K05297 rubredoxin-NAD+ reductase [EC:1.18.1.1] 
K15634 probable phosphoglycerate mutase [EC:5.4.2.12] 
K16343 calcium-independent phospholipase A2 [EC:3.1.1.4] 
K01577 oxalyl-CoA decarboxylase [EC:4.1.1.8] 
K17218 sulfide:quinone oxidoreductase [EC:1.8.5.-] 
K02361 isochorismate synthase [EC:5.4.4.2] 
K05607 methylglutaconyl-CoA hydratase [EC:4.2.1.18] 
K02636 cytochrome b6-f complex iron-sulfur subunit [EC:1.10.99.1] 
K01097 N-acylneuraminate-9-phosphatase [EC:3.1.3.29] 
K08690 cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase [EC:1.3.1.56] 
K01674 carbonic anhydrase [EC:4.2.1.1] 
K13043 N-succinyl-L-ornithine transcarbamylase [EC:2.1.3.11] 
K01916 NAD+ synthase [EC:6.3.1.5] 
K01672 carbonic anhydrase [EC:4.2.1.1] 
K01099 phosphatidylinositol-bisphosphatase [EC:3.1.3.36] 
K00263 leucine dehydrogenase [EC:1.4.1.9] 
K00072 sepiapterin reductase [EC:1.1.1.153] 
K10205 elongation of very long chain fatty acids protein 2 [EC:2.3.1.-] 
K00292 saccharopine dehydrogenase (NAD+, L-glutamate forming) 
[EC:1.5.1.9] 
K10244 elongation of very long chain fatty acids protein 5 [EC:2.3.1.-] 
K07252 dolichyldiphosphatase [EC:3.6.1.43] 
K05858 phospholipase C, beta [EC:3.1.4.11] 
K00679 phospholipid:diacylglycerol acyltransferase [EC:2.3.1.158] 
K04075 tRNA(Ile)-lysidine synthase [EC:6.3.4.-] 
K07546 E-phenylitaconyl-CoA hydratase [EC:4.2.1.-] 
K13767 enoyl-CoA hydratase [EC:4.2.1.17] 
K00547 homocysteine S-methyltransferase [EC:2.1.1.10] 
K00826 branched-chain amino acid aminotransferase [EC:2.6.1.42] 
K01457 allophanate hydrolase [EC:3.5.1.54] 
K01715 3-hydroxybutyryl-CoA dehydratase [EC:4.2.1.55] 
K01906 6-carboxyhexanoate--CoA ligase [EC:6.2.1.14] 
K07511 enoyl-CoA hydratase [EC:4.2.1.17] 
K00795 farnesyl diphosphate synthase [EC:2.5.1.1 2.5.1.10] 
K01692 enoyl-CoA hydratase [EC:4.2.1.17] 
K03367 D-alanine--poly(phosphoribitol) ligase subunit 1 [EC:6.1.1.13] 
K16951 anaerobic sulfite reductase subunit B 
K00608 aspartate carbamoyltransferase [EC:2.1.3.2] 
K01759 lactoylglutathione lyase [EC:4.4.1.5] 
K13675 UDP-glucose:O-linked fucose beta-1,3-glucosyltransferase 
[EC:2.4.1.-] 
K13427 nitric-oxide synthase, plant [EC:1.14.13.39] 
K12305 ectonucleoside triphosphate diphosphohydrolase 4 [EC:3.6.1.6] 
K10797 2-enoate reductase [EC:1.3.1.31] 
K15016 enoyl-CoA hydratase / 3-hydroxyacyl-CoA dehydrogenase 
[EC:4.2.1.17 1.1.1.35] 
K00011 aldehyde reductase [EC:1.1.1.21] 
K13510 lysophosphatidylcholine acyltransferase / lyso-PAF 
acetyltransferase [EC:2.3.1.23 2.3.1.67] 
K00963 UTP--glucose-1-phosphate uridylyltransferase [EC:2.7.7.9] 
K10837 O-phosphoseryl-tRNA(Sec) kinase [EC:2.7.1.164] 
K13239 peroxisomal 3,2-trans-enoyl-CoA isomerase [EC:5.3.3.8] 
K01934 5-formyltetrahydrofolate cyclo-ligase [EC:6.3.3.2] 
K08098 phosphatidylinositol glycan, class Z [EC:2.4.1.-] 
K01052 lysosomal acid lipase/cholesteryl ester hydrolase [EC:3.1.1.13] 
K00042 2-hydroxy-3-oxopropionate reductase [EC:1.1.1.60] 
K13699 abhydrolase domain-containing protein 5 [EC:2.3.1.51] 
K09591 probable steroid reductase DET2 [EC:1.3.99.-] 
K13766 methylglutaconyl-CoA hydratase [EC:4.2.1.18] 
K03272 D-beta-D-heptose 7-phosphate kinase / D-beta-D-heptose 1-
phosphate adenosyltransferase [EC:2.7.1.- 2.7.7.-] 
K16880 2-oxoglutaroyl-CoA hydrolase 

  



 

159 

Appendix 3. Methods, materials and protocols 

Cloning of DNA constructs 

All amplifications were performed with LA Taq (TaKaRa) polymerase and primers used are 

listed in Table 7, Appendix 4. 

Knockin and knockdown of TgRK (pKI-TgRK-3Ty-LoxP-3’UTR-LoxP-U1): Genomic 

fragment of TgRK (TGME49_216740) was amplified using primers 4869/4770 and 

subsequently digested with KpnI and SbfI prior to cloning in the same sites of the modified 

C-terminal destabilization vector pG152-3Ty-LoxP-3’UTRSag1-HXGPRT-LoxP-U1 [278]. 

Prior to transfection the plasmid was linearized with NsiI. 

Knockin and knockdown of TgFMNAT (pKI-TgFMNAT-3Ty-LoxP-3’UTR-LoxP-U1): 

Genomic fragment of TgFMNAT (TGME49_214280) was amplified using primers 4871/4772 

and subsequently digested with KpnI and SbfI prior to cloning in the same sites of the 

modified C-terminal destabilization vector pG152-3Ty-LoxP-3’UTRSag1-HXGPRT-LoxP-

U1 [278]. Prior to transfection the plasmid was linearized with BssHII. 

Knockout of TgFMNAT using CRISPR/CAS9 plasmid [146] : This vector has been generated 

using the Q5 site-directed mutagenesis kit (New England Biolabs) with the vector 

pSAG1::CAS9-U6::sgUPRT as template (a gift from Dr. L. D. Sibley). The UPRT-targeting 

gRNA was replaced by the TgFMNAT (TGME49_214280) specific gRNA using the primer 

pair 4997/4883 (gRNA sequence is underlined in Table 7). 

Parasite transfection and selection of stable transformants 

Parasite transfections were performed by electroporation as previously described [143].The 

hxgprt gene was used as a positive selectable marker in the presence of mycophenolic acid 

(25 µg/mL) and xanthine (50 µg/mL) for pKI-TgRK-3Ty-LoxP-3’UTR-LoxP-U1 and pKI-

TgFMNAT-3Ty-LoxP-3’UTR-LoxP-U1 vectors transfected in Ku80ko tachyzoites as 

previously described [279]. 

Resistant parasites were cloned by limiting dilution in 96 well plates and clones were 

assessed by PCR using their genomic DNA. 

To efficiently disrupt the TgFMNAT locus, 8 µg of the TgFMNAT gRNA-specific 

Crispr/Cas9 vector and with 30 µg of DHFR selection cassette were transfected into wild 
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type RH parasites. This DHFR selection cassette obtained by PCR (using p2851 plasmid as a 

template, primers 4998-4999) and contained point mutations, which confer resistance to 

pyrimethamine; it was also flanked by 28 nt long homology arms to TgFMNAT on each side. 

48 hours after transfection, GFP positive parasites were sorted by flow cytometry and cloned 

into 96 well plates using a Moflo Astrios (Beckman Coulter). Medium for the cloning 

contained 0.25 µM of pyrimethamine for selection of the parasites that repaired the double 

strand break made by Cas9 using homologous template with mutated DHFR. 

Preparation of T. gondii  genomic DNA  

Genomic DNA was prepared from tachyzoites using the Wizard SV genomic DNA 

purification system (Promega). Correct integration of the different constructs into the genome 

of the various strains was determined by genomic PCR using GoTaq Green Master Mix 

(Promega). 

Antibodies 

The antibodies used in this study were described previously as follows: polyclonal rabbit 

anti-GAP45, rabbit anti-TgProfilin [280], monoclonal mouse anti-Ty (BB2), mouse 

monoclonal anti-F1-ATPase beta subunit (P. Bradley, unpublished) (5F4), mouse monoclonal 

anti-ATrx1 11G8 [281]. For Western blot analyses, secondary peroxidase conjugated goat 

anti-rabbit or mouse antibodies (Molecular Probes) were used. For immunofluorescence 

analyses, the secondary antibodies Alexa Fluor 488 and Alexa Fluor 594-conjugated goat 

anti-mouse or rabbit antibodies (Molecular Probes) were used. 

Immunofluorescence assay (IFA) and confocal microscopy 

Parasite-infected HFF cells seeded on cover slips were fixed with 4% 

paraformaldehyde/0.05% glutaraldehyde (PFA/Glu) in PBS. Fixed cells were then processed 

as previously described [282]. Confocal images were generated with a Zeiss (LSM700, 

objective apochromat 63x/1.4 oil) laser scanning confocal microscope at the Bioimaging core 

facility of the Faculty of Medicine, University of Geneva. Stacks of sections were processed 

with ImageJ and projected using the maximum projection tool. 

Western blot analyses 

Parasites were lysed in PBS-1% Triton X-100 and mixed with SDS–PAGE loading buffer 

under reducing conditions. The suspension was subjected to sonication on ice. SDS-PAGE 
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was performed using standard methods. Separated proteins were transferred to nitrocellulose 

membranes and probed with appropriate antibodies in 5% non-fat milk in PBS-0.05% 

Tween20. Bound secondary peroxidase conjugated antibodies were visualized using the 

SuperSignal (Pierce). 

Fractionation analyses 

Parasites were harvested upon lysis of confluent monolayer of HFF cells from one 6 cm plate, 

precipitated by centrifugation at 3000 rpm for 5 min, and washed once with PBS. The pellets 

were resuspended in 300 µl of SoTE (20 mM Tris-HCl, pH 7.5, 0.6 M Sorbitol, 2mM EDTA) 

and split in 3 aliquots of 100 µl. 100 ul of 0.01% digitonin was added to the first aliquot, the 

same volume of the 0.05% digitonin to the second and 100 µl of SoTE to the third. The 

content of the tubes with digitonin was mixed by inverting once and precipitated by 

centrifugation at 8000 rpm for 10 min. Collected supernatant contained the proteins of the 

cytosolic fraction. The pellets containing organellar fraction of the proteins were resuspended 

in 200 µl of SoTE. 40 µl of the sample buffer and 10 µl of DTT were added to the 

suspensions of cytosolic, organellar fractions and the one not treated with digitonin. Volume 

of the untreated sample was adjusted by adding SoTE to be equal to the treated samples. For 

separation of the proteins electrophoresis in 10% acrylamide gel was used followed by wet 

transfer of the proteins from the gel to a membrane. The first immunoblot was performed 

essentialy as described above with the anti-Ty and anti-TgProfilin primary antibodies, and 

anti-mouse HRP and anti-rabbit YFP secondary antibodies for detection. Subsequently, the 

antibodies were stripped from the membrane by treatment 30 min treatment with 10 ml of 2% 

SDS-PBS and 60 µl of beta-mercaptoethanol at room temperature. After washing the 

membrane with PBS-Tween, anti-Cpn60 and anti-HSP70 primary antibodies were applied. 

For visualization secondary anti-Rabbit-YFP antibody was used. 
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Appendix 4. Primers and sequencing results 

Cloning 
Identifier Sequence 5’!3’ 

4869 GCCGGTACCCTTACACACCTTGCCGAACG 

 
4870 GCCCCTGCAGGGAGACTCGAAGTGTGTGGCG 
4871 GCCGGTACCCACTCTCGATCTTCGCTTCTG 
4872 GCCCCTGCAGGGTTTCTTCCAGATCTTTCATCTGCCC 
5104 CTTCTCGTCTCCCTGTATCC 
4994 GGCATGCATTTCTTCCAGATCTTTCATCTGCCC 
4995 GCCATGCATATGGCGCCGCGCTAACTGATTC 
4997 GGAACAAGACTCTAACCGCTGTTTTAGAGCTAGAAATAGC 
4883 AACTTGACATCCCCATTTAC 
4993 GGCGAATTCCGACTTCAATGCGATTGCGTTTCACG 
4998 GAAGGGCGACATCGTCGGCGAGGAGTTCGCGGCCGCTCTA 

GAACTAGTG 
4999 CGAGTTCGAACTCGTTTGCAGTGTGCTCGCGGAAGATCCG 

ATCTTGCTGC 
PCR analyses 

 Sequence 5’!3’ 

4950 GAACACTTCGGTGACCATTG 
4951 CTCTCTTGTGTCTCGCTTCC 
p30a CAGTTTCTTTATAATGGGGC 

M13F GTAAAACGACGGCCAGT 
4952 TGAGGCCCGCTGGTATTTC 

4953 AGAGTGATAACGGTCGAGC 
p30a CAGTTTCTTTATAATGGGGC 

M13F GTAAAACGACGGCCAGT 
4872 GCCCCTGCAGGGTTTCTTCCAGATCTTTCATCTGCCC 
4996 GGCGAATTCATGGCGCCAGAGAGACAGGGCGATG 
2087 ACTGCCTGGAATCCTGCAGCGC 

2018 CTTGGGGGTCATCGCGACGACCAGAC 

 
Table 7. Primers used in the experimental study on TgRK and TgFMNAT 
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Appendix 5. Visualization of ToxoNet1 using KEGG mapper 

One of the current limitations of large-scale metabolic models is the lack of a visual and 

intuitive way to illustrate model’s content and specific flux distributions. Herein I provide a 

snapshot of a partial solution to this issue. KEGG mapper allows visualization of the list of 

E.C. entries, K-identifiers or KEGG reaction identifiers by highlighting them on KEGG 

metabolic maps. Such lists of the entries are present for example in ToxoNet1 can and be 

easily extracted, treated such that no duplicated entries are present and visualized using 

KEGG mapper. 

This web-based software is available at http://www.genome.jp/kegg/tool/map_pathway2.html 

Herein I provide the list of unique E.C. numbers, which can be used as an input for the 

KEGG Mapper to obtain a visual representation of the metabolic capabilities of T. gondii 

present in ToxoNet1 (see 5 selected figures below). 

1.1.1.- 1.1.1.1 1.1.1.100 1.1.1.102 1.1.1.105 1.1.1.125 1.1.1.127 1.1.1.146 1.1.1.153 1.1.1.157 1.1.1.169 1.1.1.178 1.1.1.184 1.1.1.189 
1.1.1.2 1.1.1.205 1.1.1.21 1.1.1.211 1.1.1.220 1.1.1.25 1.1.1.26 1.1.1.267 1.1.1.27 1.1.1.271 1.1.1.272 1.1.1.282 1.1.1.283 1.1.1.284 1.1.1.29 
1.1.1.299 1.1.1.3 1.1.1.300 1.1.1.307 1.1.1.31 1.1.1.310 1.1.1.330 1.1.1.35 1.1.1.351 1.1.1.36 1.1.1.37 1.1.1.42 1.1.1.44 1.1.1.47 1.1.1.49 
1.1.1.51 1.1.1.60 1.1.1.62 1.1.1.71 1.1.1.72 1.1.1.78 1.1.1.79 1.1.1.8 1.1.1.81 1.1.1.94 1.1.1.95 1.1.4.1 1.1.5.3 1.1.5.4 1.1.99.1 1.10.2.2 
1.11.1.- 1.11.1.15 1.11.1.21 1.11.1.6 1.11.1.7 1.11.1.9 1.14.-.- 1.14.11.2 1.14.12.- 1.14.12.1 1.14.12.11 1.14.12.18 1.14.12.19 1.14.12.3 
1.14.13.- 1.14.16.1 1.14.16.2 1.14.16.4 1.14.19.1 1.14.19.2 1.15.1.1 1.16.1.8 1.17.1.2 1.17.1.8 1.17.4.1 1.17.7.1 1.18.1.1 1.18.1.2 1.18.1.3 
1.18.1.4 1.18.1.6 1.2.1.- 1.2.1.11 1.2.1.12 1.2.1.16 1.2.1.18 1.2.1.19 1.2.1.24 1.2.1.27 1.2.1.29 1.2.1.3 1.2.1.36 1.2.1.39 1.2.1.4 1.2.1.41 
1.2.1.5 1.2.1.53 1.2.1.59 1.2.1.79 1.2.1.8 1.2.1.88 1.2.4.1 1.2.4.2 1.2.4.4 1.3.1.10 1.3.1.20 1.3.1.22 1.3.1.33 1.3.1.38 1.3.1.9 1.3.1.93 1.3.3.1 
1.3.3.3 1.3.3.4 1.3.3.6 1.3.5.1 1.3.5.2 1.3.8.1 1.3.8.4 1.3.8.6 1.3.8.7 1.3.8.8 1.3.8.9 1.3.99.- 1.3.99.1 1.3.99.12 1.3.99.22 1.4.1.1 1.4.1.13 
1.4.1.14 1.4.1.2 1.4.1.3 1.4.1.4 1.4.3.5 1.4.4.2 1.5.1.2 1.5.1.3 1.5.1.34 1.5.1.5 1.5.1.7 1.5.1.9 1.5.99.8 1.6.1.1 1.6.1.2 1.6.2.2 1.6.2.4 1.6.5.3 
1.6.5.4 1.7.1.1 1.7.1.2 1.7.1.3 1.7.1.4 1.8.1.2 1.8.1.4 1.8.1.7 1.8.1.9 1.8.3.1 1.8.3.5 1.8.3.6 1.9.3.1 2.1.1.10 2.1.1.114 2.1.1.13 2.1.1.201 
2.1.1.222 2.1.1.43 2.1.1.45 2.1.1.59 2.1.1.60 2.1.1.64 2.1.1.98 2.1.2.1 2.1.2.10 2.1.2.11 2.1.2.8 2.1.2.9 2.1.3.2 2.10.1.1 2.2.1.1 2.2.1.2 2.2.1.3 
2.2.1.6 2.2.1.7 2.3.-.- 2.3.1.- 2.3.1.12 2.3.1.15 2.3.1.155 2.3.1.16 2.3.1.168 2.3.1.174 2.3.1.179 2.3.1.180 2.3.1.181 2.3.1.199 2.3.1.20 
2.3.1.24 2.3.1.26 2.3.1.31 2.3.1.37 2.3.1.38 2.3.1.39 2.3.1.4 2.3.1.41 2.3.1.47 2.3.1.50 2.3.1.51 2.3.1.61 2.3.1.85 2.3.1.86 2.3.1.9 2.3.3.1 
2.3.3.3 2.3.3.5 2.3.3.8 2.4.1.- 2.4.1.1 2.4.1.117 2.4.1.132 2.4.1.141 2.4.1.142 2.4.1.15 2.4.1.18 2.4.1.198 2.4.1.256 2.4.1.257 2.4.1.265 
2.4.1.267 2.4.1.41 2.4.1.83 2.4.2.- 2.4.2.1 2.4.2.10 2.4.2.15 2.4.2.2 2.4.2.23 2.4.2.29 2.4.2.3 2.4.2.4 2.4.2.8 2.4.2.9 2.4.99.18 2.5.1.- 2.5.1.1 
2.5.1.10 2.5.1.15 2.5.1.19 2.5.1.29 2.5.1.30 2.5.1.31 2.5.1.39 2.5.1.47 2.5.1.48 2.5.1.49 2.5.1.54 2.5.1.58 2.5.1.6 2.5.1.61 2.5.1.65 2.5.1.75 
2.5.1.81 2.5.1.82 2.5.1.83 2.5.1.84 2.5.1.85 2.5.1.91 2.6.1.1 2.6.1.13 2.6.1.16 2.6.1.19 2.6.1.2 2.6.1.23 2.6.1.39 2.6.1.4 2.6.1.42 2.6.1.44 
2.6.1.45 2.6.1.5 2.6.1.51 2.6.1.52 2.6.1.57 2.6.1.6 2.6.1.67 2.6.1.83 2.6.1.85 2.6.1.9 2.7.1.1 2.7.1.107 2.7.1.11 2.7.1.137 2.7.1.144 2.7.1.148 
2.7.1.15 2.7.1.151 2.7.1.2 2.7.1.20 2.7.1.23 2.7.1.24 2.7.1.25 2.7.1.26 2.7.1.30 2.7.1.31 2.7.1.32 2.7.1.33 2.7.1.34 2.7.1.35 2.7.1.39 2.7.1.4 
2.7.1.40 2.7.1.56 2.7.1.6 2.7.1.67 2.7.1.68 2.7.1.7 2.7.1.71 2.7.1.74 2.7.1.8 2.7.1.82 2.7.1.90 2.7.2.11 2.7.2.3 2.7.2.4 2.7.4.10 2.7.4.11 
2.7.4.12 2.7.4.14 2.7.4.15 2.7.4.22 2.7.4.24 2.7.4.25 2.7.4.3 2.7.4.4 2.7.4.6 2.7.4.8 2.7.4.9 2.7.6.1 2.7.6.2 2.7.6.3 2.7.7.1 2.7.7.13 2.7.7.14 
2.7.7.15 2.7.7.18 2.7.7.2 2.7.7.23 2.7.7.27 2.7.7.3 2.7.7.4 2.7.7.41 2.7.7.44 2.7.7.60 2.7.7.63 2.7.7.64 2.7.7.73 2.7.7.9 2.7.8.- 2.7.8.1 2.7.8.11 
2.7.8.15 2.7.8.2 2.7.8.27 2.7.8.29 2.7.8.3 2.7.8.5 2.7.8.7 2.7.9.3 2.8.1.1 2.8.1.2 2.8.1.7 2.8.1.8 2.9.1.2 3.1.1.- 3.1.1.13 3.1.1.3 3.1.1.31 3.1.1.4 
3.1.1.47 3.1.1.5 3.1.1.92 3.1.2.14 3.1.2.2 3.1.2.21 3.1.2.22 3.1.2.4 3.1.2.6 3.1.3.- 3.1.3.1 3.1.3.11 3.1.3.12 3.1.3.13 3.1.3.2 3.1.3.25 3.1.3.3 
3.1.3.35 3.1.3.37 3.1.3.4 3.1.3.41 3.1.3.5 3.1.3.7 3.1.3.73 3.1.3.74 3.1.3.81 3.1.4.11 3.1.4.17 3.1.4.2 3.1.4.35 3.1.4.46 3.1.4.53 3.1.4.55 
3.2.1.106 3.2.1.33 3.2.1.49 3.2.1.84 3.3.1.1 3.4.11.1 3.4.11.2 3.4.11.23 3.4.13.- 3.4.22.- 3.4.24.84 3.5.1.1 3.5.1.111 3.5.1.19 3.5.1.2 3.5.1.3 
3.5.1.31 3.5.1.38 3.5.1.47 3.5.1.63 3.5.1.89 3.5.2.3 3.5.3.1 3.5.4.- 3.5.4.12 3.5.4.16 3.5.4.17 3.5.4.4 3.5.4.5 3.5.4.6 3.5.4.9 3.5.5.4 3.5.99.6 
3.6.1.- 3.6.1.1 3.6.1.13 3.6.1.14 3.6.1.15 3.6.1.17 3.6.1.19 3.6.1.21 3.6.1.23 3.6.1.29 3.6.1.3 3.6.1.39 3.6.1.42 3.6.1.5 3.6.1.53 3.6.1.6 
3.6.1.61 3.6.1.64 3.6.1.7 3.6.1.8 3.6.3.1 3.6.5.1 3.6.5.2 3.6.5.3 4.1.1.- 4.1.1.1 4.1.1.15 4.1.1.18 4.1.1.19 4.1.1.20 4.1.1.23 4.1.1.31 4.1.1.36 
4.1.1.37 4.1.1.49 4.1.1.65 4.1.1.81 4.1.2.13 4.1.2.25 4.1.2.4 4.1.3.26 4.1.3.30 4.1.3.38 4.1.3.4 4.1.3.40 4.1.99.18 4.2.1.1 4.2.1.10 4.2.1.107 
4.2.1.11 4.2.1.116 4.2.1.134 4.2.1.17 4.2.1.18 4.2.1.2 4.2.1.22 4.2.1.24 4.2.1.3 4.2.1.4 4.2.1.47 4.2.1.55 4.2.1.59 4.2.1.74 4.2.1.75 4.2.1.79 
4.2.1.96 4.2.1.99 4.2.3.1 4.2.3.12 4.2.3.3 4.2.3.4 4.2.3.5 4.3.2.2 4.3.3.6 4.3.3.7 4.4.1.1 4.4.1.11 4.4.1.16 4.4.1.17 4.4.1.2 4.4.1.5 4.4.1.8 
4.6.1.1 4.6.1.12 4.6.1.2 4.99.1.1 5.1.1.7 5.1.3.1 5.1.3.15 5.1.3.2 5.3.1.1 5.3.1.6 5.3.1.8 5.3.1.9 5.3.2.1 5.3.99.3 5.4.2.1 5.4.2.11 5.4.2.12 
5.4.2.2 5.4.2.3 5.4.2.4 5.4.2.5 5.4.2.7 5.4.2.8 6.1.1.1 6.1.1.10 6.1.1.11 6.1.1.12 6.1.1.14 6.1.1.15 6.1.1.16 6.1.1.17 6.1.1.18 6.1.1.19 6.1.1.2 
6.1.1.20 6.1.1.21 6.1.1.22 6.1.1.23 6.1.1.24 6.1.1.3 6.1.1.4 6.1.1.5 6.1.1.6 6.1.1.7 6.1.1.9 6.2.1.- 6.2.1.1 6.2.1.16 6.2.1.17 6.2.1.3 6.2.1.36 
6.2.1.4 6.2.1.5 6.3.1.2 6.3.2.1 6.3.2.12 6.3.2.17 6.3.2.2 6.3.2.3 6.3.2.5 6.3.3.2 6.3.4.14 6.3.4.16 6.3.4.2 6.3.4.21 6.3.4.4 6.3.5.1 6.3.5.2 6.3.5.4 
6.3.5.5 6.3.5.6 6.3.5.7 6.4.1.1 6.4.1.2 6.4.1.3 6.4.1.4 
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