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Abstract

It has been observed experimentally that magnetically confined plasmas, characterised
by the safety factor ¢ with a small or slightly inverted magnetic shear, have good
confinement properties. Such plasmas typically have no internal transport barrier,
operate with gg5 ~ 4 and are good candidates for long pulse operation at high fusion
yield in the reactor ITER. These "hybrid” scenarios are an intermediate step between
the reference standard H-mode (high confinement) scenario with monotonic ¢ and
inductive current, and advanced scenarios with strongly reversed magnetic shear in
which the entire plasma current is ideally generated non-inductively. This thesis
focuses on the study of the dynamics of hybrid plasmas, with weak or almost zero
magnetic shear, in tokamak and Reversed Field Pinch (RFP) configurations, when ¢
in the central region assumes values close to one (tokamaks) or to a rational number
(tokamaks, RFPs), though the exact resonance is avoided.

The first part of this thesis is focused on the study of tokamak and RFP equilibria
with slightly reversed shear when an extremum in the safety factor is close to a
low order rational. These equilibria are characterised by the possible presence of
internal helical cores, although the plasma edge is symmetric in the toroidal direction.
Such 3-D structures can be understood as the result of the nonlinear saturation of
ideal MHD modes. The amplitude of large scale m = 1 helical displacements in
tokamak and RFP plasmas is investigated using contrasting approaches, namely
3-D equilibrium and non-linear stability codes. The non-linear amplitude of such
saturated modes obtained with the stability code is compared both with the helical
core structure resulting from equilibrium numerical calculations, and with analytic
predictions which extend the nonlinear treatment of reversed ¢ plasmas to arbitrary
toroidal mode numbers. A preliminary study of the impact of a n = 1 RMP on the
equilibrium helical distortion is also presented.

The second part of the thesis is devoted to the analytical and numerical study of
the stability of an initially axisymetric tokamak configuration when the safety factor
is almost flat and very close to a rational value over a macroscopically extended region
in the plasma centre. Such conditions typically occur either in hybrid scenarios or
following reconnection of a global instability such as a sawtooth. This configuration
is characterised by non-negligible coupling between a fundamental mode and its
Fourier adjacent modes. A dispersion relation has been derived both for ideal and
resistive modes, with additional non-MHD effects such as plasma diamagnetism,
viscosity and equilibrium velocity flows. The analytical results show that the resistive



sidebands coupled to a core kink-like mode exhibit extremely fast growth, though
additional non-MHD effects tend to moderately reduce the extreme growth rate of
the resistive modes. The existence of such modes has been confirmed numerically,
where the sensitivity of the growth rate to changes in resistivity and two-fluid effects
has been demonstrated, and thus in turn provides generally good agreement with
the analytical theory developed. A family of modes are obtained, including modes
with novel scaling against plasma resistivity, some of which rotate in the electron
diamagnetic direction, and others in the ion diamagnetic direction, consistent with
experimental observations in e.g. TCV during hybrid-like operation.

Key words: Magnetohydrodynamics, TOKAMAK, RFP, Hybrid, Kink, Tearing,
Infernal

il Daniele Brunetti — CRPP/EPFL



Résumé

Il a été observé expérimentalement que les plasmas confinés magnétiquement, ca-
ractérisés par le facteur de sécurité g avec un cisaillement magnétique faible ou
légerement inversé, ont de bonnes propriétés de confinement. Ces plasmas, qui n’ont
généralement pas de barriere de transport interne, fonctionnent avec qg5 ~ 4 et
sont de bons candidats pour produire des choc de longue durée avec un taux élevé
de reactions de fusion dans le réacteur ITER. Ces scénarios "hybrides”, sont une
étape intermédiaire entre le scénario standard de référence fonctionnant en mode H
(haut confinement) avec un profil de ¢ monotone et courant inductif, et les scénarios
avancés avec cisaillement magnétique fortement inversé dans lesquels tout le courant
plasma est idéalement généré de maniere non-inductive. Cette these discute de la
dynamique des plasmas hybrides, avec cisaillement magnétique faible ou presque nul,
pour des configurations tokamak et Reversed Field Pinch (RFP), lorsque la valeur de
q dans la région centrale s’approche de 'unité (tokamak) ou d’un nombre rationnel
(tokamak, RFP), bien que la résonance exacte soit évitée.

La premiere partie de cette theése est donc centrée sur 1’étude des équilibres
tokamaks et RFP, lorsque le cisaillement est faiblement inversés, et quand 'extréme
du facteur de sécurité (maximum ou minimum) est proche d’'un nombre rationnel.
Ces équilibres sont caractérisés par la présence éventuelle de structures internes
hélicoidales, bien que le bord du plasma soit symétrique dans la direction toroidale.
Ces structures tridimensionnelles peuvent étre comprises comme le résultat de la satu-
ration non linéaire des modes idéaux magnétohydrodynamiques (MHD). L’amplitude
des déplacements macroscopiques hélicoidaux avec nombre d’onde poloidal m =1
dans des plasmas de tokamak et RFP, est analysée en utilisant différentes méthodes,
soit ’aide de codes d’équilibre 3-D ou codes de stabilité non linéaire. L’amplitude
non linéaire de tels modes saturés, obtenus avec les codes de stabilité, est comparée
avec les structures hélicoidales calculé grace aux codes d’équilibre, et les prédictions
analytiques, qui généralisent, a des valeurs arbitraires du nombre d’onde toroidal, la
description non linéaire des plasmas dont le profil de ¢ est inversé. Enfin, I'impact
des perturbations magnétiques résonnantes (RMP) avec nombre toroidal n = 1 sur
la distorsion hélicoidale de 1’équilibre, est présenté de maniere préliminaire.

La deuxieme partie de la these se concentre sur I’étude analytique et numérique de
la stabilité des configurations tokamak initialement axisymétriques, pour lesquelles
le facteur de sécurité est presque plat et tres proche d’une valeur rationnelle dans
une région étendue du centre du plasma. Ces conditions se produisent généralement
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dans les scénarios hybrides, ou apres la reconnexion d’une instabilité globale comme
une dent de scie (sawtooth). Cette configuration est caractérisée par un couplage
non négligeable entre un mode fondamental et des modes de Fourier adjacents.
Une relation de dispersion a été dérivée a la fois pour les modes idéaux et résistifs,
avec 'inclusion d’autres effets non-MHD, comme le diamagnétisme du plasma, la
viscosité et une vitesse d’équilibre non-nulle. Les résultats de ’analyse montrent
que les bandes latérales résistives couplée a un mode interne, ont une croissance
extrémement rapide, et les effets supplémentaires non-MHD ont tendance a réduire
modérément ce taux. L’existence de ces modes a été confirmée numériquement, et la
sensibilité du taux de croissance par rapport aux variations de la résistivité et les
effets diis au modele a deux fluides, a été démontrée avec un bon accord avec la théorie
analytique développée. Une famille de modes a été obtenue, ainsi qu'une nouvelle loi
d’echelle en fonction de la résistivité du plasma, dont certains tournent dans le sens
diamagnétique électronique, et d’autres dans la direction diamagnétique ionique. Ces
résultats sont cohérents avec les observations expérimentales, par exemple dans le
tokamak TCV pendant les opérations hybride.

Mots clefs : Magnétohydrodynamique, TOKAMAK, RFP, Hybride, Kink, Tearing,
Infernal
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Sinossi

E stato osservato sperimentalmente che plasmi confinati magneticamente, caratteriz-
zati da un fattore di sicurezza g con shear magnetico piccolo o leggermente invertito,
presentano un buon confinamento. Generalmente questi plasmi non hanno barriere di
trasporto interne, operano con ¢ al bordo prossimo a 4 (gg5 ~ 4) e sono un candidato
molto promettente per scariche di lunga durata ad alto rendimento nel reattore di
prossima generazione I'TER. Questi scenari ibridi si collocano a meta strada tra lo
scenario standard di riferimento in modo H-mode (alto confinamento) con ¢ monotono
e corrente induttiva, e gli scenari avanzati a shear magnetico fortemente invertito in
cui idealmente l'intera corrente di plasma e generata in maniera non induttiva. La
presente tesi e focalizzata sullo studio della dinamica di plasmi di tipo tokamak e
Reversed Field Pinch (RFP) in condizioni ibride, tali per cui ¢ nella regione centrale
assume valori prossimi a uno (tokamak) oppure a un valore razionale (tokamak,
RFP), pur mantenendosi sempre leggermente lontano dalla risonanza.

La prima parte di questa tesi e dunque incentrata sullo studio di equilibri tokamak
e RFP, in condizioni di shear debolmente invertito, quando un estremo (massimo o
minimo) del fattore di sicurezza e vicino a un numero razionale di ordine basso. Questi
equilibri sono caratterizzati dalla possibile presenza di strutture elicoidali interne,
benché il bordo del plasma sia simmetrico nella direzione toroidale. Tali strutture
tridimensionali possono essere intese come il risultato della saturazione non lineare
di modi magnetoidrodinamici (MHD) ideali. Pertanto ’ampiezza delle perturbazioni
elicoidali macroscopiche con numero d’onda poloidal m = 1 in plasmi tokamak e
RFP ¢ analizzata metodi differenti, ovvero tramite codici sia di equilibrio 3-D che di
stabilita non lineare. L’ampiezza risultante dalla saturazione non lineare di tali modi,
ottenuta con codici stabilita, ¢ confrontata con le strutture elicoidali calcolate sia
tramite i codici di equilibrio, che con le previsioni analitiche, le quali generalizzano
a valori arbitrari del numero d’onda toroidale la descrizione non lineare di plasmi
con ¢ a shear invertito. Infine ¢ presentato uno studio preliminare sull’'impatto
di perturbazioni magnetiche risonanti (RMP) con numero toroidale n = 1 sulla
distorsione elicoidale d’equilibrio.

La seconda parte della tesi ¢ dedicata allo studio analitico e numerico della stabilita
di una configurazione tokamak inizialmente assialsimmetrica quando il fattore di
sicurezza ¢ pressoché piatto e molto vicino a un valore razionale in una regione
macroscopicamente estesa nel centro plasma. Tali condizioni si verificano in genere in
scenari ibridi o dopo la riconnessione di instabilita globali come un sawtooth. Questa



configurazione e caratterizzata da un accoppiamento non trascurabile tra un modo
fondamentale e i suoi modi di Fourier adiacenti. E stata derivata una relazione di
dispersione per modi sia ideali che resistivi, con 'inclusione di altri effetti non-MHD
quali il diamagnetismo di plasma, la viscosita e le velocita di equilibrio non nulle. I
risultati analitici mostrano che le sideband resistive, accoppiate ad modo interno,
presentano una crescita estremamente veloce, anche se gli effetti non-MHD tendono
a ridurre moderatamente il tasso di crescita estremamente rapido di tali instabilita.
L’esistenza di tali modi e stata confermata numericamente, dove e stata dimostrata
la sensitivita del tasso di crescita rispetto a variazioni nella resistivita e negli effetti a
due fluidi e con un accordo generalmente buono con la teoria analitica sviluppata. E
stata ottenuta una famiglia di modi, inclusi nuovi scaling in funzione della resistivita
di plasma, alcuni dei quali ruotano in direzione diamagnetica elettronica e altri in
direzione diamagnetica ionica, in linea con le osservazioni sperimentali per esempio
nel tokamak TCV durante operazioni in configurazione ibrida.

Parole chiave: Magnetoidrodinamica, TOKAMAK, RFP, Ibrido, Kink, Tearing,
Infernal
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Introduction

According to the standard textbook there are three states of matter, solid, liquid
and gaseous states. However if temperatures are large enough, the excitation of the
atoms is so high that electrons are separated from the nuclei, moving free through
the medium. Such a new state is called plasma, the fourth state of matter. Although
plasmas constitute a population of single charged particles, each with relatively long
mean free path, the plasma exhibits a collective behaviour and appears globally
neutral when it is observed on a scale larger than the Debye length Ap [1]:

)\D = \/EoT/CQTL,

where T is the plasma temperature (in eV'), e the electric charge and n the density.
The presence of charge carriers makes plasma electrically conductive so that it
responds strongly to electromagnetic fields.

Plasmas are by far the most common state of ordinary matter in the universe.
Stars, for example, are giant plasma balls with a temperature of million degrees in
the core. The intergalactic medium, which constitutes the largest part of the matter
in the universe, is also a plasma. This state is reached when temperatures are ~ leV
(1eV ~ 1 x 10*K). Plasmas on Earth are observed during lightning and during the
aurora (borealis or australis) phenomena.

Laboratory plasmas can be created by heating a gas or subjecting it to a strong
electromagnetic field applied with a laser or microwave generator. Technical applica-



Chapter 1. Introduction

tions which involve the use of plasmas are neon lamps, plasma torches (employed for
cutting), material treatment and plasma film deposition.

The main application in which plasmas play a crucial role is nuclear fusion. If
the temperature is sufficiently high, the kinetic energy of the ions is large enough to
overcome the Coulomb barrier and the two reacting nuclei can fuse together thus
producing a heavier element. The fusion chain is energetically convenient for atoms
with lower mass than iron. Since the mass of the product is slightly less than the
mass of the colliding nuclei, an amount of energy corresponding to the mass difference
is released according to the well known formula E = mc? (c is the speed of light and
m is the mass which is converted into energy).

There are many possible fusion reactions, and the most promising in the near
future is the reaction between Deuterium (3D) and Tritium (37"), which has the
largest cross-section with relatively "low” temperatures (~ 50K eV):

2D 43T —4 He(3.5MeV) +4n(14.1MeV).

The energy release is contained in the kinetic energy of the reaction products. Such
a reaction is several thousand times more energetic than standard chemical reactions
involving fossil fuels and it is clear why so much interest over the last fifty years
has been applied to developing a reliable technology capable of extracting such an
enormous amount of energy.

The burning plasma regime is achieved if the Lawson triple product criterion is
fulfilled, i.e. for a D-T reaction [2]:

nlT'tg > 3 X 1021m_3K6V5,

where 7 is the energy confinement time, i.e. the ratio of the plasma total energy and
the power losses from fusion reactions. For D-T reactions at T' =~ 20KeV/, we have
nte > 1.5 x 102°m~3s and this condition is fulfilled when we have e.g. plasma density
n > 10**m~3 and confinement time 75 > 1.5s. The Lawson criterion simply states
that for larger densities we have larger reaction rate, for higher temperatures we have
bigger reaction probabilities, and a sufficiently long confinement time guarantees
that the energy which is produced is not lost.

Maintaining a sufficiently large triple product is an extremely challenging task
and several methods have been developed in the last decades to maintain burning
plasma conditions. There are two main approaches developed in mainstream fusion
research: the first consists of reaching extremely high densities but with a low
confinement time. This is the so called inertial confinement fusion approach, where
powerful lasers are employed to compress fuel capsules of 1mm in diameter up to very
high densities, around one-hundred times the density of lead, namely ~ 1000gcm 3.

The other approach is to confine a rarefied (i.e. low density ~ 10?m=3) plasma,

2 Daniele Brunetti — CRPP/EPFL



1.1. The magnetic confinement concept

whose temperature is around few KeV's, by means of strong magnetic fields in a
toroidally shaped chamber. This approach is the so called magnetic confinement
fusion approach. The next section describes in more detail some aspects of how
magnetically confined plasmas behave in toroidal configurations.

1.1 The magnetic confinement concept

The magnetic confinement system is based on the application of strong magnetic
fields in order to enclose the hot plasma in a magnetic bottle. The basic idea is that
a charged particle, with velocity v which undergoes the effect of an external electric
and magnetic field, experiences a force:

F =q¢(E+ v x B).

This tells us that to lowest approximation the particle gyrates along the magnetic
field, essentially being "glued” to the field lines (this is shown in Fig. 1.1). Several

2h — 4 T b

Helical path

Figure 1.1: Motion of a positively charged particle in the presence of a magnetic field.

confinement concepts have been developed during the last fifty years: the two main
categories are open configurations and closed configurations.

Open configurations are so called mirror configurations [3]: these consist of two
parallel coils separated by a small distance, carrying the same current in the same
direction, producing a magnetic bottle between them. Invoking energy conservation
E = %mvﬁ + uB = const. and the adiabatic invariance of the magnetic moment
W= 2—? = const (with a vanishing electric field), particles near the coils of the
bottle, where the magnetic field is stronger, must drop their velocity parallel to

the magnetic field. If the parallel velocity goes negative, the particle is reflected

Stability of tokamak and RFP plasmas with an extended region of low magnetic shear 3



Chapter 1. Introduction

by the large magnetic field, and thus the particle experiences a magnetic force
towards the plasma centre; particles with appropriate speeds spiral repeatedly from
one end of the region to the other and back. This physical mechanism is used to
temporarily trap charged particles up to temperatures of the order of 10°K. Such
configurations are however affected by loss cones for particles which fulfil the condition
v /vL > \/Bmaa:/Bmin — 1 [3]. The ”Van Allen radiation belts” (doughnut shaped
regions around the Earth), are a natural mirror confinement system analogous to
laboratory mirror machines, which occur due to the non-uniformity of the Earth’s
magnetic field (see Fig. 1.2).

Magnetic field line\l

Direction of the
_ proton drift \ A

Trajectory of a
trapped particle

Figure 1.2: Pictorial view of the Van Allen belt.

In contrast to mirror systems, examples of closed configurations include tokamaks,
stellarators and reversed field pinches (RFPs) (a more detailed description of the
tokamak and reversed field pinch closed configurations is given in Chapter 2).
By closing the system, particle losses along the field lines are eliminated. These
configurations are characterised by a doughnut-shaped toroidal chamber with the
presence of a strong toroidal field. Since the toroidal field alone is not sufficient to
confine the particles (due to gradients of the field which produces charge separation
and hence self generated electric fields which in turn produce secular loss orbits), an
additional poloidal field (generated by a toroidally flowing current or by modular
toroidally deformed coil configuration) is added. The magnetic field lines become
helical, winding around the interior of the reactor. It is convenient to define an
important physical quantity related to this helicity, the safety factor, labelled ¢,
which represents the ratio of the times a particular magnetic field line travels around
a toroidal confinement area’s "long way"' (toroidally) to the "short way" (poloidally)
(for a more detailed definition of g see Chapter 2). The particles which gyrate around
the field lines, slowly drift vertically up and down. Charge separation is therefore
reduced and individual particles are confined. Figure 1.3 shows examples of the
open and closed magnetic configurations. The plasma current is also used to heat
the plasma via Ohmic heating. This method is more effective at low temperatures
since the plasma resistivity decreases with temperature according to the Spitzer law

4 Daniele Brunetti — CRPP/EPFL



1.1. The magnetic confinement concept

Figure 1.3: Schematic drawing of the magnetic mirror confinement system (open field
configuration, left) and cutout of the ITER tokamak (closed field configuration right).

n ~ T3 Other heating systems that are efficient at high plasma temperatures are
required, for example injection of radio frequency or neutral particles whose physics
is not discussed here, since it is beyond the scope of the present thesis.

The macroscopic features of the plasmas of open and closed field line systems are
well described by the magnetohydrodynamic (MHD) model, whose detailed descrip-
tion is given in Chapter 2. Plasmas in general and toroidally closed configurations
in particular, are affected by the presence of macroscopic MHD instabilities which
strongly degrade the confinement. Such instabilities develop around fragile surfaces,
called rational surfaces, where the safety factor assumes rational values, namely
g = m/n. On these surfaces, the magnetic field lines close on themselves after m
toroidal turns and n poloidal turns (if ¢ is irrational the surface is densely covered
by a field line). The perturbations (which are periodic in their angular arguments
of the form & = £(r) exp[imd — ingp|, ¥ and ¢ are the poloidal and toroidal angles
respectively) are resonant, i.e. their parallel wave vector vanishes, and on these
surfaces instabilities can develop. These instabilities, which can be ideal (perfectly
conducting plasma) or resistive (due to finite resistivity which allows the rejoining
of the magnetic field lines) in character, are destabilised by current and pressure
gradients. Ideal internal m = 1 modes, which correspond to a rigid shift and tilt
of the plasma core, are often encountered in tokamak and RFP plasmas. In toka-
maks the main core MHD instabilities are sawteeth oscillations, which are linked
to m = n = 1 mode activity associated with a ¢ = 1 surface corresponding to a
periodic reorganisation of the core plasma, and tearing modes which are resistive in
character. Much effort has been put in the last decades in order to develop scenarios
in which this deleterious MHD activity is reduced and fusion efficiency is maximised.
This produced three different regimes which are now analysed in relation to the
central theme of this thesis is the characterisation of reactor relevant plasma regimes,
in particular their equilibrium and stability properties against macroscopic fluid
instabilities.

Stability of tokamak and RFP plasmas with an extended region of low magnetic shear 5)



Chapter 1. Introduction

1.2 Tokamak modes of operation

In the last decade there was increasing interest in plasmas characterised by ELM-free,
H-mode (high confinement) and with internal transport barrier (ITB) operation.
Such conditions were achieved by maintaining high values of plasma kinetic pressure
(high 3, see the definition of § in Chapter 2). The ultimate aim of fusion research is
to obtain fusion in steady state conditions. The parameters needed for steady state
operation are the following: lower current to minimise the need for non-inductive drive,
high confinement to maximise the fusion production and high pressure operation to
maximise the bootstrap current fraction.The steady state scenario aims at producing
discharges where the current is driven fully non-inductively.

One of the main parameters in the present development of advanced scenarios is
the plasma current profile. Since the shape of the current density (and consequently
the safety factor) determines most of the stability properties of the plasma, much
effort has been put in the last few years in tailoring the current density profile, in
particular trying to avoid the development of dangerous core MHD instabilities (see
Chapter 2) such as sawteeth and Neoclassical Tearing modes (NTMs). The sawtooth
instability manifests itself as a regular periodic reorganisation of the core plasma
surrounding the magnetic axis when there is a region in the plasma where ¢ < 1
[4]. NTMs, driven by helical current deficits arising as a result of reduced pressure
gradients, take the form of island structures on surfaces characterised by a rational
value of ¢ (viz. ¢ = m/n, with m and n integers) [5].

Most of the experimental scenarios use a substantial amount of heating and/or
current drive in the current ramp-up phase, when the 8 of the plasma is still low,
in order to freeze the current profile [6]. The shape of the current density profile is
locally related to the magnetic shear, which is the radial gradient of the rotational
transform. A very large variety of current profiles, from deep reversed shear to low
positive shear, have been generated and sustained. The shape of the current density
profile (i.e. the magnetic shear) determines the operating regime.

There are three main tokamak reactor relevant scenarios considered for the next
generation reactor ITER [6]:

o The (standard) inductive H-mode scenario (the most promising for obtaining
@@ = 10 in ITER) is characterised by a centrally peaked, predominantly ohmic
current density profile (inductively driven) and a monotonic ¢ profile featuring a
q = 1 surface (hence the plasma is unstable to sawteeth). This scenario has the
disadvantage that it is short-pulsed (due to the induced current) and it is prone
to major internal and “ezternal” magnetohydrodynamic instabilities (sawteeth,
NTMs, ELMs) which could cause a plasma disruption and significantly damage
the vessel.

6 Daniele Brunetti — CRPP/EPFL



1.3. Focus of this thesis

e One of the interesting developments of the recent years is the achievement of
stationary tokamak H-modes with zero or low magnetic shear and ¢(0) around
1 (both in ASDEX Upgrade and DIII-D) [6]. These are the so called advanced
hybrid scenarios (often simply called hybrid scenarios). Such configurations
are very promising candidates for near steady state operation characterised
by a long burn time (> 1000 s), high fluence/shot and @ > 5. A significant
part of the plasma current is driven non-inductively, off-axis, and a centrally
flat, broad ¢-profile with ¢ > 1 everywhere can be obtained with a large region
of low magnetic shear. This scenario aims at producing high fusion yield and
features a higher £ limit with an optimised current profile, a lower current
and a lower loop voltage (@ > 5, long pulse duration). Furthermore, the
increased central pressure increases the bootstrap current (see Chapter 2 § 2.5)
which can contribute significantly to the total plasma current (typically up to
~ 30%). The absence of a ¢ = 1 surface generally ensures that these scenarios
are sawteeth-free. Nevertheless NTMs are still observed in these scenarios, as
are ideal internal kink modes. The plasma current in this scenario is lower
than the reference H-mode scenario but higher than steady state scenarios [6].

o Advanced scenarios are created by driving more than 50% of the current non-
inductively. The ¢-profile reverses giving a region of strong negative magnetic
shear, with an internal transport barrier (ITB) (a region of locally reduced
transport). The locally reduced transport causes a steep gradient in the plasma
pressure, and driving as a consequence large amounts of off-axis bootstrap
current which can sustain, together with other non-inductively driven currents,
even up to 100% of the total current. In configurations with strong shear
reversal, long, steady high performance discharges with almost no current at
the centre have been achieved [6]. However, such discharges present problems
in steady state operation such as low fusion yield due to low current operation,
impurity accumulation due to the density peaking, poor confinement of alphas
and other energetic particles (again due to low current), leading to power
deposition outside the I'TB, as well as an increased diffusion.

The safety factor and the corresponding toroidal current density profile are shown in
figure 1.4 for the three scenarios listed above. Similar modes of operation having
weakly reversed safety factor with an off axis extremum characterised by an improved
confinement, are also developed in RFP configurations.

1.3 Focus of this thesis

The present thesis focuses mainly on the MHD properties of tokamak hybrid-like
scenarios. The primary goal of hybrid scenarios in tokamaks is to enable high
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(b)
Advanced 3

Standard

~

0.5 1 0 0.5
r r

Figure 1.4: Sketches of the safety factor profiles (a) and current density profiles (b) for
the three reactor relevant tokamak operating scenarios (the variable r is a normalised radial
variable which extends from the plasma centre to the edge). Inspired by Ref. [6]

performance operation with large plasma currents while at the same time trying
to avoid MHD instabilities. However, if a local minimum in the safety factor is
allowed to approach unity in low or weak shear configurations, magnetic field line
bending stabilisation is lost and large MHD structures can be created, with typically
dominant m = n = 1 helical component. Previous three dimensional numerical
equilibrium calculations showed the possibility of the existence of such structures in
tokamak hybrid like plasmas as well as standard axisymmetric equilibrium states.
Similar structures with m = 1 dominant harmonic are often observed also in Reversed
Field Pinches (RFPs), leading to improved plasmas performance [7]. In tokamaks
however, strong MHD activity during hybrid scenario development has been observed
to impair plasma performance in MAST, TCV and JET plasmas [8, 9, 10]. This is a
major concern related to future ITER operating regimes.

This work thus addresses the methods of characterisation of m = 1 structures
in tokamaks and RFPs (n = 1 in tokamaks and n = 7 in reversed field pinch),
analysing the equilibrium properties via 3D equilibrium codes, and the linear and
non-linear ideal MHD stability via initial value stability calculations. It will be
shown that the helical features of a 3D equilibrium code are essentially the same as
that from a non-linear ideal MHD code (departing from an initially axisymmetric
equilibrium). While this is a significant advance developed in this thesis, providing
a uniform base in our understanding of large scale 3D magnetic structures, it also
motivates investigation into the relevance of the ideal MHD model in tokamak
observations. Indeed, experimentally it is seen in high elongation experiments in
TCV that resistivity may play an important role in further weakening the ability
of the tokamak core to remain axisymmetric, producing island structures in the
plasma. The separate dynamics of electrons and ions (via diamagnetic drifts) are also
observed. Such measurements in TCV and other machines therefore demonstrate
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the importance of developing extended MHD models for such instabilities.

1.4 Outline of the thesis

In this chapter a brief introduction on nuclear fusion and the basic concepts of
magnetic confinement have been presented. Our goal is to investigate plasma
behaviour (in particular macroscopic magnetohydrodynamic instabilities) in fusion
reactor relevant conditions. The main thesis chapters are organised as follows.

 Chapter 2 provides an introductory description of the main tools (both analytical
and numerical) used in the framework of this thesis. First the magnetohydrodynamical
equations governing macroscopic plasma dynamics are presented, followed by a
description of toroidally symmetric equilibria, where a general overview of the
tokamak and reversed field pinch configurations is presented. A section on ideal
stability is presented, where the energy principle and the normal mode approach are
used to describe linear and nonlinear kink instability in tokamak plasmas. Then
the ideal constraint is relaxed and general information about the classical theory of
tearing instabilities and the underlying physics governing NTM dynamics are given.
The derivation of the modified Rutherford equation is presented and the connection
between fast growing NTMs and pressure driven instabilities in a low-shear tokamak
configuration is outlined.

o Chapter 3 investigates kinked saturated m = 1 helical structures both in toka-
maks and in reversed field pinches (RFPs). Linear and non-linear (numerical and
novel analytic) stability calculations which evaluate the departure from an axisym-
metric plasma state are used to assess the behaviour of such instabilities, together
with equilibrium calculations using a 3D equilibrium code. The configurations studied
include ITER, MAST and RFX-like plasmas all characterised by a slightly reversed
safety factor. The main themes of this chapter have been published in the following
journal publications: [D. Brunetti et al., "Ideal saturated MHD helical structures in
azisymmetric hybrid plasmas”, Nucl. Fusion 54, 064017 (2014)] and [J. P. Graves, D.
Brunetti et al., "Magnetohydrodynamic helical structures in nominally axisymmetric
low-shear tokamak plasmas”, Plasma Phys. Control. Fusion 55, 014005 (2013)].

o Chapter 4 presents a derivation of the dispersion relation for linear modes in
tokamaks with low magnetic shear in the core. This is the first attempt to write a
dispersion relation with the inclusion of plasma resistivity and other effects such as
plasma diamagnetism for plasmas with an extended region of low magnetic shear.
Estimates of the transition point between tearing-like behaviour and infernal-like
behaviour are given. Various new scalings against plasma resistivity are found also
with the inclusion of toroidal flows and viscosity. The main themes of this chapter
have been published in a journal publication: [D. Brunetti et al., "Fast growing
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resistive two fluid instabilities in hybrid-like tokamak configuration”, Plasma Phys.
Control. Fusion 56, 075025 (2014)].

o Chapter 5 presents a numerical study of pressure driven magnetohydrodynamic
instabilities in a low-shear tight aspect ratio configuration with the initial value
code XTOR-2F. The numerical predictions of the growth rate and on the rotation
frequency of the modes are compared with the estimates of the linear theory computed
in Chapter 4. In addition, a comparison of the nonlinear evolution of the magnetic
island between numerical simulations and Rutherford’s analytic theory is presented.
The main themes of this chapter have been published in a journal publication: [D.
Brunetti et al., "Fxtended MHD simulations of infernal mode dynamics and coupling
to tearing modes”, Plasma Phys. Control. Fusion 57, 054002 (2015)].

Extensive appendices are found at the end of the thesis: these appendices contain
general information about curvilinear coordinate systems and the technical details
of the mathematical derivations and some additional physics effects (finite 5, mass
density gradients) which were not taken into account in the main body of the thesis.
A small appendix on the behaviour of tearing mode coupling driven by the presence
of helical cores is given. Finally a brief description of the numerical scheme of the
VMEC and XTOR-2F codes is given.
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MHD plasma model description of
tokamaks and RFP plasmas

The main goal of this chapter is to provide the essential information concerning
the model equations and the numerical tools employed in the analysis presented
in the next chapters. We first start to describe the physical plasma model widely
used in tokamak physics, followed by a general description of an axisymmetric
equilibrium. Subsequently the problem of ideal magnetohydrodynamic stability is
addressed and the basic information about the internal kink mode and its linear and
nonlinear behaviour are given (this will be extensively used in Chapter 3). After this,
the problem of reconnecting modes is described and the implications on low-shear
tokamak operation regimes with finite resistivity are presented. Eventually the
description of the numerical procedures employed in the VMEC and XTOR-2F codes
(which are used for obtaining the numerical results in Chapters 3 and 5) is outlined
at the end of the present chapter.

2.1 The ideal MHD model

The ideal magnetohydrodynamic (MHD) model gives a description of a macroscopic
single fluid, long-wavelength, low-frequency plasma. The fundamental equations

11



Chapter 2. MHD plasma model description of tokamaks and RFP
plasmas

which constitute the ideal MHD model are the following [11]:

d0 B

SV (ov) =0, (2.1)

(?;t)%-'v : V’u) =-Vp+J x B, (2.2)

d(p)

dt(gr)—o, (23)

E+vxB=0, (2.4)
8B

V x B = uyJ, (2.6)

V- B=0, (2.7)

where p is the plasma mass density, E and B the electric and magnetic field
respectively, J the current density, p the plasma pressure with I' = 5/3, and
d/dt = 0/0t +v - V is the convective derivative. The plasma velocity is given
by v = 0&/0t, where £ is the plasma displacement. Eq. (2.4) indicates that the
plasma is a perfect conductor, i.e. that the electric field in the moving plasma frame
is zero. Equations (2.5)-(2.7) are pre-Maxwell equations, indicating low frequency
electromagnetic behaviour. Thus, displacement currents and net charges (9V - E)
are zero within the MHD framework. The first implying that electromagnetic
waves of interest have w/k < ¢ and the characteristic thermal velocities of ion
and electron species are non-relativistic (Vg = (27,/ma)"? < ¢, the subscript
a = i, e indicates the species ions or electrons), and the second implying that the
characteristic frequency of plasma behaviour is much lower than the plasma frequency
(W < Wpe, Wy = (nge?/meco)'/?) and with a characteristic length much longer than
the Debye length \p = Vi, /wpe. For sake of simplicity we assume a fully ionised
plasma consisting of electrons and positive hydrogen or isotopes (H,D,T') ions for
which the ion charge number is Z; = 1. From neglecting the net charge, one has
ne = Zin; = n (quasi-neutrality approximation). The mass density equation (2.1)
implies that the number of particles is conserved (no ionisation, recombination, etc.).
In the single fluid approximation, the electron inertia is neglected (m,. — 0), thus
the mass density is defined as 0 = m;n. The momentum of the fluid is carried by
the ions, so that v = wv;. The current density is given by J = en(v; — v.) and
p=nT =p;+p., T =T +1T.

The ideal MHD model assumes a collision-dominated plasma, for which:
VTZ.TM/CL ~ VTeTee/a < 1,

where 7,, is the a — « particle collision time, and a is the characteristic length of
the system (much longer than the Debye length). This implies that the distribution
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function both for ions and electrons is nearly Maxwellian and that the macroscopic
scale length is much longer than the mean path. The validity of the ideal MHD
model can be summarised by the following conditions [11]:

N2 VT
mz) T Tis <<1

1 — High collisionality, (
M a

2 — Small gyroradius, Ty <1
a

2 /2 1
TT. (M
3 — Small resistivity, —= <> <1
a m; VTiTii

where r, = V5, /Q. is the ion gyro radius (2, = ¢;B/m; is the ion cyclotron
frequency). The third condition implies that resistive diffusion is negligible, despite
the high collisionality. In fusion relevant plasmas, the high collisionality assumption
is never fulfilled. Nevertheless empirical evidence during many years of fusion plasma
research has shown that the ideal MHD theory provides a very good description of
most macroscopic plasma behaviour. This suggests that there are subtle physics
issues at play that can be explained by introducing a modified collisionless MHD
model, that is however beyond the scope of the present thesis. The ideal MHD
equations (2.1)-(2.7) form the basis for studying plasma equilibrium and macroscopic
perturbation dynamics.

An important concept of the MHD model is the frozen in theorem. In particular, it
demonstrates the peculiarity of this particular plasma model insofar as the marriage
of fluid dynamics and electromagnetism. Considering a moving surface S crossed by
a magnetic field B, the flux ®;; which passes through the surface is defined as:

@M:/B-mm
S

where n is the normal vector to the surface. Substituting Eq. (2.5) into ®;; and
using the Stoke’s theorem we obtain:

d® s

q?:—%ﬂ-@+uxBL

where w is the velocity of the moving surface S. Therefore, using (2.4) and assuming
that the velocity u coincides with the plasma velocity v, one has that d®,,/dt = 0.
This demonstrates that in ideal MHD the total magnetic flux is conserved, i.e. the
magnetic field lines move with the plasma frozen into the fluid. Relaxing the ideal
constraint, viz. assuming a small amount of plasma resistivity, the flux conservation
can be violated. This concept will help us to interpret the instabilities investigated
in this thesis. In the next sections the problem of the MHD equilibrium and stability
is analysed.
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2.2 Plasma equilibrium and the Grad-Shafranov
equation

Before introducing instabilities, we first examine states of plasma equilibrium which
are of particular importance in toroidal plasmas. By setting the full (convective)
time derivatives equal to zero in Eq. (2.2), since rotating stationary equilibria are not
in the scope of this thesis, magnetostatic equilibrium is described by the following
equation:

Vp=J x B, (2.8)

where Egs. (2.6) and (2.7) can be imposed in order to eliminate J from (2.8).
From the equations above, it follows immediately that p must be constant along the
magnetic field lines and the current density lines, i.e. the magnetic field lines and the
current density lines lie on constant p surfaces (J - Vp= B - Vp =0). If we take
now the usual right handed cylindrical coordinate system (R, ¢, Z), the condition
(2.7) is written as:

10(RB) , 0By
R OR 07

=0,

where the axisymmetric constraint (0/0¢ = 0) has been imposed. It is therefore useful
to introduce a stream function ¢, such that Br = —+(0¢/0Z) and By = +(0¢/9R),
so that the magnetic field can be written as:

B =DB,e,+Bp=TVp+ Vi x Vo, (2.9)

with "= RB,, and Vy = e, /R where e, is the unit vector in the toroidal direction.
The shear function Wp can be related to the flux of the poloidal magnetic field,
namely Vp = [ Bp - dA. Thus by taking the integration area A to be the surface
lying in the Z = 0 plane, extending from the magnetic axis located at R = Ry to an
arbitray contour defined by ¥ = 1(Ry,0), we have [11]:

2 R
Up— / do [ dRRBy(R,Z = 0) = 210,
0

Ro

where the integration constant has been chosen such that ¢(Ry,0) = 0.
Since B - Vp = 0 and the field is assumed symmetric with respect to the toroidal
direction, we must have that Vi x Vp = 0, so that p = p(¢)). From the condition

J - Vp =0, it follows that also the quantity 7" is constant on the constant pressure
surfaces, so that T'= T'(¢).

From Ampére’s law (Eq. (2.6)) we express the toroidal current density in the
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following manner:

_AY
R Y

Jy = (2.10)

where

A = R*V - (W) r2 (1‘%)#%

R* ) TOrR\ROR) " 9z%

The standard two dimensional tokamak equilibrium is described by the well known
Grad-Shafranov equation, which is obtained by taking the V1 projection of (2.8) and
using (2.9) and (2.10). Since p = p(¢), and T' = T (1)) the Grad-Shafranov equation
is [12, 13]:

dp _pdT
dip  dy
This second order nonlinear differential equation describes a two dimensional equi-
librium (i.e. axisymmetric), where the configuration is determined by the choice
of p and T'. It can be solved analytically for particular choices of the pressure and
the toroidal magnetic field [14]. Nominally axisymmetric devices include tokamaks
and Reversed Field Pinches (RFPs). The equilibrium equation (2.11) is the usual

starting point for the analysis of the plasma properties in both tokamak and RFP
configurations.

A*tp = — o R? (2.11)

2.3 The Tokamak and the Reversed Field Pinch
concepts

The tokamak is a toroidal plasma confinement system, where confinement is achieved
by applying magnetic fields to the plasma. As already described in Chapter 1, the
main magnetic field is the toroidal field, produced by the toroidal coils surrounding
the plasma. A poloidal magnetic field is also needed for plasma confinement. This
field is produced by inducing a plasma current in the toroidal direction. The resulting
magnetic field lines have a helical trajectory around the torus, as shown in Fig. 2.1.
The magnetic field lines lie on isobaric surfaces, where the plasma pressure is given
by p = nT (n is the density and T the temperature where an hydrogen-like plasma
is assumed). The cross section of the plasma for a given toroidal angle on a constant
pressure surface is typically approximately circular (cf. Eq. (2.8)). Slight deviations
are caused by the plasma pressure and the configuration of the vacuum magnetic
field. These distorsions are accounted for by the Shafranov shift and elliptic and
triangular perturbations. The flux surfaces can be conveniently parametrised in the
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following approximate manner [15]:

R = Ry— A(r) +rcos(f + dsinb),

Z =rksin,

where A(r) is the so called Shafranov shift, while ¢ is linked to the plasma triangularity
and k to the ellipticity and in addition R, represents the position of the magnetic axis.
When the magnetic field is axisymmetric, as assumed in section 2.2, the equilibrium
parameters (e.g. R, Z, A, q, Kk, 0, etc.) do not depend on the toroidal angle ¢.
Hence the equilibrium is also called "two dimensional” [11].

Inner Poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer Poloidal field coils
(for plasma positioning and shaping)

Resulting Helical Magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

Figure 2.1: Schematic diagram of the tokamak principle. Image: EUROfusion

In burning plasmas, since the fuel reactivity ({(ov), o is the fusion cross section v
is the relative velocity between ions and the angular brackets indicate an average
over Maxwellian distributions), defined as the probability of reaction per unit time
per unit density, increases when n and T increase, p must be sufficiently high. In
addition, the generation of the magnetic field is one of the major costs of running
a plasma device. Hence an important tokamak figure of merit related to machine
efficiency is the ratio between the kinetic pressure p and the magnetic pressure,
namely [11]:

g= 2o} 24iolp)
B? B2

where the angular brackets denote the volume average, ( = ) = 1/V [ /g( - )drdfdep.
The poloidal beta is defined by [16]:

4 _ Ipas/Jds
" B2/(2uo)

where the integrals represent surface integration over the poloidal cross section with
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B, = pol,/l where [ is the length of the poloidal plasma perimeter and I, is the
plasma current. An alternative definition uses the volume average instead of the
surface average.

Now it is useful to introduce some tokamak parameters. We define the smallness
parameter € as the ratio between the minor (a) and the major (Ry) radius of the
machine, i.e. ¢ = a/Ry < 1. The ratio of the poloidal field Bp over the toroidal field
B, scales with the smallness parameter ¢, i.e.:

BP/BQO ~ &,

where the toroidal magnetic field varies according to B, ~ 1/R. Therefore we have:

2p0p 2p0p
B~ ~er By~ ~eT2B .

B2 ’ B3,

An important parameter is the safety factor ¢ which denotes the ratio of toroidal
to poloidal turns of the magnetic field on a given magnetic field surface and is defined
as:

T(w) [ dl,
2 R2Bp

q(¥) = 1,

where the integral is carried over a poloidal circuit around the magnetic surface
labelled by 1. As discussed briefly in Chapter 1, if the numerical value of ¢ is an
irrational number, then the magnetic field line densely covers the magnetic surface.
The rational surfaces are the surfaces for which ¢ is a rational, namely ¢ = m/n. On
such surfaces, the magnetic field line closes on itself after m toroidal and n poloidal
turns. In the cylindrical limit, making use of (2.9), we can approximate:

_ T(l/)) dﬁ\/gN rB,
1= oxdavjar I R2 T RyBp

where 7 is the radial coordinate and labels the flux surface, ¥ is a poloidal-like angle
and /g is the Jacobian of the toroidal coordinate system (r,1, ). The edge value
of ¢ is linked to the total toroidal plasma current I, via ¢(a) ~ (2ma®B,)/ (1o, R).
The shape of the safety factor is thus related to the current density profile, which is
given in a cylinder by:

Typical profiles of the tokamak magnetic fields and ¢ profile are shown in Fig. (2.2)-a.

Reversed field pinches (RFPs) like tokamaks are nominally axisymmetric config-
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Figure 2.2: Magnetic field (toroidal and poloidal) strength and safety factor ¢, for Tokamak
(a) and RFP (b) configuration at ¥ = 0.

urations (note as we shall see in this thesis, both tokamak and RFP plasmas can
develop stationary states which are strongly non-axisymmetric). This configuration
relies on currents flowing in the plasma for the generation of both poloidal and
toroidal components of the magnetic field. The poloidal field Bp is produced by the
toroidal component of the plasma current while the toroidal field B, is produced by
the external toroidal field coil and the poloidal component of the plasma current.
Unlike in a tokamak, the magnitude of B, and Bp is comparable. Typical profiles
of RFP magnetic fields are shown in Fig. (2.2)-b. The peculiar characteristic of an
RFP plasma is that its toroidal magnetic field has a reversal in its sign close to the
edge. The volume averaged toroidal field is typically much weaker than the toroidal
field of a similarly sized tokamak device (two to ten times smaller). In this way, in
principle, a highly sheared magnetic configuration can be obtained which is stable
with respect to MHD modes at low values of the safety factor and high values of j3.
The ordering for the relevant physical quantities reads:

rBy
RoBP

BP/Bclea qn~ ~ &, BNL ﬁlea

Therefore in principle, we could expect high-beta (8 = 10 ~ 20%) plasmas to be
confined in an MHD stable way. Since the plasma current can be larger than the
Kruskal-Shafranov limit (¢ < 1), it was hoped that RFP would reach the ignition
condition by ohmic heating alone. However it is important to note that RFP plasma
dynamics are generally highly turbulent and in addition near the edge stochastic
regions form due to the overlapping of rational surfaces.

Generally the Grad-Shafranov equation (2.11), valid both for tokamaks and RFPs,
is solved numerically. There are however a few cases for which the Grad-Shafranov
equation can be solved analytically [14]. The standard procedure for tackling the
analytic solution of (2.11) is to expand in powers of the smallness parameter &
certain relevant plasma quantities such as the poloidal flux 1, p, etc. Such analytic
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expansion will be used as a basis for the analytic calculations of stability in Chapters
3 and 4. Nevertheless, for accurate calculation of plasma stability (e.g. Chapter 3),
numerically resolved equilibria are required. The Grad-Shafranov equation (2.11),
as shown earlier, is obtained by imposing that the equilibrium is axisymmetric
(0, = 0). It is possible however to have plasma equilibrium configurations in which
the axisymmetric constraint is relaxed. Clearly stellarator equilibria can not be
solved assuming (2.11) since the plasmas are naturally strongly non-axisymmetric
due to the vessel and coil geometry. Moreover, it is possible to have particular
conditions in axisymmetric machines, for which helical equilibria can develop. This
has been confirmed numerically for tokamak plasmas [17] and experimentally in
RFPs (RFX-SHAx states) [7]. It is clear that Eq. (2.11) is not appropriate anymore
for describing such plasma states. Therefore we must abandon such an approach and
use an alternative method [18]. We start with writing the expression for the plasma

energy:
de | — + —— 2.12
/ i <2M0 TT- 1> (212)

where I' = 5/3. The new approach for finding an equilibrium configuration is based
on a variational principle, in which the integral expression above is minimised. The
lowest energy state corresponds to the equilibrium state. Such an approach is used for
the determination of the equilibrium in the VMEC code [18] (the numerical procedure
is described in section C.1). It can be shown that minimisation of Eq. (2.12) reduces
exactly to the Grad-Shafranov equation (2.11) in the limit of axisymmetry (0, = 0).

2.4 Ideal MHD stability

In laboratory generated plasmas, the plasma equilibrium is spontaneously broken by
the presence of small perturbations which alter the balance of the forces acting on
the system. Such perturbations can develop in different ways: they can either restore
the plasma to its starting equilibrium state or they can grow. Their growth can
eventually saturate, thereby leading to the formation of a new equilibrium state, or
it can continue to grow until the plasma confinement is completely destroyed. Ideal
(non resistive) perturbations of this kind are very dangerous, since disruptions can
occur within a few milliseconds or less. This demonstrates that ideal MHD stability
is of extreme importance for good confinement of fusion devices.
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2.4.1 The normal mode problem and the energy principle

Let us begin this section by examining the normal mode method to the assessment
of ideal MHD stability. The starting point of the normal mode approach is the
linearisation of the MHD equations (Egs. (2.1)-(2.7)) about the equilibrium state,
giving [19]:

000;v1 = —Vp1 + (V x By) x By + (V x By) x By, (2.13)
0;B; =V x (v X By), (2.14)
Op1 = —v1 - Vpo —I'poV - vy, (2.15)
0o =V - (voo), (2.16)

where the subscript 0 indicates equilibrium quantities and the subscript 1 perturbed
ones. Combining these equations together and assuming that the perturbations have
a normal mode time dependence of the form exp(—iwt), we obtain the following
expression written in terms of the fluid displacement &:

—W290€ = F(f) =
(VX B))xBy+ (VXxBy) xB;y+V (& Vpy+TpV - &), (2.17)

where the differential operator F' has the property of being self adjoint [11, 20],
namely:

[n-Fedz- [¢ Fmds.

Dotting Eq. (2.17) with £* and integrating over the plasma volume, one has [20, 21]:

wQ;/d3mgo|§|2 + ;/dgwﬁ* - F(&) = 0K + W = const, (2.18)
where

K = —w2; / 00l€ PPz = —w?K, with K = ;/g0]£]2d3w, (2.19)

SW = —;/5* . F(&)d. (2.20)

OW can be interpreted as the work done against the force F', when the plasma is
displaced by a quantity £&. By integration by parts, after some algebra, we can write:

oW = ;/[|B1|2+Fp0|v . £|2_£j_ . (JO % Bl)‘f‘(gL . Vpo)v ) 51::_] d3a:,
(2.21)
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where the integration is carried over the plasma volume, having assumed vanishing
contributions from the surface term and the vacuum field.

From the self adjointness property of F', it can be easily shown that the eigenvalues
w? in Eq. (2.18) are purely real. This means that we must have either an oscillation
around the equilibrium state (w? > 0) or an exponential growth of the perturbation
(w? < 0). Indeed if we write Eq. (2.18) as w? = §W/K, this immediately shows that
if W > 0 for all the possible displacements &, the system is stable. This condition
is the so called energy principle [20] and §W is the energy integral.

This is a powerful tool widely used in plasma physics, in particular in magnetic
confinement fusion. Usually linear stability is analysed by minimising the quantity
0K + 0W via the Euler-Lagrange equations. It turns out that we can write the total
energy in the form [22]:

dg

5K + 6W = /Oac (gr, d;ﬁ) dr, (2.22)

thus the extremum of the quantity above with respect to a variation over &, at
constant w? is obtained by the Euler-Lagrange equation:

oL d oL _0
o6 dr (8(%)) o
which, crucially, coincides identically with the equation of motion (2.13). The
minimisation procedure consists of deducing from Eq. (2.18) the Euler-Lagrange
equations in the form (2.22), and then expanding all quantities in a power series in
the inverse aspect ratio € = a/Ry (a and Ry are the plasma minor and major radius

respectively). Now we are ready to apply the energy principle and the minimisation
procedure to the practical physical case of the internal kink mode.

2.4.2 The linear and nonlinear internal kink mode in toka-
mak geometry

An instability can develop more easily as a result of the weakening of the field line
bending stabilisation in response to a plasma displacement. The field line bending
stabilising effect is significantly weakened when the pitch of the unperturbed magnetic
field lines becomes sufficiently small i.e. almost perpendicular to the wave vector:

0B, | ~ k) - By ~ (nq(r) —m)By/Ry ~ 0.

This occurs when the value of the safety factor is sufficiently close to m/n (as we
shall see later it is not necessary to have exact resonance) as previously mentioned.
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The m = n = 1 internal mode is one of the simplest and most important to analyse.
The stability of this mode can be assessed assuming various shapes of the ¢ profile
23] as shown in Fig. 2.3. Since all the three cases shown in figure 2.3 have regions

0.5

Figure 2.3: Various shapes of the safety factor which are prone to the ideal internal kink
instability [24]: monotonic (a), flat (b), hollow (c)

where ¢ is close to unity, m = n = 1 modes are expected to be unstable. When the
safety factor is monotonic and presents a ¢ = 1 surface located at r = ry, it gives
rise to the so called internal kink mode, whose results on linear and nonlinear theory
are summarised in the next section.

However it turns out that the m = n = 1 internal kink instability can develop
also for non-monotonic ¢ profiles which have an off axis minimum close to unity. If
Gmin is sufficiently close to one, though the exact resonance is avoided, the field line
bending stabilisation is reduced in the narrow region around that point, therefore
the instability can occur. Nevertheless, the distorsion of the magnetic flux surfaces
is similar for cases (a) and (c) in Fig. 2.3, but is different for cases where the exact
resonance is avoided (see Fig. 2.6). Chapter 3 analyses the linear and nonlinear
behaviour of the m = 1 internal kink mode with hollow ¢ (cf. Fig. 2.3), where the
theory is extended to n > 1 modes (which are of particular importance in RFP
plasmas).

If g is close to unity over a large portion of the plasma core, i.e. with vanishing
shear in the central region, unstable m = 1 internal modes can develop. The
shape of the flux surfaces due to the perturbation is rather different from the one
found for the case of monotonic and hollow safety factors (see Fig. 2.6 in section
2.6). Considerations on the stability of this configuration and the implication on
resistive stability will be discusses in section 2.6, while the analytic theory and the
numerical characterisation of such perturbations will be addressed in Chapters 4 and
5 respectively.
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Linear theory of the m = 1 internal kink mode with finite magnetic shear

In this section we overview the stability of the internal kink mode for plasmas with
finite magnetic shear (case (a) in Fig. 2.3). These stability conditions are in some
respects more easily described than the low shear or reverse shear cases of particular
interest in this thesis. The internal kink mode is particularly dangerous since it can
trigger sawteeth oscillations which eventually lead to a disruption of the plasma
discharge. This instability corresponds to a rigid shift of the plasma column, as it
will be shown later, and it occurs when the safety factor drops below unity close to

the magnetic axis. An internal-kink unstable monotonic safety factor is shown in
Figs. 2.3-(a) and 2.4.

In order to simplify the analysis, we initially assume a cylindrical equilibrium
described by the coordinate system (r, 1, z), where r is the radial variable, ¥ is the
poloidal angle and z is the azimuthal direction. The safety factor is taken to be
increasing monotonically with respect to r, with go < 1 (go is the value of the safety
factor on the magnetic axis).

We apply now the minimisation procedure described in the previous section.
Equation (2.21) is cast in the form dW = Wy + e2Ws + W, + ..., where we
normalised potential energy in the following manner 6W = §W/(2n2a2 Ry B2/ o).
5/1/\[/0 is minimised by imposing V - £, = 0 where &, = &.e, + {gey, so that SW is
written in the following form [19, 25]:

_ a dé 12
5W:/0 dr (f’df +g|§|2>, (2.23)
T(mBﬁ/r +k.B.)?

= 2.24
f k‘QBg ? ( )
2k2 dp, m? —1 2k? m 2
= —— k2 i | k2B2 — () B; 2.25
g k2Bgdr+< o TR g BB ) B ) (2:25)
where £ = £,./a (a is the plasma minor radius), k, = —n/R, k* = (m/r)* + k2,

having used the ansatz £ = &(r)explimd + ik,z]. At leading order we assume
B, ~ By = const., where ¢ = r/R < 1. The functions f and g are thus expanded in
powers of 7k, ~ & up to second order (valid when n < ¢7'), leading to the following
expression for §W [19, 25, 26]:

1 e n 1 ?
S 9
5I/V2_72/ rdr (m_> [7’

It is immediate to recognise that for the special case m = 1 (the internal kink mode),

€
dr

+ (m? — 1)|§|21 . (2.26)
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the energy integral is minimised by the singular function (see also Fig. 2.4) [25]:

£= {50’ TN (2.27)

0, r >,

where r; denotes the position where ¢ = 1.

0 0.2 04 06 08 1

Figure 2.4: Safety factor and corresponding eigenfunction for the internal kink mode.

For the special case of the m = 1 mode, regardless of the magnetic shear, the field
line cannot bend in the poloidal plane in response to the rigid shift of the m =1
mode. Both Wy and W5 have been minimised to zero, implying that the internal
kink is marginally stable to order 2. Fourth order terms in (2.23) are therefore
required for the determination of the stability of the internal kink. Going further to
fourth order expansion in the calculation of W, we have for the special case m =1
in (2.26):

_ n? ra 2r dpy 12 1 1 2 _ 2 [T

(2.28)

This cylindrical derivation, valid to order €*, is correct only when modes with n > 1
are considered. For n = 1 [26] the toroidicity of the system (in particular the
Shafranov shift) becomes important and the coupling which occurs between the
m = 1 and the m = 2 mode plays a crucial role for the correct determination of the
energy integral. Under the assumption 3, ~ s ~ 1 (where s is the magnetic shear
defined as s = rdlngq/dr), SW is expanded up to fourth order in €, and the energy
minimisation procedure leads to the following replacement:

_ 1\ 1
W = (1= ) iWe + —dWr. (2.29)
n n

The cylindrical contribution is entirely cancelled by the inclusion of toroidal effects.
For a current profile of the form J,(r) ~ 1 — (r/a)” with v < 4, ¢(r;) = j and
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1 — go < 1, the toroidal contribution to the energy integral reads [19, 26]:

rd 13 4—v -
2-w) (55 % e - )&, (2.30)

5/“\/7"2’3

where 3, = —2/By()? [ %%dr, with g(rq) = 2.

A special treatment is required close to the rational surface, since equation (2.28)
is a valid description of the total energy SW + 6K everywhere except close to the
rational surface. Near the rational surface, we have also to consider the inertia in
the total energy 0W + d K, which we are permitted to treat in slab geometry. Here
0K = =212 Row? [3 ro(|&-|* + |€9]?)dr. By varying this quantity with respect to & we
obtain at leading order the Euler-Lagrange equation for the fluid displacement near
the rational surface (for sake of simplicity we omit to write the subscript 0 in the
equilibrium magnetic field B) [25]:

c;i [7«3 (o0on* + (k - B)?) Zﬂ =0, (2.31)
where 7 = —iw and k - B = By(1 — q)/r with n = 1. Note that the inertia term
removes the singular point at the rational ¢ = 1 surface in the expression above
where k - B vanishes. Near the singular layer we write k - B =~ (k - B); x, where
"=d/dr and x = r —ry ~ re (we recall tha ¢ is the inverse aspect ratio). The energy
conservation requires (for n = 1):

§Ky, + 0W,, = —6Wr, (2.32)
NTT r\?i((k - B), ]? /°° 2 Y/ Qo ko ? d§ ?
§K, + oW, = (=) 2822 [y IV EN = .
wr e = () P g [ | (g B).[) | \dr
(2.33)

The layer solution of (2.31), where inertia is important, is:

¢ = 3%{1 — (2/m)arctan[(|k - B).,|'z)/vy/1oel}, (2.34)

where boundary conditions &(r < r1) = &, and £(r > r;) = 0, have been imposed.

Substituting the above expression in (2.33) we obtain from the dispersion relation

(2.32), the estimate for the growth rate ~. Using |(k - B);, | ~ ¢, B./R we have:
TR Bg(ﬁ/f/T

where €; = r1 /R, which shows that the system becomes unstable when §Wr < 0.

N (2.35)
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Nonlinear calculation of the saturation of the m = 1 internal kink mode
with finite magnetic shear

In order to calculate the static nonlinear helical equilibrium we simplify the analysis
setting ourselves in cylindrical geometry described by the coordinate system (r, 4, z),
where we assume a constant toroidal field in the narrow layer where ¢ ~ 1. Even
though a cylindrical approximation is chosen for the non-linear treatment, the analysis
is capable of non-linearly continuing the toroidal linear stability analysis just derived.
In a static helical equilibrium, all the quantities must depend only upon the radial
variable 7 and the helical angle y = 19 + k.z. We introduce a helical flux function v,
defined by v, = ¢ — (nByr?)/(2mR), where v is linked to the poloidal field as shown
previously (B, = e, x V1), such that 0¢,/0r = By(1 — ¢q). Since the plasma is
considered ideal, both poloidal and toroidal magnetic fluxes are conserved. Moreover
1, fulfils the equation 0, /0t +v - V), = 0, so that the helical flux 1), is preserved
while following the plasma motion. Thus if the flux surfaces are shifted by a small
amount &y, then the helical flux is linked to the initial cylindrical equilibrium flux 1)y
by the relation . (r,d) = o(r — & (r,9)) (fo sake of simplicity here we set z = 0).
By Taylor-expanding the previous expression in series of x in a neighbourhood of
the singular ¢ = 1 surface, we get [19, 25]:

Uy = Yo+ s2%ri[r(k - B)|. +.... (2.36)

It is important to note that the expansion above is not valid in the case of reversed
shear when the exact resonance ¢ = 1 is avoided, since in this particular case
(k- B),, ~(1—q)#0and (k- B)]. =0, so that we must retain the O(z?*) term.
This case will be analysed in the next chapter.

By taking the curl of Eq. (2.8) and choosing the projection along the magnetic
field, we have at leading order:

2
VQw* = Jz(w*)a V2 = 12 g + Lo

“ror or ' r2ov (2:37)

The plasma is assumed incompressible (V - € = 0), so that the area in the r — 9
plane enclosed by a flux surface is constant when the surface is moved, i.e.:

/ rdrdd = [ rdrd?. (2.38)
* 1/10

By assuming strong radial excursions, Eq. (2.37) is integrated over the radial
variable r and eventually becomes [19, 25]:

(‘fo) — +JF(da) + G), (2.39)
9
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with F' and GG are unknown functions to be determined. The =+ sign indicates the
formation of a current sheet at the resonant surface. In the unperturbed cylindrical
equilibrium, we take a surface labelled by the quantity x, which represents the
distance from the singular surface located in 1. The fluid displacement £(r, ) shifts
the surface labelled z to r(z,), according to:

r(z,9) =ri+x+£(r09).
Differentiating Eq. (2.36) and the expression above with respect to z and inserting

the result into (2.39), after integration in z, we obtain:

:LJ

(z,9) = + / 4z’ ([f(x) S 1) + h(9), (2.40)

with the normalisation f = F/[r(k - B)|,,. Differentiating (2.40) with respect to z
and integrating over the poloidal angle, yields to the following expression:

1 T
o 6+ g = 2

from which it follows that f — 22 for large z. The asymptotic expansion of ¢ reads:

T v - Lg() T 00
f 4 ([f<x>+aw>1l/2 1)*2 y ThO) oot

/

_/OOO da’ <[f(.7c) _|_xg(19)]1/2 - 1) + ;g(j) +h(d), T — —o0,

from which we have that lim,_, . £(x,9) = { cos ¥ and lim, . {(z,9) = 0. The
displacement of (2.42) can be connected to the displacement (2.34) resolved in the
linear analysis of the last section (which depends on ~, and hence on §Wr):

£(x,9) ~ (2.42)

&1+ (yrari/mx)] cosd, z <0

2.43
&o(yTar/mx) cos , x>0, ( )

é(o) ~ {
where 74 = By/\/ftooo- Hence from (2.42) and (2.43) with the boundary conditions

given above we have h(9) = — [° dz’ ([f(

W — 1) and we are left with the

following expression:

oot = =2 [ g 1)

By using Eq (2.41), we can transform the equation above into an integral equation
for g(1), namely [25] (for the sake of simplicity we omit the dependence of f and §
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upon their arguments):

& cost = —2/ df $(f ), 2m ( 7{ dv/2m ) (2.44)

§(T+ )20 /2m) Jiti

This equation can be solved by means of a variational principle, and provides an
expression for the function §(?). Matching asymptotically Eq. (2.42) with Eq. (2.43)
we obtain:

€0

[(k:B/ gdr = /027r cos g (1)dd,

and solving numerically (2.44) are able to write the amplitude of the non-linearly
saturated helical kink as a function of the linear growth rate in the following manner
(19, 25]:

13.3

q1

o = (2.45)

where the toroidal effects are contained inside the expression for the growth rate
. These results show that the ideal internal kink mode has a saturated nonlinear
solution of amplitude given by (2.45) and radial and poloidal structure given by the
linear analysis, i.e. by (2.43). In the next chapter the amplitude of this solution
is compared with simulations performed with the initial value code XTOR-2F (see
Appendix C C.2). Note however that in practise current sheets develop on the ¢ =1
surface, so that (2.45) would be modified strongly by resistivity [19]. However, in
the next chapter we will derive a similar non-linear solution for the m = 1 internal
kink, but with a hollow safety factor, namely ¢,,;, > 1. For such a calculation the
resistivity can be safely neglected on the m/n surface. Similar rigid displacements
for m = 1 modes can be found also in RFP plasmas as it will be shown in Chapter
3, where an analogous derivation is employed for calculating the shift of a m =1
mode when the g profile presents an off axis minimum. The theory of the nonlinear
saturation is also extended to general toroidal mode numbers.

2.5 Resistive internal modes with finite magnetic
shear

We now allow for plasma resistivity in the MHD equation. Resistive effects are taken
into account by modifying Eq. (2.4) in the following manner:

E+vxB=nJ, (2.46)

28 Daniele Brunetti — CRPP/EPFL



2.5. Resistive internal modes with finite magnetic shear

where 7 is the plasma resistivity and J the current density. The most simple
expression for 7 is given by Spitzer resistivity [27]:

1 m}z/QZe2 In A -3/
— 3/2 o372 e
T2 122621

n

where Z is the ionisation of the nuclei, and A ~ 10 ~ 20 is the Coulomb logarithm
where A ~ (127/Z)n)3, [27].

When plasma resistivity is allowed in the MHD equations, new types of instabilities
occur. At present we focus our attention on the so called tearing instability. The
tearing instability is closely related to the kink instability described in the previous
section. Tearing modes are driven by current density gradients and by the presence
of a small amount of resistivity (due to electron-ion collisions) on surfaces which are
resonant with the safety factor whose value is a rational, i.e. ¢ = m/n. On these
“fragile” surfaces, the forces preventing magnetic reconnection become sufficiently
small that plasma resistivity can no longer be neglected and the field lines are allowed
to break, implying that magnetic reconnection can take place. If resistivity is not
permitted, non physical current sheets (singular spikes of current) occur on rational
surfaces, as mentioned just previously for the non-linear internal kink mode *.

Hence the flux surfaces are deformed from their initial nested configuration and
“island” structures appear in the poloidal plane, as shown in figure 2.5. When
the magnetic island is formed, the original ¢ = m/n surface is transformed into a
separatrix, and as the island becomes larger, forms the external edge of the island.
The magnetic field lines inside the island lie on helical surfaces with their own
magnetic axis labelled by the O-point (see Fig. 2.5). The two parts which divide the
separatrix meet at the X-points. Although a tokamak plasma can form a stationary
state in the presence of magnetic islands, these structures enhance the radial energy
transport along the magnetic field lines. In practice, the width of an island can
be 10% ~ 20% of the minor radius, with the result that temperature gradients are
flattened in this region. Density profiles are also flattened across the island structure,
although typically its flattening is less pronounced than the temperature.

'Let us take a simple example: consider helical perturbations in cylindrical approximation
with a Lagrangian fluid displacement in the coordinate system (r,0,z) given by &(r,0,2,t) =
&(r) expl[i(mb — nz/R) + ~t], such that v = 0€/0t. By using Eq. (2.4) we can write the radial
component of the displacement:

¢ =3B,/ [imBG (1- “q(r))} ,

r m

where ) B, is the perturbed radial magnetic field. It is clear that the displacement above diverges
on the rational ¢ = m/n surface, i.e. is singular on this surface. In proximity of such surface, if
the plasma resistivity 7 is non vanishing, the component of the magnetic field orthogonal to the
equilibrium surfaces can grow so that the magnetic diffusion becomes important and changes in the
magnetic topology are permitted.
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X-Point

O-Point

Equilibrium Tearing m=2

Figure 2.5: Magnetic flux surfaces for an equilibrium nested configuration (left) and recon-
nected configuration with an island with poloidal wave number m = 2 (right).

Tearing instabilities limit the plasma [ at significantly lower values than the ideal
limits [28]. These instabilities are a major concern for a future operating reactor,
since they degrade substantially the plasma confinement (and hence fusion reactivity)
and they can eventually lead to a disruption affecting the integrity of the machine.
Tearing modes have been extensively studied theoretically and experimentally over
the years and the understanding of the underlying physics has rapidly expanded.
The next two sections present a simple mathematical description of such instabilities
in the linear and nonlinear regime.

Basic linear classical tearing mode dynamics

Since the growth of the instability is sufficiently slow, inertial effects are negligible
over a large portion of the plasma volume and the plasma can be assumed ideally
conducting (n = 0). However, close to a rational resonant surface (whose position is
denoted here by ry), plasma resistivity and inertia (although small) have an important
effect upon the plasma behaviour. Thus the theory of tearing modes involves solving
two sets of equations, one far from the resonant surface ry “outer region”, and another
set close to this resonant layer ”inner region”. The solutions for the eigenfunction
obtained separately in these two regions are matched, and the matching procedure
determines the growth rate (eigenvalue).

The equation describing the plasma state in the outer region is given by (2.8).
The large aspect ratio approximation is employed to order the magnetic field and
the currents [16], both equilibrium and perturbed (the equilibrium quantities are
denoted by the subscript 0 and the perturbed ones by a tilde):

dB

Byo ~ ~ B0, Joo ~edJoo By, ~eB,~eBy, B,~edy~ely,

with e = a/Ry < 1. In the ordering adopted, the perturbed magnetic field can be
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expressed in terms of a flux function ¢, defined by:

B 100 5 dv

L L

By taking the toroidal projection of the curl of Eq. (2.8) and using Ampére’s
law, after linearisation one has in cylindrical geometry the tearing equation for the
perturbed magnetic flux, which reads:

- 1d [ dp\ m?- dJ/dr -
27 2@ [ Ay _mT o @Je0/dT 2.4

where the perturbation has been assumed to be of the form exp[i(mid — ng)|. This
equation has a singularity in » = ry, where the resonance with the safety factor
occurs, i.e. where ¢ = m/n.

It can be shown that the change in the magnetic energy, due to this perturbation,
is given by [29]:

dJ,o/dr ~ 7 /
W=t fas (1908 L) — s

Ho

where the integration is carried over the plasma volume and:

A= et ith — 0. (2.48)

¢ T‘S—(S’

Hence the free energy available for the development of the instability, is proportional
to the jump of ¢ across r = 7.

The equation for the jump A’ calculated without resistivity has to be matched
to the jump A’ calculated near the surface ¢ = m/n (this including inertia and
resistivity). This procedure give a dispersion relation for the growth rate 7. The
relevant resistive equations are obtained by taking the radial projection of the curl
of the Ohm’s law Eq. (2.46):

v + By (1 . "q) 5, = L2, (2.49)

m Ho
which highlights the dominant contribution of the resistive term in the layer region,
where the perturbation is assumed varying in time as €7*. Equation (2.47), augmented
by the inertial term, is solved simultaneously with Eq. (2.49) and matched with the
solution from the outer region via A’, yielding the following eigenvalue relation for
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the growth rate [16]:
aag \*°
~=0.55 (nq> 753/57';2/5((1A’)4/5,

where Tg = p0a®/1, T4 = a\/f1o0/ B, and where A’ is that of the external region, i.e.
the solution of Eq. (2.47). Hence the “classical” tearing mode becomes unstable
when A’ > 0, and it grows on relatively slow time scales. Indeed for a deuterium
JET-like plasma with B, ~ 5T, n. ~ 10*°*m™3, T, ~ 5KeV and the minor radius
a = 1m, the tearing mode is expected to grow within 70 ms [16], which is a much
longer time than typical ideal instabilities which grow within few milliseconds or less.
It can be shown analytically that high poloidal wave number (m > 1) modes are
intrinsically stable, since A’ < 0. Therefore only moderately low m (m = 2 ~ 5)
modes are expected to be unstable.

Essential nonlinear classical tearing mode dynamics

Once the end of the linear phase is reached, a resistive mode grows non-linearly
according to the Rutherford equation [30]. A tearing mode is called classical when
neoclassical effects, e.g. bootstrap contributions, are neglected. Choosing sheet pinch

geometry, i.e. in a coordinate system (z,y, ¢ — z) [30] Eq. (2.4) is recast in terms
of the helical flux v, i.e.:

(O +v - V) =nJ, - E,, (2.50)

where ¢ is such that B, = —0v¢/0y and B, = 0v/0x. Inertia can be neglected inside
the reconnecting layer in the nonlinear phase [30], therefore from the curl of (2.2)
we have B - V.J, = 0 implying that J, = J,(¢). The flux is decomposed in the
following manner (z,y,t) = 1o(x) 4+ 91 (y,t) (constant 1-approximation [30, 31]),
with only one dominant mode where ¥, = 1 (t) cos ky.

The evolution equation for the island width in the nonlinear phase is obtained
by matching the logarithmic-derivative discontinuities in the outer solution to those
arising from the asymptotic solution in the nonlinear singular layer. The current
density in the nonlinear layer is given by [30]:

() = Joo+ 0 N0 /[ — i)Yy /([ — 1]y, (2.51)

with (f), = Jo™* fkdy/2x. Approximating V2 ~ 92/022 and integrating over

the variable x, we obtain the evolution equation for the island width w = 44/ /1
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[30]:
ow

5 = L22nd, (2.52)

which shows that the nonlinear growth is proportional to the linear growth rate.
Eventually the classical tearing mode saturates to a critical value, according to the
following expression [32]:

ow

5 = 1.66n(A'(w) — aw), (2.53)

where A'(w) = 1’/ ¢|:*fzg and « is a complicated expression related to the local
plasma properties (see [16, 32]) and the factor 1.66 comes from a more exact calcula-
tion [32]. Note that the tearing parameter A’ in Eq. (2.52) is not a function of w,
whereas in Eq. (2.53) we have A’(w) due to the effect of an island on the current
profile [33].

2.6 Introduction to stability in plasmas with low
magnetic shear

As briefly described in Chapter 1, hybrid plasmas are configurations where the
safety factor is almost resonant with a rational number in the central region, i.e.
g = m/n + 6q with dg < 1, and are of particular interest both in tokamak and
RFP configurations as it will be described in Chapter 3. The theoretical study of
low shear plasmas dates back to the mid 80’s when JET sawtooth collapses were
experimentally reported to be characterised by a radial displacement £(r) which was
smoother compared to the rigid displacement typical of the m = 1 internal kink (cf.
Eq. (2.27)) [34, 35, 36]. Numerical computations of equilibria with very flat ¢ in the
central region of the plasma showed an approximately parabolic radial displacement
[23], in agreement with experimental measurements in Ref. [36], suggesting an
extended region of extremely low magnetic shear. A sketch of the displaced flux
surfaces of a m = n = 1 mode in a finite and reversed shear configuration is shown
in Fig. 2.6.

Tokamak hybrid plasmas are characterised by the absence of a ¢ = 1 surface
with a vanishing or weak magnetic shear and ¢(0) = 1. Nevertheless, although
this configuration usually ensures sawteeth-free discharges which is one of the key
ingredients for long pulse discharges, MHD activity, both ideal and resistive, is still
observed. As it will be shown in the next section, the ideal MHD activity in low
shear plasmas, usually associated with pressure driven m = 1 modes, very often
saturates to persistent Long Lived Modes (LLMs) which are experimentally observed
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m=1 monotonic/reversed q (a),(c) m=1 flat q (b)

Figure 2.6: Shape of the flux surfaces corresponding to the monotonic and reversed ¢ profiles
(left, (a) and (c) in Fig. 2.3) and flat ¢ (right, (b) in Fig. 2.3).

both in tokamaks and RFPs. A significant degradation of performance and braking
of the core rotation is found to occur simultaneously with the appearance of the LLM
[8]. The anomalous fast ion diffusion rate is enhanced and is increased by nearly a
factor of two during the LLM phase and the loss rate of fast ions increases steadily
after LLM onset [8].

Low shear plasmas are also prone to develop Neoclassical Tearing Modes (NTMs).
For NTMs neoclassical effects play a crucial role in their dynamics. These modes
are a high-f phenomenon, classically linear tearing stable (A’ < 0) [33, 37] and
non-linearly unstable [33]. They are driven by helical holes in the bootstrap current
arising from the local pressure profile flattening in the region of the island.? The
onset of NTMs, which is one of the most serious concerns for future tokamaks,
is the principal § limit in baseline scenarios such as ELMy H-modes in today’s
tokamaks. These modes occur on present tokamaks at normalised pressure values
comparable to those envisaged for baseline scenarios in future devices, such as ITER,
reducing confinement and sometimes causing disruptions [38]. We have generally
two types of NTMs [5]: at intermediate Sy (By = (f)aB,/1, , where a|m] is the
minor radius, I,[MA] the plasma current, B,[T] the toroidal field and (5)[%] is
the volume averaged normalised plasma pressure [6]) a 3/2 mode which degrades
confinement is often observed. If 3 is increased, a 2/1 NTM is observed, which often
causes disruptions [38, 39].

The evolution of NTMs is well described by the modified Rutherford equation,

2The bootstrap current is a neoclassical toroidal current caused by the poloidal non-uniformity
of the axisymmetric field which leads to an imbalance between passing and trapped particles
which generates a net current proportional to the pressure gradient, namely jjs ~ —&/2Bp'dp/dr
[21, 42, 43].
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which reads [32, 40, 41] (classical and neoclassical /other effects are highlighted)?:

TR dw

= =AN—aw+ A+ AL, + A, + ... 2.54

Ty dt —_— BS GGJ Pol ( )
Classical Neoclassical and other effects

Low m modes, for which A’ is not too negative, are more likely to be unstable,
while high m modes require more field line bending for instability. The “bootstrap”
contribution is contained in A’z¢. Additional effects such as localised heating and
current deposition are not considered here.

At small island sizes the polarisation and the GGJ terms act to oppose the boot-
strap drive, leading to the requirement of a critical island size or "seed” perturbation
required in order to obtain neoclassical growth. If a “seed” island is formed and it has
a width which exceeds a critical value w..;, then the island is driven neoclassically
and it increases its amplitude. The physical mechanism of the seeding of the island
is not completely understood. The seed can be due to another MHD instability
such as sawteeth, fishbones and Edge Localised Modes (ELMs) or further physical
mechanisms, such as coupling to the NTM resonant surface [5, 40] (for example
nonlinear three wave coupling has been invoked for the seeding of the island [46]).

2.6.1 Experimental motivation for investigations of ideal and
resistive instabilities in low shear plasmas

In this section we present some experimental observations which underline the
importance of studying the stability of hybrid-like plasmas. As we have seen in the
previous sections, hybrid discharges, both in tokamaks and RFPs, are characterised by
having an almost shear free or weakly reversed shear core region, where the extremum
of the safety factor is close to a low order rational. In such discharges, it frequently
occurs that ideal MHD instabilities eventually saturate giving rise to LLMs as shown
in Fig. 2.7 [8]. The most commonly observed LLM in tokamaks is the saturated
m =n = 1 mode which occurs when the g-profile is resonant or nearly resonant with
m/n = 1, either with monotonic or shear reversed or flat ¢ profiles (see Fig. 2.3).
Similar regimes have also been reported in RFP hybrid plasmas (g slightly inverted)
[7], where a dominant m/n = 1/7 mode develops for sufficiently high currents in

3The bootstrap, Glasser-Greene-Johnson (GGJ) and polarisation terms are given by

w Al ﬁ A/ w
) GGL ™~ — ) Pol ™ — )
w? + wg Vw? +0.2w3 ° wh + w}

where wg and w,, account for small island width effects. The Glasser-Greene-Johnson term (AL ;)
[44] is always stabilising and it describes the geometrical effects due to the magnetic field curvature
and it becomes relevant in low aspect ratio tokamaks. Finally the effects of the polarisation current,
caused by perturbations in the electrostatic potential, are contained in A’ ; [45].

Algs ~ Bp
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Figure 2.7: MAST frequency spectrogram of the MHD activity measured by Mirnov coils
(left) and g-profile evolution (EFIT and MSE measurements) during the LLM phase (from

t ~ 0.25s to t & 0.33s). ¢ is the normalised poloidal flux. Courtesy of I. T. Chapman et al.
(2010).

RFX-mod. These non-linearly saturated ideal MHD modes can be regarded as a new
equilibrium. These saturated equilibrium states have been modelled numerically by
employing 3D equilibrium codes showing the possibility of the existence, besides the
usual axisymmetric state and under particular conditions, of an internally kinked 3D
helical equilibrium [17, 47]. A complete study of the behaviour of such instabilities
has not yet been performed. Part of this thesis is therefore dedicated to comparing
various approaches, both numerical and analytical, for the study of 3D helical kinked
states, and consequently for improving our understanding of these near-resonant
modes in both tokamak and RFP configurations [48, 49].

Fast growing NTMs are frequently observed experimentally directly after a major
sawtooth crash (in particular the 2/1 and 3/2 mode) in JET (Joint European Torus)
and in TCV (Tokamak & Configuration Variable) [40, 50]. This is clearly shown in
Figs. 2.8 and 2.9.
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Figure 2.8: Spectrogram, central temperature and magnetic signal temporal evolution in JET
shot #78772 showing the rapid rise of a m/n = 3/2 NTM right after the sawtooth collapse.
Courtesy of J. P. Graves [50].

In JET and TCV plasmas the underlying mechanism for the seeding of (3/2)
NTMs via sawteeth is speculated to be the toroidal coupling to n = 2 harmonics of
the sawtooth precursor or the post cursor [40, 51]. We note that hybrid-like conditions
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Figure 2.9: Soft X-ray emission (a)-(b) and n = 2 amplitude of the magnetic perturbations
in TCV shot #44185. (¢): n =1 and n = 2 components of the magnetic fluctuation generated
by the sawtooth crash in TCV shot #42004. Courtesy of G. P. Canal [40].

probably occur for a brief time after a sawtooth crash in baseline scenarios where it is
found than ¢ = 1 over a large region of the core following a fully reconnected sawtooth
crash [52, 53]. Such types of NTMs are reported to grow within few milliseconds,
almost on ideal timescales [40, 50]. Hence they are not compatible with the slow
growth predicted by the linear tearing theory. Hence, we must go beyond standard
tearing mode theory in order to explain the fast growth of these resistive instabilities
In particular, NTMs have been experimentally observed without being seeded by
another instability under plasma conditions with highly peaked currents [54] or large
S [55]. The toroidal coupling between a fundamental helical (m,n) harmonic with
its (m £ 1,n) sidebands could provide a feasible explanation for the triggering of
NTMs [40], making unstable an otherwise stable mode with a negative A’. Usually
the coupling is due to pressure gradients, implying that the threshold of these modes
is dependent upon the plasma [, according to experimental measurements of the
seeding of NTMs [40]. However, the measured fast growth of NTMs requires the
additional ingredient of low shear in the core region.

We note in particular that if full reconnection occurs, the ¢ profile is flattened
over a large portion of the core plasma a sawtooth crash, so that the plasma is in
hybrid-like conditions. Low-shear plasmas are prone to develop instabilities called
"infernal modes” [56, 57]. These modes and are closely related to the quasi-interchange
modes described by Wesson for the special m = n = 1 case [34]. This instability, in
contrast to the conventional internal kinks, appears as a global mode which is not
confined within the ¢ = 1 surface [56]. As shown in Ref. [35], in low shear plasmas
neighbouring Fourier harmonics couple non-locally, due to toroidicity and pressure
gradients, to the fundamental mode in the region of vanishing magnetic shear (this
coupling is stronger than for internal kinks). It will be shown in Chapters 4 and 5
that when resistive effects are taken into account, the poloidal harmonics coupled
to the fundamental mode show a tearing character on the resonant ¢ = (m+1)/n
surface [58]. However, because of the inertia of the driving mode in the low-shear
region, the growth of these tearing-like islands is on extremely fast timescales, much
faster compared to the standard tearing mode (v ~ S~3/13 at ideal stability boundary
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see Chapter 4) [58]. These sideband perturbations could be relevant for the NTM
triggering by sawteeth, thus providing the required sufficiently fast growing seed
island.

The hypothesis of the coupling between adjacent Fourier modes is also supported
by measurements in recent TCV experiments, where the coexistence of an ideal 1/1
and a resistive 2/1 mode after a sawtooth crash in an EC-dominated scenario has
been reported [59]. Regularly repeated internal m = n = 1 bursts located where
the safety factor approaches unity, alternating with sawtooth crashes, have been
measured. These bursts, whose lifetime is approximately 2ms, are neither a pre- nor a
post-cursor modes linked to crashes since they are events which are well separated in
time (by ~ 1ms). A persistent m/n = 2/1 mode, whose amplitude varies irregularly,
remains in the magnetics (see Fig. 2.10). The mode frequency of the 1/1 and the
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Figure 2.10: TCV shot #43618 ECRH-dominated: Spatial tomographic reconstruction from
soft X-ray emission of the mode structure revealing the presence of a 1/1 and 2/1 harmonics (a)-
(b); Mode period from conditional averaging of the poloidal Mirnov coil array (c); Spectrogram
of the temporal reconstructed signal from soft X-ray emission (d). In ECCD scenarios, the
time evolution and spatial structure are found to be similar, while the amplitude of the mode
is increased. Courtesy of J. Kamleitner [59].

2/1 perturbations is the same, so that we infer a coupling between these two modes.
Because of the EC-heating, the suprathermal electron pressure rises rapidly during a
phase in which the ¢ profile is still flat in the centre after the sawtooth crash. The
destabilisation of the 1/1 mode appears to be closely connected to the fast rise of p,
before a burst. These conditions are similar to those encountered in hybrid plasmas,
thus leading us to invoke the existence of an infernal-like coupling (see Chapter 4).
Here the role of the driving and driven modes is exchanged with respect to what
happens in the sawtooth triggering of NTMs [40].

In conclusion, it is of extreme interest to develop a theory which accounts for
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toroidal coupling in hybrid plasmas under conditions in which resistive effects are
taken into account. Inclusion of additional non-MHD effects such as two-fluid effects,
resistivity and viscosity enable us to connect better with experimental measurements,
and in addition provide novel scalings of the growth rate with resistivity.
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Ideal MHD helical structures in
hybrid-like (low shear) scenarios

In the present chapter we investigate kinked saturated m = 1 helical structures [49].
These structures are frequently observed in tokamak hybrid plasmas and in reversed
field pinches (RFPs), occurring when an extremum in the safety factor is close to, but
necessarily resonant with, a low order rational (typically g, &~ 1/1 in tokamaks, and
Gmaz =~ 1/n in RFPs). If the exact resonance can be avoided, the essential I character
of these modes can be modelled assuming ideal nested magnetic flux surfaces. The
RFX-SHAx state is a typical example of a saturated m = 1 ideal mode [7], with
helicity (1/7). The methods used in this chapter to characterise these structures
include linear and non-linear ideal MHD stability calculations which evaluate the
departure from an axisymmetric plasma state, or instead equilibrium calculations
using a 3D equilibrium code. An analytic attempt for describing these helical states is
also presented. The equilibrium calculations are performed by using the equilibrium
VMEC code, while the XTOR-2F code is used in the ideal frame with diamagnetic
effects switched off for studying ideal MHD stability and the nonlinear saturation
of the modes. Three configurations are considered: ITER and MAST-like hybrid

"'We will see that toroidal sidebands, which have their own rational surface in the plasma even if
the rational surface of the main mode is avoided , are sensitive to resistivity, and the stability of
the main mode is modified via toroidal coupling.

41



Chapter 3. Ideal MHD helical structures in hybrid-like (low shear)
scenarios

plasmas, together with RFX like configuration, all characterised by a slightly reversed
safety factor [48, 49]. The extent to which these approaches agree in tokamaks and
reverse field pinches are investigated, and compared favourably for the first time with
an analytic non-linear treatment that is valid for arbitrary toroidal mode number.

3.1 Introduction

As reported in the previous chapters, recent experiments have achieved good con-
finement and high beta limit in hybrid tokamak configurations [60, 61], where a
large part of the plasma volume is characterised by low or weak reversed magnetic
shear, in contrast with the standard tokamak operation with a monotonic q. Hybrid
discharges however, are frequently affected by MHD activity becoming eventually
ideal saturated modes [8]: the simplest of these Long Lived Modes (LLM), is the
saturated m = n = 1 mode which requires high § and a ¢-profile which is resonant
or nearly resonant with m/n = 1/1 (see Fig 2.7), as shown in Fig. 2.7 in Chapter 2
§ 2.6.1 (cf Ref. [8]). As shown in the previous chapter, internal kink modes occur
either with monotonic increasing safety factors [25, 26] (with a rational ¢ = 1 in the
plasma), or in shear reversed configurations where the minimum of the safety factor
is close to unity [62, 63] or with an ultra-flat g-profile [34, 35] with ¢ ~ 1 over an
extended region.

Non-linearly saturated states of such 1/1 modes in tokamaks are conjectured as
being novel kinds of equilibria [25, 62, 63]. Regimes similar to Long Lived Modes
with dominant m = 1, n = 7 Fourier components, have also been experimentally
found in non-tokamak machines, namely in RFPs [7], for sufficiently high values of
the toroidal current density, in a reversed ¢ configuration having the maximum of
the safety factor close to the 1/7 resonance. Instead of treating such tokamak and
RFP m = 1 modes as instabilities, the eventual stationary states have in recent years
been modelled primarily using 3D equilibrium codes, such as VMEC [17, 18, 47],
which minimises the plasma energy dW = [ (% + %) d3x = 0, where B is the
modulus of the magnetic field, p the plasma pressure and I" the adiabatic constant (a
detailed description of the equations solved and the numerical procedure adopted in
VMEC is given in Appendix C § C.1). These calculations demonstrate the presence
of two distinct neighbouring equilibria. In addition to the usual axisymmetric state,
a novel equilibrium has been found with an internally kinked 3D helical structure
[17, 47], even when an axisymmetric plasma boundary is imposed.

The recently employed equilibrium approach for analysing 3D saturated states, and
the approach of non-linear stability calculations of the 70’s and 80’s [24, 25, 62, 63]
based on an originally axisymmetric equilibrium, have not yet been compared in
detail, though initial attempts have been made [48, 49, 64]. Regarding the analytic
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approach to the problem, the theory of nonlinear saturated internal kink modes
in the ideal MHD approximation was first studied by Rosenbluth et al. [25] who
considered a monotonically increasing ¢ profile, with a resonant ¢ = 1 surface in
cylindrical geometry. However hybrid discharges in tokamaks are characterised by
having an almost shear free or weakly reversed shear core region, where the minimum
of the safety factor is above unity (gn:,, > 1 so that there is no resonant ¢ = 1
surface). The analytic linear theory for reversed ¢ configurations for the internal
(1/1) kink mode, which correctly includes toroidal correction to the plasma potential
energy [26], was derived by Hastie et al. [23], while Avinash and Bussac [62, 63, 65]
considered the analytical extension of the nonlinear theory for ideal saturated kinks
(m = n = 1) for such configurations. Previous results hold also for configurations
with non-monotonic safety factors and ¢,,;, less than unity providing that the ¢ =1
surface is not split into two distinct resonant layers. These analytic approaches to
nonlinear stability have not been previously compared in detail to the two numerical
approaches just mentioned.

The aim in this thesis is to develop a framework for comparing the various
approaches to attaining 3D helical kinked states, and thereby improve our under-
standing of these near-resonant modes in both tokamak and RFP configurations
[48, 49]. Fundamental to this is to extend the non-linear analytic treatment of
m = 1 kink modes to arbitrary toroidal mode number n. A new resulting relation
between potential energy 01, linear growth rate and non-linear kink displacement
amplitude will enable the mechanisms of 3D saturated states to be identified (e.g.
pressure, current or toroidal effects). This is especially true for cases where analytic
growth rates agree with those from full simulations codes, and where the resulting
displacement amplitudes also agree. In addition to this, it is important to analyse
in detail the conditions for which the non-linear stability problem, just described,
agrees and disagrees with the 3D equilibrium approach. While preliminary studies
48, 49, 64] have indicated good agreement for 1/1 tokamak cases when g,,;,, > 1, the
poor agreement for ¢,,;, < 1 is not properly understood. In this vein, by pursuing
the 3D equilibrium free boundary approach for ¢,,;, < 1, and by perturbing the
edge of the plasma with an n = 1 resonant magnetic perturbation, it is possible to
see if this triggers a helical equilibrium branch that agrees better with the initial
value 3D stability approach. The philosophy is to see if it is possible to obtain a
helical state by adding an infinitesimally small perturbation when ¢,,;, < 1 (one
would expect a helical equilibrium state for ¢,,;, < 1, since the axisymmetric equi-
librium is classically Bussac-unstable for sufficient high 5 [26]). Here we attempt
a basic variation of the resonant magnetic perturbation (RMP) edge perturbation
amplitude. Finally, previous studies of helical states in RMPs have solely employed
the 3D equilibrium code approach. We examine for the first time the agreement
with stability calculations that commence from an axisymmetric equilibrium, and
therefore naturally the mechanisms that ultimately lead to a saturated helical state,
especially when compared to the analytic treatment.
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The chapter is divided in four sections. Sections 3.2 and 3.3 present a brief review
of the linear and nonlinear results, namely the derivation of the growth rate and
the helical displacement amplitude for the m = 1 mode, with novel extensions to
include arbitrary toroidal mode numbers. In the section 3.4 numerical equilibrium
calculations are performed using the 3D equilibrium codes VMEC, while the nonlinear
stability code XTOR-2F [66] is employed to assess the nonlinear behaviour of the
m = 1 mode in the ideal frame (for the numerical procedure adopted in XTOR-2F
see Appendix C § C.2). First we analyse the behaviour of the nonlinear saturation
of the internal kink mode in an ITER hybrid configuration, comparing the results
from XTOR-2F with VMEC predictions [48]. Then we focus on the study of the
behaviour and the response of the saturated m = n = 1 mode for a MAST hybrid
scenario, when a non axisymmetric external field is applied, whose amplitude is
taken much smaller than the equilibrium magnetic fields. At the end of section 3.4
we present an analytic expansion of a 3D helical equilibrium. The results of which
produce existence conditions of the equilibria observed in VMEC calculations.

Finally, we investigate the saturated m = 1 perturbations in RFP-like config-
urations, namely SHAx-like equilibria. Analytical results derived for large aspect
ratio tokamak configurations are used for predicting the nonlinear state of the SHAx
equilibrium using for the first time the three approaches outlined earlier.

3.2 Linear theory of the m = 1 mode (arbitrary n)
with reversed shear

In this section we extend the linear internal kink calculation, summarised in Chapter 2
§ 2.4.2, to include arbitrary n and reversed shear. The linear theory of the m =n =1
mode in a reversed shear configuration (see Fig. 3.1-a), was first addressed by Hastie
and Hender [23], in large aspect ratio approximation (¢ < 1) for a circular cross
section plasma. The approach is based on equating the plasma potential energy with
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Figure 3.1: Typical shape of the safety factor of a hybrid tokamak configuration.

the kinetic energy of the perturbation, evaluated in the thin almost resonant ¢ = 1
layer. It is known that in a tokamak, assuming a monotonic ¢, the plasma potential
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energy SW can be expressed as a sum of cylindrical and toroidal contributions [26],
i.e. (see Eq. (2.29) in Chapter 2 § 2.4.2):

(va(l_@mfﬁ;m,

where we normalised §WW = %W/ 23, 63] (Ry is the major radius, By is the

magnetic field on axis and ¢ is the radial fluid displacement) and SW ¢ and SW T are
the cylindrical and toroidal contributions to the total energy respectively, which read
[11] (valid for arbitrary n and q):

— Ts 2
5WC’ _ BO—Z/ dr 2(k7a) Ko de
0

T (b dr
kri(k - B)*  2k*r°(k - B),, .,
1+ k2r2 * (14 k2r2)? (kB? = By/r)]|, (3.1)
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with:
By = =200/ B} [ (r/ro) dr,

where k - B = By/r —nB,/R, k = —n/Ry, py is the equilibrium profile of the
plasma pressure, a the plasma edge minor radius, o = [3*dr(r/rs)3(1/¢* — 1),
b = rsdlogé/dr|,,_ and ¢ = rydlog&/dr|,, .. rs is the radius closest to, or at, the
rational surface, so that q(rs) = 1/n (m =1 is always assumed). For n = 1, in order
to get the correct growth rate, it is crucial to evaluate the toroidal contribution of the
MHD potential energy, since the cylindrical contribution to éW vanishes. However
for higher toroidal wave number which is relevant for m = 1 modes in RFPs, 6W is
well approximated by its cylindrical expression.

Near the rational surface, as seen in Chapter 2 § 2.4.2, the plasma inertia has to
be considered. In this region it is sufficient to include only field line bending and
inertia effects. Minimising the corresponding total energy 6W + K in this region,
we obtain (see Eq. (2.31)):

u [(“*W + (n/qlg - 1/n>>2) Eﬂ =0,

Wa

where we have used k -+ B = B,/R(1/q —n), wa = va/Ry is the Alfvén frequency
and 1 + 2¢? is the Glasser-Greene-Johnson inertial enhancement factor [68]. Again
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following the matching procedure of Chapter 2 § 2.4.2, we obtain [23]:

0 dx -1 .
= —(5‘/‘/
(/oo (1+2¢2)v2/w? + Aq2>

where x = (r—ry)/rs and Aq = |gs — 1/n| (the subscript s indicates that the quantity
is evaluated at r = r, which is the position of the shear reversal). We note that the
expression above is valid also when the rational surface is avoided. This leads to the
following expression for the growth rate for a non-monotonic ¢ profile:

—=12/3
TIL+ g/ = (2lgll) e o] (33)

where 2 = [(1 + 2¢*)7?/w? + Ag¢?]. For a generic toroidal mode number n we have
to perform the replacements v — v/n? and 6W — 6W¢/(n%r}/a?). The formula
above holds for ¢ profiles having either ¢/ > 0 and Ag > 0, or ¢/ < 0 and Ag < 0:
the first case refers to reversed shear tokamaks without an exact resonance, while the
second is applied in RFPs configurations again without an exact resonance. Setting
~v = 0 one finds:

Age = 1/(2r2|¢!)) P [=msW]*/? (3.4)
which is the critical value of Aq below which the mode is unstable.

The expressions above can be used also to estimate the growth rate of m = 1
modes in RFPs configurations. Usually these modes have a large toroidal number
n, simplifying significantly the algebra involved. Unlike the tokamak internal kink
m = n = 1, if large toroidal mode numbers are considered (n > 1) the toroidal
corrections Wy of Eq. (3.2) are higher order with respect to the cylindrical
contribution ((§W — éW¢)/0W ~ n~2). If the perturbed displacement is vanishing
at the plasma edge, the plasma MHD potential energy 6We is given by (2.23). Under
the assumption that the leading order linear perturbed displacement ¢ is a step
function [21], we have for an m = 1 mode [21]:

2(kr)?uo dpo | (kr)*Bj/r
L+ (kr)2 dr (14 (kr)?)?

x (kQ(3 + k*r?) + k*r* — 1)], (3.5)

SWe =B;? /0 dr{ (kQ + 1)x

having defined ) = Roq and £ = —n/Ry. The value of the normalised plasma
MHD energy SW ¢ is evaluated numerically by integrating the formulae above with
the input profiles for pressure and poloidal field. The corresponding growth rate is
obtained from equations (3.3) and (3.5). This results allow us to examine the linear
properties of both tokamak and RFP configurations.
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3.3 Nonlinear internal kink mode for arbitrary n
and reversed shear

In a thin layer close to r, nonlinear effects are evaluated in the cylindrical approxima-
tion. By following the same steps presented in the previous chapter, we introduce a
coordinate system (r, 1, p) were r is the radial variable and ¥ and ¢ are the poloidal
and toroidal angles. The toroidal projection of the curl the pressure balance equation
Vp =J x B gives B - VJ, = 0 (cf. Eq. (2.37)) which leads to ¢} = J,(1x)
25, 62, 63], where J,, is the toroidal component of the current density and 1, is
the helical flux defined as ¥, ~ [(q/qs — 1)dr. For sake of simplicity we set ¢ = 0.
Integrating the equation for 1, we recover Eq. (2.39), i.e.:

We — 15w+ g (36)

The uncompressibility constraint (V - & = 0), implies the area conservation in the
poloidal plane, i.e. [rdrdd = const. (cf. Eq. (2.38)). The ordering of the relevant
quantities is (e = ry/Ry < 1):

agq! ~ 1, SW ~ e Aqn~ /3 §/ag ~ &3,

where ¢ is the width of the layer and aq is the minor radius. As in the previous
chapter, assuming that r(x,9) = ry + = + £(r, ), we expand the perturbed helical
flux in a neighbourhood of rg, so that at leading order rescaling ¢, we have (z ~ §):

o0

5y = @+,

where a? = 2Aq/q”. The equation for the area conservation (cf. Eq. (2.38)) is now
written in terms of the functions f and g in Eq. (3.6):

1 2 2
%/ T 1. (3.7)

V(@) +g(0)

For large x, the equation above implies that f — x*. Thus the function f is expanded
as f(x) = 2* + c12® + oz + cyx + ¢4 + ... Expanding (3.7) we have that ¢; = ¢3 = 0,
while ¢ = 2a? and ¢y = a* — % 02” gdy. We do not consider the m = n = 0 mode,
hence f027r gd?¥ = 0. Following the same steps presented in Chapter 2 § 2.4.2 for the
calculation of the nonlinear displacement with a monotonic ¢, using the results just

obtained for the function f, we obtain for large x:

o) =+ [~ dr (M _ 1) +h) + 96(?, (3.9)
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where the sign 4+(—) stands for + — +(—)oo

The expression above is matched with the linear eigenfunction in the outer region,
which is obtained integrating Eq. (2.31) twice after dropping inertia, whose behaviour
in the limit » — r; and with a generic ¢ is given by (here x = r — ry):

A& W /n* 1
0— gEWE cos( —nyp), 1<

4 0W /nt 1
- 37“0(q”/)2w3 cos(¥ —ny), 1>,

= (3.9)

Equation (3.9) is now matched with (3.8), providing a matching condition for g.

Hence we obtain g(1)/6 = —%f—z 6(2/,,/)24 cos ). This yields the following equations (here

& =ux/a, f=f/a* and § = g/a*) [63]:

oo 1 22
/ dx (H - 1) = —pcost, (3.10)
0

L fav(fa)+g@) 2 = 1+, (3.11)
(S/T/T/ 4
i%dﬁfl(ﬁ) cos = —w, (3.12)

2 11 A
where p? = ?qu' Since p? ~ £2q!/Aq < 1, we expand f and § in a power series in y,

ie. f=fo+pfi+...and § = gy + ... up to order ;3. Hence from (3.11) we obtain

((C)) =1/2m $( - )dd):

A9 A A
F (14 42)24 3 (91) 2,3 (9192) 5
f=Q0+2%) +4(1+£2>2“+2<1+§;2)2“+ ;

where we used the constraint [ gd = 0 and the assumption that (2" (1)) = 0
with n = 1,2,3,.... Using (3.10), the terms of the same order in p are grouped
together, so that:

g1(9) = £ cos v,

92(0) = £(57 — (37)),
g3(9) = —12;110557 — 1891 (1) + 320((§102) — 9132)]-

It is easy to see that equation (3.12) implies that (g1 + p%gs) cos¥) = 2(Aq./Aq)*?,
which can be written in the following form:

1" 3/2
e 08 _8(87r>2 <AA€]> _1]7 (3.13)

"A¢ T1\3
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where Ag. is defined in terms of 6W by Eq. (3.4).

In order to estimate the m = 1 shift when ¢ approaches unity, it is convenient to
express the equation above in terms of the growth rate . There are two regimes
of interest: in one case we have v < Aq (marginal stability) and another where
v > Agq (strong instability). Expanding in the parameter v/Aq by means of (3.3)
for both cases, we obtain the following relation:

5 /8m\? (14 2¢2)~?

— =) ——=5— A 3.14
a1 71 ( 3 > n*Aqw?y V<A (3.14a)
0ds] ~y 3/2
> 8 (87T>2 Vi 20y > A (3.14D)

71\ 3 n2Aquwa . e '

We note that Eq. (3.14b) diverges when Ag = 0. Following the same steps used
before, but setting a = 0, the displacement for the case Aq = 0 reads;

1 [Age
So = 71/3 2q"

(§cos9)~13, (3.15)

where (g cos ) is found via a variational principle and a simple numerical estimate
gives Maz({gcosv)) = 0.0089 [63]. The formulae above will be used for the estimate
of the nonlinear helical displacement of a MAST n = 1 hybrid scenario and compared
with XTOR-2F nonlinear simulation. These results will be also used to examine the
nonlinear properties of n = 7 SHAx equilibrium in RFX configurations.

3.4 Ideal saturated m = 1 kinks in tokamaks

3.4.1 Ideal kink instabilities in ITER-like scenarios

The simplest long lived mode, in hybrid scenarios, is the saturated internal kink. In
this section we focus our attention to the numerical study of such MHD activity
investigating the relation which occurs between MHD modes and the shape of ¢
profile (i.e. density current profile). The amplitude of the helical distorsion computed
by VMEC (the typical profiles for pressure, safety factor and current density which
correspond to such situation for an ITER-like equilibrium are shown in Fig. 3.2)
depends on the value of the total plasma current which is related to the value of
the edge safety factor and consequently to ¢, (the minimum of the safety factor
decreases when the current is increased as shown in Fig. 3.1-b). The key parameter
for determining the strength of the helical state is the displacement of the magnetic
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axis 0y, in the VMEC equilibrium code this distorsion is quantified by:

where a is the plasma minor radius and the subscripts indicate the m = 0 and
n = 1 Fourier components. It is found that if g,,;, drops below a critical value, the
equilibrium helical state merges with the axisymmetric state (see Fig. 3.4).

5 5 6 -
51(x10%) (x10%)
p ) q J¥

4

3 4
3

2
2 2
1 1
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1

r r r

Figure 3.2: Pressure (Pascal) and ¢ profiles for ITER-like hybrid plasma VMEC simulations.
The corresponding profile of the toroidal current density (Ampére/m?) is also shown, with

r= \/w/Tedge (v is the toroidal flux).

Our aim in this section is to compare 3D equilibrium VMEC numerical simulations
[47] for ITER like equilibria with hollow ¢, with the results computed by the nonlinear
MHD stability code XTOR-2F [66] in the ideal frame. XTOR-2F simulations are
performed starting from a given 2D (i.e. axisymmetric) ITER like equilibrium
(B ~ 3%,0.96 < gmin < 1.03), with the same profiles which give rise to the 3D helical
cores [47] prepared with the 2D equilibrium code CHEASE [69]. A scan in the
current, ranging from 13.2 to 13.8 M A, is performed and the associated saturated
state is shown in figure 3.3.

In order to quantify the displacement of the magnetic axis in the XTOR-2F
simulations and compare it with 0, given by Eq. (3.16), we adopt the following
definition for the helical displacement of the flux surfaces in XTOR-2F::

ady = HRM (¢ =0) — Rey (soz g>r+Zﬁw <90= g) (3.17)

where R, (Z,.) is the R(Z) position of the magnetic axis and ¢ denotes the toroidal
angle (in XTOR-2F we have Z,,(¢p = 0) = 0). If we decompose in Fourier harmonics
the R and Z coordinates of the magnetic axis, it is immediate to see that the
expression above reduces to Eq. (3.16), indeed:

R = Ry+ Ryjcosp+ Ryacos2p+ ...
Z = Zy+ Zoising + Zyosin2p + ...,
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Figure 3.3: Contour of constant pressure surfaces at fixed toroidal angle ¢ = 3/27 for
saturated internal kink mode evaluated by XTOR-2F starting from a VMEC equilibrium, with
toroidal plasma current (a) 13.0 M A, (b) 13.3 M A,(c) 13.4 M A, (d) 13.5 M A, (e) 13.7 M A,
(f) 13.8 M A; a denotes the plasma minor radius. The position of the magnetic axis is marked
by the thick black dot.

so that, assuming that Zy = 0 and Ry, /Ry 1 ~ ¢ for n > 1, we have at leading order
Ry=R(p=7/2), Ro1 = (R— Ro)(p=0) and Zy1 = Z(p =7/2).

It is found that both VMEC and XTOR-2F results predict the presence of kink-like
3D structures. When the minimum of ¢ is above the unity (low currents), the helical
distorsion d;, computed numerically with XTOR-2F shows good agreement with the
results provided by the 3D equilibrium simulations performed using VMEC and
presents a reasonable agreement with the analytical predictions for the non-linearly
saturated kink given by Eq. (3.13) [63] (here ' = 0/0,):

8 /8m\?2 L[ 372 [ 372
2 1 R - 1 - 1 14+1 -1 1
nd" (r1) 71 ( 3 ) Aq \J2 (wAAq2 + > [ N + 1+ ] , (3.18)

1

or the Rosenbluth (cf. Eq. (2.45)) result which was obtained for a monotonic ¢ [25]:

13\/§l

™ Wa

&g (r1) = (3.19)

T1

where we recall that &, is the radial displacement, wsq = va/ Ry with v the Alfvén
velocity, Ry the major radius, 7 is the linear growth rate of the internal kink mode,
Aq = |Gmin — 1| and 7y is the position of the resonant ¢ = 1 surface. In the
above equations, we included the Glasser-Greene-Johnson inertia enhancement factor.
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Equation (3.18) derives from the calculation of the nonlinear m = n = 1 saturated
kink mode for non-monotonic g profiles with reversed shear having ¢, = 1 at r = rq,
i.e. equation (3.13) [63]. By expanding Eq. (3.18) in terms of 7, we recover Eqs.
(3.14a), (3.14b) and (3.15). Equation (3.19) is nominally valid for the m = 1 mode for
monotonic safety factor profiles with the ¢ = 1 surface at » = r; [25]. However, this
equation can be used also for non-monotonic safety factors with two resonant ¢ =1
surfaces at r = and r = o with r; < ro: if ¢/(r1) < 0, it follows that the m =1
mode at that position is stable. This is because the growth rate of the m = 1 mode
located at r = ry scales as y ~ (dg/dr), [-6WT] [26]. Hence the mode is unstable
at r = ry where ¢’ > 0, so that Eq. (3.19) can be used. However, when ¢, < 1
we found that the analytical predictions almost agree with the nonlinear results,
but there is a significant deviation between the 3D equilibrium calculations and the
nonlinear simulations: while the helical distorsion predicted by VMEC decreases to
0 when g ~ 0.96, XTOR-2F gives a residual distorsion in this region (as shown
in figure 3.4) which is consistent with earlier [70, 71] linear stability calculations
performed with the TERPSICHORE code. Indeed this is to be expected because the
analytic linear internal kink mode of Bussac [26] is unstable. A convenient value for

0.5

. XTOR2F = =
VMEC  \  Analytic &, (3.18)
0 N\ T
0.3F e N Al R N[
S
=
(’002- “““““““““““““““ CARREEEERTRRRT RS AEEERPTRTR APRRRY: N\
(] S ““““““ T
0

szn

Figure 3.4: Helical distorsion of the magnetic axis for an ITER like scenario as a function of
the minimum of the safety factor q. The black line shows the VMEC results , while the blue
curve refers to the nonlinear XTOR-2F simulations. The red and green lines correspond to
the analytical predictions given respectively by (3.18) and (3.19). The magenta upside down
triangle is the theoretical prediction of &, given by Eq. (3.15) when ¢n = 1.

the viscosity was chosen in order to avoid numerical instabilities in the core region;
however, even if the growth rate for the m = n = 1 mode is not so sensitive to
variations in the viscosity v [72], we should take care of this parameter, since its
value can affect significantly the behaviour of n # m modes, allowing unphysical
modes to grow, as shown in Fig 3.5 (the unphysical modes are the n =5 and n = 4).

52 Daniele Brunetti — CRPP/EPFL



3.4. Ideal saturated m = 1 kinks in tokamaks

T T T T le-2 T T T T
Kinetic energy (XTOR units)
le-4 |- (Large viscosity)

T T T T T
Kinetic energy (XTOR units)
(Small viscosity)

le-10-

le-10 le-12

Saturated

le-14
le-12

le-16

le-14
le-18

Time (Alfvenic units)
1 1

I I I I I I I I I L L L L
200 400 600 800 1000 200 400 600 800 1000 1200 1400

Figure 3.5: Behaviour of the kinetic energy for n = (1,...,9) modes for two different values
of the viscosity (v = 3 x 1075(XTOR-2F units) in the left picture and v = 5 x 10~°(XTOR-
2F units) in the right one); the other equilibrium parameters were kept the same for both
simulations. We can clearly see that the n = (4,5) is strongly suppressed in the linear phase.
We notice also that (around 1000 alfvenic times in the picture on the right) the growth rate
for n > 1 modes is given by v,>1 = ny,=1 [73] as expected by toroidal couplings.

3.4.2 Helical state response to RMP fields in MAST-like
hybrid plasmas

In this section we present numerical simulations from VMEC and XTOR-2F for a
MAST-like plasma (all VMEC runs are performed in stellarator symmetric geometry,
i.e. with two up-down symmetric toroidal planes at ¢ = 0 and at ¢ = 7). For
the VMEC equilibrium simulations we provide as input the vacuum magnetic field
configuration, pressure and either current or iota profiles: a careful choice of the
rotational transform, defined as ¢« = 1/q, is required in order to prevent unphysical
negative currents. The profiles used in the simulations are shown in figure 3.6: the
pressure profile is chosen to be approximately parabolic with respect to the square
root of the normalised toroidal flux denoted by s. The iota profile is modelled
in order to be consistent with realistic MAST discharges. The value of ¢, is
modified by shifting the safety factor up and down rigidly. The minimum value of
the safety factor has been chosen to vary between 0.92 and 1.06 corresponding to
a variation of the total plasma current I, between 0.5 (large ¢,) and 0.8 (small
Gmin) MA. The total § is about 5% while 3, ~ 0.5. The normalised / is given
by Sy = (B)[%]a|m]|Br[T]/I,[MA] ~ 3, where By is the toroidal magnetic field
calculated on the magnetic axis and the angular brackets indicate the volume average.
The plasma edge is approximately axisymmetric for all the values of the current.
All simulations are performed having a discretisation in the radial direction of 210
grid points, while in the poloidal and toroidal angles we take 41 and 25 grid points
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Figure 3.6: Pressure (Pascal) and ¢ profiles used as input for the VMEC simulations.
The corresponding profile of the toroidal current density (Ampére/m?) is also shown. Here

s = 1/®/®P.qge where ® is the toroidal flux. The radial position of g,y is indicated by the
vertical dashed line.

respectively. The Fourier spectrum is composed of 8 poloidal modes and 4 toroidal
modes.

In order to run the nonlinear stability code XTOR-2F [66], we prepared a MAST
2D VMEC equilibrium where the pressure and iota (current profiles) are those
which produced the equilibrium helical state. The simulation is performed in a free
boundary configuration with an axisymmetric vacuum field; afterwards the VMEC
output is interfaced with the 2D equilibrium solver code CHEASE [48, 69]. All the
non-linear simulations with the code XTOR-2F are performed in the ideal MHD
frame: non-ideal effects like resistivity, diamagnetism, neoclassical corrections etc.,
are switched off. We point out that even when the dominant rational surface is
avoided (G > 1), resistivity may play an important role on the smaller sidebands.
In this chapter we drop resistive effects, which will be analysed in detail in Chapters
4 and 5. In particular, and in connection with experimental interest, future work is
planned to assess the plasma behaviour in a resistive frame, even when the dominant
rational surface is avoided, so that resistivity plays a role only on the smaller
sidebands. The effects of viscosity are however necessarily retained in XTOR-2F in
order to smooth out numerically induced structures. Viscosity (i) is kept sufficiently
small in order to have, for a strongly unstable mode, a weak dependence of the
growth rate on the viscosity [66]. The chosen value for the normalised viscosity is
ji = Tap/a® = 2x107° where 74 is the Alfvén time and a is the plasma minor radius.
The results of nonlinear XTOR-2F saturated state and 3D equilibrium simulations
(with an axisymmetric vacuum field) are shown in figure 3.7 for the case g, =~ 1
(0.99). The agreement is good providing g, > 1, but equilibrium calculations do
not predict helical states if ¢, is sufficiently less than unity [64]. Therefore it has
been chosen to apply an external n = 1 RMP field in order to assess the behaviour
of the internal m =1, n = 1 kink mode. The idea is to see whether the equilibrium
code will jump to a strong helical solution if it is perturbed slightly at the edge.
Indeed, it is believed that for g,,;, < 0.94 the equilibrium code approach is incorrect
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Figure 3.7: Contour of the constant pressure surfaces for MAST case. The top figure shows
the VMEC axisymmetric configuration; the figures on the bottom left and on the bottom right
show the VMEC helical branch and the non-linearly saturated internal kink from XTOR-2F

respectively. Here g = 0.99, a value for which the helical displacement reaches its maximum
value.
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in giving only an axisymmetric solution. Indeed when ¢,,;, < 1, the ideal internal
kink mode is always strongly linearly unstable (for sufficiently large /3) [26], and we
expect a large helical displacement. However, VMEC does not produce 3D equilibria
for gmin < 1. The discrepancy between VMEC and XTOR occurs when there is a
q = 1 resonance in the plasma. The solution in XTOR includes inertia, while VMEC
does not, and as a result, the current sheets occurring at ¢ = m/n = 1/1 will be
handled differently. XTOR eigenfunctions in particular are smoothed by inertia.

The nominal amplitude of the external perturbation in MAST is  Brasp/ Byae ~
107, and it is controlled by the current in the RMP coils (Iryrp). Buae represents
the strength of the axisymmetric vacuum magnetic field. Figure 3.8 shows the

o5k VMEC (4 RMP)
/ / XTOR-2F
0.4f 7
&> 7
s VMEC
0.5} VMEC / (RMP ON) .
~ (NORMP) / ¥
— i 4
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dmin

Figure 3.8: Amplitude of the helical displacement computed with VMEC with RMP off (red
curve) and RMP on (blue curve). The scattered points have either the RMP perturbation
increased or reduced.The results of the nonlinear simulations performed using XTOR-2F are

represented by the brown dashed curve.

displacement of the magnetic axis as a function of the minimum value of the safety
factor q. The red curve shows the VMEC displacement with an axisymmetric external
field, while the predicted §, with an n = 1 RMP field at nominal current value
is represented by the blue curve. With no RMP external perturbation, i.e. with
axisymmetric boundary, previous results analogous to ITER fixed axisymmetric
boundary are recovered [48, 64]. We note that the window in ¢y, in which helical
states are produced with VMEC (for RMP off), is wider than for the ITER case
presented in [48], mainly due to the fact that MAST has a tighter aspect ratio. Table
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Gmin 093 096 099 1.00 1.0l 1.03 1.06
¢ /a [Eq. 3.18,3.15] 5x1072 0.093 0.21 023 021 0.075 0
&n/a [Eq. 3.19] 0.027 0091 0338 - - - -

Table 3.1: Analytic values for &,/a [25, 62, 63]

3.1 shows the analytic estimates of the nonlinear displacement £/a obtained using
Eq. (3.14a) (Eq. (40) in Ref. [63]).

With an RMP perturbation present, 9, agrees well with the nonlinear XTOR-
2F results, having a persistent displacement even when ¢,,;, drops below unity.
However the amplitude of the VMEC displacement depends on the strength of the
external field applied. By varying the coil current Igy,p we induce a variation in the
external perturbation. By reducing the RMP current by a factor 10 and 1000, the
displacement d;, decreases and eventually the results obtained in an axisymmetric
boundary configuration are recovered. On the other hand, by increasing Iry/p the
value of 9y, increases strongly for ¢,,;, < 1. It is important to note that an asymmetry
in the regions ¢, > 1 and ¢, < 1 occurs if the RMP current is either increased
or decreased. For ¢,,;;, > 1 the displacement is not strongly affected by the external
perturbation. Conversely for ¢,;, < 1 the VMEC ¢, can either disappear or it
can become unphysically large with external perturbations too big. This strong
dependence on the RMP amplitude suggests that the helical state produced by
VMEC is not assisted by an infinitesimal perturbation of the edge for ¢, < 1.
Nevertheless, the RMP can be used to produce a helical core of the desired amplitude
for secondary studies such as fast ion confinement [74], where the correct helical
amplitude would be identified by e.g. XTOR-2F.

v @min=0.877

0.4
@ 0.3
< 0.2
0.1

Figure 3.9: Radial profile of the helical displacement d,(s) deduced from VMEC with RMP-on
at nominal value. The location of the minimum of the safety factor is located in position
s = 0.44 as indicated by the thick dashed vertical line.

Employing the nominal RMP amplitude, figure 3.9 shows the profile d; from
VMEC as a function of the radial variable s for different values of ¢,,;,. We regard
0, as a measure of the fluid displacement of the flux surfaces with respect to a
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axisymmetric configuration. Thus 9, is directly proportional to the radial fluid
displacement &, [26]. It is important to note here that the shape of the eigen-
displacement 0y, is smoother than the classical top-hat function expected for a kink
instability, resembling more a saturated quasi-interchange mode rather than an
internal kink [34, 35]. The fact that the mode departs strongly from a step function
has implications on the validity of the analytic treatment of sections 3.2 and 3.3.
However, in the next section it is seen that good agreement is found for a weakly
kinked (virtually top-hat) RFP n =7, m = 1 mode.

6 , 3
(x10°)
12000 p ] : q J P
: 1 2 1
8000 !
1
4000 - 1
0 0
0 0.5 1 0 0.5 1

S S

Figure 3.10: Pressure (Pascal) and current density (Ampére/m?) profiles used as input for
the VMEC simulations. The corresponding profile of the safety factor is also shown. The
radial position of g,,;, is indicated by the vertical dashed line.

Finally in Figs. 3.10 and 3.11 we present 3D free boundary equilibrium simulations
of a MAST H-mode plasma, with profiles shown in Fig. 3.10. The result differs
from what has been shown so far because very strong edge displacements are caused
by a helical core which can propagate to the edge because of sharp pressure and
current gradients at the edge. The results are from a VMEC run in a MAST H-mode
like scenario with a total toroidal current I, ~ 0.6 M A and 8 ~ 7%. The current
density profile includes a bootstrap contribution which takes into account the strong
pressure gradient seen in Fig. 3.10. The current and pressure produce the extreme
free boundary edge shaping seen in figure 3.11. No RMPs were employed, where
only a weak nominal toroidal field ripple was present.

3.4.3 Analytic characterisation of equilibrium helical 3D struc-
tures in tokamaks

In the previous sections, we found that in tokamak configurations with a weak
reversed shear safety factor with an off axis minimum, the VMEC code predicts
two distinct equilibrium solutions [47], depending on the choice of the guess of the
magnetic axis. The code can predict either the axisymmetric solution (corresponding
to Eq. (2.11)) or a 3D equilibrium state with a helical core . This helical solution
presents similarities with saturated internal kinks, as shown previously.
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Figure 3.11: Contour of constant pressure surfaces. The shaping of the plasma boundary
due to steep pressure gradients and bootstrap contributions is clearly visible.

These equilibrium states computed with the equilibrium VMEC code show two
peculiar characteristics. There is no formation of current sheets (due to the absence
of the ¢ = 1 surface if ¢ is left above unity, but also in the case when ¢ drops
below 1). In addition, the radial profile of the helical displacement is smoother
than the usual top hat function typical of m = n = 1 internal kink modes [25]. A
typical 3D helical equilibrium state computed by the VMEC code is shown in figure
3.12, which depicts the Fourier harmonics (poloidal and toroidal) of the cylindrical
coordinates R and Z (note that only the m = 0,1 and n = —1,1 Fourier modes
are shown). The m = 0 and n = 1 harmonic yields the helical core amplitude.

We wish now to characterise analyt-
ically such helical configurations. The
treatment adopted is mathematically dif-
ferent from the approach used for the
analysis of nonlinear instability (§ 3.3),
since inertia is not included. This is
therefore an analysis of the force balance
equation (cf. (2.8)):

J x B—Vp=0. (3.20)

In the analytic calculations, we impose
an ad hoc geometry with a helical core
with helicity 1/1. Hence we expand Eq.
(3.20) in powers of the smallness param-
eter ¢, obtaining the basic information
about the equilibrium fields which give
rise to such a configuration. From the
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Figure 3.12: R (solid lines) and Z (dashed
lines) Fourier components of a VMEC helical
equilibrium for a MAST-like plasma. Only the
m =0, n=—1,1 modes are shown.
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Fourier structure shown in Fig. 3.12, we parametrise our flux surfaces in the Cartesian
(X,Y, Z) space in the following manner (r is a flux label (radial variable) and 6 the
geometric poloidal angle):

R = Ros " +rcos —eA(r) — e&o(r) cosp — 261 cos(0 — @) + O(%),  (3.21)
7 =rsinf — e&(r) sinp — £2&,(r) sin(0 — ) + O(?), (3.22)
X = Rsin p, (3.23)
Y = Rcosp, (3.24)

where A is the Shafranov shift and & (r > r.) = 0 with 0 < r, < a (a is the minor
radius). This is a simplified parametrisation, but allows us to catch the important
underlying physics.

The ordering of the physical quantities involved is given by the ¢ tag in front
of them. With this notation we have that Ry ~ A ~ & ~ & ~ ... ~ 1. We allow
for a helical distorsion of single helicity n = 1 and amplitude &y(r), retaining the
m = m + 1 side harmonic which will play an important role as will be shown later
(harmonics n > 1 are not strictly important for our analysis, and are therefore
neglected). All the Fourier harmonics are required to vanish at the plasma edge.
Given the (X,Y, Z) parametrisation, we can calculate the metric tensor which is
defined in the usual way g;; = >3, %);’“ %fj’“, where X = (XY, Z) and ¢' = (r, 6, ¢)
(see Appendix A § A.1). We assume a magnetic field written in the following
manner B = VF(r) x V8 + VF(r) x Vi — Vi(r) x Ve where the function
n = n(r,0,¢) is periodic in its angular arguments with zero average. We want to
solve the equilibrium problem, which for a given &, involves solving ¢, A etc. in
terms of r. It is more convenient for the purpose of this analysis not to work in
a straight field line coordinate system, hence we still consider the angle 6 as the
true geometric angle. By means of the parametrisation given by Eqgs. (3.21)-(3.22),
we expand the covariant radial projection of the force balance equation (3.20) in
a series in . Each order is then set to zero. It is impossible of course to solve
all the orders of the expansion, but for the moment we are interested to extract
some rough information about the shape of the fields and the mode coupling in such
helical configurations, not their exact characterisation. We also note that in order to
solve the higher order expansion coefficient of (3.20) which are presently neglected
more and more Fourier components in the parametrisation (3.21)-(3.22) have to be
taken, reflecting the intrinsically nonlinear behaviour of the equilibrium. All physical
quantities involved (the Shafranov shift A, etc.) are expanded in powers of ¢, i.e.
for a generic quantity f we set f = fo +¢ef1 +.... We assume within the standard
tokamak ordering that p ~ €2, i.e. p = &2py + .... The equation for the function 7
can obtained by imposing J" = 0:

9y | %2 (1~ qm) + 4722 (1 + 8977)] — 0, lg% (1= ad,m) + 4% (1+ 9ym) | = 0.

VY VY v VY
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We have set the following normalisation: pg = By = a = 1, where By is the value
of the magnetic field on the axis. The function 7 is also expanded in powers of
(n =¢eH; + ...). In order to have a correct expansion of Eq. (3.20) up to order ¢, it
is required to evaluate n up to order &3 (i.e. the expressions for Hy, Hy and Hj are
needed). The evaluation of H; (i = 1,2, ...) is rather tedious and not insightful, and
is accomplished by using computer algebra calculations, whose details are not shown.

Eq. (2.8) can be recast in the following manner:

0,
U= 9@@85} - g\j; Q(l + 8077)(@037" - 87“3@) - (1 - qagﬂ])(arB(? - 8937') =0,

and it can be written in an e-series as follows:
8_2U_2 + 5_12/{_1 + Z/[() + d/{l -+ 0(62) =0. (325)

The first two terms are set to zero by imposing F, = F| = rBy. The third order
term (Uy) gives

T2

B (BAL + TAY) 4 (2rph +rFy — 2F}) | +
0

2r
S+ i =17} -
2
r
[RO<3£(I),0 +r 6/,0) + 2(7'51,0 + 7"2&/,0 - 51,0) cosp =0,

from which it immediately follows that the cos¢ component of the equation above
links & to its sideband &, i.e.:

T 0,0

51,0 = TRO-

(3.26)
By averaging in 6 and ¢ we obtain an equation for Fy, where 1y, and Aq are still
unknown.

The cosf component of U; provides the equation for the Shafranov shift A.
If one assumes that the €* corrections to Eqgs. (3.21) and (3.22) are of the form
¢(r) cos(mv) — ¢) and —((r) sin(mv) — @) respectively (in accordance with VMEC
results), the cos ¢ component provides a link between & ; and £ in the same manner
of Eq. (3.26). The cos(f — ¢) average gives:

(r =) [r(r — )60 — (o + (244 — 3))&.0] =0, (3.27)

which can be written in terms of the safety factor ¢ = /4 (we recall that By = 1 in
our normalisations) yielding:

(= 1) [*(1 = 1/q)&o — {r/a +r[2(r/q) — 3]}&,] = 0. (3.28)
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The equation above is fulfilled if either A=0 or B=0. Three cases are now considered.

(a)

Assume a safety factor as shown in figure 3.13-(a). Hence Eq. (3.28) cannot be
satisfied by A = 0, so it must be satisfied by B = 0, which gives:

foor) = Co+Cr [ = ar (3.29)

1—1/q)%

which is the same expression derived in Ref. [25], i.e. the eigensolution for
internal kink modes for the case of a singular surface. But for our case 3.13-(a)
there is no ¢ = 1 surface, therefore {y, has to be matched smoothly with the
vanishing solution for r > r,, implying that Cy = C} = 0. Thus no helical cores
can exist for the analytic equilibrium treatment undertaken here.

For a safety factor as in Fig. 3.13-(b), Eq. (3.27) can be satisfied by A =0 at
r = T4, but not at any other value of r. Thus, we expect discontinuities in g
at r = r,. Setting C; = 0 in (3.29) because of regularity on the magnetic axis,
the solution for the helical core assumes an internal kink-like form, i.e. £y = Cj
for r <r, and §o = 0 for r > r,.

Finally let us assume that the safety factor has a broad region which extends
from r = 0 up to r = r,, where ¢ = 1 as in Fig. 3.13-(c). Equation (3.28) is
automatically satisfied for 0 < r < r, by A = 0. In which case for our analytic
equilibrium treatment B can be arbitrary within 0 < r < r,, allowing &g itself
to be arbitrary.

This leads us to the following considerations for our analytic equilibrium treatment:
in order to have a finite amplitude helical core we must have at leading order either a
q = 1 resonant point (with &y a top-hat function), or a flat ¢ = 1 over an extended
region in the core (with &y arbitrary). In Chapter 4 it will be shown that a similar
condition on the safety factor for the existence of smooth core displacements holds
(infernal modes problem).

(a) (b) (<)

qu A
N YA

§ N

>

Y

>

Figure 3.13: Different shapes of safety factor profiles and corresponding radial 1/1 helical
fluid displacements.
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3.5 Comparison of equilibrium and non-linear sim-
ulations for RFX

Saturated states of helicity m = 1, n = 7 are observed in the RFX device with
reversed shear g-profiles and sufficiently high current [7]. Such states have not
previously been compared with initial value calculations for saturated non-linear
stability (departing from an axisymmetric equilibrium), nor with analytic expressions
for the displacement. The initial equilibrium is evaluated using a novel version of
the code VMEC, called VMEC2000 [18]. The code uses as a radial variable the
normalized (to the edge) poloidal flux rather than the toroidal flux, in order to
handle the change of sign in the ¢ profile. The profiles of pressure and ¢ are shown in
figure 3.14. The constant pressure surfaces of the axisymmetric equilibrium branch
is also shown. A helical core is found by choosing carefully the guess of the magnetic

10,000 0.2
7500 0.15

5000 > 01

p (Pa)

0.05

(a) 0

2500

0.4
0.3
0.2
0.1t

N of

~0.1t
~0.2f
~0.3¢
~0.4f

Figure 3.14: (a),(b): Profiles used for the nonlinear runs of XTOR-2F. The blue line shows
the pressure profile while the red curve the ¢ profile. The 1/7 resonance is also shown (black
horizontal dashed line), as well the position of ¢, = 0.14206 (black vertical dashed line).The
radial variable r here is the square root of the normalised poloidal flux (r = \/%/%edge). (€):
Contours of the constant pressure surfaces at 2D equilibrium from the axisymmetric branch of
VMEC2000.

Stability of tokamak and RFP plasmas with an extended region of low magnetic shear 63



Chapter 3. Ideal MHD helical structures in hybrid-like (low shear)
scenarios

ro dfdr p p T TT
R 7 g'r'r 909 gr0 g<p<p \/g

Table 3.2: Equilibrium quantities required for XTOR-2F runs. Here g%/ are the contravariant
components of the metric tensor whose Jacobian is /g, T' denotes the covariant toroidal
component of the magnetic field and r = \/[(¢) — ¥0)/(Yeage — ¥0)|- The geometric poloidal
and toroidal angles are denoted by 6 and ¢ respectively. The prime denote differentiation
against the poloidal flux v, i.e. ' = d/dy.

axis and by imposing n = 7 periodicity in the Fourier modes. However such helical
distorsion is dependent on the number of toroidal modes which are allowed in the
simulation: with a spectrum of four poloidal modes, retaining only the n = 7 mode,
the displacement is rather small, while if the n = 14 is also included, then it becomes
quite large. Our attention in this paper is mainly focused on VMEC2000 simulations
with only the n = 7 toroidal mode: this is because of the feasibility of the XTOR-2F
nonlinear runs and for valid comparisons with the analytic approach. The output of
an axisymmetric equilibrium from VMEC2000 is directly interfaced with XTOR-2F,

contrarily to previous simulations which were interfaced using the equilibrium code
CHEASE.

The coordinate system chosen is (r, 6, ), where r is defined as the square root of the
normalised poloidal flux, 6 is the geometric poloidal angle and ¢ is the toroidal angle.
The input quantities required by XTOR-2F are given in Table 3.2 (' = d/dy) where
here 1) denotes the poloidal flux) [66, 69], and where the equilibrium magnetic field has
been taken as B = TV — V¢ x V. The contravariant components of the metric
tensor are indicated by ¢g” where g = det(¢*). The nonlinear runs are performed
with 200 radial grid points, 64 and 48 poloidal and toroidal grid points respectively.
In line with the VMEC simulations, the toroidal mode spectrum has only two toroidal
mode numbers, namely n = 0 and n = 7, where the poloidal spectrum ranges from
n — Mins t0 N 4+ Mgy, with my,; = 10 and my,, = 2. This is shown in Fig. 3.15.
The profiles for the pressure and the ¢
profile used in the nonlinear simulation
are already shown in Fig. 3.14. The A
results of the simulations are shown in
figures 3.16 and 3.17, which show re- I
spectively the spectrum of the modes
in XTOR-2F and the contours of the i
constant pressure surfaces both from the /,/"ﬁ-mmf
equilibrium code VMEC2000 and the 7
nonlinear XTOR-2F initial value run (in - >
XTOR-2F we assume an almost incom-
pressible plasma, thus constant flux sur-
faces must correspond to constant pres-
sure surfaces).

n+mg,,

Figure 3.15: Modes spectrum in XTOR-2F.
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Figure 3.16: (a): Time evolution of the kinetic energy (XTOR-2F units) for the toroidal
modes n =0 and n = 7. (b): Spectrum of the kinetic energy of the n = 1 mode. The fastest
growing mode is the m = 1, n = 7. The time is normalised with respect the Alfvén time
T4 = Ro/va with v4 = BZ/pop, p being the plasma mass density, Ry the major radius and
By the magnetic field on the magnetic axis. The growth rate is given by the derivative of the
logarithm of the kinetic energy with respect to time divided by the factor 2.

The XTOR-2F saturated state is taken when the fastest growing mode no longer
grows. As indicated in Fig. 3.17, only n = 0 and n = 7 toroidal modes are taken into
account in the equilibrium calculations, and reasonably good agreement between
VMEC2000 and XTOR is observed. Fig. 3.18 shows the superposition of constant
pressure surfaces from VMEC2000 and XTOR-2F, zoomed in the low-shear region.
The snapshot in XTOR-2F is taken when the kinetic energy of n = 7 in Fig. 3.16
reaches its maximum (at t/74 ~ 72). However the velocity field and consequent
inertia enter in the XTOR-2F simulations, but not in the equilibrium model of
VMEC. It has been shown in Ref. [24] that around the time of the peak in the kinetic
energy is reached, a crescent shape begins to appear in the magnetic surfaces. This
would account for the differences seen in the pressure surfaces shown in Figs. 3.17
and 3.18, since, in particular, velocity and inertia does not enter into the physical
model of the equilibrium in VMEC2000. Nevertheless, as also pointed out in Ref.
[24], the growth of this crescent shape does not affect the magnetic axis position,
even though it continues to grow after the peaking of the kinetic energy [24]. The
crescent shape does not affect the axial position because m > 1 perturbations depend
on position approximately as £ ~ r™~!. Hence the main characteristics (i.e. axial-
kink amplitude) that we wish to compare between initial value stability, analytic
calculations and equilibrium calculations are not significantly affected by the crescent
structure. Nevertheless it is clear that the non-linear stability and the equilibrium
states are not exactly alike in the transition region between low and high magnetic
shear, and this may warrant further study in the future. Finally, the inertia is not so
large as to yield a discernible difference between the constant pressure surfaces of
Figs. 3.17 and 3.18 and magnetic surfaces.

We note that if VMEC is executed with a mode set of the from n = 7,14, 21, etc.,
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Figure 3.17: Contours of normalised constant pressure surfaces (with respect to its value
on the magnetic axis) from VMEC2000 (top) and XTOR-2F (bottom) at ¢ = /2 when the
kinetic energy of the n = 7 mode reaches its maximum (see Fig. 3.16).
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Figure 3.18: Zoom of the constant pressure surfaces shown in Fig. 3.17. The solid black
lines correspond to XTOR-2F results, while the dot-dashed lines are the VMEC2000 contours.
The blue point indicates the position of the magnetic axis in the axisymmetric case.

a large helical displacement is produced (much larger than that shown in Fig. 3.17).
The XTOR-2F code can be run with the same mode set, but there is no appreciable
difference in the growth of the mode and in the amplitude of the saturated state
from when it is calculated with only the n = 7 mode. This is shown in Fig. 3.19.
By increasing or decreasing the value of ¢,,,, we are also able to identify what the
most unstable modes are. It is found that in our case, taking gm.x € [1/8,1/7], the
most unstable mode is the n = 7 as shown in Fig. 3.20. To conclude, it appears
that VMEC agrees with XTOR-2F only when the mode set is taken to be n = 0
and n = 7. By taking e.g. n =7,14,21, etc. in VMEC, it appears that artificially
large helical equilibria are produced. Very recently, dedicated VMEC simulations
have been undertaken with a large mode set which is not just multiples of n = 7.
In particular, simulations with n = 0,1, 2, ..., 15 resulted in a helical core similar to
the case n =0, n = 7 only (cf. Fig 3.17). Again this confirms that the helical state
should be small.

In XTOR-2F it is not straightforward to apply the technique for calculating the
displacement described in section 3.2 (i.e. ;). So, in what follows, displacements
from XTOR-2F and VMEC2000 are obtained by evaluating the shift of the peak
of the plasma pressure with respect to its equilibrium position in the poloidal
plane for ¢ = 0 (the geometry of the system is almost circular). The displacement
predicted by XTOR-2F gives £xror =~ 0.03m which is the approximately the same
displacement predicted by VMEC2000 for the case n = 0,7 (or indeed in simulations
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Figure 3.19: Radial velocity versus major radius, kinetic energy and growth rate versus time
(same equilibrium profiles as in Fig. 3.16) computed by XTOR-2F for the case n = 0,7 (a) and
n=0,7,14,21 (b). Although the code in the case be is running in a VMEC-like configuration,
there is no significant difference between (a) and (b).
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Figure 3.20: Growth rate v of the m = 1 mode for different toroidal mode numbers n in
function of ¢aq-

68 Daniele Brunetti — CRPP/EPFL



3.5. Comparison of equilibrium and non-linear simulations for RFX

with n = 0,1,2,...,15), &ypmpe = 0.03m (if one applies formulae (3.16) and (3.17)
presented in the previous section then in both cases ad, ~ 0.036m).

The growth rate of the unstable m = 1, n = 7 mode shown in figures 3.16 and
3.17, is approximately /w4 ~ 0.23, which is calculated by v = 1dlog K /dt where K
is the kinetic energy of the largest mode plotted in Fig. 3.16. In order to clarify the
mechanism behind the generation of a displacement, we apply the analytic results
for the prediction of the linear growth rate and the non-linearly saturated perturbed
eigen-displacement, namely Eq.(3.3) and (3.13).

The corresponding growth rate, obtained from formulae (2.23), (2.24), (3.3) and
(3.5) gives v/wa ~ 0.32, which agrees well with the growth rate obtained from the
linear phase of XTOR-2F simulations. In order to identify the instability mechanism,
we let

oW = 5Wpress + 5Wcur7‘7

where

5Wp7"ess ~ / ! dT 2 kT)Q/J’O/(l + (/{77”)2>p6],

W " DB -4 0003 1)+ 1207 — 1),

which represent respectively the pressure and the current contribution to the total
MHD energy. Both pressure and current terms are destabilising (i.e. negative W)
but we deduce that this mode is mainly current driven since dWess/0Weyrr < 1
Finally, since the SHAx configuration is an almost resonant m = 1 mode, we are
permitted to employ the nonlinear analytic predictions (i.e. Eq. (3.14a)) for the
displacement. We then compare the analytic growth rate and displacement with
equilibrium and nonlinear simulations results. If we employ the analytic growth
rate of v/wa &~ 0.39 one obtains (by employing Eq. (17) in Ref. [62]) £ ~ 0.03m.
Instead we employ the growth rate from the XTOR-2F simulation (see Fig. 3.16) of
v/wa == 0.23, and we obtain (by employing Eq. (17) in Ref. [62]) £ ~ 0.018m. In
both cases we have good agreement between numerical simulations (both equilibrium
and nonlinear) and analytical theory for the estimate of the linear growth rate and
the nonlinear displacement of an m = 1 mode. This gives confidence in our analytic
identification that the displacement occurs dominantly by a current driven instability

(5Wcurr) .
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3.6 Summary

This chapter addresses the characterisation, both numerically and analytically, of
helical states in tokamaks and RFPs. Both equilibrium and saturated nonlinear
approaches are considered. The nonlinear analytic theory of the m = 1 saturated
kinks has been extended to arbitrary toroidal wave numbers in order to model modes
with n > 1. In addition, analytic conditions on the magnetic fluxes and the mode
spectrum are derived, for which a helical state exists.

A comparison between simulations of fixed and free boundary 3D equilibria and
nonlinear saturated ideal MHD instabilities in ITER-like and MAST-like plasmas
has been presented. A small n =1 RMP external magnetic perturbation has been
allowed in the MAST-like equilibrium calculations (6 Brasp/Byae & 107%) in order to
try to improve agreement between 3D equilibrium codes and nonlinear initial value
code when ¢,,;, < 1 for tokamak internal kink mode cases. When ¢,,;,, > 1 good
agreement between VMEC and XTOR-2F results have been found in accordance
with analytical predictions for saturated internal kinks [26, 62, 63|, and previous
numerical results [48, 64]. The amplitude of the displacement of the magnetic axis
weakly depends on the choice of an external n =1 (RMP) perturbation. When ¢y,
is sufficiently less than unity, the helical displacement shows a strong dependence
on the amplitude of n = 1 RMP field: a significant reduction/increase of the RMP
yields a significant reduction/increase of d,. The discrepancy of the approaches when
resonant surfaces exist in the plasma is not yet understood.

An RFP-like configuration with a non-monotonic ¢ profile having g, ~ 1/7
has also been studied. The SHAx equilibrium has been modelled using the code
VMEC2000 retaining only one toroidal mode, namely n = 7. Interfacing the output
of VMEC2000 with the nonlinear code XTOR-2F, it has been possible to study the
behaviour of the ideally saturated n = 7 mode: the two codes agree well for the
prediction of the displacement of the magnetic axis providing that a large toroidal
mode set comprising only of multiples of n = 7 are not used in VMEC. The analytical
theory of the nonlinear saturation of an ideal m = 1 mode has been extended to
general toroidal wave numbers k. In the approximation of large aspect ratio (kr < 1),
these results are used to predict the nonlinear saturated displacement of the n =7
mode: the agreement of both equilibrium (VMEC2000) and nonlinear (XTOR-2F)
numerical simulations with the analytical prediction given by Eq. (3.14a) is very
good.

Connection to the analytic theory shows that the SHAx equilibrium is generated
by a 1/7 internal kink, dominantly driven by current gradient and weakly by pressure
gradient. Agreement with XTOR-2F initial value code opens the way to begin a
resistive treatment which could permit stochastic regions to be generated, possibly
also with more than one magnetic axis.

70 Daniele Brunetti — CRPP/EPFL



Fast growing modes in low-shear
tokamaks with non-MHD effects

In this chapter we present the linear theory of resistive instabilities in low shear
tokamaks. The main goal is to derive an analytic dispersion relation for resistive
instabilities in a low shear tokamak configuration when extra non-MHD effects are
considered and to check if fast growing modes (much faster than the conventional
linear tearing mode) are still possible. The resistive infernal mode model [L. A.
Charlton et al., Phys. Fluids B 1, 798 (1989)] is generalised to include plasma
diamagnetism, subsonic equilibrium toroidal flow shear and viscosity. An estimate of
the transition point between fast S=3/13 infernal-like (S is the Lundquist number)
and slow S™%/% tearing-like scaling is given. In particular a novel S~%/8 scaling is
found close to the ideal ion-diamagnetic MHD stability boundary. New moderately
fast scalings in .S are also found when sheared toroidal EE x B flow and viscosity are
considered.
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Chapter 4. Fast growing modes in low-shear tokamaks with non-MHD
effects

4.1 Introduction

As we have seen in the introduction, an intermediate step between the H-mode
inductive scenario and the strong reversed scenario is the so called "hybrid scenario”
[75], which is characterised by low (almost flat with ¢ > 1 everywhere) shear in
the central region with gy close to unity (go is the value of the safety factor on the
magnetic axis), and high values of By = (B8)agBr/I, (8 = p/(B?/2u0)) where ag
is the plasma minor radius, [, the plasma current, Br the toroidal field and (3)
is the volume averaged normalised plasma pressure [6]. As pointed out in [6, 76]
these kind of discharges can be characterised by the presence of MHD activity, whose
most important modes are typically LLMs [8], global oscillations [77], snakes [78]
and NTMs [32] (note that NTMs are not always benign). In particular, TCV hybrid
plasmas have been experimentally reported to be prone to global plasma oscillations
which are either ideal or resistive [77, 79].

In plasmas with an approximately shear free core, pressure driven MHD instabili-
ties characterised by the coupling between a fundamental helical (m,n) harmonic
with its (m % 1,n) sidebands [56, 57, 80], are possible. These modes are called
“infernal modes” and are closely related to the quasi-interchange modes described by
Wesson for the special m = n = 1 case [34]. When resistive effects are taken into
account close to the MHD stability boundary, fast growing resistive modes, which
scale as S™%/13 (S being the Lundquist number), are found [58]. These “resistive
infernal modes” show a tearing character on the resonant surface of the m + 1
sideband of the main poloidal harmonic m. Such sideband perturbations could be
relevant for the triggering of neo-classical tearing modes (NTMs) [33], thus providing
the seed island necessary for the development of rapid growing modes (NTMs) [40].

Shear free core plasmas can occur either in the above mentioned hybrid scenario
or after a sawtooth crash in baseline scenarios where it is found that ¢ = 1 over a
large region of the core following a fully reconnected sawtooth crash [52, 53]. For
a brief time after the crash (and assuming density peaking in the core [81]) such a
configuration is essentially identical to the hybrid scenario mentioned earlier, and
as such, infernal modes are expected to be triggered. In particular it has been
experimentally observed that after a sawtooth crash, resistive modes can grow on
ideal timescales [40, 50]. Furthermore since the coupling involves an ideal MHD
harmonic in the core region with a resistive tearing-like sideband at ¢ = (m £ 1)/n,
then the effect of plasma diamagnetism should be important because the tearing
mode is required to rotate at the electron diamagnetic frequency at that surface [58].
Indeed in TCV hybrid-like operation regimes the presence of modes which rotate in
both electron and ion diamagnetic directions have been observed [9)].

With these applications in mind, our aim is to extend Charlton’s model for
"resistive infernal modes”, investigating the growth of resistive instabilities with
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non-MHD effects. Ultimately an attempt is made to find the scaling of the growth
rate with respect to S when non-MHD effects are included. The aim is to examine
primarily the impact of sheared plasma rotation and diamagnetism on perpendicular
dynamics and to see if fast growing resistive modes still occur despite these additional
non-MHD effects. These effects were neglected in previous analysis on fast growing
resistive modes [58]. Furthermore, a phenomenological perpendicular viscous term
[72, 82] is taken into account on the sideband resonant surface where the dispersion
relation can be extended in a simple way to accommodate it (we do not aim for an
extended treatise of the viscosity since our main dissipative effect remains resistivity).

The first part of this chapter is devoted to an explanation of the setup of the
problem and a derivation of the model of the drift-MHD equations which describe the
magnetic perturbation. The geometry of the system, the equilibrium fields and the
physical model adopted are then presented. We then show a derivation of perturbed
physical quantities (plasma pressure, magnetic fluxes and temperature), yielding
linearised Faraday-Ohm'’s law and vorticity equations, i.e. the equations describing
the magnetic perturbation in the low-shear (¢’ = 0) and sheared (¢’ # 0) regions
when additional non-MHD effects are included. Since the self adjointness of the
MHD operator is lost, the equations describing the perturbed fluxes are derived
directly from the equation of motion [83] rather than performing a 6W minimisation
[35, 84, 85]. In particular, even if the equations governing the fluid displacement
in the low-shear region are already known [35, 58, 84, 86|, a detailed derivation
of these equations is retained in order to have a unified description across all the
plasma, and covering the different physical mechanisms. With an appropriate choice
of the rotational transform, an exact analytic treatment of the magnetic perturbation
in the sheared region is derived. With this choice we present the approximations
needed to obtain the solution in the resistive layer. Eventually the dispersion relation
for infernal resistive modes is derived and analysed: three dispersion relations in
three different regimes are studied in the neighbourhood of the ideal MHD stability
boundary. Each regime separately considers the effects of plasma diamagnetism,
viscosity with diamagnetic corrections and equilibrium toroidal flows. Novel scalings
of growth rates with the Lundquist number S are provided and tabulated, showing the
possibility that fast growing resistive perturbations can occur even when non-MHD
effects are considered.

4.2 Equilibrium

We adopt the standard tokamak ordering where Bp/Br ~ O(e) (Bp and Byr denote
respectively the poloidal and the toroidal magnetic field strength) and 8 ~ O(g?).
We use a straight field line coordinate system (r, 1, ¢) where r is a flux label with
the dimensions of length, ¥ is a poloidal-like angle such that the magnetic field
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Figure 4.1: Schematic view of the tokamak (7,6, ¢) coordinate system.

lines are straight and ¢ is the toroidal angle. The contravariant and covariant basis
vectors are denoted hereinafter by V¢' and e, respectively, with ¢' = (r, 9, ¢). The
equilibrium geometry of a tokamak of major radius Ry is defined by shifted circular
toroidal surfaces in a large aspect ratio approximation (¢ = r/Ry < 1), as shown in
Fig. 4.1. The total magnetic field is represented in terms of flux functions [87]:

B=VfxViy—-VixVop, (4.1)

where the vector potential is given by A = f(r, 9, ) VI —1(r, 9, ) V. Hereafter we
set ' = 9/0r. The equilibrium fluxes ¢y and fy (denoted by the subscript 0) depend
only on r, and q = f}/v¢}, with f ~ Bor which follows from Br ~ RyBy/R [16] (B
is the magnetic field strength on the axis). Normalising po = 1, from the Ampére’s
law J = V x B, where J is the current density, we have |/gJ¥ = A*))+©O* f, where
the expressions for the operators A* and ®* are:

g9y 97”19 gr9 grr
- (o= G- (o= o
N N
grv Grr
O*y = —0, Jdyx | +0 0 :
(ﬂ ) ’ <\/§ ”)
Defining Jy = A*ty/ f§, it can be easily seen that:

_ 999 o9 ﬁ_L 9rv
oo (T 0 5, (), »

which at leading order reads Jy = 1/Rg[(rt)" + ¢]. It is easy to show that Jj =
1/(mRo)[(r*K[") /7] [92], where ¢ = 1/q and k" = mu —n.

In order to compute the metric tensor coefficients, we start with a right handed
cylindrical coordinate system (R, Z, ) in which the flux surfaces are parametrised
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as follows (see Chapter 2 § 2.3 and Appendix A § A.1):

R = Ry +rcosf — Ar) + O(?),
7 =rsinf + O(e?),

where 6 is the geometric poloidal angle and A(r) ~ O(gay) is the Shafranov shift.
We first note the length element in the axisymmetric (r, 1, ¢) coordinate system is
given by (cf. Appendix A.1):

At = grrdr® + gogd? + 2g,9drdd) + R*dg?,

where g,, = R* and g¢,, = gy, = 0 due to axisymmetry. In a right handed straight
field line representation, the most general form of the equilibrium magnetic field
is given by the following form B = V fy x Vi — Vg x Vi where ¥ = 0 + A is
the rectified (straight field line) poloidal angle and A ~ O(g) is the rectification
parameter. By imposing the condition J" = %a% (g"ﬁ %) = 0 (which comes from
Eq. (2.8)), we can calculate the elements of the metric tensor, up to O(e), whose
expressions are [88]:

2
Grr =1 —2A"cos?, g9 = (; +rA + T2A"> sin ¥,
0

3

2
Gog =17+ RL cos ¥ + 2r2 A’ cos v, (4.3)
0

2r 1 1 2r
:R2{1+COSI9}, :{1—00519],
g‘P‘P 0 RO \/g TR()

where the ratio g,,/./g depends only on the flux label r. A more careful derivation
gives [89] ({ + )= £ J2°( - )do):

(gpp) = (R*Y = —rRy (A" + 3A'/r + 1/Ry), (4.4)

where the Shafranov shift fulfils the following equation [90]:

1 2Rgp| 3 1\
A// - = _ 0.2 (Y 2 - A/
Ro rB? 4 r + 2 q ’

with pg the equilibrium pressure profile and ¢ the safety factor profile (' = d/dr).

4.3 Physical model and drift MHD equations

Infernal modes depend critically on the safety factor profile ¢, whose typical profile
in hybrid (low-shear) configuration is shown in Fig. 4.2. It is convenient to split
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the analysis of the instability into three different regions. In the core we impose a
large region of low-shear (region I) which extends from the magnetic axis up to
the radial position r, where the magnetic shear § = r¢’/q is almost vanishing, i.e.
¢ ~ 0, and g ~ mg/n. A sheared region (region II) where ¢’ ~ O(1) extends from
r = 14 up to the plasma boundary r = ay. The transition point between region
I (low shear) and region II (high shear) is marked by 7., so that ¢/(r < r.) =0
and ¢'(r > r,) = O(1). Finally a thin resonant layer (region III, shaded in Fig.
4.2) about the radial position r = rg, where the (mg + 1)/n resonance of the safety
factor occurs, is included. The non-MHD effects considered are diamagnetic flows
and viscosity. The additional MHD effect of equilibrium toroidal flow vy = v¥e,
is assumed constant in the low-shear region (see Fig. 4.2) and subsonic (M < 1,
M is the Mach number) in order to preserve the property pg = po(r) [91]. Finally,
as indicated in figure 4.2 r( is the radius at which we force the pressure (assumed
parabolic, viz. pg ~ 1 — (r/r)?) to vanish.

For a fixed toroidal mode number. the
Fourier structure of the magnetic pertur-
bation is assumed to be characterised by @
having a fundamental mode my and two /\
poloidal my £ 1 sideband components A
which are of order O(e) with respect to
the dominant one. In the low-shear re-
gion the parallel wave vector kﬁ”o is taken Mo+l @
to be O(e), thus inertial corrections to —

G

)
(S

the mo harmonic and the coupling with ~ mg “

its sidebands are important. Further- n D

more in this region ion diamagnetic flow

and equilibrium flow shear are taken into T=To Ts G >

account. In the sheared region only non-
inertial ideal MHD is required and it Figure 4.2: Profiles for toroidal rotation fre-
will be shown that the Fourier harmon- duency, pressure and safety factor. In the low-

. . shear region (r < r,) the ¢ profile is almost reso-
ics are decoupled at leading order. The _ . (g ~ mo/n). The resonant mo + 1 surface is

resonant layer physics of the (mg +1)/7  Jabelled by r,.

sideband is augmented by viscous and

diamagnetic (both ion and electron) ef-

fects. Sheared E x B flows are also retained. Each region, which includes different
physical mechanisms, is treated separately. Through the matching of the correspond-
ing eigenfunctions a dispersion relation for the magnetic perturbation is derived. We
obtain a single equation for the dominant Fourier my component which depends on
the stability index A’ := ¢/, /¢4 |7*T [16] by matching the solution in the low-shear
region with the solution in the sheared region. Standard tearing theory [83] is
used for matching the eigenfunction in the resonant layer with the eigenfunction in
the sheared region, providing A’ = A’'(w) (w is the frequency of the mode) which

76 Daniele Brunetti — CRPP/EPFL



4.3. Physical model and drift MHD equations

eventually leads to the dispersion relation.

In order to model the non-MHD effects, we adopt the following set of drift-MHD
equations [67, 82, 92] (s =i, e):

ons +V - (ngvs) =0 (4.5)
oldw+wv - Vo+v Vv ]=-Vp+J x B+ pu, Vv (4.6)
atps + v, - Vps + gPsV Vs = 0 (47)
e VT,
E+v. x B+ Vo +0.71 e =nJ (4.8)
eng e

where ng is the density of the species s (n; = n. = ng), the electric field is given
by E = —-V® — 0,A, ® is the electrostatic potential, v; . are the ion and electron
velocities, where for the ions v; = vg + v); + v}, with vg = E x B/B? v* =
B x Vp,/(qsnoB?) (g, is the charge of the particle of the species s), and for electrons
v, = v; — J /eng. The parallel velocity is defined by v = (v - b)b, where b= B/B
is the unit vector along the magnetic field. The plasma MHD velocity is defined
as v = v; — v}, 0 = nym, is the mass density, n and p, are the plasma resistivity
and perpendicular viscosity respectively, which are both taken constant (this is a
reasonable approximation since their contribution is non-negligible only in thin layer
close to the resonant tearing surface ¢ = (mgy + 1)/n). The total plasma pressure p
is defined as p = p; 4+ pe. Finally T and n, are respectively temperature and density
of the species s with V|| = b(b - V), V?( - ) is the Laplace operator. Finally,

the diamagnetic frequency for the species s for a given wave number k is given by
* . BxVp
wi=k naB?

We include a purely phenomenological perpendicular viscous term (as introduced
in Ref. [82]) which provides a modest generalisation of the dispersion relation of
these resistive modes in hybrid plasmas. A more elaborate treatment of the plasma
viscosity has been presented in Ref. [93], however we do not attempt to model
parallel dynamics in the long mean free path. Indeed the viscous term enters only in
the thin layer of the sideband of the main mode which is treated in slab geometry
with a constant background magnetic field, leading us to drop the contribution of
possible toroidal effects. Moreover the sideband layer is in a cooler part of the plasma,
strengthening the argument that the perpendicular dynamics are dominant over the
parallel dynamics in the ¢ = (m + 1)/n region. ! Our aim is to primarily examine
macroscopic perpendicular dynamics, which arrive from the short mean free path
equations. In addition to perpendicular viscosity and resistivity, we include the
impact of ion and electron diamagnetism and shear flow on the mode growth. We

IThere are other important dissipative effects beyond diamagnetic-MHD, such as parallel
dynamics of wave-particle interaction. An example is the modelling of interchange modes in Alcator
C-MOD, where ion Landau damping effects were favoured over viscosity effects as a substitute for
diamagnetic effects in the core [94]. Our application differs from that of Ref. [94] in that our main
dissipation effect is resistivity.
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point out that this set of equations is adopted in analogy with the model equations
employed by many MHD codes which study core tokamak behaviour such as XTOR-
2F [66, 95]. Thus, in the derivation of Eq. (4.6), we employed the gyro-viscous
cancellation [67, 92, 95]:

atvi+v : ggv %81512—1-1): : V’UJ_

in which a straight, uniform magnetic field is assumed (ggv is the gyro-viscous stress
tensor). This is a reasonable approximation, since the inertial terms in the low-shear
region enter only at leading order where the equilibrium magnetic field is assumed

constant (this will be clear in the following sections).

4.4 Derivation of the equations for (&, ¢, f, p)

The main objective of this section is to derive a set of coupled equations for the
perturbed electric potential ® and the poloidal magnetic flux v, namely the vorticity
equation and the Faraday-Ohm’s law. Because of the ordering scheme in the low-
shear region, the corrections due to perturbed pressure and toroidal magnetic field
become important. Thus an expression for these quantities is required. We assume
flute-like perturbations (a tilde denotes perturbed quantities and X is a generic
physical quantity):

|By - VX| < |By x VX],
with a time dependence exp(—iwt).

The total perturbed plasma pressure (p = p; + p.) is written as a sum of an
incompressible and a compressible contribution, namely p = p; + dp. At leading
order we can neglect the compressible contribution V - v = 0, so that the equation
governing the incompressible part of the total pressure is (0; + v + V)p; = 0 [92],
which gives for the mth Fourier mode (for sake of simplicity we omit to write the
subscript n):

Prm = impy/ fo&m, (4.9)

where € = i® /& and & = w + nv¥ where v¥ is the equilibrium toroidal flow due to
the equilibrium electric field. The perturbed ion pressure is found by linearising eq.
(4.7) under the assumption of hydrodynamic like ions V - v; ~ 0 [96], which gives:

Pijn = implo/ folm- (4.10)

By subtracting (4.10) from (4.9) we obtain an approximate expression for the electron
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pressure:

Desm = 1mplo/ fo&m- (4.11)

Finally, writing p. = 7% + 10T, and imposing quasi-neutrality, from (4.5) and
(4.11) the perturbed electron temperature reads:

T = imTLy ) folm. (4.12)

By taking the contravariant radial component of the curl of the Faraday-Ohm’s
law (Eq. (4.8)) we obtain at leading order:

( [Poe/1 + 0.T1T]
o —

f’e 619 + VypHED V) \/EBT =
0

0.717,

— L0y <&)+§;+ > +7]\/§V2BT,

where Eqs. (4.11) and (4.12) have been used and L = 10y + 0, is the parallel
magnetic operator. Hence, neglecting the contribution from the perturbation of the
toroidal flux f which will be shown a posteriori to be small, the equation for the

mth Fourier component of the perturbed poloidal flux ¢ reads:

. in  d?
Dy, = ik, D=(1-———F17—1, 4.13
Ym = R[S ( w—w;dr2> (4.13)
where O* = w* +w!, w* = —mp)./(enofy), and wI = —m0.71T.,/(ef}). Since the

resistive contribution is important only in a thin layer close to the resonant surface
we approximate V2 ~ d?/dr?.

We now derive an expression for the perturbation of the toroidal flux f. By taking
the covariant ¢ projection of (4.6) and neglecting the inertial terms we obtain the
radial contravariant perturbed current:

T = 1/4400.p + J§ /9B'].

Using the Ampere’s law and eq. (4.13), at leading order we get:

- B Rop!
B‘Pm = = o 87“[ ﬁlrxm]+qn oo

q .
X — o Fok|[ X ¢,
m | mRy o™l

B2 By

having used the relation p,, ~ —p{X,, with X,,, = —09&,/ f). Therefore, assuming
B~ O(e?) and k' ~ O(e) with ¢ = m/n, we have (F denotes the covariant ¢

Stability of tokamak and RFP plasmas with an extended region of low magnetic shear 79



Chapter 4. Fast growing modes in low-shear tokamaks with non-MHD
effects

component of the magnetic field):

o Roﬁm
By ’

Fry = B = (4.14)
where (4.9) has been used. Equation (4.14) shows that the mth Fourier component
of the toroidal flux f (cf. Eq. (4.1)) is fin ~ O(g?)&,,, allowing us to approximate
VIB" ~ —0y1p. B, can be also found by means of Eq. (A6) in Ref. [97] under the
same assumptions.

The expression for the compressible contribution to the plasma pressure (p =
p1+0p) is found by projecting eq. (4.6) along B/B3. By means of the Faraday-Ohm'’s
law with no resistive effects (1) = L;;§) we note that:

B
- V(p1 +6p) — B Vpo = —(L6p)/ Byo,
0

By
B3
so that we are left with 6,Z = —(Ljdp)/Byo, where Z = v - By/Bg, B"/B? o~
VIB"/(fiFy) and By/Bj - V = 1/F,L; having ignored the resistive term in B’

Therefore at leading order (neglecting longitudinal viscosity) the following expression
is derived [98]:
op = Z'LDQFOLFZ.

From V - v; = 0 [96] we have By - VZ = —V - v;;. At leading order, using the
expression for the perturbed ion pressure (Eq. 4.10) we write [96]:

Vv = (1 - “) v <B° . Vq)) , (4.15)

2
w Bg

with wf = mpj,;/(enof}), under the assumption that w} and & do not depend upon
the variable r. Thus using (4.15) and recalling that B§ = f;/,/g, we eventually find
that the compressible contribution to the plasma pressure dp reads [83]:

op = —i (& —wf) oFo L *V/g/ 512, /9] 1), (4.16)
and the Poison bracket is defined as:
[A, B] = 1/4/9 (0,A0y B — 09 A0, B) .

Lﬁl denotes the inverse operator of L, such that LWILII — LIILHI — I, where I, is
the identity operator (here Lﬁ2 — Lﬂl Lil)'

Finally the vorticity equation is derived in the following manner. By applying the
operator Vo - V x 1/B? on (4.6), and taking the Fourier poloidal m component

80 Daniele Brunetti — CRPP/EPFL



4.5. Low-shear region

for a fixed toroidal number n after linearisation we have (equilibrium quantities are
denoted by the subscript 0) [83, 98]:

iy [(mL —n)AY, = (m—m)Jg, + m'ng/&«]wm_m/—i—

(V9 [p. R/ Fo| = pods (R*F/F3) = \/gl) = Hi (4.17)
where the inertial-like quantity I is given by:

_(Ov . v

and the H term is defined as:
H =L (Jo/gB? — ©"f) + Jid, f.

Finally, the average is defined as:

(e = 1/(2m) [ yexplim'o)an,

, is (we recall that ' = 9/0r):

0 0 .
Anx = |[P2) S| —im—m) (£2) ¥
’ or (\vg),, or Ny~
/
_m_m/ [Z (gm9> +m<grr> ‘|X
( ) \/§ m/ \/g m/
We are now ready to solve the generic set of equations (4.13), (4.14) and (4.17)
together with the equation for the plasma pressure given by the sum of (4.9) and

(4.16) in the low-shear region, the sheared region and the resonant layer region (see
Fig. 4.2).

and the explicit formula for A},

4.5 Low-shear region

In the low-shear region we assume a constant toroidal flow and a generalised parabolic
equilibrium pressure profile py = p(1 — (r/r¢)?) with ry > 7, where the factor r
controls the peaking of the pressure (see Fig. 4.2) and p denotes the value of the
pressure on the magnetic axis. We allow for ion diamagnetic effects. With a parabolic
po, the w* and @ frequencies do not depend upon the radial variable r, so that the
differential operators do not act on these quantities. Note that with this pressure
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profile we have that 5 = p/Bz(ro/ag)? [86]. The fluid-like displacement ¢ is expanded
as follows:

52 gmoeimoﬂ—inw + 5€moilei(m0i1)ﬁ_imp + 0(62)

where myg is the mode number of the main poloidal harmonic. The ordering adopted
here assumes k" ~ w/wa ~ wf./wa ~ € and po/Bj ~ €* where wa = Va/Ry,
Va = By/+/0 and g is the value of the density on the magnetic axis. Since the density
profile is assumed slowly varying, so that a reasonable approximation is to take
a constant density implying that w, is constant. Thus the pressure gradients are
entirely due to temperature gradients. In this region the exact resonances ¢ = mg/n
and ¢ = (mg = 1)/n are avoided, hence the resistive corrections can be neglected
(this yields D =1, cf. Eq. (4.13)) [58]. In addition we assume that the plasma core
is sufficiently hot, so that collisional effects, i.e. viscosity, can be dropped. Thus by
means of (4.15), the following expression for the inertial term is obtained:

A (A * TR @
(\/§[>m0 ~ W (w — W ) ?ETWO (gmo)

dr \r

with T,,(¢) = 1/r2{$ [r3i (Qﬂ + (1 - m2)g}. In the derivation of the above

expression it has been assumed that at leading order the magnetic field is straight
and uniform, thus fulfilling the requirements of the gyro-viscous cancellation [92].

Using the expressions for the metric tensor coefficients (4.3), it turns out that
98]:

¢*{L10p, 9/ foYma = —(V/910P, /3] fo o, (4.19)

where {A, B} = 0,A0y B+0y A0, B (the details of the derivation are given in Appendix
A.2). Thus from Eq. (4.16), with the approximation T/ f} ~ Ry /r, we write:

[L70p'05(v/9/ £o)lm = —2iw(1 — W} /&) eRo/ Byry,,

(09 L10p(v/9/ 10) Tm = 2i(1 — w} /&) oRo/ Bo[ @, — m’ @y, /7],
Thus adding the two equations above and using (4.19) we obtain:

(V910D /9] fi)mo = —iw(l = Wi /@) 0Ro2/ (rBg)[r* @}, + 1@y, — Mgy,
which eventually leads to:

R0 2
(V89,1 5D, = @@ =) T (6 (4.20)

This result extends the Glasser, Green, Johnson inertia enhancement [68], for the
case of extended low shear and with diamagnetic effects.
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By using (4.13), from (4.17) three coupled equations are derived which at leading
order are written as:

iLS”O(kﬁlong + Kénogmo + Ameo (£m0)+

S (LT (R ) + KT 6 g11) =0, (4.21)
+

Loty g 4 KostE e =, (4.22)
Lo Ype 1+ K707l =0, (4.23)

where the sum is carried over the neighbouring sidebands, A, = r/(Row?)(® —
w¥)[@(1 + 2¢%)], and from (4.3) we have defined the following operators:

Lp¢ = {7 [r¢Y = micr] - 1%y 1

Fo ) fo BoFgfs
LM = i[(mb —n)AY, = (m—m)Jy,, + m/JOmlar} ¢,
/ / / /
m,m’ g 2Dy / / \/g Po
K™ (:<\/_> m—m')*=) ¢ —m'(m—m () [(}
1 T PR R A b A
After some lengthy algebra, we have from (4.14) (for more details see appendix A.2):
2pom2 [Roppq® v (1
Kmog,  ~ 21 e,, 4.24
2 5 0 TB% Bg + RO (]2 f 0 ( )
moF1 7y mo,x1 mo,1 m0p6 +mo 1Fmo !
(k” Ly + K )gmoiFl = qzriBgr (7’ §m0$1> ; (4.25)

having used the fact that k‘ﬁnoil is a constant and the relation (cf. Eq. (4.2)):

1 2 , Lr 3A’ 1 Poq
i J. ilﬁdﬁzi A” - :_L
27T/0 0° 2R [ T RJ B2

After introducing the fluid displacements X,,, = —09&mo/fo; Xo = —09&mo+1/ [0
Eqgs. (4.21), (4.22) and (4.23) can also be written in a compact form as [35, 99]:

4 [T3Qde0] +r[(1—m3)@—a2+ il (1—1>] KXo+

dr dr 2¢>  Rog® \ ¢*
a ,},,—mo 24 mo ’ ,r.mo 9 /
el mox ) — mX ) =0 4.26
2¢? [mo +1 (r +) mo — 1 (r ) ( )
/
T—l:FQmo (T2:I:moX:t),:| = imO;: 1 [OzT’:FmoXmo]/ (427)
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whete @ = 62/q" — 0@ — w})(1 + 2¢)/(muA) , 6q = q — mo/n and a =
—(2Ropyq*)/BE. We also used the relation [92]:

i i o] - S o -

g 9] )

Equations (4.26) and (4.27) form a coupled system for the magnetic perturbation in
the low-shear region which are to be matched with the eigen-solution in the sheared
region. This matching will eventually give the dispersion relation. It is also important
to note that the factor () contains all the non-ideal terms in the low-shear region.
We stress the point that since the mg/n resonance is avoided, the only non-negligible
non-ideal effect is the ion diamagnetism. Viscosity and resistivity will instead enter
the problem via the (mg + 1)/n sideband.

4.6 Sheared region

It is convenient to describe the sideband magnetic perturbation in terms of the fluid
displacement X. This is linked to the poloidal flux by the relation (cf. (4.13)):

Um = = (fok{ /m) Xom (4.28)

In the external region, the leading order of equation (4.21) is given by Lg"t,, =0
which can be written as:

i 76 ] =t 0 () =0 42

We multiply the previous expression by X,,, and we integrate between r, and a
[92], imposing the boundary condition X,,,(ag) = 0 and assuming no strong radial
excursions. Since k[ (r«) ~ O(¢), it then follows that at leading order X,,, = 0. In

this region, the equations for the sidebands are then given by Lj Oﬂ@bmoil = (0 which
can be written in a form similar to (4.29) with the obvious substitution my — mg £ 1
(35, 99]. An exact analytic solution for X, can be found for ¢ profiles defined as
1(r) = t1 +12(r/rs)*. The constants ¢; and to are chosen such that t(r,) = n/mg — dq
and «(rs) = n/(mo +1). If ry, < ry then:

(mo + 1)t — n ~ n/me[1 — (r/r,)] (4.30)

which corresponds to the model safety factor used in Ref. [84]. Introducing the
variable z = (r/r,)*, the equation for the m = mg + 1 sideband is written in this
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convenient form:
d
dz

2dX+ _m2—1

2/ 1 (1 _
S =2 A2

211 -2 X, =0. (4.31)

When the equation above is augmented by finite [ effects, an analytic solution is
derived in Ref. [83] for the particular case A = 2 with parabolic pressure p. A
solution with a general A for a logarithmic pressure profile is given in Appendix A.3.
When z < 1, i.e. 7 < 1y, the solutions of (4.31) can be expressed as a combination of
hypergeometric functions [83, 100, 101]:

Xy =m0 — )7t (ATF(CL, bja+b+1;2)+
Bl F(=b, —a;1 — a — b: z)) (4.32)

where we defined @ = (m —m) /X, b = (m+m) /X, m = vVm? 4+ 2\ + A2 and for
convenience At = A, @RI o4 Br — Blw If (r./rs)* < 1, far from the

T(I+a+b) T(1—a—b)
resonant surface, i.e. for z << 1, it is easy to see that
r \ Mo r _(2+m0)
X, ~ () LG () (4.33)
T T

where Cy = (ry/rs) 2™ ~2B} /A%, which recovers the asymptotic behaviour found in
proximity of r, [84]. Conversely, when z > 1, i.e. 7 > rg, the solution of (4.31) reads
83, 100, 101]:

Xy =2 O - ) (AF (b =L b= ai1/2) +

B3 F(=ba:1+a—b;1 /z)> (4.34)
where A} = —Az% and B} = —Bg% The constant Bj is found by

imposing the condition X (ag) = 0, which eventually gives:

* Ts 2m F<b7 —a; I—a + b’ (TS/GO)A)
o ()

A*
ap)  F(=b,a;1+a—b;(r/a))

which can be written as By = DyAy where [83]

B rs\2™ F(b,—a;1 —a+b; (rs/ag)*) T'(—=a)l(b)I'(1+a —b)
Do=- () F(=b,a;14+a—0b;(rs/ag)?) % C(a)T'(=b)T'(1—a+0b)

Qg

Defining A’ := ¢/, /1, |7sT [16], expressing (4.32) and (4.34) in terms of ¢ by
means of (4.28), after some straightforward algebra making use of the approximate
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formula for the hypergeometric function in the limit |1 — z| < 1 namely (Ref. [102]
p. 555):

F(la+b+1) "
st ) = = )

X [n(l—2)—¥(1)—-V(2)+V(a+1)+VY(Ob+1)]},

F(a,bja+b+1,z) ~

where U is the Digamma function (Ref. [102] p. 253), we can express the ratio By /A,
as a function of A"

Ay —
By —

(AO + BO + m) — T'SA/
(A() + B() + m) - ’I"SA,’

1+D

By /A, = — (4.35)

1+D

where Ay and By represent respectively the logarithmic jumps across r, of the regular
and diverging eigenfunctions at the origin ad are given by:

7ot Ta)

Ag=m+m— (m* —m*)/N¥(—a) — ¥(a)] = L )\ (m? —m?), (4.36)
By = (7 cot wb)(m? — m?) /. (4.37)

For the sake of simplicity we assume that (rs/ag)*™ < 1, hence the quantities
involving D, can be neglected, so that the parameter Cj is written as:

Co=—

[(—a)D(=b)D(1 4 a+b) Ay — reA [, ~2mo=2
(@)L (1 —a—b) By—rN () '

The parameter A’ will be computed by solving the equation for X, in the resistive
resonant layer as shown in the next section.

4.6.1 WKB approach for more general ¢ profiles

When we have a more generic ¢q profile, the WKB approximation can be used for
the evaluation of the coefficients Ay, By and G [29]. The analysis is split into two
regions, one far away from r,, called outer region and a one close to such surface,
called inner region. Assuming that v, varies more rapidly than the equilibrium
quantities [29], in the outer region the equation governing the magnetic perturbation
can be written as 62y = U, where U = 1/1? + (RoJy)’/[m(me —n)] and § = 1/m
(finite § effects can also be retained, see Appendix B, § B.2.2) . Far from the rational
surface, treating J as a smallness parameter [29], the WKB solution to leading order
in ¢ reads:

wout ZA< exp [ ( ROJO d?”>‘| 7

meL—n
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where the subscript > (<) refers to 7 > (<)r,, having used the relation VU ~
1/r 4+ r{RoJo) /[2m(me — n)]. If r < r, then

Ut = AL(r/r)" + A (r/r) ™, (4.38)

while when the resonant surface is approached, introducing the variable z =
2m/(rsq.)(q — m/n) [29] the inner limit of the outer solution is:

. ALz e V2 4 AZ 2722 2 <0
¢0u —
" ALMe? 4 AZz e z >0,
where A = —q,(RoJo)./(2nq.). Boundary layer theory is used in the inner region.
The equation governing the poloidal flux ¢, in the inner region is d?yi" /dz? — (1/4 +
A/z)Yi = (0 [29] whose solution is written as a combination of Whittaker functions
(ref [102] p. 503):

T S
m F(l + A)W,AJ/Q(Z) + B>M,A’1/2(2), z > 0.

Asymptotic matching between the inner and outer solutions gives AT =T'(1 — A),
A =T(1+A), A =B, /T'(1-A) and AL = B./T'(1+ A). Imposing the boundary
condition ¥,,(ag) = 0 we obtain Bs = —T*(1 + A)(r,/ag)*™; thus if (ry/ag)*™ < 1,
the term proportional to B~ can be dropped. Therefore B_ is expressed as a function
of the tearing stability index [29]:

B =wAcot () + rA'/(2m), (4.39)

and the following replacements have to be performed:

Co = B/T*(1 = A)(rs/r.)™, (4.40)
Ag = 2(mg + 1)[-C1C /(2 + 2mg + Cy) — wA cot(mA)], (4.41)
By = 2(mg + 1)[C(2 4 2mg — C1)/Cy — wA cot(mA)], (4.42)

where C; = mr.t/(r,)/(mu(r,) —n) and C = T'2(1 — A)(re/75)>™ (m = mo + 1). If

the magnetic shear is small on the surface » = r,, the previous expressions can be
2 2m

simplified giving Ay = —2mmA cot(rA), By = — U= r/ra)™

S

4.7 Resonant (mg+ 1)/n layer region

In the limit 70/0r > 1, introducing the layer variable x = (r — ry)/rs, from (4.13)
and (4.17) we obtain two coupled differential equations [67, 103] which in Fourier
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representation £(k) = FE&(x) = 1/v/2x [ &(x) exp|—ikz]dz can be combined in one
single equation for the m = mg + 1 harmonic which reads [72, 103, 104]:

d k2 dE . .

— [ | — 000k — 806,k = 4.4

dk <1+5nk2dk) 00K = 000,K°E =0 (4.43)
where g = — (& — w})s/(m8swa/qs)* (the subscript s means that the quantity is

evaluated at r = ry), §, = iS'wa/ (& — wi — wl)s, 07 = @s(1 + 2¢2) and 6, =
i(puy/r?)/0, S = Tp/Ta is the Lundquist number where 7 = r2/n and 74 = 1/wa.
The solution of (4.43) must fulfil the boundary condition

lim £(k) = 0. (4.44)

k—o0
and can be chosen having definite parity, i.e. even (£,) or odd (&,).

The solution procedure broadly follows the approach of Ref. [72], matching
the solutions obtained in the regions £ > 1 and 0 < £ < 1 in the constant —
approximation limit (dpd; < 9,) provided by the condition A" < 1 [105], viz. for
sufficiently small diamagnetic frequencies, where § is the layer thickness. When
k < 1 the approximate equation for € is (we set d/dk ~ 1/k) [72]:

d k2 dE

el _ | = 4.4

dk (1—1—5,7/{:2 dk;) 0 (4.45)
whose solution is é = —co/k + codyk + c1. For k large we have:

d*¢ A

dk}g - (Sndo(Sjk’yf =0 (446)

where v = 2 and 0; = J; in the resistive regime, while v = 4 and J; = 9, in the
viscous-resistive regime. The resistive/viscous solutions of (4.46) which fulfil (4.44)
are & ~ D_15(v/268k) and & ~ k2K, 6(6Y k*/3) respectively, where [72, 104]:

08 = (60670,)"4, (4.47)
0y = (5,008,)"%; (4.48)

D and K denote the parabolic cylinder and modified Bessel functions respectively.
Matching the solution of (4.45) with the solution of (4.46) in the limit £ > 1 and
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k < 1 respectively, the following expression close to the origin in % space is obtained?:

1 [20(3/4) (8000)"/*] _ N
éN b k l '(1/4) 579;/4 =14+ Ag/k, (resistive),
~ 1 62/3F(5/6) (505“)1/6
1 , =14+A et
k [ ['(1/6) 5;5]/6 ] + Ay /k, (visco-resistive),

where Ap = 2T'(3/4)/T(1/4)8y'6;"*6,%% and Ay = 6T (5/6)/T(1/6)d,/*5}/°6, /%,
Thus the even (e) and odd (o) functlons are written as &, ~ (14+Agy|k|~1)[sign(k)]?

where p = 0 for the even solution and p = 1 for the odd one. We explicitly invert éo
via the following relations [106]:

L (1/k) = —i\/r/Qsign(x), F Y (sign(k \/2/7/ (iz)

giving &,(x) ~ 1/x + mAgyv/2sign(z). Adopting the notation employed in Ref. [83]
using also (4.13), in the outer region we can write {2 = Zo/x(1 + A, p|z|) where
the logarithmic term in v has been neglected [83] and rsA" = A, + A, where < (>)
stands for < (>)0. The inner solution for £ is written as a combination of even
and odd functions £ which have to be matched with the outer solution:

=&+ & =5o(1/]a] + A) (4.49)
=g —& =-E(1/]z]+4,) (4.50)

where £, = F'¢, and £_ ~ 1/|z| + 7Agy /2. Subtracting (4.50) from (4.49) we get
26_ =E0(2/|z| + Ac + A,), which finally gives the dispersion relation:
A — TARg, | (res%st%ve), (4.51)
wAy, (visco-resistive).

After matching the parameter r,A’ in the sheared region with r,A’ calculated in
the resonant layer region, we then simplify substituting (4.51) into (4.35) to yield
By in terms of A;. In order to obtain the final dispersion relation, a further match
between the solution in the low-shear and sheared region is required, as shown in

2Let us take the Fourier transform, in one dlmension7 of the function f (which is assumed
to be well behaved) defined as f = 1/\/7f exp|—ikz]f(x)dx. We note that for large k the
exponential is highly oscillating, therefore we have almost no contributions to the integral unless
the variable x is in the neighbourhood of the origin. Thus we are left with

. 1 oo
flk>1)=~ \/—27/_ dx explikz]f(z < 1).

Hence the behaviour for large k in the Fourier space is translated in real space into the behaviour
for small x and vice versa.
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the next section.

4.8 Eigenfunctions and eigenvalues

In the preceding section, we have an equation for the eigenfunctions in the low-shear
region (cf. Egs. (4.27)) and in the high shear region (cf. Egs. 4.32), (4.34) and
(4.51)). In order to obtain a dispersion relation, we match smoothly these equations
at r,, which is the radial position close to the transition point between high and low
shear regions. Integrating (4.27) and assuming regularity at r = 0, we get:

—2—mg my + 1

X+:14~1+7“m0—|—7" 9

/O aftm X, dF. (4.52)

We note that the first integral of (4.27) for X_ gives:

mg—l

(r27m0X7)/ — A7T172m0 _ 2

ar'™mX

By imposing X_ to be regular on the magnetic axis, it follows necessarily that
A_ = 0. Therefore matching (4.52) with the eigensolution X, in the sheared region
across r = r, (viz. imposing continuity for X, and X', ? ), we find:

mo,n

~ T s
Al = r;2*2m°Aw / oermOXmOdr,

where Ay, = [(mo+1)/2](2+mo + C)/(mo — C) and C = 1, X' (rey)/X; (r4y)
[35]; hence, the following expression for the main mg harmonic which fulfils the

regularity conditions at the origin, is obtained [35, 58]:

i [ﬁ@‘“’"@] T [(1 —m2)Q + o (12 - 1)] Xyt

dr dr Rog? \ q

AY T
r;2_2m°;n;’"ozrm°+1/o oc?“1+m°Xm0d7‘ = 0. (4.53)

Making use of (4.33), we obtain C = mow, thus AY . = (mo+1)/(2Cy),

mo,n

where Cj is evaluated using (4.35) with r,A" given by (4.51).

3Let us call B = et [MaFltmo X, dF so that X, = Ay r™0 +r~2-™0B. Hence we have:

2+ m) X1 (Tag) = (2+m)[rP° AL + 7,27 B,
re Xy (rag) = morl® Ay — (24 mo)r, ™ B.
If we sum the two expressions above we obtain X (r.y) = 2(m +~1)TT1‘I+/[2 T om 4+

74X’ (res)/X (r«s)] which is plugged in the equation for X(r.;) giving Ay = Br=272m(2 +
m+ C)/(m— C) with C = r, X' (rsy)/ X (raq).
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Equation (4.53) generalises the resistive infernal mode analytic results of Charlton
et al. to include n, mu,, w* effects and shear flow. These additional effects are
contained in the quantities @ and Aj, . @ contains the effect of the inertia of
the main my mode and the effect of diamagnetic ions in the low shear region. The
parameter Al . contains the layer physics which includes resistivity, viscosity and
diamagnetic effects (for ions and electrons) at the ¢ = (mg + 1)/n resonant surface.

In the next sections we examine in more detail the cases my = n and mgy # n.

4.8.1 Case my=n

This situation corresponds to a value of ¢ in the low shear region close to unity. The
pressure profile in the low shear region is taken as p = p(1 — (r/rg)?) for 0 < r < ry,
with 7. < 7y < ag, and p = 0 elsewhere [86] (cf. Fig. 4.2) where the coefficient rg
is used to control the peaking of the pressure. A parabolic pressure profile in the
low-shear region implies constant w* frequencies. Dropping the (1/¢* — 1) term,
which is small for mo = n, Eq. (4.53) can be solved analytically by using the method
of variation of parameters imposing the integral condition [86]:

/0 ) ar™t X, dr = 1. (4.54)

The solution therefore reads (q is the value of the safety factor in the low-shear
region):

QROﬁ qQAmo,nr;2m0
a’B3 Q(mg +1)

Xy = {rmo_l - rm‘)“/rﬂ .
Plugging the equation above into Eq. (4.54), the following eigenvalue relation is
obtained:

O — wi) n?

_ 4.55
w3 1+ 2¢2 ’ (4.55)

o\ 2:2A%, B2
q (mo + 1)2(mg + 2)

where e, = 7./Ry and B, = pg*/(B2e3)(ao/r0)* with g9 = ag/Ro. Hence the
eigenvalue relation can be written as (wa = 1):

2

n
4.56
1+ 2¢? (4.56)

@ —w) =

By —r A
[5q2+5§G0 o’ ]

AQ —TSA/
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where we define:

e2(ry/rg)?™ 2 T(a)['(b)T(1 —a — b)
(mo + 1) (mo +2) T(—a)T(=b)T(1 + a+ b)’
exdi/ (8 — 2)
(m0+ 1) m0+2)

(4.57a)
G[) =

(4.57b)

Expression (4.57a) holds if ¢ is given by (4.30), so that Ay and By are given by (4.36)

and (4.37) respectively. When the WKB approach is used, then Gy is given by (4.57b)
(for small shear we can simplify (4.57b) as Gy = —m) and Ay and By are
given by (4.41) and (4.42). If r;A” — oo (ideal MHD limit), the eigenfrequencies are

given by:

&= w2 S+ au; (4.58)
where

a, = n?/3[0¢° + B2Gy). (4.59)

We can relate o, to the growth rate of the ideal MHD mode (zero diamagnetic effects)
if we write 73,y p = —ax. The stability condition becomes (w})?/4 — v3,5p > 0 (it
is immediate to recognise the stabilising effect of diamagnetic ions). The stability
boundary (Im(w) = 0) is identified by just /5, and dg. = —BzGO. Note that these
relations hold also if mg # n, with mg/n ~ 1.

4.8.2 Case my>n

For ¢ > 1 in the low-shear region, Equation (4.53) can be solved analytically for
parabolic pressure profiles [86]. The solution which is vanishing on the surface r = r,
is [86]:

v o (r:wmo(\/n/c;r) - rm_l)
T‘]mo(\/ K/Qry) ’

K

where 0 = 1662, >7*™0 Ay, /RS, k= 40,(1/¢> — 1)/(¢*Rg) and J,(2) denotes the
Bessel function of first kind of order m and argument (in general complex) z (Ref.
[102] p. 355):

mo
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K/Qrs
4(m+1)

case for which ka2 /Q ~ O(1) (consistent with the ordering of the various terms in eq.
(4.53)), with r,/ag sufficiently small. Therefore taking the first two terms in (4.60),
from the integral condition (eq. 4.54) we obtain the same dispersion relation as the
mo = n case, namely eq. (4.55). We note that for plasmas with ¢ &~ 1 in the core,
the factor s is O(g?) smaller than for ¢ # 1 plasmas, therefore the approximation of
the Bessel function with its two first terms in the series holds even better.

is small: this is reasonable if we consider a

We assume that the quantity

In the next sections we evaluate the growth rates for the resistive mode in a
neighbourhood of the ideal stability boundary.

4.9 Analysis of the dispersion relation

We focus on the my = n case since this is the most relevant for tokamak hybrid
scenarios with ¢, = 1. We start the analysis of the dispersion relation assuming
vanishing diamagnetic effects with zero viscosity and no equilibrium toroidal flows
[58]. We conveniently write r,A’ = §3/4y%/4 where S = [27T'(3/4)/T'(1/4)]*3[(1 +
2¢%)/3%]'/3S. Hereafter we set 4 = —iw. In the limit of large r,A’, from (4.56) we
obtain the following dispersion relation [58]:
13/4

PGP+ ) =g (4.61)
where a, is given by (4.59) and we denote with 7;,s the growth rate of the resistive
infernal mode close to ideal marginal stability for which 73, = 0, i.e.:

Ying = EV13573/13, (4.62)
where = = %QBI%GQ(BO - Ao)

If . = 0 (73,5p = 0), the fast S~3/!3 scaling is recovered [58]. Assuming f3,
fixed, we write d¢*> = d¢> + A2, where dq. is the critical value for which a, = 0
(07 + B2Go = 0). Tf A = 0, then v ~ iy ~ S=3/13 which recovers the results of
Ref. [58]. If dq is increased, i.e. A increases, the system undergoes a transition
from infernal (S73/13) to tearing (S~3/°) behaviour [58, 107]. We infer that the
transition point in dg from the infernal-like to the tearing-like behaviour occurs when
v ~nA/V3 (ie. v~ ,/a,) [58], which approximately reads:

_ Ying |3
Ax b (4.63)

as shown in figure 4.3.
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G-3/13
<107 '/
el S
37 P S
<107
5—3/5
- e 10°
S

Figure 4.3: Growth rate of the purely growing (zero diamagnetic effects) resistive mg = n = 4
mode calculated from eq. (4.61) with dg = 0.007, A = 3.6, r«/ag = 0.55, rs/ag = 0.9, € = 0.3.
If A =0 (ideal marginal stability, cf. (4.63)) the fast S—3/13 scaling is recovered (dashed line
line). If (4.63) is used to calculate A(S) with S = 108, a transition to the S~3/® scaling occurs
(solid line).

As dq is increased further (v, > %), then (4.56) reduces to the dispersion relation
for tearing modes [107]. Indeed if dq increases, the coupling in the low-shear region
becomes weaker and the modes mqg + 1, my and my — 1 become independent of each
other. The coupling is lost, so that B; = 0 (because of regularity of the sideband on
the magnetic axis) which implies that rsA" = Ay, yielding the standard dispersion
relation for tearing modes in a cylindrical configuration (in this case for the mg + 1
mode) [107]. Thus the mode becomes stable if Ay < 0. We recall that Ay is the
logarithmic jump of the mg-+1 sideband across the resonant layer. Hence the stability
of the system is determined by the stability of the sideband to tearing. We note
that in order to avoid unphysical divergencies in Aj;, , we must include the effects
of small shear at the transition point r.. This gives A%, ~ 1+ 2k /k{. Then,
for large dq, Eq. (4.56) which gives the growth rate for the my mode, reduces to
w? =n%5¢*/(1 4 2¢*) > 0, indicating a stable mode.

Equation (4.56), allows us also to derive an analytic expression of the threshold
for the resistive mode (zero diamagnetic effects). The definition of the threshold by
the condition v = 0 (r,A" = 0) yields d¢* + 5.GoBo/Ag = 0. The behaviour of the
growth rate (ideal and resistive) as function of 3, is shown in figure 4.4. Note that
we employed (4.58) to show the stabilising effect of core diamagnetic ions on the
ideal mode. Note also that for a fixed value of dg, if 3, is sufficiently bigger than the
critical poloidal 3, for which vy p = 0, then the resistive mode scales as S°, thus
the growth rate of the resistive mode is the ideal growth rate [108]. It important to
stress the fact that if 3, ~ (3, the fast resistive infernal scaling (S—3/!%) is found,
while if 3, is further decreased, then the transition to the tearing behaviour (S—%/%)
occurs [108]. Figure 4.5 shows the growth rate v against d¢ with non vanishing
resistivity and with diamagnetic effects turned on (both ion and electron). The
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Figure 4.4: Growth rate of ideal (solid lines) and resistive (purely growing, zero diamagnetic
effects, dashed lines) for the my = n = 4 mode with the same profiles as in figure 4.3 and
wF = 3 x 1072, The stabilising effect of diamagnetic ions on the ideal mode (Eq.(4.58)) is
evident. The resistive threshold (black square on figure) is found at 5, ~ 0.267 is most clearly
exhibited by the v = 0 point of the red line (S = 10°).

impact of such non-MHD effects are thus studied in the next sections where the
generalised dispersion relation is analysed.

4.9.1 Resistive infernal modes with diamagnetic effects

Now that the main results for resistive infernal modes of [58] have been recovered
(in particular the S~3/° and the S~3/13), we add new physics and obtain novel
results. The effect of diamagnetism is considered first. We conveniently set r A" =
Sy (y — X)) (7 — Ae)?]4, where \; = —iw} and A, = —i&* (S has been defined in
the previous section).

In the limit of large r;A’, from (4.56) we obtain the following dispersion relation
(the subscripts s and ¢ indicate that the quantity is evaluated at the resonant surface
or in the low shear region respectively):

Y= Nis) (7 = Aes) (Y (7 = Aie) + ]t = 78 (4.64)

layer region low-shear region

We will consider two particular cases: one for which a, = 0, so that y3,5p = 0,
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—S = 00, We = Wk; = 2 X 102
0.016 -8 = oo, Wi =0
—S5 =107, wk, = wx; =2 x 1072
0.014f =eeS =107, whie =
0.012f
< 0.0If
3
& 0.008f
?\
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Figure 4.5: Growth rate of ideal (solid lines) and resistive (dashed lines) for the mg =n =4
mode with the same profiles as in figure 4.3 with 8, = 0.8. Diamagnetic ions stabilise the
resistive mode as well. The impact of plasma diamagnetism is discussed in section 4.9.1.

and another for which a, = —(w})?/4 so that 72,5, = (wF)?/4. The first case
corresponds to ideal marginal stability when diamagnetic effects are neglected, while
the second corresponds to marginal stability of an ideal mode when w; corrections
are taken into account. We refer to the latter case as the diamagnetic ideal stability
boundary. It is also important to note in (4.64) the different w* effects which
come from the layer and the low-shear region contribution, since they give rise to
new rotating branches in the mode spectrum. The physical roots of eq. (4.64)
must satisfy the condition Re[(6%)2] > 0 in order to have spatially localised modes
(67, 105] (i.e. an existing Fourier transform). This condition is equivalent to the
condition either | arg 62| < m/4 or | arg §%| > 37 /4 [109], where 6% is given by (4.47)).
Roots with Re[(62)?] < 0 can be however regularised by some extra physics not
included in the model [104, 105]. Hereinafter we set 7o = a and \; s = A\;p = A;. If
V3l > [v(y — Ai)|, it is easy to see that (4.64) reduces to the dispersion relation
for drift-tearing modes [67, 96, 110].

If a, = 0, the dispersion relation reads:

Yy = M)y = AP =P, (4.65)

When diamagnetic effects are weak, i.e. 7,5 > A, the solution of (4.65) reads:

v (Ehe + i) + EVIEST, (4.66)
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We consider again a, = 0, but with strong diamagnetic effects, namely v, < A; .
The unstable roots are written as v = A\; + 9, v = Ac + 9, 7 = 0 where ¢ is the
growth rate, which is much smaller than the diamagnetic frequencies. These roots
are referred to as ion, electron and kink respectively [111]. Thus in the limit a, = 0,
the approximate solution of (4.65) reads [109, 110]:

E4/3 _—
SRV L i
=4/5 _
7= )\z + W 8_3/5, Yr = /\z (467)
— i S=3/5, Vr1| < [ Niel
)\i(_)\e)?)/f) ) ’

with yg = Re(~y) and 7; = Im(7), where the electron diamagnetic frequency &* has
been taken with a positive sign, while the ion diamagnetic frequency w; has been
taken negative. The unstable roots found analytically are correctly recovered for
large S from the numerical solution of (4.65) as shown in Fig. 4.6. The real part of
the coefficient (62)? has been evaluated numerically and it is found to be positive for
all the modes, although the modes rotating with the ion diamagnetic frequency have
(61)? < 1. Therefore we deduce that although a, = 0, so that the mode is nominally
close the ideal stability boundary, the presence of strong diamagnetic effects makes
the mode move towards the stability region. Hence the fast growth typical of the
infernal mode is lost and the instability shows a drift-tearing character.

Taking now a, = —(w})?/4 the dispersion relation yields:
Yy =2 (7 = A (v = Ai/2)" = iy (4.68)

If diamagnetism is weak, i.e. |\ ¢| < |Vins|, then the growth rate is given by Eq.
(4.66) with v ~ S73/13 otherwise for strong diamagnetic effects, in the vicinity of

the diamagnetic-ideal stability boundary (a, = —(w})?/4) we have solutions:
E4/3 _—
Ae + 30 YR A
€ ] /3 ) €
Ae(re = M)A = 3)8]
256=4 =
ST BV ~ 1.60
ARV i e
i =1/2 - A
A2 ) ’
2 1% (e — %)3]1/8 2

Figure 4.7 shows the unstable roots evaluated numerically from (4.68). The same
considerations on (62)? (cf. Eq. (4.47)) hold also in this case. The various scalings
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0.0075

-0.015

Figure 4.6: Real (yg = Re(y)) and imaginary (y; = Im(v)) parts of the unstable solutions
of (4.65) as function of the Lundquist number in a neighbourhood of ideal MHD stability
(ax =72, 5p = 0) for the mg = n = 4 mode with §¢ = 0.01, A = 3.6, r«/a = 0.5, r5/a = 0.9,
e =0.3 and w} = —@*/2. The left picture refers to the case & = 1.5 x 1072 while the right
one to @* = 1.5 x 1072, The same roots in the upper and lower graphs have the same line

type. The corresponding scalings in S are also shown.
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=15x 1073 —2wf =@ = 1.5 x 1072
(o = —(w))?/4) TR (o = —(w))?/4) TR
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0.005F 00078 -———~——_____________
of - ----77
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-0.015
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Figure 4.7: Real (yg = Re(v)) and imaginary (y; = Im(y)) parts of the unstable solutions of
(4.68) as function of the Lundquist number in a neighbourhood of diamagnetic ideal stability
(ax = —(w})?/4). Same parameters as in Fig. 4.6.
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Figure 4.8: Real (yg = Re(y)) and imaginary (y; = Im(v)) parts of the solutions of

(4.70) as function of 3, for the mode my = n = 4. Same profiles as in figure 4.3 with
&F = —2w* =6 x 1072,

of the growth rate (and the respective rotation frequencies) with weak or strong
diamagnetic effects, either at the ideal stability boundary or at the ideal-diamagnetic
stability boundary are listed in Table 4.1.

Independently of the value taken by a, in the case of strong diamagnetic effects
(Ving < Aie), we can identify the thresholds of the three branches (kink, ion and
electron) by setting r,A’ = 0 (viz. zero growth rate) and solving eq. (4.56). Under
the assumption that ry = a and the ion diamagnetic frequency is constant through
the plasma volume, Eq. (4.56) can be written in the following form:

rsA'(y = A (Y= An) = (v = d4)(y — 0-) Ao (4.70)

where Ay = X;/2 & [—(w])?/4 — ]2, 040 = Xi/2 £ [—(w])? /4 — o + 17 /332Go(1 —
Bo/Ao)]Y? (r¢A" and a, have been already defined in the previous sections). In the
ideal limit (rsA” — o0) then we get (v — Ay)(y — A—) = 0 which reduces to (4.58).
Numerical solution of eq. (4.70) are shown in figure 4.8: because diamagnetic effects
are considered, the stability threshold for the ideal mode is located at 3, ~ 1.35
(see Fig. 4.4). The mode is however destabilised by the presence of finite resistivity.
In the limit of large S a perturbative approach can be used to solve the dispersion
relation. Assuming Ay purely imaginary (i.e. a, > —(w})?/4) and sufficiently large
diamagnetic frequencies with respect to the growth rate of the pure resistive infernal
mode, the corresponding roots of (4.70) can be written asy = §, v = \;+4, v = A+,
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7= A+ 3dand v = A_ 4+ where 0 < |\ 1| is the growth rate. The following
thresholds are found setting 0 = 0 leading to

5+6_ - O

(/\z - 5+)()\z — 5_> = 0, (iOIl)
(Ae —04)(Ae —0-) =0, (electron).

For the ion and kink roots the stability threshold reads d¢* + 37GoBy/Ae = 0, while
the electron branch has stability threshold A.(A. — A;) + %2(5q2 + 82GoBy/Ap) = 0.
For the Ay branch no threshold in 8, is found. The two cases considered in the
section of resistive infernal modes are given by A\ = A\;;, A = 0 (o = 0) and
A=A = )/2 (s + (wf)?/4 = 0). When diamagnetic effects are weak it is easy to
see that the expression for the thresholds reduce to the threshold of a resistive mode
evaluated in the previous section.

(kink)

To conclude the resistive infernal mode model [58] has now been generalised to
include diamagnetic effects. Fast growing modes with a growth proportional to
S—3/13 which rotate at low frequency in a combination of ion and electron direction,
have been found when diamagnetic corrections are small. Close to the ideal MHD
stability boundary, the effect of plasma diamagnetism destroys the extremely fast
S—3/13 scaling and it is replaced by three branches which grow slower and rotate at
different frequency. These branches show a typical tearing scaling, namely the kink
and the ion branch scale as S~%/° while the electron branch scales as S~'. Close
to the diamagnetic ideal stability boundary the S—3/13 scaling is also lost, but a
new intermediate scaling proportional to S~3/8 with a rotation frequency equal to
Ai/2 has been found, giving the possibility of moderately fast growing modes which
rotate at frequency wg ~ A;/2. Other scalings are possible when the ion diamagnetic
frequency is allowed to vary between the low-shear region and the resonant layer
region.

4.9.2 Visco-Resistive infernal modes

In our model viscosity enters only when resistivity is taken into account on the
sideband resonant surface. We write r,A’ = V}/6(’}/ — M) YO(y — N\)P/0S5/6 72, 112,
113], where the effects of viscosity enters through v, = p /(or?) and also we define
a normalised Lundquist number S = 6%/°[7'(5/6)/T'(1/6)]%/°5;%/°5.

When diamagnetic effects are weak the dispersion relation reads v(72 + a,) = 3

Y = 51/3%:1/18‘57—5/18.

5/18

When a, = 0 a new moderately fast S~%/'® scaling is found. If we write d¢® = dg>+A?
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(0g. has been already defined) with fixed f,, it is easy to see that when the ¢ profile
is shifted rigidly up, i.e. A increases, the visco-tearing-like scaling vy ~ V;1/6575/6
[72, 113] is recovered. The transition point in A from the moderately fast S—°/18
scaling to the wisco-tearing behaviour occurs when v ~ /o, [58] which gives

A~ 2730 /3/n2. (4.71)

When diamagnetic corrections are retained, the dispersion relation reads:

(v =) (r =) [y (y = X)) + ] = 2. (4.72)

We focus our attention on the case o, = 0, i.e. close to ideal MHD stability boundary,
thus (4.72) becomes

7Oy = A)78 (v = )P =2, (4.73)

When diamagnetic effects are weak, i.e. 7,5 > A, the solution of (4.73) is:

v~ (1—58)\6 + %)\i) + 51/31/;1/185'_5/18- (4.74)

In limit of strong diamagnetic effects, i.e. Yi;,p < A ¢, the roots of eq. (4.73) are:

=6/5,,~1/5 -
Ae + —m—L ST, A
2/5(>\e o )\Z')7/5 €

=6/7,,-1/7

~ 0N+ & S=/T. ~ O\ 4.75
v T O Ao I (4.75)
=y /6 _
. S0 YR << [l

(XA 7

We note that in this particular case we are far from the diamagnetic-stability boundary,
thus a slow growth of the mode is expected. Figure 4.9 shows the unstable roots of
eq. (4.73). We note for this case (a, = 0) the slow scaling against S of the growth
rate of the unstable modes: indeed these roots behave as S? where o0 ~ —1. We omit
the calculations for the case a, = —(w})?/4 (diamagnetic ideal stability boundary),
which are essentially the same already presented in the resistive infernal modes
section. It is however interesting to note that in the case for which a, = —(w})?/4,
with strong diamagnetic effects (7;,r < Aic), two roots appear: one rotates in the
electron direction and the growth scales as S™!, while the other one rotates in the
ion direction with frequency w?/2 and the growth rate scaling is S~°/12,

In conclusion, the effect of plasma viscosity on resistive modes with diamagnetic
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Figure 4.9: Real (yg = Re(y)) and imaginary (y; = Im(v)) parts of the unstable solutions
of (4.73) as function of the Lundquist number for a. = 73,55, = 0 (ideal MHD stability
boundary) with v, = 107 and the same parameters of Fig. 4.6. The left picture refers to the
case 0¥ = 1 x 10~2 while the right one to @* = 1 x 1072, Since the black solid line represents a
mode which becomes stable for S > 1073 the rotation frequency 77 is not reported. The same
argument applies for the black dashed line. The same line types for the real and imaginary
parts of v/w4 indicate the same root. The scaling in S of the fastest growing mode of its
branch are shown.
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corrections has been studied: close to the ideal MHD stability boundary it is found
that when the diamagnetic frequencies are much smaller than the growth rate of
the mode, the scaling S~3/13 is lost and it is replaced by a moderately fast scaling
proportional to S~%8. The mode rotates at small frequency, since the dispersion
relation comprises a combination of the electron and the ion diamagnetic frequencies.
When the w* effects are increased in amplitude, the S5/ scaling is lost and is
replaced by three slow growing branches which rotate either with zero frequency
(S~%/%) or in the electron direction (S~!) or in the ion direction (S~°/7) as shown in
eq. (4.75) and in Fig. 4.9. The various scalings of the growth rate (and the respective
rotation frequencies) for weak and strong diamagnetic effects, either at the ideal
stability boundary or at the ideal-diamagnetic stability boundary are listed in Table
4.2. We note that although Visco-Resistive modes scale as v ~ S~! (i.e. indicating
simple resistive diffusion, thus growing on slow timescales), the multiplying factor vy
(although ¢ is small) is still a large correction, enhancing the growth rate, so that
this mode could be in principle distinguished from pure slow resistive diffusion.

4.9.3 Rotating-Resistive infernal modes

In this section we introduce the effects of toroidal E x B rotation. It will be found
that 2 x B toroidal rotation does not affect stability unless we have finite resistivity
and the rotation profile is sheared. For the sake of simplicity diamagnetic corrections
are dropped and we set a, = 0 (hence we are always in the neighbourhood of
ideal-MHD stability boundary). Moreover the toroidal flow v¥ is assumed positive.
Using r,A’ = S¥4(y — Q,)%* where Q = inv? (S has already been defined in the
section for the resistive infernal modes), the dispersion relation in a neighbourhood
of ideal MHD stability (v3;5p = 0) reads:

(v = Q) (v — Q)" =3, (4.76)

where the subscripts £ and s indicate that the quantity is evaluated in the low shear
region or at the resonant surface respectively. We always assume that €, > €.
We note that an unsheared strongly subsonic toroidal rotation does not enter the
problem since its only effect is to Doppler shift the frequency [67]. In analogy with
the previous sections, we distinguish the case in which the toroidal rotation is much
smaller than the growth rate of the mode: consequently the growth rate is

v (S + Q) + 25, (4.77)
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When the rotation effect becomes important (viz. |y, < |€|), then the growth
rate reads

El/2 G—3/8
Qp + W . o =
v~ /5 (4.78)
= G—3/5 -
Qg+ Ws .~ Qg

The unstable roots of (4.76) are shown in Fig. 4.10. It is thus seen that shear flow
can modify the resistive infernal growth rate scaling in S from S~%/'3 to a moderately
fast scaling S~3/8.

If a, # 0, the more general expression for the dispersion relation reads:
WO + ) = [3 = n?/3(0¢ + B;GoBo/Ao)] AeS ",
where 45/, = v — €,,. The above expression can be recast in the following form:

Ao 2
(v = Q)" (7= 20 (r = ) = Zl(y = )° + 5 (067 + BiGo )],
where Q0 = €y + /—a,. Assuming (), purely imaginary , i.e. a, > 0, and strong
toroidal E x B flows (7i,y < (2s¢) we identify three branches: the branch which has
rotation frequency €, has threshold (Q, — ;)% + %2(5(12 + @?Go%) = 0, while the
two remaining branches €)1 have no thresholds.

In conclusion, when the effect of toroidal flows is rather small then the eigen-
frequency of the mode shows the same fast S~%/1% scaling of the resistive mode [58].
With a strong toroidal flow (|7yinf| < [€2¢]), this scaling is lost and an intermediate
scaling proportional to S~%/® is found. Such mode rotates with the toroidal frequency
of the low-shear region. The existence of this moderately fast resistive branch is
due to the combined effects of a sheared E x B toroidal rotation and non negligible
resistivity on the resonant mgo + 1 surface. Also a tearing-like scaling (S~%/°) is
found: the rotation frequency of this mode is the toroidal frequency evaluate on
the resonant g = (mgy + 1)/n surface. The scalings of the growth rate (and the
respective rotation frequencies) against the Lundquist number S, calculated at the
ideal stability boundary, are summarised in Table 4.3.

Stability of tokamak and RFP plasmas with an extended region of low magnetic shear 105



Chapter 4. Fast growing modes in low-shear tokamaks with non-MHD

effects
Q, =1i1073, Q, =140.2 x 1073 Qy =1i1072, Q, =i0.2 x 1072
(. =0) YR (o = 0) YR
_ - -3/8
107 107} S7¥
107
10"
VI
- \ 0015\
\ oo1f T
Of ""TTTTTTIIIIIIIIIIIIIIIZAY feeeeeeeeeemmttTTTT
—‘::3:‘—’:‘—— 0.002F-"""""" -:__-_-_‘-—
-0.01f PSSt
10° 10 10° 10 10° 107 10° 10°

Figure 4.10: Real (yg = Re(y)) and imaginary (y; = Im(v)) parts of the unstable solutions
of (4.76) as function of the Lundquist number in the neighbourhood of ideal MHD stability for
the mg = n = 4 mode with g = 0.01, A = 3.6, r«/a = 0.5, rs/a = 0.9, € = 0.3 and Q, = 5.
The left picture refers to the case i€, = —10~3 while the right one to €2, = —1072.
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4.10 Summary

This chapter presents a derivation of an analytic expression for the growth rate
for infernal modes with additional non-MHD effects. Charlton’s resistive quasi-
interchange model [58] is extended with the inclusion of plasma diamagnetism,
viscosity and equilibrium MHD toroidal flows. Viscosity and electron diamagnetic
effects are retained only at the resistive toroidal sideband resonant (¢ = (m + 1)/n)
surface, in addition to equilibrium toroidal flows and ion diamagnetic corrections
which are taken into account also in the core region.

The stabilising effects of w} in the core (assuming constant diamagnetic frequency
in the core [8]) has been shown, leading to an increased threshold for the ideal
mode. The rotational transform has been chosen in a such way that an analytic
treatment of the magnetic perturbation in the sheared region is tractable, which
yields three dispersion relations, corresponding to three different regimes. Each
regime considers separately plasma diamagnetism, the combined effect of viscosity,
diamagnetic corrections, and equilibrium toroidal flows.

When layer physics are considered, additional non-ideal effects tend to reduce
the extremely fast (~ S~%/13) growth rate of resistive modes in low shear plasmas
[58] close to the ideal MHD stability boundary, but realistic modes of operation are
identified that are not inconsistent with fast NTM seeding. A family of modes are
obtained, some of which rotate in the electron diamagnetic direction, and others in the
ion diamagnetic direction. Both types of modes have been observed simultaneously
in TCV [9] during hybrid-like operation. An analytic estimate of the transition
point between infernal-like and tearing-like behaviour for resistive modes with and
without viscous effects is given in the absence of diamagnetic effects and toroidal
rotation. Intermediate scalings between the infernal-like and tearing-like behaviour
are found: in particular, a novel scaling proportional to S~%/® has been found close
to the diamagnetic ideal stability boundary. This scaling occurs either when strong
w* effects are allowed in the core, or when E x B equilibrium toroidal flows are
retained.

Depending on diamagnetic frequency amplitudes, different scalings in .S have been
derived in conjunction with the effects of viscosity and equilibrium toroidal flows.
The effects of density gradients with flat temperature profile for the mg =n =1
have also been assessed (see appendix A.4). Employing the WKB approach [29] a
more general dispersion relation with a generic g-profile can be derived.

Generalised pressure profiles which lead to w(7,) # w} (rme+1) will require further
study as well as the full dispersion relation which considers all these effects simul-
taneously. Further work on the non-linear dynamics of these instabilities could be
addressed numerically. The more general case with w}(ry) # W} (rm,+1), where all
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non-ideal effects are taken into account may be also addressed numerically, as well as
the problem of the implications that these instabilities have on the development of
fast triggering of NTMs, resistive global oscillations and saturated equilibria in ITER
like operating scenarios in which non linearity becomes important. To conclude,
resistive infernal modes [58] have been generalised to include diamagnetism, viscosity
and the equilibrium E x B toroidal sheared flows. While each of these tends to slow
the extremely fast resistive scaling (7 ~ S™%/13) of Ref. [58], moderately fast growing
resistive modes remain.
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XTOR-2F numerical simulations
of infernal modes and comparison
with analytic results

In this chapter we present a numerical study of pressure driven magnetohydrodynamic
instabilities in a low-shear tight aspect ratio configuration. We have shown in the
previous chapter that when the magnetic shear is sufficiently small over an extended
region in the core, enhanced instability occurs due to toroidal coupling of poloidal
sidebands. Numerical simulations have been performed with the initial value code
XTOR-2F both in the ideal and resistive MHD frame. Two-fluid effects (plasma
diamagnetic flows) have been retained in addition to viscosity. The predictions of the
XTOR-2F code on the amplitude of the growth rate and on the rotation frequency of
the modes have been compared with analytic linear theory of infernal modes, which
was outlined in the previous chapter. Qualitative agreement has been found between
numerical and analytical results, in spite of the tight aspect ratio configuration.
The new intermediate scaling v ~ S~3/8, predicted by the linear theory [114], is
recovered by the numerical results. Finally, a study of the nonlinear evolution of the
magnetic island of the tearing sideband has been performed and the results from the
simulations are compared with Rutherford’s theory.
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Chapter 5. XTOR-2F numerical simulations of infernal modes and
comparison with analytic results

5.1 Introduction

It has been shown in the previous chapters that the hybrid tokamak operating
regime (weakly reversed or almost flat ¢ close to but above unity in the core region)
is of particular interest in present day tokamaks and for future ITER operation,
allowing longer sawteeth-free plasma discharges [6]. In Chapter 4 we show that
infernal modes, that are MHD instabilities characterised by the coupling due to the
pressure gradient between a (m,n) Fourier mode (almost resonant with ¢ = m/n)
and its poloidal sidebands (due to toroidicity) with wave number (m + 1,n), can
occur [56, 58, 86, 114]. The coupling occurs in the low shear region, where the safety
factor is close to a rational, namely ¢ = m/n + dq. The destabilisation is due to
the combined effect of the pressure gradient and the closeness of ¢ to the resonance
m/n, i.e. for an increase of § and a reduction of dq the mode is expected to be more
unstable.

If resistivity is allowed on the ¢ = m/n surface, the (m + 1) sideband typically
exhibits a tearing character on that surface. Due to the coupling in the low shear
region, the final dispersion relation differs from the usual tearing mode results, and
a large variety of resistive scalings appears: far from the ideal stability boundary
the character is essentially tearing in the behaviour, namely v ~ 7%° where v is
the growth rate of the mode. When the ideal stability boundary is approached, the
scaling of the growth rate dramatically changes to v ~ 7*/13 [58, 114]. In the region
of strong ideal instability the growth of the mode is almost independent of 7, having
an ideal character while preserving reconnection dynamics at the ¢ = m/n surface
on ideal timescales. The existence of such fast growing resistive modes has been
confirmed numerically in the related literature [58, 115].

In Chapter 4 it has been shown that when the layer associated with the m + 1
infernal mode sideband is augmented by non-MHD effects (plasma diamagnetism,
equilibrium flows, viscous effects, etc.) novel scalings for v are found [114]. These
modes are required to rotate either in the ion or in the electron direction, depending
on the branch considered and the presence of such modes has been observed experi-
mentally [9]. When w* effects are taken into account, a reduction of the growth rate
of the mode, either ideal or resistive, is expected [114]. Complete stabilisation of
the ideal mode, for w} frequency almost constant in the plasma core, has been also
suggested [8, 116].

The aim of this chapter is to investigate numerically, by means of the initial
value code XTOR-2F [66, 95], the behaviour of such instabilities and compare the
simulation results with the linear theory [35, 58, 86, 114] which has been extended
in order to include non-MHD effects as presented in the previous chapter. The
comparison between theory and simulations shows reasonable agreement both in the
ideal and resistive case. The two fluid effects predicted in the analytical model (the
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novel scaling against n and the mode rotation) have been numerically confirmed by
the simulations. The novel moderately fast scaling v ~ S~3/8 predicted by the linear
theory, is recovered by numerical simulations for sufficiently large Lundquist number
(small resistivity) and diamagnetic effects. Finally, the behaviour of the nonlinear
evolution of the island width in the pure resistive case (no w* effects) is presented
and compared with the analytic prediction from Rutherford’s theory [30]. It is seen
that after the fast growth during the linear phase, when the mode enters in the
nonlinear stage, the island exhibits a slower growth in accordance with Rutherford’s
predictions.

The chapter is organised as follows: the first section describes briefly the physical
modes employed and the dispersion relation, when additional non-MHD effects are
taken into account in the sideband resonant layer (a brief reminder of the results
presented in Chapter 4) [114], which will be employed for comparison with the
magnitude of the eigenfrequencies of the modes computed with the XTOR-2F code.
After that, the results of the XTOR-2F simulations are presented: the first part is
focused on ideal dynamics with and without the presence of w} effects. The second
part deals with resistive dynamics, and scalings against the Lundquist number,
obtained by varying the strength of w* effects. These results are compared with
analysis [114]. In addition to comparing the linear simulations with the linear analysis,
the non-linear XTOR results are compared with the Rutherford equation [30].

5.2 XTOR-2F physical model for low shear plas-
mas with diamagnetic effects

The physical model adopted in the nonlinear XTOR-2F simulations is given by the
set of equations (4.5), (4.6) and (4.7) where Eq. (4.8) is replaced by:

V| pe

€Ny

8tB—V><(v><B)+V><< )—Vx(nJ), (5.1)

in which the plasma resistivity is allowed to vary over space and time in contrast
with the linear theory developed in the previous chapter, and the parallel tempera-
ture gradient has been neglected assuming a large parallel heat conductivity. The
phenomenological contribution from plasma viscosity is retained in the numerical
simulations. We note that also in the physical model implemented in the XTOR-2F
code the gyro-viscous cancellation has been employed [67, 92, 95] in the derivation
of Eq. (4.6). Indeed it is easy to prove analytically that for the problem of infernal
modes, corrections due to a more exact treatment of V - ggv are of higher order in
Eq. (4.18) [114]. A self-consistent derivation of the momentum equation has been
presented in [93], but it has not been implemented in XTOR-2F and it is not used
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for fusion application in any code [95].

Equations (4.5)-(4.7) and (5.1) are chosen in order to have a direct comparison
between the analytic linear theory and the results from numerical XTOR-2F calcula-
tions. As shown in Appendix C § C.2, the XTOR-2F code evolves the full resistive
MHD equations extended to include bi-fluid effects resulting from the Braginskii
equations: these equations can be straightforwardly derived from Eqs. (4.5)-(4.7)
and (5.1) and their explicit form can be found in Refs. [66, 95]. In the XTOR-2F
code, in contrast to the analytic model, the plasma resistivity is allowed to vary over
the plasma radius, although it is kept constant in time. The resistivity profile is
taken such that the equilibrium toroidal electric field is constant over the plasma
radius (even for "ideal” simulations, a small amount of viscosity needs to be added
in order to achieve numerical stability). The electron diamagnetic frequency is
chosen to have the same absolute value as the ion diamagnetic frequency, but with
the opposite sign, and both are taken constant in time and over the minor radius.
Time dependencies are normalised with respect to the Alfvén time (74 = Ry/va
(wa = 1/74), where va = B/ /It000) The resistive time is defined as 7 = por2/n;
hence we have S = 7r/74. Based on the model outlined here, the linear theory of
infernal modes is developed in the next section. Now we provide a summary of the
linear theory of infernal modes developed in Chapter 4.

5.2.1 Choice of equilibrium profiles parametrisation of ana-
lytic solutions for comparison against XTOR-2F

In this section we briefly summarise the results of the linear theory of infernal
modes, developed in Chapter 4, for tokamaks with an almost flat ¢ profile close to
mo/n in the core. In particular we point out what are the equations relevant for
the comparison with XTOR-2F simulations. In Chapter 4 we derived a dispersion
relation for an analytic safety factor and then we generalised it to an arbitrary ¢
by using the WKB approach. The analytic safety factor given by (4.30) generates
unphysical negative currents in the region which extends from ¢ = (mo + 1)/1 up
to the plasma edge. Hence in this region for the XTOR-2F simulations, the safety
factor has been tailored in order to have positive currents. However, we decided not
to have an abrupt transition between low and high shear. Therefore the safety factor
in the central core region is well approximated by Eq. (4.30), but in the external
region this formula does not give the shape of ¢. Hence the parameters which are
related to the safety factor properties in the core region are given by the expressions
derived in the exact analytic treatment of the dispersion relation, while in contrast
the parameters which are dependent on the shape of ¢ in the external region close to
the boundary are computed in the framework of the WKB approximation.

We now summarise the linear theory of infernal modes. For a fixed toroidal
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mode number, the Fourier structure of the magnetic perturbation is assumed to be
characterised by having a fundamental mode with wave number (mg,n) and two
small (~ ¢) poloidal (my =+ 1,n) sidebands. In the low-shear region, the (mq,n)
Fourier mode has a small parallel wave number, i.e. kj ~ O(e), so that inertial
corrections, ion diamagnetic flow and the coupling with its sidebands have a non
negligible effect. In the high-shear region only non-inertial ideal MHD is required
and at leading order the Fourier harmonics are decoupled. Standard tearing theory
[83] is used to treat the resonant layer of the (mg+1)/n sideband, where diamagnetic
effects (both for ions and electrons) are retained.

The equilibrium geometry for the analytic expansion is given by nested circular
slightly shifted toroidal surfaces in the large aspect ratio approximation (¢ = a/Ry <
1). Standard tokamak ordering Bp/Br ~ O(g) and 8 ~ O(g?) is adopted. A

parabolic pressure profile in the low-shear region is assumed, i.e. (r is a flux label):
p=po(l—(r/ro)*), 0<r <, (5.2)

with 7, < 7o < a. The analytic theory does not care about the shape of the pressure
for r > r,, so that in XTOR-2F simulations p for r > r, can be of any shape. The
position of the resonant surface of the sideband and the transition point between
low and high shear regions are denoted by r = r, and r = r, respectively, while the
magnetic shear is defined as § = rq’/q. Hereafter the symbols s and * indicate that
the quantity is calculated at » = r, and r = r, respectively.

By solving the linearised equations for the fluid displacements, and matching the
eigensolutions of each Fourier harmonic in the three regions across the transition
point r = r, (imposing continuity and smoothness in the first derivative for X, 1)
and then matching asymptotically the ideal MHD solution for X,,,+1 to the resonant
layer solutions, the dispersion relation is derived:

n2 BO—T A’
= 5q> 2Go——— .
1+ 2¢? g +5p OAQ—TSA/

(@ —w) (5.3)
The layer physics is contained in rsA" which is computed by means of (4.35) and
(4.51). The quantity 3, is evaluated at the transition point r = r,: we note that with
a parabolic pressure in the low shear region, 3, is almost constant for 0 < r < r,.
The quantities Ay, By and Gy are given by Eqgs. (4.41), (4.42) and (4.57b). The
quantity G is related to the shape of the eigenfunction and of the safety factor in the
region r < r,, while the parameters Ay and By are a measure of the amplitude of the
jump of the eigenfunction across r = r,. For sake of simplicity we set m = mqg + 1.

Equations (4.41) and (4.42) can be written as Ag = —C1C/(1+ C1/2m) + r A,

tear
and By = 2mC(2m—C4)/Cy+rsA},,,, where C and Cy have been defined in Chapter
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4§4.6.1, and r A

tear

is the tearing stability index, given by [29, 114]:

rsA,. = —2mrA cot(rA), (5.4)

tear

with A = —qs(RoJo)./(2nq.). We shall now assume for r < rg, the following form for
the rotational transform (cf. (4.30)):

v=1/qg~n/me{l +1/m[1 — (r/r,)*}; (5.5)
hence we can replace the general formula for Gy with a more appropriate one:

g, = E/rP TEDON( ¢ ()

m(m + 1) TN~ +E+) (5.6)

where £ = (m —m) /X and ( = (m+m) /A, m = vVm? + 2\ + A2, The expression
above for G is less sensitive than Eq. (4.57b) to the value of 3, thus it is more
reliable when the transition between the low and high shear regions is not abrupt.
In principle we should replace also the quantities Ay and By, but they are strongly
dependent upon the overall shape of the ¢ profile. Since the ¢ profile chosen in the
numerical simulations strongly deviates from Eq. (5.5) in the region far from r,,
a good estimate of Ay and By is nevertheless given by the expressions (4.41) and
(4.42). In the next sections, the predictions of the linear theory of the infernal mode
problem will be compared with the results of the XTOR-2F code.

5.3 Numerical simulations for a low-shear M AST-
like configuration

Numerical simulations for a MAST-like equilibrium, whose profiles are shown in Fig.
5.1 (I* = (J?/R)/(R™") where ( - ) = §_consi( - )dV), are performed by using the
initial value code XTOR-2F [66]. The pressure profile in the central region is equal
to the profile used in the analytic calculations, while the ¢ profile is chosen in order
to avoid the formation of unphysical negative toroidal currents, which are possible
with a rotational transform of the form (4.30). The equilibrium is interfaced with
XTOR-2F through the CHEASE code [69], which provides the required quantities
(listed in Table 3.2) for the stability calculation.

We note that since the ¢ profile does not present a sharp transition between low
and high shear region, it is quite difficult to estimate the location of r,. Low-shear
and high-shear regions are defined where § < 0.1 and § 2 1 respectively. For the ¢
profile shown in Fig. 5.1, the transition occurs in the region 0.6 < r/a < 0.7, i.e.
where 0.1 < § < 1. We point out that r, determines the shape of the eigenfunctions.
Note that r, was identified in Ref. [35] by variations of the growth rate v with
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Figure 5.1: Equilibrium profiles for a MAST-like configuration with 8 = 2.88% and ¢y, =
1.0223: (a) Surface averaged toroidal current density; (b) Plasma pressure (I* and p are
normalised with respect to CHEASE internal units); (¢) Safety factor (d) Contour plot of the
constant pressure surfaces. Here 7 = \/|(¢) — ¥0)/(Yeage — ¥0)], ¢ is the poloidal flux and the
subscript 0 indicates that the quantity is evaluated on the magnetic axis. In figure (c), the
q = 1 level is shown by the horizontal dashed line while the blue box indicates the approximate
region where a transition point r = r, exists between low and high shear regions. We defined
Pq = Tq¢/a and #5 = rs/a.

respect to r,. This was argued to be valid because it represents a variation of the
eigenfunction that yields the maximum growth rate. Nevertheless v was found to
depend fairly weakly on 7.

We represent the ¢ profile in the region r,/a+ Ary <r/a < ry/a— Ar_, as shown
in Fig. 5.1, with the expression (5.5), where Ary are chosen to vary in between 0
and 0.1. In addition, by varying the parameter Ar, we obtain an estimate for A
in Eq. (5.5) which can vary between 6.3 and 7. The quantity G, is not strongly
affected by the variation of A within this range, thus for the calculations that follow,
we set A &~ 6.7 corresponding to Ary = 0.05 and Ar_ = 0.075 with r,/a = 0.6.
The value of A calculated above is then used in Eqgs. (5.3) and (5.6) for analytic
comparison. We stress the point that we are interested in the qualitative, rather
than quantitative, description of the behaviour of the perturbation. The aspect ratio
has been chosen to be small in order to enhance the toroidal coupling between the
modes. We point out that (5.3) and (5.6) were derived for a cylindrical plasma in
the limit of large aspect ratio, and therefore some non-negligible deviations between
the simulations and the analytical predictions are expected. This is mainly because
of shaping effects (mainly elongation) and the tight aspect ratio (¢ = 0.643 from
CHEASE calculations) of the configuration.

The pressure profile is taken to be parabolic, as indicated by Eq. (5.2) with
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ro/a = 1, in the region which extends from the magnetic axis to r ~ r,. At the
plasma edge the pressure gradient has been diminished in order to prevent the
formation of unphysical modes due to an insufficiently well resolved spectrum in
XTOR-2F calculations. We choose r,/a =~ 0.65 and 5, is evaluated at the surface
r/a = 0.7. In the scans with respect to (,, the latter is varied by changing po.

The XTOR-2F simulations are performed in the ideal and resistive MHD frame
with the inclusion of ion and electron diamagnetic effects. Other additional effects like
neoclassical corrections, externally driven flows etc. are switched off. The diamagnetic
frequencies both for ions and electrons are taken to be constant throughout the plasma
volume and they have the same absolute value. By taking constant diamagnetic
frequencies we loose the reconnection screening effect due to sheared diamagnetic
flows. The analysis of such effects is not implemented in the analytical model
adopted and it is beyond the scope of the present thesis. We employed different
values in the numerical discretisation for some particular cases (g, = 1.0223), in
order to check if the modes observed were physical or not. Denoting N,, Ny and
N, the number of points in the radial, poloidal and toroidal direction respectively,
we used three different discretisations: (N, = 100,Ny = 48, N, = 12), (N, = 200,
Ny =64, N, = 24) and (N, = 300, Ny = 96, N, = 48). Simulations show that the
unstable mode persists and grows at the same rate, independently of the discretisation
employed. Hence hereafter we choose to set the numerical discretisation in the radial
direction consisting of 201 points, while the poloidal and toroidal grid points are 64
and 24 respectively. The Fourier decomposition takes into account only two toroidal
mode numbers, namely n = 0 and n = 1, with a poloidal mode window of 11 modes,
n—4 <m <n+ 7. Since it has been shown that higher toroidal harmonics (n > 1)
are at least two orders of magnitude smaller compared to the n =1 [115], we do not
expect a large difference in the results of the simulations when higher toroidal mode
numbers n > 1 are retained (both in the linear and nonlinear stage). The chosen value
for the normalised viscosity is iy = Tap1 /a? =5 x 1075, For each mode, the growth
rate calculated in the simulations is defined as v = —iw = %d In B} /dt where EJ, is the
kinetic energy defined as Ej, = (d€/dt)?/2. Typical experimental MAST parameters
are ng ~ 102° m=3, By ~ 0.6 T, Ry ~ 0.84 m and aspect ratio € ~ 0.64, thus the
Alfvén time is approximately 74 ~ 6.42 x 10~"s. It is noted that MAST geometry,
with its strong toroidicity, has been chosen in order to ensure strongly unstable
infernal modes. Parameter variation, and comparison with analytical expressions is
therefore more robust. In the following sections we present the XTOR-2F results of
the ideal and resistive simulations and a comparison with the analytic theory for the
case mg =n = 1.
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5.3.1 Ideal simulations

First the ideal MHD dynamics of the my = n = 1 mode without w} effects are
examined. The typical behaviour of the kinetic energy of an unstable infernal mode
is shown in Fig. 5.2: the mode grows linearly for about 1000 74 and then enters in the
non-linear regime. The nonlinear regime is characterised by an oscillating behaviour
whose amplitude decreases with time [115]. We point out from Fig. 5.2-d that
Eymo/Ermo+1 ~ €2, implying X041/ Xm, ~ O(¢). Figure 5.3 shows the Poincaré
cross section at time ¢/74 = 1171, i.e. when the peak in the kinetic energy occurs:
the interchange-like pattern of the flux surfaces is clearly visible [24]. Note that the
shift of the flux surfaces depends on the value of ¢, (the closer ¢, to unity, the
larger the displacement).

From the linear theory (cf. Eq. (5.3)), if rsA” — oo (ideal MHD limit), the growth
rate of the mode is given by 4 = 4y up (¥ = v/wa), where (for mg =n = 1):

Yarup =~ —n*/3[6¢° + B2Go). (5.7)

In order to have a comparison between analytical estimates of the ideal growth rate
with the numerical ones, we decided to perform two sets of simulations. In the first
set we keep dg = 0.052 fixed and change the pressure, with § varying from 2.5%
to 5%. The comparison of the growth rate between the XTOR-2F simulations and
the analytic estimate computed by Egs. (5.3) and (5.6) are shown in Fig. 5.4: the
stability threshold computed analytically is reasonably close to the threshold found
numerically. As explained before, the deviations from analytical results are expected
mainly due to the tight aspect ratio of the configuration, and shaping effects.

It is well known that in tight aspect ratio toroidal geometry, stability thresholds
are not as sharply defined as in large aspect ratio theory [73]. We can have unstable
mo = n = 1 internal kinks when the minimum in ¢ is further above unity. This is
also valid for other modes, like double tearings and external kinks [117]. In Chapters
3 we performed simulations for internal kinks and the shape of the eigenfunction
that we measure is close to the top-hat function. When ¢ becomes more flat in the
core the effect of inertia is enhanced over an extended region in the core, so that
the eigenfuction structure is forced to appear infernal-mode-like, i.e. smoother in
the core (see Fig 5.5). Although the reconnection rate and the velocity flows are
comparable to the ones measured for internal kinks, in the infernal mode simulations
of this chapter, the pattern of the flux surfaces are bean shaped indicating a quasi-
interchange like behaviour. In addition the crucial difference with the internal kinks
is that for infernal modes the coupling with the poloidal sidebands gives rise to
tearing-like islands which grow on extremely fast timescales (y ~ S73/13 at ideal
stability boundary, see next section) according with previous works [58]. This feature
is typical of infernal modes and not of internal kinks.
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Figure 5.2: Spectrum of the kinetic energy Ej, for a MAST-like equilibrium with the same
parameters as in Fig. 5.1: Kinetic energy of the n = 0 and n = 1 mode (linear (a) and
logarithmic (b)); (¢) Spectrum of the kinetic energy versus time of the poloidal number of
the n = 1 mode; (d) Spectrum of the kinetic energy against poloidal number for n = 1 at
t/7a = 1000. The amplitude of the m = 1 sidebands (which is of the same magnitude) clearly
indicates that coupling occurs.
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Figure 5.3: Poincaré plot at time t/74 = 1000 at ¢ = 0 (equilibrium parameters as in Fig.
5.1), when the kinetic energy reaches the maximum value. A cold bubble forms in the central
region [16, 34]. A similar pattern was found in Ref. [24]. In the nonlinear regime the shift of
the core bounces back and the forth again as indicated also by the behaviour of the kinetic
energy shown in figure 5.2.
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Figure 5.4: Growth rate of the n = 1 mode versus 3,. The broken curve represents the
analytical results from (5.3) and (5.6); the red triangles are the results from the XTOR-2F
simulations. Qualitative agreement between linear theory and numerical simulations is found.
The discrepancy between numerical and analytical threshold is attributed to toroidal effects,
which are known, at least for the m = 1 internal kink mode, to strongly affect this value.
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Figure 5.5: Safefty factor (top, CHEASE equilibrium) and radial velocities (bottom, v, ~ &,/
from ideal XTOR-2F simulations) of the mo = n = 1 mode for three different type of ¢ profiles:
(a) monotonic (circular, low /3, moderate € ~ 0.4), (b) weak-reversed (ITER-like, see Chapter
3), (c) ultra-flat (MAST-like, gmin ~ 1.0156).

A second set of simulations has been performed by keeping 8 ~ 3% fixed and by
varying ¢mi,. The behaviour of the instability both with and without the inclusion
of w* effects is examined. The parameter q,,;, is varied by shifting the safety factor
up and down rigidly, within the interval 0 < dq < 0.05, where g = ¢nin — 1 and the
value of 3, does not change significantly due to the variations in dg. We know from
the linear theory that when w effects are taken into account, the eigenfrequency of
the mode acquires a real part indicating that the mode starts to rotate, namely (the
hat indicates that the quantity is normalised with respect to the alfvénic frequency):

& =1/2+ \(@)?/4 = Frap (5.8)

The mode rotates in the ion direction in the poloidal plane (i.e. counterclockwise)
and, as shown in the XTOR simulation in Figure 5.6, the topology of the magnetic
surfaces is not altered, i.e. they are still nested: the ion diamagnetic rotation frequency
imposed in the XTOR-2F simulation, shown in Fig. 5.6, is |[w}T4| = 6.43 x 1073,
When diamagnetic effects are turned on, the spectrum of E} is similar to Fig. 5.2
with only a reduction of the linear growth rate. Indeed, as seen in figure 5.6,
the core displacement is visibly reduced compared to simulations with wf = 0 (cf.
Fig. 5.3) when the peak in the kinetic energy is reached. From (5.8) we therefore
expect that the mode rotates with half of the diamagnetic frequency. The frequency
calculated from numerical results is wyo; ~ 1.42 x 1073 whereas the analytic rotation
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frequency reads w,o; = wT4/2 & 3.215 x 1073, If w} is increased further, then
the discrepancy with the analytic estimate becomes smaller: for a simulation with
|wFTa/2] = 1.6075 x 1072 the simulated rotation frequency is w,o; ~ 1.2 x 1072,
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Figure 5.6: Poincaré plot at time t/74 =~ 1280 at ¢ = 0 (equilibrium parameters as in
Fig. 5.1). The diamagnetic frequency is set in the simulation to |w*74| = 6.43 x 1073, The
displacement of the core is visibly reduced compared to Fig. 5.3 and the magnetic axis starts
rotating in the ion direction, i.e. counterclockwise.

In addition, from Eq. (5.8), we infer that the presence of ion diamagnetic flows
would imply a stabilisation of the mode. The nonlinear amplitude is certainly
reduced (compare Figs 5.3 and 5.6), but in addition linear stability boundaries are
also affected. This is shown in figure 5.7 where the growth rate calculated by means
of Egs. (5.6), (5.7) and (5.8), and plotted against ¢, is compared with the result
from XTOR-2F simulations. The growth rate diminishes when ¢ drops below unity
as shown in Fig. 5.7, in agreement with Eq. (5.3). A reasonable agreement is found
both for the thresholds of the ideal mode with and without w; corrections, and
for the magnitude of the growth rate. The ion stabilisation effect is clearly visible,
although it appears less pronounced compared with analytic predictions. In the next
section the numerical simulations are extended to include the plasma resistivity, and
a comparison with the linear theory is presented.

5.3.2 Resistive simulations

When resistivity is allowed at the ¢ = 2 surface, the resonant mode will exhibit a
tearing character with the formation of a magnetic island as shown in Fig. 5.8. The
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Figure 5.7: Growth rate of the ideal n = 1 mode with respect to gmin: (a) Analytical growth
rate from formulae (5.3), (5.6), (5.7) and (5.8) where 8, ~ 0.1152; (b) Growth rate from
XTOR-2F simulations. The dot-dashed curve (red in (a)) represents the growth rate calculated
analytically where the factor w}/2 is set equal to the rotation frequency calculated from the
XTOR-2F simulation (in the XTOR-2F simulation w}74/2 = 1.6075 x 1072). If one uses the
same w™* frequency as the one as input for XTOR-2F, the ion diamagnetic stabilisation appears
stronger in the analytic calculations (green dashed curve in (a)).
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behaviour of the kinetic energy and the spectrum for a pure resistive mode (no w*
corrections) is similar to the one shown in Fig. 5.2. We point out that resistive
simulations are carried out by maintaining ¢,,;, always above unity, in order to
prevent the formation of a m = n = 1 resistive mode at the ¢ = 1 surface.
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Figure 5.8: Poincaré plot at time ¢/74 ~ 1114 at ¢ = 0 (same equilibrium parameters as
in Fig. 5.1). The Lundquist number on the magnetic axis is S = 10%, while w* effects are
switched off. The position of the 2/1 island has been highlighted. Note that the magnetic
island develops on ideal timescales. It is shown later that for this configuration the growth
rate v depends rather weakly on resistivity. Thus the mode is classified as being essentially
ideal, while it is preserving the tearing character at the g = 2 surface.

When diamagnetic effects are dropped, the dispersion relation (5.3) reads (see
the previous chapters) [58, 114]:

~ A~ A~ ~13/4
A4A2 = Aap) = Yk (5.9)

where 7;, denotes the growth rate of the resistive infernal mode at the ideal stability
boundary (vympp = 0):

. (7BGe(Bo — Ay) . G-3/13
Tinf = 1+ 24 '

(5.10)

If v2,4p > 7% > 0 (which has to be checked a posteriori), i.e. a condition for which
By (0q) is sufficiently large (small), the growth rate becomes independent at leading
order of the value of plasma resistivity, i.e. v ~ SY This is because the mode is
in the region of strong ideal instability. On the other hand, if |3, | > 7? with
vargp < 0, i.e. we are in the ideal stability region, the scaling of the resistive mode
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will be tearing-like, namely v ~ S=3/5.

The stability threshold in dg (for fixed /3, ~ 0.1) of the resistive mode, found
by using Eqgs. (5.3), (4.41), (4.42), (5.4) and (5.6), is dgeit ~ 0.05. The tearing
stability index for this equilibrium configuration, calculated by means of Eq. (5.4),
is rsAj.,, =~ —3.5 and it is not strongly affected by the variation of g;,. Thus we
do not expect any growth of the usual 2/1 tearing mode if either the ¢ profile is
sufficiently far from the 1/1 resonance or 3, is sufficiently low, namely we are tearing
stable in the cylindrical limit of the analysis employed for the 2/1 mode. Indeed
in Fig. 5.9, where the behaviour of the growth rate of the resistive mode is shown
with respect to ¢mnin, We see that no resistive modes develop beyond ¢,,;, = 1.05.
Diminishing d¢, the mode enters in the strong instability region and the growth rate
becomes asymptotically independent of the resistivity. When we are close to the
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Figure 5.9: (a) Analytic growth rate ideal (blue solid line) and resistive (red dashed line)
with ¢y from the equilibrium parameters as in Fig. 5.2, and with 5, ~ 0.115 (the resistive
threshold is found for dg ~ 0.05); (b) Ideal (blue squares) and resistive (red dots) growth rate
from XTOR-2F simulations (equilibrium parameters as in Fig. 5.2) with no w* effects. The
value of the Lundquist number on the magnetic axis is S = 10° (the value of S on the resonant
surface is S ~ 3.5 x 10°). It is clearly visible that for sufficiently small values of dg, the growth
rate becomes asymptotically independent of the plasma resistivity. Close to marginal stability,
the effects of resistivity on growth rate and stability boundary is strong.

ideal stability boundary (vygp = 0), the effects of resistivity strongly affect the
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growth rate and the stability boundary. The scaling with respect to the Lundquist
number is found to be v ~ S~3/13 as shown in Fig. 5.10. The agreement between
numerical results and analytical calculations is rather good, even though the aspect
ratio is small.

10 10 10°
S

Figure 5.10: Growth rate of the infernal-resistive mode, close to the ideal stability boundary,
wrt the Lundquist number S with gy, = 1.037 and 3, = 0.1152. The results from XTOR-2F
simulations (black squares) are in reasonable agreement with the expected S —3/13 dependence
shown by the thin blue solid line. The thick green solid line shows the analytic estimate of
Vins Obtained by using Eq. (5.10).

When diamagnetic effects are allowed on the resonant ¢ = 2 surface, Eq. (5.9) is
modified in the following manner [114]:

(Y +i@7) (3 +62)°] AT +149F) — Anranlt = Ahaps (5.11)

where the subscript s (¢) indicates that the diamagnetic frequency has to be evaluated
for the mode resonant (almost resonant) with the ¢ = 2 (¢ = 1) surface. If 43,
is sufficiently large and positive definite, then the dispersion relation at leading
order reads 4(§ +i@},) — A3zp = 0, i.e. the dispersion relation reduces to the one
for ideal modes. Indeed Fig. 5.11 clearly shows that if the mode is in the ideal
instability region, the growth rate has a weak dependence on the plasma resistivity.
On the other hand, if 73,5 is large but negative, Eq. (5.11) reduces to the standard
dispersion relation for drift-tearing modes [67, 96, 110].

A modification of the ideal stability boundary is expected once diamagnetic effects
are switched on, according to Eq. (5.8). We identify the ideal diamagnetic stability
boundary where the growth rate of the ideal mode with w* effects is vanishing. When
the diamagnetic effects are weak, the growth rate of the mode is given by Eq. (5.10),
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Figure 5.11: Growth rate against the Lundquist number from a starting equilibrium with
the same profiles as in Fig. 5.2 but with ¢, = 1.0315 and 8 ~ 2.834%. The diamagnetic
frequency is |w} /wa| = 0.032. The growth rate of the mode shows a weak dependence upon the
plasma resistivity, as expected since we are sufficiently far from the ideal diamagnetic stability
boundary (see Fig. 5.7).

and the mode rotates with a frequency equal to wyor ~ 15 (W}, + 3w}, + 4w,). If w*
effects are increased further, we might expect that the ideal diamagnetic stability
boundary is crossed and the growth rate changes from the fast (~ S~%/13) scaling
to a moderately fast (~ S~%/%) scaling, first identified in Ref. [114]. Finally, the
standard drift-tearing scaling [67, 96, 110, 111] is recovered when the diamagnetic
effects are increased further.

From XTOR-2F results, when diamagnetic effects are included, and when the
plasma parameters are those of the earlier section, the stability boundary occurs for
0.0129 < |w¥/wa| < 0.0161. Figure 5.12 shows the behaviour of the growth rate with
different values of the diamagnetic frequencies. The growth rate diminishes with an
increase of the diamagnetic effects as expected from the linear theory, and appears
to exhibit a transition from extremely fast (~ S™3/13 for |w* /wa| = 0) to moderately
fast (~ S73/8 for |w* /wa| ~ 1.61 x 1072 and S 2 107). This is in accordance with the
analytic predictions in Chapter 4 since we can approximate 7,y < w*. Eventually
the transition to the drift-tearing regime is expected when w* > |72, |. We are able
to measure the rotation frequency for the case |wfr4| = 1.6 x 1072 with S = 2 x 10°
on the magnetic axis, which gives w,,;74 ~ 1073, indicating a slowly (compared to to
the diamagnetic frequency) rotating mode. Unfortunately it has not been possible to
check the rotation frequency of the modes for higher Lundquist numbers, i.e. when
the moderately fast scaling occurs, because the amplitude of the modes becomes too
small.

5.3.3 Evolution of the island width

After the linear phase, where the 2/1 magnetic island is driven unstable by the linear
coupling due to toroidicity with the 1/1 mode, the island evolves non-linearly. We
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Figure 5.12: Growth rate wrt the Lundquist number from a starting equilibrium with the
same profiles as in Fig. 5.2 for different values of the diamagnetic frequencies |w}/wa| =
0,6.43 x 1073,16.075 x 1073 (a); (b) corresponds to |w}/wa| = 6.43 x 1072 and (c) corresponds
to |w}/wa| = 16.075 x 1073, The reduction of the growth rate is visible as well as the change
of the scaling with respect S for sufficiently large values of the Lundquist number.
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now examine the evolution of the width of the island in absence of diamagnetic
effects. The equilibrium considered has the profiles, for p and ¢, shown in Fig. 5.2
with ¢ = 1.0223 and 5 = 2.88%. Thus in accordance with Figs. 5.7 and 5.9 we
are in the region of strong instability. Hereafter the resistivity and density values on
the magnetic axis are taken such that S = 10°.

When the nonlinear stage is reached, the kinetic energy of the 1/1 mode shows
an oscillating behaviour whose amplitude is slowly decreasing in time, as shown in
Figure 5.13. The magnetic energy of the mode is also highly oscillating but it has a
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Figure 5.13: Evolution of the kinetic energy (left) and magnetic energy (right) of the n =1
mode with the same parameters as in Fig. 5.2. The magnetic energy of the m = 2 mode
saturates indicating a persistent m = 2 mode. The dashed vertical lines on the left panel
indicate the time at which each snapshot of the Poincaré cross section in Fig. 5.15 is taken.

less regular pattern. On the other hand, the magnetic energy of the 2/1 sideband
oscillates less, and eventually saturates (the kinetic energy manifests an oscillating
behaviour in phase with the 1/1 mode). Figure 5.15 shows the Poincaré plot of
the flux surfaces when the evolution enters in the nonlinear phase. The 1/1 mode
exhibits an oscillating behaviour which repeats every 25074. The magnetic island
located at the ¢ = 2 surface, after the very rapid growth during the linear phase, is
monotonically increasing in size with time.

The behaviour of the pressure during the nonlinear phase is rather regular with the
peak of the pressure following the position of the magnetic axis of the bean shaped
flux surfaces. Figure 5.14 shows the evolution of the pressure profile plotted as a
function the major radius where the snapshots correspond to those of the Poincaré
plots in Fig. 5.15. The ion diamagnetic frequency w is set to zero, so the mode does
not rotate in the poloidal plane (hence the asymmetry of p with respect to R due to
the 1/1 mode does not change direction).

We note that although only two toroidal modes are retained, namely the n =0
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Figure 5.14: Normalised pressure profile (XTOR-2F units) evolution during the nonlinear
phase. The pressure is shifted outwards and inwards following the position of the magnetic
axis.

and the n = 1, the evolution of the physical quantities (the kinetic and magnetic
energies and the island width, the shift of the 1/1 mode) are apparently similar to
the numerical results presented in previous papers [115]. However we stress here the
point that the 2/1 island shown in Fig. 5.8 (in contrast with Ref. [115]) is driven
by the linear coupling with the 1/1 mode due to toroidicity. When the 2/1 island
becomes larger than the resistive layer, i.e. when it enters in the nonlinear regime,
the evolution of the magnetic island width is given by the well known Rutherford
equation [16, 30, 32]:

a dw _ 1.66T8A20t

adu 5.12
re dt S ( )

where @ = w/a is the normalised island width, £ = ¢/74 and the Lundquist number
is evaluated on the surface r = r; (it is assumed that S is almost constant across
the resistive layer). The coupling of the 2/1 with the 1/1 mode which occurs in the
plasma core, alters the shape of the eigenfunction at the resonant 2/1 surface (where
the treatment is cylindrical in nature), leading to a modification of the slope of the
poloidal flux across this point, namely a modification in r¢A’. Thus the expression of
rsAj,; contains a coupling contribution Af,, ., as well as the standard contribution
of a cylindrical plasma A} ,. given by equation (5.4) [29], and the Glasser, Green,
Johnson contribution Agg; = —6.35(¢> — 1)L2/(rL,)3/w where L, = q/(dgq/dr) and
L, = —p/(dp/dr) [33]. Hence:

r / / /
TSAtot - TSAtear + TSAcoupl + 7y GGJ:
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Zla

Zla

Figure 5.15: Poincaré plots at ¢ = 0 with the same parameters as in Fig. 5.13. The linear
phase ends approximately at ¢/74 = 1114. When the modes enter in the nonlinear regime, the
oscillating behaviour, shown in Fig. 5.2, of the main my = 1 mode is clearly visible, while the
2/1 magnetic island shows a monotonic growth in time (the contours of the 2/1 island have
been highlighted).
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Other terms arising from quasi-linear corrections, bootstrap contribution, etc. are
discarded, since we are interested in the nonlinear behaviour before saturation, not
on the saturation mechanism itself. Moreover these additional corrections are not
included in our XTOR-2F calculations. The contribution due to the "tearing” and the
GGJ terms can be computed analytically giving A}, ~ —3.5 and r,AgLq,; ~ —0.9.
Although the coupling is nominally weak (O(¢)), we expect that Ay, will contribute
significantly to the total A} ,. In the absence of diamagnetic effects, the parameter

rsAj, is easily computed once the linear growth rate of the 2/1 mode is known, i.e.:
1ol = S, (5.13)

The growth rate ~ is computed either from the linear phase in XTOR or from the
analytic estimate (for large growth rate they match reasonably well, see Fig. 5.9).
Note that during the linear phase, the growth rate of the 2/1 mode is identical to
the 1/1 mode. Thus we assume r;A} , ~ 6.18 (fixed, thin island).

In figure 5.16, which shows the temporal evolution of the magnetic island width,
two phases are clearly visible. The phase just before the nonlinear stage is char-
acterised by a rapid growth of the island width until /74 ~ 1100 (this is still the
linear stage, as we can see from the plot of the kinetic energy in Fig. 5.13). The
magnetic energy of the m = 2 mode (cf. Fig. 5.13) peaks at about t/74 ~ 1150
and decreases until t/74 &~ 1200. From t/74 =~ 1200 the growth of the island width
exhibits a Rutherford-like behaviour, where the slope of the time evolution is in good
agreement with Eq. (5.12). The two phases are consistent with Fig. 5.13 when the
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Figure 5.16: Magnetic island width with respect to time (parameters as in Fig. 5.13). The
behaviour of the evolution of the magnetic island width shows two growths before reaching
saturation. Rutherford’s equation (5.12) together with Eq. (5.13) qualitatively gives the slope
of the growth from ¢/74 ~ 1200 until the saturation.

2/1 mode is rising rapidly from /74 ~ 800 until /74 ~ 1200, with a subsequent
decrease of the magnetic energy, which is followed by a slower growth. Note that in
the nonlinear simulations, wy, was set to zero, so that modes rotating in the electron
direction, such as those shown in Fig. 5 of Ref. [9], are absent.
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The nonlinear evolution of the magnetic island width and the results obtained from
XTOR-2F simulations of figures 5.15 and 5.16 could be consistent with experimental
TCV data [40] of strong NTM seeding by sawteeth. Measurements of a 2/1 island,
growing within 100 74 after a sawtooth crash, were experimentally reported, as well as
a 3/2 island which is detected within 800us after a sawtooth event [40]. Although the
full explanation of the 3/2 NTM seeding and evolutions needs additional nonlinear
physics, magnetic measurements suggest that the 3/2 mode could be generated by
the 2/2 subharmonic via toroidal coupling [40]. Indeed a large 2/2 subharmonic
during a sawtooth collapse is also consistent with previous numerical simulations
[118]. A calculation with n = 2 modes in XTOR-2F, as in the analytic dispersion
relation, shows that the 2/2 mode is also strongly unstable, and a 3/2 island is also
triggered as shown in Fig. 5.17. The argument on timescales and relevance to TCV

t)Ta = 3/2 island

SOOI R IV AR

Figure 5.17: Poincaré plot of the magnetic field lines with the same input profiles as in Fig.
5.15, but where only the n = 2 mode has been retained. The linear phase goes from t/74 = 0
up to t/74 = 1680. The linear growth rate of the n = 2 mode is /w4 ~ 0.012. The vertical
dashed line indicates the position of the ¢ = 3/2 surface.

holds also for the n = 2 mode.

We point out that the coupling with the 1/1 mode is the key ingredient for the
seeding and evolution of the island width. Indeed we just analysed a situation where
the tearing 2/1 mode is stable (A’ < 0), but the coupling with the 1/1 mode drives it
unstable. We stress the point that we considered a configuration for which ¢, > 1
(no ¢ = 1 resonance) so that the resistivity only matters at the 2/1 surface. A
separate analysis as to be carried out when ¢,,;, < 1, for which the resistive 1/1 mode
develops. Hence the 2/1 island width would be expected to diminish on resistive
times if the ¢ profile were raised or lowered sufficiently far from the 1/1 resonance
after the end of linear phase. When dq is large (i.e. ¢ is far from the resonance),
the 1/1 and the 2/1 modes are no longer coupled, and in this situation the 2/1
standard tearing mode is intrinsically stable. More advanced work would include
a bootstrap contribution, so that once the island has been seeded and evolved via
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the 1/1 coupling, a subsequent large island can remain in place regardless of the
dynamics of the 1/1 mode.

5.4 Summary

In this chapter an extensive study of MHD instabilities in a low shear MAST-
like configuration has been presented. Numerical simulations performed with the
XTOR-2F code, both in the ideal and resistive MHD frame with the inclusion of
diamagnetic flows, have been compared with analytic linear theory of infernal modes
[114]. Additional effects such as E x B sheared flows, neoclassical corrections,
energetic ions, etc. have been neglected. Since the infernal modes are characterised
by coupled poloidal sidebands due to the combined effect of pressure gradient and
toroidicity, the aspect ratio has been kept sufficiently small in the simulation in order
to enhance the coupling.

The results of the linear theory have been successfully compared, with reasonable
agreement, with numerical XTOR-2F simulations. The impact of w* effects on the
scaling of the growth rate as a function of S and on the mode rotation have been
confirmed by the XTOR-2F code. The study of ideal MHD dynamics has been
carried out by performing a scan both in 3, (with a fixed dq) and dq (with fixed 5,).
When a constant diamagnetic frequency w? is taken into account the mode tends
to be stabilised and starts to rotate in the ion direction. The numerical threshold
and the magnitude of the growth rate of the mode are found to be in qualitative
agreement with the analytic estimate, as well as the rotation frequency when ion
diamagnetic effects are present. The discrepancies can be attributed to shaping
effects, which have not been taken into account in the analytic treatment, and to the
tight aspect ratio of the configuration considered.

Resistive dynamics have been studied by varying dq from 0 to 0.05 with a fixed
value of 8, =~ 0.1 at the r = r, surface. The comparison between analytic and
numerical growth rate close to the ideal (without w} effects) stability boundary
shows good agreement. In addition it has been possible to provide an analytical
estimate for the threshold of the resistive mode, which appear to be consistent with
XTOR-2F results. No growth of the resistive tearing mode occurs for sufficiently
large values of dq (i.e. in the resistive stability region of the infernal mode). This is

also in agreement by having a negative Aj_, .

Various scalings with respect to the Lundquist number are found by tuning the
strength of two-fluid effects: close to the ideal stability boundary, the growth rate
tends to decrease with an increase of the w* frequencies. The growth of the mode
converts from the extremely fast v ~ S~3/13 scaling to a moderately fast v ~ S=3/8
growth and is then expected to eventually turn into the standard drift-tearing scaling
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as w* is increased.

A preliminary study of the nonlinear evolution of the width of the magnetic island
of the tearing (mg + 1,n) sideband has been performed. The numerical results show
two distinct phases: right before the early nonlinear stage we have a rapid growth,
which is subsequently followed by a second phase in which the growth reduces and
the island width evolves according to Eq. (5.12), a modified Rutherford equation
that includes a coupling contribution to the 1/1 mode.
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Conclusions

Understanding plasma dynamics in tokamak fusion relevant scenarios is of crucial
importance for the success of the entire fusion program. This thesis addresses the
problem of equilibrium properties and MHD stability of hybrid plasmas, both in
tokamak and RFP configurations. This work has two main outcomes: the first is a
characterisation of the properties of equilibrium helical states and the connection that
they have with non-linearly saturated ideal modes frequently observed in hybrid-like
tokamaks and RFPs [7, 8]. The second outcome is a description of fast growing
resistive instabilities (when the safety factor is sufficiently flat) and the impact that
non-MHD effects have on the growth of such modes, related in particular to the
problem of the fast seeding of NTMs.

Chapter 3 presents an analytic theory of non-linearly saturated m = 1 modes
(with an arbitrary toroidal mode number n), and analytic conditions for which a
helical state exists. Comparisons between 3D VMEC equilibria calculations and
XTOR-2F nonlinear simulations of saturated ideal MHD instabilities have been
presented. We examined both tokamak and RFP plasmas, where VMEC results were
computed in fixed and free boundary conditions. Hybrid ITER-like and MAST-like
plasmas have been examined: VMEC and XTOR-2F agree reasonably well when
Gmin > 1 in accordance with analytical predictions for saturated internal kinks
[26, 62, 63]. When ¢;, < 1, the helical state in the 3D equilibrium calculations
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decreases and eventually disappears, in contrast with XTOR-2F and analytic results.
It is found that if a small n =1 RMP external magnetic perturbation is included in
the equilibrium calculations, the displacement resulting from VMEC calculations
approaches the amplitude of the saturated kink computed with XTOR. It is also
found that when ¢ is above unity the amplitude of the displacement of the magnetic
axis depends weakly on the strength of the external RMP field. When ¢,,,;,, is less
than unity, the position of the magnetic axis is strongly dependent upon the n =1
RMP field applied: a significant reduction/increase of the RMP yields a significant
reduction/increase of ;. In contrast with the cases where g,;, > 1, the discrepancy
of the VMEC and XTOR-2F approaches when resonant surfaces exist in the plasma
is not still understood.

Beyond tokamak physics, an RFP configuration with a non-monotonic ¢ profile
having ¢ma: =~ 1/7, has also been studied. This configuration gives rise to the
SHAx equilibrium state, and has been previously modelled using the VMEC code [7].
By using the XTOR-2F code in the ideal frame, it has been possible to study the
behaviour of the ideally saturated n = 7 mode. It has been found that XTOR-2F
agrees well for the prediction of the displacement of the magnetic axis with the
VMEC code when only one toroidal mode, i.e. n = 7, is retained in XTOR-2F
and VMEC. The numerical results are compared with very good agreement with
the analytical theory of the nonlinear saturation of an ideal m = 1 mode (cf. Eq.
(3.14a) in Chapter 3), in the approximation of large aspect ratio. Connection to
linear theory shows that the driving mechanism of the SHAx equilibrium is a 1/7
internal kink, caused by the combined effect of current and pressure gradients, but
dominantly by the current.

Chapter 4 presents a derivation of an analytic expression for the growth rate
for infernal modes with additional non-MHD effects (cf. Eq. (4.56)). Charlton’s
resistive quasi-interchange model [58] has been extended with the inclusion of plasma
diamagnetism and equilibrium MHD toroidal flows, both retained throughout the
entire plasma volume, and viscosity, which is taken into account only at the resistive
sideband resonant surface. The sideband magnetic perturbation can be analytically
described exactly with a careful choice of the rotational trasform. An approximate
WKB generalisation has also been derived. It is found that the ideal mode is stabilised
when core w} corrections (with constant w) are considered. Considering separately
plasma diamagnetism, the effect of viscosity and equilibrium toroidal flows, three
dispersion relations, corresponding to three different regimes, are derived. Various
scalings of the growth rate v against the Lundquist number S have been found.

Focusing in particular on the effect of plasma diamagnetism, it has been found
that for sufficiently weak non-MHD effects, the fast growth (y ~ S73/13 at the
ideal stability boundary) of the mode is preserved. This could be consistent with
the fast growth of NTM seeding in realistic modes of operation. With strong w*
effects, the extremely fast growth rate of the resistive mode is reduced but, close
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to the ideal MHD stability boundary, a novel moderately fast scaling proportional
to S7%® _ie. intermediate between the infernal and the tearing behaviour, has
been identified. A similar scaling has also been found close to the ideal boundary
when equilibrium toroidal flows are taken into account. These modes tend to rotate
either in the electron diamagnetic direction, or in the ion diamagnetic direction, in
agreement with TCV experiments during hybrid-like operation [9]. The effects of
density gradients with flat temperature profile, relevant in the post sawtooth scenario,
for the my = n = 1 have also been assessed (see Appendix A.4).

A comparison between the linear theory of Chapter 4 and numerical XTOR-2F
simulations is given in Chapter 5, where an extensive study of infernal type MHD
instabilities in a low shear MAST-like configuration has been presented. The goal of
the comparison is to confirm numerically the novel analytic results (ideal and resistive
growth rates, mode rotation, scaling wrt S). After agreement was made between
linear analytic and numerical simulations, this enabled us to confidently undertake
nonlinear simulations of infernal resistive modes. A MAST-like configuration is
preferable because of the enhanced coupling due to the tight aspect ratio of the
machine. Numerical simulations are performed both in the ideal and resistive MHD
frame with the inclusion of diamagnetic flows, neglecting additional effects such
as E x B sheared flows, neoclassical corrections, energetic ions, etc. In the ideal
limit, the stabilising effect of core diamagnetic ions has been shown, together with
demonstrating that the mode rotation is in the ion direction. The stability threshold,
the growth rate and the rotation frequency of the mode calculated with XTOR-2F are
found to be in good agreement with the analytic estimate. Shaping and finite aspect
ratio effects are considered to be responsible for the deviations in the simulations
with respect to the linear theory predictions.

When resistivity is turned on, the comparison between analytic and numerical
growth rate close to the ideal (without w} effects) stability boundary shows good
agreement. The stability boundary of the resistive mode is also showing good
agreement with analytical predictions. The impact of w* effects on the growth of
the resistive mode has been assessed numerically, and various scalings with respect
to the Lundquist number are found by tuning the strength of two-fluid effects.
We first notice that an increase of the w* frequencies tends to reduce the growth
rate close to the ideal stability boundary, as predicted by the linear theory. In
addition the transition from the extremely fast v ~ S™3/13 scaling to the moderately
fast v ~ S7%/® growth, when strong diamagnetic effects are considered, has been
confirmed in XTOR-2F simulations. Finally a preliminary study of the nonlinear
evolution of the width of the magnetic island of the tearing sideband has been
performed, showing two distinct phases. First, in the linear phase the growth of
the resistive sideband experiences a rapid increase followed then by a second phase
in which the island width evolves on resistive timescales according to Rutherford’s
theory [30]. This appears to be consistent with experimental measurements of NTM
evolution following a sawtooth crash in TCV [40].
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In conclusion, the present thesis presents a study of equilibrium and stability
properties of tokamak and RFP hybrid plasmas. The first part provides a charac-
terisation of helical 3D equilibrium states based on equilibrium calculations and
nonlinear stability simulations in the ideal MHD frame. In addition, analytical
criteria for the existence of helical equilibrium cores were given. In the second part
of the thesis, the problem of the fast growth of resistive modes in shear free tokamak
plasmas, in relation to the NTM seeding problem, is investigated analytically and
numerically. Agreement between numerical and analytic approaches is very good.
Future extensions of the present work should include an analysis using the XTOR-2F
code of the resistive dynamics of RFP plasmas, modelling the plasma behaviour which
leads to the formation of the helical SHAx state, from the initially axisymmetric
configuration. The agreement of the analytic theory with the XTOR-2F initial value
code opens the way to begin a resistive treatment which could permit stochastic
regions to be generated and also more than one magnetic axis. Finally, the connection
between infernal-like instabilities and the development of fast triggering of NTMs,
resistive global oscillations and saturated equilibria in ITER-like operating scenarios
should be continued. A possible extension would include the nonlinear dynamics of
the resistive island when bootstrap corrections are considered, thus enabling more
realistic modelling of NTM triggering by strong 1/1 modes in configurations with
extended regions of low shear.
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Mathematical derivations

A.1 Curvilinear coordinate systems

We now present some general information about curvilinear coordinates [83, 119].
Let us take a point P in space, characterised by its three Cartesian coordinates x, y
and z. The three unit vectors along the three axes, orthogonal to each other, are
denoted by 2, 7 and k. Assume that P lies on a surface. It is convenient to introduce
a unit vector denoted by e; normal to the surface in P, and then two vectors e, and
e3 tangent to the surface. It is possible to introduce three curves (¢!, ¢, ¢°) passing
through P, tangent to e;, ey, es respectively. These lines are called coordinate lines
and are shown in Fig. A.1.

Therefore we have a coordinate system in which any point in space is described
by the following relations:

z=2x (¢ ¢ ¢"),

where = (z,y, z). The coordinate lines are linked to the Cartesian coordinates by
the relation ¢* = ¢' (z,y,2) (i = 1,2,3). We define the length s between two adjacent
points by (we use Einstein notation):

0 0
d82 = dl'Q + dy2 + d22 - grsdqrdqsy Ors = T ’ *
aq"  0q*

= Gsry
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Figure A.1: Curvilinear coordinate system (q!,q?,¢®) adapted on a constant ¢ surface.
Inspired by Ref. [119].

where ¢,, denote the covariant components of the metric tensor. The contravariant
components are defined in an analogous manner:

B oq" dq* N oq" dq* N dq" dq* B
- Ox 0x Oy Oy Oz 0z — 9

rs ST

It is easy to check that 3% _, g,,g™° = 65 where &2 is the Kronecker delta. Let us
now introduce two sets of three vectors:
. Oz, Oy . 0z _9dq". O0q" . Oq"

AT
67‘

% _
8qr2+8qrj+8q’" ’ € 0$z+ 0y‘7+ 0z

k, r=1,2.3

The set €, is the covariant basis, while the set €" is the contravariant basis which
is denoted in a compact form as € = V¢". It immediately follows that €, - é; = ¢,
and é" - é° = ¢g"*. It is important to note that the covariant (contravariant) vectors
are not necessarily orthogonal. The following relations hold:

! Vql = (AQ X ég)/\/g, (A].)
V(€* x %) = /g(Vq* x V¢*), (A.2)
and equivalent expressions for the other vectors are obtained by circular permutations.

The determinant of the metric tensor matrix is denoted by g (det(g;;) = g, det(¢g”7) =
1/g) and it is defined by:

o>
Il

o>

1

él . (ég X ég) = \/‘67 (A3)
e (e2xeé’) =vq - (V@ xVe') =1/, (A.4)
which is related to the volume element dr by the relation d®r = dvdydz =

V9dq'dg*dg®. The coordinate system (é,é,,é3) is right handed when /g > 0.
Finally we have é, - €° =é, - V¢* = ¢7. We can now define for a generic vector V/
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A.2. Derivation of equations (4.19), (4.24) and (4.25)

its covariant (V;) and contravariant (V") components:

V =VVq =V"e,. (A.5)
The scalar and cross product between two vectors V and W are given by:

VW =VIW, =V,W = g, V*W7,

(V x W) = \;ga“’fvjwk, (V x W), = \/gei, VIW*,

where 7% = €ijk 1s the Levi-Civita symbol.

Gradient, divergence and curl operators are written as follows:

ou
(Vu), = 8 - Vo V= \/_8

S Y17
Vi VXxV) =—gkt_—_2
S (vav). (vxv) Vol

A.2 Derivation of equations (4.19), (4.24) and (4.25)

Eq. (4.19)

We start deriving equation (4.19). At leading order we have (cf. Eq. (4.3)) \/9/fy =
Ro/By[l + 2r/Rycosv] Using the fact that the safety factor is almost flat and
q ~ m/n, the following expression is obtained:

[Lﬁ5p’<%(\/§/fé)]m =2 _[00(V/g/ )l [(m — m") = n]*0p, 0 =

/

Z V[09(\/G/ ) ] 0Py s = L2Z[—8ﬁ(\/§/fé)}m/5p;%m, —
(03 (/3 £§) ]t "
— 2[00 05 (\/9/ 1) Im-

Analogously we have:

(09 Lijop(v/9/ f0) Tm = D_ (=im)0pm—nv [(m — m )0 = n]*(\/9/ fo ) =

/
(090D) 2(m')2—=—12092

? Z((%ép’)mf(\/ﬁ/ Io)mmr = *[(090) (V/9/ £5) I,

where we used the fact that 85(,/9/f)) = —(/9/f;)’. Eventually we obtain Eq.
(4.19).
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Eq. (4.24)

In order to derive Eq. (4.24), we first note that at leading order /g[p, R*/F] ~
—pyR? /T30 F + \/g|p, R?/ Fy). Taking the Fourier m component and expressing the
pressure in terms of the displacement &, it is easy to see that:

(Vlp, B[ F])m = 2p0 G — iR/ =
2po 5 2P0 l(R2> <R2>F’1
"R T

Using the Grad-Shafranov equation and the fact that at leading order we have
vy =~ rFy/(qRy), we obtain Fy = RyBo[l — [dr(p,/Bi + 2r/(¢*R2))]. Thus, by
means of 4.4, at leading order the expression for K3" reduces to equation (4.24).

Eq. (4.25)

The derivation of (4.25) is more tricky. At leading order we have (,/g/f))+1 = r/ B,
thus it is easy to see that:

mo +1 - (moil) pfé} +mo (,1Fmo -\’ (]7())/ ‘|
S [ijéT () = (5 ) ¢

Since we have that Jy+1 = ¢p{/B2, using the assumption that ¢ is almost flat, we
obtain the following expression:

iL’in(),:tlklrlnoqilg + Kmo :ﬁ:lg _

m0$1

mo*mo Po +m m
[ g g

e =2
e ><ff> proo e e ()] -
o) (2o <1w>’}]+

CES s - () <mo¢1)£} s B fpey M

lkmOA* km0$1
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A.3. Finite [ corrections to Eq. (4.31)

Neglecting the term proportional to A%, (which is of higher order), some straightfor-
ward manipulations show that the expression above can be written as:

LT ROTE 4 KR =
(m() + 1) p6 +m d 1Fm, p6 +m, d 1Fm, _
o ) = g gy (1) =

By f} dr rB2
mo , 4m d 1Fm
)

hence we have Eq. (4.25).

A.3 Finite § corrections to Eq. (4.31)

In the region r, < r < a (a is the minor radius), we assume a rotational transform
of the form:

L=n/m+ S(1— (r/r,)),

where S is a number. Introducing the variable z = (r/r,)?, the equation for the
perturbed fluid displacement which accounts for finite 5 corrections is [83]:
d
dz

) de,n m2 —1

2/A+1
z/+(1—z) 7 — 2

(1— 224 Uplz?* X, =0,  (A6)

where Uy = 2rp’/Bgn?/(mS\)%. Note that an equation similar to (A.6), where the
replacements A — —\ and Uy — S(m/n)?Uy have to be performed, can be derived
with a safety factor of the form ¢ = m/n(r/r,)*. This equation can be solved in
the exterior region (r > r,) for a generic A assuming a logarithmic pressure profile

p = —polog(r/a) (with a parabolic pressure profile an analytic expression is found
only for A = 2, see Ref. [83]).

The solution for z < 1 (i.e. r < ry), reads [83]:

)N(m,n = z_l/’\+U(1 — z)_l/z(HU) [AiF(a, b,;c, 2)

+ Az Fla+1—c,b+1—¢2—c;2)] (A.7)

where a = 0 —m/\, b= o +m/\ ¢ =1+ 2U, with ¢ = 1/2[1 — U + 2U] where
U= V1i+4U, and U = /Uy+m?2/X2. If we assume that the quantity Uj is

sufficiently small the behaviour of ¢, , for r < r, is given by Eq. (4.38) (it will be
shown later that this expression holds also for r > ry).
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Using the linear transformation formulae for the hypergeometric functions, we are
able to find the asymptotic behaviour of (A.7) in proximity of the resonant surface
r = rg, namely:

D ~ |27 [1 4 DAY [|7] | (A.8)

where © = (r — r,)/rs, s = 1/2[1 + U] and

r(1+20)0(=0) + r(1—20)0(-0) AZ
T(o—m/NT(o+m/X) " T(1—5—m/NT(1—6+m/X) AL

D =

I(14+20)0(=0) ra-—2onr@)  AZ]
T(G—m/NL(6+m/X) | T(@—m/NL(E+m/A) AL

with & = 1/2[1 + U — 2U], 6 = Y2[1 + U + 2U].

When z > 1 (i.e. 7 > ry), we introduce the variable # = 1 —1/z. Hence the
solution of (A.6) which is vanishing at the plasma boundary (X, ,(a) = ¥mn(a) = 0)
reads:

~ ~

K~ 7D — ) AR 0, b 0 7)
+ DU F(a+1—6b+1—22—¢2) (A.9)

where 4 = o +m/\, b=6+m/\, ¢ =1—U, with 6 = 1/2[1 — U — 20U] and

F(a,b;¢;1 = (ry/a))[1 = (rs/a)]”
Fla+1—eb+1—¢82—21—(ry/a))

Do=—

Close to 7 = 7, the behaviour for 1), ., resulting from Eq. (A.9) is given by:

&m,n ~ |$|1/2(1_U) [1 + Do)\0|x|0} . (A.lO)

A.4 Effects of density gradients on the infernal
mode

In the present appendix we generalise the equations for infernal modes, with the
inclusion of density gradients. While pressure enters the perturbed force operator, the
density enters the inertia (in the standard perturbed equations, the density profile in
the inertia is contained in the Alvén frequency w,). Density gradients could play an
important role in a post sawtooth-like scenario. Indeed after a sawtooth, in the full
reconnection model, the ¢ profile is raised above unity and the temperature becomes
flat inside the ¢ = 1 surface. However residual density gradients could remain [81],
allowing the presence of a pressure gradient in the central region (this is because
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Figure A.2: Profiles for density (a), temperature (b), pressure (c) and safety factor (d) before
(blue) and after (red) a sawtooth crash, assuming full reconnection and allowing for density
gradients.

p ~ oT'). This is shown in Fig. A.2.

Neglecting presently diamagnetic effects and equilibrium toroidal flows, Eq. (4.53)
is augmented by the density gradient terms, giving for mo =n =1, ¢ = 1 + dq
(wa=1) [84]:

d>X . dX, w
al’r’g1 + (3Q(7") + 7“72@6) — + 470 X1 + als /1y =0, (A11)

Q) =

where we normalised wa = By/(Ro\/0) = 1 (By and g are the values of magnetic field
and density on the magnetic axis), Q(r) = 00%* + 6¢%, ¥ = /37, and X fulfils the
integrability condition ] ar?X;dr = 1. Under the assumption py ~ go = 1— (r/ag)?
(flat temperature profile) in the low shear region, the following equation is derived:

EX, dX, X RopAY
z(1—x) 72 +[2-3z] —— — = - 2 =

where = = 4% (r/a)” /(3% + 6¢%) (x, = z(r = 1)), whose solution, regular at r = 0
with X (r.) =0, is [102]:

v _ 2Bop AT [ FA+1/V2,1-1/v222)
1: J—

Bi 4% |[F(1+1/v2,1-1/v2;2;2,)
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leading to the following dispersion relation (we recall that the dispersion relation is
obtained by imposing the condition [3* ar?Xdr = 1):

Ay [F(1+1/v/2,1 —1/3/2;3;2.)
¥R+ 1/vV2,1 - 1/v2;2;2,)

If 4 =0, it is easy to see that for a fixed dg, the critical value of 3, corresponds to
Berit found in section 4.8.1 (this is to be expected because the inertia is zero at the
stability boundary); if d¢ = 0, the growth rate is slightly increased with respect to
the one evaluated using eq. (4.58). We note that if we assume both pressure and
density to be parabolic, i.e. 99 = o(1 — (r/a)?) and Ty = T(1 — (r/a)?), the total
pressure can be well approximated in the central region p = p(1 — 2(r/a)?). Hence
the results just obtained hold with the replacement p — 2p.

1+ 2527 —1| =0.

We note that for mg =n # 1, Eq. (A.11) is augmented by the term 42gor(1 —
m2) X, and it is recast in the following form (here 4% = v%(1 + 2¢2)/(m2w?)):

*X,, dX,, I 1-md)(x—1)
(1 —x) dI20+[2—3x] dxo_<2+ 1 0 . Xone

mg—1

. ROﬁ A:Jno,n 3/2/a2 B x(mo—l)/? — O
B 2t (5740 '

(A.12)

The two independent solutions Y; and Y5 of the homogeneous part of the equation
above can be easily expressed in terms of hypergeometric functions (Ref. [102] p.
564):

Y, = x(mo—l)/QF(a + mo, b+ mg; 1+ mg; x),

Y, = g(mo1/2 [F(a + mg, b+ mo; 1 + mg; ) log(z)

. ixn (a+m0>n(b+m0)"[\11(a+m0 _|_n) — \If(a+m0)

(1 —l—mo)nn!
+U(b+mo+n)—V(b+mg) —V(meg+1+n)
W+ 1) — U(n+ 1)+ (1) = 3 (n=Di=mohn

(I —a—mg)n(l —b—mg),

n=1

where a = (1 —mp —4/1 +m(2)) /2,b= (1 —my+4/1+ mg) /2, W is the Digamma
function (Ref. [102] p. 253) and (2), = I'(z +n)/I'(2) is the Pochhammer symbol.
The general solution of (A.12) can be written by using the variation of parameters
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method:

Xy = 1Y + 2V — Vi /0 de' Y /0 de' (A.13)

where W(z) = Y5 (2)Y1(x) — Y{(2)Ya(x) is the Wronskian of Y} and Y3, ¢; and ¢, are
D A‘;IJ’L n 52 a2 —=0— mo— : : :
constants and f(x) = —%‘?’&%igmo (%JZ&]Q) * g(mo=1/2 The dispersion relation

is eventually found (numerically) by means of (4.54).
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Coupled internal modes in
tokamaks with a helical core

B.1 Geometry and fluxes with equilibrium helical
cores

Using the formalism introduced in Chapter 3 § 3.4.3, we analyse the stability of ideal
and resistive modes when coupling effects induced by the presence of helical cores
are retained. The helical core produces oscillations in the metric tensor. Therefore
an unstable internal mode (ideal or resistive) can couple with a sub-mode. In case of
resistive modes, the tearing stability parameter A’ is modified, so that modes which
are nominally stable can be driven unstable. The starting point of the analysis is
the description of equilibrium helical geometry. We assume an equilibrium helical
core of helicity 1/1 and amplitude £, hence the flux surfaces are parametrised in the
following manner:

X =[Ro+rcos(¥+ X) + Ay(r) +&(r) cos ] sin (B.1)
Y = [Ry + rcos(¥ + A) + Ag(r) + &(r) cos ¢] cos ¢ (B.2)
Z =rsin(d+ X)) +£(r)sing

w

where Ay is the Shafranov shift, ¥ is a poloidal-like angle where the magnetic field lines
appear straight, ¢ is the toroidal angle and A(r, ¥, ¢) is the rectification parameter.
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Chapter B. Coupled internal modes in tokamaks with a helical core

The quantities A, and £ are assumed to be of order &, while Ry ~ O(¢7!). In this
coordinate system, the magnetic field is written as B = VF(r) x Vi —V(r) x Vi,
thus:

B = —(0)' +0,F)/\/g), B"=4v'/\g. B*=F'|\/g.

The constraint J” = 0 provides us the following expression for the rectification
parameter A (correct up to order ¢):

A, 9, 0) = (r/Ry — AL) sind — &' sin(d — ). (B.4)

The constants of integration have been chosen in order to guarantee the periodicity
of the function X in its angular arguments up to O(e®). Hence, we can calculate the
metric tensor up to order € for such helical equilibrium (higher order corrections to
the metric tensor are not important for following analysis):

Grr = 1+ 2[Al cos ) + & cos(V — ¢)],
goo = 1>+ 212 [(r/Ry — AL) cos ) — & cos(V — )],
Gro = [/ Ro — 1 (AL +rAD)] sind + 7 (&' +r¢") sin(@ — ),

Gre = Esin( = @), gop =1 (§ +1E) cos(V) — ),
Jpp = R [1+2r/Rycosd], 1/\/g= (rRy)""[1 —2r/Rycosd].

By using the expressions above, we can show that F' = rBy(1 + O(g?)). The
equilibrium helical displacement ¢ is taken in the following form:

£y = | & [1 - (:)a] ST (B.5)

0, > Ty

where &,, ~ O(g), as we assumed previously, and « > 0. Eq. (B.5) implies that the
coupling can occur only in the region r < r,. Using the results obtained in Chapter
3 § 3.4.3, we assume a flat safety factor profile over a large region which extends
from the magnetic axis up to r = r,. The Fourier components of the current density
explicitly read:

T =132 2 (V@] = ilm =) (Grg)ir + (= 1) (Gro)ur] X

X ((m = m — "V — (0 — 0 — ")) + [(m — )G+
(n — 1) Goa)er 8, + [(m = 1) G ier + (= ') (G )| L, (B.6)
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B.1. Geometry and fluxes with equilibrium helical cores

for the contravariant radial component, and:

Ton =2 2 (1/\/§>k'{ar[—i<§re>k~((m —m' —m" )y — (n—n'—n")F})

mnmn

+(Goo) w5, + (o) Fi] — i(m — m)[—i(Gry ) ((m — m" — m")ily
—(n—n' —n")Fy) + Gro)wr g + (Gro)ir Fl | (B.7)
for the contravariant toroidal component, where g;; = g;;/+/9, k=(m—m'—m" n—
n/ _ n//)’ k/ — (m/’n/>, k// — (m// //) Wlth
2

< : >,;:// = ( . )m//7n// = ﬁ 0 d@dgp( * )exp[i(m"@ — nllg0>].

If the wave vector over which we are averaging is not specified in the angular brackets,
it is implicitly assumed that ( - ) = ( + )oo. We assume the presence of two coupled
modes: one has wave vector kg = (mg, ng), while the other has k; = (mg+ 1,19+ 1).

First we want to specify the amplitudes of the toroidal and poloidal fluxes for
different Fourier harmonics. This is achieved by projecting the force balance equation
along the magnetic field, which yields (v = 1/q):

mwm n - nFm,n

. B.
The linearised covariant toroidal projection of Eq. (2.8) (cf Chapter 2) gives:
I = 0 {npmn+ Z [(m = m ) — (n = ) Fy]}, (B.9)
0

where we have defined k = (m — m’,n — n’). Equation (B.9) provides a relation
between the toroidal and the poloidal perturbation of the magnetic field. It is easy
to see that (J¥)41.41 ~ O(e)(JF) ~ O(g3). The leading order of (B.6) gives:

Iy n Z/(TRO){nr/ROI/);n,n + mRO/TFT/n,n - i[m<§'mp>:|:1 + n<gr9>:|:1] X
x[(m £ Dhmrrnrr — (0 1) Epgrnga] + [m{Gog) 1 + n<§90>i1]1%n117n¢1
+[m<§¢w>i1 + n<§950>:|:1]ﬁ7,n:|:1’n:|:1}- (B.lO)

Under the assumption that (1;, N)mOiLnOil ~ Ole )@mo nos because of the ordering
(Gij)+1 ~ O(e?), it follows that Jr i/(rRo){nor/Rowmo e T MoRo/TF) momo T

mo,no

0(53)@0,,107”0}. Thus, we obtain from equation (B.9) that Fjyny ~ O(€2)Umemne. With

the same procedure, we also find that Fmil,nil ~ 0(62)1;m:|:17n:|:1.

The equation for the perturbed poloidal flux is obtained by linearising the Vi
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projection of the curl of Eq. (2.8) (the subscript 0 and a tilde indicate equilibrium
and perturbed quantities respectively) [88]:

By, VJ*+B-VJi—J, VB —J - VB =0. (B.11)

The analysis to split into two regions: a core region where the coupling occurs (r < 7,
flat ¢) and an exterior region where the magnetic shear is large and the modes are
uncoupled (r > r,, ¢ ~ O(1)). Eventually the eigensolutions are matched smoothly
(i.e. continuous with continuous first derivative) across r = r,:

Wl =K. =o

We now proceed in the evaluation of the eigenfunctions in the interior and exterior
region. Hereafter we denote with r, the position of the ¢ = (mg £ 1)/(ng £ 1) surface.

B.2 Interior and exterior eigenfunctions

B.2.1 Interior region

We recall that in the interior region, where the equilibrium helical displacement is
allowed to vary over the radial variable, we must have an almost flat ¢ profile close
to unity (cf. Chapter 3 § 3.4.3). Thus (J§) = 0. The last two terms in Eq. (B.11)
can be dropped since they are proportional to the perturbed toroidal flux, which is a
small order correction to 1, , (both for the main and the coupled modes). We also
note that (J§)+; = 0. Therefore Eq. (B.11) reduces to:

Jg . =0. (B.12)

We start assuming a positive tearing stability index A’ of the (mg,ny) mode,
corresponding thus to an unstable mode. The leading order of Eq. (B.12) for the
mode Y, n, reads:

T[T&;n,n]/ - mQQLm,n - 07 (B13)

whose solution regular on the magnetic axis is

U = A(r/rs)™ (B.14)

where A is an arbitrary constant with the dimension of a magnetic flux, which is
imposed a posteriori.

In order to derive an expression for @Zmoil’noil, we multiply Eq. (B.11) by /g,
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and by means of (B.7), we obtain at leading order the following expression (for sake
of simplicity we set m =mo+ 1 and n =ng £ 1):

Ton = (/R = i)

’f‘Ro
1 o . o
+7{ar[_l<gr0>j:1<m + 1)¢m:|:1,n:|11 + <969>ﬂ:1¢m¢17n¢1]
TR()
_im[_i<grr>:l:1(m + 1)1/}m:|:1,n:|:1 + <gr9>:|:1¢;n:|:1,n:|:1]} exp[iA¢]v (B15)

where A¢ is the phase difference between the two modes, which is taken either 0
or m. For sake of simplicity we set A¢ = 0 (this factor can be absorbed into the
definition of &, viz. &ur — &ax exp[iA¢]). By means of (B.5), (B.7) and (B.14), Eq.
(B.15) yields:

rlrdn, ) = m*mn + fi(r) =0, (B.16)
where the function fi(r) is defined as follows:
a2+ a)(a+2m —2)(m — 1) A&,
folr) = 2r,

a2 —a)(a+2m)(m+1)Au,
21y

(r/r)™ T m=me + 1,

(T/r*)m—HX ) m=mgy — 17

showing that Y, ~ O(&)Wmo.ne-

Two cases are considered: the case for which a # 2 and the case for which o = 2.
When « # 2, the solution of Eq. (B.16) reads:

- m 5o (r/r)™ 2 m=mg+1
Gmp = B (r) Lo )m+a ° (B.17)
Ts d_ (r/ry) , m=mg—1
where 6, = [a(a+(22)(_";)_r?]’45“”” and 0_ = w. We note that the solution is

well behaved on the magnetic axis since m > 2 and o > 0.

In the case for which o = 2, if m = mg — 1 then f(r)_ = 0, implying that the
coupling is lost. In contrast, if m = my + 1 the solution regular on the magnetic axis
can be written as:

U = B (:)m 44, (T)m [1 — 2mlog (7‘)} , (B.18)

T T x

where 0, = %ﬁ‘j(m — 1). The constant of integration are determined by matching
the solutions in the interior and exterior regions.
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B.2.2 Exterior region

The solution in the exterior region is found by means of the same approach used
in Chapter 4 § 4.6. Away from the resonant ¢ = m/n surface, the equation for the
magnetic perturbation for a finite 3 plasma can be written as 62| ~;v/w +1/ r@;nn] =
Uq/:m,n where U = 1/r?+(RoJo)' /[rm(me—n)|+2(n/m)*p' /(rBi(me—n)) (§ = 1/m)
[29]. Using the WKB approximation, if » < r,, the approximate solution in proximity
of the transition point r = r, is given by Eq. (4.38). In the inner region we have
AP fd2? 4 (—1/4 — Nz + (Ya— £2) /227 = 0 [29], where z = 2m(r —r,)/rs, A =
—qs(Ro o)./ (2n¢.) and k = 1/oU with U = /T + 40U, and Uy = 2p'¢?/(r<B3(¢.)?).
The quantity U is supposed to be positive and slightly less than unity, i.e. —Uy < 1.
Thus the inner solution, which matches the solution in the outer region, is:

in
m,n

(B.19)

£

C Wi i(|2]) + B<My 1 (|2]), 2<0
CoWorn(2) + BsM_y.(2), 2>0

where M and W are the Whittaker functions (ref [102] p. 503). Asymptotic
matching between the inner and outer solutions gives C. = AL, C. = AZ, B. =
AT(Y2— A+ k)/T'(1 +2k) and Bs = AIT(Y/2+ A+ £)/T'(1 + 2k). Imposing the
boundary condition ¢, ,(a) = 0, we obtain Bs, = —I'(1/24- k) /T (14-2x)(rs/a)*™Cs.
The parameters A} and A, are found by matching Eq. (4.38) with (B.17) and (B.18)
after the imposition of continuity of szn and its derivative across r,. For the case
m = mg + 1, we have the following expressions:

A ax
AZ = (ro/rs)" a2+ a)(m —1)/(2m) f* : (B.20)
_ rs\™ ala+2)(a+2m —2)(m — 1) A

A=+ (m) 2m(2 — «) re (B.21)
for a # 2 and

AZ = (rafr)" 2m — 1) m 2 (B.22)

A =B, (B.23)
for a = 2.

Conversely when m = mg — 1 and « # 2 the following expressions are derived:

AZ = (ro/rs)" a2 — a)(m+1)/(2m) Aiw, (B.24)
At = By (roJra)™ (@ = 2)(c + 2m)(m + 1) /(2m)Af:$. (B.25)
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B.3 Dispersion relation for ideal and resistive modes

B.3.1 Ideal modes

For ideal modes we allow for a finite [ effects, thus the asymptotic behaviour close
to the resonant surface (z < 1) of (B.19) is:

b~ |27 [+ |, (B.26)
o~ |27+ |, (B.27)

T(—26)T(1£A+K) 212X +k) .
T (2R (1EA—r) F(QH);(l/Q-FQK,) Xi}v with

X+ = — (rs/a)®™ and x_ = B_/C.. The expression above is then matched with the
solution in the inertial layer, which behaves asymptotically for large x as [83, 120, 121]:

where z = (r — r,)/rs and ny = (2m)2*’”{

Y = Wola P71+ 472 A2 ] £ Wafa] 0L+ 472 AL 2] (B.28)

where + stands for z =2 0, Uy and ¥, are constants, ¥ = v/mw, (7 is the growth

4 K 2 2—HK/2 4 .
rate and wy the Alfvén frequency) and AL = FIE(_Q) ;2%2 +K§2£§4§. By matching (B.28)
with (B.26) and (B.27), one obtains the dispersion relation as in Ref. [83] (Eq. 5.65)
with the obvious substitution A, . — n.. If a logarithmic pressure profile in the

exterior region is employed, by using Eqs. (A.7) and (A.9), we can derive the same

dispersion relation with the replacements 7, — DoAY and - — DAV, where D,
and D are defined in Appendix A.3.

B.3.2 Resistive modes

The dispersion relation for resistive kink modes is given by Eq. (6.40) in Ref. [83]
with the substitution A,,. — 14 as in the ideal case. When we consider tearing
modes, we drop the finite § corrections and set k = 1/2. Continuity across ry implies
that C. = CT'(1 — ) and C~ = CT'(1 4+ \), where the constant C' is a measure of
the amplitude of the mode at the resonant ¢ = m/n surface. According to (4.39),
the parameter B_ is thus expressed in the following manner:

rsA" = —2m[r A cot (7\) — (B- + B)/C]. (B.29)

where we recall that B~ stabilising but rather small. The solutions for the Fourier
modes of Eq. (B.11) are smoothly matched with (4.38), providing us an expression
for B./C which is used to evaluate (B.29).

For the case a = 2, equation (B.29) becomes (the subscript (+) refers to the case
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m = myg + 1, while the subscript (—) to the case m = my — 1):

#\ Y ax
P = 8 A7) () a(2a) n) f —omT2(140) (. /)™, (B.30)
with Y = A/C ~ O(e™') where r,Al,,. = —2m(w\) cot (7)) is the tearing stability

parameter when coupling does not occur. Note that the correction to A’ due to
the coupling is of order of unity if one assumes that r./rs ~ Y&, /re ~ O(1). If
r+ becomes sufficiently small, i.e. the region where coupling occurs shrinks, then
the second term in Lh.s. of (B.30) diminishes becoming eventually negligible. Thus
(B.30) reduces to the standard dispersion relation for tearing modes.

The stability of the mode is thus determined by the relative strength and phase of
the modes and by the amplitude of the helical displacement (Y, &,,). We note that
for the case m = mg + 1, for a fixed value of A\, the dependence upon the parameter
«, namely the shape of the helical distorsion, translates into a shift of the r A/, level
curves. Figures B.1 and B.2 show the contours of r;AL (cf. (B.30)) for the mode
(3,2), as a function of Y and &,,, for A = 0.25,0.5,0.75 and fixed o = 2.5 for the
case m = mgy+ 1, and a = 1.5,1.9,2.1, 2.5 and fixed A = 0.5 for the case m = my— 1.
We note that A = 0.5 corresponds to the marginally stable cylindrical tearing mode
(rsA},.,, = 0), while for A\ < 0.5 we are in the stability region and for A > 0.5 we are
in the unstable domain of the cylidrical tearing. We see that the stability is affected
by the amplitude of &,, and Y, making unstable (or stable) an otherwise stable (or
unstable) mode.

When a = 2, if m = my — 1 coupling does not occur, while if m = mg + 1 the
tearing stability r,A’, index is given by:

FT(1—2) <T>m A(m—1) 28 921 4 M) (1 /a)?™, (B.31)

T's T

rsA =1 A

Tear

whose behaviour is similar to the one already shown in Figs. B.1 and B.2.
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Eax/Ts

Figure B.1: Constant r;A’, contours for the (3,2) mode as function of &, and the relative

mode amplitude Y, for different values of A\. The thick dashed line is the r;A’, = 0 level curve.

We set the transition point in r,/a = 0.5, the resonant surface in r;/a = 0.75, whilst o = 2.5.

TR

Eax/T

EaxlTu

Figure B.2: Constant r;A” contours for the (3,2) mode as function of &,, and the relative
mode amplitude Y, for different values of o with fixed A\. The thick dashed line is the r,A” =0
level curve. (same parameter in as Fig. B.1 for r, and rs) . We set here A = 1/2, corresponding

to the marginal stability boundary of the tearing mode (r;A%,,,. = 0).
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Numerical codes

In this appendix we describe the two main codes used in the present thesis, i.e. the
3-D equilibrium code VMEC and the initial value stability code XTOR-2F. In the
following sections the details of the numerical procedures employed by both codes
are outlined as well as their interface, which is presented at the end of the present
appendix.

C.1 VMEC

The VMEC code is based on the minimisation of the plasma energy (see section 2.3).
A moment expansion of the plasma equilibrium is performed, resulting in a finite set
of coupled nonlinear ordinary differential equations [18] for the Fourier components
of the inverse mapping x = x(r, 0, ¢) with r being a flux label normalised to unity
at the plasma edge, 6 and ¢ the geometric poloidal and toroidal angles respectively.
The Jacobian in such coordinate system is /g = [Vr - VO x V]!, It is convenient
for numerical reasons to introduce a function A = \(r, 6, ¢), periodic in its angular
arguments, such that the magnetic field is written as B = VO x V(0+)\)— Vi) x Vo,
where ® is the toroidal flux function and 27 the usual poloidal flux enclosed by a
surface which extends from the magnetic axis » = 0 (where Vi = 0) to a surface
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Chapter C. Numerical codes

labelled by r.

The pressure and the toroidal current (alternatively rotational transform) profiles
are needed as VMEC input, together with the edge value of the toroidal flux. Its
key feature is the fact the a guess for the magnetic axis is needed at the begin-
ning of the numerical calculations. For tokamak/RFP plasmas, depending on the
choice of such guess, under particular conditions for the current profile (namely ¢
profile), a bifurcation in the equilibrium could occur: one branch gives the standard
axisymmetric equilibrium described by the Grad-Shafranov equation. The other
branch describes a 3-D helical equilibrium state. The code can work in fixed and
free boundary configuration: in the first case the shape of the outermost flux surface
is fixed during all minimisation steps. In the second case the position of the plasma
boundary is obtained by imposing continuity of the total pressure (|B|*/2uo + p) at
the plasma-vacuum interface r = 1 and imposing a vanishing normal component of
the vacuum field on such surface; thus accounting for the vacuum field, the energy
plasma ('2]3:0 + - 1) Pr + [ enum |B2V/j;|2d3:c. Nested flux
surfaces are imposed in the numerical calculation, so that the condition p = p(r) is
assumed.

functional becomes W =

The MHD force balance is given by FF = —Vp+ J x B. The minimisation of the
plasma energy W (Eq. (2.12) in Chapter 2 § 2.3) is performed with respect to the
parameter 7, i.e.:

av _ / [FR +Fy 8Z 1 FA?\] drdfdy

. / o [ (1B2 L) (2707 _ 0z oR
2,u0 00 or 00 ot )|’
where the force projections read:
0 4 0 4 0 0
HoFr= - (P(%) -5 (Par> + 55 (vVgB’B - VR) +

ai (VgB’B - VR) + Vo [P/R - R*(B*)*| = 1y\/gRV x VZ - F

R
o (_OR\ 0 (_OR\ 0 .
mFz =55 (Par> — o (Pag> + 5 (vVaB'B - VZ)+
8(?0 (VgB’B - VZ) = jigpy/gRVR x Vo - F

0B, 0By

F\ = =— B - F/|BJ?
HoL'x 90 D poy/9B x Vr /|B|",

with P = R(uop + |B|?/2). If we define (x1,z2,73) = (R, \, Z) where ) replaces the
toroidal angle variable , the inverse mapping * = (7,0, ¢) can be expressed as a
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function of the flux coordinates in the following manner:

ZXm" r) expli(mb — ny)],

where j = (1,2, 3) and the reality condition on z; is translated into X;™" = (X;"7")*
(the asterisk denotes complex conjugation).

The variation of the total potential energy then becomes
* 8X mn
= [ () =,
with
= / / Fjexp [—i (mf — n()] dodc,

where V'(r) = [ dedgo\\/ﬁ |. The Fourier decomposition of the energy integral allows
us to write the net force a system of second order operators in the radial variable r.
A minimum in potential energy is sought via the method of steepest descent. The
steepest descent method consists of finding the local minimum of a function F(x)
whose gradient is known in a neighbourhood of a point a. For a sufficiently small e,
we have that F'(a) > F(b) where b = a — €V F(a). Thus one starts with a guess
of the local minimum located, say, in &y and moves from x; to x;;; by minimising
along the line from @; in the direction of the local downhill gradient —V f(x;) [122].
Hence the following expression is applied iteratively:

i1 = T; — E,VF(QZZ)7

where ¢; is allowed to vary during every iteration. Eventually the sequence x; will
converge to the local minimum.

The energy functional is negative definite when we decide to advance O(R, Z, \) /0T =
(Fg, Fz, Fy), which therefore determines the descent path. This path is given by
ox;m" fmn
or 1

The system of second order differential operators in r above, corresponds to a set of
parabolic differential equation, whose convergence can be accelerated by converting
them to hyperbolic equations [18] via a second-order Richardson scheme:

;X" L1 oxym" o
or? g or 17

where the optimum value of 3, which minimises the number of iterations required to
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reach the steady state in 7 is 7! ~ —d(In [ |F|?*dV) /dT and dV = V'dr. Particular
attention must be taken in the treatment of the magnetic axis. Indeed this is a
singular point for which Vi = 0. We first notice that since the function A is periodic
in 6 and ¢, we must have X5° = 0. The magnetic axis must be independent of
the poloidal angular variable, thus X" = 0 (j = 1,3) when m # 0. Since the net
force is a second order operator in r, this implies that also the Fourier coefficients
must be second order in r. Therefore X" /0r = 0X5"/Or. The final constraint is
X3 /00 = 0. The full details of the numerical description of the VMEC code can
be found in Ref. [18].

The VMEC code is the natural tool for studying the equilibrium 3-D properties
of non axisymmetric plasmas, in particular stellarator plasmas, though it is used also
for 2D equilibrium calculations for tokamaks and RFPs. The equilibrium surfaces
for stellarator (W7-X), tokamak (MAST) and RFP (RFX) plasmas computed with
VMEC are shown in Fig. C.1. This numerical tool is also of extreme importance for
analysing non axisymmetric helical cores which can develop in nominally axisymmetric
plasmas such as tokamaks and RFPs (this has been presented in Chapter 3).

W7-X (p = 0) MAST (¢ = 0) RFX (¢ = 0)

0.5 0.5 0.5

-1 -1 -1
5.5 6 6.5 0 0.5 1 15 15 2 2.5

Figure C.1: Contour plot of the flux surfaces computed with the VMEC code for different
magnetic confinement systems (stellarator, tokamak and RFP).
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C.2 XTOR-2F

XTOR-2F solves the full set resistive MHD equations in toroidal geometry, extended
by the full bi-fluid equations resulting from the Braginskii equations [66, 123]:

00w+v - Vo+v - Vo=-Vp+J x B+ (VvV), (C.1)
Vpe
0B =V x (vx B)+aV x Q|p—V><17(J—Jb00t), (C.2)
Pi B
op+v - Vp+IpV - v:—aFEVp -V x §+V ~ (x.Vp)+
X
v [B (BQ(B : V)p)] L H, (C.3)

with either condition given by Eq. (2.3) in Chapter 2 § 2.1, or:

8t9+v-Vg+QV'v:—ani-V><§2+V'(DLVQ)+S, (C.4)
where the current density is given by (2.6). The ion velocity is written as v; =
v + v} + v, where v} = aB :szp R VES EBXQB + v;)| and v, represents the polarisation
drift velocity. It has been assumed that p; = p. = p/2. The quantity o = (Qu74) 7"
tunes the strength of the diamagnetic effects. The quantities 17 and v are plasma
resistivity and viscosity respectively. The resistivity can be chosen to vary either
according to Spitzer’s law (7 ~ T~%/2) or in order to keep the toroidal electric field
constant over space. In the equations for p and p, the parameters D, x, and x| are
the perpendicular and parallel diffusion coefficients, where H and S are the heat and
density sources. Neoclassical effects can be included in the bootstrap contribution of
the current density Jpoo, which is taken to vary according to Ref. [28].

In XTOR-2F normalisations, the magnetic axis is defined by the dimensionless
number Ry. The plasma minor radius is normalised such that a = 1, where a is the
half size of the plasma cross-section at Z = 0, consistent with CHEASE metrics [66].
The magnetic field unit is set by B,y = Ry. The plasma mass density is normalised
with respect to its central value gy and the time is expressed in terms of Alfvénic
units 74. With such normalisations the Lundquist number S is simply the inverse of
the resistivity, i.e. S =n~!. The physical quantities are Fourier decomposed both in
the poloidal (with 6 being the geometric poloidal angle) and the toroidal direction
(with ¢ being the geometric toroidal angle), while linear staggered finite differences
on a staggered mesh (the derivative of a quantity discretised on the integer mesh r;
is evaluated on the half-integer mesh 7, /5, and vice versa) are used in the radial
coordinate r ~ /1) which labels the equilibrium poloidal magnetic flux surfaces. The
Jacobian in such coordinate system is |/g. The radial mesh in XTOR is obtained
from the solution of the Grad-Shafranov equation, i.e. Eq. (2.11), providing the
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required expressions for the metric tensor coefficients ¢*. The input quantities for
XTOR-2F include also pressure, flux profiles and R and Z for each flux surface (the
details of the input quantities will be given in the next chapter). Since XTOR-2F is
designed for the study of internal modes, no plasma-vacuum interface is assumed, viz.
an infinitely conducting wall located at the plasma surface is assumed. We stress the
point that the XTOR-2F plasma boundary is axisymmetric. Therefore we have the
following boundary conditions for the perturbed quantities (denoted by a tilde) at
the plasma edge [123]:

~r _ ~0 _ ~p _
Uedge - 07 a7“vedge - O’ arvedge - 07

aréap,edge = 07 E@,O,edge = 770<]<p,0,edge = nedge(t)J(t)w,edge = E||a
where the subscript 0 denotes equilibrium quantities, and E)| is the loop voltage.

Now we outline the numerical method implemented in XTOR-2F. First we write
the set of equations (C.1)-(C.4) in this compact manner:

= F(x), (C.5)

where x = (v", \/ﬁva, v¥, B", \/EBO, B¢, p) (the superscript indicates the contravariant
component of the vector), and F' is the RHS of Egs. (C.1)-(C.4). The poloidal
contravariant components of the velocity and the magnetic field are multiplied by
the Jacobian in order to remove the singularity on the magnetic axis. It is known
that the application of the MHD equation to tokamaks is a very stiff problem: there
is coexistence on the same scale of very fast (compressible Alfvén) and very slow
(resonant shear Alfvén) modes. In addition the relevant physics is slow compared to
the basic time scale (the Alfvén time) because of the good confinement in tokamaks.
Therefore relevant studies must address long time behaviour. The implicit time
advance is chosen to address the stiff problem. Finally, every implicit time step is
performed by an iterative Newton—Krylov method (NITSOL package). When the
Newton-Krylov method is applied, it is important to avoid the exact evaluation of
the Jacobian matrix required at every implicit time advance step. This problem is
eliminated by using the matrix-free method [124], in which the matrix coefficient are
not stored explicitly, but the matrix is accessed by evaluating matrix-vector products
(in XTOR-2F the Jacobian matrix is evaluated by numerical differentiation).

If the subscript n labels the time step, the system represented by equation (C.5)
is advanced in time by an amount At by setting:

Ln+1 + Tp

Tpi1 —x, = AtF 5

+0O(xpy1 — 2, + @y 1)|

where © is a numerical constant. At every time step this equation is inverted
to give @, 1. The expression above can be rearranged to give G(A,,x) = A, —

ALF [(§+©)A, +&| with A, = @, — @, and & = (1 — ©)z, + Ox, 1. This
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expression is solved for A,, by means of a preconditioned Newton-Krylov method:
M7 L(AL, @) (AL - AF) + G(AY,2)| =0,

where M~! is the pre-conditioner and k labels the steps in the Newton-Krylov
method. L(AF ) is the MHD operator linearised about €. With an efficient pre-
conditioner M ~!, the number of iterations is greatly reduced. The pre-conditioner
M~ is chosen to be physical, i.e the linearised MHD operator is used to construct
the pre-conditioner for the implicit solver, and it is written as:
M~ = M x Mp' x M' X Myyp-

~—— S~ ~—— —

Resistive ~ Diffusion  Transport Ideal
The pre-conditioner is inverted by an exact LU method in the Fourier representation,
limiting the time spent in preconditioning to 1/3 + 1/2 the total CPU time of the
simulation. The details of the numerical description of XTOR-2F can be found in
Refs. [66, 123].
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C.3 VMEC/XTOR-2F interface

The natural way to assess the stability properties of plasmas which give rise to helical
cores, is to interface the equilibrium computed with VMEC with the stability code
XTOR-2F. The interface for the XTOR-2F code is the 2D equilibrium solver CHEASE
[69]. Therefore an interface between VMEC and CHEASE is required. First the
poloidal flux ¥ is computed, after the plasma pressure p and its derivative with respect
to U are computed. Finally the quantities T'dT/d¥, I* and || are evaluated, where
T is the covariant toroidal component of the magnetic field (B = TV — VU x Vo,
 is the ignorable toroidal angle) and:

o S B VO R b, T Bygdx
§Sco7zst(\/§/R)dX 7 H fsconst B ’ V@\/gdx7

where j, is the toroidal current density (j, = J - V¢/|Vy|), x is a poloidal-
like angle, /g is the Jacobian and all the quantities are function of the variable

s = ,/% (Wo and W44 are respectively the values of the poloidal flux on
edge

the magnetic axis and at the plasma boundary). When all the required equilibrium
quantities are computed, together with the plasma boundary, the CHEASE code can
compute the equilibrium which will be used by the XTOR-2F code.

The equilibrium computed by VMEC can be directly interfaced with XTOR-2F,
without passing through the CHEASE code. The physical quantities required by
XTOR-2F are shown in Table 3.2. After computing p, dp/d¥ and dT/d¥, instead
of using these quantities as input for CHEASE, the R and Z Fourier components
of the VMEC equilibrium are transformed in real space and the elements of the
metric tensor used in XTOR-2F are computed in the coordinate system (s,0,p),
where s and ¢ have been defined above, while 6 is the geometric poloidal angle.
First the radial and poloidal derivatives of R and Z are computed. This allows
to derive the expressions of g;; as defined in Appendix A § A.1. By using the
fact that ¢°* = R%gge/g, 9% = R%gss/g, g% = 1/R* and ¢ = —R2g,/g where
V9 = Rlgssgo0 — g%]"/?, we can calculate the metric coefficients ¢/. This allows us
to directly prepare the equilibrium used by XTOR-2F. This is particularly useful
when RFP equilibria are considered.

The way back, from CHEASE to VMEC, is rather similar when CHEASE is
interfaced with VMEC. First the toroidal flux is computed and consequently the
expressions for plasma pressure p and covariant toroidal current density J¢ (or
alternatively the rotational transform ¢), where all these quantities are function
of the toroidal flux. Finally the polynomial coefficients for + and for J¥ are easily
evaluated via numerical polynomial fitting routines and the boundary is decomposed
in Fourier harmonics, which eventually allows VMEC to compute the equilibrium.
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