
Multimodal Dataset for Assessment
of Quality of Experience in Immersive Multimedia

Anne-Flore Perrin, He Xu, Eleni Kroupi, Martin Řeřábek, Touradj Ebrahimi
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ABSTRACT
This paper presents a novel multimodal dataset for the anal-
ysis of Quality of Experience (QoE) in emerging immer-
sive multimedia applications. In particular, the perceived
Sense of Presence (SoP) induced by one-minute long video
stimuli is explored with respect to content, quality, resolu-
tion, and sound reproduction and annotated with subjec-
tive scores. Furthermore, a complementary analysis of the
recorded physiological signals, such as EEG, ECG, and res-
piration is carried out, aiming at an alternative evaluation
of human experience while consuming immersive multimedia
content. Results confirm the value of the introduced dataset
and its consistency for the purposes of QoE assessment for
immersive multimedia. More specifically, subjective ratings
demonstrate that the created dataset enables distinction be-
tween low and high levels of immersiveness, which is also
confirmed by a preliminary analysis of recorded physiologi-
cal signals.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database management—
Systems, Multimedia database; H.5.1 [Information Sys-
tems]: Information Interfaces and presentation—Multime-
dia Information Systems ; Evaluation/methodology, Video

Keywords
Sense of Presence (SoP); Immersive multimedia; Quality of
Experience (QoE); EEG; ECG; Respiration; Subjective as-
sessment

1. INTRODUCTION
The Sense of Presence (SoP) also known as Immersiveness

Levels (ILs) in this paper, is a desired quality metric for im-
mersive environments [19]. According to [23], SoP refers
to the subjective experience of “leaving” the intrinsic world
and “being present” in a virtual environment. Detailed defi-
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nition and description of SoP including its measurement can
be found in [15, 23].

Multimedia technologies aim at providing higher Qual-
ity of Experience (QoE), through combination of sensory, in
particular audio and visual information. For instance, audio-
visual content in TV can be regarded as a limited virtual en-
vironment replicating physical reality. Indeed, sensory cues
for virtual environments usually consist of visual but also
audio information. Therefore, it is necessary to better in-
vestigate and understand the influence of both modalities
and their impact on the QoE. The SoP, being the most
significant quality metric of virtual environment, is then ex-
pected to be highly correlated to the QoE. Hence, the SoP
is investigated here. Various studies in television services
using subjective ratings as assessment of SoP are presented
in [7].

Any explicit subjective assessment by human subjects is
influenced by emotional, cultural, educational, and environ-
mental differences across subjects [6, 8]. More importantly,
explicit assessments can have an impact on the experience
itself, and interfere with it. Therefore, implicit assessment
based on subjects physiological signals is expected to provide
additional and less biased information, when compared to
explicit assessment. In [21], an objective measure of SoP us-
ing behavior or physiological responses is envisioned, never-
theless the authors used only subjective ratings. Electroen-
cephalography (EEG) and peripheral physiological signals
including Electrocardiography (ECG) and respiration have
been used in various studies to assess the physiological re-
sponses to stimuli. In particular, in [12], 2D and 3D over-
all perceived quality is assessed using brain and peripheral
signals, [11] concludes that perceived quality is related to
emotional processes, whereas [10, 20] analyze emotional ex-
periences as opposed to SoP. The authors of [1] present a
similar sensor-based assessment of SoP using galvanic skin
response, EEG, and facial motion tracking.

This paper presents a novel dataset that captures the dif-
ferences in user experience during multimedia stimuli with
various ILs. In this dataset the different ILs are induced by
modifying the resolution, the amount of compression in the
video, and sound reproduction. EEG and peripheral phys-
iological signals including ECG and respiration, as well as
subjective ratings are acquired during experiments.

Analysis of subjective ratings indicates that stimuli prop-
erties, such as presence of audio and its quality, are corre-
lated with SoP. Additionally, proper application of classifi-
cation algorithms can distinguish the various ILs, based on
EEG and other peripheral physiological signals.



Parameters Setting
Immersiveness Levels (ILs)

Low Middle High

Audio No Audio Stereo Surround
Quality (QP) 36 20 20

Resolution SD HD UHD

Table 1: Parameters setting for different ILs

The remainder of this paper is organized as follows. The
next section describes how we conducted experiments to col-
lect subjective ratings and physiological responses. Section
3 presents the results of a subjective rating analysis and of
the classification using physiological signals. Finally, con-
clusions are provided in Section 4.

2. DATA COLLECTION
Four uncompressed (FLAC, RAW YUV 4:2:0) audiovisual

contents1 from Blender open source project2, two originally
in HD (Big Buck Bunny and Elephant Dream) and two in
UHD resolutions (Sintel and Tears of Steel), were used to
extract ten one-minute audiovisual sequences. Nine of these
sequences were used for test stimuli preparation, whereas
one sequence was used for training stimuli creation. The
audiovisual sequences were selected and cut from the orig-
inal contents based on the audio energy level in surround
channels, as well as on spatial and temporal properties of
the video. More specifically, parts of the contents with the
highest values of the above-mentioned properties were used,
while the original movie scene editing was respected. Low,
middle, and high ILs were defined for each audiovisual se-
quence by experts based on the exploited audio sound sys-
tem (mono, stereo, and 5.1), the video quality/level of com-
pression (high and low QP, using x264 encoding), and the
resolution (UHD, HD, and SD). The Table 1 illustrates the
characteristic settings for the three defined ILs. The combi-
nation of the nine video sequences with the three ILs leads
to 27 video stimuli shown to each subject during each ex-
periment.

The professional high-performance 4K/QFHD LCD refer-
ence 56-inch monitor Sony Trimaster SRM-L560 was used to
display the video stimuli. As recommended in [16], the view-
ing distance was set at 1.6 times the height of the screen.
The Altec Lansing 5.1 THX speaker system, super subwoofer
was used as audio sound system. The laboratory setup pro-
vided a quiet environment and the ambient light was set
in order to ensure subject comfort during bright and dark
scenes, as well as during assessment and resting periods. To
record the brain activity, a 256-electrodes net was placed at
the standard position on the scalp. An EGI’s Geodesic EEG
System (GES) 300 was used to record, amplify, and digitize
the EEG signals while the participants were watching the
stimuli. The heart activity was recorded from two standard
ECG electrodes placed on the lower left rib cage and the
upper right clavicle. Two respiratory inductive plethysmog-
raphy belts (thoracic and abdomen) were used to acquire
the respiration. All signals were recorded at 250 Hz.

Eight female and twelve male subjects participated in the
study. They were from 18 to 30 years old (23 in average with
a 3.03 standard deviation). The 20 subjects were screened

1http://media.xiph.org
2http://www.blender.org/foundation

for correct visual acuity (no errors on 20/30 lines) and color
vision using Snellen and Ishiara charts respectively. They
all provided written consent forms. Before each experiment,
oral instructions were provided to the participants to explain
their tasks. Additionally, a training session was used to
illustrate the low, middle, and high levels in SoP to guide
subjects to bound their own perceived overall ratings.

The experiments consisted of three sessions intersected by
ten-minute breaks in order to prevent subject fatigue and
lack of attention. The audiovisual stimuli were displayed in
low-middle-high IL, middle-low-high IL, and high-middle-
low IL order during first, second, and third sessions, respec-
tively. In order to avoid boredom or fatigue, the same audio-
visual sequence was displayed only once during each session.
Thus, nine audiovisual stimuli were presented in each ses-
sion leading to a total of 27 audiovisual stimuli forming 27
trials.

Each trial consisted of a ten-second baseline period and a
stimulus period. The physiological signals recorded during
the baseline period were used to remove stimulus-unrelated
variations from the signals obtained during the stimulus pe-
riod. During the baseline periods, the subjects were in-
structed to remain calm and focus on a 2D white cross on a
black background presented on the screen in front of them.
Once this baseline period was over, a video stimulus was
presented. After the video sequence was over, subject was
asked to provide his/her self-assessed ratings for the particu-
lar video sequence without any restriction in time, following
the Absolute Category Rating (ACR) evaluation method-
ology [9]. Once a trial was over, the next baseline period
was recorded and the next video sequence, whose content
was randomly selected, was presented. The procedure was
repeated until all 27 video stimuli were presented and rated.
Although the experiments lasted for almost two hours, in-
cluding the training and the set up, the subjects did not
report fatigue.

Regarding the self-assessed ratings, subjects were asked to
evaluate the video sequences according to five different cri-
teria, namely, interest in the video content, perceived video
quality, interest in the audio content, level of immersiveness,
and awareness of their surrounding. A 9-point rating scale
was used ranging from 1 to 9, with 1 representing the lowest,
and 9 the highest value of each criteria. In particular, the
two extremes (1 and 9) correspond to “low” and “high” for
interest in video and audio content as well as the perceived
video quality, “no immersion” and “full immersion” for level
of immersion and “no awareness of my environment” and
“full awareness of my environment” for awareness of the sur-
rounding. The dataset, including subjective ratings, as well
as recorded physiological signals, is publicly available3.

3. ANALYSIS AND RESULTS
To ensure that the ratings did not deviate significantly

across subjects, detection and elimination of outliers was
performed based on the scale of the IL ratings. The outliers
detection was applied according to the guidelines described
in Section 2.3.1 of Annex 2 of [4]. In this study, no outliers
were detected.

3http://mmspg.epfl.ch/SoPMD



Figure 1: MOSs and CIs for the experienced IL.

Figure 2: Correlation between the experienced SoP and the
assessed quality of the video.

3.1 Subjective ratings analysis and results
The analysis conducted on the subjective ratings includes

score distribution histograms, Mean Opinion Scores (MOSs)
and associated 95% Confidence Intervals (CIs), as well as
Pearson’s correlations, assuming a Student’s t-distribution
of the subjective rates.

Figure 1 shows the resulting MOSs and CIs for the SoP
experienced during stimuli for each content. The observed
MOSs confirm that all ILs were experienced. In general,
a higher IL provokes a better immersive experience as the
average MOSs values show for low, middle, and high ILs cor-
responding to 4, 6.5, and 7, respectively. Moreover, the dif-
ference between the middle and high IL is not significant in
any content as the CIs considerably overlap for all contents.
However, the CIs attest that there is a significant difference
between the low IL and the two other levels. These findings
indicate that investigation of immersiveness is possible from
this database.

To understand the impact of the sequence characteristics
(interest in the video and the audio content, the quality, and
resolution of the video) and verify that the awareness of sur-
rounding is inversely related to IL, the correlation between
the MOSs for all five criteria was measured using Pearson
correlation coefficient. Figure 2 depicts the correlation be-
tween the MOSs rates given for the video quality and the
SoP, and Table 2 presents the overall correlation coefficients.
In Figure 2, the stimuli with the same number originate from
the same content. This shows that, for each content, the
higher the perceived quality of a video stimulus, the more

Video Video Content Audio Content Surrounding
Quality Interest Interest Awareness

Immersiveness Level 0.990 0.914 0.974 -0.986
Video Quality - 0.892 0.988 -0.987

Video Content Interest - - 0.857 -0.903
Audio Content Interest - - - -0.965

Table 2: Pearson correlation coefficients between the ratings
of different perceptual criteria.

immersive is the experience. The correlation coefficient of IL
and video quality is 0.99, meaning that these two criteria are
highly correlated. A huge difference is observed between the
low and middle/high classes, corroborating with the previ-
ous analysis. It also explains the high correlation results. It
should be pointed out that each sequence provides a better
immersive experience when its IL is increased. The Table 2
confirms the high correlation between IL and the perceived
video quality (cc = 0.99), and shows the influence of sound
(cc = 0.97). It also validates that the surrounding awareness
is inversely related to the IL (cc = -0.99).

3.2 Physiological signal analysis and results
This section presents the pre-processing steps to remove

the artifacts from recordings, the feature extraction methods
and the classification results.

The pre-processing steps were inspired by [13]. Regarding
the ECG signals, the Heart Rate Variability (HRV) was ex-
tracted. HRV is the physiological measurement of variation
in the time interval between consecutive heart beats, i.e., the
variation of R-R intervals, in beats per minute. Since the
HRV is a time-series of non-uniform R-R intervals, the HRV
was regularly resampled at a rate of 4 Hz. The obtained
HRV sequences were used for feature extraction. Features
extracted from the HRV signals include the mean and vari-
ance, the heart rate, the power of the low-frequency band
(0.03 - 0.12 Hz), and the power of the high-frequency band
(0.12 - 0.49Hz).

Both respiratory signals (abdomen and thoracic) were fil-
tered using a wavelet multivariate de-noising [2]. Respira-
tion rate and average power across 0.1 to 0.4 Hz frequency
band were extracted as respiration features.

EEG signals were filtered by a fourth-order Butterworth
filter between 3 and 47 Hz, in order to remove Electrooculo-
gram (EOG) and Electromyogram (EMG) artifacts. Based
on the international 10-20 system configuration, 19 chan-
nels were selected and processed from a total of 256 chan-
nels. Eye-movements and blinking artifacts were removed
using Independent Component Analysis (ICA). We used
the concept of functional connectivity to explore the EEG
signals. Functional connectivity describes the dependence
across various sub-regions of the brain [5]. In this study lin-
ear granger causality was applied to the pre-processed EEG
data to estimate the functional connectivity between each
pair of channels.

Previous studies have shown that the brain can be inter-
preted as a network [3], and that related features [18] can be
extracted using granger causality estimated functional con-
nectivity maps [17]. We extracted network features, such as
characteristic path length [22], global efficiency [14], cluster-
ing coefficient [22], and local efficiency [14], from the esti-
mated functional connectivity maps. Features for each trial
are concatenated into one row for classification.



Predicted IL

Low Middle High Total

Actual IL
Low 110 0 70 180

Middle 70 20 90 180
High 11 0 169 180

Total 191 20 329 540

Table 3: Confusion matrix of classification results between
ILs. Numbers in the confusion matrix represents the result-
ing number of trials that are classified into each classes.

A 3-class Support Vector Machine (SVM) with a Gaus-
sian radial basis function kernel was employed to classify
between low, middle, and high ILs based on the physiologi-
cal signals. The feature set was constructed from fusing all
the features, i.e., concatenating all EEG and peripheral fea-
tures in one feature vector. The whole feature set was split
into ten folds. Moreover, a radial basis function kernel pa-
rameter was selected based on one-fold cross-validation. The
confusion matrix was computed to evaluate the performance
of the classifier(cf. Table 3). The three classes (low, middle,
and high) of IL were equally balanced (i.e., 180 instances
each), so the random classification accuracy is 33%.

The confusion matrix shows that it is easy to classify low
and high IL with 61% and 94% accuracy, respectively. On
the other hand, the middle IL classification accuracy is only
11%. The results are consistent with the subjective analysis,
indicating that high and low ILs are easier to be identified,
when compared to middle IL.

4. CONCLUSION
This paper introduces a publicly available dataset of im-

mersive multimedia contents including corresponding sub-
jective ratings, as well as recorded physiological signals. More
specifically, the dataset comprises EEG, ECG, and respira-
tion signals, as well as subjective ratings with respect to
video quality, interest in video and audio content, and Im-
mersiveness Level (IL).

A preliminary analysis based on the subjective ratings and
the physiological signals was performed. The subjective rat-
ings analysis demonstrated that various IL were experienced.
A clear distinction between low and high IL was observed,
whereas the differences between middle and high IL were
not significant. The results also showed a high correlation
between the Sense of Presence (SoP) and the quality of the
stimuli. A classifier based on EEG and peripheral features
enables the clear distinction between low and high IL, which
is in line with subjective ratings analysis. This leads to the
conclusion that this SoP dataset is consistent and can be
valuable for further analysis.
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