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Abstract. A rigorous quantum description of molecular dynamics with a particular emphasis on internal
observables is developed accounting explicitly for kinetic couplings between nuclei and electrons. Rota-
tional modes are treated in a genuinely quantum framework by defining a molecular orientation operator.
Canonical rotational commutation relations are established explicitly. Moreover, physical constraints are
imposed on the observables in order to define the state of a molecular system located in the neighborhood
of the ground state defined by the equilibrium condition.

1 Introduction

The dynamics of quantum molecular systems has been
studied analytically and numerically for decades. Molec-
ular rotations are usually characterised by Euler angles
defined with respect to a molecular reference frame [1-4]
and kinetic couplings between nuclei and electrons are ne-
glected. However, in order to make a precise quantum
description of molecular dynamics, these couplings have
to be taken explicitly into account, which leads to quan-
tum deviations in the commutation relations. It is also
important to recognise that the notion of a molecular ref-
erence frame is inconsistent with quantum physics, due
to nonlocality. For the same reason, the orientation of a
molecule cannot be described simply using Euler angles
as in a classical framework. In order to treat rotational
states of molecular systems in a genuine quantum frame-
work, the orientation and rotation of a molecule has to be
described using operators. This is done in this article.
Rotational states of molecular systems are currently of
great interest. For example, in small molecular systems at
low temperature, the rotational degrees of freedom play
an important role since they can be distinguished experi-
mentally from the vibrational degrees of freedom. Due to
technological improvement, the distinction between these
degrees of freedom became increasingly important in the
last decade. Rotating atoms [5], rotating molecules [6,7],
rotating trapped Bose-Einstein condensates [8] and even
rotating microgyroscopes [9] are currently studied experi-
mentally and are attracting much attention. For example,
physisorbed Hy, HD and D5 on a substrate at low tem-
perature form a honeycomb lattice and rotational spec-
troscopy revealed a resonance width of Hs twice as large
as the resonance widths of HD and Dy [5]. The theoretical
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explanation requires a rigorous quantum formalism with
a genuine quantum treatment of molecular rotations.

A semi-classical approach is commonly used for the
description of molecular dynamics [10-12]. An important
shortcoming of such an approach is that it requires the
rotational states to be in an eigenstate, thus imposing se-
vere restrictions on the dynamics. Rotational states play
an important role for low temperature spectroscopy [2], for
THz spectroscopy [13], for molecular magnetism [14] and
for molecular superrotors [15]. In order to establish a gen-
uine quantum description of rotational molecular states,
a molecular rotation operator has to be introduced.

Here, we develop a rigorous quantum description of
molecule with a particular emphasis on internal observ-
ables. In this description, the vibrational and rotational
modes are described by operators associated to the defor-
mation and orientation of the molecule. The set of internal
observables is related explicitly to the set of observables
associated to nuclei and electrons through a rotation op-
erator. The internal observables are chosen in order to
satisfy canonical commutation relations in translation and
rotation. Moreover, in order to define the state of a molec-
ular system, physical constraints need to be imposed on
the observables. In fact, the amplitudes of the vibrational
modes of a molecular system have to be sufficiently small.

The quantum molecular description presented in this
publication is expected to be relevant for extremely fast
rotating molecular systems exhibiting a large orbital angu-
lar momentum. Such systems, called “superrotors”, have
been observed for the molecules listed in Table 1. The
molecular orbital angular momentum depends in part on
internal vibrations, as we will show below. Thus, this de-
scription is of importance for molecules with large vibra-
tion amplitudes. This can be realised for molecules with
weak bonds, such as van der Waals bonds. The present
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Table 1. Molecular systems.
Type Molecules References
Oz, No [15]
Superrotors €02 [16]
NO2 [17]
Clz [18]
PDT [19]
CH3CCl3 [20]
Ne—D2O [21]
CH,CNH [22]
Coriolis CoHoDo [23]
CoH3F [24]
FHF, FDF [25]
CsHs, C5H7D [26]

quantum molecular formalism is expected also to be im-
portant for molecular systems, listed in Table 1, for which
the “Coriolis interaction” leads to a large rotational-
vibrational coupling.

The structure of this publication is the following. In
Section 2, we formally describe the dynamics of a system
of N nuclei and n electrons. In Section 3, we define the
internal observables in order to obtain canonical commu-
tations relations in translation and rotation. Section 4 is
devoted to the description of the dynamics of the molecu-
lar system in terms of the internal observables. Finally, in
Section 5, we determine the equilibrium conditions that
define the molecular ground state and we define explic-
itly the angular frequency of the vibrational modes of the
molecular system.

2 Quantum description of a system
of N nuclei and n electrons

The quantum dynamics of a molecular system consisting
of N nuclei and n electrons is obtained from the classi-
cal dynamics by applying the “correspondence principle”.
The Hilbert subspaces describing the nuclei and the elec-
trons are denoted Ha and H. respectively. The Hilbert
space describing the whole system is expressed as:

H:HN®H€' (1)

To investigate the molecular kinematics, it is not restric-
tive to assume that the nuclei are N discernible particles
denoted by an index p = 1,..., N. These particles have
a mass M, an electric charges Z,(—e) and a spin S,.
The symbol e represents the electronic electric charge in-
cluding its sign and Z,, denotes the atomic number of the
nucleus pu.

The Hilbert subspace H,. associated to the electrons
is assumed to be isomorphic to the tensor product of n
one-electron Hilbert spaces, i.e.

H, ~ (LQ([R3,d3:c) ® C2)®n N L2(|R3n,d3nm) ® C2".
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In fact, the Hilbert spaces describing the electrons are
totally antisymmetric subspaces of H.. For a molecular
system, the contribution of the overlap integrals between
the nuclei is negligible. Thus, we do not need to take into
account explicitly the fermionic nature of the nuclei.

The position, momentum and spin observables of the
nucleus p are characterised respectively by the self-adjoint
operators R, ® 1., P, ® 1. and S, ® 1., where p =
1,..., N, acting trivially on the Hilbert subspace H,. as-
sociated to the electrons. The components of the opera-
tors R, and P, acting on the Hilbert subspace H s satisfy
the canonical commutation relations, i.e.

lej - Py, ek~Rl,] = —ihdu (e ~ek) Ly, (2)

and the components of the operator S, satisfy the canon-
ical commutation relation, i.e.

lej - S, er- S, =1iho, (ej x ex) - Sy, (3)

where e; are the units vectors of an orthonormal basis and

e” are the units vectors of the dual orthonormal basis. The

other commutation relations are trivial, i.e.

e/ R,, e R,] =0,
lej Py, e P,]=0,
e/ Ry, er-S,] =0,
lej - Py, er-S,]=0. (4)

Similarly, the position, momentum and spin observables of
the electron v are characterised respectively by the self-
adjoint operators 1y ® r,, Iyy ® p, and Ly ® s, where
v =1,...,n, acting trivially on the Hilbert subspace Hs
associated to the nuclei. The components of the opera-
tors r, and p, acting on the Hilbert subspace H,. satisfy
the canonical commutation relations, i.e.

[ej . pu’ ek . 'PV] = — ih(suy (e_] : ek) ]]-67 (5)

and the components of the operator s, satisfy the canon-
ical commutation relation, i.e.

(€ - Su, €er-8,] =iho, (e X ey)-s,. (6)

The other commutation relations are trivial, i.e.

j k
el-r, e rl,]

)

0
P, =0,
Sy 0,
s,] =0. (7)

In order to discuss the dynamics of an electrically neutral
molecular system composed of N nuclei and n electrons,
we implicitly assume that

N
ZZ“ =n. (8)

/]
]

J
e -r, e-
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In a non-relativistic framework, we restrict our analysis
to instantaneous electromagnetic interactions between the
particles, i.e. the electrons and the nuclei. In this frame-
work, the Hamiltonian governing the evolution reads,

H=Hy®1l +1y®He+ Hy_, (9)

where the Hamiltonians Hy and H,. associated to the
nuclei and electrons are defined respectively as:

N 2
Hy =Y .y + Vvew + Vi©,
p=1"""#
2

_ v SO
He=3 0" 4 Veee + V5, (10)
v=1

where m is the mass of an electron, VAé;O is the nuclear
spin-orbit coupling due to the interaction between the spin
and the orbital angular momentum of the nuclei and V¢
is the electronic spin-orbit coupling due to the interaction
between the spin and the orbital angular momentum of
the electrons. The Coulomb potentials Vi _n and V._,
are respectively defined as:

VNv-n = ¢y nlly
N7 8rey L IR, — BRI
pFV
2 n
e 1
Vere = , (11)
e—e 871'50 ,u,uzzl H’I’u — Ty”
nAV

where g¢ is the vacuum dielectric constant. The interac-
tion Hamiltonian Hj—. appearing in the definition (9)
describes the interaction between the nuclei and the
electrons. It is defined as:

Hye = Vi—e + V2. (12)
The Coulomb potential Vir_. between the nuclei and the
electrons is defined as:

62 N n Zu
Vi e = — ’ 13
N 4mol;;|\m®ne— wwen) ¥

and V& 96 is the spin-orbit coupling due to the interaction
between the spin of the electrons and the orbital angular
momentum of the nuclei and to the interaction between
the spin of the nuclei and the orbital angular momentum of
the electrons. As usual in molecular physics, the effects of
the magnetic field produced by the motion of the particles
are neglected.

3 Internal observables of
the molecular system

The description of molecular dynamics in a classical
framework would be much simpler than in a quantum
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framework since in the former a rest frame could be at-
tached easily to the physical system. In quantum physics,
the approach is slightly different because observables are
described mathematically by operators, which implies that
there exists no rest frame and no centre of mass frame as-
sociated to the molecular system. However, even in the ab-
sence of a centre of mass frame, the position and momen-
tum observables of the centre of mass can be expressed
mathematically as self-adjoint operators. This enables us
to define other position and momentum observables with
respect to the centre of mass. We shall refer to them as
“relative” position and momentum observables because
they are the quantum equivalent of the classical relative
position and momentum variables defined with respect to
the center of mass frame. Then, using a rotation operator,
we define the “rest” position and momentum observables,
which are the quantum equivalent of the classical posi-
tion and momentum variables defined in the molecular rest
frame. Finally, the “rest” position and momentum observ-
ables are recast in terms of internal observables character-
izing the vibrational, rotational and electronic degrees of
freedom.

Applying the correspondence principle, the position,
momentum and angular momentum observables associ-
ated to the center of mass are respectively given by the
self-adjoint operators,

N n
1
M (ZM#RAL@L*Z 11N®mru>, (14)

p=1 v=1

Q=

N n
P=) P,@l.+» 1y®p,,

p=1

(15)

v=1

where M stands for the total mass of the molecule, i.e.

M =M + nm, (16)
and M represents the total mass of the nuclei, i.e.
N
M=) M,. (17)
pn=1

The commutation relations (2) and (5) imply that the
operators P and Q satisfy the commutation relations,

[ej - P.e" Q] = —ih(e; €)1 (18)

. ol /

Now we define the “relative” position operators R,
. /

and 7/, and the “relative” momentum operators P,

and p/,. The “relative” position operators R;L and r!, are
related to the position operators R, and r, by:

R, =R,®1.-Q,
T, =1y @7, — Q. (19)
Similarly, the “relative” momentum operators P;L and p/,
are related to the momentum operators P, and p,, by:

My,
M

m

P,=P,®1.— P,

(20)
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The operators R/, P:L, r!, and p!, commute with the op-
erators @ and P. In addition, these operators satisfy the
condition,

N n
ZMMRL—FZmr;:O, (21)
p=1 v=1

which is a direct consequence of the definitions (14)
and (19), and the condition,

N n
> Put) p =0,
pn=1 v=1

which is a direct consequence of the definitions (15)
and (20). Now, we can determine some further commu-
tation relations. Clearly the components of the position
operator R;L commute and the components of the posi-
tion operator r!, commute as well. The components of the
momenta operators P;L and p!, commute likewise, i.e.

(22)

e/ R, "R, =0,
[ej -P;, e Pi,] =0,
e -7, e’ -r] =0,

[e; "D, €k -pl,] =0. (23)

Thus, the only non-trivial commutation relations read,

’ M
lej - P, e’ R, =—ih(e;-e") (6MV_ /\/?) 1,
, m
e - .. ek.R;]:zh(ej~ek)M]l,
[ej-P;u ek-’r’:/jl:ih(ej-ek) ]/\\4/?]]"
, m
[ej p:“ ek ']”:j] = —1ih (6_7 'ek) (6;“1 - M> 1. (24)

Now we define the ¢

‘rest” position operators R); and 77,
and the “rest” momentum operators PZ and p!. These
operators are related respectively to the operators “rel-
ative” R:L, T, P; and p!, by a rotation operator R (w)
that is a function of the operator w describing the ori-
entation of the molecular system. The rotation operator
commutes with the “rest” position operators RZ, r! and
the “rest” momentum operator p), but not with the “rest”
momentum operator PZ as explained in Appendix C. The
components of the “rest” position operators R/ and r”/,
are related to the components of the “relative” position
operators R;L and ], by:

e’ ‘R, = (ej Rw) - ek) (eF - R)),

(25)

v

el rll = (ej-R(w)_l-ek) (eF-rl).
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The components of the “rest” momentum operators PZ
and p! are related to the “relative” position operators P’H
and p), by:

1
ej-PZ:2 {ek-R(w)-ej, ek-P;L},

ej P, = (" R(w) e)) (ex-p))- (26)
where the brackets { , } denote an anticommutator ac-
counting for the fact that the rotation operator R (w) does
not commute with the position operator P;L of the nuclei.

The self-adjoint molecular orientation operator w is
fully determined by the position operators R, and r,.
Thus, the components of w satisfy the trivial commutation
relations,

e w, e* ‘w] =0. (27)

The orientation operator w belongs to the rotation alge-
bra and it is related to the rotation operator R (w) that
belongs to the rotation group by exponentiation, i.e.
R(w) =exp(w-G), (28)
taking into account the commutation relation (27) of the
components of the orientation operator w. The elements
of the rotation group have to satisfy the orthogonality
condition, i.e.
(29)
which implies that R (w)” =R (w) " and in turn that,
G'=-G (30)

where the components of the vector G are rank-2 tensors
that are generators of the rotation group acting on R3.
The action of the rotation group is locally defined as:

(ej-G) x=¢; xx, (31)

which implies that the generators G of the rotation in R?
verify the well known commutation relations

le; -G, e -G] = (e; xex)-G. (32)
The operators n ;) (w) are Killing vectors [27] of the ro-

tation algebra that are defined in terms of the rotation
operator R (w) and the rotation generators as:

R(w)™" (€ 0w) Rw) =ng (w) G (33)
The dual operator m*) (w) satisfies the duality condition,
ng) (w) - m®) (W) =e; - e (34)

As shown in Appendix A, the Killing form [28] associated
to the rotation group is given by:

n) (W) np) (W) =e;- (Pw + A1 - Pw)> ~eq,  (35)
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where the projector P,, and the scalar A are respectively
defined as:

L ww
C el

2
a= (2 sy
Joll ™ 2

According to the definition (36), in the limit of an in-
finitesimal rotation, i.e. ||w|| — 0, the scalar A — 1,
which implies that,

P

(36)

| hHm ng) (w) =e; 1,
w|[—0

lim m® (w) =eF1.
llell—0

(37)
The operators n;) (w) and m*) (w) determine the struc-
ture of the rotation algebra.

Using the relations (25), the condition (21) is recast as:

N n
S MY w0
p=1 v=1

Similarly, using the relations (26), the condition (22) is

recast as:
N n
S PY o
pn=1 v=1

Now, we can introduce operators characterizing the inter-
nal observables of the quantum molecular system. First,
we introduce the scalar operators Q%, where a = 1,...,
3N — 6, characterizing the amplitude of the vibrational
modes of the N nuclei. Second, we introduce the vecto-
rial operators g, related to the relative position of the

(38)

(39)

electrons respectively. The “rest” position operator RZ is
expressed in terms of the scalar operators Q% and the vec-
torial operators g, as:

1 m
1 (0) o E
RIL = R# 1+ \/Mu Q Xﬂa - M Al/l// q(z/)? (40)

v,w'=1

where we used Einstein’s implicit summation convention
for the vibrational modes «. The relation (40) yields a
kinetic coupling between the “rest” position operators of
the nuclei and electrons. The “rest” position operator r;j
is expressed in terms of the position operators g, as:

(41)

ﬁ\
[
[

Aut/ Q(y/),
1

v’

where the matrix elements A,,, and A;,i are defined as:

1 M

vv! = Opp! -1 )

A Ouwr + n (\/M )
o 1 \/M

/ — Op’p — 1 .
AIJU 6 + n M

(42)
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Similarly, the “rest” momentum operator PZ is expressed
in terms of the scalar operators P,, the vectorial op-
erators p(,,) and the angular velocity pseudo-vectorial
operator {2 as:

M n
Py = 2x (M, B )+ /M P X5= 1S A by
v,v'=1

(43)
The relation (43) yields a kinetic coupling between the
“rest” momentum operators of the nuclei and electrons.
The “rest” momentum operator p/, is expressed in terms
of the momentum operators Py as:

P:,/ = Z Auu’ p(u’)'

v'=1

(44)

Note that the definition of the matrix elements A,
is not unique. However, the particular choice made in
relation (42) leads to canonical commutation relations
between the electronic position operator q., and the
electronic momentum operator p(,.

The vector set {X o} is the orthonormal basis char-

acterizing the vibrational modes and the vector set {X E}
is the dual orthonormal basis, i.e.

N
> Xpuo- X[ =00 (45)
pn=1

The vectors tho) correspond to the equilibrium configura-
tions of the nuclei. In order for the identities (40) and (41)
to satisfy the condition (38) and for the identities (43)
and (44) to satisfy the condition (39), we need to impose
conditions on the vectors tho) and X ;.. First, we choose
the origin of the coordinate system such that it coincides
with the center of mass, i.e.

N
> M,R =o. (46)
pu=1

Then, we require the deformation modes of the molecule
to preserve the momentum, i.e.

(47)

N
> VM, X0 =0.
pu=1

We also require the deformation modes of the molecule to
preserve the orbital angular momentum, i.e.

(48)

i\/Mﬂ (R x X0 ) = 0.

The constraints (46)—(48) are known as the Eckart condi-
tions [29]. Finally, we choose the orientation of the coordi-
nate system such that the inertia tensor of the equilibrium
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position of the nuclei is diagonal, i.e.

ZM (e] )) (e;C : RELO))
- zN:Mu (e; - ex) (ek , RELO))Q

" (49)

As shown in Appendix E, the first relation (25) and the
physical constraints (46) and (48) determine the rotation

operator R (w), i.e.
/
. Ru> -

N

3 M, RY x (R(w)*1

pn=1
To emphasize the physical motivation behind the previous
formal development, we consider the classical counterpart
of a quantum molecular system. In a classical framework,
the classical counterpart of the operatorial relation (50)
determines the rest frame of the molecular system. More-
over, the equilibrium configuration of a molecule is given
by a vector set {RLO)} describing the position of the nu-
clei. The condition (46) implies that the centre of mass
of the molecule coincides with the origin of the coordi-
nate system and the condition (49) requires the inertial
tensor of this molecule to be diagonal with respect to the
coordinate system.

The set of orthonormal vectors { X, } characterize the
3N —6 normal deformation modes of the molecule and thus
account for the vibrations. The condition (47) implies that
the normal deformation modes preserve the momentum
of the molecule and the condition (48) requires that these
modes also preserve the orbital angular momentum of the
molecule. Thus, the deformation modes of the molecule do
not generate translations or rotations of the molecule.

The commutation relations (23) and (24) and the
transformation laws (25) and (26) imply that the com-
mutation relations between the operators RZ, r! and p!
are given by:

(50)

[ej ‘R", e" - R'] =0,

e’ L e’ R!| =0,
lej-pll, € Ry =ih(e;-e") ./\njl]l’

e*) (5,wf /\ﬂjt> 1. (51)

The kinetic couplings (40) and (43) between the “rest”
position and momentum operators of the nuclei and elec-
trons lead to quantum deviations in the commutation re-
lations (51), characterised by the mass ratio m/M. These
deviations are larger for smaller molecules. For example,
for a HY molecule [30]: m/M =2 x 1074,
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As shown in Appendix C, using the physical iden-
tity (50) defining the rotation operator, the mathemati-
cal identity (33) associated to the action of the rotation
group, the commutation relation (23) and (24) and the
transformation laws (25) and (26), the commutation rela-
tions between the operators R” P" r! and p! are found
to be:

. M
lej- Pl e" rl] =ih(e;-€") ,/\/?Jl
— le; 'Pg,ee w] e . (o) (w)xr)),

Cod e (ng) (w)xpl)),

M
eh) (@W— /\/?)1

(52)

The kinetic couplings (40) and (43) between the “rest”
position and momentum operators of the nuclei and elec-
trons lead to quantum deviation in the commutation rela-
tions (52), characterised by the mass ratio M, /M. These
deviations are larger for smaller molecules. For example,
for a H molecule [30]: M,,/M = 0.33. Moreover, the fact
that molecular rotations are treated in a genuine quantum
framework leads to other quantum deviations in the com-
mutation relations (52). These deviations are proportional
to the commutator of the “rest” momentum operator P,
and the molecular orientation operator w.

The internal observables are described by the scalar
operators Q“, F,, the vectorial operators q(,), P,
and the pseudo-vectorial operators 2 and w. As
shown in Appendix D, the inversion of the defini-
tions (40), (41), (43), (44) yields explicit expressions for
the internal observables Q¢, P,, q.,) and Py Le.

Q= VM x5 (R - R"1),

(Xpa- Pr) s

CH
S

The components of the inertia tensorial operator I(Q ")
are defined as:

ek-|(Q')-eg=

(53)

(ex-lo-e) 1+ Q% (er-la-er), (54)
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where the dot in the argument of the operator | (Q *) refers
to all the vibrational modes. The first term on the RHS
of the definition (54), i.e

ep-lo-er= Z M, (ek X RLO)> . (eg X RLO))

Il

(= i
=
—~

=y

S

p=1

_ (ek . Rgn) (ee . Rff)))) 7

is required to be diagonal with respect to the rotating
molecular system according to the constraint (49), i.e

(55)

lo-ex) (er - er)

ELO)2 _ (ek 'RLO)>2> (ex - eq),
(56)

6k~|0~6g:(6k
N
-3, (m
p=1
and the term on the RHS, i.e.

o ep = Z VM, (e XXHQ)-(eg fofD), (57)

is shown in Appendlx F to be symmetric, i.e.

ek-|a-eg265-|a-ek. (58)

As shown in detail in Appendix F, the commutation re-
lations between the operators Q“, Fo, q(,), P, w, §2
accounting for internal degrees of freedom are determined
using the commutation relations (51) and (52), the defi-
nitions (53) and (42), and the constraints (45)—(48).

The operators Q%, q(,) and w related to the molecular
configurations commute, i.e.

[@* @°] =0,

[Qa» e 'q(u’): =0,

(@, e w] =0,

{ej “q(,), €* 'Q(w): =0,
[ej 4, er 'w_ =0. (59)

The other non-canonical commutation relations vanish as
well, i.e.

[POH Pﬁ] =0,
[Qa» €L Pu)
|:PO¢7 ek"p(y/) :07

[Pa, er -w] =0,

:O’

[ej "Pwys €k 'P(V/)_ =0,

[ej Py e i
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The canonical commutation relations are given by:

[P, Q°] = —ihsl1,

€5 Py € - aun) =~ ih (e,

The operator £2 does not commute with the operators Q<,
Fo, 40y, P and w, i.e.

[ -2, ——th(eJ

e) 6, 1. (61)

(X X X 1) Qﬁ)

e 2P == mZ[

[ej .02, ek -q<u)}=—ih (ej Q) -eé) (ee x ") -qq,),

X, ngﬂ .

[ej -2, e .p(u)}:—z’h (ej Q! -eé) (er X ex) Py,

e/ 02, e" w]=—ih (ej Q) - m® (w)) ) (62)
where we used the notation convention,
[A, B], =AxB—- BxA. (63)

According to the commutation relations (62), the angu-
lar velocity operator §2 does not commute with the other
internal observables. Thus, it is not a suitable observable
for a quantum description of molecular rotation. There-
fore, we introduce the angular momentum operator L’

defined as:

N n
:ZR;xP;wLerjxpi,, (64)
p=1 v=1
and the angular momentum operator L defined as:
1 1 &
o " Z
- 2 Z I:RM P 2 Z 1/7 pl/ I (65)
p=1 v=1
where we used the notation convention (63).
As shown in Appendix G, using the defini-

tions (40)—(44),
tions (63) and,

{A,B},=A B+B-A,

(54)—(58) and the notation conven-

(66)

the orbital angular momentum (65) is recast as:
1 N
o B8
ty ; [Q Xpar PQX#}X

1
+ 9 Z [CI(U), P(V)} o’

v=1

3

(67)

which is a self-adjoint operator. Since the orbital angular
momentum operator commutes with the position and mo-
mentum operators, as shown explicitly below, it is conve-
nient to recast the angular rotation rate 2 in terms of L.
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In order to do so, we define the molecular orbital angular
momentum L, the deformation orbital angular momen-
tum .Z and the electronic orbital angular momentum £
respectively as:

1 N
T2 2 [Q X e PﬁXﬁ} ’

p=1

i [‘I(u u)]

(68)

N
_

Using the definitions (68) and the fact that the inertia
tensor |1(Q*) commutes with the operators L, q(,) and

Py, the inversion of the expression (67) yields the rota-
tion rate, i.e.

o-liertel,
where
L=L—-%— ¢ (70)

As shown in Appendix H, the commutation relations in-
volving the orbital angular momentum operator L are
obtained using the expression (67) and the commutation
relations (59).

The orbital angular momentum operator L commutes

with the configuration and momentum operators Q%, P,,
q(l/) and p(V)’ i.e.
[L, Q%] =0,
(L, P,]=0,
|:L, ek . q(l/):| =0
|:L, €L - p(l/):| =0. (71)

The orbital angular momentum operator L does not com-
mute with the operators w, §2 and L, i.e.

[L, & w|=—ih m) (w),

[L, € -02] =in (ej -I(Q')_l-ek) (ex x L),

[L, ej- L] =ih (ej x L). (72)
The third commutation relation (72) implies that,
[L?, e, L] =0,
le;-L, e - L) =ihé,, (ej x ey)- L, (73)

as expected. Finally, the property (34) and the commuta-
tion relation (72) imply that the canonical commutation
relations for a quantum rotation are given by:

[ng) (W) L, e w] = —ih (e; - €"). (74)
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The internal spin observables are the nuclear spin oper-
ator S(,) and the electronic spin operator s(,) that are
respectively defined as:

€Sy = (e

€j 8 = (ek ‘R(w)-e)) ey s,.

k~R(w)~ej) er- Sy,
(75)

As shown in Appendix I the definitions (75), the commuta-
tion relations (3) and (6), and the fact that the spins com-
mute with the molecular orientation observable w imply
that,

€5+ Sty e+ S] = ihdu (e x ex) - S,
[ej . S(M)’ € * S(U)] = Z'h(;l“, (Ej X ek) . S(M)' (76)

The operators QO‘ (v) and w commute with the nuclear
spin operators S ,,, i.e.

{S(#)» e’ '(I(V)} =0, (77)
[Sw: Q] =0, (78)
(S, € -w] =0, (79)
and also with the electronic spin operators s(,,, i.e.
|:S(,u)a ej . q(u):| =0, (80)
[s4w» Q%] =0, (81)
[$(u), € -w] =0. (82)

Moreover, as demonstrated in the Appendix I, the opera-
tors P, and p(,) commute with the nuclear spin operators
S(M)’ ie.

(S Pa] =0, (84)

and also with the electronic spin operators s(,,), i.e.
[S(M), €j 'P(u)] =0 (85)
[S(u)> Pa] =0. (86)

Finally, as shown in the Appendix I, the commutation
relations between the orbital angular momentum L and
the spin operators S(,) and s(,) are respectively given
by:

[S(uy: €j- L] =ih (ej x S(),

[8(u), €5+ L] =il (ej x s(,)) . (87)

4 Dynamical description of a rotating
and vibrating molecule

The observable corresponding to the kinetic energy is
defined as:

T - Z “®11e+11N®§n:2pi. (88)
v=1
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As shown in Appendix J, it is recast as:

//2 n ,,
= 2M+Z2M +Z

where @05 (Q°) is a residual operator resulting from the
non-commutation of the rotation operator R (w) and the
momentum operator P, that is given by:

2

Pres (@), (89)

Bres (Q7) = Tr (loo) Tr (1(@) %)
= 2T (lno - 1Q)7) T (11@)7Y)
T ('00 1Q) 2 (1, ~I<Q->1)2)

165Q7).
(90)

2T (1Q) "l 1(Q7)

and the rank-2 tensors loo and I§; are defined respectively
as:

N
loo =Y _ M, R R,

(91)

u=1
b SR ) - (0 x) )
(92)

As shown in Appendix J, using the appropriate commu-
tation relations, the kinetic energy (89) is recast in terms
of the internal observables as:

P? 1 1
T = 2-1,-2+ P, P°
oM o 0 fet,
n 2 2
+Z:1 (?;) Bres (Q7) - (93)

Finally, using the definition (69), it is useful to recast the
kinetic energy (93) explicitly in terms of the orbital angu-
lar momentum, i.e.

P21 o L
T=om™Ts {L’ Q) 1}."0'{'@) g ﬁ}.
n 21/ h2
F PP e @) (94)

v=1

The expression (94) of the kinetic energy T separates the
rotational and vibrational degrees of freedom. It is a conse-
quence of the Eckart conditions (46), (47) and (48) and of
the physical definition (50) of the rotation operator R (w).
It is the quantum counterpart of the expression derived
by Jellinek and Li [31,32] and extended by Essen [33] in a
classical framework.
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The Hamiltonian (9) is expressed in terms of the ki-
netic energy as:

H = T‘}’VN*N (Q) +‘/efe (Q()) +VN76 (Q,q()>
+Vi%Q ", P L,S)) +VEa) .y 8)

+V/\€96(Q,P,L,S(),(](),p(),s()) (95)
Taking into account the fact that a norm is invariant under
rotation and using the definitions (10), (13) and (40), the
nuclear, electronic and interaction Coulomb potentials are
recast in terms of the internal observables respectively as:

V(@)
870 20 | (RO -RY) 14Q0 (Y ju—Y va) |
AV
€2 - 1
‘/ﬁ’*e(q . ) = — — )
v 87{80 w,rv=1 || q(“) o q(”) ||
HAV
N*&(Q',q(,))
2 N n
e Zu
= - B , (96)
4o ;;1 Vz::l RO 1+ QY ua — Qg |

where the orthogonal basis vector Y, is related to the
orthonormal basis vector X o by:

Xpo = VMY 4, (97)

and the operator q(,) = r’('y) is a function of the operators
q(.) according to the relation (41).
The potential energy operator associated to the spin-

orbit coupling between the nuclei is given by:

N
Z Y Sq - Bl (@, P, L),

Ve (@, P.,L,S.)) =

(98)
where 7y, > 0 is the gyromagnetic ratio of the nuclei u and
B (% (Q-, P., L) is a pseudo-vectorial operator correspond-
ing to the internal magnetic field exerted on the nucleus p
and generated by the relative motion of the other nuclei.
Similarly, the potential energy operator associated to the
spin-orbit coupling between the electrons yields,

Z Ve S(v) B(y

where v, < 0 is the gyromagnetic ratio of the electron and
B(,)(q(.),p(.)) is a pseudo-vectorial operator correspond-
ing to the internal magnetic field exerted on the electron v
and generated by the relative motion of the other elec-
trons. Finally, the potential energy operator associated to

Vveso( qd.):P(.) ()ap())a (99)
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the spin-orbit coupling between the nuclei and the elec-
trons is given by:

Vﬁge(Q.’P~7L’ S()vq()ap()as())
= — Z Ve S(V) .B&/\[V)*E’(Q.’P‘,L)
v=1
N

e—N
- Z Vi S () 'B(#) (‘I(.)J?(.)),

pu=1

(100)

where B(U)fe(Q ,P.,L) is a pseudo-vectorial operator
corresponding to the internal magnetic field exerted on
the electron v and generated by the relative motion of the
nuclei and B (e#_)N (q(_), p(.)) is a pseudo-vectorial operator
corresponding to the internal magnetic field exerted on
the nucleus p and generated by the relative motion of the
electrons.

5 Molecular ground state and
vibrational modes

A molecular system is described by bound states defined
in the neighbourhood of the ground state in the Hilbert
space (1). For such states, the vibrational degrees of free-
dom are sufficiently small to allow a series expansion in
terms of the deformation operators Q< [1]. To second-
order, the series expansion of the Coulomb potentials read,

Vv-n (@) =Vrn_n I+ Vv_n() Q"

1
+ o Vvn(an) Q° QP+0(Q?),
(101)

VN—e (Q?q()) = VNfe (0) (q()) 1+ VNfe () (q()) Qa

1
+ o Ve (ap) (40)) Q7 Q7+ 0 (@)
(102)

To establish the molecular equilibrium conditions defin-
ing the ground state, we neglect the contributions due to
the spin-orbit couplings. Moreover, the contribution due
to the residual term @,qs (Q ) in the kinetic energy oper-
ator (94) is proportional to A% and can be neglected also.
Furthermore, the effects of the deformation modes Q on
the molecular inertia tensor | (@ ") are second-order con-
tributions that we neglect as well. Thus, to zeroth-order
in Q the inertia tensor | (@ *) reduces,

(@) =1l+0(Q"). (103)

Using the definitions (68) and (70), and the relation (103),
the rotational part of the Hamiltonian H in equation (94)
is explicitly recast to zeroth-order in Q¢ as:

et} e {iert e}
:;L-lgl-L+;e-|gl-z—L-|51-£+O(Q~).
(104)
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According to the relations (93), (95) (101), (102)
and (103), the Hamiltonian H is expanded in terms of
the deformation operators Q% as:

1
H = H)+ Hio) Q"+, Hap) Q*Q7 + 0 (Q%), (105)

where
P 1 o 1
H(0)22M+2Pap +2L-|0 L+ Vi_n)l,
n 2
Py 1, 4
+ 2m+2£'|0 L+ Vee (),

v=1

— L-Ig" L4 Viv_e (o) (q(.),

Hia) = VN-n (o) + V—e (@) (4(,));

Hiapy = Vv-n(@p) + VN—c(ap) (4()- (106)
In order to ensure that the molecular dynamics occurs in
the neighbourhood the equilibrium ground state, we vary
the energy E = ( H ) of the system with respect to the de-
formation modes Q<, where the brackets denote the expec-
tation value taken on the Hilbert space (1) of the molecu-
lar system. At equilibrium, the density matrix commutes
with the Hamiltonian (95). We assume that this is also
the case in the neighbourhood of the equilibrium state.
Thus, to first-order, the variation of the energy yields the
equilibrium condition, i.e.

VN-N () T+ <VN—e(a) (a.)) > =0, (107)
which defines the ground state of the molecular system.
Using the definitions (96), the series expansions (101)
and (102), and the fact that molecular vibration modes
X .o are linearly independent, the condition (107) implies
that,

dmeo = 7 |RY — RV|3
HFV

e\ < RY1- g, >
_ —0. (108
dmeo UZ IRD1— g, I? 1o

=1

The first term in the condition (108) represents the clas-
sical Coulomb force exerted by the nuclei on the nucleus
1. The second term in the condition (108) represents the
expectation value of the quantum Coulomb force exerted
by the electrons on the nucleus p. The equilibrium condi-
tion (108) implies that the resulting force exerted on the
nucleus p vanishes at the equilibrium.

The 3N — 6 equilibrium conditions (108) imposed on
all the vibrations modes X, the 3 conditions (46) im-
posed on the origin of the coordinate system and the 3
conditions (49) imposed on the orientation of the coordi-
nate system fully determine the 3NN degrees of freedom
corresponding to the positions of the nuclei.
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The molecular deformation modes X, and X,z are
orthogonal if a@ # [ according to the condition (45).
Moreover, to second-order with respect to the deforma-
tion Q%, the deformation modes are decoupled. Thus, the
variation of the energy F = (H) with respect to the
deformation Q% yields,

VNN (ap) T <VN—e(aﬁ) (ac)) > =0, Ya#p (109)

As shown in Appendix K, the diagonal components, i.e.
a = 3, of the Hessian matrix of the Hamiltonian (95)
yield the square of the angular frequency of the molecular
vibration eigenmodes, i.e.

wi =Vy-w (aar) + <VNfe(aa) (q()) > >0, (110)
which ensures that w, > 0 in the neighbourhood of the
molecular ground state.

6 Conclusion

A rigorous quantum treatment of a molecular system in-
cludes kinetic couplings between nuclei and electrons and
leads to quantum deviations in the commutation relations
between the position and momentum operators. These de-
viations are proportional to the ratio of the electron mass
to the molecular mass and to the ratio of a specific nu-
clear mass to the molecular mass. Thus, these deviations
are larger for smaller molecules.

In this quantum description, the vibrational and rota-
tional degrees of freedom are treated in a genuine quan-
tum framework. Since quantum nonlocality forbids the ex-
istence of a center of mass frame and a molecular rest
frame, we defined “relative” position and momentum ob-
servables, which are the quantum equivalent of the relative
position and momentum variables expressed with respect
to the centre of mass frame in a classical framework. In
order to define “rest” position and momentum observables
expressed with respect to a rotating molecule we defined a
molecular rotation operator that is function of a molecu-
lar orientation operator. Then, we defined internal observ-
ables that account for the quantum degrees of freedom of
the molecular system. These observables are the deforma-
tion and orientation operators of the molecule as well as a
the position and the momentum operators of the electrons.

In a rigorous quantum description of a molecule, the
molecular orientation and rotation are described by op-
erators. As a result the “rest” momentum operators do
not commute with the molecular orientation and rotation
operators. This generates an additional contribution pro-
portional to the residual term @,qs (@) in the expression
of the molecular Hamiltonian and leads to canonical rota-
tional commutation relations (74) between the total angu-
lar momentum operator L and the orientation operator w.
The molecular Hamiltonian satisfies a “molecular cor-
respondence principle”: replacing the operators describ-
ing physical observables by variables leads to a classical
molecular Hamiltonian where the residual term ®,es (Q )
vanishes.
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The rigorous quantum description of the dynamics of
a rotating and vibrating molecule presented in this pub-
lication, is a prelude to the study of quantum dissipation
at the molecular level [34]. In order to describe molecular
dissipation, the quantum statistical framework provided
by the quantum master equations needs to be introduced.
In such a framework, where certain internal observables
are treated as a statistical bath that is weakly coupled
and weakly correlated to the other internal observables
representing the system of interest [35]. The quantum
master equations of the molecular system are expected
to lead to dissipative couplings between the rotational,
vibrational and magnetic quantum modes and to de-
scribe molecular dissipative phenomena such as molecular
magnetism [36,37].

Appendix A:
Killing form of the rotation algebra

In this appendix, we determine the explicit expression of

the Killing form n ;) (w) - n(,) (w) of the rotation algebra.

The rotation group action (31) implies that,

Tr((ej.GT) (ek-G)> —ei. ((ej.GT) (ek'G)>ei
=—ei-(ej-G)<(ek-G)ei)
z—ei-(ejx(ekxei)>
= (ej ex) - (e ei)

— (e;-€;) (ei . ek)

=2(ej-er). (A1)

Thus, using the identity (A.1) and the definitions (30)
and (33), the Killing form is expressed as:

n(;) (W) - ne(w)= ;Tr((n(j) (w)-GT) . (n(e) (w) - G))

_ 1Tf<(€j 0 R (@) (er- DR ().

2
(A.2)
Moreover, the rotation group action (31) implies that
Ve RS,
(W GPr=wx(Wxz)=—w?z+ww- z

=-w?(1- P,) =z, (A.3)

where the self-adjoint projection operator P, satisfies the
following identity Vn € N*,

PZ =P, = (1-Py)"=1-P,. (A4)

The projection operator (36) is orthogonal to the rotation
group action (31), i.e.

Pw(wG)m:Pu(waL’): H(:JH2 (w(wxm)):o
(A.5)
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Using the properties (A.3), (A.4) and (A.5), the rotation
operator (28) is recast as:

o) (w . G)Qn 00 (w . G)2n+1
R(“’):]H; (2n)! +7; (2n +1)!

(-1
—  (2n)!

o _1)’ﬂ w2n+1

L
+wz (2n +1)!

n=0

(]

(]]- - Pw)

(w-G)

sinw

=cosw + (1 — cosw) Py, + " (w-G). (A.6)

The definition (A.6), the trace properties

’H((w’-G)(w-G)) =-2w - w,

Tr (Pw/ (w- G)) =0, (A7)

and trigonometric identities imply that,

Tr(R W) "R (w))

2
w w' w w w) 1

wl
4<COS2COS2+w’-w 9 9

(A.8)

The relations (A.2) and (A.8) with the help of trigono-
metric identities then imply in turn that,

1
ng) (W) ne (@) =, (e 00) (e o) Tr
x (RN R()) fur =2 (e 8) (e )
wl w w/w ) w/ ) w 2
X |cos _ cos _ + sin _ sin Owe’
2 2 Wwhw 2 2

2
ww +< 2 |w) (]1
=e;- sin
T\l el 2

Finally, the bilinear form (A.9) correspond to the Killing
form (35) that is expressed in components as:

(A.9)

e;-K(w)- e =ng ) (w) ny (w)

—e;- (Pw +A@L- Pw)> e (A.10)

The components of the symmetric rank-2 tensor K (u.v)_1
are given by:

e -Kw) el =el- (Pw + A7 (1~ Pw)> el (A.11)

ww
— .e .
]2 ‘
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The expressions (A.10) and (A.11) imply that,

Kw) w=w, Kw) ™ w=w. (A.12)

The operator mY) (w) is defined as the dual of the oper-
ator ny) (w), i.e.

ml) (w) = (ej K(w) ! 'ee) Ny (w) .

The expressions (A.10) and (A.13) yield the duality con-
dition (34), i.e.

(A.13)

m (w) - ngy (w) = (ej K (w) ! .ek> ng (@) 1 (@)

= (K@) (oK) e
(A.14)

=€’ - ey.

The definitions (28) and (33) imply that

(ej -w) ng) (w) -G = (ej -w) (R ((.u)f1 -(ej - 0w) R(w))

“R(@) " (w-.) R(w)
—Rw) " (w-G)-R(w) =w-G,
(A.15)
which yields the identity,
(e w) ng) (w) = w. (A.16)

Moreover, the Killing form (A.10) and the identity (A.16)
then imply that,

w-np (W) = (ej -w) n(;) (w) - ne (W)
= (e w) (ej K(w)-er) =w-ep (ALT)

Using the definition (A.13), the first property (A.12)
yields,

(e - w)mY) (W) = (e w) (& K (w) ™" -e’) ny ()

— (ef -w) Ny (w) =w. (A.18)

Moreover, the identity (A.18) and the Killing form (A.10)
then imply that,

w-mWY (w)=w- (ej -K (w)f1 . ee> N (w)

— (ej K (w)_l -ee) (w-er) = e w.
(A.19)

Appendix B: Commutation relations
of the momentum and orientation operators

In this appendix, we determine the commutations rela-
tions of the momentum operators PZ and p! with the
orientation w.
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In order to determine these relations, we use the Baker-
Campbell-Hausdorff formulas, i.e.

o0

eXYe X = Z kl! (X, Y],
k=0
=Xy X = i (k1!)’“ X, Y],, (Bl
k=0
where
[Xv Y]k - [X7 [Xv Y]]k—lv
X, Y],=Y. (B.2)

According to the properties (28), (30) and the formu-
las (B.1),

lec- P,,R(w)] =R (w) - (exp (—w-G) (ex- Py)

x exp (w - G) — eg'P,’j>

oo _ 1)k
Z( k') w~G, eg'P,’j]k

=1

) e e P
XZ _kl! w-G, e G|, , (B3)
k=1

where the k = 0 term cancels out on the third line and the
orientation operator is a function of the rest positions of
the nuclei tho) and the deformation operators R;L. Using
the relation,

[ej 0w, w-Glz=(€; - 0u) (Wxx)— wx (e 0,)x
= (€ 0w) wXxw
=e; xxz= (e G)wx, (B.4)

the Baker-Campbell-Hausdorff formula (B.1) and the
group identity (33), the commutator (B.3) is recast as:

e, P, R(w)] =—R(w)- [/ w, e P,]

o (_1\k
XZ( kl') w-G, € 0u],
k=0
=R(w) [e; P, & w]
x exp(—w-G) (e;-0,) exp (w - G)
=R(w) [e;- P, & w]
x R(w)™" - (e;-0u) R(w)
lec- P, € - w] R(w) - (ng;) (w) - G)
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Performing a similar calculation using the properties (30)
and (33) yields,

[eg - P! R (w)_l}

=—[e; P, e w](ng (w)-G)-R (w)™', (B.6)
le.- PR (w)]
= [6g o e ~w] R(w) - (n(j) (w) - G) , (B.7)
[64 - P! R (w)fl}
=—[ec Pl w] (ng)(w) - G)-Rw)™'. (BSY)
The condition (50) implies that,
[e ZM ( R<0) x R’H] =0, (B.Y)
which is expanded as:
N
3 M, ([eg-P;, R ()] -Rff”) < R,
+ZM (R@) BY) x [ec- P}, R,] =0. (B.10)

The commutator (B.5) and the rotation group action (31)
imply that,

iMu ([ef

p=1

P, Rw)]-RY) x R,

WE

=[e, P, € w| MM(R (w)-(n() (w)-G) R(O)>XR/

1

=
Il

WE

=[e, P, € w|

My (R (w)- ("m (w)x Rff”)) xR,

(B.11)

1

=
Il

the commutation relations (24) and the constraint (46)
imply that,

iMu<R
— —ih ZM (R

w) RO x e P, R}

R<0)> <5W — A/a”) er

= —ihM, (R(w) : R50>) x eg. (B.12)
The identities (B.10), (B.11) and (B.12) yield,
N
e, P, € ~w]ZMﬂ<R(w)~(n(j) (w)foP)) xR,
p=1
= ih M, (R( ) RVO)) x e (B.13)
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Multiplying the commutation relation (B.13) by e R (w)-
ei and using the relation (26) between P;L and PZ yields,

]y (Rl

pn=1

lec- Py, e (n(j) (w) x Rg”)) xR,

— ih M, ( R(O> (R(w) - er)

— il MR (w) - (Rff” X e¢> . (B.14)
The relation (25) between R;L and RZ implies that,
(R (w) - (n(j) (w) x Rg”)) x R,
— (R (w) - (n ) (w) x R<°>)) x (R(w) - R.)
€] i 1
=R@)- ((ng) @) x RY) x RY).
The identities (B.14) and (B.15) imply in turn that,

e, P!, e ZM (n)

—ih M, RY x ey.

(B.15)

) x R(O)> x R,

(B.16)

Now, by analogy with the commutation relation (B.5),

lec Py, R(w)] = [ec P, € w]| R(w) - (n() ()G
(B.17)
The condition (50) implies that,

e Py, ZM (

which is expanded as:

iMu ([ee .p;,, R (w)] - RELO)) % R;L

+ZM(

The commutator (B.17) and the rotation group action (31)
imply that,

R<0>) x R;] —0, (B.18)

) RO x [ pl, R =0. (B.19)

N
> M, (lec v, Rw)] - BY) x R,
n=1

WE

M, (R @)-(ng;) @)-6) RY) < R,

:[ee.p;” ejw] " "

1

=
Il

] =

My (R (w)- (nu) (w)x Rﬁo)» xRy,

(B.20)

= [eé.p;” EJW] .
1

=
Il
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the commutations relations (24) and the constraint (46)
imply that,

ZN:MH (R(w)
= —ih ZN:MM (R@)

The identities (B.19), (B.20) and (B.21) yield,

les-p),, € w] i M, (R (w)- (n(j) (w) XR&O)>) xR,

(B.22)

‘R x (j\”/l er) =0. (B21)

=0.

Finally, by analogy with the identities (B.13)—(B.16), we
obtain the last commutation relation (60), i.e

lec-p), e w]=0. (B.23)

Appendix C: Commutation relations
of the position and momentum operators

In this appendix, we determine the commutations rela-
tions of the momentum operator PZ with the position

operators R and 7!
and p/ respectlvely

Using the relations (25) and (26
relation yields,

[ej P, ebr] =[(R(w)-e;)- Py (¢"-R(w)™")7]
= ("R (w)-€;) [e[P;“ e*

+ ("R (w)-€j) (ek'R(w)flem) lec- P, emr,].
(C.1)

and the momentum operators P!/

v

), the commutation

'R(w)71~em} e”r,

Using the commutation relations (24) and (B.6), the def-
inition of the group action (31) and the relations (25)
and (26), the commutation relation (C.1) yields the first
commutation relation (52), i.e

v

=— (e R(w) e;) [ec- P, e*-w]xe" (ng (w)-G)
cem) (€™ R(w) 7)) + (¢ R(w) - e))

[ . -P” k -’l“”]

X
/‘\

M,
x(ekR m)ih(ege)/\/’;]l
e Pl en-w] € (ny) (w) x 7))
+ih (e - €*) Af/‘l‘ 1.
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Similarly, using the relations (25) and (26), the commuta-
tion relation yields,

lej- P, ex-py| = [(R(w)-e;)- P, (R(w)-ex) p]
=(e" R(w)-e;) [e- P, €™ R(w)-ex] em P,

‘R(w)-er) [ec- P, em-p].
(C.2)

+ (e R(w) - ej) (™

Using the commutation relations (24) and (B.5), the def-
inition of the group action (31) and the relation (26), the
commutation relation (C.2) yields the second commuta-
tion relation (52), i.e.

lej- P, er-p)] = (e"-R(w) e;) [ec P, e w]

x e (n (@) 6) - (" R(@)) (R(w) ! -en) -1
=le;- P}, € -w] e (ne) (w) xpy). (C.3)

By analogy with the commutation relation (C.1), using the
relations (25) and (26), the commutation relation yields,

lej- P, " R)] = (e R(w)-¢))

X |:64 P, e’ Rw)™" em} e" R,
+ (e"R(w)-e;) (ek~R(w)71~em> le/-P), e" R,
(C.4)
By analogy with the commutation relation (C.2), using
the commutation relations (24) and (B.6), the definition

of the group action (31) and the relations (25) and (26)
yield the third commutation relation (52), i.e.

R = —ifi(e; - ) (5,W ]J‘{;) 1

(C.5)

[ej . PZ, er
- [ej ~PZ, e’ 'w] e . (n(s) (w) x R:,’) .

Using the relation (26), the commutation relation of the
momentum operators is expressed as:
lej - PZ, e, P)|=

;{epP,’j, lej - P e - R(w)~ek]}

—; {6@-P;L, [ek-PZ,eé-R(w)-ej]}.
(C.6)
According to equation (B.7),
lej - P}, e’ R(w) er] = [e; P, e w]
x e (R(w): (nm (w)-G)) e (C.7)
Introducing the rank-2 tensorial operator,
Aui) = les - Py €™ - w] (ngm) (@) -G) . (C8)
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and using the relation (C.7), the commutator (C.6) is
recast as:

le; - P e P = ; {eg P, (eé ‘R(w) - en)

% (" Augy -ex) |

- ; {6@-P;“ (" R(w)-en)

X (e" 'Au(k) . ej) }

The relation (26) implies that the commutation rela-
tion (C.9) reduces to:

1

[ej'PZ’ ek.PIIJ/jI = 9

1 14
72{6g'PZ, e 'Al,(k)~ej}.
(C.9)

Finally, using the expression (C.8) of the rank-2 ten-
sor A, and the definition of the rotation group ac-
tion (31) the commutation relation (C.9) yields the last
commutation relation (52), i.e.

[ej . P//

2%

e, P| = ; {eg~P'lf, [e; ~PZ, e” W]

X () (@) x ex) €'}
1

~ 4 {eg . PZ, [ek P!, e™ -w]
X (N (W) X €;) ~el}. (C.10)

Appendix D: Internal observables

In this appendix, we determine the expressions for the
internal observables Q%, P, and §2. The definition (40)
and the constraint (45) imply that

Using the constraint (47), the identity (D.1) yields the
expression (53) for the internal observable Q¢ i.e.

N
Q" =Y VM, X} (R~ R1). (D)
p=1
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Similarly, the definition (43) and the constraint (45) imply
that,

AR |
X Q-P”
l;l \/MH ( H H)

pu=1

S Y VA (X i) (03

p=1lyr’'=1

\/le (Xpa- (2% (M. RD))) 1+ P

Using the constraints (47) and (48) the identity (D.3)
yields the expression (53) for the internal observable P,,
i.e.

N
1
P, = § X, P, (D.4)
#:1\/MH( a 0

The relation (26), the constraints (46)—(48) and the defi-
nition (55) imply that,

XN: R x P/l = XN: R x (2 x (M, R{))

p=1 pu=1

_ (ek . Q) i M, e, (RELO) X (ek X Rff))) el

= (ek . .Q) (ee-lo-ex) e’
which implies in turn that,
N .
Z (e;C X RELO)> P, =(ex-lo-e;) (¢/-2). (D.6)
p=1

Using the property (56) of the inertia tensor lg, the iden-
tity (D.6) yields the internal observable e* - £2, i.e.

N (0)
X R
ek-QZE (ek “)-PZ.
p=1

er-lo-en (D.7)

Appendix E: Rotation operator

In this appendix, we show that the Eckart conditions (46)
and (48), and the relations (25) and (40) imply the phys-
ical definition (50) of the rotation operator R (w).

Eur. Phys. J. D (2015) 69: 180

The expression (40) of the rest momentum RZ in

terms of the equilibrium position tho) and the rest
observables Q% and 4, implies that,

N N
; M, RO x R = ; M, (R x R() 1
N
ror (3 v (< x,0)|
pu=1

]\TZ Z Avwr qu)

v,v'=1

(E.1)

N
- (5 my)
p=1

Using the Eckart conditions (46) and (48), the RHS of the
relation (E.1) vanishes, i.e.

N
> MR x Rj,=0. (E.2)
pu=1

Finally, using the relation (25) the condition (E.2) is recast
as:

N
3 M, RO x (R (w) ™! .R;) —0, (E3)
p=1
which is equivalent to the condition
N
3 M, (R (w) -Rff”) x R, =0. (E.4)
pn=1

The condition (E.3) is the physical definition (50) of the
rotation operator R (w).

Appendix F: Commutation relations
of the internal observables

In this appendix, we determine the commutation relations
between the internal observables Q%, Fa, q(,), Py, @
and 2.

Using the definition (D.4) of the operator P,, the con-
straint (48) and the identity (B.16) imply that,

N
[P, € w] ZMN (n(j) (w) x RELO)) x R,

p=1
N
=iny " VM, (R,@ x Xl,a) —0, (F.1)
v=1

which yields the fifth commutation relation (60), i.e.

[P, € - w] =0. (F.2)
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Moreover, the definition (44) and the commutation rela- the properties (48), (54)—(56), we obtain,
tion (B.23) imply that,

N
M n(j) (w) X R(O) x R") - €y
[ek Py, € w} =0. (F.3) ; . (( J ® ) “)
N
Using the expression (D.7) for the operator €¥-§2, the con-  — _— Z M, (n(j) (w) x R(O)) - (e¢ x R)))
straint (46) and the diagonality condition (56), the iden- e
tity (B.16) is recast as: N
N =—e n(])(w)ZMﬂ (ekam)(eka )
[ek .02, el ZMN (n( (W) x RELO)) X RZ ”;1
=1
) e ongy @) Y VM, (e x RYY) (e x QX a)
) N 0) er X RELO) pu=1
=ih Yy M, | RYY x .
= e -lo-ex == (" ng) (W)
Ao - N
=ik (ek 0 eg) el =ihe. (F4) -((ek-lo-ek) (ek-eg)—i—Q (6k-|a-65))
€L |0 €L
The condition (48) implies that, = —ng) (W) 1(Q) e (F.8)

Using the identity (F.8), the identity (F.4) is recast as:

N

> VMyer- (erx (B x Xpa) ) =0, (F5) [ 2, ¢ w] ng) (@) 1(Q) e = —ih (ek'eg()' )

pu=1 F.9
Using the property (A.14), which implies that,

v (nG) @)-1@Q)) " =1@) - mP (). (F.10)

Z M, (ek'RfLO)> (e X o) g:)en 1((%;1)1?1;5}(; (F.9) yields the fifth commutation rela-
N e" 0 e wl=—ih (e 1(Q) " mV(w)).

- Zl VM, (eg-Rff’)) (er Xpa). (F.6) | ] ( (F.11)

=

The relation (43), the commutation relations (B.23), (F.2)
and (F.11) imply that,

which is recast as:

Using the identity (F.6), the expression (57) yields the
property (58), i.e. les P”, w] _ [ek 0, e W] (ek % (M RELO)))

[P -] VM, (e0 X

— Z Ay [eg-pl,,, ej-w] ]E\/[;

N v,v'=1
= (0) . .
R uz::l v ( <Ru XW) e = —ih (ek 1@ mY (w))
— (er - Xpa) (ee RLO)>) X (ek X (Mu tho)>> -ey. (F.12)
N Now, we establish a useful commutation relation for the
= Z VM, ( (R(O) Xw) (ex - €) dynamics. The identities (A.14), (B.8) and (F.12) imply
p=1 that,
= (er+ Xpa) (ex-R) ) lev Pl R(@)'| R(w)
N == lec- P, @] (ngj) (w) - G)
(0) _
= ; \/Mu (ee x R ) (er x X pa) ih (ek N (Q.)fl .m) (w)) . (ek % (M# R&o)))
—erlaen, 1) e (ng) (@) -G)
k. Nl ed (0)
which shows that the tensors |, and 1(Q") are sym- ih (e HQ) e ) (ekx (Mu R, )) e (e;-G).

metric. Using the relation (40), the constraint (46) and (F.13)
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The orthogonality condition (30) and the commutation which implies that the last commutation relation (F.15)
relation (F.13) imply that, yields the second canonical commutation relation (61), i.e.

e’ - P}, e’ R(w) e (em Rw)™ -ek> [ej Py e q(,,,)} = —ih (e - €") G0 (F.17)

b . . w m.  The definitions (41) and (D.4), the constraint (47), and
= {ef P, e Rw) - ek} (e R(w)-en)(e"-€™)  the commutation relations (C.2) and (F.2) yield the fourth

commutation relation (60), i.e.
=1ih (elC Q- ej) (e;C X (Mu tho)>> -(ej x e™)

N 1 ; .
— _ih (ek,| (Q.)—l.ej> (ejx (ekx (Mu Rff”))).em. [Pa, ek . q(l,/)} = - ;; \/Mu [XW P, e .w]

(F.14) 0
A er (g (w) x 1))
The definitions (42) and (53), the commutation rela- —
tion (51) and the condition (47) yield the commutation
relations (59), i.e. N oI /M,
(59) +in SN \/MMAwi(Xua'ek)]l
Q. @] =0,
{ej ") ek q(u’)_ 0, == [P, €-v] Z A;’i ek'(n(s) (@) XT/VI)
J v=1
|:ej ’ p(u)7 €g - p(u’) 07 =0. (F18)
) The definitions (44) and (D.4) and the commutation
{ej Q) Q°| =0, relations (C.3) and (F.2) yield the third commutation
- relation (60), i.e.
n N
- gl _ . m\/Mu N 1 s
{e] Pw), @7 _mzz M |:Pa7 ek'P(Vf)}ZZ M (X o - P, € - w]
v'=1p=1 u= \/ iz
x A7), (e-'Xﬁ) 1 - -1 7
N DA (ng) (W) x py)
v=1

:0’

n =[P,, e w At ey - (N (W) x pll
| ) . (s - [ ]; o€ (s (@) < py)
€; 'p(u)v e - q(u’) =1 Z v vy’ M
v,w'=1 =0. (Flg)
x Aj, (e -€) 1. (F.15)  The definitions (D.2) and (D.4), the constraint (47) and

th tati lation (C.5) yield the first ical
The definitions (16) and (42) yield the relation, o o;gﬁﬁgg};i rlglr;é(e)r? (1é)1n) (i. o ) yie ¢ Mt canomica

3 2 Iy " - 1 1"
u,uz/;l Ao <5W/ - M) A [P, Q7] = _; VM, (X0 - Py, €% W)
n 1 M - N
= U;1 (51/1/ + n (\/M o 1)) (51/11/ o /\/[) . Z \/Mng . ('I’L(s) ((.U) X R/V/)
S v=1
1 M N
[ B
( n ( M Zhu,u:l o, (XW XV) b= )1
2
_ (1 _m 9 \/M 1) s \/M e o N |
n M M M 777’hz (X#Q'X#)]l
p=1

m
= g O =0,y (F.16) = —ihdP. (F.20)
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The definitions (41) and (D.3), the properties (46)
and (D.7), the commutation relations (C.2) and (F.11)
and the property (A.14) yield the third commutation
relation (62), i.e

e X tho)

T e Dol

el <n<s>

+ih XN: e/]\izx( <M“Rf‘0)>

p=1

'|0'6k
2: 1.1
Al/lj I/)

(ej zn: A;}Vﬂ)
v=1

er 1o ex)
=" 2, w]ng (W) (ej X q(uw)

= —if (e"1(@) " m® (@) (n) (@) (¢ xqus)))
(F.21)

= —ih (ek - (Q')il' 62> (6g X ej)' qd()-

Similarly, the definition (44), the properties (A.14)
and (D.7), and the commutation relations (C.3)
and (F.11) yield the fourth commutation relation (62)

i.e.
/! s
P, e w]

Z A, pr>

N (0)
[ek 02, e 'P(w)} _ lz ey X R, .

p=1

. ej . (n(s)

w] e (@) (e x P

ek-|0~ek

— [ek 02, e
= —ih (ek - (Q')_l-m(s) (w))

X (n(s) (w) - (ej xp(y,)>)

— ik (ek Q) .ef) (erx €)) - Pury.  (F.22)

The definition (D.2), the properties (47), (48),
and (D.7), and the commutation relations

(A.14)
(C.5)
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and (F.11) yield the first commutation relation (62), i.e

o[£

p=1

/! s
P, e w
ek-lo-ek

N
D VMXE - (g (w) x RY)
v=1

N N (0)
—inY 3" /M, <5W]J‘\4/Alt> (ek.XI.Z# ).ij]l

o ei-lo-ex
N
—ih[e"- 02, e W] Z VM, (ng) (w) x Ry) - X3
— il (ek Q)" - m® (w))
N
D VM, (R x X)) 0 (w)
v=1

l,gXXa

)7 (XX Q7). (F.23)

:—ith:(ek-l(Q

The definition (D.4) and the commutation relations (C.10)
and (F.2) yield the first commutation relation (60), i.e

1 1
P,, Ps] = X, P!, X5 Pl
[ ﬁ] —~ \/M# \/M [ 12 ]
|
=, Z:l y { [Pa, €™ w]
X (nm) (w) x X,5) - €'}
N
1 1
- P [Ps, €™ w]
2 l; \/Mu {
X (n(m) (w) X Xua) eé}
= 0. (F.24)
The  definition (D.4), the commutation rela-

tion (C.10), (F.2) and (F.11), and the properties (45)
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and (A.14), the expressions (D.6)—(D.7) yield the second Using the relations (40)—(44) the expression (G.4) is

commutation relation (60), i.e. recast as:
N n
[e"- 2 Z {e.- P, [e" 02, e W] L= Z R"1+ ! Q" Xpa— Z Avvq
\/M Ly, ’ 2 = o \/M,u Iz MV - v4(v)
: (n(m) (W) X Xpa) €'} .
Lo~ 1 ik -1 x nx(M R(O)>+\/M PEXB—M“ > Avup
- f2m§ ¢My{ef' Pl (5 1(@) 7 m™ (W) wtu W 2 S

() % X))
AN
—_ ik (ec-Py) (emxX,qo) €,
"2 ag, {
el @)t -em} X RELO)]H ! QO‘XW*]\TZ Z Avuq(y)
) N ) \/Mﬂ v,v=1
3 g {0 P (2

e (S ) (S m)
N " .
- ;mzl [ek Q) X s ngﬂ Lo (F295) Z ((Z Ayp ) X (Z: Al,l,q(l,)>> . (G.5)

U:1 v/'=1

— (Qx(MHRLO)>+\/MMPﬁX§—JA\]4\4H Z Au’u’p(u’)

v v'=1

Using the definitions (56)—(57) and the properties (17),

Appendix G: Orbital angular momentum (46)—(48) and (F.7), L is recast as:
In this appendix, we establish an explicit expression of L=¢' (er-lo-ex) (ek : Q)
the orbital angular momentum in terms of the internal 1, o K
observables. + 9 e (er-la-ex) { QY e’ - 02 }
According to the first and last relations (24), the com- N
mutation relations between the operators e/ - R, and ; Z {QO‘ X 0, Ps X,ﬂ
X

ey -P:L and the operators e’ - r/, and ey, - p/, are symmet-
ric with respect to the permutation of the basis vectors

e’ and ey, which implies that the vector product of these 1 & - m
operators satisfies the identities, + ) Z Z 1AW ( v+ M) Ay
v,v'=1 \v,v'=
R xP,=-P xR,
H © ® w X |:q(l,), p(y/) :| " (GG)

T, X P, =—p, XT), (G.1)

Thus, using the relation (G.1) the angular momentum (64) The definitions (16) and (42) yield the identity

is recast as: n

Al/l/ 61/1// " AV/V/
. 1 N R P/ " V,VZ’:1 ( ' M)
- 2 Z Z v pu . (GZ)

| S5 (e () e
The angular momentum L is a pseudo-vectorial operator N ~, ) M v M
that is related to the angular momentum L’ by: nrE
1 g 1 (M
. = . . . . . . . 611’1/, —_ 1

e L 2((R(w) e) L'+ L (R(w) eg)) (G.3) ( + ( M
Using the relation (G.3) and the definition (G.2) of the 9
orbital angular momentum L’ yields the expression (65) (1 m M M
for the orbital angular momentum L, i.e. “\n + M 2 M L)+ M 1

n

N
1 1
=, Zl (R, Pi], +, S Pl (GA) + A”; + 00 = B (G.7)
o

v=1
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Using the identity (G.7) and the relation (54), the expres-
sion (G.6) yields the expression (67) for the orbital angular
momentum, i.e.

1 1
L=y (1@ 2+ 3 [0 X 2ox]]
+ i[ qwy P - (G.8)

v=1

Appendix H: Commutation relations
of orbital angular momentum
and the internal observables

In this appendix, we determine explicitly the commutation
relations between the orbital angular momentum L and
the internal observables Q%, P,, 4(,); Py, w and 0.

Since the operator £2 commutes with the operators Q<,
Ps, q(,) and p(,, the commutation relations (59)—(57)
and the expression (G.8) yield the first commutation re-
lation (72), i.e

[L, e€~w] = ; {I(Q')~ek, [ek~.(2, e€~w]}
= {1@) e, —in(F1@)7 - m® (@)
= —ih m (w). (H.1)

The commutation relation (H.1) and the property (A.14)
yield the canonical commutation relation in rotation (74),
ie.
[n (w) - L, e’ w| =—ih (e - e'), (H.2)
which means that n ) (w) - L and e’
conjugated operators.
Since the operator Q% commutes with the op-
erators 7, q.,) and Py the commutation rela-

tions (59)—(57) and the expression (G.8) yield the first
commutation relation (71), i.e

- w are canonically

1
2

IS (X X2 1@ 1P @)

pu=1

L, Q1 =, {HQ) fo0, Q)

+ €k, [e

N
—zhz (X up x Xu) Q°
pu=1
N
= —th(X XXH5+XH5 XXZt)QB:O
p=1
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Since the operator q(,) commutes with the opera-

tors @ and Pg, the commutation relations (59)—(57) and
the expression (G.8) yield the third commutation rela-
tion (71), i.e

[L, e’ ~q(V/)} =, e N e ~q(V/)} }

e au]],
T xaw)) )

s .hamﬂ j:|
|:q(u) 7 e y

= —ih (ej X Q(V/) + (I(U/) X 6]) = 0.
(H.4)

Since the operator P(yy commutes with the operators Q"
and Pg, the commutation relations (60)—(57) and the
expression (G.8) yield the fourth commutation rela-
tion (71), i.e

[L, €j 'p(w)] = ; { Q") - ex, [ 12, e; p(w)} }
+; ; HQ(U)a €; P(w)} P(u)}
; |(Q ) €L, ih
e (@) )

v=1

{

( n
S

(

= ’Lh p(y/) X eJ + eJ X p(y/)) =0. (H5)

Since the operator P, commutes with the operators Q¢
and p(,), the commutation relations (60)—(57) and the

expression (G.8) imply that

{| Q) e, ["-92, P}

ﬁj( X x XPHIQ, Pal Po}
;{ Q). mz[ X 0, Pﬁxﬂx}
i o B
+ h;(xu x X1) P
=, ih@), Pl (l(@)l -

L. N—1
—4m<|<@> :
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Now, the definition (54) implies that,
@), v [Q7, Ppl =ihlp.

Substituting the commutation relation (H.7) into the com-
mutation relation (H.6), the latter yields the second com-
mutation relation (71), i.e

Py) = (H.7)

[L, P,]=0. (H.8)

The commutation relation (B.7) applies for the operator L
as well as for the operator P,. The commutation rela-
tions (B.7) and (H.1) and the property (A.14) imply that,

! [L, R(w)] = [L, e’ -w] ng) (w) -G

=—ih (m(j) (W) - n (w)) G
= —ihG.

R(w)™

The commutation relation (H.9) implies that,

e - L, R(w)] =—ihR(w) (e; - G). (H.9)
Now, the commutation relations (32) and (H.9) imply
that,
lej - L, ex- L}, R(w)] = [e;- L, [ey - L, R(w)]]
—ler-L,[e;- L, R(w)]]
——i((exG) e L, R(w)]
~(e;6)[ex- L, R(w)])
=h*R(w) [e; -G, e - G]

ih (f iR (W) (e; x ex) - G)
= [ih (e; x ex) - L, R(w)].
(H.10)

Identifying the terms on the LHS of the commutation re-
lation (H.10) yields the second commutation relation (72),
ie.

le;- L, ex- Ll =ih (e; x ex) - L, (H.11)
which is recast as:
[L, e - L] =1h (ek x L). (H.12)

Since the operator L commutes with the operators

Q%, P, ¢%, pa, the commutation relations (H.3)—(H.5)
and (H.8), and the expression (G.8) imply that
1
Loew L= ) [(1Q). 2),. e I
1
= [{I - ey, eé-Q}.,ek-L]

.97 e -

{ Q) -er, [¢f L]}

Q, [|(Q')-65, ek-L] }
(H.13)

+2{e-
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The definition (54) and the commutation relation (H.3)
imply that,

Q) e, ex- L] = [|0 er+ Q" (la-er), ex- L]
| [Qa, ek-L] ZO,
(H.14)
which implies in turn that,
[ef Q) ek.L} —o. (H.15)

The commutation relation (H.14) implies that the com-
mutation relation (H.13) is recast as:

, (1@ e e

The commutation relations (H.12) and (H.15)—(H.16) im-
ply that,

(L, ey L] = 02, e L] }. (H16)

e L, e 2] =~ (e 1(Q) ") - [L, ex- L]
= —1h (el~|(Q')_1 'ej> (e -

=ih (ef - (Q')_1 . ej> (er - (e; x L)),
(H.17)

(e x L))

which yields the second commutation relation (72), i.e

(L, e'- 2] =ih (ef Q) ej) (e;j x L). (H.18)

Appendix I: Commutation relations
of spin and the internal observables

In this appendix, we determine explicitly the commuta-
tion relations between the nuclear spin S, the electronic
spin s(,) and the internal observables Fy, p(,y and L.

The definitions (75) and the commutations rela-
tions (3) and (6) imply that

[ei- Sy ej- Sw] = (€' -R(w)-e) (e"-R(w) - e))
[ek Su» €y SV
=ih 0 (€' R(w) - e;) (e’ R(w) - e;)
- (ex X 64) e (em - Sy) (I.1)
[e: - s(u: €5 s0)] = (" R(w)-ei) (e R(w)-e)

X (e Su, €r- s,
=ih 6, (e" R(w) - e;)(e" R(w) - e;)

(er xep)-e" (em-sy) (L.2)

The triple product (e x e;) - €™ is invariant under rota-

tion, which implies that,

(" R(w)-e;) (ee ‘R(w)-e;) (ex x 64) e”
=(e; xej)-e" (e R(w)-e,) (L.3)
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Using the vectorial identity (I.3) and the definitions (75),
the commutation relations (I.1) and (I.2) yield the com-
mutation relations (76), i.e

n

[ei- S ;- Sw)] =i du (e x e)) - e
x (e R(w)-ep) (em-S,)
=1ih 6#” (ei X ej) . S(“) (1.4)

[ei “S(u) €5 - s(,,)] =ihd,, (e; X ej)-e

x (™ R(w) -

= ih 0y (€ X €j) - 5(y)

€n) (em - su)
(L5)

Using the group action (31), the identity (A.14), the defi-
nitions (75), the commutation relation (B.7) where e;- P,
is replaced by e/ - L and the commutation relation (H.1),
we compute the commutation relations,

lej - L, Sy] =[e;- L, € R(w)] (er-S,)
= e w] (n) (@) - G)
= —ih (e m (@) (n (@) G) Sy

= —1ih (ej . G) S(“) = —1h (ej X S(#)() )
1.6

L, -

[ej L, e -R(w)] (ex-s,)

= [ej- L, e -w] (n() (@) G) s

= —ih (e;-m® (@) (n( @) G) s
= —ih (e

+G) 5 = —ih (e; S(M))('

Using the definitions (75) and (D.4), the commutation
relations (B.7) and (F.2), we compute the commutation

relations,
Ny ‘
[Pa: Sw] = (e Xav)

! ; VM,
x [ej - P, € -R(w)] (ex-Sy,)
AN

= () Xao) [ej- Py, w]

v=1 \/MV

[Pa: 8] =2 wlwy

< [e;- P, e R(w)] (ex-5,)
Voo

= (e Xa,,) [e--P’lf, e’ w]
; VM, !
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Using the definitions (75), the commutation rela-

tions (B.7) and (F.3), we compute the commutation

relations,

{ej "Pw)> S(u)} = _ej "Pw)> et R(w)} (ex-Syu)
=[Py 0] (i @) 6) S
=0 (1.10)

{ej P S(H)} = _ej "Pw)> et R(w)} (ex - su)
=[Py 0] (m (@) G) s
=0 (L11)

Appendix J: Kinetic energy operator

In this appendix, we determine the expression of the
kinetic energy operator T in terms of the internal
observables.

Using the relation (17) and the definition (20), the ex-
pression (88) of the kinetic energy operator T is recast as:

N
T:Eﬂbﬂ (P; “P) +Z e+ ’P>2
N n n
(;Mﬂ+;m>2M2+Z2M a
N n
+ (; P;+Vzlp;>-/c. (J.1)

Using the relations (16)—(17) and (22
operator (J.1) reduces to:

), the kinetic energy

/2

ow
T = 2M+Z2M (J.2)

+Z pu

Using the relation (26), the first term on the RHS of the
expression (J.2) is recast as:

N /2 N /12 N 2
SIS SRR SRR
p=1 B p=1 My, p=1 w

where the operator A, (@) is defined as:
—ih (ef “A, (Q)) = [ek . PZ, e’ R(w)- ek]

X (ef ‘R(w)™! -ej> . (J.4)
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Using the commutation relation (F.14),
A, (Q") is recast as:

4,@)= (¢ 1@Q)" - e") (e x (ex x (M,RD)))
= (e 1@) " e
' (M“ (ei 'RLO)> er— (e

=M, (Rff’)w (Q-)*l) ~M, RO T (| (Q-)*l) .
(J.5)

the operator

cer) M, Rfj”)

Using the definitions (30) and (26), the third term on the
RHS of the relation (J.2) is recast as:

n /2 n 12
o= X )

The identities (J.3) and (J.6) imply that the kinetic en-
ergy (J.7) is recast as:

P2 N "2 n p//z K2
T = K v Dres (Q), (J.7
2/\/1+22M,fL 2m T 8 (@), (J7)
pn=1 v=1
where the operator accounting for the residual terms is
given by:

. N 1
Pres (Q7) = — Z u, [P 40@)],

21
h

i 1
— M,
Now, we recast the kinetic energy operator T in terms
of the internal observables. The relation (43), the condi-
tions (46)—(48) and the definitions (17) and (55) imply

that the second term on the RHS of the expression (J.7)
is recast as:

(J.8)

XN:PM Loy oitp pey !
2M, 2 o 9t 2m

DD

v,v=1v",v' = 1

Avy Ay (P(u) 'P(z/)> :
(7.9)

Similarly, the relation (44) implies that the third term on
the RHS of the expression (J.7) is recast as:

2m 2m Z Zlél’l’/AWAVVO?(U l,)>.

v=1 v,v=1v' v’

(J.10)
Using the identity (G.7), the sum of the relations (J.9)
and (J.10) reduces to,

n //2

N P//2 n 1792

Z ZPV

n 2
1 1 Py
21y P, P*
g P70 +2_: 2m

(111
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which implies that the kinetic energy yields the expres-
sion (93), i.e

P2 Pl
T = 2M+ 21, -2+ PP“+Z

h?

+ g Pres Q)

(J.12)
Now, we determine the expression of the residual terms in
the expression (J.12). Using the commutation relation (60)
and the relation (43), the first residual term appearing in
the expression (J.3) is recast as:

I
> N
| — |
o)
ol
Q
Q)
x>
N
M=
=
T2
x
S
=
Q
~
| I

We determine in turn the two terms in the commutation
relation (J.13). The definition (J.5) implies that,

N
Z R xA,(Q

i R(O) ( (R&O)J(Q-)*l))
= (em1Q) e
. i M, (ej . RLO)) <6g . RELO)) (ee X em)

Using the definition (91), equation (J) is recast as:

Y= ( e
(J.14)
which implies in turn that the first term in the commuta-
tion relation (J.13) becomes

2 al
- lek.n, e, - (;Rfj)) X A#(Q')ﬂ

_ (em : [ek - 82, |(Q')_1} “loo - eé> er - (er X en)

h
(J.15)

Q) oo - ef) (e X em)

N
YR x A,Q
p=1
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The definition (54) and the first commutation relation (62)
and imply that,

[e"- 02, 1(Q)] =la [e

= —ihl, (ek @)D (X x Xup) Q5> (J.16)

which implies that,

e 2.1Q) | = 1@) - [ 2 1@)] 1@)
=in(1Q) " 1o 1(Q) )

: (ek @)Y X x Xup) Qﬁ>

(J.17)

k.Q7 Q(x:l

Using the commutation relation (J.17) and the defini-
tion (91), the commutation relation (J.15) can be re-
cast as:

2 N
- lek.rz, e - (;R;°> X Au(Q')ﬂ
|00) '6

ZXXXMQ

:2em~(|(Q) 1@

X (eg X en) -

=2¢™ (1Q) ! 1 1Q) " 15,Q%) - em
165 Q%)

Similarly, using the definition (J.5), the second term in
the commutation relation (J.13) is recast as:

- 2Tr<| Q) 1 1(Q) 7" (J.18)

N

1
P(X b)
2,

p=1

%
h

(x; 4,@)]

(x5 (e5x (e x RD)))]-

The definition (57) implies that,

S (x5 o o)

(J.19)

N
. ; VM, (e x X71) - (e x RY)

=— (e 1% e). (J.20)
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Using the relation (J.20), the commutation relation (J.19)
is recast as:

N 1 N
% b, 65 @)
24

= (ey-1"req) [Py €l 1(Q) -]

;s (J.21)

Using the definition (54) and the canonical commutation
relation (62), we commute the commutation relation on
the RHS of the expression (J.21), i.e

[Pas € 1@) e =in (e 1(@) ™l 1(@) - €).

(J.22)
Using the commutation relation (J.22) and the fact
that the tensor |, is symmetric, the commutation rela-
tion (J.22) is recast as:

ST
P2
= —2e- (I71Q) " 1a1Q) ) e

2Tr(<|a-l(Q')l>2>.

The commutation relations (J.13), (J.18) and (J.23) imply
that the first term of the operator (J.8) is recast as:

XAy (Q))]

(J.23)

. N

Zj [P}, AL(Q)],
o (1Q) e 1@) 15,07
2Ty <(|a y (Q')_1>2> . (J.24)

Using the definitions (91) and (J.5) the last term of the
RHS of the expression (J.8) is recast as:

2,4

2

1

M,
i (e 1@ - m (@)
=Tr ('00 Q)™ 2)— Tl"('oo"(Q')_l> TT(' (Q')_l)
+Tr (loo) Tr (1(@) 7). (1.25)
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The relations (J.24) and (J.25) imply that the expres-
sion (J.8) yields the residual operator (90), i.e

PDres (Q) =Tr (|OO) Tr (I (Q)_2>
— 2T (lno-1Q)7!) T (11@)7Y)
Ty (|00 Q)2 - 2 (|a .|(Q-)‘1)2)

12Ty (| Q) 1a-1(Q)"
(1.26)

Appendix K: Vibrational modes

In this appendix, we determine the expression of the an-
gular frequency of the vibrational modes and show that it
is positively defined.

Using the expression (96) of the Coulomb potential
between the nuclei, we deduce the zeroth, first and second
order terms of the series expansion (101), i.e

2 N
e 2,2,
Vv-n (o) =
@ 8meq Z AR
u?ﬁv
: N AY e - ARV
e pro g
VN-N(a) = Zy Zy (‘ ,
8meo #;1 IARY)|3
AV
2 N
G AY o - AY s
VNfN(aﬁ) = 8meo Z ZH Zy <_ HAR(O)HB
p,v=1 g
AV
0 0
3 (AY[LL/Q : ARL:)) (ARE,LU) ! A Yﬂl’ﬁ)
+ AR5 ’
AR, ||
(K.1)
Where A RELOV) = RLO) — RI(,O) and AYyya = Y;La - Yl/a .

Similarly, using the expression (96) of the Coulomb poten-
tial between the nuclei and the electrons, we deduce the
expressions for the zeroth, first and second order terms of
the series expansion (102), i.e

471'80 Z Z

V- e (0) (Q( )

p=1v=1 ”AQ(O)”
N n (0)
a AQuy

V/\/—e(a)(q.) Zﬂ( g )7
D= gy ;Z 1AQW|3
V—e(ap) (4(.) ii@( a-YuB
47‘-60 ‘u,fly 1 ‘AQ H3
(v -20) (3057,
43
1 AQY|5

(K.2)
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where A QELOV) = tho) 1— q(,). We define three symmetric
and trace-free tensors, i.e.

3 (4 (4

0
IARE) |

A —€2Z“ZN:Z _ 1 ARDARD
Podmeg 7T\ |ARY)| ||AR<0>||5

E :7€2ZH i ]]. + (O) (O)
o dmeo \ =\ 1AQY) IAQ ||5

(K.3)
where
Bur = Bup,
N N
ED LR S )
v=1 v=1
pF#EY

Using the definitions (96) and (K.3), and the proper-
ties (K.4), the second-order term of the Coulomb potential
Vi —N (ap) is expressed as:

N
1
VNN @8 =y D AV o By (1= 6) - AY s
p,v=1
N
=Y Y A Yo
pn,v=1
Z Y,uoé cDuv - 6#1/) : Yyﬁ (K5)
p,v=1

Similarly, using the definitions (96) and (K.3), the second-
order term of the Coulomb potential Vi_.(ap) is ex-
pressed as:

N
> Yua-Eué,

pr=1

VN*& (ap) = v Yyﬁ. (KG)

According to the expressions (K.5) and (K.6) of the
second-order Coulomb potentials, the condition (109) is
recast in terms of the tensors (K.3) as

N N
Z YHOWZ ((Au +Epu) 6w — B (1- 6MV)> Y,3=0
pn=1

(K.7)

To simplify the notation, we define a symmetric and trace-

free tensor D, that is a linear combination of the ten-
sors A,, B, and E,, ie.

D;,w = (Ap + EN) (SHV — BHV (1 —

duv) 5 (K.8)
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which implies that the relation (K.7) is recast as:

N N
> Yoo ( Dy .Yyﬁ> =0,
1

pu=1 v=

(K.9)

where o # (3. The conditions (45), (47) and (48) imply
that the condition (K.9) is satisfied provided all the vibra-
tion modes Y, g satisfy the condition,

N
> Do Yo = c5 /My X g+ My ag+ M, (by x R )
v=1

(K.10)
where cg is a scalar parameter, ag and bg are vectorial
parameters.

Using the definition (K.8), the conditions (46), (47)
and (K.4) and taking the sum over all the nuclei in the
relation (K.10) yields,

N
2 Dw

=1

N N

Yis= Eu Y=Y M,ag (K1l
p=1 p=1

The definition (17) and the relation (K.11) yield,

N
1
ag = M Z E,-Y,3. (K.12)
v=1

Using the conditions (46) and (47) and taking the sum
over all the nuclei in the relation (K.10) after multiplying

by bs x R\ yields,

N
3 (bg x R;0>) Dy Yo
pn,v=1

szj:lM” (bﬁ x RS”) : (bg x Rg))). (K.13)

The definitions (55) implies that the relation (K.13) re-
duces to,

N

S (e x BY) Dy Yos=ejlo by, (K14)
n,v=1
which is recast as:
N
by = (Ig"-e’) Y (ej x Rff”) Dy Y, (K.15)
p,v=1

Substituting the relations (K.12), (K.8) and (K.15) into
the condition (K.10) yields the eigenvalue equation,

‘ (Dyu - ]\4# El, — Mﬂ<<ek X RELO)) Z (ek, |61 e])

p,v=1

(esx RY) -D,w)> Y5 =cs /M, X5 (K.16)
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Using the conditions (45), (46) and (47) and taking
the sum over all the nuclei in the relation (K.16) after
multiplying by Y .5 yields,

N N
R E (Z DW-YVﬁ> = ¢z
p=1 v=1

At equilibrium, the energy of the stable molecular system
is minimal. Thus, in the neighbourhood of the equilib-
rium, the relation (K.17) is a positive definite quadratic
form. Identifying the relations (109) and (K.9) and
comparing them to the relation (K.17), we conclude
that, i.e.

(K.17)

wh = V-n (sp) + <VN—6(BE) (a(,)) > (K.18)

where w? = c¢3 > 0 is identified physically as the square
of the angular frequency of the vibration eigenmodes.
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