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Abstract

Context: Model-based data-interpretation techniques are increasingly used to improve the knowledge

of complex system behavior. Physics-based models that are identified using measurement data are generally

used for extrapolation to predict system behavior under other actions. In order to obtain accurate and

reliable extrapolations, model-parameter identification needs to be robust in terms of variations of systematic

modeling uncertainty introduced when modeling complex systems. Approaches such as Bayesian inference

are widely used for system identification. More recently, error-domain model falsification (EDMF) has been

shown to be useful for situations where little information is available to define the probability density function

(PDF) of modeling errors. Model falsification is a discrete population methodology that is particularly suited

to knowledge intensive tasks in open worlds, where uncertainty cannot be precisely defined.

Objective: This paper compares conventional uses of approaches such as Bayesian inference and EDMF

in terms of parameter-identification robustness and extrapolation accuracy.

Method: Using Bayesian inference, three scenarios of conventional assumptions related to inclusion of

modeling errors are evaluated for several model classes of a simple beam. These scenarios are compared with

results obtained using EDMF. Bayesian model class selection is used to study the benefit of posterior model

averaging on the accuracy of extrapolations. Finally, ease of representation and modification of knowledge

is illustrated using an example of a full-scale bridge.

Results: This study shows that EDMF leads to robust identification and more accurate predictions

than conventional applications of Bayesian inference in the presence of systematic uncertainty. These results

are illustrated with a full-scale bridge. This example shows that the engineering knowledge necessary to

perform parameter identification and remaining-fatigue-life predictions of a complex civil structure is easily

represented by the EDMF methodology.

Conclusion: Model classes describing complex systems should include two components: (1) unknown

physical parameters that are identified using measurements; (2) conservative modeling error estimations
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that cannot be represented only as uncertainties related to physical parameters. In order to obtain accurate

predictions, both components need to be included in the model-class definition. This study indicates that

Bayesian model class selection may lead to over-confidence in certain model classes, resulting in biased

extrapolation.

Keywords: systematic error, extrapolation, modeling uncertainties, Bayesian inference, model falsification,

model class selection.

1. Introduction

System identification involves taking advantage of measurement data to improve the understanding of

system behavior. In order to achieve this task, physics-based models can be employed to help interpret

measurement data. Such models are used to predict system behavior at unmeasured locations and for other

actions. For example, vibration data from a bridge may be used to infer uncertain physical parameter values

such as stiffness values that are then used to predict fatigue lives.

Parameter identification and predictions are sensitive to systematic modeling errors that are induced by

idealizations of real systems. Systematic errors arise due to simplifications and omissions in the modeling

process and usually reflect spatially interdependency between measurement locations. This type of error is

called model inadequacy in [26], model bias in [2], model discrepancy in [10] and modeling error in [20]. The

last designation is used in this paper.

In complex systems, data interpretation is ambiguous: multiple models are able to represent measured be-

havior. Techniques such as residual minimization, maximum likelihood estimates and maximum a-posteriori

estimates should be avoided when systematic errors are present in the model, since they lead to the iden-

tification of a single optimal model that is intrinsically imperfect due to parameter-value compensation

[2, 3, 20, 31].

Techniques such as probabilistic Bayesian inference are able to accommodate populations of solutions.

Bayesian inference determines the full posterior distribution of the uncertain parameter values by the con-

struction of a likelihood function describing the probability of observations given a set of parameter values.

In this way, this approach identifies model parameter values that are compatible with the measurement data

and all these values are then used to predict system behavior.

Underestimating modeling uncertainty (i.e. either mean value or variance) during data interpretation may

lead to biased parameter identification and thus to inaccurate predictions. Moreover, the convergence of the

parameter values to the true values may become even more biased as the number of measurements increases

[10, 20]. Nevertheless, it is possible to identify biased parameter values and still obtain accurate predictions

when predicting inside the domain of experimentation. This type of prediction is called interpolation [24].

However, learning the correct values of physical parameters is important for the understanding of the true
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behavior of the system and also for improving confidence in model extrapolation [10, 16]. Extrapolation

values are predictions out of the measurement context, such as fatigue life in the example of the beginning

of this paper.

In Bayesian inference, the common assumption is that modeling and measurement uncertainties are ade-

quately described by independent zero-mean Gaussian distributions [5, 17, 27]. Most applications integrate

the prediction-error variance as a parameter during the identification process [1, 6, 11, 32, 44] and some

assign an arbitrary value to the variance [4, 15, 18, 41]. These applications lead to correct parameter iden-

tification since the assumptions made for the probability density functions (PDF) of prediction errors are

compatible with assumptions related to model-class fidelity to the real system. Also, in situations where

systematic errors are absent, using the current Bayesian scheme for establishing the predictive distribution

leads to correct interpolation and extrapolation [3–5, 32, 46, 47]. Behmanesh et al. [7] includes mean values,

the variance and correlation values of modeling uncertainty as updating parameters. However, it is shown

that this approach leads to biased identification in the presence of systematic errors. Except for[7], there

are few applications of Bayesian inference involving systematic errors and few studies have evaluated the

validity of such assumptions through comparisons with other approaches.

The complexity of a model class is often only defined by the type and the number of parameters that

require identification. However, the complexity depends also on the level of detail that is achievable and

thus, depends on the modeling errors. Bayesian model class selection can be used to identify an optimal

model class among a set of model classes that returns the best trade-off between data fitting and model-class

complexity [6, 14, 30, 44, 45]. When several model classes are plausible, all of them are used by weighing

each model-class prediction according to their plausibility in order to obtain robust predictions. Bayesian

model class selection was also used to identify the best correlation model [40]. Another application involved

the selection of the best prediction-error variance model [18]. However, the best model class led to a biased

posterior PDF because of the presence of systematic modeling errors that were not characterized in the

model-class definition. In addition, there has been little discussion of situations involving Bayesian model

class selection where every model class is biased among the set of possible model classes.

Goulet and Smith [20] proposed an approach that is suitable when little is known about modeling errors.

This approach, called error-domain model falsification (EDMF), combines estimated PDFs of each source

of modeling and measurement error and determines conservative probabilistic thresholds that are used to

falsify inadequate models. Modeling errors are estimated using engineering judgment and field observations.

They have shown that this approach leads to robust parameter identification in the presence of systematic

errors without precise knowledge of the dependencies between modeling errors. Goulet and Smith [20] also

demonstrated that the assumption of independence in the common definition of uncertainties in Bayesian

inference may bias the posterior distribution of parameter values in the presence of systematic errors. This

last observation has also been noted by Simoen et al. [40]. However, the effects of systematic modeling errors
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on interpolations and extrapolations were not studied.

This paper builds on the work by Goulet and Smith [20] through comparing results for predictions.

Robustness of parameter-value identification and accuracy of interpolations and extrapolations are studied

for several model classes of a simple beam. Using Bayesian inference for data interpretation, three scenarios

are evaluated: (1) modeling errors are not included in the data-interpretation process; (2) modeling errors

are described by Gaussian PDFs; (3) the variance of the prediction-error uncertainties is parametrized and is

part of the set of parameters that are identified using the Bayesian framework. These scenarios are compared

with results obtained using EDMF. Finally, Bayesian model class selection is used to study the benefit of

posterior model averaging on the accuracy of extrapolations and is compared with extrapolations obtained

using EDMF.

Sections 2 and 3 present an overview of Bayesian inference, Bayesian model class selection and error-

domain model falsification. Section 4 illustrates the comparison between these data-interpretation techniques

by an example involving a simply supported beam.

2. Bayesian inference

Bayesian inference uses information obtained from measurement data to update prior knowledge of the

system through the identification of parameter values. Let y = [y1, . . . , ynm
]T be a vector of measurement

data from a physical system where nm is the number of measurements. Then, let G be a possible model

class describing the system and g(θ) a vector of model predictions where θ = [θ1, θ2, . . . , θnp ]T is a vector

of np parameters having uncertain values and defined on the parameter domain Θ ⊆ Rnp . The inference of

the parameter values of the model class G is based on Bayes’ Theorem of conditional probability:

p(θ|y, G) =
p(y|θ, G) p(θ|G)

p(y|G)
(1)

where p(θ|y, G) is the posterior PDF given the measurement data y and the model class G, p(θ|G) is the

user-defined prior PDF or prior knowledge of the uncertain parameter values, p(y|θ, G) is the likelihood

function and the denominator P (y|G) is the evidence for the model class given by measurement data y.

This term is used as a normalizing constant in Eq. (1) and is also important for model class selection, which

is presented in Section 2.1. The prior knowledge indicates the initial user’s judgment of the plausibility of

the uncertain parameter values before data are taken into account. The likelihood function expresses the

probability of observing measurement data from the model class having a specific set of parameters. This

gives a measure of data-fit of the model. This approach updates the prior knowledge of the uncertain model

parameters by leveraging of the information gained by the measured values. This also creates a mapping

between the error domain Ξ ⊆ Rnm that refers to the residuals of the differences between measured and

predicted values εo = [εo,1, . . . , εo,nm ]T and the parameter domain Θ [20]. The usual formulation of the
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likelihood function is based on a Gaussian PDF:

p(y|θ) ∝ const · exp
[
− 1

2
(y − g(θ))T Σ−1 (y − g(θ))

]
(2)

where Σ ∈ Rnm×nm is a covariance matrix composed of the variances and the correlation coefficients for each

measured location of the system.

In most applications of Bayesian inference, independent zero-mean Gaussian distributions are assumed

to describe the uncertainties due to measurement and modeling errors. In addition to the independence

assumption, the same variance is assumed for each model prediction leading to a diagonal covariance matrix

with all non-zero terms being equal. In such examples, the uncertainty is only evaluated through the variance

σ2
ε . The posterior distribution of uncertain parameters can then be used to predict future behavior of the

system. The procedure aims at deriving the predictive distribution of a system output based on the updated

model for various types of inputs, such as load configurations. Let q be the system outputs to be predicted,

the predictive distribution obtained from the updated model class G is given by Eq. (3).

p(q|y, G) =

∫
Θ

p(q|θ, G) p(θ|y, G) dθ (3)

This methodology is employed in [1, 3, 5, 44] and is used in many applications for updating structural

reliability outputs, for example, [4, 32, 46].

2.1. Bayesian model class selection

Several model classes are often a priori plausible representations of the real system. In this case, Bayesian

model class selection is employed for determining the most plausible model class among the set of model

classes. This selection technique returns the best trade-off between the degree of model data fitting (fidelity

to data) and model-class complexity. These competing aspects are included in the calculation of the evidence

(Eq. 5). As a result, this approach penalizes more complex model classes in order to select model classes

that are robust to small imperfections, which enforces the principle of model parsimony (Ockham’s razor)

[28, 45]. Bayesian model class selection is used to determine the most plausible model class among the

set of model classes Gk where k ∈ {1, 2, . . . , nc}. This approach rates the plausibility of each model class

conditionally on the measurement data. This is achieved by applying Bayes’ Theorem at the model-class

level:

P (Gk|y) =
p(y|Gk)P (Gk)

p(y)
(4)

where P (Gk|y) is the posterior plausibility of the model class Gk and P (Gk) the prior plausibility that is

usually chosen to be equal for each model class. The term p(y|Gk) represents the evidence, which is the

same term as the denominator of Eq. (1). This is the term that plays the main role in Bayesian model class

selection since it expresses the likelihood of obtaining the measurement data by selecting model class Gk.
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The denominator p(y) =
nc∑
k=1

p(y|Gk)P (Gk) is the normalization of the plausibilities and is obtained by the

law of total probability.

The evidence is obtained also by the law of total probability at the model-parameter level by considering

the likelihood and the prior probability of Eq. (1):

p(y|Gk) =

∫
Θk

p(y|θk, Gk) p(θk|Gk) dθk (5)

where θk is the parameter vector for each model class Gk. The updated plausibility of Eq. (4) can be difficult

to compute because of the two high dimensional integrals, the evidence p(y|Gk) and the normalization of the

plausibilities p(y) (denominator of Eq. 4). In such situations, Yuen [45] proposed Eq. (6) as an alternative

calculation.

P (Gk|y) =
exp(ln p(y|Gk)−M)
nc∑
k=1

exp(ln p(y|Gk)−M)

(6)

In Eq. (6), M = max
k

ln p(y|Gk) is the maximum log-evidence among each model class. This expression

does not modify the relative plausibility of each model class, as far as all model classes have the same prior

probability.

The predictive distribution of each model class can be weighted by their plausibility in order to account

for the uncertainty at the model-class level for predictions:

p(q|y) =

nc∑
k=1

p(q|Gk,y)P (Gk|y) (7)

This expression is called posterior model averaging. Bayesian model class selection has been widely used

in many applications [6, 14, 30, 44] for identifying the optimal model class among possible model classes and

for obtaining the predictive distribution by posterior model averaging [12, 13]. More related to modeling-

error assumptions, Simoen et al. [40] proposed the use of Bayesian model class selection to determine an

adequate correlation model of the prediction-error uncertainty. Goller et al. [18] proposed a methodology

based on Bayesian model class selection to identify the most plausible model class from a set of model classes

differing from the value of the uncertainty variance.

Solving the Bayesian framework may be difficult for high-dimensional parameter domains when using sim-

ple sampling methods such as uniform sampling or Monte Carlo simulation. This difficulty has motivated

techniques such as Markov Chain Monte Carlo simulations for sampling posterior PDFs, predictive distri-

butions and evidence in a more efficient manner. In this paper, MCMC is based on the Metropolis-Hastings

algorithm. An overview of this method is presented in [28, 44].

3. Error-domain model falsification

Similarly to Bayesian inference, error-domain model falsification (EDMF) considers a set of model pre-

dictions gk(θk) of a model class Gk having np unknown physical parameters θk = [θk1, θk2, . . . , θknp
]T . The
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vector θk represents the parameter uncertainty. For complex systems, it is not feasible to parametrize every

phenomenon. Therefore, this approach also includes modeling error ε∗model,k that is induced by inevitable as-

sumptions, simplifications and omissions made during the modeling process. Examples of sources of modeling

error are idealized support conditions, geometric variability of the structure, load amplitude and position,

Bernoulli-beam hypothesis, constitutive law of materials, no dynamic magnification, etc. For finite-element

(FE) models, there are also mesh refinement and interpolation, the element-type choices, the presence of

singularities, etc.

By including both model parameter uncertainty and modeling error at each measurement location i ∈

{1, 2, . . . , nm}, the true value of the system is approximated. This true value, Qi, is also approximated with

measurements yi and measurement error ε∗measure,i. Eq. (8) summarizes these relations.

gki(θ
∗
k)− ε∗model,ki = Qi = yi − ε∗measure,i (8)

The modeling error values ε∗model,ki that compensate model-prediction values in order to obtain the true

values depend on the choice of the model class Gk. In real situations, neither modeling and measurement

error values ε∗ki, nor true values Qi are known with certainty.

These errors can only be evaluated using probability density functions and thus treated as random

variables Umodel,ki and Umeasure,i. The difference between modeling and measurement uncertainties determine

the random variables Uc,ki that describe the observed residuals εc,ki (i.e. the differences between predicted

and measured values). The PDF fUc,ki
(εc,ki) represents the probability of the continuous random variables

Uc,ki. An instance of the parameter set θk and of a model class Gk, is falsified, if for any measurement

location i ∈ {1, 2, . . . , nm}, the difference between predicted and measured values lies outside the interval

defined by the threshold bounds [Tlow,ki, Thigh,ki] (Eq. 10) such that Eq. (9) is not satisfied:

∀i ∈ {1, . . . , nm} : Tlow,ki ≤ gki(θ
∗
k)− yi ≤ Thigh,ki (9)

Inversely, a model instance is accepted if this difference is inside these bounds at each location. Since

evaluating many values of gki(θ
∗
k) often requires multiple numerical simulations, EDMF is only feasible with

modern computing technology. Advances in massively parallel computers particularly in the context of cloud

computation significantly reduce computation time of tasks involving polynomial time complexity. Discrete

population approaches such as EDMF show much promise for a range of abductive engineering tasks.

Threshold bounds define the shortest sets of intervals including a target probability φd ∈]0, 1] that the

right model is not falsely discarded. They are determined by satisfying Eq. (10).

∀i ∈ {1, . . . , nm} : φ
1/nm

d =

∫ Thigh,ki

Tlow,ki

fUc,ki
(εc,ki)dεc,ki (10)

This way of calculating these bounds uses the S̆idák correction [39]. This leads to determination of con-

servative threshold bounds for each measurement location regardless of the values of correlations between

uncertainties [25].
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Practically, the user defines an initial set of model instances Gk(θk) having many combinations of values

for θk that are obtained based on engineering heuristics. A target probability of identification φd is also

defined, thereby explicitly setting the level of false-rejection error that is acceptable. After falsification of

the model instances that are incompatible with the measured values given the modeling and measurement

uncertainties, a subset of candidate models θ∗
k remains. Since more precise probabilities cannot be assumed

in full-scale cases, each candidate model is taken to be equally likely to be the right model. Thus, every

candidate model is used for prediction of q = [qk1, qk2, . . . , qknr
] at nr locations of the model. From Eq. (8),

the expression for the distributions qkj can be deduced for the identified model class Gk. Eq. (11) presents

the combination of the random variables Uθ∗
k

describing the candidate models and Umodel,kj describing the

modeling error:

qkj = gkj(Uθ∗
k
)− Umodel,kj , j ∈ {1, 2, . . . , nr} (11)

where qkj is a random variable representing the predicted value obtained for a random candidate-model

instance and a random sample of modeling uncertainty. Thus, distributions of qkj are obtained by the

combination of distributions of candidate-model predictions with distributions of modeling error for each

prediction location j. Lower and higher prediction thresholds are then calculated for each distribution qkj

using a similar procedure as in Eq. (10). The prediction thresholds [qlow,kj , qhigh,kj ] represent the shortest

sets of intervals including the target probability of prediction φp. Also, these bounds are determined using

the S̆idák correction such that for each location j, the prediction thresholds are defined based on a probability

φ
1/nr
p .

There are situations where all the initial model instances are falsified provided that a sufficient number

of measurements is used as presented in [20]. This means that erroneous assumptions are made in the

model-class definition. In such situations, the estimation of modeling and measurement uncertainties is

incompatible with the model class and the complete falsification avoids making a wrong parameter-value

identification. In addition, model-class falsification can help explore possible model classes of systems. When

several model classes are possible, the model class is selected based on the performance of its intended use,

for example, the precision of predictions.

Falsification is a well-known scientific concept that was popularized in 1930’s by Karl Popper [37]. He

argued that data can only be used to falsify models. Since then, authors such as Tarantola [42] and Beven

[8] recognized the importance of this concept for system identification. Beven and Binley [9] proposed a

methodology based on model falsification that is intended to overcome limitations of traditional approaches

in the field of environmental sciences.

Examples of applications of EDMF where uncertainties are estimated based on engineering experience

can be found in [22, 23, 34]. Candidate models have also been used to predict the remaining-fatigue-life of

critical details in [35], wind flow around buildings [43] and leaks in water supply networks [21, 29]. Model

falsification has also been applied to sensor configuration [19, 33, 38].
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In most applications of system identification, it is commonly assumed that the PDF of modeling and

measurement uncertainty is a Gaussian distribution that is centered on zero. This means that models that

fits the measurements better (zero residual) are more likely than the others. This assumption is justified

when the model class that is used describes with fidelity the real system behavior, when modeling errors are

aleatory and when there are enough measurements to provide an approximation of the distribution. In such

cases, the likelihood of a model depends on the value of the variance that is used to describe the uncertainty

PDF. However, in the presence of systematic modeling errors, the predictions of the model having the correct

parameter values are biased compared with the measurements and these biases are spatially interdependent.

Thus, in order to identify correct parameter values, a more robust approach involves i) estimating these

biases using non-zero-mean PDFs whose sources and forms are determined using engineering judgment and

ii) defining probabilistic threshold bounds based on the combination of each source.

4. Illustrative example

This example studies a simply supported beam that is partially fixed on the left side by a rotational

spring as shown in Figure 1. This beam has a rectangular cross-section with a moment of inertia I and a

Measurement location (              )

Figure 1: True beam configuration with measurement locations for nm = 7.

length l. Its other characteristics are the Young’s modulus E and the spring stiffness K. Values for these

characteristics are given in Table 1. The beam deflection v(x) for a single load F applied at midspan can be

computed using Eq. (12).

v(x) =

{
Fx(18EIl2+9Kl2x−x2(24EI+11Kl))

96EI(3EI+Kl) if x ≤ l/2
F (x−l)(2l2(3EI+Kl)+(x2−2xl)(24EI+5Kl))

96EI(3EI+Kl) if x > l/2
(12)

Displacement measurements are simulated by adding a measurement error following an independent zero-

mean Gaussian distribution of standard deviation σmeasure = 0.01mm to the real displacement v(x). Mea-

surement locations are uniformly distributed between the coordinate x = xs = 1000mm and x = l − xs.

The coordinate xi of each measurement yi is defined by:

xi = xs + (l − 2xs)
i

nm + 1
(13)
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The measurements are simulated for various number of measurements nm ∈ {1, 3, 7, 15}. By increasing nm

in this way, each higher measurement set includes the locations of the lower sets.

In this example, simulated measurements are used to identify the structural behavior of the beam. This

knowledge is then used to predict the displacement at midspan under the same load (interpolation) and

predict the tensile strain at the bottom of the beam at the coordinate x = 2250mm under the distributed

load q = 5 kN/m as shown in Figure 2. The strain prediction is calculated using Eq. (14) where h is the

A

A

A-A

Figure 2: Strain prediction at the bottom of the beam cross-section at x = 2250mm. This configuration is used for model

extrapolation.

height of the beam cross-section that has a true value of 303mm.

ε(x) = −q(l − x)(Kl(l − 4x)− 12EIx)

8EI(3EI +Kl)
h/2 (14)

In order to study the effect of systematic modeling errors on the parameter identification and model

predictions, four model classes are built:

• The true model class G0 is composed of the four parameters θ0 = [θ01, θ02, θ03, θ04]T = [E,K, I, l]T

and thus is built by parameterizing every uncertain characteristic of the system.

• Model class G1 involves the assumption of a simply supported beam with a pinned connection on the left

side and approximated values for the moment of inertia I and the length l obtained by measuring the

dimensions of the beam cross-section and span. This model class accounts for the uncertainty associated

with the Young’s modulus value and uses it as a parameter θ11 = E in the system-identification process.

• Model class G2 is defined through recognition of the partial connection on the left side of the beam and

the uncertainty associated with the moment of inertia. For this model class, the parameter vector is

θ2 = [θ21, θ22]T = [K, I]T . The Young’s modulus and the length are set to their approximated values,

see Table 1.

• Model class G3, similarly to Model class G1 includes a pinned connection on the left side of the beam,

and the moment of inertia and the length are taken as parameters. For this model class, the parameter

vector is θ3 = [θ31, θ32, θ33]T = [E, I, l]T .
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Table 1: Real beam characteristics and model-class description

E[GPa] K[log(Nmm/rad)] I[mm4]× 108 l[mm] F [kN ]

Real beam 70 9.8 7.01 8920 12

Initial parameter ranges 40− 100 8− 12 6.48− 7.02 8910− 9090 −

True model class G0 θ01 θ02 θ03 θ04 12

Model class G1 θ11 → 0 (pinned) 6.75 9000 12

Model class G2 59 θ21 θ22 9000 12

Model class G3 θ31 → 0 (pinned) θ32 θ33 12

For each model class Gk, the applied load F is identical. A summary of model-class parameters and approx-

imated values is given in Table 1.

The purpose of this illustrative example is to compare Bayesian inference results with error-domain

model falsification results when performing parameter identification, interpolation and extrapolation. Model

predictions gki(θk) are determined for each model class using Eq. (12) at the measurement coordinate xi

using approximated values given in Table 1. Uncertain parameters have initial ranges of values estimated

using engineering judgment.

For Bayesian inference, these ranges define uniform prior probabilities of the uncertain parameters that

are used to solve Eq. (1). The integral of the normalization of this equation may be difficult to compute for

high-dimensional parameter domain. For each model-class identification, one million Markov Chain samples

are used and the convergence of the posterior PDF is verified. Three scenarios are assumed for the estimation

of the modeling errors:

• Scenario I involves no recognition of modeling errors and includes only the measurement error dur-

ing parameter identification. The uncertainty distribution (Eq. 2) is thus centered on zero with a

covariance matrix having σ2
ε = σ2

measure for the diagonal elements. For prediction, only the parameter

uncertainty is included since erroneously, no modeling uncertainty is assumed.

• Scenario II involves recognition of simplifications and omissions present in the model and evaluates

the modeling errors by independent Gaussian distributions. Mean and standard deviation values of

the modeling uncertainty are estimated using engineering judgment (see Table 2). In this scenario,

the likelihood function then includes both measurement and modeling uncertainties for parameter

identification. For prediction, modeling uncertainties are included based on Eq. (3) using estimated

values given in Table 2.

• Scenario III involves an assumption of independent zero-mean Gaussian distribution for the modeling

and measurement errors and parametrizes the variance σ2
ε of the likelihood function that becomes an

additional parameter to identify. In this scenario, the prior PDF of the variance is uniform and varies
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between 0 and 100 % of the measured value at each measurement location. The identified variance

values are then assumed to be estimates of the modeling error and are included in interpolation and

extrapolation calculations.

Table 2: Modeling error estimations by independent Gaussian distributions for parameter identification and prediction.

Identification Interpolation Extrapolation

mean [%]a std [%]a mean [mm] std [mm] mean [µε] std [µε]

Model class G0 0 0 0 0 0 0

Model class G1 28 4.7 0.86 0.14 30.3 3.46

Model class G2 34 5.4 1.04 0.16 28.6 4.53

Model class G3 22 4 0.67 0.12 27.7 3.36

aThis percentage refers to the measured value at each measurement location.

For EDMF, the initial parameter ranges in Table 1 are divided into 60 uniformly distributed values in

order to generate the initial model set. For scenario I, the modeling errors are unrecognized and threshold

bounds are calculated by including only the measurement uncertainty. For scenario II and III, the mod-

eling uncertainties are included using values given in Table 2. Modeling and measurement uncertainties

are combined to obtain Uc,ki and threshold bounds are determined using Eq. (10). After falsification of

inadequate models, the candidate models are used for interpolation and extrapolation based on Eq. (11)

and including the modeling uncertainties given in the interpolation and extrapolation columns of Table 2.

For each scenario, target probabilities, φd = 0.95 for identification, and φp = 0.95 for prediction are chosen.

For Bayesian inference, the combined mean values of modeling and measurement uncertainties are in-

cluded in the residual calculation y−g(θ) of the likelihood function (Eq. 2) and the combined variances are

included in the covariance matrix Σ, which is diagonal since for any scenario, the errors are assumed to be

independent.

The next section presents the comparison of Bayesian inference and EDMF for the true model class for

this illustrative example. Section 4.2 presents the same comparisons for the other model classes for the three

scenarios. Bayesian model class selection is also investigated in Section 4.4. These comparisons are presented

as summarized in Table 3.

4.1. True model class

The true model class G0 is the result of the parametrization of all sources of modeling uncertainty.

Since no systematic error is induced by the model predictions, the measurement uncertainty only needs to

be included during data interpretation. As a result, the assumption of independent zero-mean Gaussian

uncertainty for Bayesian inference is justified and parameter identification leads to accurate and precise

posteriors for the four parameters. When using these posteriors to extrapolate the predictive distribution of
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Table 3: Summary of comparisons by sections and model classes.

Section Scenario Identification Interpolation Extrapolation

4.1 - - - G0

4.2.1 I G1,G2,G3 G1 G1

4.2.2 II G1,G2,G3 G1 G1

4.2.3 III G1,G2,G3 G1 G1

4.4 I,III - - G1,G2,G3
a

aBased on posterior model averaging.

the strain using Eq. (3) and (14), the results are accurate and precise for nm ≥ 3 if compared with the true

strain value as depicted in Figure 3. This figure presents also predictions obtained with EDMF. Although

EDMF predicts accurately the strain, the extrapolation is less precise than with Bayesian inference.
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Figure 3: Example of strain predictions at x = 2250mm that lead to accurate and reliable extrapolation of the true model.

Predictions obtained using Bayesian inference and error-domain model falsification (EDMF) are compared with the true strain

value where the number of measurements nm varies from 1 to 15. In this case, where only measurement errors are accommodated,

EDMF leads to predictions that are less precise than Bayesian inference.

4.2. Unknown model class

For complex systems, the true model class is generally not definable. Only imperfect model classes are

defined to approximate the real behavior. In this section, the three model classes Gk, k ∈ {1, 2, 3} are

investigated for the three scenarios that reflect conventional assumptions made when applying Bayesian

inference for system identification and results are compared with those obtained using EDMF.

4.2.1. Scenario I: unrecognized modeling errors

In this scenario, modeling uncertainties are not included in the identification framework, neither for

Bayesian inference nor for EDMF. Table 4 presents a comparison of parameter identification results obtained
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using Bayesian inference and EDMF for model classes G1 to G3 and nm = 7. Since posteriors of E and

K are close to a Gaussian distribution, the range of identified values is given with two standard deviations

apart from the mean value of the posterior PDF. Posteriors of I and l are close to uniform distribution

and thus, minimum and maximum values are displayed. This table shows that parameter values that are

inferred using Bayesian framework are biased for any model class, while EDMF falsifies all initial model

instances. Figure 4 describes parameter identification (Young’s modulus), interpolation and extrapolation

Table 4: Scenario I: comparison of parameter identification using Bayesian inference and using error-domain model falsification

(EDMF) for nm = 7. Model-class falsification is indicated as 0 CM (zero candidate models).

Parameter θk E[GPa]a K[log(Nmm/rad)]a I[mm4]× 108b l[mm]b

True values 70 9.8 7.01 8920

Initial ranges 40− 100 8− 12 6.48− 7.02 8910− 9090

G1

Bayesian inference 89.1− 89.7 - - -

EDMF (min-max) 0 CM - - -

G2

Bayesian inference - 10.18− 10.21 6.99− 7.02 -

EDMF (min-max) - 0 CM 0 CM -

G3

Bayesian inference 86.8− 95.7 - 6.48− 7.02 9016− 9090

EDMF (min-max) 0 CM - 0 CM 0 CM

aRanges for Bayesian inference are ±2σ apart from the mean posterior.

bRanges for Bayesian inference are minimum and maximum values of the posterior.

results obtained using Bayesian inference and EDMF for model class G1. Results are compared with the

true values. Although similar results are obtained for model classes G2 and G3, the result for the model

class having a one-dimensional parameter domain is shown for convenience. This figure exhibits that when

modeling uncertainty is not included, Bayesian inference leads to biased identification and predictions, while

EDMF falsifies every model in the model class and thus avoids making a wrong parameter-value identification

and wrong predictions. This was also observed in Goulet and Smith [20] for parameter identification. Note

that model-class falsification is observed only for nm > 1. When a single measurement is used, EDMF

returns similar results than Bayesian inference for this scenario.

4.2.2. Scenario II: recognized modeling errors

In this case, systematic modeling errors are recognized and carefully evaluated by independent Gaussian

uncertainties. Table 5 presents a comparison of the parameter identification results obtained using both

approaches for the three model classes. This table shows that Bayesian inference makes correct identification

of the parameter values. Here, the assumption of independence of errors amongst measurement locations

is not justified since the nature of the modeling error induces spatial interdependencies (see Table 1: each

model-class definition induces systematic errors). However, correct parameter-value identification is obtained
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Figure 4: Scenario I: parameter identification (Young’s modulus), midspan displacement prediction (interpolation) and strain

prediction at x = 2250mm (extrapolation) using model class G1 for nm = 7. Bayesian inference is compared with EDMF

and the true values. Since modeling errors are not taken into account, Bayesian inference leads to biased identification and

predictions. EDMF falsifies every model in the model class and thus avoids making a wrong parameter-value identification and

wrong predictions.

regardless of this wrong assumption [20, 40]. In addition, EDMF also leads to robust identification of

parameter values for each model class.

Figure 5 describes parameter identification (Young’s modulus), interpolation and extrapolation results

obtained using Bayesian inference and EDMF for model class G1 and nm = 7.

These results are compared with the true values. Bayesian inference results in correct parameter identi-

fication as depicted also in Table 5. Interpolation and extrapolation predictive distributions are presented

with inclusion of modeling uncertainties and without inclusion of them in order to show the importance of

accounting for them in the prediction calculation (Eq. 3). Indeed, when they are included in predictive dis-

tribution calculations, interpolation and extrapolation are accurate, which is not the case without inclusion

of modeling uncertainties. However, such results are not always obtainable due to either wrongly assumed

spatial correlation values or misevaluation of the mean value of the modeling errors. For the model class G2,

extrapolations are biased even if modeling uncertainty is included in the predictive distribution (see Figure

6).

In this figure, although the true value is near the higher prediction threshold of EDMF, the extrapolation

range still includes the true value with φp = 95 % reliability given the uncertainty distribution, while the

position of the true value is in the distribution tail of the Bayesian predictive distribution (larger than

±2σ from the mean prediction). Since modeling uncertainty is always included in both identification and

prediction processes (Eq. 10 and 11), EDMF is able to identify correctly the parameter value and to predict

displacement and strain values accurately and reliably.
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Table 5: Scenario II: comparison of parameter identification using Bayesian inference and using error-domain model falsification

(EDMF) for nm = 7.

Parameter θk E[GPa]a K[log(Nmm/rad)]a I[mm4]× 108b l[mm]b

True values 70 9.8 7.01 8920

Initial ranges 40− 100 8− 12 6.48− 7.02 8910− 9090

G1

Bayesian inference 68.3− 72.2 - - -

EDMF (min-max) 66.4− 76.6 - - -

G2

Bayesian inference - 9.79− 9.99 6.48− 7.02 -

EDMF (min-max) - 9.65− 10.1 6.48− 7.02 -

G3

Bayesian inference 69.8− 79.1 - 6.48− 7.02 8910− 9090

EDMF (min-max) 66.7− 84.9 - 6.48− 7.02 8910− 9090

aRanges for Bayesian inference are ±2σ apart from the mean posterior.

bRanges for Bayesian inference are minimum and maximum values of the posterior.
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Figure 5: Scenario II: parameter identification (Young’s modulus), midspan displacement prediction (interpolation) and strain

prediction at x = 2250mm (extrapolation) using model class G1 for nm = 7. While systematic modeling errors are estimated

and included in the identification, Bayesian inference leads to better identification and extrapolation. However, such results are

not always obtainable. In addition, EDMF is robust to systematic modeling errors.
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Figure 6: Scenario II: strain prediction at x = 2250mm (extrapolation) using model class G2 for nm = 7. For this model class,

Bayesian inference returns biased extrapolation due to either wrongly assumed spatial correlation values or misevaluation of

the mean value of the modeling errors.

4.2.3. Scenario III: parametrized modeling uncertainties

In the third scenario, the variance of likelihood function becomes an additional parameter to be identified

in Bayesian inference. Table 6 presents a comparison of the parameter identification results obtained using

Bayesian inference and EDMF.

Table 6: Scenario III: comparison of parameter identification using Bayesian inference and using error-domain model falsification

(EDMF) for nm = 7.

Parameter θk E[GPa]a K[log(Nmm/rad)]a I[mm4]× 108b l[mm]b σ2
ε [%]c

True values 70 9.8 7.01 8920 -

Initial ranges 40− 100 8− 12 6.48− 7.02 8910− 9090 0− 100

G1

Bayesian inference 87.9− 92.0 - - - (0.09; 0.13)

EDMF (min-max) 66.4− 76.6 - - - -

G2

Bayesian inference - 10.1− 10.4 6.48− 7.02 - (0.7; 0.69)

EDMF (min-max) - 9.65− 10.1 6.48− 7.02 - -

G3

Bayesian inference 84.9− 96.3 - 6.48− 7.02 8910− 9090 (0.09; 0.11)

EDMF (min-max) 66.7− 84.9 - 6.48− 7.02 8910− 9090 -

aRanges for Bayesian inference are ±2σ apart from the mean posterior.

bRanges for Bayesian inference are minimum and maximum values of the posterior.

cValues for Bayesian inference are (mean;std) of log-normal distribution.

EDMF results, identical to Table 5, are shown a second time for comparison. As for Table 5, ranges for E

and K are shown in terms of ±2σ from the mean value, I and l in terms of minimum and maximum values and

σ2
ε , which is close to a log-normal distribution is described by its mean and standard deviation values. This
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table shows that when modeling uncertainties are parametrized and systematic errors are present, Bayesian

inference results in biased identification. For model class G2 and G3, although the moment of inertia is

correctly identified, the posteriors of the other parameter values are biased. The identified variances do not

describe correctly the modeling and measurement errors and thus, the identified parameter values cannot

represent the true beam behavior.

Figure 7 describes parameter identification (Young’s modulus), interpolation and extrapolation results

obtained using Bayesian inference and EDMF for model class G1 and nm = 7 and are compared with

the true values. Bayesian inference leads to biased identification when compared with the true parameter
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Figure 7: Scenario III: parameter identification (Young’s modulus), midspan displacement prediction (interpolation) and strain

prediction at x = 2250mm (extrapolation) using model class G1 for nm = 7. When parameterizing the uncertainty variance,

Bayesian inference leads to biased identification and extrapolation in the presence of systematic errors. As in scenario II, EDMF

leads to robust identification and accurate predictions since modeling errors are accommodated in the same way.

value. In this scenario, σ2
ε acts as a tuning parameter and compensates the effects of the other parameters

leading to biased identification. As each parameter value compensates for each other to fit the measurement,

interpolating with such models leads to accurate predictions. However, when extrapolating, since wrong

parameter values and wrong modeling uncertainties are identified, the predictions are inaccurate. When

interpolating, calculations may lead to accurate predictions even if the parameter identification is wrong. This

can lead to overconfidence in model classes and thus, inaccurate subsequent extrapolations. As in scenario

II, EDMF leads to robust identification and accurate predictions since modeling errors are accommodated

in the same way.

4.3. Summary of scenarios I to III

Table 7 summarizes findings related to scenarios, model classes and activities such as parameter iden-

tification, interpolation and extrapolation for both data-interpretation approaches. Error-domain model

falsification is robust whatever activity is performed with each model class. In the first scenario, where
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Table 7: Summary of findings (X: successful, 8: not successful).

Approach Bayesian inference Error-domain model falsification

Scenario - I II III - I II-III

Model class G0 G1 G2 G3 G1 G2 G3 G1 G2 G3 G0 G1 G2 G3 G1 G2 G3

Identification X 8 8 8 X X X 8 8 8 X Xa Xa Xa X X X

Interpolation X 8 8 8 X X X X X X X X X X X X X

Extrapolation X 8 8 8 X 8 X 8 8 8 X Xa Xa Xa X X X

aProvided that a sufficient number of measurements is used (in this case, nm > 1).

modeling errors are not recognized in the presence of systematic errors, EDMF is able to detect erroneous

model-class definitions provided that more than a single measurement is used. In other scenarios where

modeling errors are adequately estimated, EDMF provides robust parameter identification and accurate

predictions. Pasquier et al. [36] have shown that the sensitivity to diagnosis error (i.e. making biased

identification) depends on the number of measurements and the degree of misevaluation of either the mean

value or the variance of uncertainty. Also, when the variance of modeling uncertainty is underestimated,

model-class falsification is possible for a sufficient number of measurements that depends on the degree of

underestimation. Although increasing the number of measurements helps, in case of slight underestimation

of uncertainty mean value and variance, it may be possible to identify the wrong model class. Nevertheless,

EDMF is capable of managing model instances that originate from several model classes.

When the true model class is involved with all uncertainties attached to physical parameters, Bayesian

inference leads to accurate and precise identification and predictions. However, in the first scenario, Bayesian

inference cannot detect erroneous assumptions made with modeling uncertainties and leads to inaccurate

results for any activity and model class. In the second scenario, the inclusion of modeling uncertainties results

in accurate identification and interpolations. However, the accuracy of extrapolations cannot be guaranteed

for every model class. In the third scenario, the description of uncertainties by a zero-mean Gaussian

distribution with parametrization of the variance of the likelihood function is not a robust methodology in

the presence of systematic errors. Indeed, the parameter values identified are inaccurate for any model class

and thus lead also to inaccurate extrapolations. However, interpolations are accurate since the fitted models

have predictions that are valid in the domain of experimentation.

The inaccurate results obtained with Bayesian inference are the consequence of either the underestima-

tion of either the mean value or the variance of the modeling uncertainties in the model-class definition.

Since conservative estimation of modeling errors is part of the model-class definition, error-domain model

falsification offers an alternative approach that is robust and reliable for identifying systems and making

predictions.
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4.4. Results obtained using Bayesian model class selection

In situations where various model classes are possible representations of a system, Bayesian model class

selection is used either to identify the optimal model class given the measurement data or to rate model

classes regarding their plausibilities. This approach is applied for model classes G1 to G3 for scenarios

I and III by evaluating first the log-evidence for each model class for several numbers of measurements.

Then, posterior model averaging is used to study the potential of this methodology for improving prediction

accuracy.

Log-evidence values are determined using MCMC simulation with one million Markov Chain samples.

Figure 8 presents the comparison of log-evidence values of the three model classes and the true model class

obtained using Eq. (5) and calculated for nm varying between 1 and 15. Understandably, the true model
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Figure 8: Comparison of log-evidence of model classes G1 to G3 with the true model class for scenarios I and III where the

number of measurements nm varies from 1 to 15. The true model class returns the largest log-evidence for any number of

measurements. Model class G3 is the best model class among the three whatever the number of measurements according to

Bayesian model-class selection even if the log-evidence of G3 and G1 are very close.

class returns the largest log-evidence for any number of measurements. Model class G3 is the best model class

among the three in scenario I for any nm. The log-evidence value of model class G2 is very low compared

with the others. This classification is due to the size of the systematic bias in each model class that is

lower in G3 than in G1 and G2 and that is reflected in the estimation of the modeling errors in Table 2. In

scenario III, the log-evidence values of model classes G1 and G3 are very close. Model class G2 has clearly

the lowest log-evidence value for any number of measurement larger than 1. This is due to the identified

variance parameter that is larger than for the other model classes as depicted in Table 6.

Based on the log-evidence values, the plausibilities of each model class are updated with Eq. (6). Table

8 summarizes the updated plausibility values. These values reflect the classification of log-evidence values

of Figure 8. In scenario I, model class G3 is optimal for nm > 1 and in scenario III, these values cannot
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depict an unambiguous optimal model class with a plausibility of 1. These plausibility values are then used

to weight the predictive distribution of each model class based on Eq. (7) in order to obtain the posterior

model averaging of the extrapolation values. Table 8 compares also the model classes using EDMF. In

scenario I, although EDMF identifies wrong candidate models for nm = 1, all model classes are falsified

for nm > 1, in agreement with the erroneous model-class definition. In scenario III, candidate models are

correctly identified for any set of measurements since the estimated modeling uncertainties are compatible

with the model-class definition.

Table 8: Model plausibilities obtained using Bayesian model class selection for nm varying from 1 to 15.

Bayesian plausibilities Model-class falsificationa

Scenario I III I III

nm 1 3 7 15 1 3 7 15 1 3 7 15 1 3 7 15

Model class G1 0.34 0.00 0.00 0.00 0.40 0.43 0.44 0.41 1 0 0 0 1 1 1 1

Model class G2 0.33 0.00 0.00 0.00 0.22 0.01 0.00 0.00 1 0 0 0 1 1 1 1

Model class G3 0.33 1.00 1.00 1.00 0.38 0.56 0.56 0.59 1 0 0 0 1 1 1 1

aBelow, 0 means complete model-class falsification and 1 means that candidate models are identified.

Figure 9 presents strain predictions obtained by weighting each model-class predictive distribution by

their plausibility and EDMF predictions of model class G3 for scenario I and for nm varying from 1 to

15. Even by weighting the predictions with the model-class plausibilities, the extrapolations are inaccurate
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Figure 9: Comparison of strain predictions (extrapolation) obtained by weighting model-class predictive distributions by their

plausibility with EDMF predictions of model class G3 for scenario I and nm varying from 1 to 15. Although predictions are

weighted by the model-class plausibilities, the extrapolations are biased for any number of measurements larger than 1. For

nm > 1, EDMF falsifies the model class and avoids wrong identification and predictions.

for any number of measurements larger than 1. For nm = 1, model class G2 underestimates the strain
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prediction, while G1 and G3 overestimate it.

When nm increases, since all model classes identify incorrectly the parameter values for this scenario, the

model class selection is unable to provide better accuracy and reliability of predictions than using a single

model class. In addition, the more measurements are used, the more inaccurate the strain prediction is.

With EDMF, although a single measurement is insufficient to detect the erroneous assumption of uncertainty

estimation since wrong extrapolations are obtained, this approach avoids incorrect extrapolations when nm

increases.

Figure 10 presents the same comparison as in Figure 9 for scenario III. By weighting the predictions

with the model class plausibilities, the extrapolations are still inaccurate for any number of measurements

larger than 1. In addition, in this scenario also, when the number of measurements increases, the prediction

inaccuracy increases. The extrapolations obtained using EDMF and model class G3 are accurate and reliable

for any number of measurements. Here, only the extrapolations using G3 are shown because this is the most

accurate model class among the three and also, this model class has the least bias. For this scenario, posterior

model averaging is unable to help improve the accuracy and the reliability of extrapolations.
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Figure 10: Comparison of strain predictions obtained by weighting model-class predictive distributions by their plausibility

with EDMF predictions of model class G3 for scenario III and nm varying from 1 to 15. Although predictions are weighted

by the model-class plausibilities, the extrapolations are biased for any number of measurements larger than 1. In addition,

the prediction inaccuracy increases when additional measurements are involved. EDMF is still robust to systematic modeling

errors and provide accurate identification and extrapolation of any number of measurements.

Figure 9 and 10 demonstrate that Bayesian model class selection may not be able to uncover wrong

assumptions related to model classes and modeling error estimations and thus, it is not possible to determine

the accuracy of extrapolations. These figures along with Table 8 demonstrate also that EDMF is robust when

erroneous assumptions are made regarding modeling errors (provided that more than a single measurement

is used), thereby avoiding making inaccurate extrapolations. When modeling errors are compatible with

model-class definitions, EDMF provides accurate and reliable extrapolations.
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Figure 11 compares the initial-model-set (IMS) strain predictions, the candidate-model-set (CMS) predic-

tions for model class G3 and nm = 7, and the true strain value. Taking all cases, the reduction in prediction
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Figure 11: Strain prediction ranges for model class G3 using the initial model set (IMS), the candidate model set (CMS) for

nm = 7, and the true strain value. The reduction in prediction range from IMS predictions to CMS predictions is up to 83 %.

EDMF is thus able to reduce significantly the uncertainty associated with the extrapolations and return reliable predictions.

range from IMS predictions to CMS predictions is up to 83 %. While in general, EDMF returns less precise

predictions than Bayesian inference, when compared with the initial knowledge of structural behavior (IMS),

EDMF is able to significantly reduce the uncertainty associated with the extrapolations and return reliable

predictions.

5. Discussion

For complex civil structures, accuracy of model predictions is important since it governs management de-

cisions such as retrofit, repair and replacement. In such systems, physics-based models are usually imperfect

and induce systematic modeling errors. The illustrative example demonstrates that erroneous assumptions

regarding modeling uncertainty lead to inaccurate Bayesian predictive distributions that might consequently

lead to bad decisions. Although including these uncertainties in the Bayesian framework improves the ac-

curacy of extrapolations, predictions are inaccurate in some situations. Conversely, error-domain model

falsification is robust in every scenario and thus, this approach provides accurate and reliable predictions.

The simplicity of the illustrative example allows for knowledge of true values, thus providing a comparative

basis for data-interpretation approaches. In real systems, true values are unknown. However, this study is

necessary for investigating the validity of such approaches. System-identification techniques that may not

be robust and accurate for simple examples are unlikely to be adequate for identification of complex systems

in practice.

The estimation of modeling errors, knowing the true values, is trivial. For complex systems, some

modeling errors, such as geometric variability of the system, the variability of material properties and mesh-

refinement uncertainty of finite-element models, can be explicitly quantified. Other sources are estimated

based on engineering judgment. This requires that the nature of the modeling error is recognized. Bryn-

jarsdóttir and O’Hagan [10] observed that modelers are aware of what physical processes are missing in the
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model, and they also recommend the use of engineering judgment to estimate model discrepancy. Estimating

modeling errors rather than modifying the model is meaningful in situations where improving the model is

not possible and when changes would complicate the model to an extent that would either increase the

number of parameters to identify or lengthen computational time excessively.

When modeling errors are not included during system identification and systematic errors are present,

error-domain model falsification is able to falsify the model class and avoid making wrong predictions. By in-

cluding estimated modeling errors, EDMF is able to select model classes based on their prediction precision.

Even if the precision is low, predictions are accurate, and when further information is gathered, prediction

precision may be increased. Thus, EDMF is able to explore possible model classes by falsifying inadequate

model classes and by selecting promising ones based on prediction precision. For this exploration, model

classes need to be defined as two components: (1) unknown physical parameters that are identified using

measurements; and (2) conservative modeling error estimations that cannot be represented only as uncer-

tainties related to physical parameters. This second component is the reason for the words ”error domain” in

EDMF. Special care is needed for the estimation of the modeling errors and it should be done independently

of the identification process. Parametrization of uncertainties to increase confidence in estimated values is

not always successful.

System identification of complex civil structures is an ill-posed task that is carried out in open-world

conditions and that leads to multiple solutions for the structural health management of existing structures.

In such complex tasks, engineers have to rely on heuristics and experience as well as data-interpretation tools

such as Bayesian inference and EDMF. Engineering knowledge combines with data interpretation through

assumptions in processes such as model-class building, initial ranges of parameter values and estimation

of modeling and measurement errors. In addition, data interpretation needs to be flexible with respect to

modification of the engineering knowledge and robust with respect to simplifying assumptions.

5.1. A knowledge intensive example

Figure 12 presents a full-scale bridge that is studied in [35]. EDMF has been used for the study of this

structure using measurement data recorded from static load tests in order to identify candidate models that

are then used to predict remaining fatigue life of critical connections.

A FE model is built and several sources of modeling uncertainty are identified, including rotational

stiffness of truss connections, stiffness of expansion joints, material properties, geometrical properties, mesh

refinement and other model simplifications. The most influential sources of uncertainty are taken as param-

eters and the others are represented by modeling uncertainties, estimated using engineering judgment and

field heuristics, and then combined to determine Uc,i.

Sources such as Poisson’s ratio, diameter and thickness of hollow sections are parametrized and evaluated

through the FE model using Monte Carlo simulation. For the others, conservative estimations of the PDF of
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Figure 12: Example of the Aarwangen Bridge and description of modeling uncertainties induced by model simplifications. Engi-

neering knowledge is required to build the model class and identify sources of modeling and measurement errors to accommodate

in EDMF in order to identify candidate models and predict remaining fatigue life of critical connections.

each source are made based on engineering judgment. Systematic bias due to model simplifications, such as

boundary conditions and truss connections, are estimated and included in the threshold-bound calculation.

The engineering knowledge required to support the identification and the evaluation of remaining fatigue

life of such complex civil structures evolves as information is acquired and it often necessitates modification.

Table 9 summarizes the engineering knowledge that is required for the study of a structure such as the

Aarwangen Bridge.

EDMF presents the advantage of estimating modeling errors and accommodating any value of correlation

since thresholds represent a rectangular coverage region that is conservatively adjusted to the number of

measurements using the S̆idák correction [20]. However, in the case of slight underestimation of uncertainty

mean value and variance, it may be possible to make a diagnosis error by falsely accepting wrong model

instances instead of falsifying the entire model class. Nevertheless, EDMF is capable of managing model

instances that originate from several model classes.

Common use of Bayesian inference does not account for systematic errors. In addition, it usually leads to

unsafe assumptions describing modeling and measurement errors by a joint independent zero-mean Gaussian

PDF. Such practices would require the parametrization of all sources of modeling uncertainty such as is

illustrated for model class G0. However, since there may be tens of sources, this is usually not feasible

for complex structures and it may also lead to an over-fitted model class. In addition, usage of Bayesian

model-class selection may lead to overconfidence in a model-class choice for the Aarwangen Bridge. Thus,

traditional use of Bayesian inference is not compatible with diagnosis and prognosis tasks of real case studies.
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Table 9: Summary of the engineering knowledge necessary to perform parameter identification and remaining-fatigue-life

predictions of a structure such as the Aarwangen Bridge. Since these tasks are knowledge intensive, ease of representation and

modification are important aspects.

Required engineering knowledge Ease of representation and modification within EDMF

Model-class building Behavioral hypotheses are tested with measurement data
(EDMF supports model class exploration through falsi-
fying erroneous model classes)

Initial parameter ranges Included explicitly in the initial model set

Identification of sources of errors Ease of modification through combination of all sources
of uncertainty

Estimation of modeling and mea-
surement errors for identification

Inclusion of modeling bias due to simplifications, ease of
modification and robust to unknown correlation values
[20]

Estimation of modeling errors for
prediction

Inclusion of modeling bias, ease of modification, partic-
ularly for sources that do not need to be accounted for
explicitly in the predictionsa and robust to unknown cor-
relation values

aFor example, for remaining-fatigue-life predictions, variability of diameter and thickness of
hollow sections are already taken into account in the fatigue-strength curves provided by
codes.

Conservative estimations of modeling errors are needed to avoid the risk of falsely identifying a wrong

model class. However, if estimations are over-conservative, the performance of the identification and the

predictions decreases. In the context of health management of structures such as the Aarwangen Bridge, it

would be useful to more precisely quantify the modeling errors of simplified components of the model class

through experimental testing and refined modeling. Since the computational demand of very detailed FE

model may be prohibitive, the systematic errors made by simplifying the modeling of a repeated component

may be estimated such that an appropriate performance of the identification and the predictions is obtained.

Engineering compromise between model complexity and model performance is thus supported transparently.

Nevertheless, in the presence of outlier measurements, the identification of a wrong model class may not

be avoided. Future work is thus needed to include robustness with respect to such aspects in the EDMF

methodology.

6. Conclusion

This paper compares the impact of common assumptions that are made for inclusion of modeling un-

certainty in model-based data-interpretation tasks. Comparisons are made in terms of parameter identifi-

cation and accuracy of predictions. In addition, model-class selection is studied for two data-interpretation

approaches, Bayesian inference and error-domain model falsification, for three model classes describing a

simple beam. This study leads to the following conclusions:
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• Although estimating modeling errors is a difficult task, error-domain model falsification provides ro-

bust identification and accurate predictions in the presence of systematic errors. Since EDMF results

are insensitive to changes in correlations, the correlations induced by systematic errors have no conse-

quence.

• EDMF is able to support model-class selection by detecting erroneous model-class definitions. Although

complete falsification is not assured when the model class is wrong, when it does occur, model-class

selection is supported.

• Robust model classes that describe complex systems include two components: (1) unknown physical

parameters that are identified using measurements; and (2) conservative modeling error estimations

that cannot be represented only as uncertainties related to physical parameters.

• Common assumptions involving descriptions of modeling and measurement uncertainties by indepen-

dent zero-mean Gaussian distributions may lead to inaccurate predictions in the presence of systematic

modeling errors, particularly when extrapolating. In addition, through evaluating the relative plau-

sibility of available model classes, Bayesian model class selection may not be able to uncover wrong

assumptions related to model classes and modeling error estimations, and thus it may be not possible

to ensure robustness of parameter identification and accuracy of extrapolations.

• EDMF involves representations of knowledge that are easy to understand. This feature is most attrac-

tive when knowledge needs to be modified as it is often the case in system identification of complex

systems.
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