Journal article

Learning Approach to Optical Tomography

Optical tomography has been widely investigated for biomedical imaging applications. In recent years optical tomography has been combined with digital holography and has been employed to produce high-quality images of phase objects such as cells. In this paper we describe a method for imaging 3D phase objects in a tomographic configuration implemented by training an artificial neural network to reproduce the complex amplitude of the experimentally measured scattered light. The network is designed such that the voxel values of the refractive index of the 3D object are the variables that are adapted during the training process. We demonstrate the method experimentally by forming images of the 3D refractive index distribution of Hela cells.


Related material