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Abstract The continuous matrices of atomic displacements and lattice distortion from face-

centred-cubic (fcc) to body-centred-cubic (bcc) phases compatible with the hard-sphere 

geometry of iron atoms are calculated for different possible final orientation relationships 

(ORs), such as Bain, Pitsch and Kurdjumov-Sachs (KS). The angular distortion introduced in 

the calculations appears as a natural order parameter of the fcc-bcc transitions. The average 

atomic displacement is lower with Pitsch and KS ORs than for Bain; one of these two 

distortions probably constitutes the natural mechanism for stress-free isolated small crystals. 

For matrix-embedded transformations that occur in bulk steels, the distortion associated to KS 

OR seems very appropriate: it has special mathematical properties and can explain the {225} 

habit planes with a simple O-lattice criterion. From these calculations, the fcc-bcc martensitic 

transformation appears to be “angular distortive”, and not “shear” type as usually assumed. 

Keywords: Atomic displacements, Lattice distortion, Habit planes, Martensite, Steels 

1. Introduction 

Martensitic transformations between face centred cubic (, fcc) austenite and body centred 

cubic (, bcc) martensite have been studied for more than one century. Among the earlier 

works, one can cite those of Adolf Martens [1] and Floris Osmond [2] linked to the 

development of metallography. In 1924, Bain [3] proposed a simple model of fcc-bcc 

transformation. Few years later, the orientation relationship (OR) between austenite and 

martensite was measured by X-ray diffraction by Kurdjumov & Sachs [4], Nishiyama [5], and 

Wassermann [6]. The KS and NW ORs are separated by 5°, and both are at 10° far from the 

Bain OR. The discrepancy between the “expected” Bain OR and the experimental ORs made 

these authors propose separately a similar model of lattice distortion by shear and dilatation, 

which is known as the KSN model. This approach does not seem to have convinced the 

scientists of that time because they continued their efforts to conciliate the theoretical Bain 

distortion with the experimentally determined ORs and the shapes of the martensite laths, 
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following Greninger and Troiano’s approach [7]. This led in the 1950s to the 

phenomenological theory of martensite transformation/crystallography (PTMT or PTMC) [8]. 

The PTMC treats the lattice deformations, shape and internal defects of the martensite 

product in a coherent entangled way. Two important considerations are in the core of this 

theory: a) martensitic transformations occur according to shear mechanisms, and b) the Bain 

distortion has the lowest strains. Details of the theory can be found in many reference books 

such as those of Nishiyama [9], Christian [10] and Bhadeshia [11]. The PTMC is now applied 

to a large family of phase transition materials beyond the historical steels and iron alloys, 

such as TiNi and other shape-memory alloys [12].  In steels, the PTMC nicely describes the 

{259} and {3 10 15} habit planes, but more complex calculations are required for the {225} 

habit planes [9][13][14]. Despite its success and its board use, PTMC remains 

phenomenological. The exact atomic displacements of the iron atoms during the 

transformation are not in its scope: “The crystallographic theory of martensite is on the hand 

called phenomenological; the steps into which the transformation is factorised are not unique 

and do not necessarily describe the actual path by which the atoms move from one lattice to 

the other. The theory simply provides a definite link between the initial and final states 

without being certain of the path in between” [11]. 

Actually, neither the Bain distortion with PTMC nor the KSN model take into account the 

atomic movements; they are pure lattice transformation models. To our knowledge, Bogers 

and Burgers in 1964 [15] were the first to consider the iron atoms as hard spheres, and they 

proposes lattice deformations that are compatible with the atom sizes. Their approach, later 

refined by Olson and Cohen [16] assumes that the transformation results from a (multi)shear 

mechanism, but is not based on the Bain distortion. For the few last years, we have also tried 

to develop a model that could describe the atomic displacements during the transformation. 

Our motivation dates from our observation of some peculiar features in the pole figures 

obtained by X-ray diffraction and Electron BackScatter Diffraction (EBSD); they are spread 

between KS and the other classical ORs such as NW, Pitsch and Greninger-Troiano (GT) and 

could be simulated by two continuous rotations A and B [17]. Since these features are 

observed in many steels, iron-nickel alloys and meteorites, and brass (independently of the 

morphology and habit planes), we have considered them as the trace of the plastic 

accommodation of the lattice deformation. In 2013, we proposed a hard-sphere model of fcc-

bcc martensitic transformations [18], which is based on the Pitsch OR [21]. We called it “one-

step” in comparison with a “two-step” model published few years earlier in which we 

imagined that the transformation was produced by the movement of partial Shockley 

dislocations leading to an intermediate fleeting hcp phase [17]. In the one-step Pitsch model 

the continuous features in the pole figures could be explained by taking into account the 
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deformation field imposed by the transformation in the fcc surrounding matrix. Some 

experimental observations, such as the nucleation of the martensite at intersection of stacking 

faults planes were qualitatively described.  

The present work is in the continuity of the one-step model [17]. The calculations rely on 

pure geometry and have no ambition to compete with the PTMC. As schematically 

represented in Fig. 1, PTMC treats the lattice deformations, shape and internal defects of the 

martensite product in a coherent way, whereas our approach only tries to determine the lattice 

distortions compatible with a hard-sphere rule, i.e. avoiding the interpenetration of the iron 

atoms during the lattice distortion. This approach relies on an assumption different from 

PTMC. Instead of considering that the natural distortion occurs by Bain and that the final OR 

results from an accommodation process necessary to establish an invariant plane strain; we 

consider that the distortion is actually the one that gives the final OR and that the 

accommodation in the austenitic matrix is only a consequence of that distortion. Many 

questions could be raised from this approach: a) what is the mathematical expression of the 

distortions that lead to Pitsch and KS ORs, b) what is their link with the Bain distortion, c) is 

there a possibility to explain the habit planes from this approach? It will be shown that the 

distortion matrix associated to Pitsch and KS ORs could constitute the natural distortion of 

the fcc-bcc martensitic transformation in stress-free crystals. For bulk materials, since KS OR 

is predominant, the distortion matrix associated this OR seems more adequate; it will be 

shown that it has very special properties and seems sufficient to explain the {225} habit 

planes.  

2. Notations, composition rules of matrices and conventions 

Before entering into the details of the calculations, it is worth clarifying the notations and 

conventions that will be used in the paper. The vectors are in bold small letters, such as u for 

vectors of direct space and g for vectors of reciprocal space. The matrices are in bold capital 

letters, such as the distortion matrices D. The bases are indicated by the letter B. A matrix of 

change of coordinates between two bases Bi and Bj is noted [BiBj]. Its three columns are 

constituted of the basic vectors of Bj written in the basis Bi.  A vector u written in a basis Bj is 

noted uj. The same vector expressed in the basis Bi is given by ui = [BiBj] uj. In a crystal of 

phase , noted by the same letter for sake of simplicity, the reference orthonormal basis 

formed by the vectors [100], [010], [001] is written 𝐁0
𝛾
= (a


, b


, c


). Any vector of the 

crystal  can be expressed in another basis 𝐁𝑖
𝛾
 = (x


, y


, z


) with the help of the coordinate-

transformation matrix [𝐁0
𝛾
𝐁𝑖

𝛾
] = 𝐁𝑖

𝛾
. In the 2D case of Fig. 2a, it is 








 


2/12/1

2/12/1
 γiB   

(1)    
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When two crystals of phases  and  are in orientation relationship, the parallelism 

conditions can be expressed by the existence of a common basis Bc constituted by three 

normalized vectors (not necessarily orthonormal). The coordinate transformation matrix is 

then given by [𝐁0
𝛾
 Bc] [Bc 𝐁0

𝛼]. For example, in the 2D case of the Fig. 2b, the common 

basis between the square and rectangular crystals is Bc = (
𝐱𝜸

‖𝐱𝜸‖
,
𝐲𝜸

‖𝐲𝜸‖
) =  (

𝐚𝜶

‖𝐚𝜶‖
,
𝐛𝜶

‖𝐛𝜶‖
). If the 

unity is attributed the lattice parameter a, and if a

 = x


 and b


 = k y


 , the coordinate 

transformation matrix from crystal  to crystal  is  

  






 
















 


2/2/1

2/2/1

0

01

2/12/1

2/12/1

k

k

k
 00


BB   

(2)    

A homogeneous lattice distortion is a linear transformation D from the lattice  to the 

lattice ’. Since D transforms the lattice 𝐁0
𝛾
= (a


, b


, c


) into the distorted basis 𝐁0

𝛾′
= (a

’
, b

’
, 

c
’
), it can be expressed in the initial basis by D0 = [𝐁0

𝛾
 𝐁0

𝛾′
]. It can also be written in 

another basis of the initial crystal 𝐁𝑖
𝛾
 by Di = [𝐁𝑖

𝛾
𝐁0

𝛾
] D0 [𝐁0

𝛾
𝐁𝑖

𝛾
] =  (𝐁𝑖

𝛾
)−1 D0 𝐁𝑖

𝛾
. One 

should be very careful to avoid any confusion with coordinate transformation matrices. A 

distortion matrices is “active”, it changes any vector u of the initial crystal  into a new vector 

u’ = D.u, whereas a coordinate transformation matrix is “passive”, it allows to calculate the 

coordinate of a fixed vector u in different bases and tells nothing on the distortion 

mechanism. Multiplication of active matrices corresponds to composition of operations that 

should be read from the right to the left. Multiplication of passive matrices corresponds to a 

sequence of change of bases that should be read from the left to the right. 

We would like to introduce here a class of transformations that, as far as we know, is not 

reported in the textbooks but that will be very important for the rest of the paper. We call 

them “angular distortive” transformations. In such transformations, a vector of the lattice is let 

invariant and another one is rotated by an angle θ without modification of its length, as 

represented in Fig. 2c. When the distortion applies to the vectors of the basis B0, the distortion 

matrix is  











)cos(0

)sin(1
)(0




D   

(3)    

This type of distortion is different from the usual simple shear transformation of 

amplitude s represented in Fig. 2d, even if a dilatation parameter  perpendicular to the 

invariant plane is introduced. Indeed, the expression of an invariant plane strain matrix is 
















10

1
)(0

s
D   (4)    
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and can be assimilated to the “angular distortive” matrix (3) only for special combination of s 

and   1. It will be shown in the rest of paper that angular distortive transformations are the 

ideal tool to treat lattice distortions that respect the hard sphere packing of the atoms. 

The displacement field F associated to a homogeneous distortion D is F.x = (I-D).x with I 

the identity matrix. The deformation is the gradient of displacements; it is dF/dx = I-D. 

For convenience in the calculations, the unity will be attributed to the lattice parameter of 

the fcc phase. The angles are given in radians, except those indicated in degrees (°). The 

numerical calculations and 3D graphics and surfaces are obtained with Mathematica 10.  As 

in ref. [18], it is assumed in first and rough approximation that during the   martensitic 

transformation, the iron atoms are hard spheres of same diameter in both phases, which 

implies that: 

 aa 32    (5)    

3. Model of atomic displacements with Bain OR 

The Bain distortion is a contraction of 20% along one <100> axis and expansions along 

the two <011> axis perpendicular to the contraction axis. The final Bain OR is [100] // 

[100] , [011] // [010]  and [011] // [001]. To our knowledge, the exact analytical formula 

that links the contraction and expansion values during the distortion has never been 

established. That is very surprising because the calculations are straightforward when 

assuming that the iron atoms are hard spheres that “roll” on each other during the distortion. 

In order to obtain a coherency with the reference frames used with our previous paper [18], 

we will take for convention that the contraction occurs along the a-axis (and not along the c-

axis as usually chosen). Let us consider the basis B1 = (x, y, z) such that the x, y and z axes 

are orientated along the [110] , [110] and [001] axes, respectively. During the Bain 

distortion the x and y directions are rotated in opposite directions, as shown in Fig. 3a. Let us 

call /2 the angle of rotation of x and y. By projection, the contraction along a is given by 

𝑎′
𝑎⁄ = √2 cos(𝜋 4⁄ + 𝛼 2⁄ ) = √2 sin(

𝜋
4⁄ − 𝛼 2⁄ ) and the resulting expansion along b is 

given by 𝑏′ 𝑏⁄ = √2 sin(𝜋 4⁄ + 𝛼 2⁄ ). Since the atoms along the [100] direction are shared by 

the (a, b) = (001) and (a, c) = (010) planes, the resulting expansion along c is the same as the 

one calculated along b, as shown in Fig. 4. Therefore, the Bain distortion matrix in the 

reference basis B0 is 

























)24sin(00

0)24sin(0

00)24sin(

2)(0







BainD
 

(6)    
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The transformation starts with the angle  = 0 and )0(0

Bain
D  is the identity matrix. During 

the distortion, the [110] and [110] axes which make an angle of /2 are transformed into the 

[111] and [111] axes which make an angle of arccos(1/3) = 70.52°. The angular difference 

is /2- arccos(1/3) = arcsin(1/3). Thus, the fcc-bcc transformation is completed when the 

rotation angle reaches max = arcsin(1/3) = 19.47°. By using trigonometric relations and 

simplification of radical forms, it can be shown that  


















)12(.6

1
)

2
cos(

6

12
)

2
sin(

max

max




 

(7)    

Therefore, at the final stage, the distortion matrix of the complete Bain transformation is  































)
2

sin()
2

cos(00

0)
2

sin()
2

cos(0

00)
2

sin()
2

cos(

maxmax

maxmax

maxmax

0







Bain
D

 

(8)    











































15.100

015.10

0081.0

3

2
00

0
3

2
0

00
3

2

 

   

This gives the classical values of the Bain distortion matrix if one assumes that the atom 

size remains unchanged during the transformation, i.e. a contraction of 18.3% along the a-axis 

and an expansion of 15.5% along the b and c axes. 

 

4. Model of atomic displacements with Pitsch OR 

 The Pitsch OR is [110] // [111] , [110] // [11 2 ]  and [001] // [1 10]. These axes form 

an orthogonal (but not orthonormal) reference basis B1 = (x, y, z). During the Pitsch 

distortion, the axis x remains invariant, i.e. undistorted and unrotated; we called it “neutral 

line” [18] (please note that the x direction is inverted in comparison to ref. [18] in order to 

work in right-hand bases). The y axis is rotated by an angle α; and the z axis remains parallel 

to the c axis and is elongated in order to respect the hard-sphere packing of the iron atoms, as 

shown in Fig. 3b. There are two ways to calculate the distortion. The first one uses Fig. 5 and 

the calculations are performed in a Cartesian coordinate system. The distance PM = QM = 1 

becomes after deformation PM’ = √1 − sin (𝛼) and QM’ = √1 + sin (𝛼). Thus:   

𝑧′
𝑧⁄ =

𝑦′
𝑦⁄ =

𝑄𝑀′

𝑄𝑀
= √1 + sin(𝛼) 

(9)    
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The second way consists in noticing that the elongation along z with Pitsch distortion 

should be equal to the one obtained with Bain because both models are based on hard-sphere 

packing, and thus: 

𝑧′
𝑧⁄ = √2 sin(𝜋 4⁄ + 𝛼 2⁄ ) 

(10)    

Trigonometric relations show that both equations (9) and (10) are equal. 

Hence, the Pitsch distortion matrix written in the reference basis B1 is: 





















)sin(100

0)cos(0

0)sin(1

)(1







PitschD  
(11)    

In the reference basis B0, the basis B1 is given by the coordinate transformation matrix: 

 














 



100

02/12/1

02/12/1

10 BB
, for which the inverse is  



















100

011

011

01 BB
 

The Pitsch distortion matrix in the basis B0 is therefore: 

   011100 )( BBDBBD Pitsch  (12)    

which becomes after calculations: 































)sin(100

0
2

)cos()sin(1

2

)cos()sin(1

0
2

)cos()sin(1

2

)cos()sin(1

)(0







Pitsch
D

 

(13)    

It can be equivalently written: 

































)24sin(200

0
2

)4cos(21

2

)4cos(21

0
2

)4cos(21

2

)4cos(21

)(0







Pitsch
D

 (14)    

The transformation starts with the angle  = 0 and )0(0

Pitsch
D  is the identity matrix. At the 

end of the distortion, the [110]  axis is rotated by an angle of max = /2- arccos(1/3) = 

arcsin(1/3) = 19.47°. By using equation (13) with sin(max) = 1/3 and cos(max) = √8 3⁄ , the 

distortion matrix of the complete Pitsch transformation becomes:  































3/200

0
3

22

3

21

0
3

22

3

21

0

Pitsch
D

 

(15)    
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This is the matrix already reported in ref. [18]. It can be diagonalized and the eigenvalues 

are (1, √8 3⁄ , 2 √3⁄ )  (1, 0.943, 1.155). One can also apply a polar decomposition to this 

matrix and its intermediate states given in equation (13), such that PitschPitschPitsch
SRD 0

 where 

Pitsch
R  is a rigid body rotation matrix and 

Pitsch
S  a symmetric matrix given by  

PitschPitschTPitsch

00 DDS   (16)    

The symbol 
T
 at the left of a matrix or a vector means “transpose” (it is not on the right for 

style reasons). The equation becomes after calculations and comparison with equation (8) 

BainPitsch

0DS   (17)    

Therefore, the matrix takes the form 
BainPitschPitsch

00 DRD  . The rotation matrix 
Pitsch

R  

appears naturally in the present approach whereas it is “artificially” created in the PTMC in 

order to respect the “invariant line criterion”. When the transformation is completed ( = 

max), 
Pitsch

R  is a rotation of 9.73° around [001]. 

5. Model of atomic displacements with Kurdjumov-Sachs OR 

 The KS OR is [110] // [111] , [112] // [11 2 ]  and [111] // [1 10]. These  axes, after 

normalization, form the common orthonormal reference basis Bc. We propose now a 

distortion that: a) respects the hard-sphere packing of the iron atoms such that the atoms move 

relatively to each other exactly as previously described for the final Bain or Pitsch OR, b) 

imposes that the close-packed direction [110] remains invariant, and c) imposes that the 

close-packed plane (111) remains unrotated. This approach can be considered as a smooth 

and continuous combination of the initial Kurdjumov-Sachs-Nishiyama (KSN) model with a 

hard-sphere condition. The calculations are quite tedious and may be skipped at the first 

reading to go directly to equation (31). 

 The distortion matrix can be calculated by choosing a primitive non-orthogonal frame Bp 

constituted by the normalized axes x = (1/2)[110], y = (1/2)[101] and z = [100]. The 

[110] and [101] directions define the (111) plane that is transformed into the (1 10) plane by 

the distortion. The distortion matrix will be calculated with the angle  between the [110] and 

[101] axes. By considering the Bain matrix given in equation (6), the angle  appears as a 

function of the angle : 

cos (𝛽) = sin2(𝜋 4⁄ + 𝛼 2⁄ ) =
1−sin𝛼

2
 (18)    

For the fcc phase  = 0 and  = 60°. When the transformation is complete,  = max = 

arcsin(1/3) = 19.4°, and  is such that cos() = 1/3 , i.e.  = 70.5°, which is the angle between 

the [111] and  [111] directions of the (110) plane of the bcc phase.  
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Now, the effect of the distortion on the axis z = [100] is calculated such that the hard-sphere 

packing rule is continuously respected. The geometrical view of the problem is illustrated in 

Fig. 6. Initially, in the fcc phase the three iron atoms in points O, P, K are in contact and form 

a triangle belonging to the (111) plane. The iron atom in M, at the head of the arrow PM = 

[100], is in the upper layer 1/3.(111) plane of the fcc stacking sequence ABCABC. As the 

angle  = 𝑂𝑃𝐾̂ = 60° is progressively increased to 70.5°, the atom in M moves such that the 

distance PM shorten while the distance PO = PK = MO = MK remains constant and equal to 

the atom diameter, i.e. √2/2. Thus, the projection H of M on the (1 11) plane remains along 

on the line x+y, initially [211]. By considering the Bain matrix given in equation (6), the 

angle  between the [211] and [100] directions appears as a function of the angle : 

cos (𝛾) =
√2 sin(𝜋 4⁄ − 𝛼 2⁄ )

√1 + sin2(𝜋 4⁄ − 𝛼 2⁄ )

 
(19)    

and thus 

sin(𝛾) = √
1 − sin2(𝜋 4⁄ − 𝛼 2⁄ )

1 + sin2(𝜋 4⁄ − 𝛼 2⁄ )
 

(20)    

Now, let us associate the orthonormal basis Bs = (xs, ys, zs) to the basis Bp = (x, y, z) as usually 

done for the structural tensor, i.e. xs is parallel to x, ys belongs to the (x, y) plane, and zs is 

oriented in the same direction as z relatively to the (x, y) plane. Since the x direction remains 

constant and the (x, y) plane is unrotated during the transformation, the basis Bs remains 

unchanged despite the distortion of the basis Bp. The coordinates of the x, y and z vectors in 

the basis Bs gives the coordinate transformation matrix from Bs to Bp, which is a function of 

the angles  and  

 























)sin(00

)
2

sin()cos()sin(0

)
2

cos()cos()cos(1

),(









z

z

z

ps BB  

(21)    

The norm of the vector z = [100] is given by equation (6): ‖𝒛‖ = √2 sin(𝜋 4⁄ − 𝛼 2⁄ ). 

By using equations (18) to (20) and trigonometric rules, it can also be checked that  

{
  
 

  
 
cos (

β
2⁄ ) =

√
1 + sin2(𝜋 4⁄ − 𝛼 2⁄ )

2

sin (
β
2⁄ ) =

√
1 − sin2(𝜋 4⁄ − 𝛼 2⁄ )

2

 

(22)    

Thus, equation (21) can be written 
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 









































)24(sin1

)24(sin1
)24sin(200

)24(sin1

)24(sin1
)24(sin2)sin(0

)24(sin2)cos(1

),(

2

2

2

2
2

2













ps BB
 

(23)    

By using equation (18) and noting X = cos(), equation (23) can be written 

 
































X

X
X

X

X
XX

XX

ps

1

1
200

1

1
210

21

)( 2BB with X = cos() 

(24)    

The initial state of the fcc phase is defined by  = 60° (X = 1/2) and thus 

 























3
100

6
1

2
30

2
2

2
11

)60(ps BB
 

(25)    

Its inverse is  

 



























300

3
2

3
20

3
2

3
11

)60( sp BB
 

(26)    

During the fcc-bcc transformation, X varies from 1/2 ( = 60°) to 1/3 ( = 70.5°). 

The angular distortion matrix calculated from the initial fcc phase to an intermediate state 

parameterized by the angle  is given by the matrix 

     
















































X

X
X

XX
X

XX

XX
X

X
X

X

XX
X

pssppp

KS

p

1

1
600

)2(
1

1

3

2

3

1
20

)22
1

1
6(

1

1

3

1

3

1
1

)()60()()60()(

2

2

 BBBBBBD

 with X = cos() 

(27)    

This matrix gives the distortions along the axes x, y, z of Bp. One can associate to this basis 

the coordinate transformation matrix [B0  Bp(60°)] given by  

 


















02/10

002/1

12/12/1

)60(0 pBB
  

(28)    

Its inverse is  
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 




















111

200

020

)60( 0BB p

  
(29)    

These matrices allow us to calculate the distortion matrix in the basis B0 

    )()60()()60()( 000  KS

ijp

KS

pp

KS d BBDBBD  (30)    

with the components )(KS

ijd  in line i and column j given by 

 

 

 

 

 

 

 

 

 

































































































XX
X

XX
d

XX
X

XX
d

XX
X

XX
d

XX
X

X
d

XX
X

X
Xd

XX
X

X
Xd

XX
X

X
d

XXX
X

X
d

XXX
X

X
d

KS

KS

KS

KS

KS

KS

KS

KS

KS

2
1

1

6

2

3

1
2)(

22
1

1

6

1

3

1
)(

22
1

1

6

1

3

1
)(

2
1

1

6

2
)(

22
1

1

6

1
1)(

22
1

1

6

1
1)(

2
1

1

6

2
)(

22
1

1

6

1
)(

22
1

1

6

1
)(

2

33

2

23

2

13

32

22

12

31

21

11



















         with X = cos() 

(31)    

This matrix gives all the intermediate states resulting from the continuous distortion of the fcc 

lattice ( = 60°, X = 1/2) toward the final distorted fcc lattice ( = 70.5°, X= 1/3), which is 

actually the bcc lattice in KS OR. The complete distortion is obtained with X=1/3: 





























3
1

3
6

3
1

9
6

3
1

9
6

3
1

6
61

18
6

18
6

3
1

6
6

3
1

18
6

3
2

18
6

0

KS
D  

(32)    

This matrix has 1, 1 and 1.088 for eigenvalues. The eigenvector associated to 1.008 is a 

vector close to [4, 7, -3] . The linear subspace associated to 1 (multiplicity =2) is reduced to 

the line along the eigenvector [110]. This implies that the matrix 
KS

0D can’t be diagonalized. 

However, it can be indirectly diagonalized by polar decomposition: 
KSKSKS

SRD 0  with 

KS
R a rotation matrix and 

KS
S a symmetric matrix given by  

KSKSKS

00

T
DDS   

(33)    
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which becomes after calculations, and comparison with equation (8) 

BainKS

0DS   (34)    

Therefore, as for Pitsch, the matrix of distortion associated to the KS OR takes the form 

BainKSKS

00 DRD  . The rotation 
KS

R  is a rotation of 11.06° around [21, 25, -60] .  

6. Comparison of the distortions associated to Bain, Pitsch and KS orientations 

6.1. 3D representations 

The distortions calculated for Bain, Pitsch and KS orientations are represented in 3D in Fig. 7 

by using VPython as computing language. The initial fcc cube (8x8x8 cells) is coloured in 

blue, with the X, Y and Z directions of the cube oriented along the [100], [010] and [001] 

directions. With Bain, the crystal is contracted along X and expanded along Y and Z, and 

these directions are unrotated. With Pitsch, the direction Z is unrotated and the direction X+Y 

along [110] (noted N for neutral) is invariant. With KS, the X, Y and Z directions are rotated 

but the direction X+Y is invariant and the (111)  plane is unrotated. The fcc crystals after 

distortions are coloured in red. It can be checked visually that they are effectively bcc 

crystals. The movies of the continuous distortions for the Bain, NW and KS ORs are in the 

Supplementary Materials for 8x8x8 and 1x1x1 cells, with slightly different angles of views.  

6.2.  Correspondence matrices for the directions and planes 

The matrices 
OR

0D  of equations (8), (15) and (32) give, in the initial fcc basis 

0B , the images 

of the directions 


0u  by the distortions leading to the Bain, Pitsch and KS ORs, respectively. 

The inverse of their transpose gives the distortion of the planes 

0g . The images are 


000' uDu

OR  and   
0

1

00' gDg


 ORT
 ,  for OR = Bain, Pitsch or KS. (35)    

It is possible to calculate these images in the final bcc reference frame by using the coordinate 

transformation matrices, which are calculated from the orientation relationships.  

The OR can be expressed by a triplet of pairs of direction normalized vectors which define a 

common basis 









 aaaa cccccccc /),,(//),,(/ zyxBzyxB  . The () 

coordinate transformation matrix T for the directions is then given by  

        





 RBBBBBBBBBBT

2
31

00

1

0000 


cccc a
a  (36)    

where
 TR

3
2  is a rotation matrix between the fcc and bcc cubic crystals. The 

coordinate transformation matrix for the planes is the inverse of the transpose of T  which is 



13 

 

equal to
 TR

3
2

3
2  . The distorted vectors of directions and planes in the final α bcc 

reference frame 

0B  are given by 





00 '' uTu   

and 





00 '
3

2' gTg   (37)    

Combining equations (35) and (37) gives the correspondence matrices  

OR

0DTC    
and   1

0

*

3
2 

 ORT
DTC 

 (38)    

which permit to calculate directly the images of the directions and planes in the final bcc 

reference frame: 





00' uCu   and 




0

*

0' gCg   (39)    

The distortion matrices, the rotational part R associated to the coordinate transformation 

matrices and the images of some low-index direct and reciprocal directions in the final α bcc 

basis for Bain, Pitsch and KS ORs are given in Table 1. It can be checked that the images of 

the direct and reciprocal directions are the same whatever the distortion matrix, Bain, Pitsch 

or KS of equations (8), (15) and (32). Indeed, calculations show that the correspondence 

matrices are all of Bain type, i.e. with vector components of type <100>, <110> and <1̅10>. 

They would have been equal if a coherence rule had been imposed among the equivalent axes 

and planes of the bcc phase in the Bain, Pitsch and KS ORs.  

7. Discussions 

7.1. Difference of the iron atom size between the fcc and bcc phases 

The continuous distortion matrices associated to Bain, Pitsch and KS ORs have been 

calculated by assuming that the size of the iron atoms remains constant during the 

transformation, which is equivalent to equation (5) for the lattice parameters. Actually, it is 

possible to introduce the difference of atom size by multiplying the distortion matrices by the 

real factor k, ratio of iron atom radius in the bcc phase r to its radius in the fcc phase r, i.e. k 

= r/r = 
√3𝑎𝛼

√2𝑎𝛾
⁄ . The k ratio is generally around 0.96 or 0.97. The 3 or 4% of difference 

is not negligible if it is compared to the 8% of difference of volume change, but this 

difference is acceptable for a first qualitative model because the hydrostatic part of the strains 

does not play a primary role on the transformation in comparison to the “shear” component 

[11]. To be more quantitative one would have to determine how k varies from the initial fcc 

phase to the final bcc phase along the transformation path during the few picoseconds of its 

completion. k should be a real function of the angular distortion parameter which, for Bain 

and Pitsch ORs is equal to the angle  in the range from 0 to arcsin(1/3), and for KS OR is 
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equal to the angle β in the range from arcos(1/2) to arcos(1/3). Its extreme values are k = 1 

and k = r/r  for complete transformation. Different simple models can be proposed such as 

an abrupt change at the start of the transformation, or an abrupt change at the end of the 

transformation, or a smooth linear change during the transformation. Determining the exact 

nature of k as function of the distortion angle would require a deep physical investigation of 

the effect of the coordination on the electronic and magnetic properties of the iron atoms; 

which is beyond the scope of the paper.  

7.2. Proposition of a new transition order parameter  

To our knowledge, up to now, only complex order parameters have been attributed to fcc-

bcc martensitic transformations, most of them associated to the stress field around the 

martensite [19].  More generally, as frankly said by Clapp in 1995 [20] “Certainly one of the 

stumbling blocks in defining a martensitic transformation is that there is no obvious order 

parameter associated with it, such as one has with ferromagnetic transformations (magnetic 

moment), order-disorder (long range order parameter), etc”. In our approach, whatever the 

matrix, associated to Bain, Pitsch or KS OR, assuming that the distortion respects the hard 

sphere packing allows introducing a unique natural order parameter, which is the angular 

parameter of the distortion, i.e.  in equations (6) and (14) for Bain and Pitsch, respectively, 

and  or X = cos() in equation (31) for KS. This parameter could probably be used in phase 

field approaches. 

7.3. What is the natural fcc-bcc distortion mechanism? 

In the paper, we call “natural” the hypothetical distortion of a very small free fcc single-

crystal, isolated from any external stress field, that transforms quickly into only one variant of 

bcc martensite. What could be the natural fcc-bcc martensite distortion? Does it follow the 

distortion matrix (8), (15) or (32), corresponding to Bain, Pitsch or KS, respectively?  How do 

the atoms move in an absolute reference frame? A pure Bain distortion seems possible. 

Indeed, it is argued in the PTMC that the Bain OR is not observed experimentally because of 

the strain accommodation of the surrounding austenite matrix. It means that the rigid body 

rotation R would be a consequence of the transformation and not an intrinsic part of the 

mechanism. However, we don’t find any crystallographic argument that could support the 

assumption that the distortion naturally should respect a 4-fold <100> axis of austenite (the 

contraction axis). If one considers only the strains associated to the distortion, there is no 

difference between the three paths presented in Fig. 7 because all are composed of the same 

strains and differ only by the rotation associated to the strain. It is often believed that Bain 

distortion involves the smallest atomic displacements in comparison to the other distortion 

matrices. This assumption probably comes from the fact that the other distortion matrices, 
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such as those associated to Pitsch and KS ORs, are of type D = RB with 
Bain

0DB   of 

equation (8), the classical Bain distortion matrix. Writing the final complete distortion matrix 

D as a product of a rotation R by the Bain distortion B, seems to mean that the atom 

trajectories are the addition of the Bain path and rotation path, and are therefore higher than 

with Bain distortion B only. This reasoning is actually not correct because the atoms follow a 

trajectory given by D, and not by a successive sequence of B followed by R; the exact 

trajectory of D can be lower than with B only. Indeed, it is possible to calculate the mean 

displacement of the atoms in a cell from the complete distortion matrices D of equations (8), 

(15) or (32). The matrices D-I were applied to the 14 atoms of the cells, with atoms at the 

corners counting for ¼ and those in the middle of the faces for ½, and the norms are 

arithmetically averaged. For an initial fcc matrix of a = 3.57 Å, the mean displacement are 

0.590 Å for Bain, 0.474 Å for Pitsch, and 0.517 Å for KS. These values are calculated by 

considering D-I, i.e. as if the atoms have moved in straight lines. A more precise value is 

obtained by numerically integrating the displacements along the curved paths of the atoms 

given by the continuous matrices of equations (6), (14) and (31). The mean displacements are 

now 0.591 Å for Bain, 0.476 Å for Pitsch, and 0.520 Å for KS. These calculations prove that, 

the distortion matrices associated to Pitsch and KS OR have a lower mean displacement than 

with Bain, even if they contain Bain in their polar decomposition. Therefore, if only the 

atomic displacement is considered, the natural distortion should be the one that leads to Pitsch 

OR. However, more work would be required to prove that there is no other matrix that could 

lead to even lower values of mean displacement; and it is not sure that the length of the 

atomic displacements should be the unique criterion to determine the natural distortion 

mechanism. The physical mechanism of fcc phase destabilization induced by the change of 

atomic potential along specific directions can’t be ignored if one wants to capture a global 

understanding of fcc-bcc martensitic transformation. There is not yet experiment that aims at 

determining the natural distortion due to the difficulty to isolate a very small crystal of 

metastable austenite. The observations that are closer to this case are in-situ TEM martensitic 

transformations in which a thin TEM sample is heated up to its fully austenitic state, and then 

quickly cooled in the microscope. Pitsch OR was observed by Pitsch in TEM lamellas of Fe-

N alloys [21], and KS OR was observed by Maki and Wayman in TEM lamellas of Fe-Ni-C 

[22]. Therefore, it is not yet clear to the author what is the natural distortion of fcc-bcc 

martensitic transformation. Some experiments could be worth being intended. For example, 

one could select by EBSD a grain of metastable austenite oriented such that its surface is a 

(001) plane, then cut a small cube in this grain by Focus Ion Beam (FIB) such that the edges 

are along the <100> directions, and deposit this tiny cube at the tip of a very thin copper 

needle on which an absolute reference frame (X0, Y0, Z0) has been carved by FIB. Let 
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suppose that the cube was positioned such that its edges X, Y, Z are along the frame axes X0, 

Y0, Z0, respectively. By cooling the sample in liquid nitrogen below Ms, the cube should be 

transformed into a parallelepiped, as illustrated in Fig. 8. If Bain is respected, one should not 

observe any rotation of the sample in the frame (X0, Y0, Z0), if Pitsch is respected only Z 

should remain unrotated Z // Z0, and if KS is respected the three axes X, Y, Z should be 

rotated, as in Fig. 7.  

7.4. What is the matrix-embedded fcc-bcc distortion? 

KS OR, or ORs close to KS, are often reported in bulk martensitic steels. If the natural 

distortion mechanism is Pitsch, the existence of KS OR could be explained by the effect of 

the Pitsch distortion on the surrounding matrix.  Such possibility was discussed in the one-

step model of ref. [18]. In this model, the martensite first nucleates in Pitsch OR, which 

distorts and makes rotate the surrounding fcc matrix. Then, martensite grows still by Pitsch 

distortion, but now in the distorted matrix: the OR is Pitsch locally, but is KS or NW globally, 

i.e. if the OR is measured in reference to the undeformed fcc matrix far from the martensite. 

The gradient of orientations could explain the orientation spreading experimentally observed 

in pole figures and simulated by the continuous A and B rotations [17][18]. This one-step 

model based on Pitsch distortion predicts the existence of a gradient of ORs inside the 

martensite laths, with a thin band in Pitsch OR along the invariant line and OR gradient 

around this band varying continuously from Pitsch to KS and NW ORs. We have tried to 

check this hypothesis by automatizing the mapping of ORs in the experimental EBSD maps 

[23]. The results confirm the existence of OR gradients inside the martenstic laths in low 

carbon steels,  but Pitsch is generally found in very low proportion in comparison with KS 

and NW, and the central parts of the laths along the long lath direction seem to be generally 

not in Pitsch but in KS OR. Moreover, many TEM results have shown that the isolated 

martensite laths or plates are in KS OR with the surrounding fcc matrix. Therefore, there are 

no strong experimental evidences for the moment of a Pitsch distortion mechanism for 

matrix-embedded transformations.  

If the natural distortion mechanism is the one that leads to KS OR, the KS OR would be a 

simple and direct consequence of the natural distortion mechanism. Moreover, the hypothesis 

that the experimental OR spreading comes from the distortion itself can be conserved by 

slightly modifying the one-step model presented in ref. [18]. The nucleation of martensite in a 

surrounding austenite field would occur by a distortion leading to KS by equation (32), and 

the Pitsch and NW orientations would result from the growth of the martensite in the austenite 

deformed by the continuous A and B rotations. The modified scheme of this scenario is 

proposed in Fig. 9. With Pitsch-one-step model, the rotation B is not pure, i.e. it is combined 

with rotation A (see section 4.2 of [18]), whereas it is pure with the KS-one-step model 
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because it directly results from the angular (111) → (110) distortion as it will be detailed in 

section 7.5. More precisely, the rotation A corresponds to the angular distortion of the 

unrotated (111) plane, i.e. to the rotation of the direction [101]  around [111], and the 

rotation B corresponds to the angular distortion around the invariant [110] direction , i.e. to 

the rotation of the (111) plane around [110]; exactly as if rotations A and B were the angular 

distortive parts of the distortion in the direct and reciprocal space, respectively. The 

possibility that the distortion could be the same in free isolated crystals and in bulk steels is 

attractive and is worth being further investigated by considering the particularities of the 

distortion matrix leading to KS OR. 

7.5. Particularities of the distortion associated to KS OR 

It can be checked that the determinant of the matrices 
OR

0D  calculated with Bain, Pitsch or KS 

ORs, are 088.1
3

2
3

4
)det( 0 OR

D , as expected from the volume change of the 

transformation between bcc and fcc phases linked by a hard sphere model. This point can also 

be proved from the polar decomposition of the matrices. The volume change results from the 

lattice expansion along the eigenvectors of the matrices (8) and (15) associated to Bain and 

Pitsch ORs; these directions exist because the matrices can be diagonalized. The particularity 

of the distortion matrix (32) associated to the KS OR is that it can’t be diagonalized. Indeed, it 

has 1, 1 and 1.088 as characteristic roots. Shear and more generally invariant-plane strain 

matrices have two eigenvalues equal unity, but the distortion matrix (32) is not this type. Let 

us recall here that an invariant-plane strain P can be written pdIP
T. , where I is the 

identity matrix, d is the displacement (column) vector and Tp is the (line) vector normal to the 

invariant plane [8]. Its characteristic roots are 1, 1 and 1+
 Tp.d. The two unit values are 

correlated to the invariant plane and the volume change given by the dilatation component  = 

Tp.d occurs perpendicularly to the invariant plane. Similarly to the invariant plane strain P, 

the volume change of 
KS

0D occurs by the expansion along one unique axis, which is the 

eigenvector associated to the value 1.088, i.e. here the vector [4,7,-3] , but contrarily to P this 

vector belongs to the unrotated (111)  plane, which means that the totality of the volume 

change is generated by the angular distortion inside this plane. This can be also understood by 

calculating the surface change associated to the transformation from the triangle on the (111) 

plane formed by the [110] and [101]  diagonals (with angle of 60°) to the distorted triangle 

on the (110) plane formed by the [111] and [111] diagonals (with angle of 70.5°), as 

illustrated in Fig. 10. It is Sbcc/Sfcc = sin(70.5°)/sin(60°)  1.088. The plane of distortion (111) 
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is unrotated, and the directions it contains are not dilated or contracted but their angle 

changes. The totality of the volume change comes from this angular distortion.  

The fact that the volume change of the complete transformation remains localized on the   

(111) plane also implies that the atom in M located in the upper layer 1/3.(1 11) has moved 

such that the distance MH on Fig. 6 did not change between its value at the transformation 

start (X=1/2) and at the transformation end (X=1/3). However, it is worth pointing out that the 

displacement of the atom M is not of shear type because the distance MH is not constant 

during the transformation. Indeed, MH is given by the scalar product between the direction [1

11]  and the image of the direction [100] by the deformation matrix (31), it is: 

X

XX
MH






1

)1(2
 

(40)    

Another way to verify that MH is not constant is to consider the surface change of the (1 11) 

plane and the volume change of the lattice; they do not obey the same law. Indeed, the surface 

change S(X) is a function of sin(β) = √1 − 𝑋2 , and the volume change V(X) is a function of 

√𝑋(1 − 𝑋), as deduced from the matrix (27). Equation (40) results from the formula V(X) = 

3.MH.S(X). The lateral displacement of the atom in M is possible despite its uncompressible 

contact with the atoms in O and P thanks to the angular distortion β which increases the 

distance OP as the atom M moves (the atoms in O and P loose contact when the 

transformation starts).   

The distortion matrix (32) associated to the KS OR has the properties of an invariant line 

strain (ILS) and thus could constitute an interesting alternative to the RB term used in the 

PTMC. The general mathematics associated to angular distortions is probably worth being 

developed. The concept of disclinations (special pile-ups of dislocations that create rotational 

discontinuities of lattices) seems very relevant to accommodate the 60°→70.5° angular 

distortion on the (111)  plane, as suggested in the one-step model (supplementary materials 4 

of [18]). We also recall that the matrix (32) has by construction the unique property of letting 

invariant both a close-packed direction and a close-packed plane. Indeed, [110] is invariant 

by 
KS

0D and is transformed into [111] by the correspondence matrix C , and (111) is 

invariant by   1

0

T KS
D and is transformed into (110) by the correspondence matrix 

*

C , 

reported in equation (38), respectively. 

7.6. Prediction of the {225} habit planes 

Could the distortion matrix 
KS

0D  be directly used to predict some habit planes (HP) 

without requiring additional arguments such as multiple slips, twinning or variant pairing? 
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Since the distortion matrix has no invariant plane, a weaker criterion to determine the HP was 

investigated. We realized that, even if not fully invariant, the habit plane should at least 

correspond to an unrotated plane because a rotated plane would create huge displacements at 

the interface with the fcc matrix far from the rotation axis. The crystallographic condition to 

obtain an unrotated plane can be written as follows. The distortion matrix for the directions is

KS

0D , the distortion matrix for the planes is   1

0

T*

0


 KSKS

DD , the displacement matrix for the 

directions is IDF  KSKS

00
, and the displacement matrix for the planes is   IDF 

1

0

T*

0

KSKS . 

The displacement of a plane g, gFggg
*

0' KS , can be decomposed into g = g// + g 

with g// parallel to g, and g perpendicular to g, as shown in Fig. 11. The part g// 

corresponds to the case where g’ remain parallel to g, i.e. to a modification of the interplanar 

distance without rotation. The part g corresponds to a rotation of the plane; it is equal to the 

rotation angle for small rotations. For any vector g oriented on the unit sphere 1g , one can 

calculate g and then the norm of g  by  

ggFggFggggg )..()..( *

0

*

0

KSKS  
 (41)    

The planes g unrotated by the distortion are those that check the condition 0 g . This is 

actually one the simplest condition used in the O-lattice theory [14][24]. Analytical 

determination of the solutions of equation (41) is possible, but for this very preliminary work 

the calculations have been performed numerically with Mathematica. This also permits to get 

a better idea of the space of planar rotations. Indeed, for any g vector on the sphere, one can 

plot the value 
g . The surface of 

g  with g vectors on the unit sphere is reported in Fig. 

12a. Other representations showing the values 
g  as function of the two spherical 

coordinate angles θ and φ are given in Fig. 12b and Fig. 12c. The surface exhibits four 

minima, two at θ  /2 and two at θ > /2. The solutions at θ > /2 are actually equivalent to 

those obtained at θ  /2 because of the centrosymmetric equivalence of lines (θ, φ)  (-θ, 

φ+). The numerical values of the two minima located in the region θ  /2 and transformed 

back into Cartesian coordinates are g1 = (-0.5773, 0.5773, 0.5773) and g2 = (-0.3535, 0.3535, 

0.8660). They are shown in Fig. 12d. The first solution g1 is the (111)  plane, which was 

expected because this plane is unrotated by construction, but the second solution g2 was 

unexpected, it is at only 0.5° of the well-known (2̅25) plane that contains the common neutral 

line [110]  = [111] and orientated at 25° from the unrotated close-packed plane (1̅11)  = 

(1̅10). The (2̅25) plane is transformed into the (7, 4̅, 3̅) plane. The solution does not depend 

on the ratio k = r/r = 
√3𝑎𝛼

√2𝑎𝛾
⁄  and therefore is independent of the lattice parameters of 
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the fcc and bcc phases. This result is very encouraging. Jaswon and Wheeler obtained a 

similar result by a different approach [25]. It is worth recalling that the {225} habit planes 

have remained unexplained for a very long time and were “solved” with the PTMT in the 

1960’s by introducing double lattice invariant shears. A brief summary of the “saga” of the 

{225} planes can be found in ref. [14]. The (2̅25) habit plane simply appears as a plane 

unrotated by the fcc-bcc distortion. It is possible that this plane is also made completely 

invariant by the accommodating configurations of dislocations at the origin of the continuous 

rotations A and B. It is also interesting to note that all the planes g between g1 and g2 and 

containing the neutral direction are at the valley of the surface with very low rotation values, 

which could explain why other habit planes such as (5̅57)  can be also formed.  

We introduced a tetragonal distortion along the a axis in the calculations to see whether or 

not it could be possible to “predict” the other families of habit planes such as the {2 5 9} and 

{3 10 15} habit planes, but the results are not yet satisfying for the moment. For c/a =1.05, 

the solution is close to (5̅ 3 15)  which is at more than 10° from the (5̅ 2 9)  or (10̅̅̅̅  3 15)  

planes. The simplicity of the present approach has certainly reached its limit, and more 

complex calculations are required. Some approaches used in PTMC, such as twinning or 

variant pairing proved to be very efficient to model the {2 5 9} and {3 10 15} habit planes 

[9][13][14], and more recently the {5 5 7} habit planes [26]. More adapted and refined 

criteria such as those used in the O-lattice theory are also worth being investigated [14]. 

Similar calculations have been also performed with Bain and Pitsch distortion matrices (8) 

and (15). The results are reported in Supplementary Materials. The calculated unrotated 

planes do not correspond to any experimentally determined HP, according to our knowledge 

of literature.  

 

7.7. Perspectives 

In the paper the continuous matrices associated to Bain, Pitsch and KS ORs have been 

determined. The method would be analogous for NW OR. There is no free parameter in the 

approach; the only hypotheses are the orientation relationships and the hard-sphere packing of 

the iron atoms. More theoretical developments are required in order to predict the exact 

orientation relationship when the iron radius is not the same between the fcc and bcc phases; 

some elements of PTMC or O-lattice theory are probably worth being introduced for that 

purpose. Moreover, as mentioned in section 7.3, the natural distortion matrix should be 

experimentally determined, for example by cooling a small cube of metastable austenite 

shaped by FIB. Energetical calculations by molecular dynamics on systems composed of a fcc 

matrix with bcc martensite forming inside this matrix could also bring new information, but 
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would require further fundamental research on the interfacial energy, elastic and plastic 

deformations, and the nature of the accommodating configurations of dislocations and the 

possible link with the concept of disclination. One could also investigate the possible interest 

of the angular distortive matrices to explain the tetragonal martensite morphologies, variant 

selection mechanisms and burst phenomena. For example, it could be worth determining an 

energetic criterion of variant selection equivalent to the famous Patel and Cohen’s equation 

[27] but adapted to the matrix 
KS

0D and its angular distortive character. 

Since fcc-bcc martensite transformations share many common characteristics with bcc-hcp 

martensite transformations and mechanical twinning, the present approach is generalizable to 

the global fcc-hcp-bcc system, as it will be detailed and discussed in a next paper. 

8. Conclusions 

The lattice distortions associated to the Bain, Pitsch and KS orientation relationships have 

been calculated with the simple assumption of a hard-sphere packing of the iron atoms. The 

continuous distortion matrices of the fcc-bcc transformations are function of a unique 

parameter, the angle of planar distortion, which can constitute a reasonable transition order 

parameter. It was proved that the mean displacement of the iron atoms is lower for the 

distortion associated to Pitsch and KS ORs than for Bain distortion. The exact natural 

distortion mechanism (Pitsch or KS) remains to be experimentally determined. The distortion 

matrix calculated for KS OR seems appropriate to represent the atomic displacements and 

lattice distortion for matrix-embedded transformations that occur in bulk steels. The matrix 

associated to the KS OR is very special; by construction it lets the close-packed direction 

[110] invariant - transformed into [111]- and the close-packed plane (111)  unrotated - 

transformed into (110)-. The matrix has 1, 1 and 1.088 for eigenvalues, and, importantly, it is 

not of shear type. Indeed, the whole fcc/bcc volume change is associated to the angular 

distortion of the (111) unrotated plane. Beyond the calculations, the paper actually proposes a 

shift of paradigm for the fcc-bcc martensitic transformations. Up to now, these 

transformations were considered as “shear” transformations, nearly by definition: “shear 

transformations are synonymous with martensitic transformation” [13]. In the present work, 

the fcc-bcc martensitic transformations appear as “angular distortive”. This idea is actually 

not so far from the initial historical models of Kurdjumov and Sachs [4], Nishiyama [5], and 

Borgers and Burgers [15]. Further works are required to validate the interest of the approach, 

but the fact that the KS distortion matrix “predicts” the ( 2 25)  habit plane is very 

encouraging.   
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Table 1 Characteristics of the distortions associated to Bain, Pitsch and Kurdjumov-Sachs (KS) 

orientation relationships. 
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Rotational part of the coordinate transformation matrices for directions and planes 
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Distortion matrices for directions  
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Distortion matrices for planes 
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Images of directions 

3  <100> 1 <100>  2 <110> 

6  <110> 4 <111>  2 <100> 

4 <111> 4 <210> 

12 <112> 8 <113>   4 <110> 

Images of planes 

3  {100} 1 {100}    2 {110} 

6  {110} 4 {211}   2 {100} 

4 {111} 4 {110} 

12 {112} 8 {123}   4 {120} 



23 

 

Acknowledgements I am particularly indebted to thank Prof. Roland Logé for the opportunity he 

gave me to continue metallurgy at the laboratory of thermomechanical metallurgy (LMTM). I also 

would like to thank PX Group for their generous support to the laboratory. I am grateful to Prof. 

Michel Perez (INSA-Lyon) for our discussions and his molecular dynamic calculations. More works 

are required before publication, but the first results are very interesting. I thank the reviewers who 

corrected some nomenclature errors and tried to moderate my point of view on PTMC.  

References 

[1] Martens A. Ueber die mikroskopische Untersuchung des Eisens Zeitschrift des Vereines Deutscher 

Ingenieure 1878;22:11-18. 

[2] Osmond F. Metallographist 1900; 3:181–219. 

[3] Bain EC. Trans. Amer. Inst. Min. Metall. Eng. 1924;70:25-35. 

[4] Kurdjumov G, Sachs G. Z. Phys. 1930;64:325-343. 

[5] Nishiyama Z. Sci. Rep. Tohoku Imp. Univ. 1934;23:637-644. 

[6] Wassermann G. Archiv Eisenhüttenwesen 1933;6:347–351. 

[7] Greninger AB, Troiano AR. J. Met. Trans. 1949;185:590-598. 

[8] Bowles JS, MacKenzie JK. Acta Metall. 1954;2:129-137. 

[9] Nishiyama Z. Martensitic Transformation, Ed. By M.E. Fine, M. Meshii, C.M. Waymann, 

Materials Science Series, Academic Press, New York; 1978. 

[10] Christian JW. The theory of transformations in metals and alloys, part II, Oxford: Elsevier Science 

Ltd; pp 961-1113; 2002. 

[11] Bhadeshia HKDH. Worked examples in the geometry of crystals, 2
d
 ed, Brookfield: The Institute 

of Metals; 1987. 

[12] Bhattacharya K. Microstructure of martensite, why it forms and how it gives rise to the shape-

memory effect, Oxford University Press, Oxford; 2003. 

[13] Wayman CM. Metallography 1975;8:105-130, and republished in Mater. Charact. 1997;39:235-

260. 

[14] Zhang MX, Kelly PM, Progress Mater. Sci. 2009;54:1101-1170. 

[15] Bogers AJ, Burgers WG. Acta Metall. 1964;12:255-261. 

[16] Olson GB, Cohen M. Journal of Less-Common Metals 1972;28:107-118.  

[17] Cayron C,  Barcelo F, de Carlan Y. Acta Mater. 2010;58:1395-1402. 

[18] Cayron C. Acta Cryst. 2013;A69:498-509. 

[19] Falk F. J. Phys. 1982;43 C4:3-15. 

[20] Clapp PC. J. Phys. 1995;5 C8:11-19. 

[21] Pitsch W. Phil. Mag. 1959;4:577-584. 

[22] Maki T, Wayman CM. Acta Metall. 1977;25:681-693. 

[23] Cayron C. Mater. Charact. 2014;94:93-110. 

[24] Weatherly GC, Zhang WZ, Metall. Mater. Trans. 1994;25A:1865-1874. 

[25] Jaswon MA, Wheeler JA, Acta Cryst. 1948;1:216224. 

[26] Qi L, Khachaturyan AG, Morris JW Jr. Acta Mater. 2014;71:23-39. 

[27] Patel JR, Cohen M, Acta Metall 1953;1:531-538. 



24 

 

FIGURES CAPTIONS 
 

 

Fig. 1. Schematic position of the present work. (a) PTMC combines coherently the lattice 

and shape deformation to predict the orientation relationships and shapes. Our approach 

only tries to establish a link between the atoms and the lattice deformations.(b) Brief 

summary of the inputs and outputs of our work and its limitation in comparison with PTMC. 

Fig. 2. Coordinate transformation and distortion matrices. (a) Correspondence between two 

bases of same crystal. (b) Correspondence between the bases of crystals of different phases. 

(c) Transformation by rotation of an atomic row (angular distortive transformation). (d) 

Shear transformation. 

Fig. 3. Schematic views on the (001) plane of the fcc-bcc distortion associated to (a) Bain 

and (b) Pitsch OR. The initial   fcc phase is in blue and the final  bcc phase is in red. The 

compression axis is a. This axis is represented along the horizontal direction for Bain and 

rotated by 45° for Pitsch for practical graphical reasons. In the Bain distortion, the 

direction a is unrotated. In the Pitsch distortion, the direction x=a+b is unrotated and 

undistorted and noted N for neutral. 

Fig. 4. Schematic view of the fcc crystal, (a) in 3D and (b) in a flatten representation of the 

face centred cube. The distortion of the a and b axes in the (001) plane implies a distortion 

along the c= [001] direction due to the hard sphere packing. 

Fig. 5. Compression and dilatation along the PM = [100] and MQ = [010] axes of the 

(001) face during the Pitsch distortion. PQ = [110] = [111] = N 

Fig. 6. 3D scheme of the primitive basis Bp = (x, y, z) basis used to calculate the distortion 

leading to the KS OR. (a) Fcc cube with (111)  plane marked by the PQR triangle; x // P0 = 

½ [110]  ,  y // PK = ½ [101]  ,  z = PM = [100]  . (b) 3D representation of the (1 11)  

plane.  The iron atom in M moves such that the distance PO = PK = MO =MK remains 

constant. The orthonormal basis Bs = (xs, ys, zs) associated to Bp is also indicated. 

Fig. 7. 3D representation with VPython of the fcc-bcc distortion associated to Bain, Pitsch 

and KS ORs. The initial fcc crystal (8x8 cells) is in blue, with the X, Y and Z directions 

along the [100], [010] and [001] directions. With Bain, the crystal is compressed along X 

and extended along Y and Z, and these directions are unrotated. With Pitsch, the direction 

Z is unrotated and the direction X+Y = [110] (noted N for neutral) is invariant. With KS, 

the X, Y and Z directions are rotated but the direction N = X+Y is invariant and the (111)  

plane is unrotated. The fcc crystals after distortions are in red. The iron atoms inside the 

distorted fcc crystals form a bcc crystal.  
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Fig. 8. Proposition of experiment to determine the natural fcc-bcc martensitic distortion. A 

small cube (few µm
3
) of metastable austenite is prepared by FIB and deposited at the tip of 

sharp needle. An absolute reference frame is engraved at the surface of the tip. Then the tip 

is cooled below room temperature such that the austenite is transformed into only one 

variant of martensite (due to its small size). If the cube is not rotated but just squeezed along 

a <100> direction, then the natural distortion is Bain. If the cube is rotated the natural 

distortion is not Bain. It can be Pitsch or KS depending on lines and planes that are let 

invariant. 

Fig. 9. Modified one-step model. In Fig. 8 of ref. [18], the distortion was supposed to lead 

to Pitsch OR, whereas in the present version, the distortion leads to the KS OR. Rotations A 

and B, and the associated Pitsch and NW ORs, result from the strain field generated by the 

distortion. 

Fig. 10. Distortion of the (111) plane into a (110) plane. At the top, 3D view by orienting 

the fcc crystal along the [111]  axis. The planes are delineated by the yellow lines. At the 

bottom, 2D representation of the surface change Sbcc/Sfcc = sin(70.5°)/sin(60°) 1.088. The 

distance d is the diameter of the iron atoms. 

Fig. 11. Homogeneous transformation of an atomic plane. The initial plane (at the left side) 

given by the reciprocal vector g (in blue) is transformed into distorted plane g’. The planar 

change g = g’-g can be decomposed into two parts: g// and g.They represent the 

change of the interplanar distance (at the top right corner) and the planar tilt (at the bottom 

right corner), respectively. 

Fig. 12. Graphical representations with Mathematica  of  ‖ 𝒈 ‖  given in %. (a)  Spherical 

3D representation of ‖ 𝒈 ‖  for normalized reciprocal vectors g, (b) surface 

representation of ‖ 𝒈 ‖  according to the spherical coordinates θ and φ, with θ  [0,] 

and θ  [0,2]. (c) 2D representation with contours. (d) Enlargement of the region around 

the two local minima (111) and ( 2 25) . 
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FIGURES 
 

 

 

Fig. 1. Schematic position of the present work. (a) PTMC combines coherently the lattice 

and shape deformation to predict the orientation relationships and shapes. Our approach 

only tries to establish a link between the atoms and the lattice deformations.(b) Brief 

summary of the inputs and outputs of our work and its limitation in comparison with PTMC. 
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Fig. 2. Coordinate transformation and distortion matrices. (a) Correspondence between two 

bases of same crystal. (b) Correspondence between the bases of crystals of different phases. 

(c) Transformation by rotation of an atomic row (angular distortive transformation). (d) 

Shear transformation.  
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Fig. 3. Schematic views on the (001) plane of the fcc-bcc distortion associated to (a) Bain 

and (b) Pitsch OR. The initial   fcc phase is in blue and the final  bcc phase is in red. The 

axis a is represented along the horizontal direction for Bain and rotated by 45° for Pitsch 

for practical graphical reasons. In the Bain distortion, the direction a is unrotated. In the 

Pitsch distortion, the direction x=a+b is unrotated and undistorted and noted N for neutral. 
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Fig. 4. Schematic view of the fcc crystal, (a) in 3D and (b) in a flatten representation of the 

face centred cube. The distortion of the a and b axes in the (001) plane implies a distortion 

along the c= [001] direction due to the hard sphere packing. 

 

 
 

Fig. 5. Compression and dilatation along the PM = [100] and MQ = [010] axes of the 

(001) face during the Pitsch distortion. PQ = [110] = [111]  
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Fig. 6. 3D scheme of the primitive basis Bp = (x, y, z) basis used to calculate the distortion 

leading to the KS OR. (a) Fcc cube with (111)  plane marked by the PQR triangle; x // P0 = 

½ [110]  ,  y // PK = ½ [101]  ,  z = PM = [100]  . (b) 3D representation of the (1 11)  

plane.  The iron atom in M moves such that the distance PO = PK = MO =MK remains 

constant. The orthonormal basis Bs = (xs, ys, zs) associated to Bp is also indicated. The 

positions of the iron atoms are indicated by the blue disks. 
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Fig. 7. 3D representation with VPython of the fcc-bcc distortion associated to Bain, Pitsch 

and KS ORs. The initial fcc crystal (8x8 cells) is in blue, with the X, Y and Z directions 

along the [100], [010] and [001] directions. With Bain, the crystal is compressed along X 

and extended along Y and Z, and these directions are unrotated. With Pitsch, the direction 

Z is unrotated and the direction X+Y = [110] (noted N for neutral) is invariant. With KS, 

the X, Y and Z directions are rotated but the direction N = X+Y is invariant and the (111)  

plane is unrotated. The fcc crystals after distortions are in red. The iron atoms inside the 

distorted fcc crystals form a bcc crystal.  
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Fig. 8. Proposition of experiment to determine the natural fcc-bcc martensitic distortion. A 

small cube (few µm
3
) of metastable austenite is prepared by FIB and deposited at the tip of 

sharp needle. An absolute reference frame is engraved at the surface of the needle. Then the 

cube is cooled below Ms so that the austenite is transformed into only one variant of 

martensite (due to its small size). If the cube is not rotated but just squeezed along a <100> 

direction, then the natural distortion is Bain. If the cube is rotated the natural distortion is 

not Bain. It can be Pitsch or KS depending on lines and planes that are let invariant. 

 

 

Fig. 9. Modified one-step model. In Fig. 8 of ref. [18], the distortion was supposed to lead 

to Pitsch OR, whereas in this scheme, the distortion leads to the KS OR. Rotations A and B, 

and the associated Pitsch and NW ORs, result from the strain field generated by the 

distortion. 
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Fig. 10. Distortion of the (111) plane into a (110) plane. At the top, 3D view by orienting 

the fcc crystal along the [111]  axis. The planes are delineated by the yellow lines. At the 

bottom, 2D representation of the surface change Sbcc/Sfcc = sin(70.5°)/sin(60°) 1.088. The 

distance d is the diameter of the iron atoms. 
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Fig. 11. Homogeneous transformation of an atomic plane. The initial plane (at the left side) 

given by the reciprocal vector g (in blue) is transformed into a distorted plane g’. The 

planar change g = g’-g can be decomposed into two parts: g// and g.They represent 

the change of the interplanar distance (at the top right corner) and the planar tilt (at the 

bottom right corner), respectively. 
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Fig. 12. Graphical representations with Mathematica of  ‖ 𝒈 ‖  given in %. (a)  Spherical 

3D representation of ‖ 𝒈 ‖  for normalized reciprocal vectors g, (b) surface 

representation of ‖ 𝒈 ‖  according to the spherical coordinates θ and φ, with θ  [0,] 

and θ  [0,2]. (c) 2D representation with contours. (d) Enlargement of the region around 

the two local minima (111) and ( 2 25) . 

 

 

 

 

 

 


