
Master Thesis

Interoperation between Miniboxing and

Other Generics Translations

Student:

Milos Stojanovic

Professor:

Martin Odersky

Supervisor:

Vlad Ureche

A thesis submitted in fulfilment of the requirements

for the degree of Master in Computer Science

in the

LAMP

Computer Science

June 2015

http://lamp.epfl.ch/
http://ic.epfl.ch/computer-science

Abstract

Generics allow programmers to design algorithms and data structures that operate in the

same way regardless of the data used by abstracting over data types. Generics are useful

as they improve the programmer’s productivity by raising the level of abstraction, which in

turn leads to reducing code duplication and uniform interfaces. However, as data on the

low-level comes in different shapes and sizes, it is not a trivial job of compiler to bridge

the gap between the uniform interface and the non-uniform low level implementation.

Different approaches are used for generics translation and all of them can be categorized

either into homogeneous or heterogeneous group. The characteristic of homogeneous

translations is that all different data representations are transformed into an identical

representation and use the same low-level code for this purpose. In the heterogeneous

translations, code is duplicated and adapted for each incompatible data type.

From a programmer’s point of view, there should be no difference between a generic

method or class compiled using some homogeneous or heterogeneous translation. There-

fore, the programmer can combine different types of translations together on different

parts of the code and the program has to be correct. But, as different generics translations

are implemented in different ways, interoperation between them introduces noticeable

slowdowns as values need to be converted to the foreign object’s desired representation,

incurring significant performance losses.

In this thesis, it will be explored why slowdowns happen when different translations inter-

act together and proposed the ways how they can interoperate more efficiently. Proposed

approaches are implemented and their effectiveness is presented by benchmarking the

implementation.

Contents

Abstract i

Contents ii

1 Introduction 1

2 Generics 4

2.1 Erasure . 6

2.2 Specialization . 7

2.3 Miniboxing . 9

3 Interoperation between Generics Translations 11

3.1 Miniboxing and Other Generics Translations 12

3.1.1 Miniboxing and Erasure . 12

3.1.2 Miniboxing and Specialization . 13

3.1.3 Miniboxing and Scala Standard Library 15

3.2 Efficient Interoperation . 15

3.2.1 Harmonizing Data Transformations 16

3.2.1.1 Performance Advisories 16

3.2.1.2 Suppressing Warnings . 19

3.2.1.3 Data Representation Reflection 20

3.2.2 Optimized Alternatives . 22

3.2.2.1 Optimized Accessors . 22

3.2.2.2 Wrapping Objects . 24

3.2.2.3 New API . 26

4 Implementation 27

4.1 Miniboxing Plugin - Phases . 27

4.2 Harmonizing Data Transformations . 29

4.2.1 Sub-optimal Code Warnings . 29

4.2.2 Suppresing Warnings . 33

4.3 Optimized Alternatives . 33

4.3.1 Miniboxed Functions . 33

4.3.2 Miniboxed Type Classes . 36

4.3.3 Miniboxed Tuples . 38

ii

Contents iii

5 Benchmarks 42

6 Related Work 46

7 Conclusion 47

Chapter 1

Introduction

Generics allow programmers to design algorithms and data structures that operate in

the same way regardless of the data used by abstracting over data types. For example,

the generic collection Vector[T] in the programming language Scala is expected to

work identically in the case when type parameter T is an integer, a floating point number

or any object. Generics are of crucial importance as they improve the programmer’s

productivity by raising the level of abstraction, which in turn leads to reducing code

duplication and uniform interfaces.

However, providing a uniform interface is not trivial as data on the low-level comes

in different shapes and sizes. It can be a 1-bit boolean, a 32-bit integer, a floating point

number, a value class [1][2][3] or an object. For instance, in a Vector[Int], getters

and setters receive integer values of 32-bits while in a Vector[String] they receive

references to heap objects. The fundamental tension here is to find a way to hide the

differences between non-uniform data and to offer the uniform interface.

There are two fundamental ways of bridging the gap between non-uniform low-level

data and the uniform interface exposed by generics. One is the homogeneous translation,

where all different data representations are transformed into an identical representation

and use the same low-level (compiled) code for this purpose. Another one is the het-

erogeneous translation, where the code is duplicated and adapted for each incompatible

data type. Homogeneous data transformations are simpler and more common than het-

erogeneous, but are also less efficient as they need to convert data between different

representations.

1

Introduction 2

Erasure is one example of a homogeneous transformation of generics. It requires all

data to be passed in by reference, pointing to a heap object, for both primitive types

and objects. Erasure is the most simple and common compilation scheme for generics,

but not that efficient. Requiring primitive types to be passed by reference forces the

creation of heap objects in a process called boxing. Due to allocation time of objects,

extra headers and garbage collection, erasure introduces additional latencies and slows

down the program’s execution.

Heterogeneous translations, such as specialization, are more efficient. Besides existing

code which handles objects, specialization creates a separate versions of the code for

each primitive type, which avoids the need for boxing. However, creating a separate ver-

sion for each primitive type leads to a code explosion. Since there are 9 primitive types

in Scala, for a method with a type parameter, there will be 10 versions (the reference

version plus the primitive versions). If method has two type parameters, specialization

creates 100 versions and in general, for N specialized type parameters, it creates 10N spe-

cialized variants, corresponding to the Cartesian product covering all combinations. The

exponential code explosion depending on the number of type parameters prevents the

Scala library from using specialization extensively, since common classes have between

one and three type parameters [4].

As we saw, homogeneous translations lose performance because they impose a common

data format, while heterogeneous approaches produce too many versions of the code.

This led to development of translation called miniboxing which is actually a hybrid of the

two. It is still heterogeneous as it also handles objects and primitive types separately, but

the degree of heterogeneity is significantly reduced. Unlike specialization, miniboxing

does not create separate versions of the code for each existing primitive type. Instead, it

encodes all primitive types on a 64-bit value, thus preventing the code explosion present

in specialization.

From a programmer’s point of view, there should be no difference between a generic

method or class transformed using erasure, specialization or miniboxing, aside from an

annotation which notifies the compiler to use one translation or another. Furthermore,

the translation for each method or class can be chosen independently, without restrict-

ing the interoperability. A natural question rising here is how this can be achieved

having in mind different implementations of various transformations. How all those dif-

ferent transformations can interoperate between themselves, work together and provide

uniform interface to the programmer?

Introduction 3

The simplest solution for interoperability between the different transformations would

be passing all the data in by reference which implies encoding primitive types into heap

objects. However, this solution is not efficient as it does not benefit from optimization

provided by heterogeneous transformations. Another, efficient approach, would be to

apply the same transformation for all parts of the code that interact together which

have originally used different transformations. This is thoroughly explored in section

3.2.1. For those parts of the code where the encoding cannot be changed (such as

standard libraries), there are optimized alternatives which can be introduced manually

or automatically and this is explained in section 3.2.2. Thus, the contributions of this

thesis are:

• exploring the ways how the different transformations can interoperate efficiently

(chapter 3),

• implementing these approaches (chapter 4) and

• showing effectiveness of the approaches presented by benchmarking the implemen-

tation (chapter 5).

Chapter 2

Generics

Generics are useful as they allow abstracting over data types. Using generics, the

programmer will be able to design abstract algorithms and data structures that behave

identically regardless of the data used. The actual date type used by such algorithms or

data structures is specified later as a parameter, when the algorithm is invoked or data

structure instantiated. This permits writing common functions or types that differs only

in the set of types on which they operate.

The concept of generics pioneered by ML in 1973 [29] and is supported by majority of

programming languages [5]. In programming languages Ada, Delphi, Eiffel, Java, C#,

F#, Swift and Visual Basic .NET this concept is known by the name generics, but other

programming languages have different names for it. For example, in ML, Scala and

Haskell it is also known as parametric polymorphism, and in C++ and D as templates.

The following example [6] written in Scala will demonstrate how generics can be used.

Let us define generic class Stack which accepts one type parameter T:

class Stack[T] {
private[this] var elems: List[T] = Nil
def push(x: T) { elems = x :: elems }
def top: T = elems.head
def pop() { elems = elems.tail }

}

Generic class Stack can be instantiated and used in the following way:

4

Generics 5

object GenericsTest extends App {
val stackInt = new Stack[Int]
stackInt.push(1)
stackInt.push(2)
println(stackInt.top)
stackInt.pop()
println(stackInt.top)

val stackString = new Stack[String]
stackString.push("one")
stackString.push("two")
println(stackString.top)
stackString.pop()
println(stackString.top)

}

The output of this program is:

2
1
two
one

Without support for generics, we would have to implement different version of this

class for each needed type separately, i.e. we would have to implement StackInt for

integers, StackDouble for floating point numbers, StackString for String objects

and so on. Generics helps us in a way that we can implement one class Stack and its

methods which behave in the same way for any type used. When instantiated, the desired

type would be specified as a type parameter for the class (in the example above types

Int and String are used for instantiation). This way, by offering uniform interface,

generics help in significantly reducing the code duplication. Also, this uniform interface

raises the level of abstraction and allows programmers to think about problems on the

higher level and thus improve their productivity.

Different programming languages use different data transformations in order to com-

pile a generic code. However, almost all data transformations can be divided into two

high level groups depending on the low-level code generated for generics: homogeneous

and heterogeneous. The heterogeneous translation duplicates and adapts the body of

a method for each possible type of the incoming argument, thus producing new code

for each type used. This ensures good program performance, but the problem is that

amount of code generated by compiling generics is huge. On the other side, the homo-

geneous translation, typically done with erasure, generates a single method but requires

data to have a common representation, irrespective of its type. This common represen-

tation is usually chosen to be a heap object passed by reference, which leads to indirect

Generics 6

access to values and wasteful data representation. This, in turn, slows down the program

execution and increases heap requirements.

In this work we will focus on generics translations available in the Scala programming

language which are erasure, specialization and miniboxing.

2.1 Erasure

Erasure is the homogeneous data transformation and the current compilation scheme

for generics in programming language Scala. It is one of the simplest possible compilation

schemes for generics where both primitive types and objects are passed in by reference,

pointing to a heap object. Consider the following implementation of method identity

written in Scala, which accepts the parameter of type T and returns the same value:

def identity[T](t: T): T = t

The low-level (compiled) code for this method is:

def identity(t: Object) = Object

We can see from the compiled code that method accepts and returns Object instead

of type T. The erasure eliminates the type parameters and replaces all references to them

by their upper bound (supertype) which is usually Object. Since this can invalidate

a correct program, values passed to and returned from generics may need to be cast to

the correct type. For example, the invocation of method identity:

identity[String]("x")

before erasure, returned a String and now returns an Object.

In the case of primitive types, such as integers, a value is converted into a heap object

when it is passed to a generic code. This way primitive types are compatible with

Object and this process is called boxing. On the other side, the return of generic

methods needs to be coerced back to a primitive type from the Object. This inverse

process is called unboxing. So, the compiled code for the invocation of the method

identity:

val one = identity(1)

Generics 7

using erased generics would be:

val one: Int = identity(Integer.valueOf(1)).intValue

The erasure transformation is commonly used because of its simplicity, but it has sev-

eral drawbacks. The problem is that boxing primitive types is an expensive operation. It

requires heap allocation and garbage collection, both of which slow down program per-

formance. Furthermore, when values are stored in generic classes, such as Vector[T],

they need to be stored in the boxed format, thus inflating the heap memory requirements

and slowing down execution. In practice, generic methods can be as much as 10 times

slower than their monomorphic (primitive) instantiations [4].

2.2 Specialization

Specialization [14][15][16] is a heterogeneous data transformation present in Scala com-

piler and an improvement over erasure. Specialization eliminates the overhead of type

erasure while boxing the primitive types. By adding the @specialized annotation on

type parameters, the Scala compiler specializes generics on-demand [14]. For instance,

the implementation of method identity using specialization could be:

def identity[@specialized T](t: T): T = t
val one = identity(1)

Compiled code for this method in the case when specialization is used is:

def identity(t: Object): Object = t
def identity_I(t: Int): Int = t
def identity_C(t: Char): Char = t
def identity_J(t: Long): Long = t
// ... and another 6 versions of the method

So, the specialization creates another 9 specialized versions of method identity for

each primitive type alone besides original generic implementation. The generic imple-

mentation may work with any object, but it requires boxing. Specialized versions of the

method do not require boxing and thus they run at full speed. The compiler makes sure

the implementations are “in-sync”, by deriving the specialized version from the user-

defined method [14]. Instantiations of generic classes or invocations of generic methods

Generics 8

are opportunistically rewritten to a specialized version whenever the static type indi-

cates it is possible. On the example of the method identity the compiler can optimize

the call to:

val one: Int = identity_I(1)

The compiler rewrites calls to generic methods to use the specialized variants of the

method, if such variant exists for specified type argument. In the example above, in-

stead of calling generic method identity, compiler will insert the call of method

identity I which corresponds to the type Int of method type argument and thus

provide a ”fast path” by avoiding the boxing and unboxing of the value.

By default, specialization is performed for all primitive types but the user may indicate

that only a subset of those should be considered:

def identity[@specialized(Int, Char) T](t: T): T = t

In this case only following versions of the method are created:

def identity(t: Object): Object = t
def identity_I(t: Int): Int = t
def identity_C(t: Char): Char = t

If there is no specialized version for some type (in this case for example Long), generic

implementation identity will be used and the value will be boxed and unboxed.

Since Scala specialization occurs at compile-time, all specialized variants of methods

and classes appear in the generated byte code, increasing its size. This increase becomes

a combinatorial explosion when there are multiple specialized type parameters since each

possible combination generates a unique specialized implementation. As we have seen,

there are 10 different versions of the method for only one type parameter. In general,

for N specialized type parameters, there will be 10N unique specialized variants which

corresponds to the Cartesian product covering all combinations. The byte code explosion

prevents the Scala library from using specialization extensively, since common classes

have between one and three type parameters [4]. Thus, there is an explicit trade-off

between code size and performance and it is up to the user to decide which parts of the

code should be specialized.

Generics 9

2.3 Miniboxing

Homogeneous translations lose performance because they impose a common data for-

mat and require boxing and unboxing of values. On the other hand, heterogeneous

approaches produce too many versions of the code. The miniboxing transformation

[17][18] is a hybrid between the homogeneous and heterogeneous approaches, trying to

minimize the issues both of them have. It is the third approach to compiling generics

and can be used through a compiler plugin.

The miniboxing is motivated by the need to avoid boxing in the Scala library while

also keeping the byte code growth within reasonable limits. The design of miniboxing

is based on two key insights: (1) in Scala, any primitive type can be encoded in a long

integer within 64 bits or double floating point number, thus reducing the duplication to

two variants per type parameter and (2) the encoding requires provenance information,

namely a type tag that represents the original type of the encoded value [7].

The miniboxing transformation is on-demand transformation and it is triggered in the

same way as specialization by annotating the type parameter:

def identity[@miniboxed T](t: T): T = t

Given code is compiled to:

def identity(t: Object): Object = t
def identity_J(type_tag: Byte, t: Long): Long = t
def identity_D(type_tag: Byte, t: Double): Double = t

As we can see, two new versions of the method identity are created: identity J

and identity D. The method identity J will be used for integral primitive types

such as Int, Byte, Short, Char, Boolean, Long and Unit. Another method

identity D will be used for floating-point primitive types: Double and Float. These

methods also require a type tag corresponding to the type parameter T. The type tag is

a type byte describing the type encoded in the long integer or double floating point num-

ber, allowing the operations such as toString, hashCode or equals to be executed

correctly on encoded values, treating them as the original primitive (corresponding to

T) rather than long integers or doubles. In the case that type T is any other object,

generic implementation of the method is used. For all the primitive types, miniboxed

version will be inserted instead of generic one and boxing and unboxing will be avoided.

Generics 10

The call of method identity:

val one: Int = identity(1)

using miniboxing transformation is compiled to:

val one: Int = minibox2int(identity_J(INT, int2minibox(1)))

One can notice minibox2int and int2minibox transformations act exactly in the

same way like boxing and unboxing in erasure transformation. However, these conver-

sions do not create objects but merely extend values to multiple bits of representation.

The values have to be coerced to the miniboxed representation, but on the Java Vir-

tual Machine platform benchmarks have shown that the miniboxing conversion cost is

completely eliminated when compiling the code to native x86 assembly [4]. Further

benchmarking has shown that the code matches the performance of specialized code

within a 10% slowdown due to coercions [18].

Code explosion is significantly reduced in comparison to specialization. Instead of 10

versions of the method in specialization, miniboxing creates only 3 different versions.

Thus, fully specializing method with 2 parameters with miniboxing will create 32 dif-

ferent versions instead of 102, and in general for N type parameters there will be 3N

different versions. To conclude, miniboxing with negligible slowdowns caused by insert-

ing the coercions in comparison to specialization, reduce the byte code generated for

specializing the generics significantly.

Chapter 3

Interoperation between Generics Translations

All the different generics translations that can be used in the Scala programming

language can be combined together and applied on the different parts of code. As spe-

cialization and miniboxing are triggered on demand by annotating the type parameter,

and erasure is a default transformation, a situation can arise where some method with

miniboxed type parameter invokes a method with specialized type parameter which

invokes a method with erased type parameter:

def foo[@miniboxed T](t: T): T = bar[T](t)
def bar[@specialized T](t: T): T = baz[T](t)
def baz[T](t: T): T = t

In this scenario, method foo is compiled using miniboxing translation, method bar

using specialization as a translation for generics and finally method baz using erasure.

As shown in the previous section, all of the mentioned transformations are implemented

in a different way so the question is how they interoperate and work together. This code

is correct even though different translations are used and it produces the same result as

the only one translation would be used. However, this interoperation between different

translations produces noticeable slowdowns in the program execution.

In this chapter, we will concentrate on interoperation between miniboxing translation,

erasure and specialization. We will explain why slow-downs happen when those transla-

tions interact together and propose techniques how to make the interoperation between

them more efficient.

11

Interoperation between Generics Translations 12

3.1 Miniboxing and Other Generics Translations

3.1.1 Miniboxing and Erasure

In addition to the generic implementation of some method with one type parameter,

the miniboxing translation creates two new variants of the method. Calls to the mini-

boxed variants of the method are inserted instead of the generic method implementation

when the type argument is some of the primitive types. This will ensure that miniboxed

code will operate only on the miniboxed representation, without need for boxing and

unboxing the value parameters.

Let us consider the following code:

def foo[@miniboxed T](t: T): T = bar[T](t)
def bar[@miniboxed T](t: T): T = baz[T](t)
def baz[@miniboxed T](t: T): T = t

which gets compiled to:

def foo(t: Object): Object = bar(t)
def foo_J(type_tag: Byte, t: Long): Long = bar_J(type_tag, t)
def foo_D(type_tag: Byte, t: Double): Double = bar_D(type_tag, t)

def bar(t: Object): Object = baz(t)
def bar_J(type_tag: Byte, t: Long): Long = baz_J(type_tag, t)
def bar_D(type_tag: Byte, t: Double): Double = baz_D(type_tag, t)

def baz(t: Object): Object = t
def baz_J(type_tag: Byte, t: Long): Long = t
def baz_D(type_tag: Byte, t: Double): Double = t

From the compiled code we can see that once execution entered the miniboxed path,

by calling foo J or foo D, it continues to go through without boxing values. It just

passes the encoded miniboxed representation of the value further.

But, if we break the chain and make the method bar use the erased generic translation:

def foo[@miniboxed T](t: T): T = bar[T](t)
def bar[T](t: T): T = baz[T](t)
def baz[@miniboxed T](t: T): T = t

the code gets compiled to:

Interoperation between Generics Translations 13

def foo(t: Object): Object = bar(t)
def foo_J(type_tag: Byte, t: Long): Long =

box2minibox(bar(minibox2box(t)))
def foo_D(type_tag: Byte, t: Double): Double =

box2minibox(bar(minibox2box(t)))

def bar(t: Object): Object = baz(t)

def baz(t: Object): Object = t
def baz_J(type_tag: Byte, t: Long): Long = t
def baz_D(type_tag: Byte, t: Double): Double = t

On this example we can see both invocation of erased code from miniboxed code and

invocation of miniboxed code from erased code. First case is when method foo invokes

method bar. The method foo does not have a miniboxed version of the method bar

to call, thus the generic version of method bar is invoked. Despite the fact that method

baz is miniboxed, the value will end up boxed and then unboxed which will slow down

the execution. In another case, when generic method bar invokes miniboxed method

baz, boxing and unboxing of the value will happen as well. As the argument may not

be primitive, generic implementation of the method baz has to be invoked. Thus, the

optimization provided by miniboxing translation will not be exploited in this case as

well and the value will end up boxed and unboxed every time.

To conclude, miniboxing transformation does not help in improving the performances

of the program if it interacts with erased code. The values will end up boxed in both

situations, when miniboxed code is invoked from erased code and vice-versa. As boxing

cannot be avoided and miniboxing optimistic assumptions are invalidated by erased

generics, the performance of the program will be the same as only erasure is applied.

3.1.2 Miniboxing and Specialization

Slow-downs in program execution occur when miniboxed code interacts with special-

ized code as well. As miniboxing is similar to specialization, one can expect that inter-

action between mentioned transformations goes smoothly and gives good performances.

However, achieving efficient interaction between specialized and miniboxed code is not

a trivial job.

In the following code, miniboxed method foo invokes specialized method bar which

again invokes miniboxed method baz:

Interoperation between Generics Translations 14

def foo[@miniboxed T](t: T): T = bar[T](t)
def bar[@specialized T](t: T): T = baz[T](t)
def baz[@miniboxed T](t: T): T = t

This code gets compiled to the following low-level code:

def foo(t: Object): Object = bar(t)
def foo_J(type_tag: Byte, t: Long): Long =

box2minibox(bar(minibox2box(type_tag, t)))
def foo_D(type_tag: Byte, t: Double): Double =

box2minibox(bar(minibox2box(type_tag, t)))

def bar(t: Object): Object = baz(t)
def bar_I(t: Int): Int = baz(t)
def bar_C(t: Char): Char = baz(t)
def bar_D(t: Double): Double = baz(t)
... // other 6 specialized variants of method bar

def baz(t: Object): Object = t
def baz_J(type_tag: Byte, t: Long): Long = t
def baz_D(type_tag: Byte, t: Double): Double = t

The generic variant of the method foo calls the generic variant of the method bar as

there is a 1 to 1 correspondence between them. The same case is with generic variants

of methods bar and baz. The miniboxed variants of method foo cannot call the

specialized variants of method bar though. For instance, if type argument used when

method foo is invoked is Boolean, the miniboxed variant foo J will be used, but

method foo J does not know which specialized variant should be invoked. Therefore,

value parameter has to go through processes of boxing and unboxing of value parameter

when generic variant of specialized method is invoked. However, there are ways to avoid

this slow path and it will be discussed in the following section.

One can say that calling miniboxed code from specialized code may work without

boxing. It is clear which miniboxed variant should be invoked from specialized method

variant as it is known which type is used as a type argument. However, this is not the

case as miniboxing is a compiler plugin and specialization is not aware of its existence.

Therefore, specialized variants will invoke generic variant of miniboxed code, where value

will end up boxed and then unboxed each time.

Again, interacting between miniboxing and specialization introduces slow-downs in

program executions as values go through boxing and unboxing. There are ways to make

the interaction more efficient and this will be discussed in the following section.

Interoperation between Generics Translations 15

3.1.3 Miniboxing and Scala Standard Library

Another problem is when miniboxed code interacts with libraries such as Scala stan-

dard library. Scala standard library uses either erased generics or the original special-

ization transformation. The problem when miniboxed code interacts with the Scala

standard library is that code in Scala standard library is not in programmer’s control

and cannot be changed. Also, programmers are aware that most of the methods and

classes in Scala standard library are specialized and expect that the specialized code

invoked from miniboxed code keep good performances, but that is not the case.

For example, the following method:

def tupleMap[@miniboxed T, @miniboxed U](tup: (T, T), f: T => U)
: (U, U) =

(f(tup._1), f(tup._2))

uses erased generics versions of the tuple accessors and the function application even

though type parameters T and U are annotated with miniboxing annotation. This leads

to slow-downs and in the following section we will explore the approaches how to avoid

this.

3.2 Efficient Interoperation

Interoperation of miniboxed code with foreign objects leads to a slow path, as values

need to be converted to the foreign object’s desired representation, incurring significant

performance losses. Interacting with foreign objects is common and cannot be avoided,

especially with the language’s standard library, such as Scala standard library, which is

compiled with an incompatible data encoding. Thus, it is important to find the ways how

miniboxing can interoperate with foreign objects more efficiently. In previous section, it

was explained why exactly slow paths occur when miniboxed code interacts with erased

generics or specialized code. In this section, we will propose different approaches which

can help in avoiding boxing and thus improving performances whenever it is possible.

On the high level, there are two approaches that we are proposing how interoperation

of miniboxed code with erased generics or specialized code can be made more efficient.

What influences the choice of the approach which can be used is whether the code

that uses another translation is in programmer’s control or not. If that code can be

changed by the programmer, then first approach would be to show to the programmer

performance advisories and guide him how to harmonize the code and use only one

Interoperation between Generics Translations 16

kind of generics translation. In the case when miniboxed code interacts with code that

cannot be changed, such as Scala standard library, there are other proposed approaches:

optimized accessors, wrapping objects or introducing new API.

3.2.1 Harmonizing Data Transformations

Interoperation of miniboxing with other generics translations leads to a boxing of

value parameters and slow paths. Interoperation exists because different translations are

applied on different parts of the code that interact together. But, in many cases there

is no need for using different translations. Why then not eliminate the interoperation

by harmonizing the parts of the code that are using different generics translations and

use the same everywhere?

This would be possible only if all the code snippets are in programmer’s control and if

the choice of the translation applied can be changed by the programmer. The case when

this is not possible is for example when miniboxed code interacts with some external

library which is compiled using some other translation and there is no way to make that

library to use miniboxing as a translation for generics.

If the code using different generics translation is in programmers control and the

programmer wants to change the translation and harmonize the code, he would have to

find all the places in the code when this happens. However, it is not trivial sometimes to

find out when the code actually interacts with another parts of the code compiled using

different translation. The case can be that programmer is not familiar with that code

or that code is huge so it is difficult to search for it. If compiler silently fails to optimize

the code, programmer would not be able to find that out. The performances of the

program would be bad, but programmer would not have any useful information about

what happened. Thus, one solution would be that compiler provides the programmer

with a detailed report of the problem, exact position and advises how to harmonize the

code and eliminate interoperation.

3.2.1.1 Performance Advisories

To eliminate interaction between different data transformations, compiler should point

the programmer to all the situations when that happens and give the advise how to har-

monize those parts of code. Let us consider again the simple example where miniboxed

code interacts with erased code:

Interoperation between Generics Translations 17

def foo[@miniboxed T](t: T): T = bar[T](t)
def bar[T](t: T): T = baz[T](t)
def baz[@miniboxed T](t: T): T = t

As explained in the previous section, value t ends up boxed in both situations: when

miniboxed code invokes generic code and vice-versa. If this happens silently, programmer

will not be aware of that and the program execution will be slowed-down. The solution

for this is that compiler gives a warning to a programmer saying that value ended up

boxed and gives the advice how this can be avoided. By eliminating usage of different

translations and thus unnecessary interoperation between them which leads to boxing,

this problem would be resolved. The advice to a programmer in this scenario would be

to make method bar miniboxed as well. This way, only one transformation will be used

and the value will be passed in the miniboxed representation without need for boxing.

Programmer should be warned in both cases, when method foo invokes generic

method bar and when method bar invokes miniboxed method baz. In the first case,

warning should be:

test.scala:7: warning: The method bar would benefit from miniboxing
type parameter T, since it is instantiated by miniboxed type
parameter T of method foo:

def foo[@miniboxed T](t: T): T = bar[T](t)
ˆ

In the second case, warning should be:

test.scala:8: warning: The following code could benefit from
miniboxing specialization if the type parameter T of method bar
would be marked as "@miniboxed T" (it would be used to
instantiate miniboxed type parameter T of method baz):

def bar[T](t: T): T = baz[T](t)
ˆ

Just by following the warnings, programmer will know where was the problem in

the code and how to fix it. The warning will tell programmer exactly what to do and

a position in the code where the change should be made. So, in this case, by adding

miniboxing annotation to method bar, interoperation would be eliminated and the code

would benefit from miniboxing transformation.

Interoperation between Generics Translations 18

In another situation, when miniboxed code interacts with specialized code:

def foo[@miniboxed T](t: T): T = bar[T](t)
def bar[@specialized T](t: T): T = baz[T](t)
def baz[@miniboxed T](t: T): T = t

problem is the same as the value parameter gets boxed as explained in the previous

section. Again, if the compiler warns a programmer and gives an advice how to eliminate

this problem, the slow path can be avoided. The warning when method foo invokes

specialized method bar should be:

test.scala:7: warning: Although the type parameter T of method bar
is specialized, miniboxing and specialization communicate among
themselves by boxing (thus, inefficiently) on all classes other
than as FunctionX and TupleX. If you want to maximize
performance, consider switching from specialization to
miniboxing: ’@miniboxed T’:

def baz[@miniboxed T](t: T): T = bar[T](t)
ˆ

and, when specialized method bar invokes miniboxed method baz:

test.scala:8: warning: The following code could benefit from
miniboxing specialization if the type parameter T of method bar
would be marked as "@miniboxed T" (it would be used to
instantiate miniboxed type parameter T of method baz):

def bar[T](t: T): T = baz[T](t)
ˆ

The warnings say that @specialized annotation should be changed to @miniboxed

for the type parameter in method bar. Same as in the case when miniboxed code in-

teracts with erased generics, by following the warnings, only one transformation would

be applied everywhere. Code would be harmonized and there would not be any inter-

operations between different translations as the only miniboxing translation would be

used.

To generalize, there are two problems that can occur. One is when miniboxed code

does not have miniboxed version to call. Another is when miniboxed version of the

code exists, but generic version is invoked instead from generic or specialized code (as

argument may not be a primitive). These two problems correspond exactly to the two

of the main of performance advisories: forward and backward.

Interoperation between Generics Translations 19

The example of forward advisories or warnings is first warning given for both examples

shown above. The name forward comes from the fact that this advisory pushes the

miniboxed representation from caller to callee each time the arguments need to be boxed

before being passed.

The example of backward advisories or warnings is second warning given for both

examples shown above. In this case, the miniboxing annotation is propagated from

callee to caller and that is the reason why is it called backward.

Programmer does not have to be an expert or even familiar with the miniboxing

transformation. Only by following the warnings and advises given by compiler, optimal

execution of the code can be achieved by eliminating the interoperation between different

translations.

3.2.1.2 Suppressing Warnings

Programmers can be aware that miniboxed code interacts with erased generic code

or specialized code and due to compatibility requirements with other JVM programs or

for any other reason, they do not want to change it. In this situation, warnings are not

needed and there should be a way to suppress them.

A coarse-grained approach where all the warnings are turned off is not desirable as

it can hide other potentially points in code which can be optimized. For this situation,

miniboxing plugin offers the @generic annotation which can suppress both forward

and backward warnings.

For example, for following piece of code, compiler will issue both forward and backward

warnings:

Interoperation between Generics Translations 20

scala> def foo[@miniboxed T](t: T): T = t
foo: [T](t: T)T

scala> foo[Any](1)
<console>:9: warning: Using the type argument "Any" for the

miniboxed type parameter T of method foo is not specific enough,
as it could mean either a primitive or a reference type. Although
method foo is miniboxed, it won’t benefit from specialization:

foo[Any](1)
ˆ

res9: Any = 1

scala> def bar[T](t: T): T = t
bar: [T](t: T)T

scala> bar[Int](1)
<console>:9: warning: The method bar would benefit from miniboxing

type parameter T, since it is instantiated by a primitive type.
bar[Int](1)

ˆ
res10: Int = 1

If we annotate type parameter with @generic, warnings will be suppressed:

scala> def foo[@generic @miniboxed T](t: T): T = t
foo: [T](t: T)T

scala> foo[Any](1)
res9: Any = 1

scala> def bar[@generic T](t: T): T = t
bar: [T](t: T)T

scala> bar[Int](1)
res10: Int = 1

Also, when miniboxed code interacts with erased generics or specialized code from

libraries, warnings are turned off by default and can be turned on by setting the compiler

flag: -P:minibox:warn-all.

3.2.1.3 Data Representation Reflection

Performance advisories provide the user with compile-time warnings when code is

sub-optimal, and as mentioned above, there is a mechanism to suppress them. However,

it is possible that a user want to silence the warnings but still enforce strictness and

define a separate run-time behavior for the class if its type argument is a primitive or

reference type. To do this, run-time checks can be conducted to determine if the code

has been optimized and define custom behavior to handle the situation.

Interoperation between Generics Translations 21

The miniboxing plugin offers a window into what code is running and how it was

transformed through MbReflection API. This API allows the programmer to check

the internal state of the plugin by reflecting on the type parameters of miniboxed classes

and methods. For example, given a method with a miniboxed type parameter T, reflec-

tion can determine, at runtime, whether T is miniboxed, its instantiation, and the type

used to store the value:

scala> import MiniboxingReflection._
import MiniboxingReflection._

scala> def foo[@miniboxed T]: String = s]"foo[T =
${’reifiedType[T]’}, miniboxed into a ${’storageType[T]’}]"

foo: [T]()String

scala> foo[Int]
res4: String = foo[T = Int, miniboxed into a Long]

The method reifiedType[T] indicates the type of type parameter instantiation

while the storageType[T] returns the type used for encoding data. It is also possible

to call the method from an erased context, in which case it will report the fact that the

type parameter is a reference to a boxed object:

scala> def bar[T](): String = foo[T]()
<console>:8: warning: The following code could benefit from
miniboxing specialization if the type parameter T of method bar
would be marked as "@miniboxed T" (it would be used to
instantiate miniboxed type parameter T of method foo)

def bar[T](): String = foo[T]()
ˆ

bar: [T]()String

scala> bar[Int]
<console>:10: warning: The method bar would benefit from
miniboxing type parameter T, since it is instantiated by a
primitive type.

bar[Int]
ˆ

res0: String = foo[T = Reference, miniboxed into a Reference]

One of the usages of data representation reflection can be when class or method is

always expected to be miniboxed and assertion is raised if it is not:

Interoperation between Generics Translations 22

scala> class C[@miniboxed T] {
| assert(isMiniboxed[T], "Type parameter T of class C is not
miniboxed!")
| }

defined class C

scala> def baz[T](): C = new C[T]
java.lang.AssertionError: assertion failed: Type parameter T of
class C is not miniboxed!
at scala.Predef$.assert(Predef.scala:165)
... 34 elided

3.2.2 Optimized Alternatives

In the previous approach the goal was to harmonize different snippets of the code

that use different generics translations and use only one translation everywhere. This is

possible only if the code which translation we want to change is in programmer’s control

and programmer is able to change it. However, there are situations when programmer

cannot change the translation and there should be workarounds how the interaction can

be made more efficient.

As mentioned above, the scenario when programmer is not able to change the transla-

tion used is when for example some external library is used in the program. The code of

the library cannot be changed and has to be used as is. In programming language Scala,

the most used library is Scala standard library which is compiled using specialization

and erased generic translation. Using specialized methods or classes from miniboxed

code will lead to boxing and slow downs in program execution. So, in this section, we

will propose three approaches how this interoperation can be made more efficient and

show where each works best.

3.2.2.1 Optimized Accessors

One solution how miniboxed code can invoke specialized code efficiently is by using the

optimized accessors. Instantiations of specialized classes and invocations of specialized

methods would be preserved and stay as they are. Compiler will whenever it finds

the call to specialized method, insert the invocation of appropriate optimized accessor

instead.

Job of the optimized accesors would be to invoke the appropriate specialized variant

of the methods based on the type argument and without boxing the value parameters.

Interoperation between Generics Translations 23

Besides method’s arguments that have to be passed to the accessors, accesors require

type tag for each type parameter of the method. Type tags (describing the encoded

primitive type) will be used to switch on and decide on which specialized variant should

be invoked in the accessor. This approach needs to be implemented both for accessors,

allowing the specialized values to be extracted directly into the miniboxed encoding

and for constructors, allowing miniboxed code to instantiate specialized classes without

boxing.

For instance, if miniboxed method foo invokes specialized method bar:

def foo[@miniboxed T](t: T): T = bar[T](t)
def bar[@specialized T](t: T): T = t

compiler will change all the calls to the method bar to its corresponding accessors:

bar[T](t) if T is Int, Long, Byte, Boolean, Short, Char or Unit ->
accessor_bar_long[T](tagForTypeArgument(T), t)

bar[T](t) if T is Double or Float ->
accessor_bar_double[T](tagForTypeArgument(T), t)

As specialized variants of the method bar would be:

def bar(t: Object): Object = ...
def bar_I(t: Int): Int = ...
def bar_J(t: Long): Long = ...
def bar_B(t: Boolean): Boolean = ...
// ... other 6 specialized variants

the optimized accesors would look like:

def bar_accessor_long[T](t_type_tag: Byte, t: Long): T = {
t_type_tag match {

case INT => int2minibox(bar_I(minibox2int()))
case LONG => long2minibox(bar_J(minibox2long()))
...
case _ => box2minibox(bar(minibox2box(t)))

}
}

def bar_accessor_double[T](t_type_tag: Byte, t: Double): T = {
t_type_tag match {

case DOUBLE => double2minibox(bar_D(minibox2double()))
case FLOAT => float2minibox(bar_F(minibox2float()))
case _ => box2minibox(bar(minibox2box(t)))

}
}

Interoperation between Generics Translations 24

Accessors allow simple invocations of specialized variants instead of generic ones and

help in avoiding boxing parameters. Good side of accessors is that they do not require

any additional memory. Drawback is that switching on type arguments introduces ad-

ditional overhead. For small number of type parameters, accessors are still reasonable

fast, but the overhead becomes significant if there are more than 3 type parameters.

One more problem with accessors is that when multiple bytes are involved in the switch,

they will generate a combinatorial explosion and this can confuse Java Virtual Machine

heuristics for inlining and thus lead to slow paths. But, there is a way to avoid confusing

the Java Virtual Machine inlining heuristics, by extracting the operation into a static

method, that we call separately. Therefore, accessors are suitable for classes with small

number of type parameters and when they are not invoked many times. One example

of such classes is Tuple2 from Scala standard library. It has only two type parameters

and when instantiated, fields are in most cases accessed few times.

3.2.2.2 Wrapping Objects

Wrapping objects is an another technique that can be applied to minimize the slow

path caused by interaction between different generics translations. While optimized

accessors have good performance when values are accessed a couple of times during

the lifetime of the object, wrapping objects offer better performance when values are

accessed many times during the object’s lifetime.

What this approach proposes is that new miniboxed class wraps the specialized class.

This means that every miniboxed object of a new class will have a pointer to a specialized

object. In addition, new miniboxed class will have the miniboxed variants of all the

existing methods of the specialized class which will invoke the corresponding specialized

once. This approach avoids switching on the type byte in order to call wrapped function

at run-time. The switch is done when the new wrapping object is created.

If there is a specialized class C with method foo:

class C[@specialized T] {
def foo(t: T): T = t

}

the miniboxed wrapping class would look like:

Interoperation between Generics Translations 25

class MiniboxedC[@miniboxed T] {
val extractC: C
def foo(t: T): T

}

and when compiler finds the instantiation of class C, it changes it to instantiation of

MiniboxedC by invoking the bridge method with type tag. Also, all calls to methods

of class C will be changed to calls of methods of class MiniboxedC.

def c_bridge_long[T](type_tag: T, c: C): MiniboxedC[T] = {
type_tag match {

case INT =>
val c_cast = c.asInstanceOf[C[Int]]
new MiniboxedC[Int] {
def extractC: C[Int] = c_cast
def foo(t: Int): Int = c_cast.foo(t)
}

case LONG =>
val c_cast = c.asInstanceOf[C[Long]]
new MiniboxedC[Long] {
def extractC: C[Long] = c_cast
def foo(t: Long): Long = c_cast.foo(t)
}

...
case _ =>

new MiniboxedC[T] {
def extractC: C[T] = c
def foo(t: T): T = c.foo(t)

}
}

}

def c_bridge_double[T](type_tag: T, c: C): MiniboxedC[T] = {
type_tag match {

case DOUBLE =>
val c_cast = c.asInstanceOf[C[Double]]
new MiniboxedC[Double] {
def extractC: C[Double] = c_cast
def foo(t: Double): Double = c_cast.foo(t)
}

case FLOAT =>
val c_cast = c.asInstanceOf[C[Float]]
new MiniboxedC[Float] {
def extractC: C[Float] = c_cast
def foo(t: Float): Float = c_cast.foo(t)
}

case _ =>
new MiniboxedC[T] {

def extractC: C[T] = c
def foo(t: T): T = c.foo(t)

}
}

}

Interoperation between Generics Translations 26

Bridge methods will switch on the type tag and instantiate miniboxed class which

methods will then invoke right specialized methods. The switching on type tag happens

only once, when the class is instantiated. Later, whenever the methods are invoked,

there will not be any switching and any additional overhead. This is the reason that

this approach is suitable for classes which methods are invoked many times during the

object’s lifetime. However, instantiating a new wrapping object on the heap besides

specialized one will introduce some overhead in addition to switching at the beginning,

but this is amortized over many method invocations.

3.2.2.3 New API

Previous two approaches suggest invoking corresponding specialized method variants

from the miniboxed code and inserting them automatically by the compiler. But, in

some cases, not all the limitations can be eliminated this way. The example is Scala

Array class, which expects ClassTag in order to have access to type information about

T. For algorithms where high performance is expected, passing ClassTag can decrease

the performances significantly.

To address the issues like this one and similar, completely new API can be introduced

with miniboxed implementation of the class that we need to perform fast. Compiler

can then give warnings whenever it finds the instantiation of the class that we want to

change and suggest using new API which will perform better. This is done for Scala

Array class where new MbArray API is implemented.

scala> import scala.reflect._
import scala.reflect._

scala> def foo[@miniboxed T: ClassTag] = new Array[T](10)
<console>:10: warning: Use MbArray instead of Array to eliminate the

need for ClassTags and benefit from seamless interoperability
with the miniboxing specialization. For more details about
MbArrays, please check the following link:
http://scala-miniboxing.org/arrays.html

def foo[@miniboxed T: ClassTag] = new Array[T](10)
ˆ

foo: [T](implicit evidence$1: scala.reflect.ClassTag[T])Array[T]

scala> def foo[@miniboxed T] = MbArray.empty[T](10)
foo: [T]=> MbArray[T]

scala>

Chapter 4

Implementation

In this chapter it will be explained how different proposed approaches for avoiding

slow-downs caused by interaction of different generics translations are implemented.

Firstly, we will explain how performance advisories are implemented. Then we will ex-

plain the implementation of miniboxed functions, miniboxed tuples and miniboxed type

classes which are the applications of proposed optimized alternatives. Before starting

with explanation of mentioned implementations, we will shortly describe the phases

added by miniboxing plugin to the Scala compiler and how the translation is done.

4.1 Miniboxing Plugin - Phases

milos@milos:˜/miniboxing-plugin\$ mb-scalac -Xshow-phases
phase name id description
---------- -- -----------

mb-ext-pre-tpe 2
interop-inject 7
mb-ext-hijacker 10

mb-compile-ti... 11
mb-compile-ti... 13

mb-ext-prepare 16
interop-bridge 17
interop-coerce 18
interop-commit 19
mb-ext-post-tpe 20
minibox-inject 21
minibox-bridge 22
minibox-coerce 23
minibox-commit 24

mb-tweak-erasure 31

27

Implementation 28

The miniboxing plugin uses LDL (Late Data Layout) [7] mechanism for generics trans-

lation. By using LDL, new phases like Inject, Coerce and Commit are added to the

Scala compiler. Above is the list of all phases added by miniboxing plugin needed for

correct data transformation (original Scala compiler phases are omitted).

The LDL is used twice by the miniboxing plugin. First time it is needed when functions

are transformed into miniboxed functions. All phases related to it have a name starting

with prefix interop. In these phases, all functions are replaced by miniboxed functions

in order to achieve better performance. Another usage of LDL is needed for all other

transformations demanded when type parameters are annotated with @miniboxed an-

notation (phases with name starting with prefix minibox). These two applications of

LDL are core of miniboxing plugin. There are other helper phases added to the Scala

compiler as well such as: mb-ext-pre-tpe, mb-ext-hijacker, etc (name starting

with mb-) supporting other various features. On the following example, we will show

how the syntax tree of method foo looks like after some of the phases and how the code

is transformed using miniboxing plugin:

def foo[@miniboxed T](f: T => T, t: T): T = f(t)

At the end of parser phase, the syntax tree looks like:

def foo[@new miniboxed() T](f: Function1[T, T], t: T): T = f(t)

where method parameter f is desugared into a scala.Function1[T, T]. During the

phases interop-inject, interop-bridge, interop-coerce and interop-commit,

Function1 is transformed into a MiniboxedFunction1 which can be seen if we print

the syntax tree after the interop-commit phase:

def foo[@miniboxed T](f: MiniboxedFunction1[T,T], t: T): T =
f.apply(t)

In the second LDL application, new versions of the method foo are created: foonD

and foonJ. First one is invoked when Double is used for encoding data. The other

one is invoked when Long is used for encoding data. There is also a generic version

which is invoked when the type argument is erased generic. The syntax tree printed

after the phase minibox-commit looks like:

Implementation 29

def foo[@miniboxed T](f: MiniboxedFunction1[T,T], t: T): T =
f.apply(t);

def foonD[T](T$TypeTag: Byte, f: MiniboxedFunction1[T,T],
t: Double): Double =

f.apply$DD(T$TypeTag, T$TypeTag, t);

def foonJ[T](T$TypeTag: Byte, f: MiniboxedFunction1[T,T], t: Long)
: Long =

f.apply$JJ(T$TypeTag, T$TypeTag, t)

4.2 Harmonizing Data Transformations

4.2.1 Sub-optimal Code Warnings

The compiler may generate sub-optimal code warnings in three cases: when some

method is invoked, when new object is instantiated or when definition of class/trait/ob-

ject is found which extends another one. They are generated during the method rewiring

decision, which decides which method to call (the miniboxed or the generic one). If the

type argument used to instantiate the method is a primitive type or another miniboxed

type, miniboxed version will be used. But, if not, sub-optimal code warning will be

generated explaining the problem. In all the cases, list of pairs of type parameters and

corresponding type arguments will be analyzed and for each pair in the list if it satisfies

the conditions, the warning will be generated. The following piece of code implements

the logic for generating the sub-optimal code warnings:

Implementation 30

def fromTargsAllTargs(pos: Position,
instantiation: List[(Symbol, Type)],
currentOwner: Symbol,
pspec: PartialSpec = Map.empty): PartialSpec = {

val mboxedTpars =
specializationsFromOwnerChain(currentOwner).toMap ++ pspec

val spec: List[(Symbol, SpecInfo)] =
instantiation.map({ (pair: (Symbol, Type)) =>

val res: (Symbol, SpecInfo) =
(pair._1, pair._2.withoutAnnotations) match {

case (p, tpe)
if ScalaValueClasses.contains(tpe.typeSymbol) =>

(new BackwardWarning(p, tpe, pos)
.warn(BackwardWarningEnum.PrimitiveType,

inLibrary = !common.isCompiledInCurrentBatch(p)))
(p,

Miniboxed(PartialSpec.valueClassRepresentation(tpe.typeSymbol)))

case (p, TypeRef(_, tpar, _))
if tpar.deSkolemize.isTypeParameter =>

mboxedTpars.get(tpar.deSkolemize) match {
case Some(spec: SpecInfo) =>

if (spec != Boxed)
(new BackwardWarning(p, tpar.tpe, pos)

.warn(BackwardWarningEnum.MiniboxedTypeParam, inLibrary =
!common.isCompiledInCurrentBatch(p)))

(p, spec)

case None =>
if

(metadata.miniboxedTParamFlag(tpar.deSkolemize) &&
metadata.isClassStem(tpar.deSkolemize.owner) &&
!p.isMbArrayMethod)

(new ForwardWarning(p, tpar.tpe, pos)
.warn(ForwardWarningEnum.StemClass,

inLibrary = !common.isCompiledInCurrentBatch(p)))
else

(new ForwardWarning(p, tpar.tpe, pos)
.warn(ForwardWarningEnum.InnerClass,

inLibrary = !common.isCompiledInCurrentBatch(p)))
(p, Boxed)

}

case (p, tpe) if tpe <:< AnyRefTpe =>
(p, Boxed)

case (p, tpe) =>
(new ForwardWarning(p, tpe, pos)

.warn(ForwardWarningEnum.NotSpecificEnoughTypeParam,
inLibrary = !common.isCompiledInCurrentBatch(p)))

(p, Boxed)
}

res
})
spec.toMap

}
}

Implementation 31

Whenever the compiler finds one of the instantiations mentioned above when warning

may be generated, it will invoke the method fromTargsAllTargs. Method parameter

instantiations is a list of type parameters and type arguments for current instan-

tiation. For each pair of type parameters and arguments, it will be checked if warning

should be generated and which type of it should be shown. This method is also used to

produce the specialization information for the type arguments.

As explained in section 3.2.1.1, there are two types of warnings: forward and backward.

Also, there are different sub-types of forward and backward warnings. When forward or

backward warning is generated, the actual type of it is also specified. There are two types

of backward warnings: one is when type argument is primitive type and another when

type argument is miniboxed type while in both cases type parameter is not miniboxed.

Forward warnings is generated when type parameter is miniboxed, but its type argument

is erased generic.

Implementation 32

abstract class MiniboxWarning(p: Symbol, pos: Position, inLibrary:
Boolean) {

def msg(): String
def shouldWarn(): Boolean

def warn(): Unit = if (shouldWarn) suboptimalCodeWarning(pos, msg,
p.isGenericAnnotated, inLibrary)

...
}

class BackwardWarningForPrimitiveType(nonMboxedTypeParam: Symbol,
mboxedType: Type, pos: Position, inLibrary: Boolean) extends
MiniboxWarning(nonMboxedTypeParam, pos, inLibrary) {

override def msg: String = s"The
${nonMboxedTypeParam.owner.tweakedFullString} would benefit from
miniboxing type " + s"parameter ${nonMboxedTypeParam.nameString},
since it is instantiated by a primitive type."

override def shouldWarn(): Boolean = {
!isUselessWarning(nonMboxedTypeParam.owner) &&
!isOwnerArray(nonMboxedTypeParam, mboxedType, pos) &&
!isSpecialized(nonMboxedTypeParam, pos, inLibrary)

}
}
...
class ForwardWarningForInnerClass(mboxedTypeParam: Symbol,

nonMboxedType: Type, pos: Position, inLibrary: Boolean) extends
MiniboxWarning(mboxedTypeParam, pos, inLibrary) {

override def msg: String = s"The following code could benefit from
miniboxing specialization " + s"if the type parameter
${nonMboxedType.typeSymbol.name} of
${nonMboxedType.typeSymbol.owner.tweakedToString} " + s"""would
be marked as "@miniboxed ${nonMboxedType.typeSymbol.name}" (it
would be used to """ + s"instantiate miniboxed type parameter
${mboxedTypeParam.name} of
${mboxedTypeParam.owner.tweakedToString})"

override def shouldWarn(): Boolean = {
!isUselessWarning(mboxedTypeParam.owner) &&
!isSpecialized(mboxedTypeParam, pos, inLibrary)

}
}
...

Another important parameter of method instantiations is currentOwner which

is used for finding mboxedTpars. If we have the following situation:

Implementation 33

class C[T] {}
def foo[@miniboxed T](t: T) = {

class D extends C[T]
}

mboxedTpars will help us to find up the owner chain which type argument is actu-

ally used for instantiation and issue the warning showing exact position of the type

parameter:

scala:4: warning: The class C would benefit from miniboxing type
parameter T, since it is instantiated by miniboxed type parameter
T of method foo.

class D extends C[T]
ˆ

4.2.2 Suppressing Warnings

The sub-optimal code warnings can be suppressed by adding the annotation @generic

in front of the type parameter. This way, the symbol in syntax tree will have the infor-

mation that the type parameter is annotated and what is the class of the annotation.

So, in order to suppress the warning, when warning is generated it will be checked if

the symbol corresponding to this warning has this annotation. If that is the case, the

warning will not be shown to the user.

4.3 Optimized Alternatives

4.3.1 Miniboxed Functions

For implementation of miniboxed functions, the second approach which proposes

wrapping the object is applied. Switching on as many as 3 type bytes with each function

application incurs a significant overhead. Functions are usually created once but applied

many times, so any delay in the creation amortizes over many applications. The Scala

FunctionsX is replaced by MbFunctionX , where X , the function arity, is either 0, 1

or 2 (the functions with greater arity are not specialized, due to the byte code explosion

problem).

The miniboxing plugin introduces three tweaked versions of the function representa-

tion for 0, 1 and 2 arguments:

Implementation 34

package miniboxing.runtime

trait MiniboxedFunction0[@miniboxed +R] {
def f: Function0[R]
def apply(): R

}

trait MiniboxedFunction1[@miniboxed -T1, @miniboxed +R] {
def f: Function1[T1, R]
def apply(t1: T1): R

}

trait MiniboxedFunction2[@miniboxed -T1,
@miniboxed -T2,
@miniboxed +R] {

def f: Function2[T1, T2, R]
def apply(t1: T1, t2: T2): R

}

It automatically wraps standard Scala functions into MiniboxedFunctions and mod-

ifies the signatures of methods to use them:

cat func.scala
object Test {

val f: Function1[Int, Int] = (x: Int) => x
f(3)

}

mb-scalac func.scala -Xprint:minibox-commit
[[syntax trees at end of minibox-commit]] // func.scala
package <empty> {

object Test extends Object {
...
// notice the type change: Function1 -> MiniboxedFunction1
val f: miniboxing.runtime.MiniboxedFunction1[Int,Int] = ...

def f(): miniboxing.runtime.MiniboxedFunction1[Int,Int] =
Test.this.f

f().apply_JJ(int2minibox(3))
}

}

Here is how Scala would normally encode f, without the miniboxing plugin:

val f: Function1[Int,Int] = {
@SerialVersionUID(0) final <synthetic> class $anonfun extends

scala.runtime.AbstractFunction1[Int,Int] with Serializable {
...
final def apply(x: Int): Int = x

}
new <$anon: Int => Int>(): Int => Int)

}

Implementation 35

The block defines an anonymous class $anon which extends the Function1 trait and

implements the apply method. Now, when the miniboxing plugin is active, this is:

val f: miniboxing.runtime.MiniboxedFunction1[Int,Int] = {
@SerialVersionUID(0) final <synthetic> class $anonfun extends

scala.runtime.AbstractFunction1[Int,Int] with Serializable {
...
final def apply(x: Int): Int = x

}
MiniboxedFunctionBridge.this.function1_opt_bridge_long_long

[Int, Int]
(5, 5, (new <$anon: Int => Int>(): Int => Int))

}

The MiniboxedFunctionBridge.this.function1 opt bridge long long ac-

tually transforms the instance of Function1 into a MiniboxedFunction1:

def function1_opt_bridge_long_long[T, R](T_Tag: Byte,
R_Tag: Byte,
_f: Function1[T, R]):

MiniboxedFunction1[T, R] =
((T_Tag + R_Tag * 10) match {

case 55 /* INT + INT * 10 */ =>
val _f_cast = _f.asInstanceOf[Function1[Int, Int]]
new MiniboxedFunction1[Int, Int] {

def f: Function1[Int, Int] = _f_cast
def apply(arg1: Int): Int = _f_cast.apply(arg1)

}
...
case _ =>

function1_bridge(_f)
}).asInstanceOf[MiniboxedFunction1[T, R]]

After compiling and letting both miniboxing and specialization do their magic, the case

actually looks like (simplified):

case 55 =>
val _f_cast = _f.asInstanceOf[Function1[Int, Int]]
new MiniboxedFunction1_JJ[Int, Int](INT, INT) {

def f: Function1[Int, Int] = _f_cast
...
// callee for miniboxed sites -> no boxing
def apply_JJ(T_Tag: Byte, arg1: Long): Long =

// call to specialized code -> no boxing
_f_cast.apply$mcII$sp(long2int(arg1))

The bridge basically wraps the Function1 in a MiniboxedFunction1, offering

a call site where miniboxing can call and which, when called, invokes the specialized

variant, thus avoiding boxing completely. This is the change necessary for the miniboxing

plugin to avoid boxing when calling functions.

Implementation 36

The key insight is that once the MiniboxedFunction1 was created, there is no

dispatching overhead – the class created knows exactly how to call the specialized func-

tion code, such that it avoids boxing. Alternative approaches, such as changing the

apply method to a special call would actually perform the match on each invocation,

significantly slowing down execution.

4.3.2 Miniboxed Type Classes

Both wrapping object and introducing new API approaches are applied when mini-

boxed versions of type classes are implemented. Methods of type classes are expected

to be called many times during the object lifetime and that is the reason why optimized

accessors approach was not applied here. Also, cost of automation is too big so new API

for them is introduced. Whenever some of the type classes is used in the code, the user

will be warned that by using new miniboxed API instead program will perform better.

This is implemented for following type classes from scala.math package: Numeric,

Ordering, Integral, Fractional and Ordered. How this is implemented will

be explained on the example of MiniboxedNumeric as implementations of other men-

tioned type classes are similar.

Miniboxed version of Numeric has all the members of class Numeric but miniboxed.

This is achieved by adding @miniboxed annotation to all the type parameters of meth-

ods, traits and objects inside the class. Also, the classes that Numeric class extends are

changed to miniboxed versions, such as MiniboxedOrdering, MiniboxedIntegral

and MiniboxedFractional.

Implementation 37

object MiniboxedNumeric {
trait ExtraImplicits {

implicit def infixNumericOps[@miniboxed T](x: T)(implicit num:
MiniboxedNumeric[T]): MiniboxedNumeric[T]#Ops = new num.Ops(x)

}
object Implicits extends ExtraImplicits { }

trait IntIsMbIntegral extends MiniboxedIntegral[Int] {
val extractNumeric: Numeric[Int] = Numeric.IntIsIntegral
val extractIntegral: Integral[Int] = Numeric.IntIsIntegral
def plus(x: Int, y: Int): Int = x + y
def minus(x: Int, y: Int): Int = x - y
def times(x: Int, y: Int): Int = x * y
def quot(x: Int, y: Int): Int = x / y
def rem(x: Int, y: Int): Int = x % y
def negate(x: Int): Int = -x
def fromInt(x: Int): Int = x
def toInt(x: Int): Int = x
def toLong(x: Int): Long = x.toLong
def toFloat(x: Int): Float = x.toFloat
def toDouble(x: Int): Double = x.toDouble

}
implicit object IntIsMbIntegral extends IntIsMbIntegral with
MiniboxedOrdering.IntMbOrdering

...

MiniboxedNumeric object has a reference to a corresponding Numeric object equiv-

alent (extractNumeric) which makes cost of invoking generic representation as low

as accessing a field:

trait MiniboxedNumeric[@miniboxed T] extends MiniboxedOrdering[T] {
val extractNumeric: Numeric[T]

def plus(x: T, y: T): T
def minus(x: T, y: T): T
...

The warning is generated during the interop-commit phase when syntax tree is

transformed. If any of type classes is matched with current tree and if type parameter

used for instantiation is primitive type or miniboxed type then corresponding warning

will be shown to the user. The code generating the warning follows:

Implementation 38

override def transform(tree0: Tree): Tree = {
...
tree0 match {
...

case _ if (TypeClasses.contains(tree0.symbol)) =>
val targs = tree0.tpe.dealiasWiden.typeArgs
assert(targs.length == 1, "targs don’t match for " + tree0 +

": " + targs)
val targ = targs(0)
// warn only if the type parameter is either a primitive type

or a miniboxed type parameter
if (ScalaValueClasses.contains(targ.typeSymbol) ||

targ.typeSymbol.deSkolemize.hasAnnotation(MiniboxedClass))
minibox.suboptimalCodeWarning(tree0.pos, "Upgrade from " +

tree0.symbol.fullName + "[" + targ + "]" + " to " +
TypeClasses(tree0.symbol).fullName + "[" + targ + "] to benefit
from miniboxing specialization. ")

super.transform(tree0)
...

and the following definition of method foo generates the warning:

scala> def foo[@miniboxed T: Numeric](t: T) = t
<console>:7: warning: Upgrade from scala.math.Numeric[T] to

miniboxing.runtime.math.MiniboxedNumeric[T] to benefit from
miniboxing specialization.

def foo[@miniboxed T: Numeric](t: T) = t
ˆ

foo: [T](t: T)(implicit evidence$1: Numeric[T])T

4.3.3 Miniboxed Tuples

MiniboxedTuple is an example where the approach of optimized accessors is ap-

plied. The reason why this approach is suitable for Tuple classes is that they are usually

created just to have their components accessed a few times during their life. This is not

measured rigorously, but the experience show that this is the case. Optimized accessors

are implemented for Tuple1 and Tuple2, as those are the only two Tuple classes in

Scala standard library that are specialized.

Specialized Tuple can be instantiated in the following way:

def foo: Int = {
val tpl: Tuple1[Int] = new Tuple1[Int](5)
tpl._1

}

The syntax tree after specialize phase would be:

Implementation 39

def foo: Int = {
val tpl: (Int,) = new Tuple1mcIsp(5);
tpl._1mcIsp()

};

which means that specialized variants will be used. But, if miniboxed type parameter

is used to instantiate the Tuple:

def foo[@miniboxed T]: T = {
val tpl: Tuple1[T] = new Tuple1[T](5)
tpl._1

}

the syntax tree would be:

def foo[@miniboxed T](t: T): T = {
val tpl: (T,) = new (T,)(t);
tpl._1()

};
def foonD[T](T$TypeTag: Byte, t: Double): Double = {

val tpl: (T,) = new
(T,)(MiniboxConversionsDouble.this.minibox2box[T](t, T$TypeTag));

MiniboxConversionsDouble.this.box2minibox_tt[T](tpl._1(), T$TypeTag)
};
def foonJ[T](T$TypeTag: Byte, t: Long): Long = {

val tpl: (T,) = new
(T,)(MiniboxConversionsLong.this.minibox2box[T](t, T$TypeTag));

MiniboxConversionsLong.this.box2minibox_tt[T](tpl._1(), T$TypeTag)
};

which means that generic versions are used and that value needs to be boxed and un-

boxed. To avoid this, optimized accessors for Tuple classes are implemented and in-

voked instead of generic ones. The resulting syntax tree using this implementation is:

def foo[@miniboxed T](t: T): T = {
val tpl: (T,) = new (T,)(t);
tpl._1()

};
def foonD[T](T$TypeTag: Byte, t: Double): Double = {

val tpl: (T,) = MiniboxedTuple.this.newTuple1_double[T](T$TypeTag,
t);

MiniboxedTuple.this.tuple1_accessor_1_double[T](T$TypeTag, tpl)
};
def foonJ[T](T$TypeTag: Byte, t: Long): Long = {

val tpl: (T,) = MiniboxedTuple.this.newTuple1_long[T](T$TypeTag, t);
MiniboxedTuple.this.tuple1_accessor_1_long[T](T$TypeTag, tpl)

}

The optimized constructors and accessors switch on type tag and decide which special-

ized version should be instantiated and instead of invoking generic one, right specialized

Implementation 40

version will be invoked for miniboxed type parameter. The implementation of accessor

invoked instead of Tuple1. 1 when the value is encoded into Long is:

// Tuple1._1 when type parameter is encoded into Long
def tuple1_accessor_1_long[T1](T1_Tag: Byte, _t: Tuple1[T1]): Long =

(T1_Tag) match {
case MiniboxConstants.INT =>

MiniboxConversions.int2minibox(_t.asInstanceOf[Tuple1[Int]]._1)
case MiniboxConstants.LONG =>

MiniboxConversions.long2minibox(_t.asInstanceOf[Tuple1[Long]]._1)
case _ =>

MiniboxConversions.box2minibox_tt(_t._1, T1_Tag)
}

The constructor for Tuple1 when miniboxed type parameter is encoded into Long

is:

// new Tuple1[T]; T is encoded into Long
def newTuple1_long[T1](T1_Tag: Byte, t1: Long): Tuple1[T1] =

((T1_Tag) match {
case MiniboxConstants.INT =>

new Tuple1[Int](MiniboxConversions.minibox2int(t1))
case MiniboxConstants.LONG =>

new Tuple1[Long](MiniboxConversions.minibox2long(t1))
case MiniboxConstants.CHAR =>

new Tuple1[Char](MiniboxConversions.minibox2char(t1))
case MiniboxConstants.BOOLEAN =>

new Tuple1[Boolean](MiniboxConversions.minibox2boolean(t1))
case _ =>

new Tuple1[T1](MiniboxConversionsLong.minibox2box[T1](t1,
T1_Tag))

}).asInstanceOf[Tuple1[T1]]

The reason why some cases are missing (in tuple1 accessor 1 long for example

CHAR, BOOLEAN, etc.) is that the accessor is specialized only for certain type parameters

and not all of them. The rewiring is done in minibox-commit phase as in that phase

the type used for encoding the value will be known and also the type tag based on type

argument so it can be passed to the right accessor.

Implementation 41

override def transform(tree0: Tree): Tree = {
...
tree0 match {

...
// match Tuple1 constructor
case Apply(Select(New(tpt), nme.CONSTRUCTOR),
List(MiniboxToBox(t1, _, repr1))) if mbTuple_transform &&
(tpt.tpe.typeSymbol == Tuple1Class) =>

val targ1 = tpt.tpe.typeArgs(0).dealiasWiden // type argument
val tags = minibox.typeTagTrees(currentOwner) // all type tags
val ttag1 = tags(targ1.typeSymbol.deSkolemize) // type tag for

type argument
val ctor = MbTuple1Constructors(repr1) // symbol of optimized

constructor
val tree1 = gen.mkMethodCall(ctor, List(targ1), List(ttag1,

transform(t1))) // new tree
localTyper.typed(tree1)

// match Tuple1._1 accessor
case BoxToMinibox(tree@Apply(Select(tuple, field), _), _, repr)

if mbTuple_transform && tupleAccessorSymbols.contains(tree.symbol)
&& tupleFieldNames.contains(field) =>

val targs = tuple.tpe.widen.typeArgs // list of type arguments
assert(targs.length ==

numberOfTargsForTupleXClass(tuple.tpe.typeSymbol), "targs don’t
match for " + tree0 + ": " + targs)

val targ = if (field == nme._1) targs(0) else targs(1)
val tags = minibox.typeTagTrees(currentOwner) // all type tags
val ttag = tags(targ.typeSymbol.deSkolemize) // type tag for

type argument
val accessor = MbTupleAccessor(tree.symbol)(repr) // symbol of

optimized accessor
val tree1 = gen.mkMethodCall(accessor, targs, List(ttag,

tuple)) // new tree
localTyper.typed(tree1)

...
}

When constructor or accessor is matched, it will be replaced with its optimized version

using the code above.

Chapter 5

Benchmarks

Operations on RRB-Vector are used to benchmark the implementations of different

approaches proposed for eliminating slow-downs caused by interaction between differ-

ent generics translations. The RRB-Vector data structure [31] [32] is an improvement

over the immutable Vector, allowing it to perform well for data parallel operations.

Currently, the immutable Vector collection in the Scala library offers very good asymp-

totic performance over a wide range of sequential operations, but fails to scale well for

data parallel operations. The problem is the overhead of merging the partial results ob-

tained in parallel, due to the rigid Radix-Balanced Tree, the Vector’s underlying struc-

ture. Contrarily, RRB-Vector uses Relaxed Radix-Balanced (RRB) Trees, which allows

merges to occur in effectively constant time while preserving the sequential operation

performance. This enables the RRB-Vector to scale up as we would expect when exe-

cuting data parallel operations. Thanks to the parallel improvement, the RRB-Vector

data structure is slated to replace the Vector implementation in the Scala library in a

future release.

Micro-benchmarks are conducted using the following RRB-Vector operations: builder,

map, fold and reverse. Besides micro-benchmarks, one macro-benchmark is imple-

mented which tests Least Square Linear Regression (LSLR) also using RRB-Vector.

The builder simply creates the RRB-Vector using builder:

42

Benchmarks 43

// builder
val rrbVectorBuilder = RRBVector.newBuilder[Int]
var i = 0
while (i < testSize) {

rrbVectorBuilder += i
i += 1

}
rrbVectorBuilder.result()

Other micro-benchmark operations use the already created vector:

// map
rrbVector.map({ x => x + 1 })
// fold
rrbVector.fold(0)((r, c) => r + c)
// reverse
rrbVector.reverse

The macro-benchmark uses two already created vectors, vector x and vector y, and

calculates y for a given x by applying the least square linear regression method:

// least square linear regression
val lslr = new MbLSLRegression(rrbVector_x, rrbVector_y)
lslr.calc_y(100.0)

The ScalaMeter framework [33] is used as a benchmark platform and the measure-

ments are conducted using JDK 1.7 on the machine with processor Intel Core i7-4600U

CPU @ 2.10GHz x 4 and with RAM of 12GiB. Benchmarks’ results are included in Table

5.1.

A slightly modified implementation of RRB-Vector is used; only methods that are

required for the benchmark operations are retained in the implementation, and all other

unused portions are removed. Additionally, to avoid using classes and objects from the

Scala standard library, all necessary code is copy-pasted directly into the implementation

of RRB-Vector. This is done in order to enable changing generics translation of the

code to miniboxing. In cases where original classes from Scala standard library are used,

there is no way to add @miniboxed annotation to their type parameters.

Firstly, all the benchmarks are compiled and run without the miniboxing plugin, using

erased generics and specialization as generics translation and without any optimization

added by miniboxing plugin. The results of ”Erased generics” benchmark can be found

in table 5.1 and will be used to compare the results of miniboxed implementations.

Afterwards, that implementation is compiled with miniboxing plugin. The goal was to

Benchmarks 44

make the implementation use miniboxing transformation by listening to the performance

advisories given by the miniboxing plugin at compile time. After initial compilation, the

compiler will show 20 warnings about how the code can be made more efficient by adding

@miniboxed annotation and upgrading from using Array and type classes to MbArray

and miniboxed type classes. When all advices are applied and the code re-compiled,

there will be new 12 warnings suggesting further possible changes. In 6 steps, all the

warnings can be resolved and the code should run at maximum performance. The results

of benchmarks using this implementation are in the second row of the table. Just by

following compiler advice, the performances of some operations are improved by greater

than 50%. The only operation whose performance could not be improved by miniboxing

as reverse, since it does not depend on generics translation. The negligible slow-

down in the miniboxed version of this operation in comparison to the erased generics

version can be noticed and this is due to the transformation from and to miniboxing

representation. Other operations will cause boxing and unboxing of value parameter, so

miniboxed version speeds-up the execution twice in such cases.

Builder Map Fold Reverse LSLR

Erased
generics

43.197 s 103.00141 s 94.11593 s 31.40347 s 4864.63784 s

Miniboxed
+functions
+tuples
+type classes

22.86196 s 60.36632 s 42.05129 s 35.23601 s 1818.09459 s

Miniboxed
+functions
+tuples
-type classes

25.83488 s 65.76176 s 47.55423 38.58408 s 2023.08025 s

Miniboxed
+functions
-tuples
-type classes

23.61408 s 62.9039 s 44.56721 s 35.36282 s 7627.1253 s

Miniboxed
-functions
-tuples
-type classes

22.17166 s 141.88773 s 150.83549 s 35.73596 s 7739.11686 s

Table 5.1: RRB-Vector operations for 5M elements

The miniboxed implementation obtained by listening to compiler advice in the form of

warnings exploits all the features existing in miniboxing plugin such as using miniboxed

type classes, miniboxed tuples and miniboxed functions. To demonstrate how these fea-

tures influence the performances of operations used in benchmarks, we will exclude them

one by one and show the results. Firstly, to use Scala’s type classes instead of miniboxed

type classes, we will just change all the occurrences of them in the implementation as

Benchmarks 45

the rewiring is not automated for them. From the results, we can see that only numbers

of LSLR are worse which is expected because this is the only operation that uses type

classes (more specific method sum of RRB-Vector uses Numeric). Other operation

are not influenced by this change. Next, we will downgrade by using Scala’s Tuple

classes instead of MiniboxedTuple classes. This has significant influence on LSLR

macro-benchmark as it uses tuples extensively in calculations and slows-down the exe-

cution almost 4 times. Finally, the miniboxed functions are changed to Scala’s functions

and this makes operations map and fold slower by 2-3 times. This change influences

only these operations as they are using functions as parameters. What is also interesting

is the difference between the implementation of erased generics and miniboxed imple-

mentation without mentioned features (miniboxed functions, tuples and type classes).

Implementation using erased generics performs significantly faster for some operations

(map, fold and LSLR). This is due to the inefficient interoperation between miniboxing

translation and specialization. So, in version that uses miniboxing but without mini-

boxed functions, tuples and type classes, all of the data has to be transformed from

miniboxing representation to a specialized representation which slows-down the execu-

tion. Implementation that uses erased generic will use the optimization provided by

Scala standard library and specializes the objects of mentioned classes.

Chapter 6

Related Work

The most significant related work lies in the area of run-time profilers which can

offer feedback at the language level. We would like to point the work of St-Amour on

optimization feedback [35] and feature-based profiling [36]. Profiling has existed for a

long time at lower levels, such as at the Java Virtual Machine level, with profilers such

as YourKit [37] or the Java VisualVM [38] or the x86 assembly, with processor hardware

counters.

The area of opportunistic optimizations has seen an enormous growth thanks to dy-

namic languages such as JavaScript, Python and Ruby, which require shape analysis and

optimistic assumptions on the object format to maximize execution speed. We would

like to highlight the work of Mozilla on their *Monkey JavaScript VMs [23], Google’s

V8 JavaScript VM and the PyPy Python virtual machine [40][39]. While this is just

a short list of highlights, the Truffle compiler [41][27][42] is now a general approach to

writing interpreters that make optimistic assumptions, allowing maximum performance

to be achieved by partially evaluating the interpreter for the program at hand, essentially

obtaining a compiled program thanks to the first Futamura projection [43].

In the area of data representation, this work assumes familiarity with specialization

[14] and miniboxing [18][17]. The program transformation which enables the functions

to be transformed into miniboxed functions is thoroughly discussed in [7][44]. There has

been previous work on miniboxing Scala collections [45] and on unifying specialization

and reified types [46]. We have also seen a revived interest in specialization in the Java

community, thanks to project Valhalla, which aims at providing specialization and value

class support at the virtual machine level [48][47]. In the Java 8 Micro Edition functions

are also represented differently [49].

46

Chapter 7

Conclusion

In this thesis firstly we presented why slow-downs happen when different compila-

tion schemes interoperate together. Then we proposed several approaches to allowing

different generics compilations schemes to interoperate without incurring performance

regressions. First of them is by issuing actionable performance advisories that steer

programmers away from performance regressions. Other approaches assume providing

alternatives to the standard library constructs that use the miniboxing encoding, thus

avoiding the conversion overhead. As explained, alternatives assume the implementation

of optimized accessors, wrapped objects or even introducing new API. From the bench-

marks conducted on the implemented approaches for Miniboxing plugin, we showed that

the performance can be improved for more than 50% if the interoperation is eliminated

or just some of the alternatives applied where complete elimination is not possible.

47

Bibliography

[1] Scala SIP-15: Value Classes. URL http://docs.scala-lang org/sips/

completed/value-classes.html.

[2] J. Gosling. The Evolution of Numerical Computing in Java - preliminary discussion

on value classes. URL http://web.archive.org/web/19990202050412/

http://java.sun.com/people/jag/FP.html#classes.

[3] J. Rose. Value Types and Struct Tearing. URL https://web.archive.

org/web/20140320141639/https://blogs.oracle.com/jrose/entry/

value_types_and_struct_tearing.

[4] V. Ureche, M. Stojanovic, R. Beguet, N. Stucki, and M. Odersky. Avoiding the

Slow Path in Compiler Optimizations.

[5] Generic Programming. URL https://en.wikipedia.org/wiki/Generic_

programming.

[6] Generic Classes. URL http://docs.scala-lang.org/tutorials/tour/

generic-classes.html.

[7] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for

the past: Adding Genericity to the Java Programming Language. In OOPSLA ’14.

ACM, 2014.

[8] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Late Data Layout: Unifying

Data Representation Transformations. In OOPSLA. ACM, 1998.

[9] X. Leroy. Unboxed Objects and Polymorphic Typing. In PoPL. ACM, 1992.

[10] S. Wholey, and S. E. Fahlman. The Design of an Instruction Set for Common Lisp.

In LFP, 1984

48

http://docs.scala-lang
org/sips/completed/value-classes.html
org/sips/completed/value-classes.html
http://web.archive.org/web/19990202050412/
http://java.sun.com/people/jag/FP.html#classes
https://web.archive.org/web/20140320141639/https://blogs.oracle.com/jrose/entry/value_types_and_struct_tearing
https://web.archive.org/web/20140320141639/https://blogs.oracle.com/jrose/entry/value_types_and_struct_tearing
https://web.archive.org/web/20140320141639/https://blogs.oracle.com/jrose/entry/value_types_and_struct_tearing
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Generic_programming
http://docs.scala-lang.org/tutorials/tour/generic-classes.html
http://docs.scala-lang.org/tutorials/tour/generic-classes.html

Bibliography 49

[11] X. Leroy. Unboxed objects and polymorphic typing. In POPL ’92: Proceedings

of the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages (New York, NY, USA, 1992), ACM, pp. 177–188.

[12] S. L. P. Jones, and J. Launchbury. Unboxed values as first class citizens in a non-

strict functional language. vol. 523 of Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, 1991, pp. 636–666

[13] R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An ad hoc approach

to the implementation of polymorphism. ACM Trans. Program. Lang. Syst. 13, 3

(1991), 342–371.

[14] I. Dragos. Compiling Scala for Performance. PhD thesis, École Polytechnique

Fédérale de Lausanne, 2010.

[15] I. Dragos, and M. Odersky. Compiling Generics Through User-Directed Type Spe-

cialization. In ICOOOLPS, Genova, Italy, 2009.

[16] B. Goetz. The State of Specialization, 2014. URL http://web.archive.org/

web/20140718191952/http://cr.openjdk.java.net/˜briangoetz/

valhalla/specialization.html.

[17] The Miniboxing plugin website. URL http://scala-miniboxing.org.

[18] V. Ureche, C. Talau, and M. Odersky. Miniboxing: Improving the Speed to Code

Size Tradeoff in Parametric Polymorphism Translations. In OOPSLA, 2013.

[19] B. Stroustrup. The C++ Programming Language, Third Edition. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, 3rd edition, 1997.

[20] ECMA International, Standard ECMA-335: Common Language Infrastructure,

June 2006.

[21] B. Goetz. State of the Specialization. URL http://cr.openjdk.java.net/

˜briangoetz/valhalla/specialization.html.

[22] A. Shankar, S. S. Sastry, R. Bodik, and J. Smith. Runtime Specialization With

Optimistic Heap Analysis.

[23] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan,

G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. Smith, R. Reitmaier, M.

Bebenita, M. Chang, and M. Franz. Trace-based Just-in-Time Type Specialization

for Dynamic Languages.

[24] W. Ahn, J. Choi, T. Shull, M. J. Garzarán, and J. Torrellas. Improving JavaScript

Performance by Deconstructing the Type System.

http://web.archive.org/web/20140718191952/http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://web.archive.org/web/20140718191952/http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://web.archive.org/web/20140718191952/http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://scala-miniboxing.org
http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html

Bibliography 50

[25] L. Stadler, T. Wuerthinger, and H. Mossenbock. Partial Escape Analysis and Scalar

Replacement for Java.

[26] M. N. Kedlaya, B. Robatmili, C. Cascaval, and B. Hardekopf. Deoptimization for

Dynamic Language JITs on Typed, Stack-based Virtual Machines.

[27] A. Wob, C. Wirth, D. Bonetta, C. Seaton, and C. Humer, and H. Mossenbock. An

Object Storage Model for the Truffle Language Implementation Framework.

[28] G. Bracha. Generics in the Java Programming Language.

[29] K. D. Lee. Programming Languages: An Active Learning Approach. Springer Sci-

ence and Business Media. pp. 9–10. ISBN 978-0-387-79422-8.

[30] L. Bourdev, and J. Jarvi. Efficient run-time dispatching in generic programming

with minimal code bloat. Journal: Science of Computer Programming - SCP , vol.

76, no. 4, pp. 243-257, 2011.

[31] N. Stucki, T. Rompf, V. Ureche, and P. Bagwell. RRB Vector: A Practical General

Purpose Immutable Sequence. ICFP, 2015.

[32] N. Stucki. Turning Relaxed Radix Balanced Vector from Theory into Practice for

Scala Collections. Master Thesis, EPFL, 2015.

[33] A. Prokopec. ScalaMeter. URL http://axel22.github.com/scalameter/.

[34] M. Stojanovic. Miniboxed RRB-Vector Benchmarks. URL https://github.

com/milosstojanovic/mb-benchmarks.

[35] V. St-Amour, S. Tobin-Hochstadt, and M. Felleisen. Optimization Coach-

ing: Optimizers Learn to Communicate with Programmers. OOPSLA’12, 2012,

10.1145/2384616.2384629.

[36] V. St-Amour, L. Andersen, and M. Felleisen. Feature-Specific Profiling. CC’15,

2015, 10.1007/978-3-662-46663-6 3.

[37] YourKit Profiler. URL https://www.yourkit.com/java/profiler/.

[38] Java VisualVM. URL https://visualvm.java.net.

[39] C. F. Bolz, L. Diekmann, and L. Tratt. Storage Strategies for Collections in Dy-

namically Typed Languages. OOPSLA, 2013, ACM.

[40] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the Meta-level: PyPy’s

Tracing JIT Compiler. ICOOLPS, 2009, ACM.

http://axel22.github.com/scalameter/
https://github.com/milosstojanovic/mb-benchmarks
https://github.com/milosstojanovic/mb-benchmarks
https://www.yourkit.com/java/profiler/
https://visualvm.java.net

Bibliography 51

[41] T. Wurthinger, A. Woss, L. Stadler, G. Duboscq, D. Simon, and C. Wimmer. Self-

Optimizing AST interpreters. DLS, 2012, ACM.

[42] T. Wurthinger, C. Wimmer, A. Woss, L. Stadler, G. Duboscq, C. Humer, G.

Richards, D. Simon, and M. Wolczko. One VM to Rule Them All. Onward, 2013,

ACM.

[43] Futamura, and Yoshihiko. Partial Evaluation of Computation Process–An Ap-

proach to a Compiler-Compiler. Higher-Order and Symbolic Computation, 1999,

10.1023/A:1010095604496.

[44] V. Ureche, A. Biboudis, Y. Smaragdakis, and M. Odersky. Automating Ad hoc Data

Representation Transformations. EPFL, 2015. URL http://infoscience.

epfl.ch/record/207050.

[45] A. Genet, V. Ureche, and M. Odersky. Improving the Performance of Scala Col-

lections with Miniboxing (EPFL-REPORT-200245). LAMP, EPFL, 2014. URL

http://infoscience.epfl.ch/record/200245.

[46] N. Stucki, and V. Ureche. Bridging Islands of Specialized Code Using Macros and

Reified Types. SCALA, ACM, 2013.

[47] B. Goetz. State of the Specialization. 2014. URL http://web.archive.org/

web/20140718191952/http://cr.openjdk.java.net/˜briangoetz/

valhalla/specialization.html.

[48] J. Rose. Value Types and Struct Tearing. 2014. URL https:

//web.archive.org/web/20140320141639/https://blogs.oracle.

com/jrose/entry/value_types_and_struct_tearing.

[49] O. Pliss. Closures on Embedded JVM. JVM Languages Summit, Santa Clara, CA,

2014.

http://infoscience.epfl.ch/record/207050
http://infoscience.epfl.ch/record/207050
http://infoscience.epfl.ch/record/200245
http://web.archive.org/web/20140718191952/http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://web.archive.org/web/20140718191952/http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://web.archive.org/web/20140718191952/http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
https://web.archive.org/web/20140320141639/https://blogs.oracle.com/jrose/entry/value_types_and_struct_tearing
https://web.archive.org/web/20140320141639/https://blogs.oracle.com/jrose/entry/value_types_and_struct_tearing
https://web.archive.org/web/20140320141639/https://blogs.oracle.com/jrose/entry/value_types_and_struct_tearing

	Abstract
	Contents
	1 Introduction
	2 Generics
	2.1 Erasure
	2.2 Specialization
	2.3 Miniboxing

	3 Interoperation between Generics Translations
	3.1 Miniboxing and Other Generics Translations
	3.1.1 Miniboxing and Erasure
	3.1.2 Miniboxing and Specialization
	3.1.3 Miniboxing and Scala Standard Library

	3.2 Efficient Interoperation
	3.2.1 Harmonizing Data Transformations
	3.2.1.1 Performance Advisories
	3.2.1.2 Suppressing Warnings
	3.2.1.3 Data Representation Reflection

	3.2.2 Optimized Alternatives
	3.2.2.1 Optimized Accessors
	3.2.2.2 Wrapping Objects
	3.2.2.3 New API

	4 Implementation
	4.1 Miniboxing Plugin - Phases
	4.2 Harmonizing Data Transformations
	4.2.1 Sub-optimal Code Warnings
	4.2.2 Suppresing Warnings

	4.3 Optimized Alternatives
	4.3.1 Miniboxed Functions
	4.3.2 Miniboxed Type Classes
	4.3.3 Miniboxed Tuples

	5 Benchmarks
	6 Related Work
	7 Conclusion

