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Figure 1: Our system creates a fully rigged 3D avatar of the user from uncalibrated video input acquired with a cell-phone camera. The
blendshape models of the reconstructed avatars are augmented with textures and dynamic detail maps, and can be animated in realtime.

Abstract

We present a complete pipeline for creating fully rigged, personal-
ized 3D facial avatars from hand-held video. Our system faithfully
recovers facial expression dynamics of the user by adapting a blend-
shape template to an image sequence of recorded expressions using
an optimization that integrates feature tracking, optical flow, and
shape from shading. Fine-scale details such as wrinkles are captured
separately in normal maps and ambient occlusion maps. From this
user- and expression-specific data, we learn a regressor for on-the-fly
detail synthesis during animation to enhance the perceptual realism
of the avatars. Our system demonstrates that the use of appropri-
ate reconstruction priors yields compelling face rigs even with a
minimalistic acquisition system and limited user assistance. This
facilitates a range of new applications in computer animation and
consumer-level online communication based on personalized avatars.
We present realtime application demos to validate our method.
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1 Introduction

Recent advances in realtime face tracking enable fascinating new
applications in performance-based facial animation for entertainment
and human communication. Current realtime systems typically use
the extracted tracking parameters to animate a set of pre-defined
characters [Weise et al. 2009; Weise et al. 2011; Li et al. 2013; Cao
et al. 2013; Bouaziz et al. 2013; Cao et al. 2014a]. While this allows
the user to enact virtual avatars in realtime, personalized interaction
requires a custom rig that matches the facial geometry, texture, and
expression dynamics of the user. With accurate tracking solutions in
place, creating compelling user-specific face rigs is currently a major
challenge for new interactive applications in online communication.
In this paper we propose a software pipeline for building fully rigged
3D avatars from hand-held video recordings of the user.

Avatar-based interactions offer a number of distinct advantages for
online communication compared to video streaming. An important
benefit for mobile applications is the significantly lower demand
on bandwidth. Once the avatar has been transferred to the target
device, only animation parameters need to be transmitted during
live interaction. Bandwidth can thus be reduced by several orders
of magnitude compared to video streaming, which is particularly
relevant for multi-person interactions such as conference calls.
A second main advantage is the increased content flexibility. A 3D
avatar can be more easily integrated into different scenes, such as
games or virtual meeting rooms, with changing geometry, illumi-
nation, or viewpoint. This facilitates a range of new applications,
in particular on mobile platforms and for VR devices such as the
Occulus Rift.

Our goal is to enable users to create fully rigged and textured 3D
avatars of themselves at home. These avatars should be as realistic
as possible, yet lightweight, so that they can be readily integrated
into realtime applications for online communication. Achieving
this goal implies meeting a number of constraints: the acquisition
hardware and process need to be simple and robust, precluding
any custom-build setups that are not easily deployable. Manual
assistance needs to be minimal and restricted to operations that can
be easily performed by untrained users. The created rigs need to be
efficient to support realtime animation, yet accurate and detailed to
enable engaging virtual interactions.
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Figure 2: The main stages of our processing pipeline. Static Modeling reconstructs the geometry and albedo of the neutral pose. Dynamic
Modeling adapts a generic blendshape model to the recorded user and reconstructs detail maps for each video frame. Animation drives the
reconstructed rig using blendshape coefficients and synthesizes new pose-specific detail maps on the fly.

These requirements pose significant technical challenges. We maxi-
mize the potential user base of our system by only relying on simple
photo and video recording using a hand-held cell-phone camera to
acquire user-specific data.
The core processing algorithms of our reconstruction pipeline run
automatically. To improve reconstruction quality, we integrate a
simple UI to enable the user to communicate tracking errors with
simple point clicking. User assistance is minimal, however, and
required less than 15 minutes of interaction for all our examples.
Realtime applications are enabled by representing the facial rig as
a set of blendshape meshes with low polygon count. Blendshapes
allow for efficient animation and are compatible with all major ani-
mation tools. We increase perceptual realism by adding fine-scale
facial features such as dynamic wrinkles that are synthesized on the
fly during animation based on precomputed normal and ambient
occlusion maps.

We aim for the best possible quality of the facial rigs in terms of
geometry, texture, and expression dynamics. To achieve this goal,
we formulate dynamic avatar creation as a geometry and texture re-
construction problem that is regularized through the use of carefully
designed facial priors. These priors enforce consistency and guaran-
tee a complete output for a fundamentally ill-posed reconstruction
problem.

Contributions. We present a comprehensive pipeline for video-
based reconstruction of fully-rigged, user-specific 3D avatars for
consumer applications in uncontrolled environments. Our core tech-
nical contributions are:

• a two-scale representation of a dynamic 3D face rig that
enables realtime facial animation by integrating a medium-
resolution blendshape model with a high-resolution albedo
map and dynamic detail maps;

• a novel optimization method for reconstructing a consistent
albedo texture from a set of input images that factors out the
incident illumination;

• a new algorithm to build the dynamic blendshape rig from
video input using a joint optimization that combines feature-
based registration, optical flow, and shape-from-shading;

• an offline reconstruction and online synthesis method for fine-
scale detail stored in pose-specific normal and ambient occlu-
sion maps.

We demonstrate the application potential of our approach by driving
our reconstructed rigs both in a realtime animation demo and using
a commodity performance capture system. With our minimalistic
acquisition setup using only a single cellphone camera, our system
has the potential to be used by millions of users worldwide.

2 Related Work

We provide an overview of relevant techniques for 3D facial avatar
creation. We start by covering techniques for high quality static
modeling of human faces. We then discuss approaches that attempt
to capture fine-scale information associated with dynamic facial
deformations, like expression lines and wrinkles. Finally, as our
target is the creation of an animatable avatar, we will also discuss
methods that attempt to map the acquired dynamic details onto given
input animation data.

Static modeling. Due to the high complexity of facial morphol-
ogy and heterogeneous skin materials, the most common approaches
in facial modeling are data-driven. The seminal work of [Blanz
and Vetter 1999] builds a statistical (PCA) model of facial geom-
etry by registering a template model to a collection of laser scans.
Such a model can be employed to create static avatars from a single
image [Blanz and Vetter 1999] or from multiple images [Amberg
et al. 2007], or for the creation of personalized real-time tracking
profiles [Weise et al. 2011; Li et al. 2013; Bouaziz et al. 2013].
However, as a compact PCA model only captures the coarse-scale
characteristics of the dataset, the generated avatars are typically
rather smooth, lacking the ability to represent fine-scale features like
wrinkles and expression lines.

Fine-scale detail for facial modeling has been recovered in a con-
trolled environment with multiple calibrated DSLR cameras in the
work of Beeler et al. [2010]. This setup allows capturing wrinkles,
skin pores, facial hair [Beeler et al. 2012], and eyes [Bérard et al.
2014]. The more involved system of [Ghosh et al. 2011] uses fixed
linear polarizers in front of the cameras and enables accurate acquisi-
tion of diffuse, specular, and normal maps. While effective for high-
end productions, such systems require a complex calibration within
a lab environment and are thus unsuitable for personalized avatar
creation at home. In contrast, our approach uses only a cell-phone
camera, requires neither calibration nor a controlled environment,
and only relies on minimal user assistance.

Dynamic modeling. A static reconstruction only recovers the
geometry and texture for a single facial expression. To build com-
pelling avatars, we also need to reconstruct a dynamic expression
model that faithfully captures the user’s specific facial movements.
One approach to create such a model is to simulate facial muscle
activation and model the resulting bone movements and viscoelastic
skin deformations [Venkataraman et al. 2005; Wu et al. 1996]. How-
ever, the large computational cost and complex parameter estimation
make such an approach less suitable for facial animation.

Consequently, parametric models are typically employed to represent
dynamic skin behavior [Oat 2007; Jimenez et al. 2011]. Unfortu-
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Figure 3: Our dynamic face rig augments a low-resolution blend-
shape pose (left) with dynamic per-texel ambient occlusion coeffi-
cients and normals, and a high-resolution albedo texture.

nately, such models are not only difficult to design, but are typically
also custom-tuned to a particular animation rig. This makes it diffi-
cult to infer generic models for facial dynamics that can easily be
adapted to specific subjects. For these reasons, data-driven tech-
niques are again the most common way to approach the reconstruc-
tion of facial dynamics.

The multi-linear models introduced by [Vlasic et al. 2005] and then
further explored in [Cao et al. 2014b] offer a way of capturing a
joint space of pose and identity. Alternatively, rather than assuming
an offline prior on pose and identity, dynamic geometry variations
can be linearly modeled in realtime while tracking videos [Cao et al.
2014a] or RGB-D data [Bouaziz et al. 2013; Li et al. 2013]. These
compact linear models are tailored towards estimating a small set
of tracking parameters to enable realtime performance, and conse-
quently are not suitable to recover detailed avatars. Our approach
builds upon this prior work, but utilizes detail information in the
acquired images to recover a significantly richer set of facial features
for avatar creation.

The use of custom hardware has been the most successful way of
estimating dynamic avatars for high-end productions. For example,
the Digital Emily project [Alexander et al. 2009] demonstrates how
the Light Stage system enables photorealistic dynamic avatars. The
work of Alexander et al. [2013] recently extended this approach to
enable real-time rendering of highly detailed facial rigs. Structured
light and laser scanners have also been used to acquire facial geome-
try at the wrinkle scale [Zhang et al. 2004; Ma et al. 2008; Li et al.
2009; Huang et al. 2011]. Similarly, the setup of [Beeler et al. 2010;
Beeler et al. 2011] is capable of reconstructing fine-scale detail using
multiple calibrated/synchronized DSLR cameras. More recent work
attempts to further reduce the setup complexity by only considering
a binocular [Valgaerts et al. 2012] or a hybrid binocular/monocular
setup [Garrido et al. 2013]. We push this trend to its limit by only
requiring hand-held video recording in an uncontrolled environment.

Animation. While the methods above are able to infer detailed ge-
ometry we aim for the creation of an avatar of the recorded user, that
can be animated programmatically or using other sources of tracking
parameters. The systems of [Garrido et al. 2013], and [Shi et al.
2014] essentially recover detailed facial geometry by providing one
mesh per frame deformed to match the input data. The former uses
a pre-built user-specific blendshape model for the face alignment
by employing automatically corrected feature points [Saragih et al.
2011]. A dense optical flow field is computed in order to smoothly
deform the tracked mesh at each frame, after which a shape-from-
shading stage adds high frequency details. Although our tracking
approach and detail enhancement is based on similar principles,
the aim of our approach is to integrate all these shape corrections

directly into our proposed two-scale representation of dynamic 3D
faces. Shi et al. [2014] use their own feature detector along with a
non-rigid structure-from-motion algorithm to track and model the
identity and per-frame expressions of the face by employing a bilin-
ear face model. Additionally, a keyframe-based iterative approach
using shape from shading is employed in order to further refine the
bilinear model parameters, as well as the albedo texture of the face,
and per-frame normal maps exhibiting high frequency details such
as wrinkles Neither method aims at creating an animation-ready
avatar that incorporates all of the extracted details.

Of the methods presented above, only Alexander and col-
leagues [2009; 2013] produce a blendshape model that can be di-
rectly embedded in animation software, but as mentioned, the com-
plexity of the setup makes it unsuitable for consumer applications.
The recent techniques of [Bermano et al. 2014], and [Li et al. 2015]
can re-introduce high frequency details in a coarse input animation,
if a high-resolution performance database is provided. Conversely,
our technique generates an animatable blendshape model augmented
with dynamic detail maps using only consumer camera data. Our
rigged avatars can thus be directly driven by tracking software,
e.g. [Weise et al. 2011; Saragih et al. 2011], or posed in a keyframe
animation system.

3 Overview

We first introduce our two-scale representation for 3D facial ex-
pression rigs. Then we discuss the acquisition setup and provide a
high-level description of the main processing steps for the recon-
struction and animation of our rigs (Figure 2). The subsequent
sections explain the core technical contributions, present results, and
provide an evaluation of our method. The paper concludes with
a discussion of limitations and an outline of potential future work.
Implementation details are provided in the Appendix.

Dynamic Face Rig. Our method primarily aims at the reconstruc-
tion of 3D facial rigs for realtime applications. We therefore propose
a two-scale representation that strikes a balance between a faithful
representation of the dynamic expression space of the recorded user
and the efficient animation of the reconstructed avatar. This balance
can be achieved using a coarse blendshape mesh model of approx-
imatively 10k vertices that is personalized to the specific user and
augmented with texture and detail information as shown in Figure 3.

A specific facial expression is represented by a linear combination
of a set of blendshapes [Lewis et al. 2014]. At low resolution, the
blendshape representation can be efficiently evaluated and rendered,
but lacks fine-scale detail. We therefore augment the mesh with a
static high-resolution albedo map to capture color variations across
the face. In addition, we build dynamic high-resolution maps with
per-pixel normals and ambient occlusion coefficients to represent
fine-scale geometric features. We refer to these latter maps as detail
maps in the subsequent text. Previous methods such as [Bickel et al.
2008] use a similar two-scale decomposition, but operate on high-
resolution meshes and can thus represent details as displacements.
To avoid the complexities of realtime displacement mapping we
opted for normal and ambient occlusion maps that can be synthesized
and rendered more efficiently during animation.

Acquisition. In order to build a dynamic rig of the user we need
to capture enough information to reconstruct the blendshapes, the
albedo texture, and the detail maps. At the same time, keeping
our consumer application scenario in mind, we want to restrict
the acquisition to simple hardware and a minimalistic process that
can be robustly performed by anyone. We therefore opted for a
simple hand-held cell-phone camera. The user first records her- or



Figure 4: All acquisition is performed with a hand-held cell phone
camera. A semi-circular sweep is performed for the static recon-
struction (top row), a frontal video is recorded for the dynamic
modeling (bottom row).

himself in neutral expression by sweeping the camera around the
face capturing images in burst mode. We then ask the user to record
a video in a frontal view while performing different expressions to
capture user-specific dynamic face features (see Figure 4). For all
our acquisitions we use an Apple iPhone 5 at 8 megapixel resolution
for static photo capture and 1080p for dynamic video recordings
(see accompanying video).

The key advantage of our acquisition setup is that we do not require
any calibration, synchronization, or controlled lighting. All acqui-
sitions can be done by an inexperienced user in approximatively
10 minutes. However, this simplistic acquisition process poses sig-
nificant challenges for our reconstruction algorithms as the quality
of the input data is significantly lower than for existing calibrated
studio setups.

Processing Pipeline. Figure 2 provides an overview of our pro-
cessing pipeline. We split the reconstruction into a static and a
dynamic modeling stage. In the static stage (Section 4) we fist recon-
struct a 3D point cloud from the photos taken in neutral pose using
a multi-view stereo algorithm. We then apply non-rigid registration
to align a template mesh to this point cloud to model the user’s face
geometry. A static albedo texture is extracted by integrating the
color images into a consistent texture map.

The dynamic modeling stage (Section 5) reconstructs expression-
specific information. Given the neutral pose, we first transfer the
deformations of a generic blendshape model to obtain an initial
blendshape representation for the user. We further refine this user-
specific blendshape model using an optimization that integrates
texture-based tracking and shading cues to best match the geometric
features of the recorded user. The reconstructed blendshape model
then faithfully recovers the low- and medium frequency dynamic
geometry of the user’s face. However, high frequency details such
as wrinkles are still missing from the rig. In order to capture these
details we automatically extract a set of dynamic detail maps from
the recorded video frames.

Finally, in the animation stage (Section 6), the reconstructed rig
can be driven by a temporal sequence of blendshape coefficients.
These animation parameters can either be provided manually through
interactive controllers, or transferred from a face tracking software.
The specific detail map for each animated pose of the avatar is
synthesized on the fly from the captured detail maps using a trained
regressor driven by surface strain.
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Figure 5: Static Modeling recovers the neutral pose. A deformable
template model is registered to a 3D point cloud computed from a set
of images using multi-view stereo. A static albedo texture integrates
color information of all recorded images while factoring out the
illumination.

4 Static Modeling

This section describes the static modeling stage of the reconstruction
pipeline (see Figure 5). The first part of the acquisition provides
us with a set of images of the user in neutral expression from dif-
ferent viewpoints. From these uncalibrated images we extract a
point cloud using a state-of-the-art structure from motion (SFM)
software [Furukawa and Ponce 2010; Wu 2013]. We then use a
geometric morphable model [Blanz and Vetter 1999], representing
the variations of different human faces in neutral expression, as a
prior for reconstruction.

4.1 Geometry Registration

We register the morphable model towards the point cloud to obtain a
template mesh that roughly matches the geometry of the user’s face.
We improve the registration accuracy using non-rigid registration
based on thin-shell deformation [Botsch et al. 2010; Bouaziz et al.
2014].

The registration is initialized by using
2D-3D correspondences of automatically
detected 2D facial features [Saragih et al.
2011] in each input frame. For the pre-
cise non-rigid alignment of the mouth,
eye and eyebrow regions, the user is
asked to mark a few contours in one of the frontal images as il-
lustrated on the right.

To improve the realism of the reconstructed avatars, we add eyes and
inner mouth components, i.e., teeth, tongue, and gums. These parts
are transferred from the template model and deformed to match
the reconstructed head geometry by optimizing for the rotation,
translation and anisotropic scaling using a set of predefined feature
points around the mouth and eye regions. We also adapt the texture
for the eye meshes to the recorded user. The iris is found by detecting
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Figure 6: Reconstructing the albedo map. Poisson integration combines the pixel colors of different input images using a gradient optimization.
The illumination is factored out based on a lighting model that combines a 2nd order spherical harmonics approximation with a per-pixel
corrective field. The screening texture provides a reconstruction prior to complete missing parts in the albedo map.

the largest ellipse inside the projection of the eye region to the most
frontal input image using Hough transform [Duda and Hart 1972].
Histogram matching is performed between a template eye texture
and the image patch corresponding to the iris [Gonzalez and Woods
2006]. The images below illustrate the eye texture adaptation for
one example subject.

template texture reconstructioninput image

We currently do not recover the specific geometry or appearance of
the user’s teeth or tongue, which is an interesting topic for future
work.

4.2 Texture Reconstruction

Given the registered template mesh, the next step in the pipeline is
the reconstruction of a high-resolution albedo texture (see Figure 6).
We use the UV parameterization of the template to seamlessly com-
bine all images using Poisson integration [Pérez et al. 2003]. This is
achieved by selecting the color gradients of the pixels with the most
parallel view rays to the surface normals.

Factorizing Illumination. After integration, the texture map not
only contains the RGB reflectance but also the specific illumination
of the recording environment. This may be problematic as the fi-
nal mesh will be used in a virtual environment where the lighting
may not match the one baked into the texture. To factor out the
illumination from the skin albedo, we define the color of a skin
pixel {i, j} as cij = rij ◦ sij , where rij is the skin reflectance, sij
accounts for the illumination, and ◦ denotes the entry-wise product.
We assume a smooth illumination and we represent it using spherical
harmonics. Low-dimensional lighting representations using spheri-
cal harmonics are effective in numerous lighting situations with a
variety of object geometries [Frolova et al. 2004]. However, they are
not expressive enough to account for complex conditions involving
self-shadowing or complex specularities. This is due to the fact that
spherical harmonics have the limitation of being only expressed as a
function of the surface normals, i.e., points with similar normals will
have a similar illumination. To compensate for the inaccuracy of
this illumination model, we augment the spherical harmonics with

corrective fields in uv-space dij = [drij d
g
ij d

b
ij ] for the R, G and B

color channel, respectively. This leads to

sij = yTφ(nij) + dTij , (1)

where nij is the mesh normal at the pixel p and

φ(n) = [1, nx, ny, nz, nxny, nxnz, nynz, n
2
x − n2

y, 3n
2
z − 1]T

(2)

is a vector of second order spherical harmonics with corresponding
weight vectors y = [yr yg yb]. As the illumination is assumed to
be of low frequency, we require the corrective fields to be smooth.
In addition, we assume that the required corrections are small. This
leads to a minimization over the spherical harmonics weight vectors
and the corrective fields expressed as

min
y,d

∑
i,j

‖r ◦ sij − cij‖22 + λ1‖d‖2F + λ2‖Gd‖2F + λ3‖Ld‖2F ,

(3)

where ‖ · ‖F is the Frobenius norm, d stacks all the dij , G is the
gradient matrix, and L is the graph Laplacian matrix. Both the gra-
dient and Laplacian are computed with periodic boundary condition.
The non-negative weights λ1, λ2, and λ3 control the magnitude and
the smoothness of the corrective fields. To optimize Equation 3,
we employ a two-stage process, where the skin reflectance is set
to a constant r using the median color of the face pixels. We first
compute the spherical harmonics weight vectors by initializing the
corrective fields to zero and only optimizing over y. This only re-
quires solving a 9×9 linear system. We then solve for the corrective
fields keeping the weight vectors fixed. This minimization can be
performed efficiently using a Fast Fourier Transform (FFT) as the
system matrix is circulant [Gray 2006].

We use the extracted illumination sij to reconstruct the illumination-
free texture. Finally, to generate a complete texture map, we rein-
tegrate the illumination-free texture into the template texture map
using Poisson integration. Because the extracted illumination is
smooth, i.e., of low frequency, high frequency details are preserved
in the final albedo texture (see Figure 6).

5 Dynamic Modeling

The goal of the dynamic modeling phase is to complete the face
rig by reconstructing user-specific blendshapes as well as dynamic
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Figure 7: Dynamic Modeling adapts a generic blendshape model to
the facial characteristics of the user and recovers expression-specific
detail maps from the recorded video sequence.

normal and ambient occlusion maps (see Figure 7). We focus here
on the general formulation of our optimization algorithm and refer
to the appendix for more details on the implementation.

5.1 Reconstructing the Blendshape Model

The blendshape model is represented as a set of meshes B =
[b0, . . . ,bn], where b0 is the neutral pose and the bi, i > 0
are a set of predefined facial expressions. A novel facial expres-
sion is generated as F(B,w) = b0 + ∆Bw, where ∆B =
[b1 − b0, . . . ,bn − b0], and w = [w1, . . . , wn]T are blendshape
weights. The reconstruction prior at this stage is a generic blend-
shape model consisting of 48 blendshapes (see also accompanying
material). We denote with FT the facial expression F transformed
by the rigid motion T = (R, t) with rotation R and translation t.

We initialize the user-specific blendshape model by applying de-
formation transfer [Sumner and Popović 2004] from the generic
blendshape template to the reconstructed mesh of the user’s neutral
pose. Deformation transfer directly copies the deformation gradients
of the template without accounting for the particular facial expres-
sion dynamics of the user. To personalize the blendshape model, we
optimize for additional surface deformations of each blendshape to
better match the facial expressions of the user in the recorded video
sequence. Previous methods, such as [Bouaziz et al. 2013; Li et al.
2013], perform a similar optimization using 3D depth-camera input.
However, these methods only aim at improving realtime tracking
performance and do not recover detailed rigged avatars. Moreover,
in our reconstruction setting we are not constrained to realtime per-
formance and can thus afford a more sophisticated optimization
specifically designed for our more challenging 2D video input data.

Our algorithm alternates between tracking, i.e., estimating the blend-
shape weights and rigid pose of the facial expressions in the image
sequence, and modeling, i.e., optimizing the blendshapes to better
fit the user’s expression.

initial
markers

initial 
tracking

corrected
markers

resulting
tracking

Figure 8: The initial marker locations extracted using feature de-
tection can be corrected by the user to improve the tracking. Here
the markers at the mouth corners and jaw line have been manu-
ally displaced. Such user annotations are propagated through the
entire sequence, so that only a small number of frames need to be
corrected.

Tracking. We propose a tracking algorithm using 2D image-based
registration based on a combination of feature alignment and optical
flow. This results in a per-frame optimization over the blendshape
weights w and the rigid motion T expressed as

arg min
w,T

Efeature + Eflow + Esparse. (4)

We formulate the facial feature energy as

Efeature = γ1
∑
v∈M

‖mv − P (FT(Bv,w))‖22, (5)

whereM is the set of points representing the facial feature locations
on the mesh surface, mv is the 2D image location of the feature
point v extracted using the method of [Saragih et al. 2011], P (·)
projects a 3D point to 2D, and Bv = cTv B, where the vector cv
contains the barycentric coordinates corresponding to v.

The feature extraction algorithm of [Saragih et al. 2011] is fairly
accurate, but does not always find the correct marker locations. To
improve the quality of the tracking, we ask the user to correct marker
locations in a small set of frames (see Figure 8). Following [Garrido
et al. 2013], these edits are then propagated through the image
sequence using frame-to-frame optical flow [Zach et al. 2007]. For
a sequence of 1500 frames, we typically require 25 frames to be
manually corrected. With more sophisticated feature extraction
algorithms such as [Cao et al. 2014a], this manual assistance can
potentially be dispensed with completely.

To complement the feature energy, we use a texture-to-frame optical
flow using a gradient-based approach. This formulation increases
the robustness to lighting variations between the static and dynamic
acquisition. This energy is defined as

Eflow = γ2
∑
v∈O

∣∣∣∣∣∣∣∣[ρv+∆vx − ρvρv+∆vy − ρv

]
−
[
I(uv+∆vx)− I(uv)
I(uv+∆vy )− I(uv)

]∣∣∣∣∣∣∣∣2
2

,

(6)
where O is the set of visible points located on the mesh surface
involved in the optical flow constraint, and uv = P (FT(Bv,w)).
∆vx is a 3D displacement along the surface such that the surface
point v +∆vx maps to the texture pixel immediately above the one
corresponding to point v; analogously, v +∆vy maps to the texture
pixel on the right. ρv is the grayscale value for the point v extracted
from the albedo texture, and I(x) is the grayscale color extracted
from the image at location x.

We apply an `1-norm regularization on the blendshape coefficients
using

Esparse = γ3‖w‖1. (7)
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Figure 9: Optimizing blendshapes is essential to accurately repre-
sent user-specific expressions. The initial blendshapes computed
with deformation transfer (middle column) are registered towards
the input images (left column). The resulting optimized blendshapes
(right column) faithfully capture expression asymmetries.

This sparsity-inducing term stabilizes the tracking and avoids too
many blendshapes being activated with a small weight. Compared to
the more common `2 regularization, this better retains the expression
semantics of the blendshape model and thus simplifies tracking and
retargeting as shown in [Bouaziz et al. 2013]. Similar to [Weise et al.
2011], we alternate between optimizing for the rigid transformation
T and the blendshape weights w.

Modeling. After solving for the tracking parameters, we keep
these fixed and optimize for the vertex positions of the blendshapes.
We again use facial features and optical flow leading to

arg min
B

Efeature + Eflow + Eclose + Esmooth. (8)

The closeness term penalizes the magnitude of the deformation from
the initial blendshapes B∗ created using deformation transfer:

Eclose = γ4‖B−B∗‖2F . (9)

The smoothness term regularizes the blendshapes by penalizing the
stretching and the bending of the deformation:

Esmooth = γ5‖G(B−B∗)‖2F + γ6‖L(B−B∗)‖2F . (10)

In contrast to the tracking optimization of Equation 4 that is per-
formed separately for each frame, the blendshape modeling opti-
mization is performed jointly over the whole sequence. Tracking
and modeling are iterated 20 times for all our examples.

Geometric Refinement. The blendshape modeling optimization
from 2D images is effective for recovering the overall shape of the
user-specific facial expressions (see Figure 9). We further improve
the accuracy of the blendshapes using a 3D refinement step. For
this purpose we extract one depth map per frame using a photo-
metric approach [Kemelmacher-Shlizerman and Basri 2011; Wu
et al. 2014]. The input video is downsampled by a factor of 8 to a
resolution of 150 × 240 pixels in order to capture only the medium-
scale details corresponding to the mesh resolution of the blendshape
model (see Figure 10). Fine-scale detail recovery will be discussed
in Section 5.2.

For each video frame we rasterize the tracked face mesh recovered
during the blendshape optimization to obtain the original 3D location
p̄ij in camera space and the grayscale albedo value ρij of each
pixel {i, j}. We compute smooth interpolated positions using cubic

video frame

optimized blendshapesextracted depth map

initial blendshapes

Figure 10: Geometry refinement adds further nuances to the re-
constructed blendshapes. For each frame of the video sequence
we extract a depth map using shape-from-shading that serves as a
constraint for the refinement optimization.

Bézier triangles on the face mesh refined with two levels of Loop
subdivision. To create the perspective displacement map, we apply
the displacement along the view rays p̄ij

‖p̄ij‖2
. Therefore, the new

3D point location pij of the pixel {i, j} can be expressed as

pij = p̄ij + dij
p̄ij
‖p̄ij‖2

, (11)

where dij is the displacement value for this pixel. The normal at
that pixel can then be estimated as

nij =
1

Nij
(pi+1,j − pij)× (pi,j+1 − pij), (12)

where Nij = ‖(pi+1,j − pij) × (pi,j+1 − pij)‖2. Let d be a
vector that stacks all the displacements dij and y be the vector of
spherical harmonics coefficients. To reconstruct the displacement
map we optimize

min
d,y

∑
ij

∣∣∣∣∣∣∣∣[ρi+1,jsi+1,j − ρijsij
ρi,j+1si,j+1 − ρijsij

]
−
[
ci+1,j − cij
ci,j+1 − cij

]∣∣∣∣∣∣∣∣2
2

+

+ µ1‖d‖22 + µ2‖Gd‖22 + µ3‖Ld‖22

(13)

over d and y, where cij is the grayscale value at pixel {i, j} of
the input frame and sij = yTφ(nij). Similar to Equation 3, we
regularize the displacements to be smooth and of low magnitude.
To solve this optimization we alternately minimize Equation 13
over y by solving a linear system with fixed normals initialized from
the original mesh, and over d with fixed weights y using a Gauss-
Newton method. The depth and normal maps are then computed
from the displacement maps using Equation 11 and Equation 12,
respectively.

After extracting the depth and normal maps, we use a non-rigid
registration approach to refine the blendshapes. We formulate a
registration energy

Ereg =
∑
v∈V

‖nTv (FT(Bv,w)− pv)‖22, (14)
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Figure 11: Our reconstruction of detail maps uses `1-norm opti-
mization to separate salient features such as the wrinkles on the
forehead from noise. The lower row shows that `2 optimization
with a low smoothness weight retains too much noise (left), while
increasing the smoothness weights blurs out salient features (right).

where V is the set of blendshape vertices, pv is the closest point of
FT(Bv,w) on the depth map, and nv is the normal at that point.
This energy is optimized over the blendshapes B jointly over the
whole sequence combined with a closeness and a smoothness energy
(Equation 9 and Equation 10, respectively).

5.2 Reconstructing Detail Maps

In high-end studio systems, fine-scale details such as wrinkles are
commonly directly encoded into the mesh geometry [Beeler et al.
2010; Garrido et al. 2013]. However, this requires a very fine dis-
cretization of the mesh which may not be suitable for realtime
animation and display. Instead, we create a set of detail maps in an
offline optimization to enable realtime detail synthesis and rendering
at animation runtime.

Similar to the geometric refinement step, we extract one depth map
per frame. This time the input video is downsampled 4 times to a
resolution of 270 × 480 in order to keep small-scale details while
reducing noise. To reconstruct sharp features we modify Equation 13
by replacing the `2 norm in the smoothness energies by an `1 norm.
The `1 norm has been widely employed for image processing tasks
such as denoising [Chambolle et al. 2010] as it allows preserving
sharp discontinuities in images while removing noise. To solve
the `1 optimization, Gauss-Newton is adapted using an iterative
reweighing approach [Chartrand and Yin 2008]. The normal maps
are then computed from the displacement maps using Equation 12.
Figure 11 shows a visualization of the effect of the `1-norm in the
extraction of the detail maps.

After extracting normals, we compute ambient occlusion maps by
adapting the disk based approach proposed in [Bunnell 2005] to
texture space, where we directly estimate ambient occlusion coeffi-
cients from the extracted normal and displacement maps. For each
pixel p we calculate the ambient occlusion value ao(p) by sampling
a set Sp of nearby pixels such that

ao(p) = 1−
∑
k∈Sp

(1− 1√
1

‖vpk‖2
+ 1

)
σ(vTpknp)σ(vTpknk)

|Sp|
,

(15)
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Figure 12: On-the-fly detail synthesis. Blendshape coefficients
drive the reconstructed face rig during realtime animation. For each
animated expression, pose-specific details are synthesized using an
RBF regressor that is trained with the detail maps reconstructed
offline during dynamic modeling. The RBF function is evaluated
based on deformation strains measured on a sparse set of edges
(colored).

where σ(x) clamps x between 0 and 1, nk is the normal at pixel k
of the normal map, and vpk is the vector between the 3D locations
of pixels p and k reconstructed using the displacement maps.

6 Animation

The dynamic reconstruction stage provides us with a user-adapted
blendshape model and a set of high-resolution detail maps containing
normal and ambient occlusion maps that correspond to the recorded
expressions of the video sequence. The blendshape representation
allows for simple and intuitive animation. Blendshape coefficients
can be directly mapped to animation controllers for keyframe ani-
mation or retargeted from face tracking systems (see also Figure 19).
To augment the blendshape rig, we synthesize dynamic details on
the fly by blending the reconstructed detail maps of the dynamic
modeling stage using a local strain measure evaluated on the posed
blendshape meshes (see Figure 12).

Detail Map Regression. Our detail synthesis method is inspired
by the approach of [Bickel et al. 2008] that links edge strain to a
displacement function. In contrast, we learn a mapping between
edge strain and normal and ambient occlusion maps which facilitates
more efficient detail synthesis using GPU shaders.
In a preprocessing stage, we train a radial basis function (RBF)
regressor using the detail maps extracted for each frame of the
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Figure 13: Degrading input data, in this case missing images on the
cheek of the captured user, can lead to lower accuracy in the recon-
structed static pose and texture artifacts produced by the inpainting
algorithm (c.f. with Figure 5).

tracked sequences and a strain measure computed on a sparse set of
feature edges E defined on the mesh (see Figure 12). We compute the
strain value of an edge e ∈ E as fe = (‖e1 − e2‖2 − le)/le, where
e1 and e2 are the positions of the edge endpoints and le is the edge
rest length. We then learn the coefficients w of an RBF regressor
independently for each layer of the detail map. The regression for
each pixel {i, j} of a particular layer is formulated as

lij(f) =
∑
k∈K

ηkϕ
(
‖D

1
2
ij,k(f − fk)‖2

)
, (16)

where K is a set of selected keyframes, η = [η1, . . . , ηk] are the
RBF weights, and f = [f1, . . . , f|E|]

T is a vector stacking the strain
f of all feature edges. We employ the biharmonic RBF kernel
ϕ(x) = x in our implementation. To localize the strain measure,
we integrate for each keyframe a per-pixel diagonal matrix Dij,k =
diag(αij,k,1, . . . , αij,k,|E|). Dropping the index ij,k for notational
brevity, we define the weight αe for each edge e ∈ E based on the
distance of the pixel {i, j} with 3D position pij to the edge e as

αe =
ᾱe∑
l∈E ᾱl

with ᾱe = exp−β(‖pij−e1‖2+‖pij−e2‖2−le) .

(17)

The parameter β controls the drop-off. The localization spatially
decouples the keyframes to avoid global dependencies and facili-
tates independent detail synthesis for different regions of the face.
The RBF weights w are trained by minimizing the reconstruction
error to the frames of the tracked sequences. The keyframes are
selected greedily by sequentially adding the frame with maximum
reconstruction error.

Detail Synthesis. The trained RBF regressor can now be used
for detail synthesis during animation. The face rig is driven by
blendshape coefficients. For the posed mesh, we compute the strain
vector of the feature edges and evaluate Equation 16 to create new
detail maps. The synthesized normal and ambient occlusion maps
are then applied in the pixel shader.

7 Evaluation

We applied our dynamic 3D avatar reconstruction pipeline on a
variety of subjects as shown in Figures 1, 16, and 18. For all subjects,
we use around 80 images for the static reconstruction and less than
90 seconds of video for the dynamic modeling. These examples
illustrate that our approach faithfully recovers the main geometric
and texture features of the scanned subjects. We also show the
effect of on-the-fly detail synthesis. The combination of per-pixel
normals and ambient occlusion coefficients, which can both be
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Figure 14: Our lighting factorization approach successfully normal-
izes the light in three datasets captured under different illuminations.
Notice how the corrective field aids in capturing shadows and spec-
ularities better than using spherical harmonics alone.

integrated efficiently into per-pixel shading models, leads to further
improvements on the appearance of the animated face rig (see also
accompanying video).

Data Quality. We investigated how the output of our algorithm is
affected by degrading input data quality. In particular, insufficient
coverage of the face for the acquisition of the static model can lead
to artifacts in the reconstruction. This lack of coverage can either
result from the user failing to capture sufficiently many images, or
from images being automatically discarded by the MVS algorithm
due to, for example, excessive motion blur. Figure 13 illustrates how
artifacts in the reconstructed point cloud can to a certain extent be
compensated by the PCA regularization at the cost of diminished
resemblance to the recorded user. Similarly, texture inpainting can
fill missing texture information, but leads to visible artifacts in the
reconstruction. While more sophisticated inpainting methods could
alleviate these artifacts, we found that the simplest solution is to give
visual feedback to the user to ensure adequate data capture. In all our
experiments, users were able to record images of sufficient quality
after being instructed about potential pitfalls in the acquisition, such
as fast camera motion, changing illumination during capture, or
insufficient coverage of the face.

more smoothness

Figure 15: The influence of the parameters in the albedo extraction.
By increasing the smoothness of the corrective field more details are
captured in the albedo.
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Figure 16: Fully rigged 3D facial avatars of different subjects reconstructed with our method.
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Figure 17: Misalignments between video frames and the textured
model can cause inconsistencies in the detail maps, here most visible
at the mole on the cheek.

Light Extraction. We ran experiments to verify the robustness of
our albedo extraction given different lighting conditions, using the
same set of parameters. Figure 14 displays the results for one of our
test subjects, as well as the intermediate lighting estimations. Due to

ambiguity introduced by the dependency of the captured skin color
to the real skin color and the environment lighting, considering the
skin color as the median color inside the face mask outputs slightly
different results.

Furthermore, Figure 15 shows the behaviour of the albedo extraction
under different parameters. We vary the smoothness of the corrective
field in equation 3, regularizing the level of detail included into the
extracted lighting.

Texture alignment. In general, the combination of feature energy
and optical flow constraints in the tracking optimization of Equa-
tion 4 yields accurate alignments between the textured model and the
video frames. However, in areas far away from the tracked features,
such as the cheek, texture misalignments can occur that in turn can
lead to reconstruction errors in the detail maps (see Figure 17). A
possible solution to this problem is to adapt the optical flow energy
of Equation 6 to incorporate additional texture features computed,
for example, using SIFT descriptors.
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Figure 18: Fully rigged 3D facial avatars of different subjects reconstructed with our method.

Limitations. The simplicity of our acquisition setup implies a
number of limitations in terms of scanning accuracy. As indicated
above, limited spatial and temporal resolution of the camera, sensor
noise, motion blur, or potentially insufficient illumination can ad-
versely affect the reconstruction results.
Our albedo factorization works well in casual lighting scenarios, but
cannot fully handle high specularity or hard shadows in the acquired
images. For such adverse lighting conditions, artifacts in the recon-
structed albedo are likely to occur.
Blendshape models also have some inherent limitations. In partic-
ular, unnatural poses can be created for extreme expressions such
as mouth very wide open, since a proper rotation of the lower lip
is not represented in the linear model. Popular remedies, such as
corrective shapes or a combination with joint-based rigging could
potentially be integrated into our system, at the expense of a more
complex tracking optimization.
A further limitation of our method is that we do not represent nor
capture hair. This means that currently we can only reconstruct
complete avatars for subjects with no hair or where the hair can be
appropriately represented as a texture. More complex hair styles
need to be treated separately outside our pipeline. Recent progress

on hair capture [Hu et al. 2014] and realtime hair animation [Chai
et al. 2014] offer promising starting points to further investigate this
challenging problem. We also do not capture the teeth or tongue, but
simply scale the template geometry appropriately.

Applications. Figure 19 shows reconstructed avatars in two appli-
cation scenarios. Interactive character posing for keyframe anima-
tion is facilitated through direct control of the blendshape weights.
Please see the additional material for a demo application that allows
animating a reconstructed character in realtime. Alternatively, the
character can be animated by transferring blendshape weights from a
face tracking application. We use the commercial tool faceshift Stu-
dio that allows realtime streaming of blendshape coefficients. This
demo illustrates the potential of our approach to bring personalized
3D avatars into consumer-level applications.

Future Work. Beyond addressing the limitations discussed above,
we identify several interesting avenues for future work. Recent ad-
vances in RGB-D cameras show great promise of bringing active
depth sensing into mobile devices such as tablets or phones. This
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Figure 19: Application demos utilizing our rigged avatars. Left: an interactive tool for posing the avatar by directly controlling blendshape
weights. Right: The avatar is animated in realtime by streaming blendshape coefficients from a realtime tracking software.

opens up interesting possibilities for new reconstruction algorithms
that directly exploit the acquired depth maps.
Integrating sound seems a promising extension of our method, both
on the reconstruction and the synthesis side. For example, an anal-
ysis of recorded speech sequences could guide the tracking and
reconstruction of the blendshape model and detail maps. Avatars
could also be driven by text-to-speech synthesis algorithms.
The possibility to transfer detail maps between subjects (see Fig-
ure 20) not only allows modifying the reconstructed avatars, but can
potentially also simplify the acquisition process. Statistical priors
for wrinkle formation could be learned from examples, given a suffi-
ciently large database.
Further research is also required to answer important questions re-
lated to the perception of virtual avatars, such as: How well does
an avatar resemble the user? How well does an animated avatar
convey the true emotions of a tracked user? or What reactions does
the virtual model evoke in online communication? We believe that
these questions, along with the ultimate goal of creating complete,
video-realistic 3D avatars with a consumer acquisition system lays
out an exciting research agenda for years to come.

8 Conclusion

We have introduced a complete pipeline for reconstructing 3D face
rigs from uncalibrated hand-held video input. While this minimalis-
tic acquisition setup brings the creation of personalized 3D avatars
into the realm of consumer applications, the limited input data qual-
ity also poses significant challenges for the generation of consistent
and faithful avatars. Our solution combines carefully designed re-
construction priors, a two-scale dynamic blendshape representation,
and advanced tracking and reconstruction algorithms to minimize
the required user assistance while maximizing reconstruction quality.
We believe that our solution provides an important first step towards
realtime avatar-based interactions for the masses, which could have
a significant impact on the way we communicate in virtual worlds.

source targets

Figure 20: Detail maps can easily be transferred between subjects
thanks to the consistent parameterization of the blendshape meshes
across all avatars.
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Appendix - Implementation Details

Our software is implemented in C++ and parallelized on the CPU
using OpenMP. We use the Eigen library for fast linear algebra
computations and OpenCV for all the image processing operations.
Our implementation runs on a laptop with an Intel Core i7 2.7Ghz
processor, 16 GBytes of main memory, and an NVIDIA GeForce
GT 650M 1024MB graphics card.

Static Modeling. The dense point cloud reconstruction with about
500k points takes 30 to 40 minutes for approximatively 80 pictures.
The static modeling is then performed using the identity PCA model
of [Blanz and Vetter 1999]. We use 50 PCA basis vectors to approx-
imate the neutral expression. The registration problem is optimized
with Gauss-Newton using the supernodal Cholmod sparse Cholesky
factorization. The non-rigid registration takes approximatively 10
seconds.

For the static model, we generate a high-resolution albedo texture
of 4096 × 4096 pixels. To efficiently solve the Poisson integra-
tion [Pérez et al. 2003] and to minimize Equation 3 over the cor-
rective fields we use the Matlab Engine FFT. The parameters of
Equation 3 are set to λ1 = 102, λ2 = 10−3, and λ3 = 103 for
all the examples. The static texture is created in approximatively 5
minutes.

Dynamic Modeling. In our current implementation we employ
a blendshape model of 48 blendshapes (see also accompanying
material). The input videos are recorded at 30Hz with an average
length of 1 minute. The videos are temporally downsampled to 3Hz
prior to processing. We then apply a multiresolution approach with
a four-level image pyramid. The optimization is first solved on the
coarsest level, the solution is then propagated as an initialization
to the next finer level until reaching the original resolution. The
combined tracking and modeling optimization takes approximatively
60 seconds per frame. We perform the tracking optimization using a
warm started shooting method [Fu 1998], and the modeling using
Gauss-Newton.

The parameters are set to γ1 = 10−1, γ2 = 10−2, γ3 = 104,
γ4 = 104, γ5 = 102, and γ6 = 108 for all our examples.

To solve the shape-from-shading optimization we use Gauss-Newton.
Symbolic sparse Cholesky factorization is used to improve perfor-
mance as the sparsity pattern of the system matrix remains constant.
Computation time is around 5 seconds for extracting a 150 × 240
depth map for the geometric refinement. The detail map extraction
takes 25 seconds for a 1024 × 1024 normal map and another 5
seconds for the corresponding ambient occlusion map. The opti-
mization weights are set to µ1 = 106, µ2 = 103, and µ3 = 107 for
the geometric refinement, and µ1 = 106, µ2 = 104, and µ3 = 106

for the detail map extraction. The non-rigid refinement of the blend-
shape model is performed in about 60 seconds. The parameters are
set to γ4 = 105, γ5 = 1, and γ6 = 10.

Animation. We implemented the RBF evaluation on the GPU
using a GLSL fragment shader. For 6 keyframes of size 1024 ×
1024, and 44 strain edges the animation can be performed at realtime
frame rates, i.e., 100 fps. The training of the RBF regressor takes
approximatively 5 seconds. The parameter β is set to 150 for our
meshes with an average edge length of 4.1 cm.

Manual User Interaction. From our trials, we concluded that
about 15 minutes are needed to perform the manual feature cor-
rections necessary for the static (∼ 1 − 2 minutes) and dynamic
reconstructions (∼ 7− 15 minutes). The additional video shows a
complete example. The decision of using [Saragih et al. 2009] was
based on code and documentation availability, and we believe that
more recent and precise methods such as [Cao et al. 2013; Cao et al.
2012] could be used to reduce or eliminate the amount of manual
corrections.


