Modelling of a steam network using data reconciliation as a management tool

Introduction

Motivation:

- → Manage and allocated costs of industrial steam network.
- → Evaluate optimisation strategies to improve performance.

Context:

- → Inaccurate measurements.
- → Unmeasured flowrates and thermodynamic properties.
- → Few models
- → Open mass and energy balances.

Objectives:

- → Calculate unknowns and Key Performance Indicators.
- → Use date reconciliation to improve measurement accuracy
- → Pave way for optimisation studies.

Methodology

- → Construct physical model.
- \rightarrow Associate weight/certitude (σ) to each measurement/estimation (X)
- $\rightarrow X'$ is the reconciled value of X.
- → Objective function (1) is to create a physical solution, while minimising the penalty (p) associated with reconciling X.

$$\min \quad p = \sum \frac{(X - X')^2}{\sigma} \tag{1}$$

Case Study

- → Study carried out on major refinery and its utility system.
- → Process and utility modelled via a flow sheeting tool with data reconciliation engine using PIDs and surveys.
- → 435 online measures and 78 estimations were modelled.

Table: Weights and modelling technique for each type of measurements

Input data	Modelling	σ
Condensation losses	Based on surface area and external temperature	30% estimate
Leaks	Each leak is a consumer, flow rate relative to pressure	60% estimate value
Turbopumps/compressors	Nominal flows of turbines as well as process load	30% nominal flow
Orifice plates measures	Geography of site respected	5% measure
Venturi tubes measures	Geography of site respected	2% measure
Unmeasured flow	Modelled using design data	20% design
T & P measures	Geography of site respected	1% measure
T & P estimates	Modeled using design data	10% design

Conclusion and Outlook

- → Reconciled mass balance leads to improved cost allocation.
- → Understanding and measurements of key network properties.

Optimisation studies underway:

- → Total site analysis. Energy integration study to optimise heat exchanges and the utility system.
- → Low pressure steam decongestion through operations optimisation.
- → Improving the quality of the steam in certain areas of the refinery.
- → Tracking of the steam losses reduction through maintenance.

3. Results

- → Reconciled and closed mass balance of the steam network.
- → Unknowns calculated (mass, temperature, pressure, efficiencies).
- → Reconciled measurements with improved certitude.
- → Identification of erroneous measurements.
- → Estimation of onsite leaks made possible.
- → Calculation of KPIs.
- → Cost allocation improvement.
- → Improved understanding of network challenges.

References