Noname manuscript No.
(will be inserted by the editor)

On Solving LPN using BKW and Variants
Implementation and Analysis

Sonia Bogos- Florian Tram er - Serge Vaudenay

Received: date / Accepted: date

Abstract The Learning Parity with Noise probleni¥N) is appealing in cryptography as it is considered to
remain hard in the post-quantum world. It is also a good ahatdifor lightweight devices due to its simplicity.

In this paper we provide a comprehensive analysis of theiegitPN solving algorithms, both for the general
case and for the sparse secret scenario. In practicePtNebased cryptographic constructions use as a reference
the security parameters proposed by Levieil and Fouque.fButhese parameters, there remains a gap between
the theoretical analysis and the practical complexitiethefalgorithms we consider. The new theoretical analysis
in this paper provides tighter bounds on the complexitilel solving algorithms and narrows this gap between
theory and practice. We show that for a sparse secret themoiher algorithm that outperfornBKW and its
variants. Following from our results, we further proposagical parameters for different security levels.

Keywords LPN - LWE - BKW - Walsh-Hadamard transform

1 Introduction

The Learning Parity with Noise problerh®N) is a well-known problem studied in cryptography, codingdty
and machine learning. In th&>N problem, one has access to queries of the farm), wherev is a random vector
and the inner product betwegrand a secret vectais added to some noise to obtainGiven these queries, one
has to recover the value efSo, the problem asks to recover a secret vexgiven access to noisy inner products
of itself with random vectors.

It is believed that PN is resistant to quantum computers so it is a good alternaithe number-theoretic
problems (e.g. factorization and discrete logarithm) \Wwhien be solved easily with quantum algorithms. Also,
due to its simplicity, it is a nice candidate for lightweigt#vices. As applications whetd®N or LPN variants
are deployed, we first have the HB family of authenticatiost@eols: HB [28], HE" [29], HB™ ™ [IL1], HB” [22]
andAUTH [32]. An LPN-based authentication scheme secure against Man-in-ttiélédvas presented in Crypto
2013 [37]. There are also several encryption schemes base&N: Alekhnovich [3] presents two public-key
schemes that encrypt one bit at a time. Later, Gilbert, Ralvséind Seurin[22] introduce LPN-C, a public-key
encryption scheme proved to BéD-CPA. Two schemes that improve upon Alekhnovich’s scheme aredoted
in [17] and [16]. In PKC 2014, Kiltz et al[[31] propose an aitative scheme td [17]. Duc and Vaudenay/[19]

Supported by a grant of the Swiss National Science Foundai@0021143899/1.

Sonia Bogos

EPFL, CH-1015 Lausanne, Switzerland
Tel.: +41 21 69 38127

E-mail: soniamihaela.bogos@epfl.ch

Florian Tramer
EPFL, CH-1015 Lausanne, Switzerland
E-mail: florian.tramer@epfl.ch

Serge Vaudenay

EPFL, CH-1015 Lausanne, Switzerland
Tel.: +41 21 69 37696

E-mail: serge.vaudenay@epfl.ch

2 Sonia Bogos et al.

introduce HELEN, ar.PN-based public-key scheme for which they propose concret@npeters for different
security levels. A PRNG based &R N is presented ir [8] and[4].

TheLPN problem can also be seen as a particular case afAHe[40] problem where we work if,. While in
the case of WE the reduction from hard lattice problems attests the haslFE), 10, 39], there are no such results
in the case of PN. The problem is believed to be hard and is closely relatedadang-standing open problem of
efficiently decoding random linear codes.

In the current literature, there are few references wheories to the analysis @fPN. The most well-known
algorithm isBKW [9]. When introducing the HB protocol [29], which relies on the hardnesd &N, the authors
propose parameters for different levels of security adogrh theBKW performance. These parameters are shown
later to be weaker than thought[B5] 21]. Fossorier et al.j2dvide a new variant that brings an improvement over
the BKW algorithm. Levieil and Fouqué [85] also give a formal destioin of theBKW algorithm and introduce
two improvements over it. For their algorithm based on tts¢ Véalsh-Hadamard transform, they provide the level
of security achieved by different instancesléfN. This analysis is referenced by most of the papers that make
use of theLPN problem. While they offer a theoretical analysis and premecure parameters for different levels
of security, the authors do not discuss how their theorticends compare to practical results. As we will see,
there is a gap between theory and practice. In the domain oliimalearning,[[28,42] also cryptanalyse tteN
problem. The best algorithm for solviig®N was presented at Asiacrypt 2014][25]. This new variaf¥V uses
covering codes as a novelty.

While these algorithms solve the general case when we hagedom secret, in the literature there is no
analysis and implementation done for an algorithm spsoialhceived for the sparse secret case, i.e. the secret has
a small Hamming weight.

The BKW algorithm can also be adapted to solve tMeE problem in exponential time. Implementation re-
sults and improvements of it were presented’in][1.2, 18]etms of variants of PN, we have Ring-PN [26]
and SubspackPN [32]. As an application for Ring-PN we have the Lapin authentication protodoll[26] and its

cryptanalysis in[[6,24].

Motivation & Contribution. Our paper comes to address exactly the aforementioned apblems, i.e. the gap
between theory and practice and the analysis oERN solving algorithm that proves to be better thAKW

and its variants in the case of a sparse secret. First, wemgrédse current existingPN solving algorithms in a
unified framework. For these algorithms, we provide experital results and give a better theoretical analysis
that brings an improvement over the work of Levieil and Faa{fE]. Furthermore, we implement and analyse
three new algorithms for the case where the secret is spgatseresults show that for a sparse secretBaN
family of algorithms is outperformed by an algorithm tha¢si§&saussian elimination. Our motivation is to provide
a theoretical analysis that matches the experimentaltse#though this does not prove tha®N is hard, it gives
tighter bounds for the parameters used by the aforememtionyptographic schemes. It can also be used to have
a tighter complexity analysis of algorithms related N solving. Our results were actually usedlin][25] and also
for LWE solving in [18].

Organization. In Sectior 2 we introduce the definition bPN and present the mairPN solving algorithms. We
also present the main ideas of how the analysis was condindi&s]]. We introduce novel theoretical analyses and
show what improvements we bring in Sect[dn 3. Besides amgythe current existing algorithms, we propose
three new algorithms and analyse their performance in @#dtiln Sectiof, we provide the experimental results
for the algorithms described in Sectibh 3[& 4. We compare k@sity with the practical results and show the
tightness of our query complexity. We provide a comparisemieen all these algorithms in Sectidn 6 and propose
practical parameters for a 80 bit security level.

Notations and PreliminariesLet (-, -) denote the inner producf, = {0,1} and® denote the bitwise XOR. For

a domain?, we denote by & D the fact thax is drawn uniformly at random fror®. We use small letters for
vectors and capital letters for matrices. We represent toveof sizek asv = (v1,...,Vk), wherey; is theit" bit
of v. We denote the Hamming weight of a vectaoy HW(v). By Ber; we define the Bernoulli distribution with
parametet, i.e. for a random variabl¥, PiX = 1] = t = 1— Pr{X = 0. The bias of a boolean random variakle
is defined a® = E((—1)*). Thus, for a Bernoulli variable we hade= 1 — 2t.

On SolvingLPN usingBKW and Variants 3

2 LPN

In this section we introduce thePN problem and the algorithms that solve it. For ease of unadedshg, we
present thé PN solving algorithms in a unified framework.

2.1 TheLPN Problem

Intuitively, the LPN problem asks to recover a secret ved@iven access to noisy inner products of itself and
random vectors. More formally, we present below the deéinitif theLPN problem.

Definition 1 (LPN oracle) Lets Z'g and lett e]O,%[be a constant noise parameter. Denot®by the distri-
bution defined as

{(ve)|v&E ZK c= (vs) @ d,d « Ber} € ZK'.

An LPN oracIeOSL,{DN is an oracle which outputs independent random samplesdingdo D .

Definition 2 (SearchLPN problem) Given access to arPN oracleOLf™, find the vectos. We denote by PNy
the LPN instance where the secret has dizznd the noise parameterisLetk’ < k. We say that an algorithrit/
(n,t,m,0,k')-solvesthe search.PNy ; problem if

PO (1) = (s1...50) | s 2] > 6,
and9/ runs in timet, uses memoryn and asks at mostqueries from thé.PN oracle.

Note that we consider here the problem of recovering theKirsits of the secret. We will show in Sectibh 3
that for all the algorithms we consider, the cost of recovgthe full secresis dominated by the cost of recovering
the first block ofk’ bits ofs.

An equivalent way to formulate the seartRNy; problem is as follows: given access to a random matrix
Ac Zng and a column vectar overZ,, such thalAs” @ d = c, find the vectos. Here the matriXA corresponds to
the matrix that has the vectovr®n its rows sis the secret vector of sizeandc corresponds to the column vector
that contains the noisy inner products. The column vettisrof sizen and contains the corresponding noise bits.

One may observe that with= 0, the problem is solved in polynomial time through Gaussianination given
n= O(k) queries. The problem becomes hard once noise is added tanidnegroduct. The value afcan be either
independent or dependent of the vaku&lsually the value of is constant and independent from the valu&.dk
case where is taken as a function df occurs in the construction of the encryption scherhés [3 |h@Jitively, a
larger value oft means more noise and makes the problem of sddtbdhharder. The value of the noise parameter
is a trade-off between the hardness of Ny and the practical impact on the applications that rely oa thi
problem.

TheLPN problem has also a decisional form. TéhecisionalLPNy ; asks to distinguish between the uniform
distribution overZ§™ and the distributiorDs;. A similar definition for an algorithm that solves decisibh&N
can be adopted as above. Ldt.; denote an oracle that outputs random vectors of lsizel. We say that an
algorithm/ (n,t,m,8)-solvesthe decisional PNy ; problem if

| PO (1%) = 1] — P U1 (1K) = 1] | > ©

and9/ runs in timet, uses memoryn and needs at mostqueries.
Search and decisionBPN are polynomially equivalent. The following lemma exprestgs result.

Lemma 1 ([30[8])If there is an algorithmM that (n,t,m,0)-solves the decisiondlPN, then one can build
an algorithma/’ that (/,t',m', & k)-solves the searchPN problem, where = O(n-8~2logk), t' = O(t -k-
6-2logk), m = O(m-6~2logk)) and®’ = 9.

We do not go into details as this is outside the scope of thpgip&\Ve only analyse the solving algorithms for
searchLPN. From now on we will refer to it simply asPN.

4 Sonia Bogos et al.

2.2 LPN Solving Algorithms

In the current literature there are several algorithms beesttieLPN problem. The first that appeared, and the most
k
well known, isBKW [9]. This algorithm recovers the secrebdf an LPNy instance in sub—exponentia?w)

time complexity by requiring a sub-exponential numb&ig) of queries from theoiPN oracle. Levieil and
Fouque[[35] propose two new improvements which are cadlledand LF2. Fossorier et. a[[21] also introduce
a new algorithm, which we denoteMICM, that brings an improvement ovBKW. The best algorithm to solve
LPN was recently presented at Asiacrypt 2014 [25]. It can be ssemvariant of F1 where covering codes are
introduced as a new method to improve the overall algorithifrthese algorithms still require a sub-exponential
number of queries and have a sub-exponential time complexit

Using BKW as a black-box, Lyubashevsky [36] introduces a "pre-prsiogs phase and solves drPNy

k
instance withk!*" queries and with a time complexity of gogiosk) | The queries given tBKW have a worse

2k
bias oft’ = % — % (LTZT) gk ' Thus, this variant requires a polynomial number of quebigishas a worse time

complexity. Given onlyn = ©(k) queries, the best algorithms run in exponential tirR&/238/41].

An easy to solve instance 6PN was introduced by Arora and Gl [5]. They show that inkheise version
where thek-tuples of the noise bits can be expressed as the solutiopafaomial (e.g. there are no 5 consecutive
errors in the sequence of queries), the problem can be siwiyedynomial time. What makes the problem easy is
the fact that an adversary is able to structure the noise.

In this paper we are interested in tBEW algorithm and its improvements presented by Levieil andjee35]
and by Guo et al[[25]. The common structure of all these dlywis is the following: givem queries from the
O'S;f'\' oracle, the algorithm tries to reduce the problem of findisgerets of k bits to one where the secrgthas
only k' bits, withk’ < k. This is done by applying severadductiontechniques. We call this phase tregluction
phase Afterwards, during theolving phaseve can apply @olvingalgorithm that recovers the secsatWe then
update the queries with the recovered bits and restartlioredovers. For the ease of understanding, we describe
all the aforementionedPN solving algorithms in this setting where we separate therélgnms in two phases. We
emphasize the main differences between the algorithmsiandss$ which improvements they bring.

First, we assume th&t= a- b. Thus, we can visualise thebit length vectors asa blocks ofb bits.

2.2.1BKW* Algorithm

TheBKW* algorithm as described ih [B5] works in two phases:

Reduction phaseGivenn queries from th& PN oracle, we group them in equivalence classes. Two queres ar
the same equivalence class if they have the same value omadddh bit positions. Thesé positions are chosen
arbitrarily in {1,...,k}. There are at most®Zsuch equivalence classes. Once this separation is donegrfgem
the following steps for each equivalence class: pick oneygaerandom, the representative vector, and xor it to
the rest of the queries from the same equivalence classaidishe representative vector. This will give vectors
with all bits set to 0 on thoske positions. These steps are also illustrated in Algorlthrstég$ b E£10). We are left
with at leastn — 2° queries where the secret is reducedk tob effective bits (others being multiplied by 0 in all
queries).

We can repeat the reduction techniguel times on other disjoint position sefs ..., qa—1 from{1,... . k}\a1
and end up with at least— (a— 1)2° queries where the secret is reducet to(a— 1)b = b bits. The bias of the

new queries iﬁzafl, as shown by the following Lemma with = 221,
Lemma 2 ([35[9])If (v1,c1),..., (Viw,Cw) are the results of w queries from{p™, then the probability that:

VIBV2D...BVW,S) =C1D...DCw

. W
is equal tol 52~

It is easy so see that the complexity of performing this réduacstep isO(kan).

After a— 1 iterations, we are left with at least- (a— 1)2° queries, and a secret of sizeléffective bits at
positions 1...,b. The goal is to keep only those queries that have Hamminghteige (step 11 of Algorithil1).

Givenn— (a— 1)2° queries and one bit positione {1,...,kK}\{q1U... Uga_1}, onlyn’ = %gl)zb will have a

On SolvingLPN usingBKW and Variants 5

Algorithm 1 BKW* Algorithm by [35]

1: Input: a setv of n queries(vi, G) € {0,1}%+* from theLPN oracle, values, b such thak = abandn > a2°
2: Output: valuessy, ..., S

3: Partition the position$1,... ,k}\ {1,...,b} into disjointai U... Uda_1 with g; of sizeb
4: fori=1toa—1do > Reduction phase
5: PartitionV = Vi U... UV, s.t. vectors iV} have the the same bit values at positions;in
6. foreachV;

7. Choose a randoifv*,c*) € V; as a representative vector
8 Replace eactv,c) by (v,c) @ (v*,c"), (v,c) € V] for (v,c) # (v*,c")
9 Discard(v*,c*) fromV;

10: V:V1U.4.UV2b

11: Discard fronV all queries(v,c) such thaHW(v) # 1

12: PartitionV = Vi U... UV s.t. vectors iVj have a bit 1 on position

13: foreach positioni > Solving phase

14: s = majority(c), for all (v,c) € Vi

15: return s1,...,%

single non-zero bit on positionand 0 on all the others. These queries represent the inpbetsalving phase.
The bias does not change since we do not alter the originalegudhe complexity for performing this step for
n— (a— 1)2° queries isO(b(n — (a— 1)2)) as the algorithm just checks if the queries have Hamming ldig

The bitc is part of the query also: it gets updated during the xoringrafions but we do not consider this bit
in partitioning or when computing the Hamming weight of aigu&ater on, the information stored in this bit will
be used to recover bits of the secret.

Remark 1Given that we have performed the xor between pairs of quaviesote that the noise bits are no longer
independent. In the analysis BKW*, this was overlooked by Levieil and Fouq@[ﬂS]’.he originalBKW [9]
algorithm overcomes this problem in the following mannexcke query that has Hamming weight 1 is obtained
with a fresh set of queries. Give2® queries the algorithm runs the xoring process and is let @ftvectors.

From these 2queries, with a probability of 2 (1 — 2*“)2b ~1-— % wheree = 2.718, there is one with Hamming
weight 1 on a given position In order to obtain more such queries the algorithm repéé&grocess with fresh
1

queries. This means that for guessing 1 bit of the secregripmal algorithm requires = a- 2°- ey n' queries,

wheren’ denotes the number of queries needed for the solving phageisTlarger tham = 2°n' + (a— 1)2°
which is the number of queries given by Levieil and Foudqud.[8%& implemented and ruBKW* as described
in Algorithm [T and we discovered that this dependency do¢saffect the performance of the algorithm. I.e.,
the number of queries computed by the theory that ignoredependency of the error bits matches the practical
results. We need = n’ + (a— 1)2° (and notn = 2°n' + (a— 1)2°) queries in order to recover one block of the
secret. The theoretical and practical results are presémt®ectiorf b. Given our practical experiments, we keep
the “heuristic” assumption of independence and the algoris described in [35] which we call@&KW*. Thus,
we assume from now on the independence of the noise bits anddapendence of the queries.

Another discussion on the independence of the noise biteeisepted in[[20]. There we can see what is the
probability to have a collision, i.e. two queries that shemeerror bit, among the queries formed during the xoring
steps.

We can repeat the algorithatimes, with the same queries, to recover all kH#@ts. The total time complexity
for the reduction phase i8(ka?n) as we perform the steps described abavimes (instead of)(kan) as given
in [35]). However, by making the selection afandb adaptive withab near to the remaining number of bits to
recover, we can show that the total complexity is dominatethk one of recovering the first block. So, we can
typically concentrate on the algorithm to recover a sindgpek. We provide a more complete analysis in Sedfion 3.

Solving phaseTheBKW solving method recovers the 1-bit secret by applying theonitgjrule. The queries from

the reduction phase are of the fon’j‘n: s ad, dj — Ber(li6za—1)/2 ands being theit" bit of the secres. Given

that the probability for the noise bit to be setto 1 is smahan%, in more than half of the cases, these queries will
bes. Thus, we decide that the value®fis given by the majority rule (stepsli2114 of Algoritiiin 1). Bpplying
the Chernoff bound$114], we find how many queries are needehl that the probability of guessing incorrectly
one bit of the secret is bounded by some conflantth 0 < 6 < 1.

1 Definition 2 of [35] assumes independence of samples but Latof [35] shows the reduction without proving independence

6 Sonia Bogos et al.

The time complexity of performing the majority rule is liméa the number of queries.

Complexity analysisWith their analysis, Levieil and Fouque]35] obtain the daling result:

Theorem 1 (Th. 1 from [35]) For k = a- b, theBKW* algorithm heuristically (n= 20- In(4k) - 2°. 52" + (a—
1)2°t = O(kan),m=kn,8 = ,b)-solves th¢.PN problen

In Sectior 8 we will see that our theoretical analysis, whighbelieve to be more intuitive and simpler, gives
tighter bounds for the number of queries.

2.2.2LF1 Algorithm

During the solving phase, tlBKW algorithm recovers the value of the secret bit by bit. Givet ve are interested
only in queries with Hamming weight 1, many queries are dided at the end of the reduction phase. As first noted
in [35], this can be improved by using a Walsh-Hadamard faansinstead of the majority rule. This improvement
of BKW is denoted in[[35] by F1. Again, we present the algorithm in pseudo-code in Algonith As inBKW*,

we can concentrate on the complexity to recover the firstibloc

Reduction phaseThe reduction phase fdrF1 follows the same steps as BKW™ in obtaining new queries as
22-1 xors of initial queries in order to reduce the secret to &zt this step, the algorithm does not discard
queries anymore but proceeds directly with the solving pHase steps|[3-1L.0 of Algorithid 2). We now have
n' = n— (a— 1)2° queries after this phase.

Solving phaseThe solving phase consists in applying a Walsh-Hadamangfivam in order to recovey bits of
the secret at once (stdpd[11-13 in Algorifiim 2). We can redhed-bit secret by computing the Walsh-Hadamard
transform of the functiorf (X) = ¥;1y_.(~1)%. The Walsh-Hadamard transform fgv) = y,(~1)"* f(x) =
Sx(—D)¥ 5 Ly y(—1)% = 3i(—=1)MVFE = i — 2HW(AVT +¢). Forv =s, we havef(s) = ' — 2. HW(d),
whered’ represents the noise vector after the reduction phase. 4l #rmat most of the noise bits are set to 0.
So, f(s) is large and we suppose it is the largest value in the table Thus, we have to look at the maximum
value of the Walsh-Hadamard transform in order to recovenéiue ofs. A naive implementation of a Walsh-
Hadamard transform would give a complexity 8P 8ince we apply it on a space of siz& Since we apply a fast
Walsh-Hadamard transform, we get a time complexitp2¥[15].

Algorithm 2 LF1 Algorithm

1: Input: a setv of n queries(vi,ci) € {0,1}+1 from theLPN oracle, values, b such thak = ab
2: Output: valuessy, ...,

3: Partition the position$1,...,k}\{1,...,b} into disjointgi U. .. Uda_1 with g; of sizeb
4: fori=1toa—1do > Reduction phase
5: PartitionV = Vi U... UV, s.t. vectors iV} have the the same bit values at positions;in
6. foreachV;

7 Choose arandoifv*,c*) € V; as a representative vector

8 Replace eactv,c) by (v,c) & (v*,c"), (v,c) € V; for (v,c) # (v*,c")
9 Discard(v*,c*) fromV;

10: V=ViU...UVp

11: £(%) = S (voev Ly p=x(—=1)° > Solving phase
12: f(v) = $u(~1)V9 f(x)_ > Walsh transform off (x)
13: (s1,...,%) = arg max(f(v))

14: return sp,...,%

2 The term(a— 1)2b is not included in Theorem 1 frorh [35]. This factor represethie number of queries lost during the reduction phase
and it is the dominant one for all the algorithms excBptwW*.

On SolvingLPN usingBKW and Variants 7

Complexity analysisThe following theorem states the complexityldfl:

Theorem 2 (Th. 2 from [35]) For k= a-b and a> 1, theLF1 algorithm heuristically (n= (8020052 + (a—
1)2°t = O(kan+ b2P),m= kn-+b2°,8 = 1, b)-solves thé PN problent]

The analysis is similar to the one done BiKW*, except that we now work with blocks of the secseind not
bits. Thus, we bound bi% the probability thatf (S) > f(s), wheres' is any of the 2 — 1 values different frons.
As for BKW*, we will provide a more intuitive and tighter analysis fdf1 in Sectiof3..

BKW* vs. LF1. We can see that compared BiKW*, LF1 brings a significant improvement in the number of
queries needed. As expected, the factodigappeared as we did not discard any query at the end ofdetien
phase. There is an increase in the time and memory complesdguse of the fast Walsh-Hadamard transform,
but these terms are not the dominant ones.

2.2.3LF2 Algorithm

LF2 is a heuristic algorithm, also introduced in[35], that appthe same Walsh-Hadamard transforn e, but
has a different reduction phase. We provide the pseudocod&? below.

Algorithm 3 LF2 Algorithm

1: Input: a setV of nqueries(vi,Gi) € {0,1}1 from theLPN oracle, values, b such thak = ab
2: Output: valuessy, ..., S

3: Partition the position$1,... ,k}\{1,...,b} into disjointai U...Uda—1 with g; of sizeb

4: fori=1toa—1do > Reduction phase
5 PartitionV =V, U... UV, S.t. vectors inVj have the the same bit values at positions;in

6: foreachV;

7: VJ-’ =0

8 foreach pair (v,c),(V,c') € Vj, (v,c) # (V,C)

9 V/ =V/U(veV,cacd)

100 V=VjU...UVj

11: f(x) = Ywoev v p=x(—1)° > Solving phase
12: f(v) = $u(~1)V9 f(x) > compute the Walsh transform 6fx)
13: (s1,...,%) = arg max(f(v))

14: return sp,...,%

Reduction phaseSimilarly to BKW* andLF1, then queries are grouped into equivalence classes. Two queries
are in the same equivalence class if they have the same valasvordow ofb bits. In each equivalence class we
perform the xor of all the pairs from that class. Thus, we dooh@ose any representative vector that is discarded

. . . . b .
afterwards. Given that in an equivalence class there &2&queries, we expect to hav€(2/22) gueries at the end
of the xor-ing. One interesting case is wheis of the formn = 3. 2P as with this reduction phase we expect to

preserve the number of queries sir@a = 3. For anyn > 3. 2°, the number of queries will grow exponentially
and will also affect the time and memory complexity.

Solving phaseThis works like inLF1.
In a scenario where the attacker has access to a restrictellemwf queries, this heuristic algorithm helps in
increasing the number of queries. WItR2, the attacker might produce enough queries to recover tiretse

2.2.4FMICM Algorithm

Another algorithm by Fossorier et dl. [21] uses ideas frosh darrelation attacks to solve th€N problem. While
there is an improvement compared with 8i€W* algorithm, this algorithm does not perform better th&i and
LF2. Given that it does not bring better results, we just pregenimain steps of the algorithm.

3 The termb2® in the time complexity is missing i [35]. While in geneianis the dominant term, in the special case where 1 (thus
we apply no reduction step) a complexity @fkan) would be wrong since, in this case, we apply the Walsh-Hadétnansform on the whole
secret and the terk2k dominates the final complexity.

8 Sonia Bogos et al.

As the previous algorithms, it can be split into two phaseduction and solving phase. The reduction phase
first decimates the number of queries and keeps only thosgegubat have 0 bits on a window of a given size.
Then, it performs xors of several queries in order to furtleeuce the size of the secret. The algorithm that is used
for this step is similar to the one that constructs parityogiseof a given weight in correlation attacks. The solving
phase makes use of the fast Walsh-Hadamard transform teenggart of the secret. By iteration the whole secret
is recovered.

2.2.5 Covering Codes Algorithm

The new algorithm[[25] that was presented at Asiacrypt 20itdoduces a new type of reduction. There is a
difference betweer [25] and what was presented at the Agiaconference (mostly due to our results). We
concentrate here on [25] and in the next section we presesifgestions we provided to the authors.

Reduction phaseThe first step of this algorithm is to transform thBN instance where the secigis randomly
chosen to an instance where the secret has now a Bernotiilbdi®n. This method was described in_[38.14, 6].

Givenn queries from th&PN oracle:(vy, 1), (V2,C2), ..., (Va,Cn), Selecklinearly independentvectovs , ..., Vi,.
Construct thd x k target matriXM that has on its columns the aforementioned vector$/|i.e.[\7iTl\7iT2 . \7,Tk] Com-
pute(MT)~! the inverse oM, whereMT is the transpose dfl. We can rewrite th& queries corresponding to the
selected vectors &48"s™ +d’, whered’ is thek-bit column vectod = (di, , di,, ..., d;,). We denote’ = MTs" +d'.
For anyv; that is not used in matrik! do the following computation:

Vi(MT) i ¢ = (vj(MT) 1 d") + dj.

We discard the matrid. From the initial set of queries, we have obtained a new setrevthe secret value
is d’. This can be seen as a reduction to a sparse secret. The ségnpfethis transform isO(k® + nk?) by the
schoolbook matrix inversion algorithm. This can be impibes follows: for a fixed(, one can split the matrix

M1

(MH)tina = (;] parts M2 of X rows. By pre-computingM; for all ve {0,1}X, the operation of performing

My

vj(MT)~! takesO(kd). The pre-computation take(2X) and is negligible if the memory required by tB&W
reduction is bigger. With this pre-computation the comitieis O(nkd).

Afterwards the algorithm follows the usuBKW reduction steps where the size of the secret is reduckd to
by the xoring operation. Again the vectorlobits is seen as being split into blocks of stzeThe BKW reduction
is applieda times. Thus, we hav€ = k— ab.

The secres of k' bits is split into 2 parts: one part denotedof k” bits and the other part, denoted of
k' — K’ bits. The next step in the reduction is to guess valus;dfy making an assumption on its Hamming
weight: HW(s;) < wp. The remaining queries are of the fow, ¢ = (vi,s;) & di), wherevi,s, € {0,1}¥" and
di € Ber, oa. Thus, the problem is reduced to a secrdtobits.

-2
At this moment, the algorithm approximates thevectors to the nearest codewagdin a [k”, /] linear code
wherek” is the size and is the dimension. By observing thgt can be written ag; = g/G, whereG is the
generating matrix of the code, we can write the equationisérfarm

G = <Via52>@di = <gi/GaSQ>@<Vi_gi;52>@di = <g|/55lz>@d|/

with &, = $,G™ andd/ = (v — gi,%) @ di, whereg, s, have lengtlY. If the code has optimal covering radips
V; — g; is a random vector of weight bounded pywhile s is a vector of some small weight boundedvay, with
some probability. Salvi — gi,) is biased and we can treditin place ofd;.

In [25], the authors approximate the bias(agf— g;,s;) to &' = (17 2%)‘”1, as if all bits were independent. As
discussed in the next section, this approximation is fanfgmod.

No queries are lost during this covering code operation awdthe secret is reduced tdits. We now have
n’ = n—k—a2P queries after this phase.

Solving phaseThe solving phase of this algorithm follows the same stepisFasi.e. it employs a fast Walsh-
Hadamard transform. One should notice that the solvingghesverd relations between the bits of the secret
and not actuaf bits of the secret.

On SolvingLPN usingBKW and Variants 9

Complexity analysisRecall that in the algorithm two assumptions are made réggtde Hamming weight of the
secret: that, has a Hamming weight smaller than and thats; has a Hamming weight smaller thang. This
holds with probability Pfwo, k' — K”) - Pr(wy, k") where

Pr(w,m) = ii}(l —7)™it <r|n> .

The total complexity is given by the complexity of one itévatto which we add the number of times we have
to repeat the iteration. We state below the result friom [25]:

Theorem 3 (Th 1. from [25])
Let n be the number of samples required ara &, wo, w1, ¢, K, k” be the algorithm parameters. For th&®Ny
instance, the number of bit operations required for a susftésun of the new attack is equal to

tsparse reduction + tbkw reduction + tguess + tcovering code 1 tWaIsh transform

t= Pr(wo, K — k") Priwa, k) !

where

— tsparse reduction = NK& is the cost of reducing thiePN instance to a sparse secret
— tokw reduction = (K=+ 1)an is the cost of thBKW reduction steps
— tguess =1’ Z}N:Oo (k/’ik//)i is the cost of guessing k k” bits and = n— k— a2® represents the number of queries
at the end of the reduction phase
— teovering code = (K’ —£)(2n' +2¢) is the cost of the covering code reduction anéragain the number of queries
— twaish ransform = £2¢ }’ﬁ’o (”’i”/) is the cost of applying the fast Walsh-Hadamard transformref@ry guess of
k' — K’ bits
under the condition that a a2° > m, whered = 12t andd = (1—2%)" andp is the smallest integer,
P (K K'—¢
stypo(f) >2<"

The conditiomn — a2° > H%z proposed in[[25] imposes a lower bound on the number of gsiegeded in

the solving phase for the fast Walsh-Hadamard transformautranalysis, we will see that this is underestimated:
the Chernoff bounds dictate a larger number of queries.

3 Tighter Theoretical Analysis

In this section we present a different theoretical analfysis the one of Levieil and Fouque[35] for the solving
phases of th& PN solving algorithms. A complete comparison is given in Sadfd. Our analysis gives tighter
bounds and aims at closing the gap between theory and mra€tc the new algorithm from [25], we present the
main points that we found to be incomplete.

We first show how the cost of solving one block of the secretidates the total cost of recoverisgThe main
intuition is that after recovering a first block kfsecret bits, we can apply a simple back substitution meshani
and consider solving BPN_ ; problem. The same strategy is applied by [1,18] when sollifg. Note that
this is simply a generalisation of the classic Gaussianiedition procedure for solving linear systems, where we
work over blocks of bits.

Specifically, lek; = kandk =ki_1—k{_; fori >1andk_; < ki_1. Now, suppose we were able(t, t;, m, 6;,k/)-
solve anLPN ; instance (meaning we recover a block of sizérom the secret of sizk with probability6;, in
timet; and with memorym). One can see that fdt,1 < ki we need less queries to solve the new instance (the
number of queries is dependent on the dizg and on the noise level). With a smaller secret, the time com-
plexity will decrease. Having a shorter secret and lessigsiethe memory needed is also smaller. Then, we
can(n,t,m,6,k)-solve the problenh PNy (i.e recoveis completely), withn = max(ni,np,...), 0 =01 +062+...,
t=t1+Kni+ta+kony... (the termkn; are due to query updates by back substitution)rargdmax(my,my,).
Finally, by takingd; = 37", we obtaind < % and thus recover the full secrewith probability over 50%.

It is easily verified that for all the algorithms we considee haven = n;, m= my, andt is dominated by;.

We provide an example on a concréfeN instance in AppendixB.

For all the solving algorithms presented in this section w&uene that' queries remain after the reduction
phase and that the biasXs For the solving techniques that recover the secret blgektbck, we assume the block
size to bek'.

10 Sonia Bogos et al.

Table 1:BKW* query complexity - our theory Table 2:BKW* query complexity - theory [35]
. k . k
32 48 64 80 100 32 48 64 80 100
001 1097 1282 1593 1866 2174 001 1456 1660 1968 2259 2564
0.10 1584 2001 2412 2820 3328 0.10 1975 2387 2795 3200 3706
020 1971 2485 3097 3483 3990 0.20 2350 2861 3469 3864 4370
025 2181 2695 3307 3814 4411 0.25 2560 3072 3679 4185 4790
040 2824 3638 4364 4871 5578 040 3189 4000 4737 5243 5948

3.1 BKW* Algorithm

Given anLPN instance, thé8KW* solving method recovers the 1 bit secret by applying the rigjoule. Recall
that the queries are of the fornﬁl =sad, d} < Ber(1_g)/2. The majority of these queries will most likely be
c’j = §. It is intuitive to see that the majority rule fails when mahan half of the noise bits are 1 for a given
bit. Any wrong guess of a bit gives a wrong value of #abit secrets. In order to bound the probability of such
a scenario, we use the Hoeffding bounids [27] with= d; (See Appendik’A). We have p§ = 1] = 1’75'. For

X = ZT/:lXj, we haveE(X) = “’—25/)”’ and we apply Theorem1L2 with= 57”', aj =0 andB; = 1 and we obtain

n/ "2
Prlincorrect guess on 5] = Pr [X > E] <e 3 .

As discussed in Remalk 1, the assumption of independenesiisstic.
Using the above results for every bit.1 ,b, we can bound by a consta@t the probability that we guess
incorrectly a block ofs, with 0 < 8 < 1. Using the union bound, we get thait= 26’*2In(§). Given thatn’ =

b _
”’(""2731)2 and tha® = & ", we obtain the following result.

Theorem 4 For k < a-b, theBKW* algorithm heuristically (n= 2°+15-2"In(8) + (a— 1)2°t = O(kan),
m = kn, 8, b)-solves th& PN problem.

We note that we obtained the above result using the uniondd@me could make use of the independence of
the noise bits and obtaim= 2°+15-2"In (ﬁ) + (a—1)2°, but this would bring a very small improvement.
In terms of query complexity, we compare our theoreticalitssvith the ones froni[35] in Tablé 1 and Table 2.

We provide the log(n) values fork varying from 32 to 100 and we take different Bernoulli noisggmeters that
vary from Q01 to Q4. Overall, our theoretical results bring an improvemers €fctor 10 over the results ¢f[35].

In Sectior 5.1l we show that Theor&n 4 gives results that ageclese to the ones we measure experimentally.

We note that ouBKW* algorithm, for which we have stated the above theorem,i@lthe steps from Algo-
rithm[1 fork = a-b. Fork < a-b the algorithm is a bit different. In this case we have 1 blocks of sizeb and
an incomplete block of size smaller thenDuring the reduction phase, we first partition the incortepldock and
then apply(a— 2) reduction steps for the complete blocks. We finally hlawéts to recover. Other than this small
change, the algorithm remains the same.

If the term ?*léfzaln(gbi) dominatesn, the next iteration can use decreased by 1 leading to a news

ob+15-2% In(%) which is roughly the square root of the previousso, the complexity of recovering this block

is clearly dominated by the cost of recovering the previoesh If the term(a— 1)2° is dominating, we can
decreasé by one in the next block and reach the same conclusion.

3.2 LF1 Algorithm

For theLF1 algorithm, the secret is recovered by choosing the highaisievof a Walsh-Hadamard transform.
Recall that the Walsh transform fg¢v) = n’ — 2HW(AVT +). Forv = s, we obtain that the Walsh transform has
the valuef (s) = n' — 2HW(d'). We haveE(f(s)) =n'd.

On SolvingLPN usingBKW and Variants 11

The failure probability forLF1 is bounded by the probability that there is another veetef s such that
HW(AVT +¢) <HW(A'ST +). Recall thatA's™ 4 ¢’ = d’. We definex = s+ v so thatA'vT + ¢ = Ax™ +d.
We obtain that the failure probability is bounded By tines the probability thattW(A'x" +d') < HW(d"), for
a fixedk’-bit non-zero vectok. As A’ is uniformly distributed, independent frodi, andx is fixed and non-zero,
A'xT 4-d’ is uniformly distributed, so we can rewrite the inequaligHV (y) < HW(d'), for a randony.

To bound the failure probability, we again use the Hoeffdimgguality [27]. LetXs,Xp,..., Xy be random
independentvariables witky =yj —dj, Pr(X; € [-1,1]) = 1. We haveE(y; —dj) = %’. We cantaké = E[X] = %
in Theoreni IR and obtain:

/
n "2

.Z<yj—d§>s0] <Xe s

Prlincorrect guess on one block] < ¢ Prl
=1

Again we can bound the probability of incorrectly guessimg dlock ofs by 6. With n" = 8(In 2—5)6’*2,
the probability of failure is smaller thaf The total number of queries will be=n’ + (a— 1)2° and we have
& =8 ", K = b. Similar toBKW, we obtain the following theorem:

Theorem 5 For k < a-b, theLF1 algorithm heuristically (n= 8In(%b)6*25l + (a—1)2°t = O(kan+ b2°),m =
kn+ b2°, 8, b)-solves th& PN problem.

By comparing the terni8b+200)52" in Theoreni® with our value of 8(%)6*23, one might check that our
term is roughly a factor 2 smaller than that 0f[[35] for preativalues ofa andb. For example, for &PNvego.01
instance (witta= 11,b = 70), our analysis require§2queries for the solving phase while the Levieil and Fouque
analysis requires® queries.

3.3 LF2 algorithm

Having the new bounds fdrF1, we can state a similar result foF2. Recall that whem = 3- 2°, LF2 preserves
the number of queries during the reduction phase. FaP 3 n’ we have that:

Theorem 6 Fork< a-b and n=3-20 > 8In(%f))6*2a, the LF2 algorithm heuristically (n= 3-2°,t = O(kan+
b2P), m = kn+ b2®, 8, b)-solves thé. PN problem.

One can observe that we may allovo be smaller than &°. Given that the solving phase may require less than
3.2 we could start with less queries, decrease the number ofeguguring the reduction and end up with the
exact number of queries needed for the solving phase.

3.4 Covering Codes Algorithm

Recall that the algorithm first reduces the size of the saorkt bits by runningBKW reduction steps. Then it
approximates the vector to the nearest codewaydn a [k”, /] linear code withG as generator matrix. The noisy
inner products can be rewritten as

G =(0G %)@ (Vi—g.%) &d =(g,%6")ad = (g,s) ad,

wheregi = gG, s = $,GT andd! = (g —vi.2) & d.

Given that the code has a covering radiup@nd that the Hamming weight ef is smaller tharw, the bias
of (gi — i, sz) is computed a&' = (1— 2%)Wl in [25], wherek” is the size of,. We stress that this approximation
is far from good.

Indeed, with thd3, 1] repetition code given as an examplelinl[25], the xor of tweebits is unbiased. Even
worse: the xor of the three bits has a negative bias. So, whieng the code obtained by 25 concatenations of
this repetition code andy = 6, with some probability of 36% we have at least two error faténg in the same
concatenation and the bias makes this approach fail.

We can do the same computation with the concatenation off8/¢2] Golay codes withw; = 15, as suggested
in [25]. With probability 021%, the bias is zero or negative so the algorithm fails. \&fttne probability &%,
the bias is too low.

12 Sonia Bogos et al.

In any case, we cannot take the error bits as independenn Yheode has optimal covering radpsve can
actually find an explicit formula for the bias o — g;,) assuming that, has weightwy :

S(k” p) Z ()S(k” wi,p— i)

i<p,l odd

Pri(vi — gi,s2) = 1HW(sp) = wi] =

whereS(k”, p) is the number ok”-bit strings with weight at mogt.
To solveLPNs120 125, [25] proposes the following parameters

a=6 a=9 b=63 (=64 K'=124 wp=2 w; =16

and obtaim = 2°63 and a complexity of 292. With these parameter5, [25] approximated the biggte 25)" =
2-591 (with p = 14). With our exact formula, the bias should rather be ot®. So,n should be multiplied by
4.82 (the square of the ratio).

Also, we stress that all this assumes the construction ofla with optimal radius coverage, such as the Golay
codes, or the repetition codes of odd length and dimensi&uithese codes do not exist for @', 7). If we
use concatenations of repetition codes, given as an examfi&], the formula for the bias changes. Givén
concatenations of thig;, 1] repetition code, withks + ... + k; =K, ki =~ kT" and 1<i < ¢, we would have to split
the secres, in chunks ofki, ...k, bits. We takew;1 + ... +wi, = wy wherew;; is the weight ofs, on theit"
chunk. In this case the bias for each repetition code is

1 Wll)
O =1-2X gi— < ki —Wai, pi —] @)
I S(khpl) jgpgodd J S(o)
wherep; = L%J.
The final bias is
=08 @)
We emphasize that the value ofis underestimated i [25]. Indeed, with = bias 2, the probability that
arg ma>(f siz is too low inLF1. To have a constant probability of succ@ssur anaIyS|s says that we should

multiply r/ by 8In(@). ForLPNs150.125and® = 3, this is 363.

When presenting their algorithm at Asiacrypt 2014, the argttof [25] updated their computation by using
our suggested formulas for the bias and the number of quéniesder to obtain a complexity smaller thaff2
they further improved their algorithm by the following olbg&tion: instead of assuming that the sesehas a
Hamming weight smaller or equal o, the algorithm takes now into account all the Hamming wesdgihiat would
give a good bhias for the covering code reduction. l.e., tgerdhm takes into account all the Hamming weights
w for which & > &, Wheregs; is a preset bias. The probability of a good secret changes Riw;, k") to
Pr(HW) that we define below. They further adapted the algorithm liygutheLF2 reduction steps. Recall that for
n=3-2° the number of queries are preserved during the reductiaseptWith these changes they propose the
following parameters fotPNs120 125

a=5 b=62 (=60 K'=180 Wp=2 g =2 418

Usmg two [90,30] linear codes, they obtain that= 2636 = 3.2 queries are needed, the memory used is of
= 2726 pits and the time complexity is= 27°7. Thus, this algorithm gives better performance th&a and
shows that thi$ PN instance does not offer a security of 80 ts
With all the above observations we update the Thediem 3.

Theorem 7 Let a a',b,wp,wi, ¢, K K’ €t be the algorithm parameters. The covering code

(n= 8|n(2_é)52a+152t +a2b t,m=kn+ 2~ + 2,0, ¢)-solves the PN problenfd, whered = 1 — 2t andes; is a
preset bias. The code chosen for the covering code redustigpncan be expressed as the concatenation of one or
more linear codes. The time t complexity can be expressed as

tsparse reduction + tbkw reduction + tguess + tcovering code 1 tWaIsh transform

= Pr(wo, K — K”) Pr(HW) ’

where

4 For the computation af the authors of[25] use the term 4#) instead of BIQ%). If we use our formula, we obtain that we need more
than 3 2P queries and obtain a complexity pf= 28008,

5 Thisn corresponds to covering code reduction udifg. For LF2 reduction steps we need to have- 3-2°+ k > 8In(%)ﬁ.
set

On SolvingLPN usingBKW and Variants 13

— tsparse reduction = NK& is the cost of reducing thiePN instance to a sparse secret

— tokw reduction = (K=+ 1)an is the cost of thBKW reduction steps

— tguess =N 3 1% (k/’ik")i is the cost of guessing k k” bits and i = n— k — a2° represents the number of queries
at the end of the reduction phase

— teovering code = (K’ — £)(2n' +2¢) is the cost of the covering code reduction anéragain the number of queries

— twaish ransform = £2¢ }’ﬁ’o (k/*ik”) is the cost of applying the fast Walsh-Hadamard transformef@ry guess of
kK — K’ bits

— Pr(HW) = 3, (1 - T)K —wigw (\‘fvl/) where w is chosen such that the bi&s(computed following{1) and1(2)),
which depends onjvand the covering radiup of the chosen code, is larger thag.

4 Other LPN Solving Algorithms

Most LPN-based encryption schemes usas a function ok, e.g.1 = ﬁ [3[18]. The bigger the value & the
lower the level of noise. Fde= 768, we havea = 0.036. For such a value we say that the noise is sparse. Given tha
theselL PN instances are used in practice, we consider how we can aohether algorithms that take advantage
of this extra information.

The first two algorithms presented in this section bring nésas for the solving phase. The third one provides
a method to recover the whole secret and does not need argtimdphase.

We maintain the notations used in the previous sectibgueries remain after the reduction phase, the bias is
& and the block size ik

For these solving algorithms, we assume that the secrearsespEven if the secret is not sparse, we can just
assume that the noise is sparse. We can transfotrRrinstance to an instance bPN where the secret is actually
a vector of noise bits by the method presentedin [33]. Thaildeatf this transform were given in Section 2]2.5 for
the covering codes algorithm.

We denote byA the sparseness of the secret, i.6sPt 1] = % for any 1<i < k. We say that the secret is
A-sparse. We can tale= 9.

The assumption we make is that the Hamming weight ofktHeit length secres is in a given range. On
average we have thatw/(s) = K'(152), so an appropriate rangeﬁ@, K(52)+9 k’} , Wwhereo is constant. We
denotek’(%) by Eqw and%\/W by dev. Thus, we are searching in the rari@eEnw + dev]. We can bound the
probability that the secret has a Hamming weight outsideahge by using the Hoeffding bourid [27].

Let X1, X2, ..., Xe be independent random variables that correspond to thetssts, i.e. PiXi = 1] = % and
Pr(X € [0,1]) = 1. We haveE (X) = 12K Using Theoreri 12, we get that

P{HW(s) not in range] = Pr lHW(S) B (1;A)k’ . 0\/5] . 67%2.

If we want to bound byd/2 the probability thaHW(s) is not in the correct range for one block, we obtain that

o=/2In(3).

4.1 Exhaustive search on sparse secret

We haveS= z:i'*ngev (kl/) vectorsv with Hamming weight in our range. One first idea would be tdqren an
exhaustive search on the sparse secret. We denote thigtaigry Search;. For every such value, we compute
HW(AvT +c). In order to compute the Hamming weight we have to computenthiéiplication betweer and all
v which have the Hamming weight in the correct range. This aji@n would takeO(Srk’) time but we can save a
K factor by the following observation done in [7]: computiAg', with HW(v) = i means xoring columns ofA.
If we have the values o&vT for all v whereHW(v) = i then we can compuiév’™ for HW(v') =i + 1 by adding
one extra column to the previous results.

We use here a similar reasoning done for the Walsh-Hadamzarsform. Whew = s, the value oHW/(As' +
c) is equal toHW(d) and we assume that this is the smallest value as we have miseebits set on 0 than 1.
Thus, going through all possible valueswand keeping the minimum will give us the value of the secrée T
time complexity ofSearch; is the complexity of computing the Hamming weight, iGSri).

14 Sonia Bogos et al.

BesidesSearchy, which requires a matrix multiplication for each trial, wis@discovered that a Walsh trans-
form can be used for a sparse secret. We call this algor$irch,. The advantage is that a Walsh transform is
faster than a naive exhaustive search and thus improvegibecomplexity. We thus compute the fast Walsh-
Hadamard transform and search the maximunfi ohly for thoseS values with Hamming weight in the correct
range. Given that we apply a Walsh transform we get that theptexity of this solving algorithm i(k'2X). So,
it is more interesting thafiearch; whenSr > K2K

For both algorithms the failure probability is given by tleesario where there exists another sparse wvads
such thaHW/(AvT +c¢) < HW(AS' +c). As we search througBpossible values for the secret we obtain that

. &2
Prlincorrect guess on one block] < Se™ 8.

The above probability accounts for only one block of the eedrhus we can say that with= 2In(%) and
=8(In%)3 2" + (a—1)2°, the probability of failure is smaller theh
Another failure scenario, that we take into account into analysis, occurs when the secret has a Hamming
weight outside our range.

Complexity analysisTakingn=n'+ (a—1)2° kK =b, & = 5% andA = &, we obtain the following theorems
for Search; andSearchs:

Theorem 8 Let S= 34" () where B = b(132) anddev = v/b and leti=8In(%)5 2. Fork<a-b and
a secret s that id-sparse, th&earch; algorithm heuristically (n:8|n(25)6 24 (a—1)2°t = O(kan+n'S),m=

kn-+ b(EHWZdeV) ,0,b)-solves thé.PN problem.

Theorem 9 Let S= 34" (°) where Ew = b(12) anddev = $v/b. For k< a-b and a secret s that i-

sparse, theéSearch, algorithm heuristically (n=8In(%)5 2 + (a— 1)2°,t = O(kan+ b2°),m = kn, 8, b)-solves
theLPN problem.

Here, we take the probability, that any of the two failurersr@s to happen, to be ea@j2. A search for the
optimal values such that their sum@sbrings a very little improvement to our results. Takiig= b, we stress
thatSis much smaller than the2= 2° term that is used fokF1. For example, fok = 768,a=11,b = 70 and
T = 0.05, we have thaB~ 233 which is smaller than2= 270 and we get’ = 26733 andn = 27334 (compared to
n' = 26832 andn = 27337 for LF1). We thus expect to require less queries for exhaustiveseammpared td.F1.

As the asymptotic time complexity &karch, is the same akF1 and the number of queries is smaller, we expect
to see that this algorithm runs faster tHai.

4.2 Meet in the middle on sparse secret (MITM)

Given thatAs' +d = c, we splitsinto s; ands; and rewrite the equation @gs] +d = Axs + ¢. With this split,

we try to construct a meet-in-the-middle attack by lookiag#,s}, + c close toA;s] . The secres has size&k’ and

we split it intos; of sizek; ands, of sizek, such thak; +k, = k'. We consider that botk, ands, are sparse.
Thus the Hamming weight & lies in the range{o, ki(352) + %/\/E . We denotek (52) + %/\/E by maxpw (ki).

In order to bound the probability that both estimates areembmwve use the same bound shown in Sedfion 4 and
obtain thato’ = |/2In(3).

For our MITM attack we have a pre-computation phase. We caegmd storéys] forall S, = ZmaXHW (ko) ("Il)

possible values fog;. We do the same fas, i.e computeAss) +c for all S, = zmaXHW (ke) (;) vectorss,. The
pre-computation phase takES + S)n’ steps in total. Afterwards we pidkbit positions and hope that the noise
d has only values of 0 on these positions. If this is true, thercauld build a mask that has Hamming weiglgt
such thad A p= 0. The probability for this to happen (§+2_5')z =g th ﬁ

We build our meet-in-the-middle attack by constructing shi@ble where we store, for &}l vaIuesAzs; +cC
at positionh((Azs} +) A W). We haveS, vectorss,, so we expect to hav&2~% vectors on each position of the
hash table. For al, values ofs;, we check for collisions, i.é1((Ars]) A W) = h((Azs) +c) A). If this happens,
we check ifAis] xored withA;s! + ¢ gives a vectod with a small Hamming weight. Remember that with the
pre-computed values we can compdteith only one xor operation. If the resulting vector has a kang weight

On SolvingLPN usingBKW and Variants 15

in our range, then we believe we have found the coseands, values and we can recover the valuesoBiven
thatAss] +Ags! +d = ¢, we expect to havgAss) +¢) Ap= Ars! Aponly whend Ap= 0. The conditiord A= 0
holds with a probability 0(”76/)E so we have to repeat our algoritk(rvﬂ%)E times in order to be sure that our
condition is fulfilled.

As for exhaustive search, we have two scenarios that cosldtra a failure. One scenario is whep or
S have a Hamming weight outside the range. The second one mapgeen there is another vectotr£ s such
thatHW (Av] + Agv] +c¢) < HW(Ass] + Ags] +c) and(Aqv] + Agv) +¢) Ap= 0. This occurs with probability

n/5/2
smaller thar5;Se 5.

Complexity analysisThe time complexity of constructing the MITM attack(8+ S)n' + (S + $)& + S1S278n) -

(HL&)E. We include here the cost of the pre-computation phase amddtual MITM cost. We obtain that the
time complexity isO((S1+ S)N + (S1+ $)&(Zy)¢ + SISN (125)%). Taking agaim’ =n— (a—1)2°, K =b,

& =8 ", A= &, we obtain the following result for MITM.

Theorem 10 Letrf = 8In(2$,5,)5 %", Take k and k values such that b ki + ko. Let § = zin:OXHW(kj) (kll) where
maxpw (Kj) = kj(552) + c’7/\/k—1 for j € {1,2}. For k< a-b and a secret s that &-sparse, the MITM algorithm
heuristically (n=8In(351S)5 2" + (a—1)2° t = O(kan+ (St +S)n' + (31+&)E(1+5—§H)E +S1Sn'(1+52a*1)8,
m=kn+ S+ (S +)1, 8, b)-solves thé. PN problem.

4.3 Gaussian Elimination

In the case of a sparse noise, one may try to recover the sduyaising Gaussian elimination. It is well known
that LPN with noise 0, i.e1 = 0, is an easy problem. This idea was used_id [12] in order tormhatpassive
attack on HB and HB protocols. If we are give®(k) queries for which the noise is 0, one can just run Gaussian
elimination and inO(k®) recover the secret For aLPN instance, the event of having no noise koqueries
happens with a probabilitg,oneise = (1 —T)X.

We design the following algorithm for solving?N: first, we have no reduction phase. For eletew queries,
we assume that the noise is 0. We recovep dahrough Gaussian elimination. We must test if this valuéhes t
correct secret by computing the Hamming weighfof’ + ¢/, whereA' is the matrix that containg fresh queries
andc’ is the vector containing the corresponding noisy inner potsl We expect to have a Hamming weight in
the rangd0, (1;25)n’ + 0@], whereo is a constant. From the previous results we know that for ecosecret we
have

N

P{HW(A's" +¢/) not in range] < e~

If we want to bound byg/2 the probability that the Hamming weight of the noise is mothie correct range,
for the correct secret, we obtain that /2 In(%).

For av # s, we use the Hoeffding inequality to bound th&tV(A'vT +¢') is in the correctrange. L&, . .., Xy
be the random variables that corresponlite- (vi,v) & ¢i. LetX = X1 +...+ Xy. We haveE(X) = ”7/ Using the
Hoeffding inequality, we tak& = 57”/ — 0‘/—2”—' and obtain

Prifailure] = 2XPr{HW(A'VT +¢')] in correct range]
= 2PHX —E(X) < —A]
PR TAY)
i

_ A9)" (8 —0)?
< 2Xe v =2Xe 2

If we bound this probability of failure b§/2 we obtain that we need at least= (/21In % +0)25~2 queries

besides thé& that are used for the Gaussian elimination.
As aforementioned, with a probability @f,onoise = (1 —T)%, the Gaussian elimination will give the correct
secret. Thus, we have to repeat our algori%ﬂéf times.

16 Sonia Bogos et al.

Complexity analysisThe computation of the Hamming weight has a costOgi’k?). Given that we run the
Gaussian elimination and the verification sgﬁdﬁ— times, we obtain the following theorem for this algorithm:

nonoi

2
Theorem 11 Let rf = <\/2In% + \/ZIn(%)) 52, The Gaussian elimination algorithm €a (1";2)'(+rt=

0 (Q’f—jﬁ;) ,m= k2 + 'k, 8,k)-solves thé.PN problenid
Remark 2Notice that this algorithm recovers the whole secret at @mkthe only assumption we make is that
the noise is sparse. We don’t need to run the transform sathwih have a sparse secret and there are no queries
lost during the reduction phase.

Remark 3In the extreme case wheré — 1) > 8, the Gaussian elimination algorithm can just assume khat
queries have noise 0 and retrieve the sesvdthout verifying that this is the correct secret.

5 Tightness of Our Query Complexity

In this section we compare the theoretical analysis withiémentation results of all thePN solving algorithms
described in Sectiors 3@ 4.

We implemented th8KW, LF1 andLF2 algorithms as they are presented|in][35] and in pseudocodg in
gorithmsAEB. The implementation was done in C on a Intel Xé@38Ghz CPU. We used a custom bit library
to store and handle bit vectors. Using the OpenMP Iilﬁ,awe have also parallelized certain crucial parts of
the algorithms. The xor-ing in the reduction phases as wetha majority phases for instance, are easily dis-
tributed onto multiple threads to speed up the computakanthermore, we implemented the exhaustive search
and MITM algorithms described in Sectibh 4. The various imatperations performed for the spaitgeN solving
algorithms are done with the M4RI IibraE/ Regarding the memory model used, we implemented the one de-
scribed in[[35] in order to accommodate thie2 algorithm. The source code of our implementation can bedoun
athttp://Tasec. epfl.ch/Tpn/lpn source code. zipl

We ran all the algorithms for differeiPN instances where the size of the secret varies from 32 to 160 bi
and the Bernoulli parametertakes different values from.@1 to Q4. A value oft = 0.1 for a smallk as the one
we are able to test means that very few, if none, of the quiees the noise bits set on 1. For this sparse case, an
exhaustive search is the optimal strategy. Aise, 0.4 might seem also as an extreme case. Still, we provide the
query complexity for these extreme cases to fully obsergdthaviour of th& PN solving algorithms.

For eachLPN instance, we try to find the theoretical number of oracle igseequired to get a 50% probability
of recovering the full secret while optimizing the time cdmypty. This means that in half of our instances we
recover the secret correctly. In the other half of the casesy happen that one or more bits are guessed wrong.
We thus taked = % as the probability of failure for the first block. We choasandb that would minimize the
time complexity and we apply this split in our theoreticalibds in order to compute the theoretical number of
initial queries. We apply the same split in practice and ¢ryninimize the number of initial queries such that we
maintain a 50% probability of success. We thus experimentiddifferent values for the original number of oracle
samples, and ran multiple instances of the algorithms toceqapate the success probability. One can observe that
in our practical and theoretical results thé parameters are the same and the comparison is consistentei&e
limited by the power of our experimental environment andsttue were not able to provide results for instances
that require more thar®@ queries.

5.1 BKW*

The implementation results f@KW™* are presented in Tallé 3. Each entry in the table is of the foggin)(a),
wheren is the number of oracle queries that were required to obt&bfa success rate for the full recovery of the
secret. Parameteris the algorithm parameter denoting the number of blockswitich the vectors were split. We
takeb = ['Eﬂ. By maintaining the value dd, we can easily compute the number of queries and the time &anem
complexity. In Tablé¥ we present the theoretical result8#6W* obtained by using Theorelnh 4. We can see that
our theoretical and practical results are within a factaatahost 2.

6 Given that we receive uniformly distributed vectors frore tHPN oracle, fromn+ 2 vectorsv we expect to have linearly independent
ones.

7 Inttp: /7 opennp. or g/ Wp

8 http://miri. sagemat h. or g/

http://lasec.epfl.ch/lpn/lpn_source_code.zip
http://openmp.org/wp
http://m4ri.sagemath.org/

On SolvingLPN usingBKW and Variants 17

Table 3:BKW* query complexity - practice Table 4:BKW* query complexity - theory
T K T K
32 48 64 80 100 32 48 64 80 100
0.01 1040(5) 1185(6) 1501(6) 17.68(7) 20.78(7) 0.01 1097(5) 1282(6) 1593(6) 1866(7) 2174(7)
0.10 1432(4) 19.99(4) 2313(4) 27.30(4) 0.10 1584(4) 20.01(4) 2412(4) 2820(4) 33.28(4)
0.20 1864(3) 23.84(3) 0.20 1971(3) 24.85(3) 30.97(3) 34.83(4) 39.90(4)
0.25 2193(2) 25.95(3) 0.25 2181(2) 26.95(3) 3307(3) 3814(3) 44.11(4)
0.40 2725(2) 0.40 2824(2) 3638(2) 4364(3) 4871(3) 5578(3)
Table 5:LF1 query complexity - practice Table 6:LF1 query complexity - theory
T K T K
32 48 64 80 100 32 48 64 80 100
0.01 7.32(6) 10.12(6) 1158(7) 1332(8) 14.99(8) 0.01 889(6) 1053(6) 1277(7) 1417(8) 16.13(8)
0.10 1020(4) 1320(4) 1552(5) 17.98(5) 21.38(5) 0.10 1138(4) 1387(4) 17.04(5) 1856(5) 22.05(5)
0.20 1153(3) 1557(3) 1803(4) 2104(4) 2518(4) 0.20 1301(3) 17.06(3) 19.05(4) 2177(4) 2659(4)
0.25 1269(3) 1620(3) 20.70(4) 22.24(4) 2593(4) 0.25 1442(3) 17.25(3) 2265(4) 2339(4) 26.72(4)
0.40 1561(2) 19.74(2) 2397(3) 0.40 1695(2) 24.01(2) 2583(3) 2830(3) 3500(3)

If we take the example dfPN10q0.01, We need 2°78 queries and our theoretical analysis gives a valugbt?2
These two values are very close compared with the valuegieetby [35], 2564, which is a factor 10 larger. We
emphasize again that for both the theory and the practicese¢he split that optimizes the time complexity and
from this optimal split we derive the number of queries.

Remark 4For theBKW* algorithm we tried to optimize the average final bias of therégs, i.e. obtaining a better
value thans?* . Recall that at the beginning of the reduction phase, werdrgequeries in equivalence classes
and then choose a representative vector that is xored wathetst of queries from the same class. One variation
of this reduction operation would be to change several tithesepresentative vector. The incentive for doing so
is the following: one representative vector that has eremtar set on 1 affects the bidof all queries, while by
choosing several representative vectors this situationmamproved; more than half of them will have error bit
on 0. We implemented this new approach but we found that & doebring any significant improvement. Another
change that was tested was about the majority rule appliedglthe solving phase. Queries have a worst case
bias of&6?™ " (See LemmA]2), but some have a larger bias. So, we could ap@ighted majority rule. This would
decrease the number of queries needed for the solving ptesenplemented the idea and discovered that the
complexity advantage is very small.

5.2LF1

Below we present the experimental and theoretical resaitth&LF1 algorithm. As a first observation we can see
that, for all instances, this algorithm is a clear optimizatover the originaBKW* algorithm. As before, each
entry is of the form log(n)(a), wheren anda are selected to obtain a 50% success rate for the full rego¥ehe
secret andh = [X].

Table[® shows our theoretical results fdf1 using Theorerfil5. When we compare the experimental and the
practical results fot F1 (See Tabléls and Tadlé 6) we can see that the gap between tbémfisctor up to 3.
Remark 50ne may observe a larger difference for tN4go 4 instance:n = 21°74 (practice) vs.n = 22401
(theory). For this case, the implementation requires2'®74 initial queries compared with the theory that requires
n = 22401 queries. Here we have= 2 andb = 24 and the ternfa — 1)2° dominates the query complexity. The
discrepancy comes from the worst-case analysis of the tietdychase where we say that at each reduction step
we discard 2 queries. With this reasoning, we predict to logé Queries. If we analyse more closely, we discover

18 Sonia Bogos et al.

Table 7:LF2 query complexity - practice

k
32 48 64 80 100
001 6856) 9.09(6) 10.24(7) 1241(8) 1315(8)
010 930(4) 1260(4) 15.12(5) 16.90(5) 20.65(5)
020 1088(3) 1540(3) 16.94(4) 20.47(4) 24.88(4)
(3)))))

(2)))

025 1234(3) 1592(3) 20.61(4) 2100(4) 2540(4
040 1544(2) 19.74(2) 2352(3

n
that actually in the average-case we discard ofly 2 — (1— 2—1b) } gueries (this is the number of expected non-

empty equivalence classes). Thus, with ont}? initial queries, we run the reduction phase and discafd®2
queries, instead of22. We are left with 3445, queries which are sufficient for the solving phase. We niog t
for largeLPN instances, this difference between worst-case and avessgeanalysis for the number of deleted
queries during reduction rounds becomes negligible.

Remark 6Recall that inLF1, like in all LPN solving algorithms, we perform the reduction phase by tipdjtthe
queries intca blocks of sizeb. When this split is not possible, we consider that we havel blocks of sizeb and

a last block shorter of sizl¢ with b’ < b. By LF1* we denote the samePN solving algorithm that makes use of
the Walsh transform but where the split of the blocks is dafferént. We allow now to have a last block larger
than the rest. The gain for this strategy may be the followgigen that we recover a larger block of the key, we
run our solving phase fewer times. Although the complexitthe transform is bigger as we work with a bigger
block, the reduction phase has to be applied fewer timesnBur experiments we discover there seems to be no
difference between the performance of the two algorithms.

5.3LF2

We tested th&F2 heuristic on the same instances asB&i\W* andLF1. The results are summarized in Talle 7. To
illustrate the performance of the heuristic, we conceatata particular instancePN1gqo.1 with a=5,b=20. As
derived in [35], the.F1 algorlthm for this parameter set should require less tBah+200) -5 2 ~ 21877 queries

for a solving phase anth— 1) - 2° + (8- b+200) - 5 2 ~ 22213 queries overall to achieve a success probability
of 50%. Using our theoretlcal analy5|s thiel algorithm for this parameter set requires to have(818°)5~ 24
(a—1)2° ~ 22295 queries overall and'22° queries for the solving phase. Our experimental resultlsﬁd)rwere a

bit lower than our theoretical ones?’#8 oracle samples were sufficient. If we use thHe heuristic starting with
3.2%0 ~ 22158 sagmples, we get about the same amount of vectors for thenggh¥iase. In this case there are no
queries lost during reduction. We thus have much more gaénen should actually be required for a successful
solving phase and correctly solve the problem with successability close to 100%. So we can try to start with
less. By starting off with 226° queries and thus loosing some queries in each reductiomlfeemalso solved the
LPN problem in slightly over 50% of the cases. The gain in totargicomplexity forLF2 is thus noticeable but
not extremely important.

As another example, consider the parameteksef768 1 = 0.05 proposed at the end 6f [35]. The values for
a,bwhich minimize the query complexity aee=9,b =86 (a-b= 774> k). Solving the problem witt.F1 should
thus require about®? vectors for the solving phase antP@racle samples overall. Using?2, as 3 2° ~ 287 oracle
samples would be sufficient, we obtain a reduction by a faetdr

Even thoughLF2 introduces linear dependencies between queries, thissdieeem to have any noticeable
impact on the success probability in recovering the seaietev

Remark 7A general observation for all these three algorithms, shalsa by our results, is that the bias has a big
impact on the number of queries and the complexity. Recatlttie bias has vall® " at the end of the reduction
phase. We can see from our tables that the lower the valugi@f. larger value ob = 1 — 21, the highera can

be chosen to solve tHePN instance. Also, for a constantthe higher the size of the secret, the highean be
chosen.

On SolvingLPN usingBKW and Variants 19

Table 8:Search; query complexity - practice Table 9:Search; query complexity - theory
. k . k

32 48 64 80 100 32 48 64 80 100
0.01 516(1) 570(1) 6.12(1) 13258) 14.93(8) 0.01 516(1) 570(1) 6.12(1) 14.058) 16.06(8)
0.10 1015(4) 1315(4) 16.44(4) 17.93(5) 21.34(5) 0.10 1133(4) 1384(4) 17.61(4) 1850(5) 2204(5)
0.20 1151(3) 1554(3) 17.99(4) 2102(4) 2515(4) 0.20 1301(3) 17.06(3) 1899(4) 2176(4) 2659(4)
0.25 1266(3) 16.18(3) 19.88(3) 0.25 1442(3) 17.25(3) 2301(3) 2800(3) 26.71(4)
0.40 1561(2) 19.74(2) 0.40 1698(2) 24.01(2) 2587(3) 2831(3) 3500(3)
Table 10:Search, query complexity - practice Table 11:Search, query complexity - theory
T K T K

32 48 64 80 100 32 48 64 80 100
001 516(1) 570(1) 6.12(1) 13258) 14.93(8) 0.01 516(1) 570(1) 6.12(1) 14058) 16.06(8)
0.10 1015(4) 1315(4) 15.36(5) 17.93(5) 2134(5) 0.10 1133(4) 1384(4) 16.89(5) 1850(5) 22.04(5)
0.20 1151(3) 1554(3) 17.99(4) 2102(4) 25.15(4) 0.20 1301(3) 17.06(3) 1899(4) 2176(4) 26.59(4)
0.25 1266(3) 16.18(3) 20.63(4) 0.25 1442(3) 17.25(3) 2263(4) 2338(4) 26.71(4)
040 1561(2) 19.74(2) 0.40 1698(2) 24.01(2) 2587(3) 2831(3) 3500(3)

Remark 8 TheLF2 algorithm is a variation of F1 that offers a different heuristic technique to decreaseatimeber
of initial queries. The same trick could be used Bt¢\W*, exhaustive search and MITM.

While the same analysis can be applied for exhaustive seadiITM as forLF2, BKW* is a special case.
We denote byBKW? this variation ofBKW where we use the reduction phase froR2. Recall that foBKW* we
need to have = 2°715-2In(§) + (a— 1)2° queries and here the dominant term %52 In(8). Thus, we need
to start with 3 2° + ¢, wheree > 0 and increase such that at the end of the last iteration afetthection we get
the required number of queries. This improves the initiahber of queries and we have a gain of facdor the
time complexity. For an.PNggg 1 instance, our implementation 8KW? requiresn = 21382 = 3.54. 212 jnitial
queries and increases it, during the reduction phase, up®®},2he amount of queries needed for the solving
phase. Thus, there is an improvement frof#% (See Tabl&l3) to 282 and the time complexity is better. While
this is an improvement ové@KW*, it still performs worse thahF1 andLF2.

5.4 Exhaustive search

Recall that for exhaustive search we have two variants. Ekalts forSearch; are displayed in Tablgl 8 and
Table[9. ForSearch; we observe that the gap between theory and practice is otar famaller than 4. In terms
of number of queriesSearch; brings a small improvement comparedltbl. We will see in the next section
the complete comparison between all the implemented ahgos. The saméa— 1)2° dominant term causes the
bigger difference for the instanceBN4go.4 andLPNg40.25.

The results foSearch, are displayed in Table"10 and Tablg 11.

We notice that for bottbearch; and Search, the instanced PN32001, LPN4go01 and LPNggg o1 have the
number of queries very low. This is due to the following olsgion: forn < 68 linearly independent queries and
T = 0.01 we have that the noise bits are all 0 with a probabilitydathan 50%. Thus, fdt < 64 we hope that the
k queries we receive from the oracle have all the noise set @ith.k noiseless, linearly independent queries we
can just recoves with Gaussian elimination. This is an application of Renférk

20 Sonia Bogos et al.

Table 12: MITM query complexity - practice Table 13: MITM query complexity - theory
T K T K
32 48 64 80 100 32 48 64 80 100
0.01 516(1) 5.70(1) 6.12(1) 13258) 14.93(8) 001 516(1) 570(1) 6.12(1) 14.10(8) 16.10(8)
0.10 1013(4) 1315(4) 16.47(4) 0.10 1137(4) 1387(4) 17.61(4) 2159(4) 22.05(5)
0.20 1149(3) 1554(3) 0.20 1302(3) 17.06(3) 2300(3) 2800(3) 26.59(4)
0.25 1289(2) 0.25 1603(2) 17.26(3) 2301(3) 2800(3) 35.00(3)
0.40 0.40 1698(2) 24.01(2) 2587(3) 2831(3) 35.00(3)
Table 14: Gaussian elimination query complexity - theory
. k
32 48 64 80 100
001 516 570 612 843 889
0.10 1004 1291 1573 1848 2184
0.20 1531 2104 2660 3208 3884
0.25 1828 2551 3256 3952 4815
0.40 2858 4096 5317 6528 8034
5.5 MITM

In the case of MITM, the experimental and theoretical rasale illustrated in Table 12 and Taklg 13. There is
a very small difference between MITM and exhaustive sealgbrdhms for a sparse secret: in practice, MITM
requires just couple of tens queries less thearch; andSearch; for the same andb parameters.

5.6 Gaussian Elimination

As aforementioned, in the Gaussian elimination the onlymggion we need is to have a noise sparse. We don’t
run any reduction technique and the noise is not affectedhdsalgorithm depends on the probability to have a 0
noise ork linearly independent vectors, the complexity decays veligidy once we are outside the sparse noise
scenario. We present in Talble] 14 the theoretical resultmdd for this algorithm.

In the next section we will show the effectiveness of thisaridea in the sparse case scenario and compare
it to the otherLPN solving algorithms.

Again for LPN320.01, LPN4g .01 andLPNg40.01 we apply Remark]3.

5.7 Covering Codes

The covering code requires the existence of a code with ttimapcoverage. For each instance one has to find an
optimal code that minimizes the query and time complexityliké the previous algorithms, this algorithm cannot
be truly automatized. In practice we could test only the sdlsat were suggested in_[25]. Thus, we are not able
to compare the theoretical and practical values. Nevearsiselve will give theoretical values for different practica
parameters in the next section.

6 Complexity Analysis of theLPN Solving Algorithms

We have compared our theoretical bounds with our practesllts and we saw that there is a small difference
between the two. Our theoretical analysis also gives tigitends compared with the results frdm|[35]. We now

On SolvingLPN usingBKW and Variants 21

220 i . I | | |
k
kLo
200 logy (k) +C1 LFo R
BKW + MITM
180 Search; = Gauss v - i
! +
= LF1 Covering codes a —
k g
? 160 Searchy cslogy (k) + % +cp - o -
2 - A
! =¥
3 140 - :
o LT i,x“
E 120 ot i
o +++ kA“‘“ AAAA
3] il A:AAAA“‘ .
g 100 +?+ »AA‘-—A—SS‘ as A
H]) " ‘ “ A A A A A A
L + T VI o6 e
g 80 +—+ + X i“ _ R . i
: + oot S Gy vVIVVVY
§ . o a st [A A
: : iy ¥ LAy v vivY
e ” ’ b VAVAVA
. 4+ = G VavA i
P ocoati -
40 it ,WV';FA N B o - e
Ve BLA S — o
a iV;vg ii* I S
vk i
w8 -
20 ;//
0

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Key sizek

Fig. 1: Time Complexity oL PN Algorithms on instancesPN, %
7 vk

extend our theoretical results and compare the asymptetiogpnance of all the.PN algorithms for practical
parameters used by thé’N-based constructions. We consider the family.BN, 1 instances proposed inl[3,
7 Vk

[16]. Although the covering code cannot be automatized, medoh instance we have to try different codes with
different sizes and dimensions, we provide results alsahiigralgorithm. When dealing with the covering code
reduction, we always assume the existence of an ideal catieaampute the bias introduced by this step. We do
not consider here concatenation of ideal codes and we véltisat we obtain a worse result for thBNs120 125
instance compared with the result from|[25], although tHfedénce is small. In the covering code algorithm we
also stick with theBKW reduction steps and don’t use thE2 reduction. As aforementioned, th&2 reduction
brings a small improvement to the final complexity. This daes affect the comparison between all theN
solving algorithms.

We analyse the time complexity of each algorithm, by whichmesan the number of bit operations the al-
gorithm performs while solving abPN problem. For each algorithm, we consider valuekdbr which the
parameterga, b) minimising the time complexity are such thiat= a- b. For theLF2 algorithm, we select the
initial number of queries such that we are left with at le@dst 8In(3-2b)6*2a queries after the reduction phase.
Recall that bySearch; we denote the standard exhaustive search algorithnSeardh, is making use of a Walsh-
Hadamard transform. The results are illustrated in Figlid recall the time complexity and the initial number
of queries for each algorithm in Tab[e]15, whe3eepresents the number of sparse secrets ®ith2°. For
MITM, the valuesS; (resp.S) represent the number of possible values for the first (respond) half of the
secretn = 8(In(65182))6*2a represents the number of queries left after the reducti@s@lnd represents the
Hamming weight of the mask used. In the case of the coveringsalgorithm, alla, b,a’, k', K’ 1, wp, st are
Earameters of the algorithm antrepresents the number of queries left after the reductiasg@hRecall thal is

3-
We can bound the logarithmic complexity of all these aldoris bym +¢; andczlog, (k) + % +Cp.
The lower bound is given by the asymptotic complexity of th@u€sian elimination that can be expressed as
k _ 1

clog, k+ % whent = e

The complexity ofBKW can be written as mjn.ap(poly - 2° - 6*261) and for the other algorithms (except the
Gaussian elimination) the formula is mimp(poly - (2° + & 2%)), wherepoly denotes a polynomial factor. By
searching for the optimal, b values, we have two cases:

22 Sonia Bogos et al.

— fora> 1, we finda ~ Iogz ——— andb= and obtain that2dominatess—2". Ford=1— f we obtain

)2In
the complexitypoly - 2'092 K,
— fora=1, we have that for
— BKW the complexity igoly - 2K
— LF1,LF2,Search, the complexity igpoly + k2K
— Search;, MITM the complexity ispoly - S and poly - §, respectively, where we defir to be #v €
{0,1}%| HW() <r}. We need to bound the value &f. By induction we can show th& < - ‘r(1 K

e
Fort =~ we have that ~ (1+ $)vk andr’ ~ (3 + 2\/5)vk. We obtain that the complexity for both

\/_1
algorithms ispoly - 2vklogok+0(VK) wherey is a constant. This is not better thaﬁ92k> for k < 200000,
but asymptotically this gives a better complexity.

For Gaussian elimination, the complexity% which ispoly - 2Vkfort = %

Table 15: Query & Time complexity fdtPN solving algorithms for recovering the firstbits

LPN algorithm Query complexity() Time complexity()
BKW 27152 In(8) + (a—1)2° kan

LF1 8In(2)5 2 + (a—1)2° kan+ b2°
Search; 8In(%)5 % +(a—1)2° kan+8In(%)5 %'s
LF2 3.25>8In(3)5 2 kan- b2°

Searchy 8In(%)5 % +(a—1)2° kan+- b2P

kan+ comp + compmitm
MITM 8In(25%)5 % +(a~1)2° wherecomp = (S, +) and
COMPmitm = (Sl +SZ)E(1 528 1) +S.lSZn (

k / 2k+1 25-2 yam] _
Gaussian elimination <177)R+(2% +0)%0" 2InFg= +0)%5 A2 4kE
whereg = /2In(§) -

)E

1+523 !

”) nkel + comp + compsejying
Covering codes 8'”(@%;?1852et wherecomp = (k+1)an-+n/ 3% ()i (K —0) (2 + 2
COMPsolving = 2 ZW (0)

We see in Figurgll that in some cases increasing the valkenafy result in a decrease in time complexity.
The reason for this is that we are considediiRiN instances where the noise paramettakes vaIue\}—R. Thus, as
k grows, the noise is reduced, which leads to an interestaugtoff between the complexity of the solving phase
and the complexity of the reduction phase of the variousratguos. This behaviour does not seem to occur for the
BKW algorithm. In this case, the query complexity= 2°+1(1 — %()*2aln(2k) + (a—1)2%is largely dominated
by the first term, which grows exponentially not only in terafishe noise parameter, but also in terms of the block
sizeb.

Remark 9 ((F1 vs.Searchy) As shown in Figur€ll, the overall complexity of thE1 andSearch, algorithms is
quasi identical. From Theorers 5 dnd 9, we deduce that fosdahee parameter®,b), the Search, algorithm
should perform better as long 8s< 2°~1. This is indeed the case for the instances we consider Héreugh the
difference in complexity is extremely small.

We can see clearly that for tHuPNk 1 family of instances, the Gaussian elimination outperfoaththe other

algorithms fork > 500. For nok < 1000 theLPN, } offers an 80 bit security. This requirement is achieved for
k
k=1090.

Selecting secure parameterg/e remind that for each algorithm we considered, our amstyside use of a heuris-
tic assumption of query and noise independence after riedutt order to propose security parameters, we simply
consider the algorithm which performs best under this agsiom

On SolvingLPN usingBKW and Variants 23

By taking all the eight algorithms described in this artjdiable$ 18-213 display the logarithmic time complexity
for variousLPN parameters. For instance, thE2 algorithm requires % steps to solve 8PN3g40.25 instance.

We recall here the result from [25]: an instand®Ns10 125 offers a security of 79. We obtain a value of 82.

The difference comes mainly from the usel&® reduction in[[25] and from a search of optimal concatenadion
linear codes.

When comparing all the algorithms, we have to keep in mintttreGaussian elimination recovers the whole
secret, while for the rest of the algorithms we give the canity to recover a block of the secret. Still, this does not
affect our comparison as we have proven in Sedilon 3 thataheplexity of recovering the first block dominates

the total complexity.

We highlight with red the best values obtained for diffeldPlN instances. We observe the following behaviour:
for a sparse case scenario, ite= 0.05 fork > 576 ort = %(< 0.05, the Gaussian elimination offers the best

performance. Far = %(nok from our tables offers a 80 bit security. Once we are outsidesparse case scenario,

we have that F2 and the covering code algorithms are the best ones. Theinguwarde proves to be better than
LF2 for a level of noise of A25. While the performance of the covering code reductigillygidepends on the
sparseness of the noidd;2 has a more general reduction phase and is more efficient fse parameters of.25
and Q4. Also for at > 0.5 the covering code is better than the Gaussian elimination.

Thus, for different scenarios, there are different aldwnis that prove to be efficient. This comparison clearly
shows that for the family of instancé®N, 1 neither theBKW, nor its variants are the best ones. One should use
Vk

the Gaussian elimination algorithm.

Table 16: Security oE PN againsBKW Table 17: Security of PN against_F1
. k . k
256 384 448 512 576 640 768 1280 256 384 448 512 576 640 768 1280
* 69 8 97 106 114 123 140 198 % 50 63 71 79 85 88 102 145
005 67 8 98 109 118 127 145 216 005 50 62 71 79 87 95 102 159
0125 79 105 116 128 138 149 170 253 0125 56 73 78 8 98 107 125 176
025 93 123 137 150 163 175 201 295 025 64 84 89 100 110 121 142 199
04 115 147 163 180 196 212 244 347 04 76 94 103 116 129 142 168 229
Table 18: Security of PN against_F2 Table 19: Security oE PN againstSearch;
T K T K
256 384 448 512 576 640 768 1280 256 384 448 512 576 640 768 1280
N 49 61 69 78 8 86 100 143 J 56 69 77 80 87 95 108 154
005 49 61 69 78 8 94 100 158 005 51 69 78 84 8 95 111 162
0125 55 73 77 87 97 106 124 175 0125 64 82 91 100 110 121 140 199
025 64 84 8 99 109 121 142 198 025 82 110 122 134 145 155 179 263

0.4 76 94 103 116 129 141 168 229 04 109 141 157 173 189 205 236 337

24

Sonia Bogos et al.

Table 20: Security oE PN againstSearch;

k
' 256 384 448 512 576 640 768 1280
%(50 63 71 79 84 83 102 145
005 50 62 71 79 87 95 102 159
0125 56 73 78 88 98 107 125 176
025 64 84 89 100 110 121 142 199
04 76 94 103 116 129 142 168 229

Table 21: Security oE PN againstMITM

k
' 256 384 448 512 576 640 768 1280
%k 56 70 78 86 91 96 111 159
005 55 70 78 88 98 104 114 176
0125 65 88 96 104 112 122 142 203
025 85 113 125 137 148 159 184 270
04 109 141 158 174 190 206 237 339

Table 22: Security oE PN against Gaussian elimi- Table 23: Security of PN against Covering codes

nation
k
k T
T 256 384 448 512 576 640 768 1280
256 384 448 512 576 640 768 1280
1 L 44 55 59 64 70 73 85 123
7 49 56 59 62 64 67 70 85 vk
005 42 54 59 65 72 78 88 132
005 44 56 61 66 71 77 87 127
0125 52 67 74 82 89 96 109 161
0125 75 102 115 127 140 153 178 279
025 70 87 96 106 115 125139 204
025 133 188 215 242 269 296 350 565
0.4 94 110 123 136 149 161 179 281
04 218 314 362 409 457 504 600 979

As we have shown, there still remains a small gap betweerh@tmrétical and practical results for the algo-
rithms we analysed. It thus seems reasonable to take a sadegyn when selecting parameters to achieve a certain
level of security.

Based on this analysis, we could recommendtR& instances.PNs120.25, LPNgago.125 LPN128q0.05 OF

LPN128Q 1 to achieve 80 bit security for different noise levels. Weenittat the valué PN7gg0.05 that Levieil
/1280 '

and Fouque suggest as a secure instance to use actuall/aifgr66 bit security and thus is not recommended.

7 Conclusion

In this article we have analysed and presented the exisii\galgorithms in a unified framework. We introduced

a new theoretical analysis and this has improved the bourds/@eil and Fouque[35]. In order to give a complete

analysis for the.PN solving algorithms, we also presented three algorithmisuba the advantage that the secret
is sparse. We analysed also the latest algorithm presentésiacrypt 2014. While the covering code and the
LF2 algorithms perform best in the general case where the B#rmmise parameter is constant, the Gaussian
elimination shows that for the sparse case scenario théheighe secret should be bigger than 1100 bits. Also,
we show that some values proposed by Leviel and Fouque aeurein the sparse case scenario.

Acknowledgements We would like to thank Thomas Johansson and all the authd25bfor their help in providing us with their paper and
for their useful discussions. We further congratulate tfiemeceiving the Best Paper Award of Asiacrypt 2014.

References

1. Albrecht, M.R., Cid, C., Faugeére, J., Fitzpatrick, Rerret, L.: On the complexity of the BKW algorithm on LWE. D&xndes Cryptog-
raphy74(2), 325-354 (2015). DOI 10.1007/s10623-013-9864-x. WRLp: // dx. doi . or g/ 10. 1007/ s10623- 013- 9864- X

http://dx.doi.org/10.1007/s10623-013-9864-x

On SolvingLPN usingBKW and Variants 25

10.

11.

12.

13.

14.
15.

16.
17.

18.

19.

20.

. Fossorier, M.P.C., Mihaljevic, M.J., Imai, H., Cui, ¥latsuura, K.: An Algorithm for Solving the LPN Problem and Kpplication to

22.

23.

24.

. Albrecht, M.R., Faugere, J., Fitzpatrick, R., Perret llazy Modulus Switching for the BKW Algorithm on LWE. In: l&wczyk [34], pp.

429-445. DOI 10.1007/978-3-642-5463126. URLht t p:// dx. doi . or g/ 10. 1007/ 978- 3- 642- 54631- 0 25

. Alekhnovich, M.: More on Average Case vs Approximatiom@exity. In: 44th Symposium on Foundations of Computee8ce (FOCS

2003), 11-14 October 2003, Cambridge, MA, USA, Proceedipgs298-307. IEEE Computer Society (2003). DOI 10.110€/SR2003.
1238204. URLhttp://dx.doi. org/10. 1109/ SFCS. 2003. 1238204

. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast ©gaphic Primitives and Circular-Secure Encryption Bse Hard Learning

Problems. In: S. Halevi (ed.) Advances in Cryptology - CRYPA009, 29th Annual International Cryptology Conferencnt8 Barbara,
CA, USA, August 16-20, 2009. Proceedingecture Notes in Computer Scieneel. 5677, pp. 595-618. Springer (2009). DOI 10.1007/
978-3-642-03356-85. URLNt t p:// dx. doi . org/ 10. 1007/ 978- 3- 642- 03356- 8 35

. Arora, S., Ge, R.: New Algorithms for Learning in PresemdeErrors. In: L. Aceto, M. Henzinger, J. Sgall (eds.) Autdma

Languages and Programming - 38th International Colloquil®@ALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedi Part
I, Lecture Notes in Computer Scienceol. 6755, pp. 403—-415. Springer (2011). DOI 10.1007/37842-22006-734. URL
http://dx. doi.org/10.1007/978- 3- 642- 22006- 7 34

. Bernstein, D.J., Lange, T.: Never Trust a Bunny. In: J. pfoan, |. Verbauwhede (eds.) Radio Frequency Identificat®ecurity

and Privacy Issues - 8th International Workshop, RFIDSe22MWijmegen, The Netherlands, July 2-3, 2012, Revisedc&=lePa-
pers, Lecture Notes in Computer Scienosl. 7739, pp. 137-148. Springer (2012). DOI 10.1007/37842-36140-110. URL
http: /7 dx. doi.org/10.1007/978-3- 642- 36140- 1 10

. Bernstein, D.J., Lange, T., Peters, C.: Smaller Decodimgonents: Ball-Collision Decoding. In: P. Rogaway (edJ{lvAnces

in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Confere, Santa Barbara, CA, USA, August 14-18, 2011. Proceed-
ings, Lecture Notes in Computer Scienosl. 6841, pp. 743-760. Springer (2011). DOI 10.1007/37842-22792-942. URL
http://dx.dor.org/10.100//978- 3- 642- 22792-9 42

. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Crygtaphic Primitives Based on Hard Learning Problems. In:.[5&son (ed.)

Advances in Cryptology - CRYPTO '93, 13th Annual Internatb Cryptology Conference, Santa Barbara, California, USé#gust 22-
26, 1993, Proceeding&ecture Notes in Computer Sciena®l. 773, pp. 278-291. Springer (1993). DOI 10.1007/3-88329-224.
URL|http://dx. doi.org/10. 1007/ 3- 540- 48329- 2 24

. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant leagj the parity problem, and the statistical query model.Ff. Yao, E.M. Luks

(eds.) Proceedings of the Thirty-Second Annual ACM Symypason Theory of Computing, May 21-23, 2000, Portland, OR, USa
435-440. ACM (2000). DOI 10.1145/335305.335355. URIEp: // doi . acm or g/ 10. 1145/ 335305. 335355

Brakerski, Z., Langlois, A., Peikert, C., Regev, O.h&eD.: Classical hardness of learning with errors. InBBneh, T. Roughgarden,
J. Feigenbaum (eds.) Symposium on Theory of Computing Cemée, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pp. 5835
ACM (2013). DOI 10.1145/2488608.2488680. URL p:// doi . acm or g/ 10. 1145/ 2488608. 2488680

Bringer, J., Chabanne, H., Dottax, E.: HB a Lightweight Authentication Protocol Secure against 8eéxttacks. In: Second International
Workshop on Security, Privacy and Trust in Pervasive andjultnus Computing (SecPerU 2006), 29 June 2006, Lyon, Erqm 28-33.
IEEE Computer Society (2006). DOI 10.1109/SECPERU.2@M6URL|ht t p://dx. doi . or g/ 10. 1109/ SECPERU. 2006. 10

Carrijo, J., Tonicelli, R., Imai, H., Nascimento, A.C:A Novel Probabilistic Passive Attack on the Protocols H&l&iB". IEICE
Transaction®2-A(2), 658662 (2009)

Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, Ls(ed\pproximation, Randomization and Combinatorial @yation, Algorithms
and Techniques, 8th International Workshop on Approxiamaf\lgorithms for Combinatorial Optimization Problems, RIROX 2005 and
9th InternationalWorkshop on Randomization and ComprtaRANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Rredings,
Lecture Notes in Computer Scieneel. 3624. Springer (2005)

Chernoff, H.: A measure of the asymptotic efficiency &sts of a hypothesis based on the sum of observables (1962)1@M1214/aoms/
1177729330

Cooley, J.W., Tukey, J.W.: An Algorithm for the Machinal€@ilation of Complex Fourier Series. Mathematics of Corapon 19(90),
pp. 297-301 (1965). URKt t p: // ww. | st or. or g/ st abl e/ 2003354

Damgard, 1., Park, S.: Is Public-Key Encryption Based.BN Practical? IACR Cryptology ePrint Archi2012 699 (2012)

Déttling, N., Muller-Quade, J., Nascimento, A.C.IND-CCA Secure Cryptography Based on a Variant of the LPNbRm. In: X. Wang,
K. Sako (eds.) Advances in Cryptology - ASIACRYPT 2012 - 18iternational Conference on the Theory and Application yfgiblogy
and Information Security, Beijing, China, December 2-6120Proceedingd,ecture Notes in Computer Scieneel. 7658, pp. 485-503.
Springer (2012). DOI 10.1007/978-3-642-349613@. URLhtt p://dx. doi . or g/ 10. 1007/ 978- 3- 642- 34961- 4 30

Duc, A., Tramér, F., Vaudenay, S.: Better algorithmsU&/E and LWR. In: E. Oswald, M. Fischlin (eds.) Advances iny@ology -
EUROCRYPT 2015 - 34th Annual International Conference eritheory and Applications of Cryptographic Techniques,&&ulgaria,
April 26-30, 2015, Proceedings, Partllecture Notes in Computer Sciena®l. 9056, pp. 173—-202. Springer (2015). DOI 10.1007/
978-3-662-46800-B. URLhttp: //dx. doi . or g/ 10. 1007/ 978- 3- 662- 46800- 5 8

Duc, A., Vaudenay, S.: HELEN: A Public-Key Cryptosyst@&ased on the LPN and the Decisional Minimal Distance Problemm:
A. Youssef, A. Nitaj, A.E. Hassanien (eds.) Progress in @iggy - AFRICACRYPT 2013, 6th International Conference@nyptology
in Africa, Cairo, Egypt, June 22-24, 2013. Proceedirgs;ture Notes in Computer Sciene®l. 7918, pp. 107-126. Springer (2013).
DOI 10.1007/978-3-642-38553-@. URLntt p://dx. doi . org/ 10. 1007/ 978- 3- 642- 38553-7 6

Fitzpatrick, R.: Some Algorithms for Learning with Erso Ph.D. thesis, Royal Holloway, University of London

Security Evaluation of the HB Protocols for RFID Authentioa. In: R. Barua, T. Lange (eds.) INDOCRYRIcture Notes in Computer
Sciencevol. 4329, pp. 48-62. Springer (2006)

Gilbert, H., Robshaw, M.J.B., Seurin, Y.: ﬁBncreasing the Security and Efficiency of fIBIn: N.P. Smart (ed.) Advances in Cryptology
- EUROCRYPT 2008, 27th Annual International Conference tw Theory and Applications of Cryptographic Techniquetgniisul,
Turkey, April 13-17, 2008. Proceedingsecture Notes in Computer Sciena®l. 4965, pp. 361-378. Springer (2008). DOI 10.1007/
978-3-540-78967-21. URLNt t p:// dx. doi . org/ 10. 1007/ 978- 3- 540- 78967- 3 21

Grigorescu, E., Reyzin, L., Vempala, S.: On Noise-TEoletearning of Sparse Parities and Related Problems.Kividen, C. Szepesvari,
E. Ukkonen, T. Zeugmann (eds.) Algorithmic Learning Theo22nd International Conference, ALT 2011, Espoo, Finlabctober 5-7,
2011. Proceedingd.,ecture Notes in Computer Sciene®l. 6925, pp. 413—-424. Springer (2011). DOI 10.1007/37842-24412-432.
URLhttp://dx.doi.org/10.1007/978- 3- 642- 24412- 4 32

Guo, Q., Johansson, T., Londahl, C.: A New AlgorithmSotving Ring-LPN with a Reducible Polynomial. CoRRs/1409.04722014).
URLhttp://arxiv.org/ abs/ 1409. 0472

http://dx.doi.org/10.1007/978-3-642-54631-0_25
http://dx.doi.org/10.1109/SFCS.2003.1238204
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-642-22006-7_34
http://dx.doi.org/10.1007/978-3-642-36140-1_10
http://dx.doi.org/10.1007/978-3-642-22792-9_42
http://dx.doi.org/10.1007/3-540-48329-2_24
http://doi.acm.org/10.1145/335305.335355
http://doi.acm.org/10.1145/2488608.2488680
http://dx.doi.org/10.1109/SECPERU.2006.10
http://www.jstor.org/stable/2003354
http://dx.doi.org/10.1007/978-3-642-34961-4_30
http://dx.doi.org/10.1007/978-3-662-46800-5_8
http://dx.doi.org/10.1007/978-3-642-38553-7_6
http://dx.doi.org/10.1007/978-3-540-78967-3_21
http://dx.doi.org/10.1007/978-3-642-24412-4_32
http://arxiv.org/abs/1409.0472

26 Sonia Bogos et al.

25. Guo, Q., Johansson, T., Londahl, C.: Solving LPN Usimyefing Codes. In: P. Sarkar, T. lwata (eds.) Advances irp@iggy -
ASIACRYPT 2014 - 20th International Conference on the Tkierd Application of Cryptology and Information Securitya#shiung,
Taiwan, R.O.C., December 7-11, 2014. Proceedings, Pagcture Notes in Computer Sciena®l. 8873, pp. 1-20. Springer (2014).
DOI 10.1007/978-3-662-45611-8. URL|http: //dx. doi . or g/ 10. 1007/ 978- 3- 662- 45611- 8 1

26. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., ParXK.: Lapin: An Efficient Authentication Protocol Based Bing-LPN. In:
A. Canteaut (ed.) Fast Software Encryption - 19th Inteameti Workshop, FSE 2012, Washington, DC, USA, March 19-R122Revised
Selected Paperkgecture Notes in Computer Sciengel. 7549, pp. 346—-365. Springer (2012). DOI 10.1007/37842-34047-520. URL
http://dx.doi.org/10.1007/978- 3- 642- 34047-5 20

27. Hoeffding, W.: Probability Inequalities for Sums of Baled Random Variables. Journal of the American Statisfisabciation58(301),
13-30 (1963). URIht t p: /7 www. | stor. or g/ st abl e/ 22829527

28. Hopper, N.J., Blum, M.: Secure Human Identification &cots. In: C. Boyd (ed.) Advances in Cryptology - ASIACRYPT®, 7th
International Conference on the Theory and Application gfpflogy and Information Security, Gold Coast, Australlecember 9-13,
2001, Proceedingd,ecture Notes in Computer Sciene®l. 2248, pp. 52—66. Springer (2001). DOI 10.1007/3-3%682-14. URL
http://dx. doi.org/10.1007/3- 540- 45682-1 4

29. Juels, A., Weis, S.A.: Authenticating Pervasive Deviggith Human Protocols. In: V. Shoup (ed.) Advances in Criggp
- CRYPTO 2005: 25th Annual International Cryptology Coefere, Santa Barbara, California, USA, August 14-18, 200%; P
ceedings, Lecture Notes in Computer Scienceol. 3621, pp. 293-308. Springer (2005). DOl 10.1007/5P4818. URL
http://dx. doi.org/10.1007/ 11535218 18

30. Katz, J., Shin, J.S., Smith, A.: Parallel and Concur&aturity of the HB and HB Protocols. J. Cryptolog23(3), 402—421 (2010).
DOI 10.1007/s00145-010-9061-2. URLt p: // dx. doi . or g/ 10. 1007/ s00145- 010- 9061- 2

31. Kiltz, E., Masny, D., Pietrzak, K.: Simple Chosen-Cigbgt Security from Low-Noise LPN. In: Krawczyk [34], pp. 18. DOI 10.1007/
978-3-642-54631-A. URLhttp://dx. doi.org/ 10. 1007/ 978- 3- 642- 54631- 0 1

32. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, [Efficient Authentication from Hard Learning Problems. InG< Paterson (ed.)
Advances in Cryptology - EUROCRYPT 2011 - 30th Annual In&ional Conference on the Theory and Applications of Crgpphic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceegjibgcture Notes in Computer Sciene®l. 6632, pp. 7-26. Springer (2011).
DOI 10.1007/978-3-642-20465-3. URL|http:// dx. doi . or g/ 10. 1007/ 978- 3- 642- 20465- 4 3

33. Kirchner, P.: Improved Generalized Birthday Attack. @ CIRR Cryptology ePrint Archive 2011 377 (2011). URL
http://eprint.racr.orqg/ 2011/ 377

34. Krawczyk, H. (ed.): Public-Key Cryptography - PKC 20147th International Conference on Practice and Theory ifi#ey Cryp-
tography, Buenos Aires, Argentina, March 26-28, 2014. Eedings,Lecture Notes in Computer Sciena®l. 8383. Springer (2014).
DOI 10.1007/978-3-642-54631-0. URILt p: //dx. doi . or g/ 10. 1007/ 978- 3- 642- 54631- 0

35. Levieil, E., Fouque, P.: An Improved LPN Algorithm. In: R.D. Prisco, Ming (eds.) Security and Cryptography for Networks, 5th
International Conference, SCN 2006, Maiori, Italy, Segient-8, 2006, Proceedingsecture Notes in Computer Scieneel. 4116, pp.
348-359. Springer (2006). DOI 10.1007/11832(22 URLtt p: /7 dx. doi . or g/ 10. 1007/ 11832072 24

36. Lyubashevsky, V.: The Parity Problem in the Presence a$éy Decoding Random Linear Codes, and the Subset SumeRrobn:
Chekuri et al.[[18], pp. 378-389. DOI 10.1007/11538482 URLt t p: //dx. doi . or g/ 10. 1007/ 11538462 32

37. Lyubashevsky, V., Masny, D.: Man-in-the-Middle SecArghentication Schemes from LPN and Weak PRFs. In: R. Cadeft. Garay
(eds.) Advances in Cryptology - CRYPTO 2013 - 33rd Annualpfology Conference, Santa Barbara, CA, USA, August 18-2232
Proceedings, Part ILecture Notes in Computer Scieneel. 8043, pp. 308-325. Springer (2013). DOI 10.1007/37842-40084-118.
URLhttp:/7dx.doi.org/10. 1007/ 978- 3- 642- 40084- 1 18

38. May, A., Meurer, A., Thomae, E.: Decoding Random Linead€s in $tilde{\mathca{O}}(2°{0.0541})$. In: D.H. Lee, X. Wang
(eds.) Advances in Cryptology - ASIACRYPT 2011 - 17th Intfanal Conference on the Theory and Application of Crygggl and
Information Security, Seoul, South Korea, December 4-812@roceedingd,ecture Notes in Computer Scieneel. 7073, pp. 107-124.
Springer (2011). DOI 10.1007/978-3-642-2538%.0URL|ht t p: //dx. doi . or g/ 10. 1007/ 978- 3- 642- 25385- 0 6

39. Peikert, C.: Public-key cryptosystems from the woestecshortest vector problem: extended abstract. In: M.avitiacher (ed.) Pro-
ceedings of the 41st Annual ACM Symposium on Theory of ComngutSTOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pp.
333-342. ACM (2009). DOI 10.1145/1536414.1536461. URRLp: //doi . acm or g/ 10. 1145/ 1536414. 1536461

40. Regev, O.: On lattices, learning with errors, randoredicodes, and cryptography. In: H.N. Gabow, R. Fagin (®i®geedings of
the 37th Annual ACM Symposium on Theory of Computing, Battiey MD, USA, May 22-24, 2005, pp. 84-93. ACM (2005). DOI
10.1145/1060590.1060603. URILt p://doi . acm or g/ 10. 1145/ 1060590. 1060603

41. Stern, J.: A method for finding codewords of small weiglnt. G.D. Cohen, J. Wolfmann (eds.) Coding Theory and Apfitice, 3rd
International Colloquium, Toulon, France, November 2988, Proceedingd,ecture Notes in Computer Scieneel. 388, pp. 106-113.
Springer (1988)

42. Valiant, G.: Finding Correlations in Subquadratic Timeéth Applications to Learning Parities and Juntas. In:db8nnual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2012, Newsiiick, NJ, USA, October 20-23, 2012, pp. 11-20. IEEE Cdempu
Society (2012). DOI 10.1109/FOCS.2012.27. URIt p: //dx. doi . or g/ 10. 1109/ FOCS. 2012. 27

A Hoeffding’s Bounds

Theorem 12 [27] Let X1, Xy, ..., X, be nindependent variables. We are given #@X € [a;,Bi]] = 1for 1 <i <n. We define X=Xy +...+ X,
and E/X] is the expected value of X. We have that

a2
PX—E[X] >\ <e Zhalia)?
and
___ a2
PIX—E[X] < -\ <e ZLalie)?

for anyA > 0.

http://dx.doi.org/10.1007/978-3-662-45611-8_1
http://dx.doi.org/10.1007/978-3-642-34047-5_20
http://www.jstor.org/stable/2282952?
http://dx.doi.org/10.1007/3-540-45682-1_4
http://dx.doi.org/10.1007/11535218_18
http://dx.doi.org/10.1007/s00145-010-9061-2
http://dx.doi.org/10.1007/978-3-642-54631-0_1
http://dx.doi.org/10.1007/978-3-642-20465-4_3
http://eprint.iacr.org/2011/377
http://dx.doi.org/10.1007/978-3-642-54631-0
http://dx.doi.org/10.1007/11832072_24
http://dx.doi.org/10.1007/11538462_32
http://dx.doi.org/10.1007/978-3-642-40084-1_18
http://dx.doi.org/10.1007/978-3-642-25385-0_6
http://doi.acm.org/10.1145/1536414.1536461
http://doi.acm.org/10.1145/1060590.1060603
http://dx.doi.org/10.1109/FOCS.2012.27

On SolvingLPN usingBKW and Variants 27

B LF1 - full recovery of the secret

We provide here an example of th&1 algorithm, for theLPNs5;20.125 instance, where we recover the full secret. We provide theegaof
a, b, n and time complexity to show that indeed the number of quédadethe first iteration, dominates the number of queries adddter on.
Also, this shows that the time complexity of recovering thistfblock dominates the total time complexity. Hd?Ns5120.125 we obtain the
following values (See Table24).

Table 24: Full secret recovery for the instamd®Ns120 125

(=

logon log,t
74 7659 8843
63 6568 7729
54 6152 7291
54 5632 6728
45 4732 5802
37 3937 4980
31 3498 4514
31 3300 4266
25 2702 3636
20 2256 3156
16 2101 2967
16 1772 2579
12 1489 2251
12 1330 2019
11 1138 1736
926 1410
830 1169

Ol N|oo|lO|A~|W[IN|F

=
o

=
[N

=
N

=
w

=
N

=
(&)

=
(o))

RIN|INVw| M dMlao|lajlo|lo|lo|lo|lo|lo| N | N[N|®

=
~
a| o

The way one can interpret this table is the followirigi1 recovers first 74 bits by taking = 7 and requiring 259 queries. The total
complexity of this step, i.e. the reduction, solving and atpuy operation, is of $43 bit operations. Next|.F1 solvesLPN43g0.125 and
continues this process until it recovers the whole secret.

We can easily see that indeed the number of queries and thecimplexity of the first block dominate the other values.

	Introduction
	LPN
	Tighter Theoretical Analysis
	Other LPN Solving Algorithms
	Tightness of Our Query Complexity
	Complexity Analysis of the LPN Solving Algorithms
	Conclusion
	Hoeffding's Bounds
	LF1 - full recovery of the secret

