Energy-Efficient Inexact Speculative Adder with High Performance and Accuracy Control

Inexact and approximate circuit design is a promising approach to improve performance and energy efficiency in technology-scaled and low-power digital systems. Such strategy is suitable for error-tolerant applications involving perceptive or statistical outputs. This paper presents a novel architecture of an Inexact Speculative Adder with optimized hardware efficiency and advanced compensation technique with either error correction or error reduction. This general topology of speculative adders improves performance and enables precise accuracy control. A brief design methodology and comparative study of this speculative adder are also presented herein, demonstrating power savings up to 26 % and energy-delay-area reductions up to 60% at equivalent accuracy compared to the state-of-the-art.


Published in:
Proceedings of the 2015 IEEE International Symposium on Circuits and Systems, 45-48
Presented at:
2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, May 24-27, 2015
Year:
2015
ISBN:
978-1-4799-8391-9
Keywords:
Laboratories:




 Record created 2015-08-03, last modified 2018-01-28

External link:
Download fulltext
Postprint
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)