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Abstract
Accurate modelling of liquid, solid and mixed-phase precipitation requires a thorough un-

derstanding of phenomena occurring at various spatial and temporal scales. At the smallest

scales, precipitation microphysics defines all the processes occurring at the level where pre-

cipitation is a discrete process. The knowledge of these microphysical processes originates

from the interpretation of snowfall and rainfall measurements collected with various sen-

sors. Direct sampling, performed with in-situ instruments, provides data of superior quality.

However, the development of remote sensing (and dual-polarization radar in particular) of-

fers a noteworthy alternative: large domains can in fact be sampled in real time and with

a single instrument. The drawback is obviously the fact that radars measure precipitation

indirectly. Only through appropriate interpretation radar data can be translated into physical

mechanisms of precipitation.

This thesis contributes to the effort to decode polarimetric radar measurements into micro-

physical processes or microphysical quantities that characterize precipitation. The first part

of the work is devoted to radar data processing. In particular, it focuses on how to obtain

high resolution estimates of the specific differential phase shift, a very important polarimetric

variable with significant meteorological importance. Then, hydrometeor classification, i.e. the

first qualitative microphysical aspect that may come to mind, is tackled and two hydrometeor

classification methods are proposed. One is designed for polarimetric radars and one for an

in-situ instrument: the two-dimensional video disdrometer. These methods illustrate the

potential that supervised and unsupervised techniques can have for the interpretation of

meteorological measurements.

The combination of in-situ measurements and polarimetric data (including hydrometeor

classification) is exploited in the last part of the thesis, devoted to the microphysics of snowfall

and in particular of rimed precipitation. Riming is shown to be an important factor leading

to significant accumulation of snowfall in the alpine environment. Additionally, the vertical

structure of rimed precipitation is examined and interpreted.

Keywords: precipitation microphysics, polarimetric radar, snowfall, rainfall, remote sensing
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Sommario
La modellazione e previsione della precipitazioni in fase solida, liquida o mista richiede

un’approfondita conoscenza di molteplici interazioni che si verificano a varie scale spaziali

e temporali. La microfisica della precipitazione tratta in particolare di tutti i processi che si

verificano ad una scala alla quale la precipitazione é un fenomeno discreto. La conoscenza di

questa microfisica trae origine dall’interpretazione di misure di pioggia e neve raccolte per

mezzo di specifici strumenti. Le classiche misure dirette (in-situ) sono in grado di fornire dati

e osservazioni di ottima qualità, ma in rapporto a piccole scale spaziali. In questo contesto il

telerilevamento (e la tecnologia radar polarimetrica) offre un’alternativa interessante: aree

molto vaste possono essere osservate in tempi molto brevi. Le misure di telerilevamento sono

purtroppo indirette e richiedono un’accurata interpretazione prima di assumere un qualsivo-

glia significato meteorologico. Questo lavoro di tesi contribuisce agli sforzi atti a decodificare

le misure radar e tradurle in osservazioni microfisiche della precipitazione. La prima parte

della tesi é dedicata puramente al trattamento di dati e in particolare alla stima della differenza

specifica di fase (una variabile molto importante per varie applicazioni meteorologiche). In

seguito, i dati radar e i dati di un videodisdrometro bi-dimensionale sono utilizzati al fine

di classificare le idrometeore della precipitazione, grazie ad un algoritmo di classificazione

supervisionato (nel caso del video-disdrometro) e di un metodo non supervisionato (nel caso

dei dati radar). Nell’ultima parte della tesi, dati raccolti “ìn-situ” e dati di telerilevamento

(raccolti da un radar polarimetrico) vengono utilizzati in maniera complementare per descri-

vere e comprendere la microfisica della neve in una valle delle alpi centrali svizzere, con un’

attenzione particolare per la struttura verticale di questo tipo di precipitazione.

Parole chiave: microfisica delle precipitazioni, radar polarimetrici, neve, pioggia, telerileva-

mento
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1 Introduction

1.1 Motivation

Many natural conditions that allow the generation, conservation, and replication of life on

our planet are related to a unique chemical specie: water. Water interacts with the Earth both

at the surface, in the sub-surface, and in the atmosphere of the planet. It changes phase,

composition, purity and yet it comes back with the same characteristics at each step of the

water cycle.

Even though a cycle does not have a well defined start or end point, from a human perspective

the water cycle starts with precipitation. Precipitation is in fact the first and more immediate

interaction between water and our environment. Both the absence and the excess of precipita-

tion (e.g., Trenberth et al., 2003; Ciais et al., 2005) have a direct social and economical impact

on the modified environment of our societies, but also on natural ecosystems. In the recent

times, these impacts occurs into a context where the climate evolves faster than during the

last centuries (i.e. climate change), adding additional unknowns to their predictability and

magnitude (Hurrell, 1995; Frei et al., 2006). It is consequently important, now more than in

the past, to better understand the processes that govern precipitation at various spatial and

temporal scales. Observation, interpretation, and insight into precipitation are indispensable

steps in order to achieve an accurate parametrization of numerical weather models (e.g.,

Gregory et al., 2000) and in the end to be able to produce robust forecasts.

Precipitation has been observed and experienced for millennia, has been scientifically studied

for centuries and yet today a lot remains to be observed, discovered and understood because

of its complexity. Being the flux of (liquid or solid) hydrometeors from the atmosphere to

the Earth’s surface, precipitation is the result of complex interactions between turbulent

atmospheric dynamics and cloud microphysics that span from a few microns and seconds

to thousands of kilometres and days (e.g., Lovejoy et al., 2008). Moreover, it varies according

to the spatial and temporal scales of interest (Fabry, 1996). The first and most immediate

question concerning precipitation is its quantification. This exercise dates back to antiquity,

when the ancestors of the modern rain gauges were developed in Greece and India. The first

1
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systematic measurements of rain started to be collected in the Seventeenth century, and in

the same time snowfall started to be monitored in an organized manner too.

The 20th century, and in particular its second half, was a prolific period for the development

of precipitation measurement devices: rain gauges, snow gauges, snow height measurements

have been designed and invented in this period of time. At the same time the researchers

started to investigate precipitation over smaller scales: not only the quantification but also the

small-scale features of precipitation were recognized to be important to be able to describe,

model, and forecast precipitation. This interest in the microphysics and microstructure of pre-

cipitation led to the development of particle counters, particle imagers, optical disdrometers

and video-disdrometers (Drufuca and Zawadzki, 1975; Loffler-Mang and Joss, 2000; Kruger

and Krajewski, 2002; Garrett et al., 2012). Such sensors provide very detailed information but

only over relatively small sampling volumes. Also, they can be used for continuous monitoring,

but at the level of the ground only while precipitation is formed and evolves up to many kilo-

metres above ground. Aircraft-based instruments are a noteworthy exception to this spatial

issue, but in turns they are not well suited to provide continuous monitoring (time-wise). The

combination of a good spatial and temporal coverage can be potentially achieved by means of

remote sensing.

The modern concept of remote sensing of precipitation by means of active and passive sensors

is nothing but the legacy brought to us by the otherwise destructive World Wars of the 20th

century. Weather radars in particular, that constitute the main focus of this thesis, are the

direct descendants of military radars operating at microwave frequencies. Briefly after the end

of World War II the potential of radars as means to observe and describe weather (Maynard,

1946) and, more specifically, precipitation (Marshall et al., 1947) was recognized. Like what

happened for ground measurements, weather radars have also been initially employed to

retrieve rainfall intensity only. Then, the technological development led (among many other

improvements) to dual-polarization systems (Seliga and Bringi, 1976) and to better spatial

and temporal resolution. Weather radars have been thus used to study processes of increasing

complexity. Nowadays, even though accurate quantifications remain crucial research lines

(Berne and Krajewski, 2013), radars can observe fine-scale microphysical processes of precipi-

tation like the formation of hail,the aggregation and riming of ice crystals, or hydrometeor

sorting by size (e.g. Ulbrich and Atlas, 2007; Schneebeli et al., 2013; Chandrasekar et al., 2013).

Weather radars, according to their operating frequency and deployment platform, sample

precipitation from the meteorological microscale (Marzano et al., 2010a; Luke et al., 2010;

Schneebeli et al., 2013) to the meso and synoptic scales (Houze and Medina, 2005; Nesbitt and

Anders, 2009; Bluestein and Snyder, 2015) in nearly real-time. The inherent issue with such

measurements is that they are unavoidably indirect. They need to be carefully interpreted

before to exibit any meteorological meaning. At the point scale direct in-situ measurements

are in fact still more insightful than indirect radar retrievals and more scientific efforts are

required to fill this gap. This thesis is dealing with the interpretation of weather radar data.

Together with many other recent research works, it aims to contribute to the efforts to link

2
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radar observations and microphysics of precipitation.

1.2 Polarimetric radar measurements

This thesis is devoted to the estimation and interpretation of polarimetric radar measurements.

For the sake of clarity it is important to specify that the term "polarimetric radar” in the

majority of cases is used here to define dual-polarization (HH, VV) pulsed Doppler radars

operating in simultaneous transmission and reception (STAR hereafter) mode (e.g. Ryzhkov

et al., 2005a). The present section provides the definition of the polarimetric variables of

major interest for meteorological purposes. The meteorological meaning of the quantities is

prioritized with respect to the aspects purely related with the radar technology

1.2.1 Radar equation in meteorology

Weather radars transmit in the atmosphere an electromagnetic wave at microwave frequencies.

This signal, while crossing some regions of the atmosphere where clouds or precipitation are

present, is partially re-directed (backscattered) towards the radar. The amount of the incident

signal that gets backscattered depends on the properties of the targets encountered as well as

on the radar characteristics, first of all the wavelength. The basic relation linking the power

received by a radar, the power transmitted, the characteristics of the radar and the targets

encountered in the volume of reference is called the radar equation. For radars transmitting

signal in pulses, as most weather radars do (Doviak and Zrnić, 1993, chap. 4), and targeting

precipitation, a simplified expression of the radar equation is the following:

P(r ) = Cr

Radar specs

× η(r )

Targets

×
Pt

r 2

Incident power

(1.1)

where P(r ) [W] is the average power reflected towards the radar by the targets encountered at

a radial distance r [km], Pt [W] is the power transmitted by the radar, η(r ) is the reflectivity

[m2m−3] and Cr is a constant that depends only the characteristics of the radar system. In

this case, Cr takes the units of [m3]. The reflectivity η is the term describing the interaction

between the incident wave and the targets (precipitation particles, i.e. hydrometeors) that

populate the radar resolution volume centred at a distance r . It is expressed as:

η(r ) =
1

Vr

N
∑

i=1

σi
b (1.2)

where Vr [m3] is the radar resolution volume associated with the radial distance r , N is the

number of hydrometeors within Vr , andσb [m2] denotes the backscattering cross section of
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individual hydrometeors. σb is a measure of the detectability of the target from the radar

perspective. Equation 1.2 is in general valid if Vr is uniformly populated by hydrometeors.

It is worth noting that η in equation 1.1 contains meteorological information, but its unit

componentsσi
b depends also on the frequency (wavelength) of the radar (Doviak and Zrnić,

2006). To separate these two aspects, since the early stage of development of radar meteorol-

ogy (Marshall et al., 1947), η has been redefined in the following manner:

η=
π5|K |2

λ41018 Z (1.3)

where λ [mm] is the incident wavelength, K is the refractive factor of the hydrometeors with

respect to the incident wave (K is related to the complex refractive index of water, Liebe et al.,

1991) and Z is called radar reflectivity factor. This term, if the wavelength is much larger than

the size of single hydrometeors (i.e. we are in the Rayleigh regime, Doviak and Zrnić, 2006),

depends on the characteristics of the population of hydrometeors and not anymore on the

wavelength. Therefore, under these conditions, it is a purely meteorological variable. The

radar equation (Eq.1.1) can now be inverted and written in terms of reflectivity factor Z :

Ze =C ∗r
Pr r 2

Pt 0.93
(1.4)

where C ∗r is a newly defined calibration constant including the characteristics of the radar and

the 0.93 is the squared modulus of the refractive factor of liquid water (Kw ) that is relatively

constant in the Rayleigh regime. Because it is assumed that the Rayleigh regime approximation

holds and because Kw is used here despite the fact that the radar might be sampling ice-phase

hydrometeors, the reflectivity factor in the equation is called ”equivalent” reflectivity factor

Ze (Smith, 1984). Given this clarification, in the following we will use the term reflectivity factor

and/or simply reflectivity as synonyms of Ze . It is worth noting that the equivalent reflectivity

factor was originally defined when most of the weather radars were mainly collecting measure-

ments in Rayleigh regime conditions. This assumption is on average reasonable for centimetre

wavelengths (X-,C-,S- band in ascending wavelength) radars, although non-Rayleigh effects

can be easily observed even within this range of radar frequencies (e.g., Thurai et al., 2008),

while it is definitely unreasonable for recent mm-wavelength systems.

1.2.2 Polarimetric variables

The principle of dual polarization in weather radars involves the transmission and reception

of waves with a different polarization, in most of the cases an orthogonal couple of horizontal

and vertical (H-V) linearly polarized signals (Bringi and Chandrasekar, 2001). Because rain-

drops are not spherical, but become more oblate as their size increases (Beard and Chuang,

1987; Beard et al., 2010), and also ice-phase hydrometors exhibit geometrical anisotropy (e.g.

Vivekanandan et al., 1994; Bechini et al., 2013; Schneebeli et al., 2013), dual polarization,

combined with the capability of measuring the phase (in addition to the magnitude) of the

waves, allows to retrieve more information about the characteristics of the hydrometeors
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1.2. Polarimetric radar measurements

in a given sampling volume. This allows to compute other variables (with meteorological

meaningfulness) than the reflectivity factor presented in Eq. 1.4.

This thesis is dealing with STAR radars and in this section it is provided the definition of the

four classical polarimetric variables (ZH , ZDR , Kd p and ρhv ) that are obtained from STAR

measurements. The description is more oriented to underline the microphysical significance

of each variable rather than explaining the (technical) processing steps that are necessary for

its estimation.

Horizontal (Vertical) reflectivity factor

The reflectivity factor at horizontal (vertical) polarization ZH (ZV ) is the dual-polarization

counterpart of Z (see Eqs. 1.4 and 1.2). Taking ZH as example (ZV is analogous), it is defined

(in dB1) as:

ZH = 10 log10









106λ4

π5|Kw |2

Dm a x
∫

Dm i n

σb ,h (D)N (D)d D









(1.5)

where λ [cm] is the incident wavelength, N (D) is the particle size distribution (PSD hereafter)

in [mm−1m−3],σb ,h (D) [cm2] is the size-dependent backscattering cross section and D [mm]
is a reference dimension for the particles in the radar resolution volume. For rainfall, D

is the equivolume spherical diameter of the drops (e.g., Ulbrich, 1983), mainly because the

available raindrop shape-size models are very accurate (e.g., Thurai et al., 2009). For ice-phase

hydrometeors D is not defined in a straightforward manner and both the major dimension of

the ice crystals/snowflakes (Liu, 2008) or the equivolume diameter of the melted crystals (e.g.,

Dolan and Rutledge, 2009) have been used.

The microphysical expression of ZH is simplified in rainfall in the Rayleigh regime (λ>>D,

Doviak and Zrnić, 2006) by means of the famous relation that relates ZH to the 6th moment of

the drop size distribution:

Z = 10 log10









Dm a x
∫

Dm i n

D6 N (D)d D









. (1.6)

The merit of this expression is to highlight the size-dependence of ZH . Generally speaking ZH

depends on the particle size and size distribution, on the incident wavelength, as well as on

temperature and on dielectric properties of the hydrometeors (this dependence is carried by

σb ,h ).

1In this thesis we adopt the convention to use capital subscripts for ZH (ZDR ) if it is expressed in dBZ (dB)
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Differential reflectivity

The fact that hydrometeors are often not spherical and that they fall with preferred orientation

led, since the very early development of meteorological radar polarimetry (Seliga and Bringi,

1976), to realize that ZH and ZV could be simply combined to define a new variable. This idea

is at the foundation of the differential reflectivity (ZDR [dB]):

ZDR =ZH −ZV . (1.7)

ZDR is positive (negative) for oblate (prolate) targets, respectively. ZDR is a priori independent

of particle concentration (number density) and for a population of hydrometeors of same

dielectric properties it is largely influenced by the shape of the biggest particles, i.e. the ones

which carry larger ZH .

Copolar cross correlation coefficient

ZH and ZV for a pulsed radar are usually calculated as average values of several pulses (Bringi

and Chandrasekar, 2001) transmitted over small time intervals. This is done in order to reduce

the noise of the measurements and to collect more samples within each radar resolution

volume (assuming that ergodicity is a reasonable assumption). However, the correlation

coefficient between ZH and ZV calculated over all the individual pulses carries physical in-

formation as well and it defines the copolar cross correlation coefficient ρhv (e.g., Bringi and

Chandrasekar, 2001). ρhv can be defined in microphysical terms as follows:

ρhv =

�

�

�

�

�

�

�

Dm a x
∫

Dm i n

s ∗hh (D)sv v (D)N (D)d D

�

�

�

�

�

�

�

p

Zh ∗Zv

(1.8)

where Zh,v is the horizontal (vertical) reflectivity expressed in linear units while shh,v v [cm]
is the complex backscattering amplitude of individual hydrometeors at horizontal (vertical)

polarization (e.g. Mishchenko et al., 1996). For a more direct interpretation, it is worth noting

that these quantities, shh,v v , are closely related to the backscattering cross sections (σb ,h =
4π|shh |2). ρhv is very sensitive to inhomogeneities within the radar resolution volumes, that

cause pulse-to-pulse variations in Zh -Zv couples and therefore lower the correlation. The two

most known (but not unique) applications of ρhv are the identification of the melting layer of

precipitation (transition from snow to rain, e.g. Matrosov et al., 2007) and the discrimination

of non-meteorological targets (e.g., Rico-Ramirez and Cluckie, 2008).
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1.3. Microphysics and microstructure of precipitation

Specific differential phase shift upon propagation

The variables presented until now are based on the power that the hydrometeors encountered

along the propagation path of a radar beam reflect back towards the location of the radar itself.

The specific differential phase shift upon propagation (Kd p ) is instead based on the phase of

the waves transmitted and received by the radar. These waves are in fact slowed down along

their propagation path by the interaction with the hydrometeors. The principle of Kd p is that

non-spherical targets will slow down the waves polarized along their major dimension much

more than the ones polarized along their minor dimension. Kd p is defined as

Kd p =
180

π
103λ

Dm a x
∫

Dm i n

ℜ[ f hh (D)− f v v (D)]N (D)d D (1.9)

where λ [m] is the wavelength, f hh(v v ) [m] are the forward complex scattering amplitudes, at

horizontal (vertical) polarization, andℜ indicates the real part operator. Kd p takes the units

of ◦km−1 and represents the rate at which the difference in phase (H-V) changes. It depends

on the number of non-spherical hydrometeors in a radar resolution volume, their geometry

and their dielectric properties. Unfortunately Kd p is not a direct observable of polarimetric

radars (as ZH for instance) but it needs to be estimated from the radar measurement of total

differential phase shift Ψd p [◦]. This estimation step is of crucial importance to ensure that

Kd p has significant microphysical meaning and the full Chapter 2 of this thesis is dedicated to

this task.

1.3 Microphysics and microstructure of precipitation

The final intention of the present thesis is to link polarimetric radar measurements with

microphysical processes occurring during precipitation. The terms “microphysics” and “mi-

crostructure” have already appeared several times until now. The present section is therefore

devoted to clarify the definition of these two concepts.

1.3.1 Microstructure: the particle size distribution (PSD)

The term microstructure defines all the statistics that describe measurable quantities of a pop-

ulation of hydrometeors at a spatial scale at which precipitation is a discrete process (Jameson

and Kostinski, 1997). The targets of those statistics are usually the velocities, sizes or shapes of

the population of hydrometeors under investigation.

In the field of radar meteorology it is common practice to focus on the distribution of sizes

by means of the concept of particle size distribution (PSD), and then to express the other

quantities as a function of the size. In fact, many established relations exist to link fall velocities

of raindrops (e.g., Beard, 1976), or other hydrometeors (e.g., Heymsfield, 1972; Hanesch,
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1999; Yuter et al., 2006) to the respective sizes. Shape-size relations are also well defined

for rain (e.g., Andsager et al., 1999; Thurai and Bringi, 2005), while for other hydrometeors

the parametrization is more complex and usually a single relation cannot describe all the

variability.

The PSD or DSD (drop size distribution, in case of rainfall), is a function N (D) that represents

the number of hydrometeors per unit size and volume (volumic DSD) and therefore takes the

units of [mm−1 m−3]. It is worth noting that actual ground measurements of PSD, collected

with disdrometers (e.g. Löffler-Mang and Joss, 2000; Kruger and Krajewski, 2002) are usually

based on reference surfaces, and not directly on volumes. The disdrometers characterize

the PSD as the number of objects per unit size, crossing a unit area per unit time (areal PSD)

[mm−1 m−2 s−1]. The link between areal and volumic PSD is done through the hydrometeor

fall velocities:

NA (D) = v (D)NV (D) (1.10)

where NA (D) is the areal PSD, NV (D) is the volumic PSD and v (D) is the terminal fall velocity

of the particle [m s−1]. In the previous section and in the following ones we always refer to

volumic NV (D) as N (D). D [mm] is a generic reference dimension, as already discussed for

Eq. 1.5.

The optimal mathematical expression of a PSDs and DSDs through parametric functions

is still under debate in the scientific community. This aspect was discussed from the times

of (Joss and Gori, 1978), until very recently, by (Ignaccolo and De Michele, 2014). The topic is

evergreen also because it is strictly linked with the evaluation of the accuracy of disdrometric

measurements, that is an open scientific question as well (e.g. Battaglia et al., 2010; Jaffrain

and Berne, 2011; Raupach and Berne, 2015). For rainfall, a gamma distribution in the form of:

N (D) =αN ∗t Dµ exp−ΛD (1.11)

has been widely employed since Ulbrich (1983). N ∗t [m
−3] is a concentration, µ a shape and Λ

a rate parameter respectively. α is a normalization factor that makes Nt the actual volumic

number concentration and it is defined as:

α=
1

∫ Dm a x

Dm i n
Dµ exp(−ΛD)d D

It is worth noting that this family of functions includes also exponential and power-law

relations. Those have been used for example to parametrize the PSD of ice-phase hydrom-

eteors (Heymsfield, 1977; Platt, 1997; Ryan, 2000) or of cloud droplets(Whiteman and Melfi,

1999). Ultimately, all the quantities defined in Sec.1.2.2 are linked to the PSD and therefore

the knowledge of the PSD, or at least of some of its properties, is crucial for the field of radar

meteorology.
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1.3.2 Basic definitions of precipitation microphysics

The term “microphysics” indicates all the qualitative and quantitative aspects that describe

precipitation, as well as all the dominant processes that contribute to generate and modify

them. The concept of “microphysics” is closely related but slightly different from “microstruc-

ture” because the former does not rely only on statistical properties over a reference volume

and it can include purely qualitative aspects too. For the purpose of this thesis the two mi-

crophysical aspects of interest are: (i) the hydrometeor content of precipitation, and (ii) the

habits and processes characterizing ice-phase precipitation.

Hydrometeor type

A microphysical description of precipitation starts by the definition of “precipitation type”. In

other words it starts by answering to the question: “what is precipitating?”. Many hydrom-

eteor types exists and their classical definition involves a certain subjectivity as well as the

choice of a level of classification complexity . A first and simplistic distinction can be made

between liquid-phase (rainfall) and ice-phase (snowfall) precipitation. More complex and

complete catalogues exist (i.e., the METAR format http://meteocentre.com/doc/metar.html)

that classify precipitation into: rain, snow, snow pellets, snow grains, ice crystals, ice pellets,

hail, graupel, drizzle, freezing rain, mixed phase precipitation and freezing fog.

The level of detail of the classification depends on the field of application, but the definition

of hydrometeor types is more important than it would appear at a first glance. The presence

of specific hydrometeors can represent a hazard, like hailstones (Brooks et al., 2003), while

other can be the indicators of specific environmental conditions. For instance, melting

snowflakes (Oraltay and Hallett, 1989) indicates temperatures around 0◦C, while dendritic ice

crystals may indicate temperatures around -15◦C and significant supersaturation with respect

to ice (Magono and Lee, 1966).

The development of automatic techniques to classify hydrometeors from in-situ or remote

sensing instruments is relatively recent. Remote sensing instruments, like polarimetric radars,

have the potential to provide information on very large domains in nearly real-time and the

introduction of radar polarimetry led to the fast development of hydrometeor classification

schemes (Straka et al., 2000; Dolan and Rutledge, 2009; Thompson et al., 2014; Bechini and

Chandrasekar, 2015). All these algorithms are based on the complementarity of the radar

polarimetric variables and a significant part of the present thesis is as well devoted to the

development of hydrometeor classification schemes (Chapter 3 and 4).

Ice-phase precipitation: notes on habits and processes

The study of ice-phase precipitation is complicated by the great variability of sizes, fall veloci-

ties, shapes, crystalline structures and densities of hydrometeors when compared with rainfall.
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These peculiarities define the “habits” of ice crystals or of generic ice-phase hydrometeors2

The characteristics of a snowflake at the ground level depend on its “falling history": for in-

stance the temperature and humidity profiles, the wind field and the presence of supercooled

liquid water (SLW) are aspects that drive the evolution of the ensemble of snowflakes/ice crys-

tals forming snowfall. The simultaneous observation of all these aspects to get the full picture

is challenging. It is usually not properly captured by single remote sensors (Bechini et al., 2013,

e.g.) and requires a combination of multiple instruments to be properly characterized (e.g.,

Hogan et al., 2003; Westbrook and Illingworth, 2013).

Precipitation of ice-phase hydrometeors is in fact the result of the interactions between cloud

ice crystals, supercooled liquid water (SLW) droplets and water vapour. After nucleation,

the processes of aggregation, riming, and vapour deposition contribute to the growth of the

crystals up to the point where their sizes and densities are large enough to let them fall towards

the earth surface and further interact with the lower layers of the atmosphere (e.g., Pruppacher

and Klett, 1997; Straka et al., 2000; Cantrell and Heymsfield, 2005).

The shape, density, and growth rate of individual crystals depend largely on the temperature

and relative humidity of formation (Magono and Lee, 1966; Chen and Lamb, 1994; Fukuta

and Takahashi, 1999; Takahashi, 2014). Individual crystals can branch together (aggregation)

and/or collect supercooled liquid water droplets that freeze upon impact on the surface of the

crystals (riming). In contrast to aggregation, riming generates a net increase of the mass of

precipitation because the rimed crystals or snowflakes have much larger fall velocities than

individual water droplets in supercooled liquid water clouds that would otherwise not be able

to reach the ground. Aggregation contributes indirectly to the mass transfer by generating

larger and faster targets for riming (Houze and Medina, 2005).

1.4 Thesis outline

The objective of this thesis is to link polarimetric radar observations and precipitation micro-

physics. Two broad topics will be covered. At first the automatic classification of hydrometeors

from polarimetric measurements and in-situ sensors will be tackled. In a second step the

microphysics and vertical structure of ice-phase precipitation will be examined in the alpine

environment, with a particular focus on rimed snowfall. In order to investigate these two

aspects a prerequisite is necessary. All polarimetric observables should be collected at the high-

est available resolution, and therefore the estimation of high resolution specific differential

phase shift will be part of this thesis as well.

The thesis is structured as follows: Chapter 2 is devoted to the estimation of the specific

differential phase shift upon propagation (Kd p ). This variable is not directly available from

polarimetric radar measurements and its estimation involves some sort of data smoothing. It

2In this sense the habit is a subset of the concept of hydrometeor type
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is shown that this leads to significant errors and biases when Kd p is employed at the spatial

scale of the radar range gate. To mitigate this issue, a novel algorithm is proposed, based

on Kalman filtering, that better follows the fine scale variations of Kd p and that is a-priori

applicable in all meteorological conditions (i.e. it is not parametrized for rainfall only). An

accurate Kd p estimate is the prerequisite for any further analysis or interpretation.

Chapter 3 presents a hydrometeor classification algorithm applied to two-dimensional video

disdrometer (2DVD) data. It is shown that supervised classification (machine learning) can be

an interesting tool to mimic human interpretation for automatic detection of hydrometeor

types, when the data of the instrument allow to perform direct supervision. This operation

cannot be performed on radar data and the 2DVD-based classification has the potential to

provide time series of in-situ references for polarimetric radar measurements, in addition to

its valuable point information. The 2DVD-based classification is performed over populations

of hydrometeors (with a temporal resolution of 60 seconds), classified by means of multiple,

mainly geometrical, particle descriptors.

Chapter 4 is devoted to hydrometeor classification from polarimetric weather radars. In this

section a novel approach to hydrometeor classification is proposed, based on measured data

rather than on scattering simulations. Hydrometeor classes obey the hypothesis of showing

similarities in terms of polarimetric data as well as spatial consistency in the physical space. A

simple method is built on these two assumptions and 7 hydrometeor categories that describe

well the data collected by an X-band polarimetric radar in different locations of central Europe

are identified. It will be shown that the hydrometeor classes identified in this way are similar to

the ones obtained with a method based on scattering simulations, but they are better tailored

on the specificities of the instrument used to collect the data.

Chapter 5 is devoted to snowfall microphysics, and in particular to the riming process. The

data collected during a highly-instrumented field campaign in the central Alps of Switzerland

are used to show that riming is an important process that largely affects the accumulation of

snowfall. Additionally, the vertical structure of rimed precipitation events is described and

interpreted. A special focus of this chapter will be on the description of the possible role that

wind shear driven turbulence may have both in terms of snowfall microphysics and, more in

general, on the enhancement of snow accumulation. Chapter 6, finally, summarizes the main

contributions of this thesis and underlines possible future developments.

Note that the thesis is a compilation of published (or to be submitted) articles and therefore

might contain small repetitions in particular in the introduction in each chapter. The author

apologizes in advance for any inconvenience caused by this particular format.
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2 Estimation of the specific differential
phase shift upon propagation (Kd p )

This chapter is adapted from two manuscripts:

• Schneebeli, M., J. Grazioli, and A. Berne (2014), Improved estimation of the specific

differential phase shift using a compilation of kalman filter ensembles, IEEE T. Geosci.

Remote Sens., 52(8), 5137–5149, doi: 10.1109/TGRS.2013.2287017

• Grazioli, J., M. Schneebeli, and A. Berne (2014a), Accuracy of phase-based algorithms

for the estimation of the specific differential phase shift using simulated polarimetric

weather radar data, IEEE Geosci. Remote Sens. Lett., 11(4), 763–767, doi: 10.1109/LGRS.

2013.2278620

It presents a novel method for the retrieval of Kd p and an evaluation of the accuracy of Kd p

estimates at the radar range gate scale.
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Chapter 2. Estimation of the specific differential phase shift upon propagation (Kd p )

2.1 Summary

A new algorithm for the accurate estimation of the specific differential phase shift on propa-

gation (Kd p ) from noisy total differential phase shift (Ψd p ) measurements is presented. The

new approach, which is based on the compilation of ensembles of Kalman Filter estimates,

does not rely on additional data like the reflectivity or the differential reflectivity in order to

constrain the solution and it is based on Ψd p only. The dependence of the solution on Ψd p

only allows one to apply the algorithm in various environmental conditions without reducing

its performance. Drawbacks that are usually inherent in algorithms of this kind (like the loss

of the small-scale structure and the smoothing of high peak values) are partially overcome by

a two-step algorithm design, which first determines an ensemble of possible solutions and

then selects and averages the ensemble members such that the estimated Kd p profile has a

better agreement with the truth. The algorithm is thoroughly evaluated and compared with

commonly used algorithms, chosen among the ones which use as main input the measured

and noisy total differential phase shift Ψd p . The comparison is conducted by means of simu-

lated two dimensional fields of drop size distribution, over 6 simulated rain event. The new

algorithm outperforms the classical ones in terms of Efficiency, Correlation and RMSE. The

mean normalized absolute error in the estimation of Kd p at the radar resolution volume scale

ranges however from 27% to 30% for all the algorithms evaluated, and significant negative

biases up to -50% emerge at the highest values of Kd p for the most biased algorithms. The

novel algorithm is also experimentally evaluated by applying it on X-band radar data that

were acquired in northern Brazil during the CHUVA campaign and at a high alpine site in

Switzerland during snowfall. Results show the spatial fine structure and the high values of

precipitation are better represented with the new method.

14



2.2. Introduction

2.2 Introduction

The specific differential phase shift on propagation (Kd p ) is defined as the spatial derivative

of the phase difference between the horizontal (H) and vertical (V) polarization state of a

propagating radar signal that is induced by forward scattering. Thanks to the high correlation

between Kd p and the rain rate R at all weather radar frequencies (Sachidananda and Zrnic,

1986, 1987; Matrosov et al., 1999, 2002) and to the fact that Kd p is less affected by partial beam

blockage, radar miscalibration, attenuation along the propagation path and hail (Illingworth,

2004), it has been proposed to use Kd p instead of the radar reflectivity Z for inferring rain rates

from dual-polarization radar measurements (Ryzhkov and Zrnic, 1996; Zrnic and Ryzhkov,

1996). In addition, Kd p is not only useful for rain measurements, it also serves as input for

hydrometeor classification schemes and has been proven to be useful for the detection of

graupel particles (Dolan and Rutledge, 2009; Schneebeli et al., 2013) and dendritic snow crystals

(Bechini et al., 2011; Kennedy and Rutledge, 2011; Schneebeli et al., 2013).

Despite these advantages, there are issues associated with the use of Kd p , the most notable

being its derivation from noisy total differential phase (Ψd p ) measurements. The noise that

is inherent in the phase measurements requires some sort of smoothing of the input Ψd p

range vector such that its spatial derivative can be calculated. Smoothing of Ψd p however

directly leads to smoothed Kd p values that neither follow small-scale fluctuations nor high

peak values, hence the exact spatial structure of precipitation is not well captured. At higher

frequencies (e.g., C- and mostly X-band), the differential phase shift on backscatter (δhv ), i.e.,

the phase shift that is induced upon the backscattering process), is an additional source of

error in the calculation of Kd p : Φd p and δhv add up to Ψd p but it is not straightforward to

separate the two contributions. Therefore, accurate Kd p estimates can only be obtained if (1)

δhv is constant along the range gate interval that defines the spatial resolution of Kd p (and

is used for the numerical calculation of the spatial derivative) or (2) δhv can be estimated

separately.

Numerous algorithms have been proposed in the last two decades that aimed at tackling some

or all of these problems. These algorithms need to be separated into two groups: the first

group containing algorithms whose Kd p estimates are purely based onΨd p measurements

(Hubbert et al., 1993; Hubbert and Bringi, 1995; Wang and Chandrasekar, 2009; Vulpiani et al.,

2012) and the second group using auxiliary data like the reflectivity Z and(or) the differential

reflectivity ZDR together with consistency relations between polarimetric observables in order

to obtain an improved fine-scale structure of Kd p or a more accurate estimate of δhv (Otto

and Russchenberg, 2011; Schneebeli and Berne, 2012). As shown in Schneebeli and Berne (2012)

and Schneebeli et al. (2012), Kd p can be estimated very accurately with an algorithm from

the second group, but only in rain conditions and if the radar is well calibrated. As soon as

the consistency relations between the polarimetric variables are violated (by beam blockage,

partial beam filling, non-liquid precipitation or radar miscalibration) the applicability of such

algorithms is usually hampered. The group of algorithms that only uses the range profile

ofΨd p as input variable is more generally applicable but the accuracy of the Kd p estimates
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might be low, especially at the single range gate scale (i.e., pixel scale). For many quantitative

precipitation estimation (QPE) applications, the pixel scale might not be very relevant, since

rain intensities that are inferred from radar measurements are usually integrated over time,

which evens out the errors in the representation of the small-scale precipitation structures.

Due to this, very good agreements between rain accumulations determined with Kd p based

rain intensity estimators and ground based in-situ sensors could be achieved (Matrosov,

2010; Wang and Chandrasekar, 2010). For certain disaster prevention applications like urban

hydrology, flash-flood and landslide forecasting, the rain rate must however be known at a

high spatial and temporal resolution. Therefore it is important to carefully choose the rain rate

estimator and keep in mind that high intensity rain rates are poorly captured with usual Kd p

estimates. Moreover, polarimetric radars are also used as a tool for microphysical research and

hydrometeor identification (HID) became a popular tool for such applications (Straka et al.,

2000; Vivekanandan et al., 1999; Schneebeli et al., 2013). Most of the commonly used HID

schemes are using Kd p as an input variable and try to classify every individual radar range

gate into a certain hydrometeor category. This might also lead to inconsistencies because

of the already mentioned representativeness error of usual Kd p estimates at the pixel scale.

Other radar inversions, like DSD retrieval techniques, employ as well Kd p at the range gate

scale (Zhang et al., 2001; Gorgucci et al., 2009).

In this Chapter, a novel algorithm for the accurate determination of Kd p fromΨd p measure-

ments is presented, which does not employ any additional measurements to constrain the

solution. In contrast to traditional Kd p estimators, simple smoothing of the noisy Ψd p is

replaced by a more sophisticated Kalman Filter (KF), which is operated in the forward and

backward directions of the range profile. KF allows to include easily in the estimation process

the geometry of the problem under investigation, as well as the available parametrization. In

addition, an ensemble of Kd p estimates is obtained by a variable weighting of the covariance

matrix that represents the spatial precipitation structure. With this approach, the final Kd p

product is compiled from a selection and combination of an ensemble of initial Kd p estimates.

The algorithm will be referred to as Kalman Filter Ensemble (KFE). In order to avoid misunder-

standings, it is important to underline that the proposed algorithm is different from Ensemble

Kalman Filtering (EnKF, e.g., Evensen, 1994) and Extended Kalman Filtering (EKF, e.g., Gelb,

1988).

In the end of this Chapter it will be presented also an evaluation of the quality of Kd p estimates

using simulated DSD fields, that allow a quantitative assessment at the scale of the radar range

gate. The quality of Kd p is assessed by analysing the performance of two different commonly

employed algorithms1, and KFE. The performance of the proposed algorithm is compared

also on real data of rainfall and snowfall to the algorithm proposed by Hubbert and Bringi

(1995) (which is based on the work done in Hubbert et al. (1993)) and modified to adaptive

interpolation gate lengths as it is described in the first part of Wang and Chandrasekar (2009).

The Chapter is organized as follows: Section 2.3 shortly describes the radar and simulated data

1Algorithms that, like KFE, base their estimation on the measured differential phase shift Ψd p .
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set used in this study. The algorithm is detailed in Section 2.4. Evaluations of the performance

of the proposed algorithm and of other common approaches are presented in Section 2.5 and

the conclusions are provided in Section 2.6.

2.3 Data sets

2.3.1 X-band polarimetric radar data from Brazil

In April 2011, a mobile X-band polarimetric radar was deployed outside of the city of Fortalza,

northern Brazil. The radar was installed on a five-meter high tower, but elevations below 2◦

were nevertheless almost completely blocked. The field campaign was part of the CHUVA

project (http://chuvaproject.cptec.inpe.br/portal/noticia.ultimas.logic) that contributes to

the ground validation efforts for the Global Precipitation Measurement (GPM) satellite mission.

Around 13 intense convective precipitation events were recorded during the one-month

period. The radar reflectivities were corrected for rain and radome attenuation by using a

self-consistency scheme (Schneebeli and Berne, 2012). Details on the radar measurements,

the applied data correction algorithms as well as on the meteorological conditions can be

found in Schneebeli et al. (2012). One event that took place on April 13, 2011 will be discussed

in this Chapter. It was characterized by a melting layer height of around 4.5 km above sea level

and peak rain rate intensities that exceeded 100 mm h−1, as indicated by the rain gauges and

Parsivel disdrometers that were deployed at a distance of about 20 km from the radar.

2.3.2 X-band polarimetric radar data from Switzerland

Radar data collected during snowfall are taken from an X-band polarimetric radar that was

deployed in Davos, Switzerland, from September 2009 to July 2011. The radar was installed on

the slope of a ski resort at an altitude of 2133 m above sea level and overlooked the Landwasser

valley. Due to the surrounding mountains that exceed heights of 3000 m, the first clutter

free elevation was found at 9◦. Details on the campaign and on the radar can be found in

Schneebeli et al. (2013); Scipion et al. (2013). The Kd p algorithms are applied on data that

were collected on March 26, 2010. This particular day was characterized by an incoming cold

front that led to high snowfall intensities (around 40 cm of snow accumulation in 3 hours).

Ψd p measurements in the first 4 km were corrupted by phase jitter (Hubbert et al., 1993) and

are therefore excluded from the analysis. The radar was far above the freezing level, and the

attenuation is assumed to be negligible in dry snow (Matrosov, 1992; Doviak and Zrnić, 2006).

2.3.3 Simulated rainfall fields

Simulated measurements have been used in order to test and evaluate (quantitatively) the

proposed retrieval algorithm and other methods. In fact, it is not possible for this purpose

to employ observations physically collected by a weather radar because the intrinsic value
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of Kd p would not be available. This kind of comparisons are based on a set of simulated

two-dimensional rain fields, described in this Section.

Two dimensional DSD fields

The simulation of liquid precipitation events is conducted with the procedure extensively

described in Schleiss et al. (2012). This method allows to generate rain events with a temporal

resolution of 5 min and a spatial resolution of 0.1 km, on a squared domain of 40×40 km2. At

each grid point and timestep, the parameters of a Gamma DSD are provided:

N (D) =αNt Dµ exp(−ΛD) (2.1)

where Nt [m−3], Λ [mm−1] and µ [−] are the concentration, rate and shape parameters, and

D [mm] is the equivolumetric diameter of a particle. α is a normalization factor such that

the integration of the DSD on the range of diameters [Dm i n , Dm a x ] leads to the total drop

concentration Nt .

Parameters corresponding to the climatology of Switzerland (supposed to be representative

of temperate mid-latitude rain) obtained from radar and disdrometer data, are used to gen-

erate DSD fields that have the same statistical and structural properties of actually occurred

events. Ground observations of DSD spectra together with the spatial structure of the storms,

including the intermittency of the rainfall fields, are taken into account with a geostatistical

approach. From the simulated DSD fields, the polarimetric radar variables can be computed.

In the present work, six different simulated events are employed, each of them described by 10

subsequent timesteps (at 5 min resolution). The events are different in terms of type, intensity

and intermittency. Intermittency is defined as the percentage of the pixels over the domain

that are associated with zero rainfall rate. A summary of the basic characteristics of the events

in terms of rainfall intensity is provided in Appendix A.3.

Simulation of phase-related radar observables

A set of realistic profiles of phase-related radar observables are obtained from the 2-D DSD

fields available. Radar profiles are extracted both in the South to North and East to West

directions in each DSD field. Profiles with less than 50 gates corresponding to actual rain are

discarded from the following analysis and a total of 15670 profiles are kept. Radar frequencies

of S (2.8 GHz), C (5.6 GHz) and X (9.4 GHz) bands have been considered, as well as a radar

range resolution of 0.1 km, an antenna half power beam width of 1.5◦ and a Gaussian noise

in the measured differential phase. The knowledge of the DSD at each grid point allows to

compute polarimetric radar variables. In the present study, the ones of major interest are Kd p
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[◦ km−1] and δhv [◦] (Otto and Russchenberg, 2011):

Kd p =
180

π
103λ

∫ Dm a x

Dm i n

ℜ[ f hh (D)− f v v (D)]N (D)d D (2.2)

δhv = a r g





∫ Dm a x

Dm i n

s ∗hh (D)sv v (D)N (D)d D



 (2.3)

where λ [m] is the wavelength, f hh,v v , shh,v v [m] are the forward and backward complex

scattering amplitudes, at horizontal and vertical polarization, respectively andℜ indicates the

real part operator. These last quantities are obtained with the T-matrix scattering simulation

code by Mishchenko et al. (2002) with the following parameters. The temperature was assumed

to be 15 ◦C, and the refractive index of water has been calculated according to Liebe et al.

(1991). The raindrop axis ratio is considered to be 1 for D ≤ 0.7 mm; for 0.7 mm < D ≤ 1.5

mm is given by interpolation of tabulated values of Beard and Kubesh (1991); while for D >

1.5 mm Thurai and Bringi (2005) is used. The canting angle of falling particle is randomly

chosen from a normal distribution of values with mean of 0◦ and standard deviation of 10◦

(Park et al., 2005). The axis ratio and the canting angle models together constitute the set

of relations linking the size of drops with their geometry, and are necessary to calculate the

scattering amplitudes. The equivolumetric diameter D is discretized from Dm i n of 0.1 mm to

Dm a x of 6 mm (consistent with DSD observations of Jaffrain and Berne (2011)) with a step∆D

of 0.01 mm. The half-power beamwidth of 1.5◦ is taken into account by means of a Gaussian

weighting function (Doviak and Zrnić, 1993) on the DSDs, such that the weighted DSD is

used in the scattering simulation when more than one grid point is present in the resolution

volume. Profiles of Φd p [◦] and Ψd p [◦] are obtained as:

Φd p (k ) = 2
k
∑

i=1

Kd p (i )∆r (2.4)

Ψd p (k ) = Φd p (k )+δ(k )+ε (2.5)

where k is the k-th range gate,∆r [km] is the range resolution and ε [◦] is a white noise. The

standard deviation of ε is varied from 0◦ to 3◦ (e.g. Schneebeli and Berne, 2012).

2.4 Algorithm description

2.4.1 Kd p estimation

The estimation of Kd p deals with the retrieval of the local (half) slope of Φd p at each radar

range gate, when the actual available information is Ψd p . In the following it is described
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how the problem is tackled with a Kalman Filtering approach when δhv = 0 and in the more

realistic case of δhv 6= 0.

2.4.2 Kalman Filtering

Let us start from the standard discrete KF formulation Kalman (1960) which is based on the

following two basic linear equations:

z(i ) = Fi s(i )+εz(i ) (2.6)

s(i +1) = Ti s(i )+εs(i ) (2.7)

Eq.(2.6) describes how a set of measurements z (i ) that are taken at the location i can be

estimated from the state s (i ). The matrix Fi is called the observation model and establishes

a linear relation between the state and the measurements. Observation model errors and

measurement noise contribute thereby to the error εz(i ). Eq.(2.7) describes the forward prop-

agation of a state at location i to the neighboring location i +1 by employing the transition

matrix Ti . Errors that are due to uncertainties in the forward projection are contained in

εs (i ). The above equations allow to introduce a priori information into the filtering process.

Such information is provided by establishing relations between measurements and the state

estimate as well as with the underlying model that describes the transition from one state to

the next. The error terms εz and εs are assumed to be normally distributed, with zero mean

and they are fully defined by the respective error covariance matrices (C (εz) and C (εs)). It will

be shown in Section 2.4.4 that εz is modeled as white noise, therefore leading to a diagonal

covariance matrix C (εz).

A formulation for z(i ) and s(i +1) has now to be found that allows us to use the KF technique

to filter the measured Ψd p profile in order to obtain a smoothed Φd p profile (which ideally

does not contain any δhv contribution anymore). By simplifying the technique described in

Schneebeli and Berne (Schneebeli and Berne, 2012) who proposed a method for filtering Ψd p

by means of KF that not only included Ψd p as input variable but also the reflectivities ZH ,V as

well as additional constants, the following definitions are obtained:

z(i ) =

�

Ψd p (i )
Ψ̃d p (i )

�

(2.8)

s(i ) =









Kd p (i )
Φd p (i )
Φ̃d p (i )









(2.9)

The radar range gates along the propagation path are denoted with the location index i and

the notation X̃ (i ) =X (i +1) (where X stands for Φd p or Ψd p ) is used to indicate that X̃ belongs
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to the KF estimation process at location i . This might give the impression of an unnecessary

complication, but it helps avoid ambiguities in the formulation of the algorithm. Recalling the

Ψdp (i)

Ψdp (i+ 1)

i i+ 1

∆x

∆y

Kdp (i) =
1
2
∆y
∆x

Figure 2.1: Schematic of the Kd p estimation process. The solid black line indicatesΨd p and
the slope of the grey line is proportional to Kd p at the i-th range gate.

original definitions embedded in Eqs. (2.5, 2.4), the observation z(i ) can be expressed as:

Ψd p (i ) = Φ̃d p (i )−2∆r Kd p (i ) (2.10)

Ψ̃d p (i ) = Φd p (i )+2∆r Kd p (i ) (2.11)

The factor 2 comes from the fact that Ψd p is the 2-way total differential phase shift. With the

definition of the state and measurement vector in Eqs.(2.8, 2.9) and the relations of Eqs. (2.10,

2.11) it is readily shown that an observation model matrix is defined as:

F=
�

−2∆r 0 1

2∆r 1 0

�

(2.12)

where the index i was dropped since this matrix is not subject to any changes along the range

path.

The above equations are only true under the assumption that (1) δhv = 0 and (2) Kd p (i ) =
Kd p (i +1). Especially assumption (1) is rather strong and does not hold in reality. This issue

will however be treated separately in the further development. Assumption (2) obviously also

introduces an error, since it is unlikely that the Kd p values at two neighboring range gates are

exactly equal. On the other hand, one can expect a certain similarity between neighboring

Kd p values. The information about the error that is inherent in assumption (2) is going to

be contained in the covariance matrix which is associated with the state transition from one

gate i to the next i +1. The calculation of this covariance matrix is detailed in the upcoming

section 2.4.4.

With the definition of the state vector in Eq.(2.9) and Eq.(2.7) a model for the propagation of
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the state from range gate i to range gate i +1 can be formulated like

T=









1 0 0

0 0 1

2∆r 0 1









(2.13)

where again the index i was dropped and also Eq.(2.13) implies the assumption that Kd p (i ) =
Kd p (i +1).

In the following, the complete formulation of the KF is presented. It must be kept in mind that

a thorough introduction to KF theory is beyond the scope of this Chapter, and the reader is

referred to classical text books (e.g., Gelb (1988)). The estimation procedure for a KF is the

following: A given filtered (a posteriori) state, denoted with the superscript (+), which exists

at a certain location i −1 (written as s(+) (i −1)) is propagated forward in space, which leads

to an a priori estimate, denoted with the superscript (−), at the location i (written as s(−) (i )).

The a priori estimate is then combined with the measurements made at location i , leading

to an a posteriori state s(+) (i )), which is the final filtered state at location i . From there, the a

posteriori state is propagated further in space and the described procedure is repeated.

Classical KF theory allows now the calculation of a filtered a posteriori state s(+) from the a

priori state s(−) like

s(+) (i ) = s(−) (i )+Ki

�

z (i )−Fs(−) (i )
�

(2.14)

The a priori state s(−) (i ) in the above equation needs to be calculated with Eq.(2.7) from the a

posteriori state s(+) (i −1). For every a posteriori state, an associated error covariance matrix is

calculated with

P(+)si
= (I−KiF)P(−)si

(2.15)

where I denotes the identity matrix and P(−)si is the error covariance matrix associated with the

a priori state and calculated as

P(−)si
=TP(+)si−1

TT+C�εs(i )
�

(2.16)

where T denotes the matrix transpose. In Eqs.(2.14,2.15), Ki denotes the so-called Kalman

gain, which is defined as Gelb (1988)

Ki =P(−)si
FT
�

FP(−)si
FT+C�εz(i )

�

�−1
(2.17)

In Eqs.(2.16,2.17), C�εs(i )
�

and C�εz(i )
�

denote the covariance matrices that are associated

with the errors εs(i ) that arise from the state transition and from errors εz(i ) that stem from a

combination of measurement noise and observation model inaccuracies, respectively.
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2.4.3 Treatment of the δhv effect

As mentioned in the introduction, δhv that varies from one gate to the next can introduce

errors in the estimation of Kd p . In classical Kd p estimation methods, it is assumed that Kd p

cannot be negative and that therefore Φd p cannot decrease along the range profile. With the

technique described in Hubbert and Bringi (1995) it is then possible to remove δhv from the

Ψd p profile. In our approach δhv is considered as a function of Kd p , according to T-matrix

calculations that are shown in Figure 2.2 for a frequency of 9.41 GHz.

0 5 10 15

10

8

6

4

2

0

y = 2.37x+ 0.054

y = 0.27x+ 6.16

Kdp [◦ km−1]

δ h
v

[◦
]

Figure 2.2: Relation between Kd p and δhv for a frequency of 9.41 GHz based on T-matrix
calculations of simulated drop size distributions. The grey lines indicate segmental linear fits.

The scatter plot can be approximated with the indicated two linear fits that have the following

equations:

δfit
hv =

¨

2.37Kd p +0.054 ; Kd p ≤ 2.5◦ km−1

0.27Kd p +6.16 ; Kd p > 2.5◦ km−1 (2.18)

In order to remove δhv contamination from the estimated Kd p values, a separate δhv state

variable needs to be introduced such that the state vector formerly given in Eq.(2.9) now reads

s(i ) =













Kd p (i )
δhv (i )
Φd p (i )
Φ̃d p (i )













(2.19)

The system of equations that were given in Eqs.(2.10,2.11) is then extended to three equations
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that contain δhv as well as the relation given in Eq.(2.18) such that

Ψd p (i ) = Φ̃d p (i )−2∆r Kd p (i )+δhv (i ) (2.20)

Ψ̃d p (i ) = Φd p (i )+2∆r Kd p (i )+δhv (i ) (2.21)

c = δhv (i )−b Kd p (i ) (2.22)

The parameters b of Eq.(2.22) is thereby chosen according to the linear fits given in Eq.(2.18),

while c plays the role of an additional and artificial measurement describing the residual

between δhv and b Kd p . Since the value Kd p (i ) is not know a priori, b and c must be based on

the K (−)d p (i ) estimate.

If the left side of the above system is considered as the measurements, a new measurement

vector can be defined as

z(i ) =









Ψd p (i )
Ψ̃d p (i )

c









(2.23)

In order to properly relate the newly defined vectors z and s with each other, also the matrix F
needs to be adapted like

F=









−2∆r 1 0 1

2∆r 1 1 0

−b 1 0 0









(2.24)

The matrix T also is extended to take into account the new state vector. The forward projection

of δhv (i ) to the next range gate i +1 is modeled as:

δ
(−)
hv (i +1) =δ(+)hv (i ) (2.25)

which leads to the following state transition matrix:

T=













1 0 0 0

0 1 0 0

0 0 0 1

2∆r 0 0 1













(2.26)

Although the Kd p −δhv relation was calculated for rain only, the algorithm can also be applied

for snow conditions, as it will be shown in Section 2.6. The Kd p −δhv relation exhibits in

fact a lot of scatter, hence the constraint that is induced by this relation is weak. The scatter

stems from the large ensemble of different rainfall types that were included in the modeling

approach. Thanks to this, the given Kd p − δhv relation is only frequency dependent and

otherwise generally applicable. Kd p −δhv relations for commonly used S- and C-band radar
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frequencies are given in Appendix A.1. If a more suitable Kd p −δhv relation becomes available

for snowfall, it can easily be implemented.

2.4.4 Covariance matrices and ensemble estimation

The determination of the error covariance matrices is the key difficulty in any Bayesian

optimization scheme. The fact that a large ensemble of simulated DSD profiles (that can

be used as a representation of the true state st ) is available makes possible the relatively

straightforward calculation of C�εs(i )
�

and C�εz(i )
�

. These resulting covariance matrices are

going to be calculated for simulated data. The data set has been parametrized according to

measured DSD spectra and storm structures, and hereafter it is assumed that the simulation

represents collected observations with sufficient accuracy.

The error εs(i ) can be written as the difference between the true state at range gate i and the

state that was projected from to range gate i −1 to i :

εs(i ) = st (i )−Tst (i −1) (2.27)

The DSD fields and subsequent T-matrix simulations with the Fortran implementation of

Mishchenko and Travis (1998) enables the calculation of the true states st (i −1) and st (i ). The

covariance matrix C�εs(i )
�

is then readily inferred from a large ensemble of the difference

vectors given in Eq.(2.27).

Similarly, the error εz(i ) can be regarded as the difference between the actual (noisy) mea-

surement zn (the superscript n indicating the inherent noise of the measurement) and the

measurement prediction from the associated state, i.e.,

εz(i ) = zn (i )−Fst (i ) (2.28)

and C�εz(i )
�

is again calculated from a large ensemble of these differences. Since real mea-

surements are not available at this stage, zn needs to be obtained by first calculatingΨd p (i )
and Ψd p (i +1) from the T-matrix simulated Kd p and δhv profile according to Eq. 2.5.

The matrix C�εs(i )
�

controls how much the state can vary from one range gate to the next.

The larger the elements of this matrix are, the more variance is allowed, hence the less noise

inΨd p is suppressed. On the contrary, a state estimate with low gate-to-gate fluctuations is

obtained when C�εs(i )
�

is small. A large ensemble of measurements is supposed to include

the whole variety of state variations, hence the resulting matrix C�εs(i )
�

is representative for

the whole ensemble of profiles, but it over- or underestimates the gate-to-gate variation for

individual profile sections. In order to obtain an ensemble of filtered state estimates that

allow different gate variability, the covariance matrix C�εs(i )
�

is scaled with a set of factors

a = 10b with b =−1, −0.8, −0.6, · · · , 0.8, 1. The range of values a was chosen like this since it

was found that a division or multiplication of C�εs(i )
�

with a value higher than 10 does not
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change the KF results any further compared to what is obtained with a value of 10.

Although the covariance matrices were calculated based on simulated DSDs whose statistical

properties correspond to the storm structures that are found in Switzerland, it was shown

in Schneebeli et al. (2012) that such covariance matrices can also be applied to data that

was acquired in very different meteorological conditions (like severe convective situations in

northern Brazil). This is not a proof for the general applicability to any data set, but it shows

that the training data set contains enough variability to cover a broad range of storm situations.

As an additional test of the sensitivity of the final Kd p estimate to the covariance matrix the

diagonal matrix elements have been scaled by a factor of 2 and the off diagonal elements by

+50% and by −50%. Although these alterations obviously lead to a slightly worse final Kd p

product, the overall performance remains very similar to the one obtained with the originally

estimated covariance matrices.

2.4.5 Estimation in the backward direction

The state transition covariance matrix introduces a certain inertia in the estimation due to the

assumption that the a priori state of Kd p (i +1) is equal to the a posteriori state of Kd p (i ). This

inertness leads to a shifting of the Kd p peak values towards the propagation direction of the

estimation. In order to get rid of this effect, the same estimation process that was described in

the previous section can also be executed in the backward direction, i.e., from the end of the

range gate profile towards low Ψd p values close to the radar. This estimation in the backward

direction will shift the Kd p maxima in the opposite direction and hence compensates the shift

that was introduced with the estimation in the forward direction. To do so, the measured Ψd p

profile only needs to be inverted according to

Ψinv
d p (i ) =Ψ

end
d p −Ψd p

�

nrg+1− i
�

(2.29)

where Ψend
d p denotes the last valuable differential phase measurement along the profile and

nrg denotes the number of range gates, hence i = nrg is the index of the last element at the

end of the range gate profile. The same KF that was developed for the forward direction can

be applied to Ψinv
d p , and the resulting K inv

d p is easily back-transformed:

Kd p (i ) = K inv
d p

�

nrg+1− i
�

(2.30)

The effect of the forward and backward estimation as well as the effect of the different scaling

factors on Kd p is illustrated in Figure 2.3. It can be seen that the forward and backward

estimation smears out the peaks in opposite directions, whereas the different scaling of the

covariance matrices leads to an ensemble of estimates whose members represent the true

Kd p differently.
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Figure 2.3: (a) Simulated Kd p measurements (black line) together with an ensemble of KF
estimates that were obtained for a set of example covariance scaling factors with values of 0.1,
1, and 10 estimated in the forward (from light blue to dark blue for increasing scaling) and
backward (from light red to dark red) direction. (b) The spatial derivative of the Kd p ensemble
mean (i.e., the mean over all the ensemble members of the backward and forward estimation
process). This quantity is used to decide which KF estimation direction should be used for the
final Kd p product.

2.4.6 Practical implementation issues

With the state and measurement vectors as well as the state transition and observation model

matrices that were defined in the previous sections, Kd p and Φd p can be estimated from a

profile of noise-affectedΨd p measurements. There are however a couple of practical issues

that need to be taken into account for the successful implementation of this filter for general

radar profiles.

Initialization of the algorithm

At the beginning of each profile, there are no available data to initialize the algorithm, since

no KF state estimate with its corresponding error covariance matrix has yet been calculated.

Due to the propagation of one state to the next there must be an estimate of a state vector

available already at the beginning (for the forward direction) or at the end (for the backward

direction) of the range gate profile. An incorrect estimate of the first state might lead to a long

conditioning phase where the a posteriori state vector estimates exhibit large deviations from
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the truth and just slowly approach a correct range of values. In order to overcome this effect,

satisfactorily results were obtained by artificially enhancing the measured Ψd p profile with

around 20 (or more) Ψd p = 0◦+η values at the beginning of the profile and the same number

ofΨd p =Ψend
d p +ε values, where ε denotes a Gaussian noise component that corresponds to

the true measurement noise. With this procedure it is ensured that data that agrees with the

assumptions of the KF is already available at the first range gates. After this enhancement, all

the elements of the a priori estimate of the state vector at the first range gate can be set for the

forward direction to

s(−) (1) = [0, 0, 0, 0]T (2.31)

and to

s(−) (1) =
h

0, 0, Ψend
d p , Ψend

d p

iT
(2.32)

for the backward direction. The a priori state covariance matrix at the first range gate can be

approximated with P(−)s(1) =C�εs(1)
�

. The algorithm can be also adversely affected by folding of

the differential phase, ground clutter and low SNR. These issues have to be adequately solved

before applying KFE.

Intermittency

Differential phase measurements are not defined in non-rainy sections of a range profile.

For the purpose of the estimation, missing values Ψd p values are linearly interpolated and,

similarly to the previous section, a Gaussian noise component, whose standard deviation is

in agreement with the true measurement noise, is added to the interpolated values. After

the filtering process, Kd p and Φd p estimates that stem from range gates that were filled with

interpolated values are tagged as ‘not defined’ and consequently removed from the profile.

2.4.7 Compilation of a final Kd p estimate

There are different ways how a final Kd p product can be compiled from the ensemble of Kd p

estimates (hereafter K ens1
d p ) that are generated in the forward and backward direction and

with different scaling of the transition covariance matrix. Some guidelines will be provided

here to describe how our product was compiled, but there might exist more and even better

possibilities and the reader is invited to try out and improve our suggestion. First, from

Figure 2.3 it is seen that the forward estimates better represent the increasing Kd p values,

while the ensemble of backward estimates better represent decreasing Kd p values. This effect

can be used to select either forward or backward estimates in order to reduce the spatial

spreading of Kd p . The backward or forward estimates are selected depending on the general

behavior of the ensemble mean of Kd p , denoted as K
ens1
d p . The following criteria were applied
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and found to provide stable results for selecting the appropriate estimation direction:

(

forward if K
ens1
d p (i )−K

ens1
d p (i +1)≤−0.1◦ km−1

backward if K
ens1
d p (i )−K

ens1
d p (i +1)≥+0.1◦ km−1

(2.33)

The threshold of ±0.1◦ km−1 was selected based on the results that are given in Figure 2.3-

b), showing the behavior of the spatial derivative of the mean of the Kd p estimates as a

function of the radar range. Values that are within the two thresholds, i.e., if −0.1 ◦ km−1 ≤
K

ens1
d p (i )−K

ens1
d p (i +1)≤ 0.1 ◦ km−1, the new Kd p ensemble is calculated as the mean of the

forward and the backward estimates. The result of this selection process is shown in Figure 2.4-

a), where the forward and backward estimates are compiled to one ensemble, named K ens2
d p ,

according to the mentioned selection rules. It is seen that the spatial extent of the high Kd p

values is well represented with the newly compiled ensemble values and the spatial spread is

reduced.
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Figure 2.4: (a) Simulated Ψd p measurements (black line) together with an ensemble of KF
estimates that were obtained for a set of covariance scaling factors with values of 0.1≤ a ≤ 10.
(b) The same as in (a) but for Kd p . Large scaling factors a lead to higher and noisier Kd p

estimates.

The mean over this ensemble of values at every range gate, i.e., K
ens2
d p (i +1), provides a final

K final
d p estimate that is generally accurate. One can however make further use of the ensemble

values in order to obtain an ever better approximation of the true Kd p value. One possibility to

do so is to consider the mean and standard deviation (std) of K ens2
d p . The idea behind this is the
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following: when std
h

K ens2
d p (i )

i

is small, only few ensemble members need to be considered for

K final
d p , while a high standard deviation indicates that the mean over a larger ensemble needs

to be taken. Similarly, when the mean over the ensemble K
ens2
d p is low, ensemble members

that were calculated with a largely scaled covariance matrix aC�εs(i )
�

(i.e., where the factor a

is large) should not be considered for the calculation of K final
d p , because it is unlikely to have

large variations around Kd p (i )when going to Kd p (i +1). Consequently, ensemble members

that were calculated with a low a should not be considered where K
ens2
d p assumes high values.

These qualitative considerations can be translated into an algorithm in many different ways

since it is difficult to give a recipe that works optimally under all conditions. In the following

just one possible implementation is shown which was found to give good results after a lot of

testing and tuning.

The N ensemble members are denoted with e j , where j = 1, 2, . . . , N , and each e j corresponds

to a different covariance scaling factor a j . For the calculation of the final estimate K final
d p , the

following approach is used:

K final
d p (i ) =

1

2l +1

k+l
∑

j=k−l

e j (2.34)

where the variables that define the summation limits k and l depend on the mean and the

standard deviation of the ensemble members nb . This dependence is expressed as

k = round
n

K
ens2
d p (i )β1+β2

o

l = round
n

std
h

K ens2
d p (i )

i

γ1+γ2

o (2.35)

where the operator round{} indicates that the values in the brackets are rounded. In addition,

the conditions

¨

k − l = 1 if k − l < 1

k + l = N if k + l >N
(2.36)

apply for Eq.(2.34).

The parameters α1,α2 and β1,β2 need to be experimentally determined. In our case, good

results were obtained with the values β1 = 2, β2 = 0 and γ1 = 2, γ2 = 0. It is seen from Eq.(2.35)

that the ensemble standard deviation is used to determine how many ensemble members

should be selected (few ensemble members are selected for low standard deviations) while the

ensemble mean determines from which part of the ensemble these members are taken (i.e.,

ensemble members with high scaling factors a are selected if the ensemble mean is high). The

K final
d p profile that was compiled with this method, from the ensemble in Figure 2.3, is shown

in Figure 2.5. An overall agreement with the true Kd p profile can be observed, albeit it is still

obvious that the extreme small-scale fluctuations of the true Kd p cannot be resolved with the

KFE technique.
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2.5. Evaluation on simulated radar measurements in rain

It is interesting to investigate if the improvement in Kd p estimation using KFE is coming

from the Kalman Filter or from the ensemble approach. An ensemble approach applied

to other algorithms (not shown here) showed significant improvement but they were still

outperformed by KFE. This suggests that both the ensemble combination and the Kalman

Filter are contributing to an improved estimation of Kd p .
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Figure 2.5: Example of a simulated Kd p profile and its reconstruction with the proposed KFE
algorithm.

2.5 Evaluation on simulated radar measurements in rain

2.5.1 Description of two other standard algorithms

Two different algorithms for the estimation of the specific differential phase shift Kd p are

compared with KFE. They fulfill the requirement of independence between phase-related and

power-related radar variables and they are briefly described here below:

Adaptive length linear interpolation (ALI)

A common way to estimate Kd p is through first order polynomial interpolation of Φd p along

radar paths. The first step is therefore to obtain Φd p profiles from the measured Ψd p (e.g., by

means of the recursive filter described in Hubbert and Bringi (1995); Wang and Chandrasekar

(2009)). Once Φd p profiles are obtained, Kd p is calculated through a linear least-square fit on

a path-length L [km] using n samples of Φd p . n is easily obtained as n = L/∆r , where∆r [km]
is the range resolution. The Kd p value is then assigned to the mid-point of the estimation path
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(e.g., Gorgucci et al. (1999)).

The choice of the estimation length L is delicate and different lengths ranging from 1 to 10

km have been used in weather radar studies Gorgucci et al. (1999); Brandes et al. (2001). The

adaptive length linear interpolation (hereafter ALI) method, is based on a lenght L which is

varied as a function of the horizontal reflectivity ZH , used as an indicator of the local variability

of the precipitation field. In the formulation described in Wang and Chandrasekar (2009) and

for a range gate resolution of 0.1 km, L [km] is 4.5 for ZH ≤ 35, 3 for 35<ZH ≤ 45 and 1.5 for

ZH > 45. It must be noted that a precise and accurate value of reflectivity is not necessary to

select the length L, and the selection is given by reasonably wide ranges of variation. Therefore

the Kd p estimate can be considered independent from ZH .

The advantages of the ALI method are its simplicity and stability. On the other hand its

estimates of Kd p profiles tend to look excessively smooth, when compared with other methods.

Furthermore, when the estimation of Kd p is carried by means of linear interpolation along a

path of length L, the inner assumption is that the variation of Kd p along L are negligible.

Moving window range derivative (MWD)

Kd p can be estimated through a multistep moving window range derivative (hereafter MWD)

of raw Ψd p profiles, a technique described in detail in Vulpiani et al. (2012). The process is

iterative and it proceeds as follows. A preliminary estimation of Kd p (K ∗d p ), is obtained as:

K ∗d p (i ) =
Ψd p (i +n/2)−Ψd p (i −n/2)

2L
; (2.37)

where L [km] is the estimation path and i is its center range gate, to which the value of K ∗d p is

assigned.

After this first step, K ∗d p is quality controlled and non-physic values are identified and corrected

as follows: we selected (at X-band) the thresholds for a minimum (maximum) acceptable Kd p

to -1 (20) ◦ km−1. Estimates lower than the minimum threshold or higher than the maximum

one are set to the respective limits. These outliers seldom occurred in the present study. From

K ∗d p , a profile of estimated differential phase shift Φ̂d p is obtained using Eq. (2.4). The final

estimate of K ∗d p is then obtained by iterating the previous steps. The convergence is quick and

10 iterations have been conducted, which allows to achieve a standard deviationσ(K ∗d p ) of

the estimates always below 0.01 ◦ km−1 Vulpiani et al. (2012). The choice of the estimation

length L is the free parameter of the algorithm and in the present work it has been tested for

lengths of 1, 2, 3, 4 and 5 km.

The possibility to provide estimates with a low standard deviation is an advantage of the MWD

method. On the other hand, this does not guarantee the accuracy of the estimates themselves,

meaning their closeness to the inherent and unknown true Kd p values. Furthermore, as for

the ALI method, the results tend to be smooth. The smoothing is increasing with increasing L,
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such that the peaks of Kd p are more pronounced when short estimation lengths are employed.

This increase in sensitivity with respect to small scale variations of Kd p is however balanced

by a reduced stability of the estimation itself. An optimal trade-off between stability and

sensitivity has been found with L = 2 km (not shown here) and therefore in the following we

will refer to MWD as MWD2.

2.5.2 Strategy to evaluate Kd p

The goal of the present section is to evaluate the performance of the algorithms presented

for the estimation of Kd p at the radar resolution volume scale, in a set of different rainfall

events and with a special focus on the correct estimation of the highest Kd p values, physically

associated with intense and relatively small rain cells and therefore particularly difficult to

capture. The results are discussed here in more details for X-band, while for S and C bands

the reader is addressed to the Appendix of this Chapter (Appendix A.3). The choice of X-band

is motivated by the wider range of variation of Kd p and the presence of more marked δhv

effects at this frequency, making the estimation more challenging. For the evaluation, the set

of simulated radar profiles described in Section 2.3.3 is employed.

Evaluation criteria

The accuracy of the estimation of Kd p is quantified on the dataset of the simulated events

described in Sec. 2.3.3 by the Mean Normalized Absolute Error MNAE [%], Mean Normalized

Bias (MNB) [%], Nash-Sutcliffe Efficiency (NSE) [-], Root Mean Squared Error (RMSE) [◦ km−1]
and Pearson correlation coefficient (ρ) [-]. MNAE and MNB quantify the average percentage

magnitude and direction (underestimation or overestimation) of the deviations between

estimated and true values while NSE indicates the ability of the algorithms to follow the overall

trends of the true Kd p values. Eventually, RMSE quantifies the average deviation from the

true values, in Kd p units of [◦ km−1]. These criteria give a global view of the performance

obtained, but they are influenced by the distribution of the true Kd p values, that it is usually

very (positively) skewed. A second step in the evaluation is then to analyze the quality of Kd p

estimates as a function of the Kd p value itself.

2.5.3 Results of the comparison

The comparison among ALI, MWD2 and KFE is shown in Table 2.1. In terms of MNAE, the

results are similar for the three algorithms, with values ranging from 27% to 30.3%. The overall

bias is positive for ALI and MWD2 (3.5% and 5.5%), while KFE is practically unbiased. From

all criteria (except MNAE), ALI is consistently outperformed by MWD2 and KF. Although

KFE performs slightly better than MWD2 for all criteria except MNAE, it is difficult to state

which of these two is the most accurate. A similar hierarchy can be observed at the other

frequencies considered. The range of variation of Kd p values decreases almost linearly with
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Table 2.1: Summary of MNB and MNAE [%], Nash-Sutcliffe Efficiency (NSE), correlation
coefficient (ρ) and RMSE [◦ km−1] for the three Kd p estimation methods at X, C and S band.

Band Method MNB MNAE NSE ρ RMSE
X KFE 0.1 28.8 0.82 0.9 0.55
X ALI 5.4 30.3 0.65 0.81 0.7
X MWD2 3.5 27 0.78 0.88 0.59
C KFE 3.4 25.7 0.83 0.91 0.33
C ALI 6.4 27 0.66 0.82 0.44
C MWD2 4.4 22.8 0.78 0.88 0.37
S KFE 4.5 26 0.82 0.91 0.15
S ALI 7.4 29.5 0.72 0.85 0.18
S MWD2 5.5 24 0.78 0.89 0.17

decreasing frequencies leading to lower RMSE values at C- and S-Band, for all the algorithms.

It is interesting to note that also MNAE decreases, while MNB increases. This suggest that

high Kd p values, which are larger at X-Band than at C- and S-Band, carry the majority of the

negative biases, as it is shown in the following.

It is therefore necessary to observe how the errors in the estimation, quantified by the Normal-

ized Relative Error (NRE [%]) vary as a function of the true Kd p itself. Focussing on X-band

and referring to Figure 2.6, it can be observed that when Kd p increases, it tends to be strongly

underestimated, with a NRE that becomes more and more negative. For Kd p values greater

than 6◦ km−1, the ALI method leads to median underestimations in the order of -50%, MWD2

around -30% and lower, while KFE, even though biased, is able to limit the median deviations

to values higher than -15% (with the exception of Kd p > 13 ◦ km−1 where the performance

deteriorates for all the algorithms). Furthermore, for these high Kd p values, KFE keeps the

25% and 75% quantiles of errors around -25% and 0% respectively and MWD2 around -50%

and -25%. The quantiles of the errors for ALI decrease more sharply, ranging from -50% (Q25)

and 0% (Q75), for Kd p ≈ 6◦ km−1 to -60% (Q25) and -40% (Q75), for Kd p ≈ 12◦ km−1. For Kd p

values greater than 5◦ km−1 KFE performs better, while for lower values all the algorithms have

comparable performances. The systematic bias observed for high values of Kd p is associated

with the structure of the storms. In fact, these high values are present in the cores of convective

rain cells, which have a sharp transition between areas of low and high rainfall intensity. All

the estimation methods employed make use of an estimation length (ALI and MWD2) or

consistency between contiguous range gates (KFE) that unavoidably smooths the Kd p peaks,

when the rainfall gradients are sharp.

It clearly appears overall that Kd p estimates can be affected by large biases especially for

Kd p > 5 ◦ km−1, and that these biases are significantly reduced by KFE, in comparison with

other algorithms. Similar conclusions hold at C- and S-band.
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Figure 2.6: Evolution of the NRE [%] as a function of the true Kd p value for the ALI, MWD2 and
KFE methods at X-band. The widths over which the statistics are calculated are constantly
equal to 1 ◦ km−1, and centered from 0.5 to 13.5 ◦ km−1; a displacement is added to ease
the readibility. The 5 lines of each box represent 5% quantile, lower-quartile, median, upper
quartile, and 95% quantile values respectively.

2.6 Evaluation with X-band radar data in rain and in snow

It is important to test the proposed algorithm not only on simulated but also on real radar

data even though in this case a “true” reference is not available. This is done by applying the

algorithm, together with ALI, on X-band radar data that were collected in tropical rainfall

during the CHUVA campaign Schneebeli et al. (2012) and in alpine snowfall in Switzerland

Schneebeli et al. (2013). ALI is shown here as a standard reference because MWD is designed

for rainfall only.

In order to overcome the lack of true measurements, the behaviour of the Kd p (ZH ) relation

is examined. An example of this relation, for simulated data, is shown in Fig. 2.7, where the

relation between Kd p and ZH in rain is shown for Kd p values determined with ALI and KFE.

For ZH values below 30 dBZ, ALI exhibits less scatter than KFE, but for ZH values above 30 dBZ,

the KFE algorithm estimates much better the high values of Kd p and the true Kd p -ZH relation

is also more closely followed.

The same Kd p −ZH relation that was used for the evaluation of the algorithm on the simulated

measurements (Figure 2.7) was also compiled for the X-band radar data collected in Brazil. The

reflectivity measurements were thereby corrected for rain and radome attenuation Schneebeli

et al. (2012) and the results are shown in Figure 2.8, where also the PPI scans of the Kd p

fields (determined with the two different algorithms) and the PPI scan of the reflectivity field

are shown. From the Kd p −ZH scatter plot (Figure 2.8-d), who was compiled from range

profiles that were limited to a distance of 20 km in order to ensure that the measurements

are not affected by the melting layer, it is seen that the KFE algorithm exhibits a narrower

scatter and also reaches higher values (approximately 11.5 ◦ km−1, compared to ALI, whose
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Figure 2.7: (a) The true Kd p (black) as well as the Kd p estimated from the ALI algorithm (blue)
as a function of the radar reflectivity at horizontal polarization ZH for simulated radar data.
(b) The same as in (a) but for the Kd p estimated from the KFE algorithm (red).

maximal Kd p estimates are limited to values around 8 ◦ km−1). Therefore KFE better follows

the trends of the Kd p (ZH ) theoretical relation for high ZH values. It is also noteworthy that the

KFE algorithm, in contrast to the evaluation on the simulated measurements, exhibits less

unreasonable negative values than ALI in these real conditions. It must however be noted that

for subsequent quantitative precipitation estimation, negative Kd p values will be set to zero in

any case.

The Kd p PPI scans are a bit more difficult to compare since the differences between the two

algorithms are not obvious at first sight. It is however clearly visible that the ALI algorithm

spatially spreads the Kd p values more, hence the PPI scan shown in Figure 2.8-a appears

to be smoother and the level of details is smaller. The chosen PPI scan consists of several

intermittent rain systems, which shows that intermittency does not pose any problem to the

KFE algorithm, if it is applied according to the guidelines given in Section 2.4.6.

A generally applicable algorithm that is supposed to be used for hydrometeor classification

should not only be tested in rain conditions but also for data collected during snowfall. The

data collected with an X-band polarimetric radar in the Swiss Alps hereby provide an excellent

possibility for such an evaluation. For solid precipitation, a well-defined Kd p −ZH relation

like for rain does not exist, hence a different method for the evaluation of the Kd p estimates

is required. It was therefore decided to evaluate the algorithms with the so-called detrended

fluctuation analysis (DFA) Peng et al. (1994), which is a method for determining the statistical

self-affinity of a signal. The method has been widely used for the analysis of remotely-sensed

signals of geophysical targets Ivanova et al. (2002); Schneebeli and Mätzler (2009); Brocard

et al. (2011). Although this analysis will not allow us to decide which algorithm performs
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(a) (b)

(c) (d)

Figure 2.8: X-band polarimetric radar data obtained in Fortaleza, Brazil, showing (a) a PPI
scan at 4◦ elevation of Kd p inferred with the ALI algorithm. (b) Same as in (a) but showing
Kd p inferred with the KFE algorithm. (c) The same PPI scan that was shown in (a) and (b)
showing the radar reflectivity ZH . (d) The two Kd p estimates of the PPI scans given in (a) and
(b) plotted as a function of the corresponding ZH . The blue line shows the averaged theoretical
relation obtained from DSD measurement, which is given in Schneebeli et al. (2012).

better in snowfall, it will be helpful to point out the differences between the Kd p estimates of

the two algorithms. In order to apply the DFA technique, a range gate profile y (r ) of length

N is divided into N /τ non-overlapping segments, each containing τ values. Furthermore,
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the mean-square difference between y (r ) and the local linear trend z (r ) = u r + v within a

segment of length τ can be written as

F 2 (τ) =
1

τ

(k+1)τ
∑

r=kτ+1

�

y (r )− z (r )
�2 , k = 0, 1, . . . ,

N

τ
−1. (2.38)

The DFA function F 2 (τ) is then defined as the average of F 2 (τ) over the N /τ periods. This

function was reported to follow a power law of the form
h

F 2 (τ)
i

1
2 ∼τα, with an exponent α,

being equal to the Hurst exponent Mandelbrot and Wallis (1968), representing the correlation

properties of the signal. If α= 0, there is no correlation in the signal (white noise). If α< 0.5,

the signal is antipersistent, and α > 0.5 indicates persistence, while a value of α = 0.5 is

characteristic of Brownian motion Ivanova et al. (2002). The absolute value of the DFA function

characterizes the noise amplitude. The DFA function of the two differently determined Kd p

estimates is plotted in Figure 2.9-d as a function of the radar range.

From the Kd p and ZH PPI scans shown in Figure 2.9, it is seen that for solid precipitation, high

ZH values do not necessarily indicate high Kd p values. The overall visual impression of the two

Kd p PPI scans is again similar, but the values obtained with ALI seem to exhibit a certain radial

structure, which is not visible in the Kd p estimates obtained with KFE. This radial structure is

revealed in the DFA function: while the slope of the function (i.e., the α coefficient) is larger

for the KFE estimate until a range interval of about 800 m (indicating signal persistence for the

KFE estimate and Kd p values dominated by white noise for the ALI estimate), the opposite

behavior is observed for range lengths between 800 and 4000 m. Towards longer intervals,

the slope of the DFA function approaches α = 0.5, which is the expected value at infinitely

long range lengths. Although it cannot be decided on which algorithm performs better based

on these DFA results, the analysis enables one to observe noise properties that are due to

the different methods used for inferring the Kd p estimates. The interval lengths that are

used to calculate the Kd p values from the smoothed differential phase are reflected in the

fact that the DFA function associated with the ALI algorithm exhibits persistence for range

intervals between 800 and 4000 m. In contrast to this, the forward projection of one state at a

certain range gate to the adjacent one in the KFE algorithm formulation leads to persistence

already at small range intervals. From these observations it can be concluded that small-scale

fluctuations in Kd p can be better detected with the KFE algorithm, while the ALI algorithm

spreads the Kd p signal over a wider range than the KFE algorithm. It is also seen that the noise

amplitude at the smallest range interval (i.e., at the length of one range gate) is similar for both

algorithms.

In snow, the better localization of Kd p that is obtained with the KFE algorithm is visually

less obvious than for rain, since the spatial variability is generally smaller in snow than in

rain Germann and Joss (2001). The KFE algorithm might however also be advantageous in

non-liquid precipitation if some small-scale features, like precipitation-generating cells for

instance, are present.
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(a) (b)

(c) (d)

Figure 2.9: (a,b,c) Same as in Figure 2.8 but for snow data obtained in Davos at an elevation
angle of 9◦. (d) Detrended fluctuation analysis of the two different Kd p estimates shown in (a)
and (b).

2.7 Summary and Conclusion

An algorithm based on ensemble of Kalman Filter estimates for an improved estimation of

the specific differential phase shift on propagation Kd p is proposed. The algorithm runs

a Kalman filter along a radar range gate profile in the forward (away from the radar) and

backward direction (towards the radar) for different error covariance matrix parametrizations,
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which leads to an ensemble of Kd p estimates. In a second step, an improved Kd p estimate is

compiled from a selection of the Kd p ensemble members. The selection procedure is based

on the behavior of the ensemble average, of its range derivative and of the ensemble standard

deviation at every individual range gate.

The algorithm was tested and evaluated on X-band simulated radar measurements at the

scale of the radar resolution volume, against two different methods, namely adaptive lenght

linear interpolation (ALI) and moving window range derivative (MWD2). It is shown that

significant biases can be hidden in the general statistics, and they emerge clearly only for less

frequent high Kd p values. For Kd p > 5◦ km−1, all the methods are negatively biased. This

underestimation is in the order of -50% and -30% for the ALI and MWD2 methods, while KFE

is able to keep it to values higher than -15% (in median). This aspect is particularly important

when instantaneous Kd p values at the radar resolution volume scale are needed. Taking into

account the different analyses, it can be stated that KFE obtains the best performances. The

outcome of the present work should anyway warn the reader that the estimation of Kd p at the

scale of the radar resolution volume is affected by significant errors (≈ 25-30%), and special

care should be devoted to the selection of the appropriate estimation scheme in order to

minimize them, and to avoid excessive biases in the highest Kd p values.

The novel algorithm was tested also on real data coming from two contrasting radar data sets,

one being collected during tropical convective rain and the other one during intense snowfall

in the Alps. For the data obtained in rain, it was shown that the KFE algorithm exhibits less

scatter in the Kd p −ZH relation, which is an indirect indication that Kd p can be retrieved with

higher accuracy. For the snow case, it was shown that signal persistence is already reached

for small range gate intervals, while the standard algorithm requires much longer intervals in

order to obtain persistence.

The application of the proposed algorithm is not limited to X-band frequencies. For other

frequencies, the Kd p −δhv relation shown in Figure 2.2 needs to be recalculated. Results for

typical weather radar frequencies are given in Appendix A.1. The algorithm also depends on

the radial radar resolution (i.e., the length of an individual range gate), since this influences the

covariance matrix associated with the forward projection of the state vector. In Appendix A.2,

a parametrization of this covariance matrix is provided as a function of the range gate length.

Although the algorithm is versatile as it works in a wide range of conditions, it should only be

applied to already cleaned Ψd p data, that is, data that are acquired with a sufficiently high

signal-to-noise ratio (≥ 3 dB) and that already underwent basic clutter treatment (like clutter

removal with a Doppler filter for instance). In this way it is ensured that noise or clutter effects

do not hamper the applicability of the algorithm. The final Kd p product can be compiled from

the ensemble of Kd p estimates in many ways. One possibility is suggested, which has been

proven to be meaningful. There might be many more (and better) possibilities, which could

possibly be tailored to specific applications, radar types and meteorological conditions for

instance. The reader is strongly encouraged to adapt the suggested algorithm framework to

his/her own needs.
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3 Hydrometeor classification from two-
dimensional video disdrometer data

This chapter is adapted from the manuscript:

• Grazioli, J., D. Tuia, S. Monhart, M. Schneebeli, T. Raupach, and A. Berne (2014b), Hy-

drometeor classification from two-dimensional video disdrometer data, Atmos. Meas.

Tech., 7(9), 2869–2882, doi: 10.5194/amt-7-2869-2014

It presents a supervised hydrometeor classification scheme developed for the two-dimensional

video disdrometer (2DVD) instrument. The method is both a novel approach to sample in-situ

microphysics and it will be useful in Chapter 4, as a comparison tool with the retrievals of a

polarimetric radar.
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3.1 Summary

The first hydrometeor classification technique based on two-dimensional video disdrometer

(2DVD) data is presented. The method provides an estimate of the dominant hydrometeor

type falling over time intervals of 60 s during precipitation, using as input the statistical

behavior of a set of particle descriptors, calculated for each particle image. The employed

supervised algorithm is a support vector machine (SVM), trained over 60 second precipitation

time steps labeled by visual inspection. In this way, eight dominant hydrometeor classes can

be discriminated. The algorithm achieved high classification performances, with median

overall accuracies (Cohen’sK ) of 90 % (0.88), and with accuracies higher than 84 % for each

hydrometeor class.

3.2 Introduction

The two-dimensional video disdrometer (Kruger and Krajewski, 2002), 2DVD hereafter, sig-

nificantly improves the capability of ground observations to describe the microphysics and

microstructure of precipitation both in the solid and the liquid phase. The system, based on

simultaneous observations of falling objects with two orthogonally-oriented cameras, has

been used to characterize the relationships linking raindrop shape, size and terminal velocity

(e.g. Thurai and Bringi, 2005; Thurai et al., 2009). It has also been employed to validate weather

radar rainfall estimates (Schuur et al., 2001; Thurai et al., 2008; Cao et al., 2008; Zhang et al.,

2008). Regarding snowfall, the 2DVD has been used to derive the statistical properties of

particle size distributions of winter storms (Brandes et al., 2007), to improve the radar retrieval

of equivalent liquid precipitation (Huang et al., 2010), and to simulate radar observations from

measured snowfall microstructure (Zhang et al., 2011).

In the present Chapter 2DVD measurements are employed for the classification of hydrome-

teors, with a special focus on ice-phase precipitation. The expression “hydrometeor classifi-

cation” refers to techniques that aim to retrieve qualitative information about the dominant

hydrometeor type that characterizes the precipitation. Such information can then be used

for risk assessment (hazardous hydrometeor identification, like hail), for parametrization

and validation of numerical weather prediction (NWP) models (e.g., Xue et al., 2000), or to

support microphysical investigations (e.g., Houze, 1993; Schneebeli et al., 2013). Hydrometeor

classification techniques are nowadays implemented for different types of measurements.

Typical examples in remote sensing are algorithms designed for ground-based polarimetric

weather radars (Straka et al., 2000; Dolan and Rutledge, 2009; Chandrasekar et al., 2013), or

for airborne radars and lidars observing ice phase clouds (e.g., Shupe, 2007; Delanoe et al.,

2013). These sensors enable the sampling of large domains at high resolution on a short time

scale, but their classification retrievals are indirect, constrained by numerical simulations,

and difficult to validate extensively. On the contrary, airborne particle probe imagers (e.g.,

Feind, 2008), allow direct classification along aircraft flight paths but only (given the high cost

of these platforms) during intensive measurement campaigns. Ground-based instruments
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sample precipitation directly on site (although on small sampling volumes), and could be used

to classify hydrometeors, thus becoming a point reference for remote sensing retrievals. Only

few research works have been devoted to the implementation of classification schemes for

such instruments, and their focus was mostly on mixed-phase precipitation (Yuter et al., 2006),

or in the exploration of the potential synergy between multiple sensors (Marzano et al., 2010a).

Some commercial disdrometers (e.g. PARSIVEL, Löffler-Mang and Joss, 2000), originally de-

signed for rainfall studies, provide a basic estimation of the precipitation type associated with

each measurement by making assumptions on fall velocity and equivalent rainfall intensity.

In this context the information provided by the 2DVD is of particular interest because a pair

of two dimensional views, together with fall velocity, is provided for each particle. Such

features alone allow expert users to interpret the images and visually recognize in them

specific hydrometeor types (e.g., Zhang et al., 2011). This suggests that automatic classification

methods, based on training over visually interpreted (labeled) episodes, may be well suited to

perform hydrometeor classification. Supervised classification algorithms, such as the support

vector machine, (SVM, Boser et al., 1992) are nowadays used to perform similar kinds of

tasks. For example, such techniques have been used in land cover classification (Camps-Valls

and Bruzzone, 2005), wind power forecasts (Foresti et al., 2011; Zeng and Qiao, 2011), and

weather prediction (Sullivan, 2009). The SVM is a linear and binary supervised classifier, that

finds the optimal separations between observations belonging to different classes. These

observations are defined by a set of numerical features and the optimal separation is learned

from a training set in which the association between input observation and output class is

known. The SVM is able to handle high dimensional inputs, is less prone to over-fitting issues

than other supervised methods (Camps-Valls and Bruzzone, 2009), and has been shown to

perform relatively well on the prediction of weather types (e.g., Elmore, 2010). Furthermore

the SVM allows the retrieval of the most relevant input features driving the classification, and

can rank them in order of importance, with the implementation of multiple kernel learning

(SVM-MKL) techniques (Rakotomamonjy et al., 2008; Tuia et al., 2010).

In this Chapter a SVM model is trained on 2DVD data in order to classify eight hydrometeor

classes of the dominant type of precipitation during time intervals of length∆t . Aggregation

over time intervals is conducted to reduce the computational cost that may be excessive if

each particle is individually considered. A relatively short∆t of 60 s is chosen to minimize the

effect of mixing of separate hydrometeor types. Individual 2DVD images are summarized over

∆t with a high-dimensional set of numerical features, constituting the necessary input for the

SVM classifier. Data collected in the Swiss Alps, in the French Jura and in the southern part of

Ontario, Canada, are used to train and validate the model.

The Chapter is structured as follows. Section 3.3 describes the experimental set-up and the

basic 2DVD data. Section 3.4 presents the hydrometeor classification model. Section 3.5

presents the main results and their quality assessment, while Section 3.6 provides examples

of the outputs of the hydrometeor classification. Section 3.7 concludes the Chapter and lists

some future perspectives.
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3.3 Dataset description

3.3.1 Experiment locations

The 2DVD data employed in the experiments were collected during three distinct field cam-

paigns, between September 2009 and March 2013. The first campaign took place from Septem-

ber 2009, until June 2011 in Davos (CH): the 2DVD was deployed in the Swiss Alps, at an altitude

of about 2500 m a.s.l. Data for a total of 1700 h of precipitation in liquid, mixed, and solid

phase were collected during this time frame. The second campaign took place in Remoray

(FR), from December 2012 until March 2013, at an altitude of about 920 m, in the context

of an experiment focused on melting hydrometeors. 270 h of precipitation in solid, liquid

and mixed phase were collected in this experiment. The third complementary campaign

includes about 200 h of data (mainly solid precipitation) collected by three 2DVD instruments

between December 2011 and March 2012 in the framework of the Global Precipitation Mea-

surement mission (GPM, http://pmm.nasa.gov/precipitation-measurement-missions), in the

Cold-season Precipitation Experiment (GCPEx) that took place in Ontario (CA).

3.3.2 2DVD instrument and data pre-processing

The 2DVD working principle is extensively described in Kruger and Krajewski (2002). Here

the most relevant features of the instrument are briefly summarized. Figure 3.1 illustrates the

2DVD measurement principle (see Fig. 3 of Kruger and Krajewski, 2002, for more details).

Figure 3.1: 2DVD measurement principle.

Two orthogonal light sources coupled with two (A and B) line scanning cameras, generate

two stacked measurement planes of about 11 c m ×11 cm. The planes are vertically separated

by a distance of around 6.2–7 mm (the exact value is determined by mechanical calibration).

The cameras capture the falling particles at a resolution of 512 pixels (0.2 mm) at 34 kHz,

and the vertical distance between the measurement areas of cameras A and B enables the

measurement of fall velocity.
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The raw images need to be processed before being employed. This involves the filtering of

unreasonable measurements, and the rematching of the measurements taken from camera

A and B, in order to ensure that both images actually refer to the same particle. Filtering

and rematching of 2DVD images is based on the work of Hanesch (1999) and Huang et al.

(2010). Their methods were followed with a noteworthy modification. Those studies, which

were interested in snowfall only, restricted the maximum fall velocity to 4 ms−1 and 6 ms−1,

respectively. This upper boundary is increased to 14 ms−1, large enough to include with

sufficient margins the range of variation found in rain (e.g., Beard, 1976) as well as large

graupel (List and Schemena, 1971).

Despite this filtering, some non-realistic particles can still be observed in the output. These

particles appear as large objects, vertically oriented and elongated, as shown in Fig. 3.2. Be-

cause of these peculiarities, they are easily identified and excluded from the analysis presented

in this Chapter. The exact nature of these artifacts is unknown, but their vertical orientation

and dimension suggest that they may be associated with small-scale wind effects, melting, or

dripping, causing some particles to reside for an anomalous amount of time in the measure-

ment areas of the two cameras. The proportion of rejected particles is on average 3%, and it

ranges between 0.5% and 13% per day. A few precipitation events required higher rejection

rates. They were excluded from the analysis presented in this work.

Figure 3.2: Example of A-B views of a non-realistic particle, that needs to be filtered.

Two additional potential sources of uncertainty (whose magnitude is currently not known

in snowfall) are the image distortion that can occur when the horizontal component of the

falling velocity of the particles is significant, and the local winds generated by the geometry

of the instrument. To date, image distortion can be corrected only in rain, and in particular

only for raindrops that possess an axis of rotational symmetry (Schönhuber et al., 2008). On

the contrary, the winds induced by the instrument itself can lead to an under-estimation of

particles having lower density and dimension1. Further research, which is beyond the scope

of this Chapter, is needed to develop correction schemes for snowfall measurements in order

1 This issue is more severe for the first generation of the 2DVD instrument (Nespor et al., 2000). All the data
employed in the present study were collected with second and third generation 2DVDs.
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Table 3.1: List of descriptors chosen to describe the particles recorded. Descriptors 1 and 2
come from combination of camera A and B; 3 to 6 describe particle size; 7 to 13 particle shape.

Symbol Full name Units

1 v fall velocity [ms−1]
2 De equivolumetric diameter [mm]

3 AA,B shaded area [mm2]
4 PA,B shaded perimeter [mm]
5 TA,B particle thickness [mm]
6 WA,B particle width [mm]

7 PFA,B pixel fraction [-]
8 FORM A,B form index [-]
9 SqPA,B square pixel metric [-]

10 F DA,B fractal dimension [-]
11 SI A,B shape index [-]
12 E LONG A,B elongation [-]
13 ROUN DA,B roundness [-]

to compensate for these two potential issues.

3.3.3 From single particles to global features

Pairs of 2DVD A-B images are available for each particle falling in the measurement area. For

the purpose of the present work, it is useful to summarize this large amount of information by

choosing a set of relevant descriptors2. Then, the statistical distributions of these descriptors

in a time step ∆t are used as input information for the hydrometeor classification. The

descriptors chosen in this work are listed in Table 3.1, and can be divided into 3 groups.

Joint descriptors

Two descriptors are obtained by combining the views of cameras A and B. They are: particle

falling velocity v [ms−1], and equivolumetric diameter De [mm]. De denotes the diameter

of a sphere having the same volume as the falling particle. This descriptor was originally

developed for raindrops, for which volumes could be calculated accurately from the 2-D views.

It can be extended to particles of any shape as a reference measure of particle size. In the

present work De is calculated according to the formulation of Huang et al. (2010).

2The particle descriptors are calculated in the present work from “.SNO”-format 2DVD data.
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Particle size

Other descriptors can be computed separately for camera A and camera B. Fig. 3.3 illustrates

some of them. The apparent shaded areas AA,B and perimeters PA,B are readily available from

the 2DVD measurements, while thicknesses TA,B and widths WA,B of each particle are defined

with respect to a bounding box around the particle (Fig. 3.3). v , De, A, P , T and W together

describe the particle bulk dimension and velocity.

Figure 3.3: Examples of particles descriptors of 2DVD images (camera A and B). On camera
A: width (WA [mm]) and thickness (TA [mm]) of the bounding box enclosing the particle. On
camera B: particle apparent perimeter (PA [mm]) and shaded area (AA [mm2]).

Particle shape

Additional descriptors are computed to better characterize particle shape. They are dimen-

sionless shape metrics commonly used in the analysis of land-cover images for remote sensing

(Jiao and Liu, 2012), adapted for use on 2DVD images:

PFA,B =
AA,B

Ar
A,B

(0, 1] (3.1)

FORMA,B =
4πAA,B

P2
A,B

(0, 1] (3.2)

SqPA,B = 1−4

p

AA,B

PA,B
[1−2/

p
π, 1) (3.3)

FDA,B = 2
ln(PA,B/4)
ln(AA,B)

[1, 2] (3.4)

SIA,B =
PA,B

4
p

AA,B

[
p
π/2,+∞] (3.5)

ELONGA,B =
WA,B

TA,B
[1,+∞] (3.6)

ROUNDA,B = 4
AA,B

πWA,B
2 (0, 1] (3.7)
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where Ar
A,B [mm2] is the area of the bounding box calculated for image A (or B). PFA,B is called

pixel fraction and compares the shaded area with the area of the bounding box. PFA,B is an

index of compactness, as is the roundness index, (ROUNDA,B) that compares the shaded area

with a circular approximation. FORMA,B and square pixel metric SqPA,B are shape complexity

indices based on the area-to-perimeter ratio, (they increase with decreasing complexity), while

fractal dimension FDA,B and shape index SIa ,b are indexes based on the perimeter-to-area

ratio (they increase with increasing complexity). ELONGA,B evaluates the degree of elongation

of the particles.

As introduced above, the feature vector used in the SVM model refers to the distribution of

descriptors in a time step∆t . Let us consider a time step∆t , during which N particles are

recorded. The mean, median, some quantiles (10 %, 25 %, 75 %, 90 %) and interquantiles

(Q75–25, Q90–10) of each descriptor over the N particles available are computed. Additionally,

for the descriptors 3 to 13 of Table 3.1, the correlation coefficient between the measurements

of camera A and B is computed. This leads to a set of 203 features calculated per time step: 16

derived from camera combinations, 88 calculated separately for A and B (so 176 in total), and

11 correlation coefficients. ∆t is selected to be 60 s, as a trade-off between representativeness

and temporal resolution. Additionally, no statistics are computed if N is lower than 20 particles

for a specific time step (Appendix B.1). The 88 features calculated separately for A and B have

been verified to be consistent between each other, with biases generally lower than 10 %. This

suggests that for these 88 features, the information carried by a single camera is sufficient.

Therefore one can define, for each valid time step, a final feature vector x containing 115 useful

features, by using only the 88 single features from one of the two cameras.

3.4 Hydrometeor classification

This section details the proposed supervised classification approach. First the hydrometeor

classes are defined, then it is detailed how a training set is obtained, and finally the classifier

employed and its implementation are presented.

3.4.1 Hydrometeor classes and training set

The principle of supervised classification methods is to use a set of Ntrain labeled observations

(or a training set) to train a classifier that will learn how to interpret new unlabeled observa-

tions. In this case, the appropriate dominant hydrometeor type needs to be assigned to a

population of time steps of length∆t . The 2DVD offers the possibility to visualize the actual

hydrometeor images, and the supervision was therefore conducted manually, according to

the judgement of trained operators. Two operators independently interpreted the images

by visualizing particle shapes, velocities, and taking into account the on-site environmental

conditions (time of the year, temperature). Additionally, for the data collected in Davos (CH),

X-band radar observations over the region were available (e.g. Schneebeli et al., 2013), thus
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providing contextual information about the structure of the precipitation, and in stratiform

cases, about the altitude of the melting layer.

The visualization and pre-interpretation of a wide range of time steps led to the selection of

8 hydrometeor classes, to describe the possible precipitation types in the available dataset.

Figure 3.4 shows an example of a typical particle belonging to each class. The classes are:

Small particle-like (SP), Dendrite-like (D), Column-like (C), Graupel-like (G), Rimed particle-

like (RIM), Aggregate-like (AG), Melting snow-like (MS), and Rain (R). The “-like” is added to

emphasize that this approach identifies the dominant type of hydrometeor, which does not

necessarily imply that: (i) there is only one type of hydrometeor in the considered time step,

and (ii) that all hydrometeors exhibit pristine shape and geometry.

Figure 3.4: Examples of particle images (two camera views: A left, B right), belonging to time
steps dominated by a particular hydrometeor class.

The definitions for some hydrometeor classes require clarification. SP time steps refer to

particles falling during ice-phase precipitation that, given their size and the resolution of the

instrument (0.2 mm), do not allow proper visual shape recognition. Small aggregates, as well

as single ice crystals, can be assumed to belong to this class. RIM is observed when riming

processes smooth the shapes of the hydrometeors and increase their fall speed, while G time

steps refer to fully developed graupel, in which the original shape of the rimed crystal is no

longer recognizable. MS is observed when the instrument records precipitation within the

melting layer, and in these time steps raindrops, snowflakes, and smoother snowflakes with

larger fall speed co-exist in a mixed phase.

The creation of the training set involved the inspection of all the particles within each time step,

in order to retrieve the dominant particle type and to provide the appropriate label. Particular

attention was paid to select time steps that were as pure as possible, for the subsequent

training of the classifier. The training set employed in the present work includes Ntrain = 400

time steps, each of them numerically characterized by the 115 components of the associated

feature vector x defined in Sect. 3.3.3.
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3.4.2 Classification method

This section presents the classifier used, the SVM. Then, it is detailed an extension of the SVM

that allows the retrieval of the importance of each input feature (or group of features) in the

model: SVM-MKL.

SVM

The Support Vector Machine (Boser et al., 1992; Scholkopf and Smola, 2001), also known

as the large margin classifier, is a linear classifier, which finds the best linear separation

between samples belonging to two classes. In our case, samples are time steps i of length

∆t , represented by a vector xi of d = 115 features, and the classes are the dominant types of

hydrometeors, yi . The model is trained on known couples Xtrain = {xi , yi }Ntrain
i=1 , with xi ∈Rd

and yi ∈ [−1, 1]. It must generalize well on a set of unknown samples, for which the dominant

hydrometeor type Xval = {xv }Nval
v=1 is unknown.

The SVM finds the best linear separation, of type f (x) = 〈w, x〉+ b , for which all training

samples are at least at a distance of 1 from the separating plane. In other words, for all training

samples f (x)must be greater or equal to one. To differentiate between positive and negative

examples, we also multiply this expression by 1 if the sample is of the positive class and by−1

if it is of the negative class (the two types of hydrometeors). Summing up, the constraint is

yi (〈w, xi 〉+b )≥ 1, ∀i ∈Ntrain. The strategy pursued by the SVM (more details in Boser et al.,

1992) is to find the separation which maximizes the distance between the closest points of

each class, which are also called support vectors. This distance is called the margin and is

inversely proportional to the norm of the parameters vector, i.e. ||w||2. In order to allow some

classification errors, we also introduce a term xi i , which is non-zero for samples classified

wrongly. The margin maximization problem is the following one:

min
w,b ,xi







1

2
||w||2
︸ ︷︷ ︸

Complexity of the function

+ C
Ntrain
∑

i=1

xi i

︸ ︷︷ ︸

Training errors







(3.8)

s.t.







yi [〈x, w〉+b ]≥ 1−xi i

xi i ≥ 0 and i = 1, . . . , Ntrain

C is a parameter that controls the constraint of perfect classification: if we allow some errors

(by keeping C low), the margin becomes larger, thus reducing the dependence of the final

model on training samples, that may be noisy or issued from errors in the measurements.

A too high value of C increases drastically the value of the cost function, as soon as errors

are made. In this case, the resulting model will achieve perfect classification of the training

samples, but the risk of over-fitting the training data and achieving poor generalization in the
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validation phase is higher.

This optimization model is solved using Lagrangian multipliers α, which allow us to rewrite

the problem as:

max
α







Ntrain
∑

i=1

αi −
1

2

Ntrain
∑

i ,j=1

αiαj yi y j 〈xi , xj 〉







(3.9)

s.t. 0≤αi ≤C and
Ntrain
∑

i=1

αi yi = 0

When the optimal solution of Eq. (3.9) is found (i.e., the vector of coefficients α), the label of

an unknown sample xv is assigned on the basis of the sign of the decision function, i.e., its

position with respect to the hyperplane ( f (x) = 0):

yv = sign

 

Ntrain
∑

i=1

αi yi 〈xi , xv 〉+b

!

. (3.10)

It can be observed that in the present formulation, the SVM is only a binary classifier. A number

of strategies exist to reduce multiclass problems to binary problems, and in the present work

the one-against-one rule was employed (Hastie and Tibshirani, 1998). One-against-one builds

as many binary classifiers as there are pairs of classes. Each classifier is therefore used to

assign the time step to one of two possible classes. The time step is eventually classified into

the class that received the most assignments.

Nonlinear SVM

The SVM, as it has been presented above, can solve only linear problems (it defines a linear

hyperplane). However, there is an elegant solution to solve nonlinear problems. Let us go

back to Eqs. (3.9) and (3.10): the solution of the optimization does not depend on the training

samples themselves, but only on the dot products between samples (see 〈xi , xj 〉 in Eq. 3.9).

In the same way, the prediction for a new sample only depends on its dot products with the

training samples (see 〈xi , xv 〉 in Eq. 3.10). Dot products are measures of similarity between the

samples. To perform nonlinear classification one needs to find an estimate of their similarity

in a projected space of higher dimensionH , where linear separation becomes possible3. To

avoid defining explicitly the coordinates of the samples in the projected space, i.e., φ(xi ),
we can use functions that, even if expressed with points in the original space, correspond to

dot products in the projected spaceH : these functions are called kernels. Without entering

mathematical details, that the interested reader can find in Scholkopf and Smola (2001),

a kernel corresponds to a similarity function such that K (xi , xj ) = 〈φ(xi ),φ(xj )〉. This means

3The Cover theorem states that the probability of linear separability increases with the dimensionality of the
space (Cover, 1965).
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Chapter 3. Hydrometeor classification from two-dimensional video disdrometer data

that, for a given projectionφ(·), the kernel computed from xi and xj will correspond to their

similarity in the spaceH defined by φ(·). A classification, which is linear in the projected

space, is nonlinear in the original space, as illustrated in Fig. 3.5.
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Figure 3.5: Illustration of the nonlinear SVM. (a) A nonlinearly separable dataset in the input
spaceX , involving two classes (squares and circles). (b) Projection on a 3D spaceH by the
kernel K (xi , xj ) = 〈xi , xj 〉2. (c) Linear classification in the projected spaceH (filled dots are
support vectors). (d) Corresponding nonlinear decision function in the original space X .
Adapted from Volpi et al. (2013).

In practice, in order to obtain a nonlinear classification with the SVM, we replace the dot prod-

ucts in Eqs. (3.9) and (3.10) by kernel functions K (xi , xj ) and K (xi , xv ), respectively. A classical

kernel to obtain such a behavior is the Radial Basis Function (RBF), which is computed as

follows:

K (xi , xj ) = exp

�

||xi −xj ||2

2σ2

�

. (3.11)

The RBF kernel acts as a Gaussian similarity, which is maximal when considering the same

samples (K (xi , xi ) = 1), and decreases jointly with the decrease of similarity between the

samples. The bandwidthσ controls the steepness of the Gaussian bell.

SVM-MKL

Even if very successful, SVM remains a black-box model, in the sense that no information

about the importance of the initial variables can be retrieved from its results. All operations

are optimized in the projected space H : this means that, while it avoids computation of

projection of the samples explicitly, it also prevents the assessment of the importance of

the different variables involved. Recent research has offered a solution to this problem by

introducing the concept of Multiple Kernel Learning (MKL, Rakotomamonjy et al., 2008).

SVM-MKL builds on the so-called Mercer conditions stating that a weighted sum of any posi-

tive definite function (a requirement for all kernel functions) is again definite positive (Mercer,

1905). This means that we can design a valid kernel by a linear combination of M base kernels

Km (xi , xj ), each one considering single time step features (in this case M = 115) or sets of time
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step features (in this case M < 115 and equals the number of groups of descriptors):

K (xi , xj ) =
M
∑

m=1

d m Km (xi , xj ). (3.12)

d m is the weight attributed to each kernel Km and is a measure of the importance of this

kernel in the combination, i.e., of the variables composing it. It usually sums up to 1. The

SimpleMKL algorithm proposed in Rakotomamonjy et al. (2008) optimizes alternatively the

weights and the SVM and retrieves at the same time the relative importance of each group

(d m ), and the SVM model associated with the final weighted combination.

In the experiment of this Chapter SimpleMKL is used to find the best combination of a series of

RBF kernels Km , each one assigned to a set of features referring to the same particle descriptor

(M = 13, see Table 3.1). As an example, K1 takes into account the eight statistical features (Q10,

Q25, Q50, Q75, Q90, IQ75–25, IQ90–10, mean) associated with the hydrometeor fall velocity v

descriptor, while K2 the eight features associated with the equivolumetric diameter De, and so

on.

3.5 Results and discussion

3.5.1 Performance assessment metrics

The evaluation of the accuracy of classification is conducted via different metrics. The available

Ntrain training observations are divided in two parts (N ∗train and N ∗val). N ∗train observations are

used as training set to optimize the SVM parameters C and σ and to train the SVM, while

the remaining N ∗val observations are kept for validation. A comparison is made between the

SVM classification output {y ∗i }
N ∗val
i=1 , and the true labels {yi }

N ∗val
i=1 by evaluating an 8×8 confusion

matrix C, as shown in Table 3.2. The elements C (i , j ) contain the number of observations

classified in the i -th class, which in reality belong to the j -th class. The diagonal contains the

correct classifications.

Given the confusion matrix, the global performance of the classifier is quantified by the overall

accuracy (OA), and Cohen’s Kappa (K ):

OA=

S
∑

i=1
C (i , i )

N
×100 (3.13)

K =
OA −Pest

1−Pest
(3.14)

Pest =

S
∑

i=1







S
∑

j=1

C j ,i

S
∑

j=1

C i ,j







N 2
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Table 3.2: Example of a confusion matrix obtained during validation of the SVM classification
for a validation set N ∗v a l of 100 observations. Correct classifications are situated on the
diagonal, and misclassification are in the off-diagonal entries.

True

P
re

d
ic

te
d

SP D C G RIM AG MS R
SP 14 0 1 3 0 0 0 0
D 0 9 0 0 0 3 0 0
C 0 0 9 0 0 0 0 0
G 1 0 0 9 0 0 0 0

RIM 0 0 0 0 8 0 0 0
AG 0 0 0 0 0 11 1 0
MS 0 0 0 2 0 1 13 0
R 0 0 0 0 0 0 0 15

where S is the total number of classes, and N the total number of observations (in our case

S = 8 and N =N ∗val). K takes into account the correct prediction that might occur by chance,

namely Pest, and is a robust metric in the case of unbalanced classes.

Then, let us look at the performances obtained within each class. For this purpose, we use:

OAk =
C (k , k )
S
∑

i=1
C (k , i )

×100 (3.15)

PODk =
C (k , k )
S
∑

i=1
C (i , k )

(3.16)

POFDk =

�

S
∑

i=1
C (k , i )

�

−C (k , k )

S
∑

i=1
C (k , i )

(3.17)

where OAk is the accuracy of the k -th class, and PODk and POFDk are respectively the

associated probabilities of detection and false detection.

3.5.2 Evaluation of the quality of the training set

Ntrain observations are available in total as a training set, and it must be verified that this

amount is sufficient for the present task. In other words we want to assess here if a larger Ntrain

would improve significantly the hydrometeor classification. To do so we proceeded as follows:

(1): Ntrain = 400 was initially randomly split into N ∗train = 300 and N ∗val = 100; (2): N ∗train was

iteratively reduced in size, while the original N ∗val was kept for validation; (3): Evaluation of the

performance was conducted at each step; (4): steps (1)–(3) were repeated with 200 realizations

of the original split.
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Table 3.3: Mean values and relevant quantiles of K [-] and OA [%], calculated over 200
iterations of the SVM validation procedure.

Parameter Q10 Q25 Q50 Q75 Q90 mean

K 0.84 0.86 0.88 0.91 0.93 0.88
OA 86 88 90 92 94 89

Figure 3.6 shows the evolution ofK as a function of the number of training samples in the

training set (N ∗train). It can be observed that N ∗train larger than 200 did not lead to significant

improvements in terms of K , while when N ∗train was smaller than 100, the performances

started to degrade sharply. These results suggest that the total available labeled samples (400)

are sufficient for the present classification task.

Figure 3.6: Evolution ofK [-], as a function of the training set size. The solid red line indicates
the median, while the blue and brown areas represent Q75-25 and Q90-10, respectively. The
size of the training set was varied with a step of 1, between 300 and 20. Statistics are based on
200 realizations.

3.5.3 Evaluation of the classification performances

For validation purposes, let us now focus on 200 realizations of the case N ∗train = 300, N ∗val = 100.

The classification achieved accurate global results, both in terms of OA andK . As shown in

Table 3.3,K and OA mean values were 0.88 and 89 %, and in 90 % of the cases they took values

higher than 0.84 and 86 %, respectively. Additionally,K tended to be close to OA, indicating

that correct classification occurring by chance is very limited.

The classification performance associated with each hydrometeor class is summarized in

Fig. 3.7. It can be observed that all the hydrometeor classes were identified with median OAk

always greater than 84 %, PODk greater than 0.84, and POFDk lower than 0.16. Overall, rainfall
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(R) hydrometeor class achieved the best scores, together with columns (C). R hydrometeors

showed a PODk equal to one, meaning that errors for this class were uniquely false detection.

On the contrary, C hydrometeors showed low POFDk and OAk very close to one, and the

errors for this class were due mainly to missed detections, with PODk scores around 0.9 in

median. Graupel (G) was mostly affected by missed detections, and showed a relatively large

interquantile spread for PODk , around the median value of 0.87. Small particles (SP) had the

highest false detection rate, with median POFDk close to 0.15. Dendritic snow (D) exhibited

the largest interquantile spreads, around otherwise satisfactory median values of 87 % (OAk ),

0.87 (PODk ), and 0.13 (POFDk ), followed by rimed particles (RIM) that exhibited a similar

behavior, achieving higher scores for all the metrics. Aggregates (AG) and melting snow (MS)

were both correctly predicted, with lower interquantile spread, median OAk larger than 88 %,

PODk larger than 0.88 and POFDk lower than 0.12.

Figure 3.7: Barplots of: (a) OAk [%], (b) PODk [-], (c) POFDk associated with the eight hydrom-
eteor classes undergoing classification. Statistics were calculated over 200 realizations of the
SVM validation. Single points (outliers) are represented as circles.

A last consideration concerns the choice of SVM as classifier. Other methods are used to solve

similar tasks in various fields of the environmental sciences, for example linear discriminant

analysis (LDA) or neural networks (NN) (e.g., Goosaert and Alam, 2009; Robert et al., 2013).

Comparison with these 2 methods showed that the proposed SVM scheme outperforms LDA

by more than 25% and NN by more than 15% in terms ofK .

3.5.4 Ranking of descriptors

The SimpleMKL algorithm was applied to learn the most relevant descriptors in the classifi-

cation process, as explained in Sect. 3.4.2. Referring to Eq. (3.12), it was observed that five

groups of features out of the 13 (one per descriptor, each including the eight or nine statistical

features extracted from its distribution in ∆t = 60s ), accounted for about 70% (Fig. 3.8) of

the total weights and therefore are considered hereafter as the most important ones. They

are, in decreasing order of importance: pixel fraction PF, velocity v , equivolume diameter De,

form index FORM and thickness T , with associated weights d m of 0.193, 0.181, 0.13, 0.112 and

0.098, respectively. This does not imply that the remaining eight descriptors were negligible in

the classification process, but that one expects to find a more immediate and intuitive physical

meaning in these five top-ranked ones.
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Figure 3.8: Weights d m of the 13 Km Kernels, associated with the 13 particle descriptors used
in the present study.

3.6 Application on unlabeled data

This section presents some examples of the classification output, on data not included in the

training set of the algorithm, and collected during the measurement campaign of Davos (CH).

3.6.1 17 March 2011

A snowfall event occurring on 17 March 2011 is presented in Fig. 3.9. The air temperature

recorded in the very close vicinity of the 2DVD was constantly below freezing (≈ −5 ◦C)

through the entire event duration, and different ice-phase hydrometeors were identified in the

time window shown here. Initially (07:00–09:00 UTC) precipitation was dominated by small

particles (SP), followed by a phase of instability (09:00–10:00 UTC) characterized by sharp

variations of the identified hydrometeor classes. During the next relatively stable phase (10:00–

12:30 UTC), graupel (G) and larger rimed particles (RIM) were identified. Panels (b), (c), and (d)

of Fig. 3.9 illustrate the behavior in time of the three top ranked particle descriptors, namely

pixel fraction PF, equivolume diameter De and fall velocity v . The median PF was around 0.7

during the entire event, indicating relatively high particle compactness. The median De was

initially below 1 mm (SP phase), and it increased to values between 1 and 2 mm in the latter

part of the event characterized mostly by G and RIM classes. v exhibited the same trends as

De and it increased when rimed particles and graupel were dominant.

3.6.2 12 January 2011

A different situation is depicted in Fig. 3.10, relative to a snowfall event recorded on 12 Jan-

uary 2011. In this case, for the time window shown (19:00–24:00 UTC), precipitation was

dominated by aggregates (AG) and dendritic shaped snow (D, at the end of the event). By com-

paring the present case with the one shown in Fig. 3.9, we observe a wider range of variation

of particle sizes, with De ranging between 0.5 mm and 8 mm (AG). Particle compactness was

lower, with median PF below 0.7 throughout the event, and slightly lower for D than for AG.

This is due to the higher geometrical complexity of aggregates and dendrites relative to small

particles and graupel. The velocity v did not exhibit peculiar trends, and it remained around
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Figure 3.9: Snowfall event recorded on the 17t h March 2011. Time series of: (a) dominant
hydrometeor type as classified with the SVM and local ambient temperature [◦C], as measured
by a closely located (distance≤ 50m) weather station, (b) De [mm], (c) pixel fraction of camera
A PFA , (d) fall velocity v [m/s]. In panels (b), (c), and (d) black dots connected by the red
solid line indicate the median value, while the shaded areas depict Q90-Q10 and Q75-Q25,
respectively.

values of 1 ms−1 in median.
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Figure 3.10: As in Figure 3.9, for the 12t h January 2011.

3.6.3 5 August 2010

The precipitation event that occurred on the 5 August 2010 (Fig. 3.11) illustrates well the

transition between liquid-phase and ice-phase precipitation. In the first part of the event

(05:00–07:45 UTC) the environmental temperature was around 4 ◦C, and it dropped to 0 ◦C in

the second part of the event (07:45–08:00 UTC). After 08:00 UTC the temperature stabilized

again around 0 ◦C. These trends in temperature are directly reflected in the dominant hydrom-
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Figure 3.11: As in Figure 3.9, for the 5t h August 2010.

eteor types classified: initially rain (R), then melting-snow (MS), and finally aggregates (AG).

The rain was characterized by small De and 2 ≤ v ≤ 5 ms−1 (i.e., light rain), which is larger than

the typical velocities of ice-phase hydrometeors, and very high compactness with a median

PF around 0.9. In the transition from R to MS and AG, a clear and relatively smooth trend was

observed for the three descriptors shown: v decreased to median values around 1 ms−1, the
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spread of De increased, and the median PF dropped to 0.6 in the AG phase at the same time,

as the geometrical complexity of falling hydrometeors increased.

Generally, the transition between R, MS and AG was well captured in the large available

dataset. Figure 3.12 shows the relative number of classifications for each of these three

types of hydrometeors as a function of the temperature. Please note that temperature has

not been used as an input in the proposed system (Table 1). R occurred always at positive

Figure 3.12: Distributions of the occurrence of AG, MS and R as a function of air temperature.
The distributions are obtained by aggregation of all the 2DVD measurements collected during
the field experiments of Davos 2009-2011 (CH) and Remoray 2012-2013 (FR), and temperature
data are given by closely-located weather stations.

temperatures, MS maximum occurrence was between 2 ◦C and 1 ◦C, and AG around 0 ◦C and

−1 ◦C (in agreement with Hobbs et al., 1974). These results give us confidence in the ability of

the proposed technique to provide a meaningful classification.

3.7 Summary and conclusions

In this Chapter was presented a hydrometeor classification method based on the interpretation

of 2DVD data. The classification, conducted with the SVM technique, uses as input the

statistical behavior of a set of particle descriptors over time steps with length∆t =60 s. The

SVM was trained with 400 examples labeled by expert users, and outputs the dominant

hydrometeor type within∆t . Additionally, an estimation of the relative descriptive importance

of the input features is provided, which is of particular interest when higher-level information

on the particle characteristics is required.

Discrimination is performed between eight hydrometeor classes: small particle-like, dendrite-

like, column-like, graupel-like, rimed particle-like, aggregate-like, melting snow-like, and rain.

Evaluation of the classification performance was conducted both in global and class-specific

terms. The classifier achieved accurate results, with median OA and K of 90 % and 0.88
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respectively. Each of the classes were identified with a median accuracy exceeding 84 %.

Additionally, once trained, the classifier is fast enough to be potentially implemented in real

time.

Three classification examples together with the time evolution of the top-ranked particle

descriptors were used to illustrate the typical classification products in pure snowfall events

and in the transition between snowfall and rainfall. Global hydrometeor type behavior as well

as small-scale fluctuations could be observed.

The proposed classification of hydrometeors from the 2DVD measurements provides addi-

tional information that can help better understand the microphysical processes characterizing

ice-phase precipitation events. This work has the potential to be a starting point for ground-

based quantitative evaluation of products derived from polarimetric weather radars. It can

also be adapted and implemented to receive inputs from other particle imaging systems (one

or two dimensional), both ground-based or airborne, provided that human interpretation

can be carried out for the particle in the training set and that geometrical descriptors can be

computed from the particle images.

The main limitation is that the current implementation provides bulk information over a given

time step of length∆t , which is large enough to be statistically significant, but cannot provide

estimation of hydrometeor mixtures over∆t . Future work will focus on the development of

a particle-by-particle classification, more challenging in terms of computational requirements,

that can lead to explicit quantification of hydrometeor mixtures.
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4 A clustering approach to polarimetric
hydrometeor classification

This chapter is adapted from the manuscript:

• Grazioli, J., D. Tuia, and A. Berne (2015a), Hydrometeor classification from polarimetric

radar measurements: a clustering approach, Atmos. Meas. Tech., 8(1), 149–170, doi:

10.5194/amt-8-149-2015

It presents some innovative ideas to develop data-driven approaches to perform hydrometeor

classification from polarimetric radar measurements. An explicit example of implementation

for X-band data collected in central Europe is shown. This method will be applied also in

Chapter 6 in order to investigate microphysical aspects of snowfall.
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4.1 Summary

A data-driven approach to the classification of hydrometeors from measurements collected

with polarimetric weather radars is proposed. In a first step, the optimal number of hydrom-

eteor classes (n opt) that can be reliably identified from a large set of polarimetric data is

determined. This is done by means of an unsupervised clustering technique guided by criteria

related both to data similarity and to spatial smoothness of the classified images. In a second

step, the n opt clusters are assigned to the appropriate hydrometeor class by means of human

interpretation and comparisons with the output of other classification techniques. The main

innovation in the proposed method is the unsupervised part: the hydrometeor classes are not

defined a priori, but they are learned from data. The approach is applied to data collected

by an X-band polarimetric weather radar during two field campaigns (from which about

50 precipitation events are used in the present study). Seven hydrometeor classes (n opt=7)

have been found in the data set, and they have been identified as light rain (LR), rain (RN),

heavy rain (HR), melting snow (MS), ice crystals/small aggregates (CR), aggregates (AG), and

rimed-ice particles (RI).

4.2 Introduction

Hydrometeor classification (HC) from weather radar data refers to a family of techniques and

algorithms that retrieve qualitative information about precipitation: the dominant hydrome-

teor type within a given sampling volume, where the term “dominant” is used to underline

that the actual hydrometeor content is usually a mixture. These methods use as input a set of

quantitative measurements provided by the radar itself and some additional information from

external sources, such as vertical profiles of temperature or estimates of the 0 ◦C isotherm

height. The classification is conducted on the spatial scale of the radar resolution volume

(radar range gate), and its inputs are usually a set of polarimetric variables, such as the radar

reflectivity factor at horizontal polarization ZH, differential reflectivity ZDR, the copolar cor-

relation coefficient ρhv, and the specific differential phase Kdp (definitions in Bringi and

Chandrasekar, 2001; Berne and Krajewski, 2013).

The most recent HC techniques require polarimetric capabilities. This allows a single instru-

ment, the radar, to acquire multiple simultaneous measurements that are sensitive to distinct

characteristics of precipitation. This facilitates the understanding of many microphysical

processes (e.g. Seliga and Bringi, 1976; Jameson, 1983; Vivekanandan et al., 1994; Ryzhkov

et al., 2005a; Bechini et al., 2013; Schneebeli et al., 2013).

Different HC algorithms are used at different frequencies, as in Straka et al. (2000); Liu and

Chandrasekar (2000) for S-band, Marzano et al. (2007); Dolan et al. (2013) for C-band, and

Dolan and Rutledge (2009); Snyder et al. (2010); Marzano et al. (2010b) for X-band. This is

necessary because the scattering properties of hydrometeors vary with respect to the incident

wavelength. Recently, after many years of improvements, HC has become a common product,
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provided operationally by national meteorological services (e.g. Gourley et al., 2007; Al-Sakka

et al., 2013; Chandrasekar et al., 2013).

Most HC methods are based on similar principles: they start by selecting the number and type

of hydrometeor classes undergoing classification. Then, through scattering simulations, the

theoretical radar observations associated with these hydrometeor classes are reconstructed.

Finally, actual observations are associated (labelled) with the appropriate class according

to their degree of similarity with the sets of simulations available. This last step is often

conducted by means of a fuzzy-logic input–output association (e.g. Dolan and Rutledge, 2009)

or by means of Bayesian (Marzano et al., 2010b) or neural network (Liu and Chandrasekar,

2000) techniques. In some cases these relations rely entirely on the simulation framework

available (Dolan and Rutledge, 2009). In other cases, they are instead adapted and modified

in order to adequately reproduce actual observations (Marzano et al., 2007) or according to

empirical constraints (Al-Sakka et al., 2013).

The typical HC techniques mentioned above have become a state-of-the-art approach, stable

and robust enough to be implemented operationally. However, it is important to underline

that these approaches have some limitations since they rely on strong assumptions. First,

the choice of the hydrometeor classes, meaning their content and their number, is mostly

subjective. Secondly, the scattering simulations (e.g. Mishchenko et al., 1996), which are

usually very accurate for rainfall, are uncertain for ice-phase hydrometeors because of the

complex geometries, dielectric properties, and largely unknown size distributions of ice

particles (Tyynela et al., 2011). Finally, it is not easy to take into account the accuracy of actual

radar measurements when comparing simulations and observations. In the present Chapter

is proposed a different approach to HC, in which the classifier is built on actual measured

radar data and is not constrained by the output of numerical simulations.

A clustering technique, i.e. a technique that is used to find patterns (groups) in data sets

in an unsupervised way (see Jain et al., 1999; Xu and Wunsch, 2005; Von Luxburg, 2007, for

a complete overview), is applied to a database of precipitation measurements collected by a

X-band dual-polarization Doppler radar. An optimal partition of these data into n opt groups is

found as a trade-off between data similarity (of polarimetric observations within each group)

and spatial smoothness of the partition. The content of these groups is then interpreted

a posteriori, and a hydrometeor class is assigned to each of them.

The Chapter is structured as follows. Section 4.3 provides some background on clustering

algorithms, and Sect. 4.4 presents the polarimetric data employed in the study. Section 4.5

describes the unsupervised part of the classification method, and Sect. 4.6 is devoted to the

identification of the optimal number of clusters in the data set. Section 4.7 deals with the

labelling of the n opt clusters identified, and Sect. 4.8 presents the summary, discussion, and

conclusions.
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4.3 Background on clustering techniques

The proposed approach to HC is data-driven. The first two necessary steps are therefore to

identify groups (clusters) in the available data set and then to select the optimal number of

these groups. In this section we provide some background on the clustering methods that will

be employed in the following sections.

4.3.1 Hierarchical data clustering

All techniques that aim at organizing a given set of objects (observations) in a certain number

of groups (clusters) are referred to as unsupervised data clustering techniques. The shape

(or functional form) of these groups, as well as their number, is unknown a priori (Jain et al.,

2000). A particular type of clustering technique is considered here: agglomerative hierarchical

clustering (Ward, 1963, AHC hereafter). AHC is a stepwise approach that is used to group a set

of ND objects into n c clusters (n c ≤ ND ) in such a way that objects belonging to the same

cluster are more similar to each other than to those belonging to others. The technique is

called agglomerative because at a step i

n i
c =ND − i . (4.1)

This means that, at the initial step (i = 0), individual objects populate the clusters, while at

each step two objects (the most similar) are merged, thus reducing the total number of clusters

by one. The method is nested, in the sense that, once two samples are grouped in the same

cluster, they remain clustered in all the following levels of the hierarchy.

In order to define which objects are the most similar, two criteria need to be defined (Xu and

Wunsch, 2005): (i) a metric, i.e. a measure of distance between objects, and (ii) a merging rule.

At each step i the pair of objects that are situated at the closest distance (according to a certain

merging rule) are merged together.

4.3.2 Distance metric

Let x and y be two objects, or vectors, defined in a d -dimensional space. As vectors, x and y

have d components:

x= {x[1], . . . x[d ]}

y= {y[1], . . . y[d ]}.

A list of common distance metrics used to measure the distance D(x, y) between x and y is

provided in Table 4.1. Each of these metrics is designed to capture a particular type of similarity

between pairs of objects. For instance, the Euclidean distance1 is defined in a d -dimensional

1 A particular case of “Minkowski distance”, when p = 2, according to the notation of Table 4.1.
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Table 4.1: Example of commonly used distance metrics D(x, y). The notation ||x||p refers to the

p -norm of x: ||x||p =
�

d
∑

i=1
|x[i ]|p

�1/p

.

D(x, y) Expression Definitions
Minkowksi ||x−y||p p : free parameter

Cosine xTy
||x||2 ||y||2

T: transpose

Correlative
Æ

1−r (x,y)
2 r : Pearson correlation coefficient

space as

D(x, y) =

√

√

√

√

d
∑

i=1

|x[i ]−y[i ]|2, (4.2)

and it is a good metric to evaluate the similarity between x and y when all the d components

have the same order of magnitude. Conversely, the “correlative distance” (see Table 4.1) is less

affected by unbalanced components but might be ill-defined when d is small.

4.3.3 Merging rule

The second concept to be introduced is the merging rule. A merging rule defines the criteria

that an object x, or a cluster of objects C I (a group of objects x ∈C I ), has to satisfy in order

to be merged with another cluster C J . In other words, it generalizes the concept of distance

between single objects of Table 4.1 to distances between two clusters, or between a cluster

and a single object. Even though many merging rules exist, in this Chapter we present the

weighted pairwise average (WPA) and weighted centroid (WC) rules (Jain and Dubes, 1988):

• WPA defines the distance between C I and C J as the average distance between couples

of objects belonging to the two clusters, weighted by the number of objects in each

subcluster. In this case the definition of distance between clusters, employed as merging

rule, is recursive. As an example, given C I =CK ∪CL

D(C I ,C J ) =D(CK∪L ,C J )

=
n K D(CK ,C J )+n LD(CL ,C J )

n K +n L
, (4.3)

where n K and n L are the number of objects contained in the clusters CK and CL , respec-

tively.

• WC defines the distance between clusters as the distance between the (weighted) cen-

troids of each cluster. The centroid is the centre of mass of a cluster C I . It is computed as

the average position of all the subclusters CK ⊂C I , weighted by the number of objects
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Table 4.2: Main characteristic of the X-band dual-polarization radar MXPol. Additional infor-
mation on the instrument can be found in Scipion et al. (2013).

Parameter Value
Radar Type Pulsed
Frequency 9.41 [GHz]
Polarization H-V orthogonal
Transmission/reception Simultaneous
3 dB beamwidth 1.45 [◦]
Max. range 30–35 [km]
Range resolution 75 [m]

in each CK . Thus,

D(C I ,C J ) =D(xC I , xC J ), (4.4)

where xC I is the weighted centroid of cluster C I , defined as

xC I =

∑

CK⊂C I

n K
∑

x∈CK

x

n I
. (4.5)

All hierarchical cluster methods start with N objects distributed into N clusters, and they

end with N objects in one single cluster. The key point of any clustering method is therefore

the selection of the optimal intermediate partition, named n opt, between the starting and

the ending point. A universally applicable criterion to guide this choice does not exist. This

selection is usually performed by taking into account the compactness of the clusters, their

relative separability (Halkidi et al., 2002), and any available prior (physical) knowledge about

the data undergoing clustering (Wilks, 2011).

4.4 Data and processing

The present section provides a description of the data employed in the following analysis, and

some details about data processing.

4.4.1 Data source

The polarimetric radar data considered here were collected with an X-band dual-polarization

Doppler weather radar (MXPol), whose characteristics are summarized in Table 4.2.

In the present work radar data collected during two field deployments are used. The first one

took place in Davos (CH), in the Swiss Alps, from September 2009 to July 2011. The radar

was deployed at 2133 m a.s.l. on a ski slope dominating the valley of Davos, as shown in

Fig. 4.1a. The altitude of the deployment site made it possible, during cold seasons, to collect

many observations of ice-phase precipitation when the radar itself was located above the
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Figure 4.1: Maps of the two field deployments of MXPol considered in this study. (a) De-
ployment in Davos (CH); (b) deployment in Ardèche (FR) . The yellow lines indicates the
extent of the PPI sector scans, while the white lines indicates the directions of the RHI scans.
Red circles are used to mark the locations of instruments directly employed in the study
(MXPol and a 2DVD two-dimensional video disdrometer), while blue squares are used for
laser disdrometers (Parsivel) employed only to parametrize the attenuation correction of ZH

and ZDR. The source of the aerial view of (a) is http://www.geo.admin.ch, and that of (b) is
http://www.geoportail.gouv.fr/.

melting layer and therefore did not suffer from liquid-water signal attenuation. Such radar

observations represent the main peculiarity of this field campaign (e.g. Schneebeli et al., 2013;

Scipion et al., 2013). However, during warm seasons, the melting layer was often higher than

the radar site and relevant observations of liquid phase precipitation, both in stratiform and

convective cases, were collected as well. The climate of the Davos region is characterized

by approximately 130 days of precipitation per year and total yearly accumulations of about

1100 mm. The most intense snowfall events in winter are associated with north-westerly

fluxes (Mott et al., 2014). The scanning sequence of the radar, repeated approximately every

5 min, included plan position indicator (PPI) sector scans over the valley of Davos (at elevation

angles of 0, 2, 5, 9, 14, 18, 20, and 27◦), a range height indicator (RHI), and a vertically pointing

PPI used for the zeroing of ZDR.

The second field deployment, shown in Fig 4.1b, took place in the Ardèche region (FR) from

September to November 2012, at an altitude of 605 m a.s.l.. This deployment was part of the
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Chapter 4. A clustering approach to polarimetric hydrometeor classification

HYdrological cycle in the Mediterranean EXperiment (HyMeX, www.hymex.org; Ducrocq et al.,

2014; Bousquet et al., 2014). Stratiform and convective Mediterranean precipitation events

were sampled during this campaign, with the radar always located below the melting layer.

Convective precipitation included vigorous thunderstorms with intense electric activity. In

Ardèche, precipitation (in the fall season) is mainly associated with eastward-moving troughs

from the Atlantic region that are at first slowed by the anticyclonic system over Russia and

interact with the complex topography of the coastal region in the south of France (Miniscloux

et al., 2001; Boudevillain et al., 2011). The scanning sequence of the radar included, in this case,

wider (200◦ in azimuth) sector scans at elevation angles of 3.5, 4, 6, 9, and 10◦. Additionally,

two or three RHIs towards different directions and a vertically pointing PPI were collected

during each cycle of 5 min.

The novel hydrometeor classification method proposed in this work is entirely based on radar

data. However, in the following sections, data collected by a two-dimensional video disdrome-

ter (2DVD; see Kruger and Krajewski, 2002) will be used as well for validation purposes. One

2DVD (second-generation, “low”-profile version) was deployed during the Davos field cam-

paign at an altitude of 2543 m and at a horizontal distance of 5.2 km from MXPol, as shown in

Fig. 4.1a.

4.4.2 Polarimetric data

The polarimetric variables calculated from the measurements of MXPol and employed in the

following analysis are ZH [dBZ], ZDR [dB], Kdp [◦ km−1], and ρhv [–]. ZH and ZDR are corrected

for attenuation (in rain only) using the relations linking Kdp, ZH, specific horizontal attenuation

αH [dB km−1], and differential attenuation αDR [dB km−1] according to the method of Testud

et al. (2000). The power laws between these variables are parametrized using disdrometer

measurements for the data collected in France (locations shown in Fig. 4.1b) and using

simulated realistic drop size distribution fields (Schleiss et al., 2012) for the data collected in

Switzerland. The set of observations corresponding to events during which the radar was

located above the melting layer were not corrected for attenuation, assuming the attenuation

in dry snow to be negligible (Matrosov, 1992).

Kdp is estimated from the total differential phase shiftΨdp [◦] using a method based on Kalman

filtering (Schneebeli et al., 2014). The algorithm is designed to ensure the independence

between Kdp estimates and other polarimetric variables and to capture the fine-scale varia-

tions of Kdp. All the polarimetric variables are censored with a mask of signal-to-noise ratio

SNR > 8 dB, and all the radar range gates potentially contaminated by ground clutter are

censored as well, by means of a threshold of 0.7 on ρhv.
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4.5 Clustering of polarimetric radar data

Hierarchical clustering is applied to radar observations (objects) x, defined in the multidimen-

sional space of the polarimetric variables. Here the clustering approach is presented and it is

applied it to the database of Sect. 4.4.

4.5.1 Data preparation

The data object x is a five-dimensional vector defined for each valid radar resolution volume.

The components of x are

x= {ZH,ZDR, Kdp,ρhv,∆z }. (4.6)

The last component (x[5] =∆z ) is not a polarimetric variable, and it is defined as

∆z i = z i − z 0◦ ,

where z i [m] is the altitude above sea level of the i th resolution volume and z 0◦ is the estimated

altitude of the 0 ◦C isotherm, taken as a reference. A positive ∆z refers to a measurement

collected at temperature ranges where ice-phase hydrometeors are expected, while a neg-

ative one refers to a measurement likely taken in liquid-phase precipitation. This variable

is used as prior information for the clustering algorithm in order to take into account the

approximate environmental conditions associated with each measurement. The altitude of

the 0◦C isotherm z 0◦ is approximated by means of the linear interpolation of ground-based

temperature measurements collected at a distance ≤ 40 km from the radar location and by

assuming a constant lapse rate with altitude. It could also be estimated directly from other

sources, such as soundings, numerical models, or radar data directly, when a melting layer is

sampled.

The vector x is not yet suitable to undergo cluster analysis. Two issues need to be tackled.

1. The skewed distribution of Kdp values. At X-band, Kdp ranges approximately from −1

to 15◦ km−1 (e.g. Otto and Russchenberg, 2011; Schneebeli and Berne, 2012), but its

distribution of values, calculated over a large set of observations, is positively skewed,

with typical modal values below 0.5◦ km−1. This issue is tackled by log-transforming Kdp

values. Before log-transforming 1◦ km−1 is added to Kdp in order to consider Kdp values

in the range [−1,15] 2.

2. Due to the differences in their units, the radar variable fields contained in x have a

typical range of values that differs by several orders of magnitude. For instance, ZH can

vary over tens of dBZ, while ZDR and Kdp are smaller by one order of magnitude and ρhv

2Kdp <−1◦ km−1 occurs in less than 0.01 % of the cases in our database.
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even by two orders of magnitude. This issue is tackled by means of data standardization

(stretching). Even though a classical approach would be to use a z -score transformation,

based on mean and standard deviation of a sample of data (e.g. Wilks, 2011), a method

based on minimum and maximum boundaries is selected. This allows one to preselect

physically relevant bounds. The components x[i ]∗ of the standardized data are obtained

as

x[i ]∗ =
x[i ]−xmin[i ]

xmax[i ]−xmin[i ]
i ∈ {1, 2, 3, 4}, (4.7)

where xmin[i ] (xmax[i ]) is the minimum (maximum) bound allowed for each polarimetric

variable. The boundaries employed in the present study are −10 to 60 dBZ for ZH, −1.5

to 5 dB for ZDR, −3 to 3 for the logarithmically transformed Kdp, and 0.7 to 1 for ρhv

(∆z is considered in the next paragraph). Variations of the order of ±20 % around the

proposed boundaries have a negligible impact on the results presented in the following

sections, and the most sensitive boundaries are associated with ZH .

∆z is stretched within a smaller range of variation in the following way:

x[5]∗ =











0 if∆z ≤−400 m ;

κ if∆z > 400 m ;

f (∆z )×κ if −400 m <∆z ≤ 400 m

(4.8)

0<κ≤ 1.

κ is a scaling factor and f (∆z ) denotes any monotonically increasing functional form

that gives continuity to Eq. (4.8). Gaussian, sigmoid, and logistic functions have been

tested and appeared to be equally adequate. The threshold of ±400 m is the (rounded)

standard deviation of z 0◦ estimates. The reason for a different standardization of ∆z

is to reduce the weight of this non-polarimetric input in the clustering process: this

parameter is intended only to flag positive and negative temperatures in a quasi-binary

way and not to substitute the information provided by the polarimetric variables (there-

fore, κ is kept strictly ≤ 1). κ factors ranging between 0.3 and 0.9 lead to similar outputs,

and an intermediate value of 0.5 was used.

With the standardization detailed in Eqs. (4.7) and (4.8), the radar observations collected

at each radar range gate are summarized by the observation vector x∗, whose entries are

now expressed with a similar order of magnitude.

4.5.2 Subset undergoing clustering analysis

Agglomerative clustering algorithms are generally computationally expensive, because the

distances between all samples (and then groups) to be clustered are computed at each step

of the hierarchical aggregation chain. Therefore it was decided to define the clusters using a

subset of the data and then assign the whole data set to these clusters using a nearest-cluster
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rule (e.g. Volpi et al., 2012). About 50 precipitation events belonging to the data set of Sect. 4.4

were manually selected. These events cover the range of precipitation types observed by

MXPol during the field campaigns of Davos (CH) and Ardèche (FR), and they are assumed to

be a representative sample of midlatitude temperate precipitation.

A subset of data is taken randomly from these 50 precipitation events from PPI scans conducted

at elevation angles between 3.5◦ and 10◦ (free of ground clutter contamination). This amount,

consisting of 20 000 observations x∗ (defined in Eqs. 4.6, 4.7, and 4.8), is used as input to the

subsequent cluster analysis. Different seeds of the initial random selection led to the same

results, suggesting that the random sampling does not affect the outcome of the clustering

technique presented in the next section.

4.5.3 Clustering algorithm: data similarity and spatial smoothness

An AHC is applied to the polarimetric data set of x∗ objects in order to obtain an optimal

partition of the data into a set of clusters. This technique is a trade-off between purely

data-driven clustering, as it was described in Sect. 4.3 (that only looks for similarity in the five-

dimensional feature space of x∗), and spatial smoothness of the partition in the physical space.

In other words, hydrometeor classes should contain both objects that are similar to each other

(data-wise) and that also exhibit spatial consistency, since we assume spatial smoothness of

the geographic distribution of precipitation types. Here and in the following an Euclidean

distance metric and WPA merging rule will be used. Of the other possible combinations of

the distance metrics and merging rules presented in Sect. 4.3, similar results were obtained

with the correlative distance and WC rule. The method developed in the present Chapter is

sketched in the flow chart of Fig. 4.2. Panel (a) of the figure is explained step by step in the

following sections.

Step1: Fig. 4.2a1

Initially the 20 000 selected objects populate n c = 20 000 clusters. A first hierarchical aggrega-

tion is conducted on the data, until reaching a number of 1 000 clusters in the data set3. This

step aims at merging the most similar objects before proceeding with more computationally

expensive calculations.

Step2: Fig. 4.2a2

Given the remaining n c = 1000 clusters, referred to as CL (L = 1, . . . n c), we proceed to the

classification of the entire PPI images from which the original 20 000 objects were extracted.

Let x∗p /∈CL (L = 1, . . . n c) be an object taken from one of the PPI images and not belonging to

any cluster CL . This object is now classified into one of the n c clusters available, specifically

3 By doing this it is assumed that the optimal partitions of the data set are found when n c ≤ 1000.
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Figure 4.2: Flow chart of the clustering algorithm presented in Sect. 4.5.

the one related to the minimal distance to the object (according to the given merging rule).

We proceed until all the objects of the PPI images are classified into one of the n c clusters

available. At this point the spatial smoothness of the partition into n c clusters is evaluated.

Each object x∗p has been assigned to a cluster CM (1<M ≤ n c). At first a spatial smoothness

index (SSI) associated with x∗p is defined. This index evaluates the spatial consistency of the

classification of an object with respect to the classification of its neighbouring objects:

SSI(x∗p ,CM ) =
1

n NN

n NN
∑

i (p )=1

δi (p ), (4.9)

where

δi (p ) =







0 if x∗i (p ) /∈CM

1 if x∗i (p ) ∈CM ,

where n NN (number of nearest neighbours) is the number of nearest objects considered in

the construction of SSI and x∗i (p ) indicates the i th nearest object of x∗p . In the present work

n NN = 4, and very similar results are obtained for n NN = 2,4,8. The identification of the

nearest neighbours is performed in polar coordinates, and the distance between objects is the

distance between their respective radar resolution volumes. SSI ranges between 0 and 1. If all

the n NN objects belong to the cluster CM , then SSI is equal to 1. SSI indices are calculated for
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each x∗p , and they are summarized in a n c×n c matrix M, hereafter called spatial smoothness

matrix. The elements M I ,J of M are defined as

M I ,J =
NI
∑

p=1

SSI(x∗p ,C J ), (4.10)

where NI is the total number of objects x∗p satisfying the condition x∗p ∈ C I . The matrix

M is conceptually similar to a confusion matrix, commonly used to evaluate the goodness

of categorical classifications (e.g. Wilks, 2011). Diagonal entries M I ,I quantify the spatial

smoothness of the cluster C I , while the off-diagonal terms M I ,J (I 6= J ) quantify the probability

of objects belonging to a cluster C I to be surrounded by objects of the cluster C J .

Analogously to a confusion matrix, the information contained in M can be further summarized

by means of quality indices. As an example, Cohen’s kappa can be used to evaluate the global

spatial smoothness of a partition of the data set into n c clusters. Cohen’s kappa is defined as

K =
SSO−Sest

1−Sest
, (4.11)

where

SSO=

n c
∑

I=1
M I ,I

N
(4.12)

and

Sest =

n c
∑

I=1

��

n c
∑

J=1
M J ,I

��

n c
∑

J=1
M I ,J

��

N 2 . (4.13)

N is the total sum (over rows and columns) of all the elements of M.K increases as the level of

spatial smoothness increases and takes into account the globally observed spatial smoothness

(SSO) as well as the contribution occurring by chance, namely Sest. K evaluates the global

spatial smoothness of a partition, but the smoothness of each cluster CM can be evaluated

individually. For this purpose the spatial smoothness per cluster (SSM ) index is defined:

SSM =
M M ,M

n c
∑

I=1
M M ,I

. (4.14)

Step 3: Fig. 4.2a3

At this stage, the set of observations is divided into n c clusters, and the spatial smoothness

of this partition has been evaluated. A classical hierarchical approach would now proceed

by merging the two most similar clusters data-wise, reducing the total number of clusters to
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n c−1 at each iteration. In this case, additional use is made of the information provided by

Eq. (4.14). Let the cluster CW with the lowest spatial smoothness score be defined as

CW s.t. SSW = min
L=1,...,n c

{SSL} . (4.15)

The cluster CW is forced to disappear, and it is merged with the most similar (data-wise) one

according to the linkage method and the distance metric selected.

In this way, at each step of the AHC, spatial smoothness is used to identify the cluster that

exhibits the highest spatial discontinuity (lowest spatial smoothness), while data similarity is

used to merge it with one of the other n c−1 available clusters. The reader should be aware

that different constraints on spatial smoothness could be implemented at this stage, and the

constraint used in this work is only a simple example. The aggregative algorithm detailed in

steps 1–3 recursively repeats step 2 and step 3 until n c = 2.

4.6 Selection of the optimal cluster partition

An important step of hierarchical clustering is the selection of the optimal partition (n opt)

of the data set. In the present section some indices are introduced in order to evaluate the

quality of data partitions and to guide the final selection of n opt.

4.6.1 Cluster quality metrics

The spatial quality of each partition of the data set is quantified by means of two indices:

1. K , defined in Eq. (4.11);K quantifies the global degree of spatial smoothness of a given

partition.

2. The accuracy spread index (AS), derived from Eq. (4.14) as follows:

AS= max
L∈{1,...n c}

{SSL}− min
L∈{1,...n c}

{SSL} . (4.16)

This index evaluates the inhomogeneity of the spatial characteristics of a partition into

n c clusters. The lower it is, the more homogeneously the n c clusters perform in terms of

spatial smoothness. Lower values are therefore associated with better partitions.

Other indices can be employed to evaluate each partition from the point of view of data

similarity only. Most of these indices evaluate the scattering inside each cluster with respect

to the distance between clusters, and they assign relatively better scores to partitions with

compact and well-separated clusters. In the present work one index of this kind is employed:

the SD index (e.g. Halkidi et al., 2002). SD takes into account the average scattering of the
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Table 4.3: Rainfall rate R [mm h−1] associated with the three clusters appearing at positive tem-
peratures. Some relevant quantiles (Q5 %, Q25 %, Q50 %, Q75 %, Q95 %) of the full distribution
are given here. The data used to build this table were collected during the HyMeX campaign.

Cluster Interpretation Q5 % Q25 % Q50 % Q75 % Q95 %
Green Light rain (LR) 0.015 0.05 0.15 0.3 2.8
Dark blue Rain (RN) 0.42 2.11 4.1 7.6 16.3
Red Heavy rain (HR) 17.2 25.4 31.3 41.3 68.5

clusters (Scat) and the total separation between clusters (Dist). For a partition of the data set

into n c clusters, Scat is defined as

Scat(n c) =
1

n c

n c
∑

L=1

||σ(CL)||2
||σData||2

, (4.17)

where the vectorσ(CL) is the total variance of the Lth cluster CL , the vectorσData is the total

variance of the data set, and the || • ||2 operator is the 2-norm, defined in Table 4.1. Note that,

in a d -dimensional space, these quantities are vectors and not scalar. The separation between

clusters (Dist) is defined as

Dist(n c) =
Dmin

Dmax

n c
∑

L=1







n c
∑

M=16=L

||xCM −xCL ||2







−1

, (4.18)

where xCM and xCL are the centres of mass of the M th and Lth clusters, respectively (see

Eq. 4.5). Dmin (Dmax) is the minimum (maximum) distance between all the couples of mass

centres. Finally, the SD index is defined as

SD(n c) = a Scat(n c)+Dist(n c), (4.19)

where a is a normalization factor, equal to Dist(n max), that forces Scat and Dist to be of the

same order of magnitude. SD takes lower values for compact (low Scat) and well-separated

(low Dist) partitions; therefore, the optimal number of clusters n opt in a database should

exhibit a minimum SD.

4.6.2 Selection of n opt: Fig. 4.2b

Figure 4.3 illustrates the behaviour of the quality indices defined in Sect. 4.6.1 as a function of

the number of clusters in the data set for the interval 1≤ n c ≤ 30. The curves shown in the

figure are obtained as an average of 100 runs of the clustering algorithm.

An optimal solution is selected here when n c = n opt = 7 clusters. In fact, it can be observed

that n c = 7 corresponds to a local minimum for both the SD index and the AS index. When

n c = 7 the spatial behaviour of the seven clusters is the most homogeneous (low AS) and the

trade-off between compactness and separability of the clusters is optimal (lowest SD).
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Figure 4.3: Evolution of kappa, accuracy spread (AS) index, and SD index as a function of the
number of clusters in the data set. The SD index is stretched between 0 and 1 for illustration
purposes. The yellow vertical line at n c = 7 shows the selected final number of clusters,
corresponding to a minimum AS and SD. Each curve shows the mean behaviour over 100 runs
of the clustering algorithm.

Figure 4.4: Three examples of two-dimensional projection of the seven clusters found in the
data set. The clusters include observations collected in Davos (CH) and Ardèche (FR). (a): ZDR

vs. ρhv; (b): ZH vs. Kdp; (c): ∆z vs. ρhv. Note that some of the clusters are not fully visible in
this two-dimensional projection because they are defined in a five-dimensional space.

4.7 From unlabelled clusters to hydrometeor classes: Fig. 4.2c

This section is devoted to the interpretation of the output of the clustering algorithm (Fig. 4.2c)

that is still unknown at this step of the method.

4.7.1 Global characteristics of the clusters

The seven clusters corresponding to the optimal partition of our database contain a set of

observations (or objects) that have been grouped according to spatial smoothness and data

similarity. These clusters exist in the five-dimensional space given by the dimensions of x∗, and
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it is therefore not trivial to illustrate their content. A way to reproduce a partial visualization of

the clusters is to display pairs of two-dimensional projections of the objects x while keeping in

mind that their original nature is five-dimensional. Some of these projections are displayed in

Fig. 4.4, in which the seven clusters are colour-coded and labelled with a hydrometeor type.

Additionally, Table C.1 in the Appendix C (numerically) and Figs. 4.5 and 4.6 (graphically)

provide the one-dimensional distribution of polarimetric variables within each cluster. By

looking at Fig. 4.4c, it can be observed that three clusters contain data collected only where

the relative altitude with respect to the local 0 ◦C, i.e. ∆z , is positive (negative temperatures),

three clusters contain data collected always where∆z is negative (positive temperatures) and

one cluster contains mostly data collected where∆z ≈ 0. In the following sections, we will

proceed by interpreting the clustering results separately for clusters appearing on average at

∆z ≤ 0 and∆z > 0, and we will assign a hydrometeor class to each of the seven clusters.

4.7.2 Clusters at positive temperatures

Three clusters (red, green, and dark blue) in Fig. 4.4 are identified at positive temperatures. It is

therefore assumed in a first approximation that they are related to liquid-phase precipitation.

In order to properly associate each of them to a more specific category, further analysis is

performed. At first, the data classified into one of these three categories are extracted from the

observations collected in Ardèche (HyMex campaign, Sect. 4.4) from PPIs taken at elevation

angles ranging between 3.5 and 10◦. Then, the rainfall rate R [mm h−1] associated with each

measurement is computed by means of the following relations (Otto and Russchenberg, 2012):

R =







13K 0.75
dp if ZH > 30 d BZ

�

Zh
243

�1/1.24
if ZH ≤ 30 d BZ ,

(4.20)

where Zh = 100.1ZH [mm6 m−3] (i.e. the horizontal reflectivity expressed in linear units). The

distribution of R stratified for each class is summarized in Table 4.3. The green cluster is

characterized by extremely low rainfall intensity, and therefore it is associated hereafter with

a hydrometeor class named light rain (LR). This cluster contains mainly precipitation char-

acterized by small spherical drops. It is worth noting (Fig. 4.5b and c) that LR contains ZDR

values lower than 1 dB, with a mode around 0.25 dB, and Kdp values always close to 0 ◦ km−1.

LR therefore contains drizzle and the lightest rainfall intensities. The dark blue cluster is char-

acterized by low to intermediate rainfall intensity, and therefore it is associated with a category

named rain (RN). Finally, the red cluster contains by far the highest rainfall intensities, and it is

hereafter called heavy rain (HR). It is also hypothesized that, when hail occurs, it is classified as

HR. This assumption is based on the fact that HR includes observations with a low-correlation

coefficient ρhv (Fig. 4.5d) as well as near-zero or negative ZDR (Fig. 4.5b). These signatures

have been documented in cases where hail was measured by polarimetric weather radars

(Al-Sakka et al., 2013).
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Table 4.4: Confusion matrix comparing the classification of liquid phase hydrometeor classes
(∆z < 0) obtained with the clustering method described in the Chapter and the output of
the fuzzy-logic method DR2009, described in Appendix C.2. The classes of the novel method
are light rain (LR), rain (RN), and heavy rain (HR). The elements M i ,j of the matrix contain
the percentage of liquid phase observations classified in the i th class of the first method and
simultaneously in the j th class of the second method. The data are obtained from 100 runs of
the clustering algorithm.

Novel method

D
R

20
09 LR RN HR

Drizzle 59 % 1 % 0 %
Rain 7 % 29 % 6 %

Figure 4.5: Distribution within the four clusters found at positive temperatures (∆z ≤ 0) of (a)
ZH [dBZ], (b) ZDR [dB], (c) Kdp [◦ km−1], (d) ρhv [–], and (e)∆z [km]. The curves are obtained
considering the content of 100 runs of the clustering algorithm.

As an additional test, the classification output of our method is compared with a fuzzy-logic

classification scheme based on the parametrization of Dolan and Rutledge (2009), hereafter
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Figure 4.6: Distribution within the three clusters found at negative temperatures (∆z > 0)
of (a) ZH [dBZ], (b) ZDR [dB], (c) Kdp [◦ km−1], (d) ρhv [–], and (e) ∆z [km]. The curves are
obtained considering the content of 100 runs of the clustering algorithm.

DR2009 (see Appendix C for the details). DR2009 does not provide three “liquid-phase” hy-

drometeor classes but only rain and drizzle. The contingency table of Table 4.4 shows that

the HR class of our method is entirely classified as rain by DR2009. The RN class is mainly

classified as rain, and LR is almost entirely associated with drizzle. It is concluded that results

from the proposed method agree well with DR2009 for liquid phase hydrometeor classes.

Figure 4.7 illustrates a case where LR, RN, and HR are classified on the same PPI radar image.

This case was collected on 24 September 2012 during the HyMeX campaign, when a high-

intensity convective front was approaching the radar location from the west side of the

domain (more details about the storm in Bousquet et al., 2014). This resulted in a layer of

high values of ZH, ZDR, and Kdp. The transition from LR to HR within few kilometres appears

qualitatively to be a satisfactory illustration of the incoming front. Figure 4.7 also shows a

map of classification accuracy: this parameter is defined for each observation (valid range

gate) as the difference between the distance of the observation with respect to the two closest
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Figure 4.7: Hydrometeor classification and polarimetric observation from a PPI sector scan
collected on the 24 September during HyMeX Special Observation Period (SOP) 2012 at
02:12 UTC with an elevation angle of 3.5◦. The different panels show the following variables:
hydrometeor classification with the clustering approach, classification accuracy, ZH [dBZ],
ZDR [dB], Kdp [◦ km−1], and ρhv [–]. The spatial coordinates x and y originate at the radar
location.

clusters, and it is normalized by the smaller distance. The classification accuracy is therefore

lower in the areas of transition between different hydrometeor types, where the polarimetric

signatures change as the dominant hydrometeor type changes.
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Figure 4.8: Hydrometeor classification and polarimetric observation from an RHI collected on
29 September during HyMeX SOP 2012 at 14:29 UTC. The different panels show the following
variables: hydrometeor classification with the clustering approach, classification accuracy, ZH

[dBZ], ZDR [dB], Kdp [◦ km−1], and ρhv [–]. The altitude of the radar is 605 m.

4.7.3 Cluster around 0 ◦C

The yellow cluster of Figs. 4.4 and 4.5 appears on average around the 0 ◦C isotherm, and it is

interpreted as melting snow (MS). Figure 4.8 shows an example of classification output, where

a melting layer is clearly visible in the polarimetric observations. The MS category can be seen

to delimit the transition between ice-phase and liquid-phase hydrometeors. The signatures of

this transition can also be seen in ZH, ZDR, andρhv. Kdp does not exhibit any obvious signature

in the regions classified as MS (in agreement with observations documented by Thompson

et al., 2014).

4.7.4 Clusters at negative temperatures

The clusters identified at negative temperatures (dark green, pink, and cyan clusters in Fig. 4.4)

should be attributed to ice-phase hydrometeors. To classify these clusters, one proceeds

as follows: first the behaviour of the polarimetric variables within these three clusters is

examined, then the classification is compared with the output of DR2009. Subsequently

we compare the classification with qualitative (hydrometeor classification) and quantitative

(snowfall intensity) observations provided by a two-dimensional video disdrometer (2DVD)

and with the output of a numerical weather prediction model (Consortium for Small-scale
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Modeling, COSMO).

Polarimetric signatures

Figure 4.6 presents the distribution of the polarimetric variables ZH, ZDR, Kdp, and ρhv, as well

as the relative altitude∆z for the three “ice-phase” clusters.

By looking at panel (a), it can be observed a clear ZH signature. ZH is the lowest in the cyan

cluster (mode ≈ 12 dBZ), it is slightly higher in the pink cluster (mode ≈ 15 dBZ), and it is the

highest in the dark-green cluster (mode> 20 dBZ). Higher ZH indicates higher hydrometeor

concentration, size, and/or ice density.

ZDR, shown in panel (b), exhibits a different pattern. The cyan cluster and the pink cluster

show some variability in ZDR. ZDR ranges from−0.3 to 2.5 dB (mode 0.8 dB) in the cyan cluster

and from −0.3 to 1.6 dB (mode 0.5 dB) in the pink cluster. This behaviour is interpreted as the

signature of particle shape and orientation variability in the cyan and pink clusters, with the

pink cluster containing on average hydrometeors that are more geometrically isotropic. The

dark-green cluster behaves differently: ZDR has a clear mode around 0.3 dB, the distribution of

ZDR values is narrow (ranging between−0.6 and 1 dB), and it includes many negative values,

i.e. prolate particles.

ρhv has a clear signature for the cyan cluster only, characterized by low values that often depart

from 1. We interpret this behaviour as an additional effect of the variability of particle shapes

within the radar resolution volume.

Kdp, shown in panel (c), is lower than 1◦ km−1 for the pink cluster and the cyan cluster. The

dark-green cluster exhibits instead relatively large values up to 2.5◦ km−1. Kdp depends on

size, concentration, shape, and density of the particles in the radar resolution volume and

therefore the dark green cluster contains, on average, more oblate hydrometeors and/or oblate

hydrometeors of a larger size and density.

Finally, by looking at panel (e), we observe that the dark-green cluster is found over a broad

range of altitudes (temperatures) and that the cyan cluster generally appears at lower temper-

atures than the other two.

From this analysis, it is shown that the three clusters exhibit distinct polarimetric signatures,

which led to hypothesize the following associations. The cyan cluster corresponds to individ-

ual crystals and small aggregates (denoted CR): it appears in the coldest areas of precipitation,

it shows significant variability of shapes, and low-intensity ZH returns due to the low concen-

tration and small size of the hydrometeors. The pink cluster corresponds to aggregates (AG).

Aggregates generate larger ZH returns due to their larger sizes, and they tumble as they fall,

thus lowering ZDR. The dark green cluster corresponds to heavily rimed-ice particles (RI). The

larger density of rimed particles lead to significant ZH signatures, and the dielectric properties

of dense ice (very different with respect to dry crystals and aggregates; Vivekanandan et al.,

84



4.7. From unlabelled clusters to hydrometeor classes: Fig. 4.2c

Table 4.5: As in Table 4.4 but comparing the classification of ice phase hydrometeor classes
(∆z > 0). The classes of the novel method are crystal (CR), aggregates (AG), and rimed-ice
particles (RI). The elements M i ,j of the matrix contain the percentage of ice phase observations
classified in the i th class of the first method and simultaneously in the j th class of the second
method. The data are obtained from 100 runs of the clustering algorithm.

Novel method

D
R

20
09

CR AG RI
Crystals 6 % 2 % 0 %

Aggregates 17 % 24 % 6 %
High-dens. graupel 5 % 7 % 5 %
Low-dens. graupel 0 % 1 % 15 %

Vertical Ice 6 % 5 % 1 %

1994) lead to a response also in Kdp. ZDR is low because riming tends to smooth particle shapes,

and it shows negative values when conically shaped rimed particles are formed (Evaristo et al.,

2013). These hypotheses are discussed in the next sections.

Comparison with DR2009

In Sect. 4.7.2 the liquid-phase clusters of the novel method were compared with the output

of DR2009. We now perform a similar evaluation, focussing on the ice-phase clusters. As a

reminder, our method provides three ice-phase classes: crystal and small aggregates (CR),

aggregates (AG), and rimed-ice particles (RI). DR2009 instead provides five ice-phase classes:

crystals (CR), aggregates (AG), high-density graupel (HDG), low-density graupel (LDG), and

vertically aligned ice (VI, which denotes oblate ice crystals aligned vertically because of

an electric field). The contingency table between these categories is shown in Table 4.5.

The methods are in overall good agreement. The CR class is associated mostly with the

DR2009 classes of aggregates, crystals, and vertical ice. AG is associated with aggregates, and

RI is associated with the two graupel categories of DR2009. The only notable discrepancy

between the methods happens for the high-density graupel category of DR2009: this class is

evenly distributed among CR, AG, and RI, indicating that there is not a clear match for this

hydrometeor type.

Comparison with 2DVD classification output

An additional comparison is conducted with the output of the HC scheme developed for

two-dimensional video disdrometers. This method, hereafter called HC2DVD is described in

detail in Grazioli et al. (2014b) and in Chapter 3 of this thesis. As a reminder, HC2DVD takes as

input a set of two-dimensional particles images, collected by a 2DVD, and it provides as output

an estimate of the dominant hydrometeor type within time intervals of 60 s. The method does

not classify individual particles but populations of hydrometeors. HC2DVD discriminates

between eight hydrometeor classes: small particle-like (SP), dendrite-like (D), column-like

(C), graupel-like (G), rimed-particle-like (RIM), aggregate-like (AG), melting-snow-like (MS),
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Table 4.6: Confusion matrix comparing the classification of ice phase hydrometeor classes
during the measurement campaign of Davos as estimated from the clustering method and
from the 2DVD (HC2DVD; Grazioli et al. (2014b)), taken as ground reference. The comparison
is conducted on three hydrometeor classes: crystal (CR), aggregates (AG), and rimed-ice
particles (RI). In this case, the matrix is 3×3, with similar classes in rows and columns, and it
can be used to evaluate quantitatively the agreement among methods. The overall accuracy of
the comparison is 49 %, and Cohen’s kappa is 0.23.

Novel method

H
C

2D
V

D CR AG RI
HC2DVD-CR 27.9 % 13.9 % 0.5 %
HC2DVD-AG 4.5 % 18.2 % 1.0 %
HC2DVD-RI 15.7 % 16.5 % 1.8 %

and rain (R).

Here HC2DVD is compared with the output of the clustering algorithm for snowfall events

collected during the campaign of Davos 2009–2011 (Sect. 4.4). The PPI of the lowest elevation

not contaminated by clutter was taken at 9◦ elevation with a repetition interval of 5 min. This

PPI is used for a comparison with HC2DVD. Before discussing the comparison, it must be

kept in mind that (i) the closest radar resolution volume centre was about 400 m above the

2DVD and crystal habits can change over this altitude range, and (ii) the sampling times and

volumes of the two instruments are different, even though the sampling times overlap. The

comparison is conducted on a subset of about 30 manually selected snowfall events. Any

precipitation event with a visible melting layer or positive temperatures at the radar location

as well as any event characterized by evident spatial and temporal variabilities on the small

scale were excluded. Radar resolution volumes within 150 m in horizontal distance from

the 2DVD location are compared with the HC2DVD output. A buffer of+2 min is applied in

order to match multiple 2DVD observations with a single radar scan. In order to simplify the

comparison, some of the categories from HC2DVD are aggregated as follows. Small particles

(SP), dendrites (D), and columns (C) are merged together into a single class called “crystals”

(HC2DVD-CR). Aggregates (AG) are kept in a single class, named HC2DVD-AG. Finally, graupel

(G) and rimed particles (RIM) are merged into a “rimed-ice” class (HC2DVD-RI).

Table 4.6 presents the confusion matrix of the comparison between the novel clustering

algorithm and HC2DVD. The agreement between CR and HC2DVD-CR is very good, as is the

agreement between AG and HC2DVD-AG. Rimed-ice particles, in contrast, exhibit a good

accuracy of detection (when they are detected, their presence is confirmed by HC2DVD), but

they are subject to a large number of missed detections. If HC2DVD is taken as ground truth,

the overall accuracy of the comparison is 49 % and Cohen’s kappa is 0.23.

Similarly, HC2DVD is now compared with the classes of DR2009. Crystals (CR) and vertical

ice (VI) are merged in a single class called “crystals” (DR2009-CR), aggregates (AG) are kept in

a single class (DR2009-AG), and low-density graupel (LDG) and high-density graupel (HDG)

are merged into a “rimed-ice class” (DR2009-RI). Table 4.7 shows the confusion matrix of
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Figure 4.9: Sampled probability density function of snowfall intensity, as quantified by the
equivalent flux EF [mm h−1], measured by the 2DVD and associated with the radar hydrome-
teor classification output above the location of the 2DVD. The data used in this figure were
collected during the field deployment of Davos (CH).

the comparison between DR2009 and HC2DVD. In this case, the overall accuracy is 38 %

and Cohen’s kappa is 0.08. One may conclude that, with HC2DVD as a reference, the newly

proposed approach outperforms DR2009. A complete evaluation of the uncertainties related

to such comparisons is beyond the scope of the thesis, and it is suggested that the reader

consider these results as largely qualitative.

Comparison with 2DVD in terms of snowfall intensity

Additionally to the qualitative information provided by HC2DVD, the 2DVD observations can

be used in a quantitative way to investigate the relation between the content of the three

clusters and the intensity of snowfall. Here the snowfall intensity is quantified by means of an

equivalent flux (EF), defined as

EF=

π
N (∆t )
∑

i=1
De3

i

6∆t A
, (4.21)

where∆t is the temporal resolution at which EF is calculated (1/60 h here), A is the measure-

ment area of the instrument [mm2], N (∆t ) is the number of particles recorded in ∆t , and

Dei the equivalent diameter of each snowflake or particle [mm], as defined in Huang et al.

(2010). Given the assumptions in the estimation of De, EF can be erroneous in absolute terms,
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Table 4.7: As in Table 4.6 but showing the comparison between HC2DVD and DR2009. The
comparison is conducted on three hydrometeor classes: crystal (CR), aggregates (AG), and
rimed-ice particles (RI). The overall accuracy of the comparison is 38 %, and Cohen’s kappa is
0.08.

DR2009

H
C

2D
V

D DR2009-CR DR2009-AG DR2009-RI
HC2DVD-CR 20.6 % 21 % 3.6 %
HC2DVD-AG 5.7 % 16.5 % 3.6 %
HC2DVD-RI 9.1 % 18.6 % 1.3 %

and therefore it is used here to compare the content of the three clusters in relative terms

only. Figure 4.9 shows the distribution of EF as measured by the 2DVD and related to the

occurrence of CR, AG, and RI. It can be seen that the snowfall intensity differs among these

three. CR exhibits the lowest intensities, AG intermediate ones, and RI the highest intensities.

This is the expected behaviour of rimed particles. As riming progresses, the original shape

of ice particles becomes imperceptible, the drag decreases, and the particles become more

dense (Pruppacher and Klett, 1997). Hence, their fall behaviour is smoother and therefore

faster, leading to larger EF. The results presented in this section are not a rigorous validation,

but they are in agreement with our initial assumptions.

CR, AG, RI: classification example

Figure 4.10 presents an example of ice-phase precipitation, recorded on 26 March 2010 in

Davos. This event was associated with the passage of a cold front over Europe that led to a

significant temperature drop (more than 10 ◦C in a few hours in Davos).

The temperature at the location of MXPol was about −5 ◦C at the time when the data of

Fig. 4.10 were collected. By looking at the figure, a stratification of the precipitation into three

layers can be observed. At higher altitudes (y > 5 km), there is a thin layer classified mostly

as crystals (CR). The crystals turn into aggregates (AG) that dominate the precipitation in

a second layer (4≤ y ≤ 5 km), and, finally (y ≤ 4 km), RI dominates the precipitation. RI is

characterized by larger values of Kdp (up to 2◦ km−1) and ZH (up to 28 dBZ). CR is instead

characterized by low values of ZH and ρhv (as low as 0.9) and very low values of Kdp, between

−0.1 and 0.1 ◦ km−1. In this example, AG exhibits polarimetric signatures that are somewhat

intermediate between CR and RI.

For illustrative purpose, the situation corresponding to Fig. 4.10 was simulated using the

numerical weather model COSMO (see http://www.cosmo-model.org), operationally used by

MeteoSwiss. The model was run at 2 km resolution with forcing from MeteoSwiss reanalysis.

As shown in Fig. 4.11, COSMO predicts the presence of supercooled liquid water (QC) at

altitudes between 2.5 and 3 km. Additionally, at altitudes between 2 and 6 km, large quantities

of graupel (QG) mixed with snow (QS) are observed. Both the presence of supercooled liquid

water in the clouds and the explicit presence of graupel are in agreement with the layer of
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Figure 4.10: As in Fig. 4.8 but for the snowfall event of the 26 March 2010, at 15:31 UTC in
Davos (CH). The altitude of the radar is 2133 m.

rimed particles RI identified in Fig. 4.10.

4.8 Summary and conclusions

A novel approach to hydrometeor classification from a polarimetric weather radar was pre-

sented in this Chapter. The method was applied to polarimetric data collected by an X-band

radar in the Swiss Alps and in the French Prealps. The novel approach was not based on

numerical-scattering simulations. The number of hydrometeor classes was not defined a pri-

ori, but it was learned from the data, and the content of each hydrometeor class was manually

interpreted.

A subset of 20 000 polarimetric observations was randomly extracted from the available data

set. A hierarchical clustering algorithm with spatial constraints was applied to the subset in

order to merge observations according to both the similarity of polarimetric data and the

spatial smoothness of each partition. This means that we made the assumption of smooth

spatial transitions between hydrometeor types. Following this strategy, an optimal number of

seven clusters was found. Three clusters were found at positive temperatures, and they were
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Figure 4.11: Mixing ratios of hydrometeor contents obtained with the COSMO2 numerical
weather model along the RHI transect of MXPol (same as Fig. 4.10) at 15:15 UTC on the 26
March 2010 in Davos (CH). Mixing ratios are given for cloud ice (QI), snow (QS), cloud water
(QC), and graupel (QG).

interpreted as light rain (LR), rain (RN), and heavy rain (HR). One cluster appeared systemati-

cally around 0 ◦C, and it was associated with melting snow (MS). Finally, three clusters were

found at negative temperatures and their polarimetric signatures were interpreted as being of

crystals/small aggregates (CR), aggregates (AG), and rimed-ice particles (RI). The content of

the clusters agrees well with the outcome of a fuzzy-logic algorithm, denoted as DR2009 (Dolan

and Rutledge, 2009). Additionally, the novel approach obtained scores better than DR2009

when compared to a ground-based (video-disdrometer-based) hydrometeor classification

scheme, hence suggesting that the new method was better tailored to the observations of the

X-band radar employed in this study.

The proposed approach is the first attempt, using unsupervised classification, to move the

starting point of a classification algorithm away from scattering simulations conducted over

an arbitrarily defined number of hydrometeor classes to the identification of relevant clusters

in the data themselves. The initial identification of the clusters is computationally expensive,

but this operation is performed only once and the classification of newly collected radar

images can be conducted in real time.

Some of the advantages of this approach are that it is immune to possible radar miscalibration

and that the data-driven approach ensures that the identified clusters take into account the

accuracy of the instrument. Finally, the method is adaptable to other radar systems and

can be tuned to include other constraints regarding the spatial smoothness of the partition
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or temporal consistency. The main limitations of the method are related to the manual

interpretation of the content of the clusters. This may not be trivial, especially in the absence of

surface precipitation type reports for comparison. Additionally, the method is as representative

as the available database is, and the clusters identified are a priori valid only for the instrument

employed to collect the data. The number and type of clusters can be reasonably considered

to be very similar for other X-band dual-polarization radars of similar sensitivity.

It is interesting to note that the method exploits a simple hypothesis about the spatial smooth-

ness of the hydrometeor types and that this rule is applied only in the initial steps (when the

n opt clusters are identified). Future work will be devoted to also extending the constraints

involving spatial smoothness to newly classified images or to including physically justified

contiguity rules for specific hydrometeor types. In addition, this clustering approach (or some

steps of the approach) could be employed as a support to fuzzy-logic-based classification

methods to improve or adapt the membership functions according to the clustering outputs

in specific data sets.
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5 Riming in winter alpine snowfall
during CLACE 2014

This chapter is adapted from the manuscript:

• Grazioli, J., G. Lloyd, L. Panziera, P. Connolly, J. Henneberger, and A. Berne (2015b),

Riming in winter alpine snowfall during clace 2014: polarimetric radar and in-situ

observations, Atmos. Chem. Phys., in submission

It presents retrievals of snowfall microphysics conducted by means of a polarimetric radar and

in-situ instruments, with a special focus on riming. The relation between riming and snowfall

accumulation is investigated as well.
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5.1 Summary

This Chapter presents observations and analyses of winter alpine snowfall occurring in mixed-

phase clouds in a central Alpine valley during January and February 2014. The observations

include high resolution polarimetric radar measurements and in-situ measurements of the ice-

phase and liquid-phase components of clouds and precipitation. Radar-based hydrometeor

classification suggests that riming is a dominant factor leading to efficient snow accumulation.

The time steps during which rimed precipitation is dominant are analysed in terms of temporal

evolution end vertical structure. In most cases, riming is the result of a turbulent phase during

which supercooled liquid water (SLW) is available. In a second phase turbulence and SLW

are dissipated, when and where precipitation shows the peak intensity. When instead a

turbulent layer is stable in time and provides continuous availability of SLW, riming can be

sustained for many hours without SLW depletion, thus generating large accumulations of snow.

The microphysical interpretation as well as the synoptic situation associated with one event

with those characteristics are detailed in the Chapter. The vertical structure of polarimetric

radar observations during intense rimed precipitation shows a peculiar maximum of specific

differential phase shift Kd p , interpreted (thanks to in-situ measurements) as secondary ice

production and/or heavy riming of anisotropic crystals. Below this Kd p peak usually an

enhancement of ZH , somehow proportional to the Kd p enhancement and interpreted as

aggregation of ice crystals.

5.2 Introduction

Precipitation of ice-phase hydrometeors is the result of the interactions between cloud ice

crystals, supercooled liquid water (SLW) droplets and water vapour. After nucleation, the

processes of vapour deposition, aggregation, and riming contribute to the growth of the

crystals up to the point where they begin to fall and further interact with the lower layers of

the atmosphere (e.g., Pruppacher and Klett, 1997; Cantrell and Heymsfield, 2005; Straka and

Mansell, 2005). The characteristics of the ice-phase hydrometeors at the ground level even-

tually depend on the full falling history and on all the microphysical interactions happening

“from the cloud to the ground”.

The shape, density, and growth rate of individual crystals is mostly a function of temperature

and relative humidity of the environment in which they form (Magono and Lee, 1966; Chen

and Lamb, 1994; Fukuta and Takahashi, 1999; Bailey and Hallett, 2009; Takahashi, 2014).

Individual crystals can branch together (aggregation) and/or collect supercooled liquid water

droplets that freeze upon impact on the surface of the crystals (riming) that are in this way

accreted. In contrast to aggregation, riming leads a net increase of the mass of precipitation.

This happens because the rimed crystals or snowflakes have much larger fall velocities than

individual water droplets in supercooled liquid water clouds, that would otherwise not be

able to reach the ground at a significant rate. Aggregation indirectly contributes to the mass

transfer by generating larger and faster targets for riming (Houze and Medina, 2005, hereafter
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HM2005).

Riming is more efficient on large crystals (Ono, 1969), even though it was recently shown that

the process can also occur on very small crystals, with characteristic dimensions as small as

60 µm (Avila et al., 2009). Turbulence and vertical air motion (updraft) contribute significantly

to riming. Turbulence influences the motion of ice crystal leading to a larger droplet collection

volumes and therefore to large collection efficiencies (Pinsky and Khain, 1998). Updraft, in

turns, is necessary to sustain the production of SLW (Rauber and Tokay, 1991).

The impact of riming on the bulk properties of snowfall is critical. Measurements of freshly

fallen snow, both in the Sierra Nevada (US) and in the proximity of Sapporo (Japan), showed

that 30% to 60% of the total mass of snowfall is constituted by rimed accretion (Harimaya and

Sato, 1989; Mitchell et al., 1990). Additionally, the accumulation of rimed snowflakes on the

ground is more prone to generate instabilities and to initiate avalanches (Abe, 2004). A last

aspect to consider is that, during precipitation, riming can be associated with ice splintering

and thus to (secondary) ice generation. The most known example of secondary ice production

is the Hallet-Mossop ice multiplication mechanism (Hallett and Mossop, 1974) occurring at

temperatures higher than -8◦C on heavily rimed hydrometeors. However, other mechanisms

exist to explain secondary ice generation at colder temperatures. One example is constituted

by ice-to-ice and ice-to-water collisional mechanisms (Vardiman, 1978; Yano and Phillips,

2011), that are in any case favoured by the degree of riming of the colliding crystals. Non-

collisional mechanisms, for instance the fragmentation of freezing supercooled droplets in

mixed-phase clouds have been hypothesized as well (Rangno, 2008).

Dual-polarization (polarimetric) Doppler weather radars operating at microwave frequencies

are becoming state-of-the-art instruments to document the microphysics of ice-phase precip-

itation. These systems are able to provide indirect information about size, intensity, geometry,

density, velocity and turbulence of falling hydrometeors (e.g. Bringi and Chandrasekar, 2001;

Doviak and Zrnić, 2006). Polarimetric data have been used to identify areas of intense growth

of dendritic and planar crystals (Kennedy and Rutledge, 2011; Bechini et al., 2013) and to for-

mulate hypotheses on the dominant microphysical processes occurring over vertical columns

of snowfall (Schneebeli et al., 2013; Andric et al., 2013; Kumjian et al., 2014). The combina-

tion of numerical modelling, radar observations and in-situ data led to the development of

classification methods able to estimate the type of hydrometeors that populate individual

radar resolution volumes (e.g. Straka et al., 2000; Dolan and Rutledge, 2009; Bechini and

Chandrasekar, 2015; Grazioli et al., 2015a). However, the complex microphysics of ice-phase

precipitation cannot be fully captured by polarimetric radars alone. Combinations of remote

sensing with in-situ instruments have shown to be useful and often necessary to characterize

at the same time precipitation, clouds, and environmental conditions (Hogan et al., 2002,

2003; Bechini et al., 2013, hereafter BBC2013).

This Chapter presents polarimetric radar and in-situ observations collected during winter

alpine snowfall. It investigates the relation between riming and snowfall intensity, the temporal
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Table 5.1: List of the 13 precipitation events identified by means of radar data during CLACE
2014. The net duration of the events includes only time intervals during which precipitation
was observed at the lowest available radar while the net snow accumulation is obtained from
the MeteoSwiss MAE station (see Fig. 5.1). The red color is used to highlight one event during
which the radar was significantly affected by technical issues.

Event number Start (UTC) End (UTC) Net duration Net snow accumulation
MM-DD HH MM-DD HH UTC [h] [cm]

1 01-30 14 01-30 23 10 1
2 01-31 04 01-31 17 10 2
3 02-01 08 02-02 16 28.5 29
4 02-03 16 02-04 12 18 6
5 02-05 06 02-05 22 8 6
6 02-07 07 02-07 19 10 14
7 02-08 09 02-09 01 8 5
8 02-09 22 02-10 04 2 0
9 02-14 09 02-14 19 3 0

10 02-15 22 02-17 05 28 21
11 02-19 02 02-19 20 13 2
12 02-20 21 02-21 21 14 14
13 02-22 15 02-23 21 8 7

evolution, and the vertical structure of intense winter precipitation events originating in mixed-

phase clouds. The Chapter is structured as follows. Section 5.3 provides information about

the main instrumental set up. Section 5.4 presents the analyses that relate rimed precipitation

with snow accumulation as well as a microphysical description of the vertical structure of

precipitation. Section 5.5 is devoted to the detailed description of a particularly intense

snowfall event characterized by a persistent turbulent layer driven by wind shear and Sec. 5.6

summarizes the main results and provides conclusions and perspectives.

5.3 Measurement campaign and instruments

The major part of the measurements shown in this Chapter were collected during the Cloud

and Aerosol Characterization Experiment (CLACE), occurring in January and February 2014.

CLACE takes place yearly in the central Alps of Switzerland, in various measurements sites

located above 2000 m (e.g. Zieger et al., 2012).

5.3.1 Instruments

Figure 5.1 shows the location of the three main measurement sites considered in the present

work: Kleine Sheidegg (KS, 2061 m), Männlichen (MAE, 2230 m), and Jungfraujoch (JFJ,

3580 m). The topography of the measurement area is very complex, with mountain peaks

above 4000 m and steep elevation gradients.
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Figure 5.1: Location of the main measurement sites of CLACE 2014 that are considered here.
The locations are highlighted on a digital elevation model of the area.

Kleine Scheidegg (KS)

A polarimetric Doppler weather radar was deployed at the KS location. The system, named

MXPol, is an X-band (3.2 cm wavelength) radar with angular resolution of about 1.5◦ and

range resolution of 75 m (complete specifications are given in Schneebeli et al., 2013; Scipion

et al., 2013). MXPol provides as main products the horizontal reflectivity factor ZH [dBZ],
differential reflectivity ZDR [d B ], copolar cross correlation coefficient ρhv , specific differential

phase shift upon propagation Kd p [◦ km−1], mean Doppler velocity v [m s−1] and Doppler

spectrum width (Doviak and Zrnić, 2006). A hydrometeor classification method (Grazioli

et al., 2015a, hereafter, GTB2015) was applied to the polarimetric data. GTB2015 classifies

dry snowfall into three broad categories: aggregates (AG), individual crystals (CR), rimed ice

particles (RI).

During CLACE 2014 MXPol was operating with a scanning sequence of about 4.5 minutes,

repeated indefinitely. During this time interval it performed a Plan Position Indicator (PPI)

scan with an elevation of 10◦ over the Grindelwald valley (≈45◦ North-East of KS in Fig. 5.1),

two Range Height Indicator (RHI) scans, one over the Grindelwald valley and one in the

direction of JFJ. Vertical profiles of 25 s (with full Doppler power spectrum spectrum, e.g. Luke

et al., 2010) were collected three times during each sequence. The maximum range distance

sampled by MXPol during CLACE was about 20 km.
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Männlichen (MAE)

At the MAE site, snow height was measured by an automatic station whose data are made

available by MeteoSwiss. Time series of snow height measurements in time are used to quantify

snow accumulations and accumulation rates of the precipitation events. Among other gauging

stations in this area, MAE is chosen because: (i) it provides relatively high resolution data

(30 minutes), (ii) it is among the closest to KS, (iii) it is located approximately at the altitude of

the first radar resolution volume not affected by ground clutter and radar blind range.

Jungfraujoch (JFJ)

The JFJ observatory is a known site for atmospheric studies of aerosols and clouds (e.g. Bal-

tensperger et al., 1997) and during CLACE 2014 it accommodated several sensors. The ones

that are of direct interest for the present work are listed here. At first a weather station man-

aged by MeteoSwiss provided general environmental information (temperature, humidity,

pressure and so on) and a sonic anemometer provided high resolution wind information. A

Cloud Droplet Probe (CDP-100, Lance et al., 2010) yielded quantification of SLW content.

CDP measures the light scattered by droplets and determines the optical equivalent diam-

eter over the size range 2 to 50µm at a 1Hz acquisition frequency. A 3-View Cloud Particle

Imager (3V-CPI) provided images and habits of liquid and ice-phase hydrometeors in the 10 to

1280µm size range. This instrument is the combination of a Two-Dimensional Stereoscopic

(2D-S, Lawson et al., 2006) laser shadow imaging probe and of a high frame rate Cloud Particle

Imager (CPI Model 2) probe. The 2D-S component of the 3V-CPI instrument, was used to

analyse particle imagery in order to produce information on the concentration, size and phase

of cloud particles.

The in-situ sensor at the JFJ site and the polarimetric radar (at the KS site, Fig. 5.1), both

continuously acquiring data, allow to contextualize radar observations with respect to the

cloud conditions over long time intervals. This is a definite added value of CLACE 2014. Similar

comparisons between radars and cloud probes have in fact otherwise been performed only

on limited time intervals, being the cloud probes usually aircraft-borne(e.g. Hogan et al., 2002,

2003; Houze and Medina, 2005).

5.3.2 Precipitation events

The months of January and February 2014 were relatively rich in terms of precipitation. By

means of visual inspection of all the observations collected by MXPol, 13 precipitation events

occurring in the measurement domain have been identified. These events have been summa-

rized in Table 5.1. One event (event 9 in the table) is listed for the sake of completeness but it

will not be included in the following analysis. In this specific case radar data were missing for

technical reasons for more than 40% of the duration of the event.
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5.4 Analysis of rimed precipitation

This section analyses the relation between riming and snowfall accumulation as well as the

vertical and temporal evolution of precipitation cases showing the signature of riming. The

classification of the dominant type of precipitation is based on GTB2015 (see Sec. 5.3.1).

5.4.1 Riming and snowfall accumulation

Riming is among the most efficient turbulent mechanisms to increase the mass flux of pre-

cipitation (Houze and Medina, 2005). At first it entangles water droplets than will otherwise

precipitate with much lower speed. Secondly, it increases the density and lead to smoother

shapes of ice-phase hydrometeors thus leading to higher fall velocities and mass fluxes.

Even though the link between rimed precipitation and snowfall amount is understandable,

very few studies tried to address it explicitly. Noteworthy exceptions are the studies of (e.g.

Harimaya and Sato, 1989; Mitchell et al., 1990) that analysed snowfall already deposited on

the ground. In a recent study, Colle et al. (2014) measured the degree of riming (as defined

in Mosimann et al., 1994) of falling snow during 12 precipitation events (in the North-East

of US). Even though the focus of their work was not on the relation between riming and

snowfall intensity, their measurements confirm the expected behaviour. This can be observed

in Fig. 5.2, derived from their results. The lowest accumulations of snow are associated with

lightly rimed or unrimed (zero average and maximum riming degree) precipitation while

larger accumulations are associated with moderately to heavily rimed precipitation cases.

Let us now focus on the database of CLACE 2014. In this case the radar-based classification

scheme GTB2015 is employed to quantify the amount of rimed precipitation. Let us define the

percentage of rimed precipitation (PRP) as:

PRP(h1, h2,∆t ) = 100
#RI

#RI+#AG+#CR
(h1, h2,∆t ). (5.1)

PRP [%] defines the percentage of valid radar observations where riming is identified, between

altitudes of h1 and h2 [m] and within a given time interval ∆t . #RI, #AG, and #CR are the

number of radar pixels classified as rimed ice, aggregates, and crystals respectively (Grazioli

et al., 2015a).

Figure 5.3 shows the comparison between PRP, calculated at the temporal scale of entire

precipitation events, and the accumulation of snow measured at the MAE site for the events

of CLACE 2014. PRP is calculated considering h1 =2200 m (i.e., the altitude of the MAE

station) and varying h2 between 2250 and 4000 m, from which the errorbars shown in the

figure originate. It is worth noting that on average accumulation scales well with PRP. In

particular, the events characterized by near-zero PRP are also associated with near-zero

accumulation (e.g. events 1, 2, 11, 8), and all the events showing non negligible accumulation

have also proportionally higher PRP. The goal here is not to provide final quantitative relations
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Figure 5.2: Relation between average (or maximum) degree of riming and snowfall accumula-
tion measured during 12 precipitation events occurring at Stony Brook, New York (USA). The
values displayed here correspond to tabulated values available in Colle et al. (2014). The blue
vertical lines separate lightly, moderately, and heavily rimed particles according to Mitchell
et al. (1990).

between these variables, however Fig. 5.3 shows also a regression line, corresponding to a

correlation coefficient of almost 0.7 between PRP and snowfall amount. This result confirms

the speculated role of riming for the global mass budget of snowfall. The existence of this

relation in an Alpine environment was qualitatively hypothesized by Schneebeli et al. (2013)

who used a different hydrometeor classification algorithm (Dolan and Rutledge, 2009) in a

different location of the Swiss Alps.

5.4.2 Evolution of rimed precipitation events

In the previous section the important role of riming for the global dynamics of snowfall was

highlighted. Rimed precipitation however mostly occurs during limited time intervals and

not during the entire precipitation event. In this section the most representative time steps

identified by GTB2015 as rimed precipitation will be analysed and the measurements of MXPol

will be compared with the in-situ information of the instruments deployed at JFJ.

The most representative time steps in this sense are identified by means of the following

constraints: (i) duration of at least half a hour, (ii) average PRP above 50% (calculated over the

whole vertical column), (iii) peaks of at least 15 minutes characterized by PRP greater than
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Figure 5.3: Relation between the percentage of rimed precipitation (PRP, retrieved by means
of radar data) and snowfall accumulation, for the events listed in Tab.- 5.1. The error bars
represent the 5% and 95% quantiles of PRP values calculated for maximum altitudes z 2 (in
Eq. 5.1) varying between 2250 m and 4000 m. A linear regression line (in blue) is used to
illustrate the average trend.

75% for all the altitudes below the JFJ. The first constraint is justified by the need of collecting

a statistically significant number of radar observations at the JFJ height (over a domain of

approximately 20 km) to be compared with the in-situ measurements of much higher temporal

resolution but collected at a single location. The second constraint ensures that riming is the

actual dominant process, as classified by GTB2015, while the third one ensures that a large

amount of rimed precipitation is also reaching the ground level.

Figure 5.4 summarizes the global characteristics of the 6 representative time steps isolated in

this way.

The events are named after the time interval of Table 5.1 they belong to and they are listed in

Table 5.2. Panel (a) puts these cases into a context of snow accumulation. All the time steps

in the figure, with the exception of EV4, exhibit above-average snowfall intensities. One of

them in particular, EV3, is standing out because only 2.5% of the snowfall time intervals of

the same duration occurring during the winter seasons (October-April) from 2000 to 2014 had

higher intensities. Panel (b) is used to quantify the percentage of rimed precipitation of each

time step and to highlight the relative position of the JFJ (indicated by a dashed black line)

within each snow storm. During EV3, EV4, EV6 and EV7, JFJ is situated in the upper edge of

the vertical column of rimed precipitation and in the present section they will be referred to
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Table 5.2: List of the 6 cases, subset of the events of 5.1, during which rimed precipitation was
dominant according to the radar-based GTB2015 classifier.

Event label Start (UTC) Duration
MM-DD HH:mm [h]

EV3 02-01 17:00 9
EV4 02-04 00:00 3
EV5 02-05 18:00 2
EV6 02-07 08:30 2
EV7 02-08 20:00 1.5

EV13 02-22 19:30 2.5

Figure 5.4: Summary characteristics of the 6 cases where riming is identified as dominant
mechanism (as listed in Table 5.2). (a): mean snowfall accumulation rate measured at MAE.
The red number on top of each bar indicates the duration of the rimed time step. The number
on the right side of the bars are the closest quantiles of the distribution of all snowfall events
of the same duration in the same location (data from 2000 to 2014). The letters C and E referes
to cases indicated in the text as “Core” and “Edge”, respectively. The blue line indicates the
mean value (during precipitation only) of CLACE 2014. (b): Average vertical structure of the
percentage of rimed precipitation PRP [%] during the selected timesteps.

them as “core events”. On the contrary, during EV5 and EV13, JFJ is located above the “rimed

core” and they will be referred to as “edge events”.

Now that the selected cases have been put into context we shall proceed to analyse their

characteristics by means of radar observations and in-situ measurements. Each period of

interest, that will be called “rimed” phase, is compared with a reference time interval of 3

previous hours, named “preceding” phase. Such comparison is shown in Figs. 5.5 and 5.6.
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Figure 5.5: Measurements of wind, turbulence, and fall velocities before (red histograms) and
during (blue histograms) the 6 cases shown in Fig. 5.4. Panels (a) and (b) show radar data
(only for altitude around the JFJ location: 3580 ± 100 m), while panels (c) and (d) show data
collected at the JFJ location. (a) Doppler spectral width [m s−1] from radar vertical profiles
(i.e. at vertical incidence). (b) Doppler velocity [m s−1] from radar vertical profiles. (c) Wind
speed (data from MeteoSwiss station) [m s−1]. (d) Vertical component of the wind (sonic
anemometer data) [m s−1]

Fig. 5.5 illustrates the behaviour of variables related to wind and turbulence. In most of

the cases the preceding phase is more turbulent than the rimed phase. Turbulence, and in

particular updraft are important factors leading to riming by providing SLW droplets and

conditions that favour collision (Rauber and Tokay, 1991; Pinsky and Khain, 1998; Houze

and Medina, 2005). Figure 5.6 on the other hand illustrates the evolution of radar horizontal

reflectivity ZH and in-situ LWC during the selected cases.

Edge events (EV5, EV13)

EV5 and EV13 have been sampled, from the JFJ perspective, above the actual “rimed core”

of precipitation (see Fig. 5.4 (b)). It can be observed in Fig. 5.6 (b) that they show the lowest

ZH values at the JFJ height during the rimed phase of the event. As ZH in our observations

increases with decreasing altitude, these two events are sampled closer to the apparent cloud

top. Therefore the in-situ measurements provide in this case information about the processes

occurring at the highest levels of rimed precipitation. Liquid water is available during both

events (Fig. 5.6 b), in much higher concentration during EV13 and it is not depleted as the

event evolves.
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Figure 5.6: As in Fig. 5.5 for ZH and LWC. (a) Liquid water content LWC [g m−3]measured at
the JFJ location. (b) Radar horizontal reflectivity factor ZH [dBZ] from altitudes around the JFJ
location: 3580 ± 100 m.

Core events (EV3, EV4, EV6, EV7)

The “core” events are of major interest for the microphysical descriptions presented here.

EV6 and EV7 behave similarly in terms of evolution of wind and turbulence (Fig. 5.5). In

both cases the preceding phase (red histograms) is observed to be more turbulent than the

rimed phase (blue histograms). All the variables shown in this figure are decreasing during the

transition between the two phases. Doppler spectral width, shown in panel (a), reduces of

about 50%, as well as the wind speed (panel c). The Doppler velocity (panel b), influenced by

particle fall velocity and air motion, shows positive values (particles updraft) and in general a

larger variability during the preceding phase. It can be hypothesize that the turbulent part of

the events creates the appropriate conditions to generate rimed precipitation, that falls out

efficiently during the following calmer part.

As observed in Fig. 5.6, during EV7 the liquid water content is always low, before and during the

rimed phase, leading us to believe that in this case riming occurred at much higher altitudes.

In favour of this hypothesis there is the significant vertical extension of this snowfall event, as

shown in Fig. 5.4 (b), with respect to the other ones. EV6 exhibits a very interesting LWC trend.

LWC is practically entirely depleted before the rimed phase, with a transition of maximum

values from around 0.45 g m−3 to around 0.05 g m−3. We believe that this is the actual signature

of the efficient mass transfer due to riming, from the liquid mass suspended in the clouds to

the ice mass that precipitates. In the rimed phase of the event, the LWC is collected in the

form of rimed accretion, especially on the largest precipitating hydrometeors and therefore it
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is not available any more in the form of water droplets.

The trends of EV4 are similar to EV6, even though the magnitude of the variables is very

different. Also in this case it can be observed a decrease of turbulence (except for the spectral

width) and wind intensity (Fig. 5.5), as well as a decrease of LWC (Fig. 5.6,a) in the transition

between the preceding phase and rimed phase. Wind intensities remain extremely high, with

the 5% quantile never below 16 m s−1. Such wind intensities affect the snowfall flux towards

the ground and introduce significant uncertainty on snow accumulation measurements. This

probably contributes to explain why this case did not generate any significant response in

terms of snowfall accumulation (Fig. 5.4, a).

EV3 is probably the most interesting one because it shows opposite trends with respect to

EV6 and EV7. Notably, LWC is this time higher in the rimed part of the event (Fig. 5.6, a) while

turbulence and wind intensity remain almost constant. This case, occurring during the event

number 3 of Table 5.1, was lasting about 9 hours (it is about three times longer than the second

longest “rimed” case) and it had an average snowfall intensity of more than 2.1 cm h−1. It

represents a very high quantile of snowfall intensity in comparison with events of analogous

duration (Fig. 5.4) and for this reason it will be further discussed in the next sections.

5.4.3 Vertical structure

One of the distinct advantages of high resolution and easily transportable polarimetric radars

is the potential to sample the vertical structure of precipitation even, like in the present case,

in complex terrains. Here we interpret the microphysical processes occurring during the most

intense cases according to the vertical structure of polarimetric variables (ZH , ZDR , Kd p and

ρhv ) extracted from radar RHI scans. The evolution of this measurements varies among the

different cases, but many common features, listed in the following, exist.

Upper level of precipitation

Figure 5.7 shows statistics of the vertical evolution of polarimetric variables for a selected RHI

of EV3, EV6, and EV7.

In the upper levels of precipitation (above 4.5 km for EV3 and EV6 and above 5 km for EV7) ZH

is low, as well as ZDR and Kd p , indicating the presence of small ice crystals that, at the X-band

radar wavelength, do not exhibit significant anisotropy (e.g. Andric et al., 2013, hereafter

A2013). The copolar cross correlation coefficient ρhv is relatively low (≤ 0.99) in this region.

This probably is a combined effect of low signal-to-noise ratio, that affects the accuracy of

ρhv (Torlaschi and Gingras, 2003) and actual physical variability and heterogeneity of crystal

shapes and habits within the radar sampling volumes (Andric et al., 2013).
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Figure 5.7: Vertical structure of polarimetric radar observations extracted from one RHI scan
during three selected cases. The blue horizontal line indicates the estimated altitude of
the -15◦C temperature level while the dashed black line indicates the altitude of JFJ. The
polarimetric variables are extracted considering maximum elevation angles below 45◦ (the
effect of incidence is corrected with the method of Ryzhkov et al. (2005b)). The red curves
indicate quantiles at 5%, 25%, 75% and 95% while the blue curve indicates the median. EV3
shows RHI data collected on Feb. 01, 2014, 2230 UTC. EV6 shows data collected on Feb. 07,
2014, 1005 UTC. EV7 shows data collected on Feb. 08, 2014, 2100 UTC.
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Intermediate level of precipitation

Proceeding towards lower altitudes (from approximately 4.5/5 km down to 3.5 km in all the

cases shown in Fig. 5.7) ZH increases until approaching almost its peak values. It is hypothe-

sized that riming is more intense within this region.

In the top part of this zone the highest values of ZDR in the column are observed, followed

below by the highest values of Kd p . The enhancement of ZDR is often explained by the

presence of ice crystals grown by vapour deposition, that promotes anisotropic shape en-

hancement (Takahashi, 2014; Andric et al., 2013). The enhancement is in this case moderate,

with peak values mostly below 1 dB suggesting that depositional growth is not the only process

taking place. In fact, ZDR is largely influenced by the geometry of the particle that contribute

the most to the ZH signal (i.e. the biggest ones, Hubbert et al., 2014) such that the presence of

even a few large isotropic aggregates significantly decreases ZDR .

The peak of Kd p , below altitudes of higher ZDR and above altitudes of higher ZH , is a well

known but still not completely understood signature observed during snowfall (Kennedy and

Rutledge, 2011; Bechini et al., 2013; Andric et al., 2013; Hubbert et al., 2014). The proximity

of this signature with respect to the -15◦C level (blue line in Fig. 5.7) has lead in the past

to associate it to dendritic crystal growth (Kennedy and Rutledge, 2011). However, it was

recognized that the concentration of dendrites needed to generate enhancements of this

magnitude would lead to unreasonably high values of ZH when these crystals eventually

aggregate (Andric et al., 2013). It has been demonstrated that the particles responsible of this

signatures must be small compared to the radar wavelength as they were shown to behave as

Rayleigh scatterers by (Bechini et al., 2013; Hubbert et al., 2014). BBC2013 and A2013 proposed

two interesting and not mutually exclusive explanations. BBC2013 hypothesized that rimed

dendrites would be able to generate such significant Kd p enhancement. Kd p is in fact, with

other conditions fixed, increasing with the density of the ice particles. A2013 suggested instead

that secondary ice production of very small oblate crystals would need to take place, either

as a result of splintering (Hallett and Mossop, 1974, or other multiplication mechanisms)

or as a result of direct nucleation from the liquid phase with a similar process as described

in Westbrook and Illingworth (2011).

In the end, both hypotheses are by-products of the riming process and our interpretation is

that the enhancement of Kd p in this region is the radar signature of riming. From one side,

riming of already existing anisotropic crystals would enhance their contribution to Kd p by

increasing the particle density and thus the dielectric response. From the other side, the

formation of secondary ice can follow as well the mechanisms of Vardiman (1978) or Yano and

Phillips (2011), less efficient, not constrained by temperature, but always favoured by riming.

In the latter case the increase of Kd p is driven mostly by the number concentration of ice

crystals. During EV3, EV6, and EV7, the measurements of LWC and the turbulent conditions,

as well as the radar-based classification (see Sec. 5.4.2) led us to a confident identification

of riming at this altitude levels. Figure 5.8 displays the type of particles in the size range 10
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to 1280µm recorded at the level of the JFJ by the 2D-S instrument, for EV3, EV6, and EV7

respectively (at the same time-steps shown in Fig. 5.7).

Figure 5.8: Particle images collected at the JFJ location by the 2D-S particle imager. Three cases
are shown, corresponding to the polarimetric observations of Fig. 5.7. Top panel: EV3, on Feb.
01, 2014, around 2230 UTC. Mid panel: EV6 on Feb. 06, 2014, around 1000 UTC. Bottom panel:
EV7 on Feb. 08, 2014, around 2100 UTC.

During EV6 and EV7 can be observed the presence of heavily rimed particles with non recog-

nizable original shape as well as of rimed particles probably originating from planar crystals.

The ice number concentrations measured around these time steps ranged from 5 to 20 l−1

with modal values around 10 l−1 for EV6 and from 5 to 23 l−1 with modal values around 10 l−1

for EV71. The mean mass of the crystals in the size rage sampled (obtained by dividing the

total 2D-S ice mass content by the ice number concentration) during these time intervals was

about 10µg and 6µg during EV6 and EV7, respectively. On the contrary, during EV3 rimed

crystals are observed together with a large amount of small particles (some of them highly

oblate), of various shapes. The ice number concentration around this time step ranged from

25 to 100 l−1 with modal values around 50 l−1 (larger than the case of EV6 and EV7) and the

1These are reference values calculated within a 10 min time window. The given range of variation is based on
5% and 95% quantile.
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mean mass of the ice crystals was about 3. 5µg. It can be hypothesized that during EV7 the

Kd p signal is generated mostly by heavier riming of larger anysotropic crystals (but still in the

Rayleigh regime) while during EV7 it results from the higher concentration of smaller oblate

particles. This also is confirmed by the higher values of ZDR during EV6 and EV7 especially, at

this altitude, if one recalls that ZDR is mostly influenced by the oblateness of larger particles. It

is also worth noting, by looking at the particle images of Fig. 5.8 (and many other not shown

here) that the Kd p enhancement seems not to be associated with pristine ice crystals habits.

This would tend to rule out pristine dry dendrification as the dominant Kd p enhancement

mechanism.

Lower level of precipitation

Returning to Fig. 5.7, below the Kd p peak ZH continues to increase while both Kd p and ZDR

decrease steadily. Below altitude values of approximately 3.5 km (for all three cases) ZDR and

Kd p further decrease towards near-zero values and ZH further increase even though at a lower

rate. Further riming, in combination with aggregation of the crystals, are both processes that

explain this trend (e.g. Kumjian et al., 2014) and that may be acting together, in a positive

feedback (Houze and Medina, 2005).

ZH maxima and Kd p maxima

As observed and documented in the present section, typical vertical profiles of polarimetric

radar variables in snowfall in which riming has been identified show a maximum in Kd p at a

certain altitude, and a maximum of ZH usually at the lowest level of precipitation sampled by

the radar (suggesting therefore further increase at lower, non sampled, levels). The maximum

of the median Kd p values per height level is labelled as KM AX in Fig. 5.7 while its counterpart

for ZH is named ZM AX . The two quantities are situated at a vertical distance DZ K (positive if

KM AX is above ZM AX ). Fig. 5.9 (a) is showing the distribution of DZ K for all the RHI collected

during the six cases listed in Table 5.2. It can be observed that KM AX is indeed systematically

above ZM AX with a mean distance of about 680 m. It is worth also noting in Fig. 5.9 (b),

that larger KM AX are associated also to larger ZM AX even though the correlation between the

quantities is weak (r 2 ≈0.25). The peak of Kd p might therefore be considered as an indication

of high ZH values at lower levels.

5.5 Case study (EV3): turbulence, wind shear, and snowfall enhance-

ment

5.5.1 Detailed description of EV3

Let us now come back to the peculiar case of EV3. EV3 occurred during the precipitation

event leading to the largest snow accumulation (Fig. 5.3). There was an average precipitation
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Figure 5.9: (a) Frequency distribution (i.e. sample histogram) of Dz k [km] values. (b) Scatter-
plot of KM AX [◦ km−1] vs ZM AX [dBZ]. The graphs are calculated for all the time intervals listed
in Tab. 5.2, and the quantities displayed are shown in Fig. 5.7

intensity of 2.1 cm h−1 for a 9 h duration. Over the past 14 years, less than 2.5% of snowfall

cases of this duration (in the same location) led to higher intensities. As documented in Fig. 5.6,

SLW droplets were available during the whole event and they were not rapidly depleted as it

happened in other cases. It is therefore instructive to investigate which mechanisms sustained

the production of snowfall.

The synoptic situation occurring on the 1st February at 12 UTC, just a few hours before the

beginning of EV3, is represented in Fig. 5.10.

Figure 5.10: (a) 500 hPa and (b) 850 hPa geopotential height [m] (continuous lines) and
temperature [◦C] (dashed lines) over Central Europe at 12 UTC on the 2nd February 2014. The
geographical location of the CLACE campaign is indicated by a star. The atmospheric fields
are derived by ERA-Interim reanalysis grids at 0.5◦ x 0.5◦ horizontal resolution.

The 500 hPa geopotential height (panel a) shows the presence of a deep trough extending

from the British Isles to Western Europe, approaching the Alpine slopes from the West. A cold

front was associated with the trough, as clearly visible from the 850 hPa temperature shown in

panel (b). The atmospheric sounding of Payerne (Lat. 46.82, Lon. 6.94) at 12 UTC, not shown

here, indicates the presence of a strong south-westerly flow above 2 km. A low-level jet was

also observed between 1 and 1.3 km. The sounding of the 2nd of February at 00 UTC (not
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shown) reveals that after the passage of the cold front the temperature decreased of more

than 10◦C at an altitude of about 2 km over Payerne, consistent with the constant temperature

drop which was also observed at the JFJ station in the afternoon. The passage of the cold

front occurred between 21 and 00 UTC, as clearly shown by the measurements of atmospheric

pressure collected at the JFJ (see Fig. 5.11, b), and by the sharp change in wind direction

observed in Gütsch (Lat. 46.65, Lon. 8.61, alt. 2283 m), a nearby meteorological station not

influenced by wind channelling as the JFJ. The cold front produces a significant and steady

accumulation of snowfall at the ground level in MAE, as shown in Fig. 5.11, (a).

Figure 5.11: Evolution of: (a) in-situ environmental pressure [hPa]measured at the JFJ location,
(b) snow accumulation at the ground level [cm], measured at the MAE site during EV3.

From the observations of Fig. 5.7, the vertical structure of EV3 appeared similar to the other

“rimed” cases in terms of polarimetric variables. However, by looking at the average vertical

structure of two Doppler-related radar variables (Doppler velocity and Doppler spectral width

at vertical incidence) for the six cases of Table 5.2, an obvious difference emerges (Fig. 5.12).

EV6, EV7, EV8 and EV13 do not exhibit particular signatures: the distribution of Doppler

velocities is globally narrow and the occurrence of updrafts (positive values of Doppler velocity

at vertical incidence) is very limited. Doppler spectral width values are lower than 1 m s−1, with

median values always lower than 0.5 m s−1. EV4 on the contrary is extremely turbulent over

the whole range of heights: even at the lowest heights updrafts are frequent and over all the

heights values of spectral width up to 3 m s−1 are observed. EV3 finally, shows a peculiarity: the

turbulence in this case appeared to be confined between approximately 3000 m and 4000 m.

In this layer the spectral width reaches values up to 2.5 m s−1 and updrafts are observed, while

at altitudes below 3000 m the range of velocities and spectral width do not show any signature

of turbulence.

Figure 5.12 revealed the presence of a turbulent layer between 3000 m and 4000 m of altitude at

the temporal scale of the entire duration of EV3. Figures 5.13 and 5.14 illustrate the dynamics

of EV3 in a more complete and dynamic way.

Figure 5.13 (a) depicts the vertical structure of Doppler spectral width: the turbulent layer

is clearly visible at the expected altitudes and it is relatively stable in time. In Fig. 5.13 (b),

showing the Doppler velocity at vertical incidence, frequent updrafts are observed within the
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Figure 5.12: Vertical structure of: (a) Doppler velocity, and (b) Doppler spectral width over
the whole duration of EV3, EV4, EV5, EV6, EV7, EV13. Both variables are measured at vertical
incidence angles.

Figure 5.13: Time evolution of the vertical structure of Doppler-related variables during EV3.
(a): Doppler spectral width at vertical incidence [m s−1]. (b): Doppler velocity at vertical
incidence [m s−1]. (c) Doppler velocity from RHI scans [m s−1]. Each observation of panel (c)
is the mean over the same height of all the observations collected during an RHI scan. Only
one RHI direction (≈45◦ North to East) is used to generate such plot.

turbulent layer. Figure 5.13 (c) shows for each height and time the mean value of Doppler

velocity measured within a radar RHI scan2.

In this case it is observed that the turbulent layer is caused by wind shear: two air masses

with different relative motion with respect to the radar location are in contact. The change of

sign of the Doppler velocities from negative to positive happens at the top of the turbulent

layer, where the two air masses are mixing. Because the JFJ is situated at the altitudes where

the turbulent layer is observed, it is now easier to explain the availability of SLW at this level

2Each vertical cut of this kind of plots is the summary of an entire RHI scan. Such plots do not consider RHI
elevations angle higher than 45◦ in order to preserve polarimetric signals or horizontal wind components
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Figure 5.14: As in panel (c) of Fig. 5.13 but showing: (a) ZH [dBZ], (b) ZDR [dB], (c) Kd p [◦ km−1]

during EV3, documented in Fig. 5.6. This is in fact the result of the steady turbulent mixing

and updrafts that lead to a constant generation of SLW. The rate of SLW input was probably

higher than the collection efficiency of the ice particles within the layer itself and therefore,

despite the continuous collection, SLW remained in excess.

Below the wind shear we observe (Fig. 5.14) throughout the event the peak of Kd p and the

steady increase of ZH already discussed in relation to Fig. 5.6. ZDR exhibits the same trends as

in Fig. 5.6 and forms a hat of slightly enhanced values at the top of the turbulent layer.

5.5.2 The role of turbulence and wind shear

The role of turbulence in the generation and enhancement of snowfall has been documented

by HM2005. HM2005 observed shear layers (with turbulent mixing within) associated with the

interactioEvolution of:n between baroclinic storms and mountain ranges (both in the USA and

in central Europe). An enhancement of precipitation was observed on the windward side of the

mountain ranges during these cases. The enhancement was likely associated with intense ag-

gregation and riming within the turbulent layer, that lead to rapid fallout of water masses that

would otherwise not be able to precipitate. The case depicted in the present Chapter is located

in an inner Alpine valley and not on the first slopes, as in HM2005. While the consequences in

terms of snow accumulation and the global microphysical interpretation of HM2005 is well

applicable to our case, the reasons of the formation of the wind shear are different. In the

present case, it is probably the result of the interaction between large scale south-westerly

flow with the main mountain peaks situated south of the KS location (see Fig. 5.1). It is worth

noting that the height of those peaks (about 4000 m) corresponds roughly with the upper edge

of the turbulent layer.

The effect of wind shear and turbulent recirculation on the microphyisics of snowfall has

been observed by Hogan et al. (2002) (H2002). Also in this case, the large scale conditions

and geographical locations described in H2002 are very different with respect to CLACE 2014.

However, the microphysical processes described may as well occur in alpine regions. In

particular H2002 explained that wind shear and updrafts allow together to continuously feed

the regions above the shear layer with SLW and ice fragments (deriving from secondary ice

production mechanisms) and favour the growth of anisotropic ice crystals at this level. This

phenomenon create an enhancement of ZDR , very similar to what has been observed in the
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present case in Fig. 5.14 (c). Additonally, H2002 recognized that secondary ice, by-product

of the riming process, can be recirculated in the layer of shear and grow into oblate small ice

particles as the ones that can be no noticed in Fig. 5.8. This mechanism, resulting in increased

concentration of particles can explain the enhancement of Kd p observed within the turbulent

layer. It is worth noting that Kd p was unfortunately not available in the study of H2002. This

parameter has the definite advantage over ZDR of being unbiased by the presence of large

isotropic particles (like aggregates) that unavoidably are formed in areas of turbulent mixing.

About the generation of secondary ice, H2002 was presenting evidences for a Hallett-Mossop

mechanism (Hallett and Mossop, 1974), that occurs at temperatures warmer than -8◦C. The

enhancement of Kd p happens in our case at lower temperatures and this lead us to assume

that other multiplication mechanisms (e.g. Vardiman, 1978; Yano and Phillips, 2011) may be

taking place. These collisional mechanisms require only earlier stages of riming, presence of

supercooled liquid water, ice crystals, and turbulence (all conditions that are met during EV3).

Figure 5.15 summarize schematically the possible role that the turbulent layer was playing

during EV3. Above the layer (enhanced ZDR ) favourable conditions exist for anisotropic crystal

growth thanks to the recirculation of SLW and ice fragments from the lower levels. Within the

turbulent layer, aggregation and riming are initiated. Both riming itself and the availability of

large quantities of small crystals, likely deriving from collisional ice multiplication contribute

to the peak of Kd p . Aggregation and size sorting (e.g. Dawson et al., 2015) results in an increase

of ZH in the bottom part of the turbulent layer. Aggregation and further riming will then

continue to raise ZH until precipitation reaches the ground. In this global view, precipitation

will be enhanced as long as turbulence persists.

Figure 5.15: Schematic representation of the role of turbulence observed during EV3. The
label “A” indicates area of enhanced ZDR , label “B” enhanced Kd p , and label “C” enhanced ZH .

5.6 Summary and Conclusions

This Chapter presented polarimetric radar and in-situ measurements of precipitation in a

mixed-phase cloud environment during CLACE 2014, in the central Alps of Switzerland. It

was shown, thanks to the comparison between radar-based hydrometeor classification and
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measurements of snow accumulation, that riming is a leading factor to explain enhancements

of snow accumulation. The phases of the precipitation events that exhibited significant riming

have been further analysed. In most of the cases, radar observations of rimed precipitation

were following time periods of enhanced turbulence and availability of SLW. During the

observations, instead, the turbulence was usually lower (favouring thus the precipitation) and

SLW was depleted in the cores of rimed precipitation, being probably collected in the form of

rimed accretion on the precipitating ice crystals. One noteworthy exception was constituted

by a snowfall event named EV3 (statistically, the most intense one). In this case, a stable layer

of wind-shear driven turbulence, associated with the passage of a cold front, was creating

favourable conditions for the sustained production of SLW, ice-to-ice interaction, and efficient

fallout of water masses by means of a mechanism similar to what presented in Houze and

Medina (2005). A microphysical interpretation of this mechanism has been proposed.

The vertical structure of the events during which riming was significant has been examined

by means of the radar polarimetric variables and in-situ ice particle probes. A common

feature of these cases was shown to be a peak of Kd p , associated either with relatively large

concentrations of small ice crystals (probably associated with secondary ice generation) or

with the riming of ice crystals with anisotropic shapes. The enhancement of Kd p has been

shown to be related to the maximum ZH measured in the vertical column of precipitation.

Even though previous studies hypothesized the Kd p signature to be associated with dendritic

growth, particle images (limited however to 1.28 mm of maximum sampling size) collected

within this area of the storm did not show any evident or dominant pristine and unrimed

crystal habit in these cases.

The present study provided insight about the relation between riming and accumulation, the

microphysics of riming, and the potential role of sustained turbulence on snowfall generation.

It also illustrated the complementarity of in-situ and remote sensing instruments for the

description of snowfall microphysics in complex terrain. Future studies should include also

radar measurements at higher frequencies, to better capture the transition between clouds

and precipitation, and in-situ particle imagers of larger maximum sampling size in order to

visualize the hydrometeors that contribute mostly to the total ZH signal and that are larger

targets for riming. The potential role of turbulence in the microphysics and accumulation of

snow should be further investigated, in order to understand if the patterns described for EV3

are recurring.
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6.1 Summary

This thesis work was mainly devoted to the interpretation of polarimetric radar data, in terms

of precipitation microphysics.

Microphysical retrievals are conducted at the scale of the radar range gate but one polarimetric

variable, Kd p , is usually calculated by smoothing the radar data over large spatial scales. A

novel Kd p estimation method was presented in chapter 2, designed to follow finer scale

variations over individual range gates. The method performed better than other algorithms of

the same family, but an accurate evaluation revealed that Kd p values at the small scale can be

largely biased.

The first kind of microphysical retrieval that can come to mind is hydrometeor type. Hy-

drometeor classification was investigated at first (Chapter 3) by developing a supervised

identification algorithm for two-dimensional video disdrometers. This method provides, over

time intervals of 60 seconds, the dominant hydrometeor class observed within the small

sampling volume of the instrument. The method, in the context of the present thesis, is

seen also as a comparison tool to link radar data and in-situ measurements. Hydrometeor

classification from polarimetric radar data has also been tackled in Chapter 4. A novel clas-

sification approach, based on observations (data) rather than on scattering simulations as

initial step, is proposed. The data-driven approach leads in the end to similar classification

capabilities than simulation-driven approaches with the advantage of being better tailored

on the characteristics of the instrument collecting the measurements and on the available

datasets.

A measurement campaign, conducted in the central Alps of Switzerland during January and

February 2014, was the perfect occasion to test the capabilities of an X-band high resolution

radar in terms of microphysical interpretations and retrievals (Chapter 5). It was observed,

thanks to hydrometeor classification and in-situ measurements, that the process of riming

appears to be the driving microphysical aspect leading to high accumulation of snow. The
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vertical structure of snowfall events with enhanced riming has been interpreted thanks to

high resolution profiles of Kd p , ZH , and ZDR that allowed to discriminate areas of crystal

growth, riming, aggregation, and secondary ice production. In addition, the combination

of Doppler-variables, polarimetry, and in-situ measurements allowed to observe that the

turbulence generated by wind shear creates favourable conditions for a sustained production

of rimed precipitation, leading in turns to significant accumulations of snow.

6.2 Contribution of this thesis

The main contributions of this thesis can be summarized in the following way:

• A novel Kd p estimation algorithm has been proposed, that is able to follow small-scale

variations better than classical methods.

• The estimation accuracy of Kd p has been evaluated at the scale of the radar range gate.

It was shown, for the first time quantitatively, that at the small scale Kd p can be affected

by large errors and negative biases.

• A hydrometeor classification algorithm for 2-DVD data was presented. It was shown that

video disdrometers have a lot of potential in terms of automatic microphysical retrievals

and they can constitute precious ground-truth for polarimetric weather radars.

• Hydrometeor classification from polarimetric weather radars can be based on obser-

vations instead than on numerical simulations. In this way the hydrometeor classes

better reflect the actual capabilities of each radar system and better represent of the

climatology of the available data sets.

• Riming has been experimentally shown to be a dominant factor affecting snowfall

accumulation. The vertical structure of rimed precipitation has been described and

interpreted thanks to multi-sensor observations.

• It is only through a combination of remote sensing and in-situ instruments that precipi-

tation can be accurately described.

6.3 Perspectives

The research presented here has shown some aspects that deserve further attention and devel-

opment. At first, it must be noted that the hydrometeor classification technique developed for

the 2DVD (Chapter 3) was applied only to populations of hydrometeors observed during 60 s

time intervals. The next natural step would be to apply similar methods to classify individual

particles, such that explicit mixtures could be quantified as well. The framework for this future

implementation exists even though geometrical descriptors of higher complexity and a large
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amount of human supervision will be necessary. It is also worth to underline that the method

is a-priori easily adaptable to other particle imagers.

Other important aspects to further develop are related to the unsupervised hydrometeor

classification approach presented in Chapter 4. It was shown that unsupervised clustering can

lead to microphysically significant partitions of datasets of polarimetric data. In our case this

was done using short range (≤ 30 km) X-band radar data. The next step would be to adapt the

approach to lower radar frequencies and longer ranges, where beam broadening effect will be

significant. Additionally, the spatial constraints employed in the work presented in the thesis

were objectively oversimplified and more refined spatial descriptors would be beneficial to

the approach. Finally, once demonstrated that unsupervised data-driven methods can lead to

similar results than model-driven approaches, the natural follow up is to use both strategies in

a semi-supervised manner by taking advantage of the merits of each approach.

The end of Chapter 5 was devoted to the interpretation of the effect of wind shear on the

possible enhancement of snowfall production in an Alpine valley. Even though one case was

shown here, it was not the only example when this kind of enhancement was observed in the

central Alps. It is not unreasonable to believe that such effects may have a major role in the

production of snowfall in similar locations and therefore it would be worth to investigate this

relation over a larger and more statistically significant sample of snowfall events. Because

LTE has available such data for different locations of the Swiss Alps, it would be interesting to

access similar databases collected in other locations and in other climatic regions to better

understand the process.
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A Appendix of Chapter 2

A.1 Adaptations for S- and C-band frequencies of the KFE algorithm

The relation between Kd p and δhv depends on the frequency of the radar wave and con-

sequently needs to be adapted for radars that operate at S- or at C-band frequencies. We

therefore provide linear fits, similar to those given in Eq.(2.18), such that the constant b in the

measurement vector (see Eq.2.23) and the constant c contained in the F-matrix (see Eq.2.24)

can be adapted accordingly.

At S-band, the following relations were found:

δfit
hv =

¨

0.19Kd p +0.024 ; Kd p ≤ 1.1◦ km−1

0.019Kd p +0.15 ; Kd p > 1.1◦ km−1 (A.1)

At C-band, the relation is as follows:

δfit
hv =

¨

0.53Kd p +0.036 ; Kd p ≤ 2.5◦ km−1

0.15Kd p +1.03 ; Kd p > 2.5◦ km−1 (A.2)

A.2 Parametrization of covariance matrices

The determination of the necessary covariance matrices is usually not a straightforward task,
since the true spatial behaviour of the differential phase needs to be known in a variety of
precipitation situations and for different radar range resolutions. This information is generally
not available, hence an easy way to get the parametrization of the covariance matrices is
provided here. This parametrization allows to accurately compute the covariance matrices
as a function of the radar range resolution (affecting C�εs(i )

�

) and the standard deviation of
the noise in Ψd p , denoted asσΨd p (affecting C�εz(i )

�

). For the parametrization of C�εs(i )
�

, the
covariance matrix was calculated for a range resolution ∆r of 50, 100, 150, 200 and 250 m.
Every element in the resulting matrices was then polynomially fitted as a function of the
range resolution. It was found that a linear fit on the square root of the matrix elements was
an appropriate approximation, which also ensures that negative values in the parametrized
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covariance matrix are suppressed. The result of this procedure is depicted in the following
matrix:

C�εs(i )
�

=












(0.11 , 1.56)2 (0.11 , 1.85)2 0 (0.01 , 1.10)2

(0.11, 1.85)2 (0.18, 3.03)2 0 (0.01 , 1.23)2

0 0 0 0

(0.01 , 1.10)2 (0.01 , 1.23)2 0 (−0.04 , 1.27)2













(A.3)

Every matrix element consists of two parameters, which are the polynomial coefficients.

For example, the (1,1) matrix element that reads 0.11, 1.56 stands for the value 1,1C�εs(i )
�

=
(0.11+1.56∆r )2, where∆r is in km).

With the same procedure, a parametrization of the C�εz(i )
�

is obtained as a function ofσΨd p

(which needs to be expressed in degrees):

C�εz(i )
�

=









σ2
Ψd p

0 0

0 σ2
Ψd p

0

0 0 1.57









(A.4)

In our case,σΨd p is 2◦. The above measurement covariance matrix is dominated by the noise in

Ψd p , although there is also a slight dependence on the range resolution. It was however found

that neglecting this dependence does not remarkably influence the algorithm’s performance.

In addition, the off-diagonal elements of C�εz(i )
�

were set to zero, since no clear dependence

withσΨd p was observed and since the exact calculations showed that these values are anyway

very small.

The matrix C�εs(i )
�

also slightly scales with the frequency of the radar, since the Kd p values

are usually lower at lower frequencies. However, due to the fact that C�εs(i )
�

is multiplied with

different scaling factors in order to generate the ensemble of Kd p estimates, this effect is only

of marginal importance and can therefore be ignored.

A.3 Simulated rainfall events

The rainfall events employed in the numerical evaluation of Kd p , and generated with the

method of Schleiss et al. (2012), cover a range of rainfall typologies associated with a temperate

mid-latitude climatology. The summary characteristics of each event are reported in Table A.1.

The classification of the rain events in the three classes of Transitional, Convective and Strati-

form is rather qualitative and based on the observation of their spatial structure and intensity.

The description of these classes can be found in Jaffrain and Berne (2012). An example of the

rainfall fields associated with one time step of each event can be found in Figure A.1.
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Table A.1: Summary of the general characteristics of the 6 simulated rain events employed.

Event Type Intermittency [%] Advection [m s−1]Max R [mm h−1]Mean R [mm h−1]
1 Transitional 20 10 NE 12 4.5
2 Convective 55 10 NE 52 5
3 Stratiform 0 10 NW 8 2
4 Transitional 20 10 NW 19 3
5 Convective 50 7.5 NW 51 8.5
6 Convective 70 7.5 NW 125 15

Figure A.1: Example of 6 simulated rain fields with a domain size of 40 km and a resolution of
0.1 km, corresponding to different events types. The variable plotted is the rain rate R [mm
h−1].

A.4 Realistic profiles of phase related variables

The present section aims to provide more details about the simulation of phase related radar

variables. In the main body of the thesis, the two dimensional DSD fields and the scattering

simulations have been described while here the focus is on the transition between these two

aspect i.e., how the extraction of the profiles has been implemented.

The simulated DSD fields are grids of pixels with a spatial resolution of 0.1 km, and for each

pixel the three parameters of a Gamma DSD are available. In order to obtain a statistically

significant amount of profiles, they are assumed to cross the observed domain in the horizontal

(East to West) or vertical (South to North) direction, as schematically shown in Figure A.2. In

this way the simulated radar is virtually displaced horizontally and vertically along the edges

of the domain, to record different profiles. It is important to note that this approach allows to

obtain a large (statistically significant) dataset. The displacement of the radar furthermore
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does not influence negatively the likelihood of each profile extracted.

Once each profile is localized within the DSD domain, the scattering simulations allow to

assign to each range gate a value of Kd p and δ, according to the procedure described in the

main body of the thesis. The most important step, at this point, is to assign the proper DSD

to each range gate. Where the beam of the radar is fully included in a single pixel of the DSD

fields, the Gamma DSD of that pixel is employed in the integrations, by discretization of the

diameters with a step∆D of 0.01 mm. On the contrary, where the beam of the radar covers

more than a single pixel, the number of particles N (D) assigned to each ∆D comes form a

weighted average of the contribution of all the pixels involved. The weigths are given by a

Gaussian weighting function, describing the radar beam Doviak and Zrnić (1993).

Figure A.2: Example of a simulated profile of the radar observable Ψd p and of the intrinsic
Kd p and Φd p , extracted from a DSD field of a convective event. The upper panel shows the
direction and broadening of the simulated radar beam while the bottom panel shows the
extracted profiles.

A.5 Statistical Descriptors

In order to avoid any confusion related to the meaning of the statistical descriptor employed

in Chapter 2, their explicit formulation is provided here. As global statististics, we introduced:
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Normalized Absolute Error MNAE [%], Mean Normalized Bias (MNB) [%], Nash-Sutcliffe

Efficiency (NSE) [-], Root Mean Squared Error (RMSE) [◦ km−1] and Pearson correlation

coefficient (ρ) [-]. Furthermore, in the analysis of the accuracy as a function of the Kd p value

we mentioned the Normalized Relative Error (NRE) [%]. They are defined as:

M N AE =
1

n

n
∑

i=1

�

�

�K e ,i
d p −K t ,i

d p

�

�

�

K t ,i
d p

×100; (A.5)

M N B =
1

n

n
∑

i=1

�

K e ,i
d p −K t ,i

d p

�

K t ,i
d p

×100; (A.6)

NSE = 1−
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È
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where n is the total number of observations, K e ,i
d p and K t ,i

d p are the i-th estimated and true Kd p

value and K
t
d p indicates the mean of the true values. The Cov operator denotes covariance

whileσ is the standard deviation.

A.6 Accuracy evaluation at C-band and S-band using simulated fields

In the main body of the thesis, calculations where performed at the X band. It is useful to sum-

marize the results of the same type of analysis, when conducted at C and S band. It is possible

to generate an equal amount of profiles of Ψd p , and other phase related variables Kd p and

δ at any radar frequency of interest. As the frequency decreases (wavelength increases), the

effect of δ becomes less accentuated, and Kd p itself scales almost linearly with the frequency

Bringi and Chandrasekar (2001). The analysis of the estimation accuracy for the ALI, MWD
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and KFE methods follows the same steps as described in the end of Chapter 2.

At first, at C and S band the optimal estimation length L for the MWD method is found to be

of 2 km, as for X band. Shorter estimation lengths are unstable, while longer ones lead to an

abrupt decrease in NSE and correlation coefficient ρ (not shown here). The MNAE for the

three methods (always in the order ALI, MWD2, KFE), takes the value of 27, 22.8, 25.7% while

the MNB is 6.4, 4.4 and 3.4%.

When other estimators, like NSE, ρ, and RMSE are taken into account, the KFE and MWD2

methods perform better. RMSEs for the three methods are 0.44, 0.37 and 0.33 [◦ km−1], NSEs

are 0.66, 0.78 and 0.83, ρ are 0.82, 0.88 and 0.91. By looking at the evolution of the Normalized

Relative Error as a function of Kd p , as shown in Figure A.3, we can extend the conclusions that

we drew from the calculations at X-band. As Kd p increases, it tends to be underestimated with

increasingly negatively bias (up to -50% for ALI, and -30% for MWD2), while the KFE algorithm

is able to keep the bias to values higher than -25% (except for the highest Kd p values)

Figure A.3: Evolution of NRE [%] as a function of the true Kd p value for the ALI (black), MWD2
(blue) and KFE (red) methods. Calculation at C-band frequency.

A similar behaviour of the algorithms is observed at S-band even if the relative performances

at this frequency tends to be closer to each other (Figure A.4). MNAEs for the three methods

are 29.5, 24 and 26 [%], MNBs are 7.4, 5.5 and 4.5 [%], NSEs are 0.72, 0.78 and 0.82, ρ are 0.85,

0.89 and 0.91, RMSES are 0.18, 0.17 and 0.15 [◦ km−1].

We can state that KFE outperforms the other algorithms at X, C and S bands but the major

benefits of this algorithm are observed at X and C bands, where Kd p has a larger range of

variation and more sensitivity with respect to the precipitation intensity (Anagnostou et al.,

2006).
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Figure A.4: As in Figure A.3, at S-band frequency.
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B.1 Minimum number of particles for a reliable classification

The classification method described in Chapter 3 employs as input a set of statistical features

calculated over N particles, within a time step of length∆t . Thus, when N is small, sampling

problems can affect the estimation of such statistics. We want to set a minimum Nmin, such

that if N >Nmin the classification output is reliable.

Figure B.1a shows the contribution that time steps of length∆t with small N had with respect

to the total amount of data available, both in terms of total number of particles and in terms

of total number of time steps.

We can observe that time steps with low N contribute negligibly to the total particle count, but

significantly to the total count of available time steps. In other words, time steps with a low

number of particles carry only a small part of the total precipitation, but they are observed

frequently.

Figure B.1b illustrates the classification performance achieved when N < 60. This was obtained

by taking random subsets of the available training set (with known labels), and using them

as validation of the SVM algorithm trained previously. We can observe that for N < 20 the

performance degraded sharply, and become more than 20 % lower than cases with N > 60.

A threshold Nmin = 20 was therefore selected.
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Figure B.1: (a) Contributions [%] of time steps of length∆t with less than 60 particles to the
total database of observations. (b) Classification performance as a function of the number of
particles recorded per time step. Time steps with less than 3 particles did not contribute to
these statistics.
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C.1 Polarimetric characteristics of the seven clusters

Table C.1 provides the relevant statistics of each of the seven clusters identified in this work

from a database of X-band radar data.

C.2 DR2009 algorithm

The algorithm denoted as DR2009 in Chapter 4 of the thesis is based on the work of Dolan and

Rutledge (2009), with some adaptations that we will highlight as they appear in this section.

In this Appendix, we provide the exact parametrization of the membership functions for the

fuzzy-logic scheme, as well as the weights assigned to each polarimetric variable. The input

variables of the algorithm are ZH [dBZ], ZDR [dB], Kdp [◦ km−1], ρhv [–], and∆z [m], and their

weights in the fuzzy-logic scheme are 0.25, 0.25, 0.25, 0.08, and 0.17, respectively. ∆z is the

relative altitude with respect to the 0◦C isotherm, as defined in Sec 4.5.1, and this input is not

used in Dolan and Rutledge (2009).

The hydrometeor classes available are aggregates (AG), crystals (CR), drizzle (DZ), high-density

graupel (HDG), low-density graupel (LDG), rain (R), vertical ice (VI), and wet snow (WS;

not present in Dolan and Rutledge, 2009). The membership function employed for all the

polarimetric inputs is a membership beta function β , while for∆z a trapezoidal one is used.

β is defined as

β =
1

1+
�

x−m
a

�2b
, (C.1)

where x is the considered polarimetric variable, m is the midpoint, a is the width, and b the

slope. Table C.2 summarizes the values of the parameters for each polarimetric variable and

each hydrometeor class.
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Table C.1: Statistics describing the content of the seven clusters identified in Sects. 5 and 6. For
each polarimetric variable and for each cluster, we provide the mean value, standard deviation
σ, and a set of quantiles (Q1 %, Q5 %, 10 %, Q25 %, Q50 %, Q75 %, Q90 %, Q95 %, Q99 %).

Var. Class Colour Mean σ Q1 % Q5 % Q10 %Q25 %Q50 %Q75 %Q90 %Q95 %Q99 %

ZH Melting snow (MS) 30.2 6.2 14.1 18.8 21.5 26.6 30.9 34.5 37.6 39.5 42.3

ZDR Melting snow (MS) 1.4 0.74 −0.2 0.2 0.4 0.8 1.3 1.7 2.3 2.6 3.2

Kdp Melting snow (MS) 0.3 0.29 −0.2 −0.1 0.0 0.2 0.3 0.5 0.7 0.9 1.2

ρhv Melting snow (MS) 0.92 0.041 0.78 0.83 0.86 0.9 0.93 0.95 0.96 0.97 0.97

ZH Heavy rain (HR) 42.3 4.2 32.7 35.3 36.8 39.3 42.4 45.3 47.4 50.6 53.1

ZDR Heavy rain (HR) 0.9 0.97 −1.2 −0.8 −0.6 0.2 1.1 1.6 2.0 2.4 2.9

Kdp Heavy rain (HR) 6.1 3.87 0.91 2.2 2.5 3.3 5.3 8.2 11.8 14.2 18.5

ρhv Heavy rain (HR) 0.97 0.015 0.92 0.94 0.95 0.96 0.97 0.98 0.99 0.99 0.99

ZH Light rain (LR) 20.1 4.5 9.2 12.8 14.8 18 21 24 26.4 27.8 30.4

ZDR Light rain (LR) 0.4 0.3 −0.2 −0.1 −0.1 0.1 0.2 0.4 0.6 0.8 1.1

Kdp Light rain (LR) 0.05 0.18 −0.2 −0.1 0 0 0 0.1 0.2 0.4 0.8

ρhv Light rain (LR) 0.99 0.009 0.97 0.98 0.99 0.99 0.99 1 1 1 1

ZH Rain (RN) 32.2 3.9 24.1 26.3 27.4 29.4 32.1 34.9 37.1 38.5 41.8

ZDR Rain (RN) 1.2 0.44 0.3 0.5 0.6 0.8 1.1 1.4 1.8 1.9 2.3

Kdp Rain (RN) 0.3 0.42 −0.1 −0.05 0 0.1 0.2 0.4 0.8 1.3 2.1

ρhv Rain (RN) 0.99 0.007 0.97 0.98 0.98 0.99 0.99 0.99 1 1 1

ZH Crystals/small aggregates (CR) 11.2 4.1 −1.1 2.2 6.2 9.5 12.2 14.9 17 18 20.3

ZDR Crystals/small aggregates (CR) 0.8 0.57 −0.3 0 0.1 0.4 0.8 1.2 1.7 2.1 2.5

Kdp Crystals/small aggregates (CR) 0.25 0.42 −0.2 −0.15 −0.1 0 0.2 0.4 0.8 1.3 1.9

ρhv Crystals/small aggregates (CR) 0.93 0.03 0.85 0.88 0.89 0.92 0.94 0.95 0.96 0.97 0.97

ZH Rimed-ice particles (RI) 24 4.4 16.5 18.2 19.6 21.2 23.3 25.9 29.6 33.2 38.2

ZDR Rimed-ice particles (RI) 0.24 0.35 −0.6 −0.3 −0.2 0 0.3 0.5 0.7 0.8 1

Kdp Rimed-ice particles (RI) 0.7 0.64 −0.1 0 0.1 0.2 0.5 1 1.6 2 2.6

ρhv Rimed-ice particles (RI) 0.99 0.01 0.95 0.97 0.97 0.98 0.99 0.99 0.99 0.99 0.99

ZH Aggregates (AG) 16.5 7.7 10.9 12 14 16.5 19 21 22.1 24 28

ZDR Aggregates (AG) 0.6 0.45 −0.3 −0.1 0 0.2 0.5 0.8 1.2 1.4 1.6

Kdp Aggregates (AG) 0.25 0.4 −0.2 −0.1 0 0.1 0.2 0.4 0.8 1.2 1.9

ρhv Aggregates (AG) 0.98 0.009 0.96 0.96 0.97 0.97 0.98 0.99 0.99 0.99 0.99

The trapezoidal membership function T employed for∆z instead takes the form of

T =































0 if x < l 1;
x−l 1
l 2−l 1

if l 1 < x ≤ l 2;

1 if l 2 < x ≤ r1;
r2−x
r2−r1

if r1 < x ≤ r2;

0 if x > r2,

(C.2)

where l 1, l 2, r1, and r2 define the four vertices of the trapezoid. The values for these parameters

are reported in Table C.3.
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Table C.2: Parameters of the membership beta functions β employed in the DR2009 algorithm:
midpoint m , width a , and slope b for the available hydrometeor classes.

Variable Class a m b
ZH Aggregates (AG) 17.0 16.0 3.0
ZDR Aggregates (AG) 0.7 0.7 3.0
Kdp Aggregates (AG) 0.2 0.2 2.0
ρhv Aggregates (AG) 0.011 0.989 1.0
ZH Crystals (CR) 22.0 −3.0 3.0
ZDR Crystals (CR) 2.6 3.2 3.0
Kdp Crystals (CR) 0.15 0.15 2.0
ρhv Crystals (CR) 0.015 0.985 1.0
ZH Drizzle (DZ) 29.0 2.0 3.0
ZDR Drizzle (DZ) 0.5 0.5 3.0
Kdp Drizzle (DZ) 0.18 0.18 2.0
ρhv Drizzle (DZ) 0.007 0.992 1.0
ZH High-density graupel (HDG) 11.0 43.0 3.0
ZDR High-density graupel (HDG) 2.5 1.2 3.0
Kdp High-density graupel (HDG) 5.1 2.5 2.0
ρhv High-density graupel (HDG) 0.018 0.983 1.0
ZH Low-density graupel (LDG) 10.0 34.0 3.0
ZDR Low-density graupel (LDG) 1.0 0.3 3.0
Kdp Low-density graupel (LDG) 2.1 0.7 2.0
ρhv Low-density graupel (LDG) 0.007 0.993 1.0
ZH Rain (R) 17.0 42.0 3.0
ZDR Rain (R) 2.8 2.7 3.0
Kdp Rain (R) 12.9 12.6 2.0
ρhv Rain (R) 0.01 0.99 1.0
ZH Vertical ice (VI) 28.5 3.5 3.0
ZDR Vertical ice (VI) 1.3 −0.8 3.0
Kdp Vertical ice (VI) 0.08 −0.1 2.0
ρhv Vertical ice (VI) 0.035 0.965 1.0
ZH Wet snow (WS) 20.0 30.0 3.0
ZDR Wet snow (WS) 1.4 2.2 3.0
Kdp Wet snow (WS) 1.0 1.0 2.0
ρhv Wet snow (WS) 0.135 0.835 1.0

Table C.3: Parameters of the trapezoidal membership function T applied to the relative altitude
with respect to the 0 ◦C isotherm (∆z [m]). l 1, l 2, l 3, and l 4 are the four vertices of the trapezoid
T .

Variable Class l 1 l 2 r1 r2

∆z Aggregates (AG) 0 500 20 000 25 000
∆z Crystals (CR) 0 500 20 000 25 000
∆z Drizzle (DZ) −25 000−20 000 −100 0
∆z High-density graupel (HDG) −600 100 20 000 25 000
∆z Low-density graupel (LDG) −600 100 20 000 25 000
∆z Rain (R) −25 000−20 000 −100 0
∆z Vertical ice (VI) −50 0 20 000 25 000
∆z Wet snow (WS) −1000 −700 700 1000
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