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Abstract

Invariance to geometric transformations is a highly desirable property of automatic
classifiers in many image recognition tasks. Nevertheless, it is unclear to which ex-
tent state-of-the-art classifiers are invariant to basic transformations such as rotations
and translations. This is mainly due to the lack of general methods that properly mea-
sure such an invariance. In this paper, we propose a rigorous and systematic approach
for quantifying the invariance to geometric transformations of any classifier. Our key
idea is to cast the problem of assessing a classifier’s invariance as the computation of
geodesics along the manifold of transformed images. We propose the Manitest method,
built on the efficient Fast Marching algorithm to compute the invariance of classifiers.
Our new method quantifies in particular the importance of data augmentation for learn-
ing invariance from data, and the increased invariance of convolutional neural networks
with depth. We foresee that the proposed generic tool for measuring invariance to a large
class of geometric transformations and arbitrary classifiers will have many applications
for evaluating and comparing classifiers based on their invariance, and help improving
the invariance of existing classifiers.

1 Introduction
Due to the huge research efforts that have been recently deployed in computer vision and
machine learning, the state-of-the-art image classification systems are now reaching perfor-
mances that are close to those of the human visual system in terms of accuracy on some
datasets [18, 33]. Questions emerge to what differences remain between human visual sys-
tem and state-of-the-art classifiers. We focus here on one key difference, namely the problem
of invariance to geometric transformations. While the human visual system is invariant to
some extent to geometric transformations, it is unclear whether automatic classifiers enjoy
the same invariance properties. The importance of invariance in classifiers has been outlined
in recent works [22, 30], and effective solutions for transformation-invariant classifications
have been proposed by either adapting the classification rules with proper distance metrics
[11, 16, 29, 36], or by improving the features used for classification [1, 4, 24]. To validate
such new design choices and to understand how to further improve classifiers’ invariance, it
becomes however primordial to develop general methods to properly measure the robustness
of classifiers to geometric transformations of data samples. Previous works have proposed
methods to evaluate the invariance of classifiers, either by controlled changes in simple im-
ages [3], or by specific tests for features of popular neural network architectures [13]. These
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previous studies are however limited, as they are restricted to one-dimensional transforma-
tions (e.g., rotations only), to particular types of classifiers (e.g., neural networks) or to
simple images (e.g., sinusoidal images), and are based on heuristically-driven quantities.
Another approach for measuring invariance consists in generating datasets with transformed
images, and measuring the accuracy of classifiers on these datasets [19, 21, 31]. This is how-
ever laborious and involves building a novel well-designed dataset to compare all classifiers
on a common ground.

In this paper, we propose a principled and systematic method to measure the robustness
of arbitrary image classifiers to geometric transformations. In particular, we design a new
framework that can be applied to any Lie group T and to any classifier f regardless of the
particular nature of the classifier. For a given image, we define the invariance measure as
the minimal distance between the identity transformation and a transformation in T that is
sufficient to change the decision of the classifier f on that image. In order to define the
transformation metric, our novel key idea is to represent the set of transformed versions of
an image as a manifold; the transformation metric is then naturally captured by the geodesic
distance on the manifold. Hence, for a given image, our invariance measure essentially
corresponds to the minimal geodesic distance on the manifold that leads to a point where the
classifier’s decision is changed. A global invariance measure is then derived by averaging
over a sufficiently large sample set. Equipped with our generic definition of invariance,
we leverage the techniques used in the analysis of manifolds of transformed visual patterns
[9, 14, 38] and design the Manitest method built on the efficient Fast Marching algorithm
[15, 35] to compute the invariance of classifiers.

Using Manitest, we quantitatively show the following results: (i) The invariance of con-
volutional neural networks and scattering transforms largely outperform SVM classifiers,
(ii) Two classifiers can have a similar accuracy, but have different invariance scores, (iii) The
invariance of convolutional neural networks improves with network depth, (iv) On natural
images classification task, baseline convolutional networks are not invariant to slight com-
binations of translations, rotations, and dilations (v) Data augmentation can dramatically
increase the invariance of a classifier. The latter result is particularly surprising, as an SVM
with RBF kernel trained on augmented samples can outperform the invariance of convolu-
tional neural networks (without data augmentation) on a handwritten digits dataset. Besides
these results, we showcase examples illustrating the introduced invariance scores. By pro-
viding a systematic tool to assess the classifiers in terms of their robustness to geometric
transformations, we bridge a gap towards understanding the invariance properties of differ-
ent families of classifiers, which will hopefully lead to building new classifiers that perform
closer to the human visual system. The code of Manitest is available on the project website1.

2 Problem formulation
2.1 Definitions

We consider a mathematical model where images are represented as functions I : R2 → R,
and we denote by L2 the space of square integrable images. Let T be a Lie group consisting
of geometric transformations on R2, and we denote by p the dimension of T (i.e., number
of free parameters). For any transformation τ that belongs to T , we denote by Iτ the image I
transformed by τ . That is, Iτ(x,y) = I(τ−1(x,y)). Examples of Lie groups include the rota-
tion group SO(2) (p = 1, described by one angle) and the similarity group (p = 4, described

1http://sites.google.com/site/invmanitest/
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by a 2D translation vector, a dilation and an angle).
Consider an image classification task, where the images are assigned discrete labels in

L = {1, . . . ,L}, and let f be an arbitrary image classifier. Formally, f is a function defined
on the space of square integrable images L2, and takes values in the set L. Our goal in this
paper is to evaluate the invariance of f with respect to T . Given an image I, we define the
invariance score of f relative to I, ∆T (I; f ), to be the minimal normalized distance from the
identity transformation to a transformation τ that changes the classification label, i.e.,

∆T (I; f ) = min
τ∈T

d(e,τ)
‖I‖L2

subject to f (Iτ) 6= f (I), (1)

where e is the identity element of the group T and d : T ×T → R+ is a metric on T that
we define later (Section 2.2). The invariance score quantifies the resilience of f to trans-
formations in T , namely larger values of ∆T (I; f ) indicate a larger invariance. It is worth
noting that our definition of ∆T is related to the recent work in [32] that defined adversar-
ial noise as the minimal perturbation (in the Euclidean sense) required to misclassify the
datapoint. However, instead of considering generic adversarial perturbations, we focus on
minimal geometric transformations, with a metric borrowed from the group T .

For a given a distribution of datapoints µ , the global invariance score of f to transforma-
tions in T is defined by

ρT ( f ) = EI∼µ ∆T (I; f ). (2)

The quantity ρT ( f ) depends on f as well as the distribution of datapoints µ . However,
to simplify notations, we have omitted the dependence on µ , assuming the distribution is
clear from the context. In practical classification tasks, the true underlying distribution µ is
generally unknown. In that case, we estimate the global resilience by taking the empirical
average2 over training points: ρ̂T ( f ) = 1

m ∑
m
j=1 ∆T (I j; f ).

2.2 Transformation metric
We discuss and introduce the distance used for the invariance score ∆T (I; f ). It should
be noted that T is possibly a multi-dimensional group (i.e., the transformations in T are de-
scribed by many parameters of different nature such as translation, rotation, scale, ...); hence,
defining a trivial metric that measures the absolute distance between transformation param-
eters is of limited interest, as it combines parameters possibly of different nature. Instead, a
more relevant notion of distance is one that depends on the underlying image I. In that case,
d(τ1,τ2) quantifies the change in appearance between images Iτ1 and Iτ2 , rather than an ab-
solute distance between the two transformations. Consider for example the image distance
dI(τ1,τ2) = ‖Iτ1 − Iτ2‖L2 . While dI explicitly depends on the underlying image I, it fails to
capture the intrinsic geometry of the family of transformed images. To illustrate this point,
we consider a simple example of images in Fig. 1 with two transformed versions Iτ1 and Iτ2
of a reference image Iτ0 . Note that dI(τ0,τ1) = dI(τ0,τ2), as both transformed objects have
no intersection with the reference object. However, it is clear that Iτ2 incurred a large rotation
and translation, while Iτ1 underwent a slight vertical translation. Hence, the distance metric
should naturally satisfy d(τ0,τ1) < d(τ0,τ2), which is not the case for the image distance.
This is crucial in our setting, as a classifier that recognizes the similarity of the objects in Iτ2

2In practice, it is sufficient to consider an empirical average over a sufficiently large random subset of the training
set. The number of samples is chosen to achieve a small enough confidence interval.
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I⌧0 I⌧1 I⌧2

Figure 1: Schematic representation of the problem encountered by using metric the L2 met-
ric. Black pixels indicate pixels with value 0, and Iτ1 , Iτ2 are obtained by applying a combi-
nation of rotation and translation to Iτ0 . Image taken from [12].

I⌧0 I⌧2

Figure 2: Images along the geodesic path from Iτ0 to Iτ2

and Iτ0 is certainly more robust to transformations than a classifier that merely recognizes the
similarity between Iτ1 and Iτ0 , and should be given a higher score. This example underlines a
well-known fundamental issue with the L2 distance that fails to capture the intrinsic distance
of the curved manifold of transformed images (see e.g., [9, 34]). To correctly capture the
intrinsic structure of the manifold, we define d to be the length of the shortest path belonging
to the manifold (i.e., the geodesic distance). For illustration, we show in Fig. 2 images along
the geodesic path from τ0 to τ2; the geodesic distance is then essentially the sum of local L2

distances between transformed images over the geodesic path. We formalize these notions
as follows.

Let M(I) be the family of transformed images M(I) = {Iτ : τ ∈ T }. Equipped with
the L2 metric,M(I) defines a metric space and a continuous submanifold of L2. Following
the works of [14, 38] that considered similar manifolds in different contexts, we callM(I)
an Image Appearance Manifold (IAM), and we follow here their approach. Assuming that
γ : [0,1] 7→ T is a C1 curve in T , and that Iγ(t) is differentiable with respect to t, we define
the length L(γ) of γ as

L(γ) =
∫ 1

0

∥∥∥∥ d
dt

Iγ(t)

∥∥∥∥
L2

dt. (3)

Note that Eq. (3) is expressed in terms of the L2 metric in the image appearance manifold
and corresponds to summing the local L2 distances between transformed images over the
path Iγ . We now show that L(γ) can be expressed as a length associated to a Riemannian
metric on T that we now derive. Defining the map

F : T →M, τ 7→ Iτ ,

we have
d
dt

Iγ(t) = (F ◦ γ)′(t) = dFγ(t)(γ
′(t)),

where dFτ denotes the differential of F at τ , and γ ′ is derivative of γ . It follows that

L(γ) =
∫ 1

0

√
gγ(t)(γ

′(t),γ ′(t))dt
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where gτ is the Riemannian metric (i.e., a positive bilinear form on TτT , the tangent space
of T at τ), given by:

gτ(v,w) = 〈dFτ(v),dFτ(w)〉L2 for all v,w ∈ TτT .
Note that g can be equivalently seen as the pullback of the L2 metric onM(I) along F . By
choosing a basis in the tangent space, the length L(γ) can be equivalently written

L(γ) =
∫ 1

0

√
γ ′(t)T Gγ(t)γ

′(t)dt,

where Gγ(t) is the p× p positive definite matrix associated to the bilinear form g.

Example 1 (Rotation, T = SO(2)) The transformation group T is parametrized with a ro-
tation angle θ (p = 1). In this case, the matix Gθ is of size 1 by 1, and equal to

Gθ =

∥∥∥∥∂ Iθ

∂θ

∥∥∥∥2

L2
.

Example 2 (Dilation+Rotation). The group T has 2 degrees of freedom; namely a scale
parameter a, and a rotation angle θ . The Riemannian metric reads

Gτ =

〈 ∂ Iτ
∂a ,

∂ Iτ
∂a

〉 〈
∂ Iτ
∂a ,

∂ Iτ
∂θ

〉〈
∂ Iτ
∂θ

, ∂ Iτ
∂a

〉 〈
∂ Iτ
∂θ

, ∂ Iτ
∂θ

〉 .
Having defined the length of a curve on T , the geodesic distance between two points

τ1,τ2 is defined as the length of the shortest curve joining the two points:

d(τ1,τ2) = inf{L(γ) : γ ∈C1([0,1]),γ(0) = τ1,γ(1) = τ2}.
Finally, our problem therefore consists in computing the global invariance score, or

equivalently ∆T (I; f ) defined in Eq. (1), where d is the geodesic distance. In other words,
our problem becomes that of computing the minimal geodesic distance from the identity
transformation to a transformation that is sufficient to change the estimated label of f .

3 Invariance score computation
The key to an efficient and accurate approximation of ∆T (I; f ) lies in the effective computa-
tion of geodesics on the manifold (T ,G) that we address as follows.

Let u(τ) = d(e,τ) be the geodesic map that measures the geodesic distance between the
(fixed) identity element and τ . The geodesic map satisfies the following Eikonal equation
[26]

‖∇u(τ)‖G−1
τ

= 1 for τ ∈ T \{e}, and u(e) = 0, (4)

where ‖x‖A =
√
〈x,x〉A with 〈x,y〉A = xT Ay. Moreover, it was proved in [7] that the geodesic

map u is the unique viscosity solution of the Eikonal equation, provided that τ→G(τ) is con-
tinuous. Many numerical schemes rely on the Eikonal equation characterization to approx-
imate the geodesic map. We use here the popular Fast Marching (FM) method [15], a fast
front propagation approach that computes the values of the discrete geodesic map in increas-
ing order. We only provide here a brief description of FM due to space constraints, and focus
on the case where the manifold T is two-dimensional (i.e., p = 2). The extension to arbitrary
dimensions is straightforward, and we refer to [26, 28] for more complete explanations and
computations.
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Algorithm 1 Manitest method (with p = 2) for computing ∆T (I; f )
Initialize U(e) = 0, U = ∞ otherwise, and tag all nodes as unknown.
while termination criterion is not met do

Select the unknown node τmin that achieves minimal distance U .
Tag τmin as known.
If f (Iτmin) 6= f (I), set ∆T (I; f )←U(τmin)/‖I‖L2 and terminate.
for all unknown τ ∈N (τmin) do

Update U(τ) to be the minimum of itself, U(τmin)+‖τ−τmin‖Gτ
and the expression

in Eq.(5).
end for

end while

T⇤

⌧ ⌧min

⌧̃

t⌧min + (1� t)⌧̃

⌧a

⌧b

Figure 3: Schematic representa-
tion of the discretized manifold T∗,
and the Fast Marching update rule.
In this figure, we have N (τ) =
{τ̃,τmin,τa,τb}.

We assume that the manifold T is sampled using a
regular grid; let T∗ be the sampling of T , and U be
the discrete vector that approximates u at the nodes.
The structure of Fast Marching is almost identical to
Dijkstra’s algorithm for computing shortest paths on
graphs [8]. The main difference lies in the update
step, which bypasses the constraint of propagation
along edges. For a given node τ , define N (τ) to be
the set of neighbours of τ (see illustration in Fig. 3).
In the FM algorithm, each grid point is tagged either
as Known (nodes for which distance is frozen), or
Unknown (nodes for which distance can change in
subsequent iterations). Initially, the grid points are
set to Unknown, and U is set to ∞, except U(e) that
is set to zero. At each iteration of FM, the unknown
node τmin with smallest U is selected, and tagged as
Known. Then, each unknown neighbour τ ∈N (τmin)
is visited, and U(τ) is updated as follows: U(τ) is set
to be the minimum of itself, U(τmin)+‖τ− τmin‖Gτ

and

min
t∈[0,1]

tU(τmin)+(1− t)U(τ̃)+‖tτmin +(1− t)τ̃− τ‖Gτ
, (5)

for each known τ̃ such that (τ,τmin, τ̃) forms a triangle (see Fig. 3). It is worth noting
that, unlike Dijkstra, FM seeks the optimal point (possibly outside the set T∗) on the neigh-
bourhood boundary that minimizes the estimated distance at τ , under a linear approximation
assumption (Eq. 5). Fortunately, the problem in Eq. (5) can be solved in closed form, as it
corresponds to the minimization of a scalar quadratic equation [28].

The Manitest method, which applies FM algorithm to compute ∆T (I; f ), is given in Al-
gorithm 1 in the two dimensional case. The algorithm is stopped whenever a transformation
that changes the classification label is found.3 The nodes and metrics are generated on-the-
fly in order to avoid spending unnecessary ressources on far-away nodes that might be farther
than the minimal transformation that satisfies f (I) 6= f (Iτ) and therefore never visited.

3To ensure the termination of the algorithm (even if no successful transformation is found) we limit the num-
ber of iterations N to 50,000. However, in all our experiments, this limit was never reached, and the algorithm
terminated by successfully finding a transformation that satisfies f (Iτ ) 6= f (I).
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The complexity of Manitest is O(N log(N)), where N is the number of visited nodes if
a min-heap structure is used [26] (for constant p, and constant cost for evaluation of f ). It
is important to note however that the complexity of the algorithm has an exponential de-
pendence on the dimension p since our method involves the enumeration of simplices in
dimension p; this is however not a big limitation as our main focus goes to low-dimensional
transformation groups (e.g., p≤ 6 for affine transformations).

Finally, we note that when the metric is isotropic (i.e., Gτ is proportional to the identity
matrix for all τ), FM provides a consistent scheme. That is, as the discretization step tends
to zero, the solution computed by the algorithm tends towards the viscosity solution of the
Eikonal equation. Unfortunately, for arbitrary anisotropic metrics, consistency is however
not guaranteed, and the exact computation of the geodesics becomes much more difficult and
computationally demanding (see [2, 23, 25, 27]). However, we observed that the anisotropy
of the considered metric is generally not very large in the vicinity of e (although it exceeds
the theoretical limit of guaranteed consistency). This leads to empirically accurate estimates
of the geodesic distance using Manitest, when the discretization step is sufficiently small.
Finally, we stress that that all previous methods addressing the metric anisotropy can readily
be applied to our setting, and we leave that as future work.

4 Experiments
We propose now a set of experiments to study the invariance of classifiers in different set-
tings. In particular, we consider the following transformation groups:
• Ttrans: in-plane translations of the image (p = 2),
• Tdil+rot: dilations and rotations around the center of the image (p = 2),
• Tsim: similarity transformations that describe combinations of translations, dilations

and rotations around the center of the image (p = 4).
In all experiments, we used a discretization step of 0.5 pixels for translations, π/20

radians for rotation, and 0.1 for dilation for Manitest. Finally, the transformed images have
the same size as the original image, and we use a zero-padding boundary condition.

4.1 Handwritten digits dataset
We first compare the invariance of different classifiers on the MNIST handwritten digits
dataset [20]. We consider the following classifiers:

1. Linear SVM [10],
2. SVM with RBF kernel [6],
3. Convolutional Neural Network [37]: we employ a baseline architecture with two

hidden layers containing each a convolution operation (5× 5 filters with 32 feature
maps for the first layer and 64 for the second layer), a rectified linear unit nonlinearity,
and a max pooling over 2× 2 windows followed by a subsampling. The architecture
is trained with stochastic gradient descent, with a softmax loss.

4. Scattering transform followed by a generative PCA classifier. We used the same
settings as in [5], and we refer to that paper for more details.

Table 1 reports the performance of the different classifiers under study, and their in-
variance scores ρ̂T ( f ) using Manitest. As expected, the linear and RBF-SVM classifiers
compare poorly to other classifiers in terms of invariance. This is due to the construction of
the CNN and Scat. PCA, which explicitly take into account the invariance through pooling
operations, while others do not. Moreover, it can be noted that Scat. PCA outperforms CNN
in terms of robustness to translations, and global similarity transformations, even if the two
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Group L-SVM RBF-SVM CNN Scat. PCA
Test error (%) 8.4 1.4 0.7 0.8
Translations (T = Ttrans) 0.8 1.3 1.7 2.1
Dilations + Rotations (T = Tdil+rot) 0.8 1.5 1.9 1.8
Similarity (T = Tsim) 0.6 1.1 1.5 1.6

Table 1: Accuracy and invariance scores of different classifers on the MNIST dataset.

Original image

RBF-SVM 1.2 

CNN: 1.6 

L-SVM:  0.05

Scat. PCA: 2.2 

Rotation

S
c
a

le

L−SVM

−1 0 1

0.5

1

1.5

Rotation

S
c
a

le

RBF−SVM

−1 0 1

0.5

1

1.5

Rotation

S
c
a

le

CNN

−1 0 1

0.5

1

1.5

Rotation

S
c
a

le

Scat. PCA

−1 0 1

0.5

1

1.5

(b)(a)

Figure 4: Distance map with Tdil+rot group (a), and correctly classified regions (b), for the
four tested classifiers on an example image of digit “4”. Geodesic paths are also shown.

classifiers have similar test error. This result is in agreement with the theoretical evidence
[5, 24] showing that scattering classifiers are invariant to deformations.

Number of additional training samples ×10
4

0 0.5 1 1.5 2 2.5 3
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v
a
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a
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e
 s

c
o
re

0.6

0.8

1

1.2

1.4

1.6

1.8

L-SVM
RBF-SVM

Figure 5: Invariance score versus
number of additional training sam-
ples, for MNIST, with T = Tsim.

To further get an insight on the invariance of the
classifiers, we focus on the two-dimensional group
Tdil+rot, and show in Fig. 4 (a) the geodesic distance
map for an example image of digit “4” computed
starting from the identity transformation (shown by
a red dot at the center). Moreover, we overlay the
minimally transformed images that change the labels
of each of the classifiers, along with the correspond-
ing geodesic paths. On this example, the Scat. PCA
classifier is the most robust: a large dilation, accom-
panied with a rotation is required to change the clas-
sification label. In contrast, the linear SVM is easily
“fooled” with a slight dilation. In Fig. 4 (b) we illus-
trate in white the region of the Rotation-Scale plane,
where the classifier outputs the correct label “4”. In-
terestingly, the CNN and Scat. PCA classifiers are
largely invariant to dilations (indicated by the verti-
cal shape of the white region), while being moder-
ately robust to rotations.

In vision tasks, it is common practice to augment the training data with artificial exam-
ples obtained by slightly distorting the original examples to achieve invariance. Although
this practice is known to improve the classification performance of the classifiers on many
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tasks, its effect on the invariance of the classifier is not quantitatively understood. Fig. 5
illustrates the Manitest invariance scores for L-SVM and RBF-SVM classifiers trained on
augmented training sets obtained by randomly generating transformations4 from the simi-
larity group Tsim, on the MNIST dataset. Both classifiers improve their invariance score as
more transformed samples are added to the training set. This result has moreover an ele-
ment of surprise, as RBF-SVM succeeds in improving its invariance score by around 50%
with mere additions of artificial examples in the training set, and outperforms the invariance
of CNN (without data augmentation). Moreover, the obtained score is comparable to Scat.
PCA classifier, which is carefully designed to satisfy invariance properties. This experiment
permits to characterize the actual power of data augmentation for learning the invariance
from the data.

4.2 Natural images
In this second experimental section, we perform experiments on the CIFAR-10 dataset [17].
We focus on baseline CNN classifiers, and learn architectures with 1, 2 and 3 hidden layers.
Specifically, each layer consists of a successive combination of convolutional, rectified linear
units and pooling operations. The convolutional layers consist of 5× 5 filters with respec-
tively 32,32 and 64 feature maps for each layer, and the pooling operations are done on a
window of size 3×3 with a stride parameter of 2. We build the three architectures gradually,
by successively stacking a new hidden layer on top of the previous architecture (kept fixed).
The last hidden layer is then connected to a fully connected layer, and the softmax loss is
used. Moreover, the different architectures are trained with stochastic gradient descent. On
the test set, the error of the three architectures are respectively 35.6%, 25.0% and 22.7%.
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(a) Translations
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(b) Dilation + Rotation
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(c) Similarity

Figure 6: Invariance scores of CNNs on Ttrans, Tdil+rot and Tsim, for the CIFAR-10 dataset.

We show in Fig. 6 the Manitest invariance scores of the three architectures. Our ap-
proach captures the increasing invariance with the number of layers of the network, for the
three groups under study. This result is in agreement with empirical studies and previous
known belief [1, 13] that invariance increases with the depth of the network. However, while
previous results were measuring the invariance with respect to a one dimensional transfor-
mation group (e.g., rotation only), Manitest provides a systematic and principled way of
verifying the increased invariance of CNNs with depth on more complex Lie groups (e.g.,
similarity transformations). Interestingly enough, it should be noted that despite the rela-
tively small difference in performance between the two and three layers architectures, the
invariance score strongly increases. This highlights again that invariance and performance
measures capture two different properties of classifiers.

4Random transformations are constrained as follows: translation of at most 3 pixels in each direction, a scaling
parameter between 0.7, and 1.3, and a rotation of at most 0.2 radians.
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(a) Worst 20 (b) Average 20

(c) Top 20

Figure 7: Illustration of images having (a) worst, (b) average, (c) top invariance to similarity
transformations (i.e., T = Tsim), for the three-layer CNN. The odd rows show the original
images, and the even rows show the minimally transformed images changing the prediction
of the CNN. The Manitest invariance score ∆T (I; f ) is indicated on each transformed image.
All original images are correctly classified by the 3-layer CNN.

Compared to the handwritten digits task, note that the Manitest scores obtained on the
CIFAR task are generally much smaller, which suggests that it is harder to achieve invari-
ance on this task. To visualize the level of invariance of the 3-layer CNN on the CIFAR-10
dataset, we show in Fig. 7 sorted example images. For images with an average invari-
ance score or less, note that the distinction between the transformed and original images are
hardly perceptible. This suggests that the CNN is not robust to combinations of translations,
rotation and dilation, even if it achieves a high accuracy. On the other hand, the difference
between the original and the minimally transformed images are clearly perceptible for the
top-scored images, even though a human observer is likely to correctly recognize the class
of the transformed images.

5 Conclusion
In this paper, we proposed a systematic and rigorous approach for measuring the invariance
of any classifier to low-dimensional transformation groups. Using a manifold perspective, we
were able to convert the problem of assessing the classifier’s invariance to that of computing
geodesic distances. Using Manitest, we quantified the increasing invariance of CNNs with
depth, and highlighted the importance of data augmentation for learning invariance from
data. We believe Manitest will be used to perform an in-depth empirical analysis of different
classification architectures, in order to have a better understanding of the building blocks that
best preserve invariance, and potentially build more robust classifiers.
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