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We investigate the effect of pseudo-bilayer configurations at low operating voltages (�0.5 V) in

the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) com-

pared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations

where the inversion layers for electrons and holes featured very symmetric profiles with similar

concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain

asymmetry between the top and the bottom gates so that even though the hole inversion layer is

formed at the bottom of the channel, the top gate voltage remains below the required value to trig-

ger the formation of the inversion layer for electrons. Resulting benefits from this setup are

improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher ION lev-

els. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining

very high opposite carrier concentrations in very thin structures. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4923467]

Extensive research has been devoted in the last years to

explore more efficient configurations based on tunnel field-

effect transistors (TFETs) in order to make this type of devi-

ces become a feasible alternative to conventional MOSFETs

for sub-0.5 V operating voltages.1–3 Their strongest point is

the remarkable steepness of point and average subthreshold

swings, SSpt and SSav, respectively, that they may feature

below the 60 mV/dec thermal limit due to band-to-band tun-

neling (BTBT) injection mechanisms.4,5 However, TFETs

have been repeatedly reported to suffer from low ON-

currents compared to their MOSFET counterparts.

At early stages of development, it was found that the ori-

entation of BTBT phenomena was important in order to allow

the gate a better control over them.6 Simulation results7–9 and

some recent experimental evidences10 indicate that the opti-

mal scenario is attained when the tunneling direction and the

gate-induced electric field are arranged to be aligned. Taking

this into account, electron-hole bilayer TFETs (EHBTFETs)

were proposed to exploit the benefits of dimensionality11 for

BTBT between 2-D electron and hole gases.12 Later on, a het-

erogate structure for the EHBTFET (HG-EHBTFET) was

introduced in order to avoid parasitic lateral BTBT proc-

esses.13 Nevertheless, quantization of conduction and valence

bands due to field-induced confinement led to reduced ION

values for TFETs in general,14–16 and for EHBTFETs, in

particular.13,17

In this letter, we show that a certain asymmetry between

top and bottom gates delays the appearance of the electron

inversion layer at the top of the channel thus giving rise to a

pseudo-bilayer configuration that can be preserved for low

operating voltages (we take VTG¼VDD¼ 0.2, 0.3, 0.4 and

0.5 V). We demonstrate that for a chosen top gate operating

voltage (bottom gate voltage, VBG, will be used to induce the

asymmetric setup), there exists an optimized degree of asym-

metry which minimizes the shortest tunneling distance, dtunn,

at VTG¼VDD. The use of pseudo-bilayer configurations

keeps the energy subbands for electrons unpinned and enhan-

ces the gate-to-gate efficiency as defined in Ref. 18. A simi-

lar suggestion pointing to the direction of minimizing

electron quantum capacitance while maximizing hole quan-

tum capacitance was done in Ref. 19.

The HG-EHBTFET depicted in Fig. 1 features a source pþ

region (1020 atoms/cm3), intrinsic channel region with central

overlap and side underlap regions (1015 atoms/cm3), and drain

nþ region (1020 atoms/cm3). The body thickness, tbody, is cho-

sen to be 10 nm. Top and bottom gate dielectrics are 3 nm-thick

HfO2 layers. Drain bias will be set at 0.3 V throughout this

work and VBG initially set to 0 V. The different asymmetric

configurations will be induced by gradual negative values of

VBG. Optimized workfunctions for avoiding parasitic lateral

BTBT13 and for fixing subband alignment at very low VTG

(namely, we choose VTG,align to be 0.04 V in our study) are

chosen as /tg;ol ¼ 3:06 eV; /tg;ul ¼ 4:25 eV; /bg;ul ¼ 4:40 eV,

and /bg;ol ¼ 5:05 eV at VBG¼ 0 V. For these values, the top

gate voltage at which the electron inversion layer is formed,

Vinv, calculated as done in Ref. 20, turns out to be Vinv

(VBG¼ 0 V)¼ 0.05 V. As we want the onset of vertical BTBT

to remain fixed at the same VTG value (0.04 V), and given that

variations in the electron and hole subband alignment will be

produced by applying gradual negative VBG values, /tg;ol will

be readjusted in every case to guarantee that VTG,align occurs at

0.04 V. The rest of the workfunctions will be kept constant

throughout our study. Notice that a fixed VTG,align value implies

that the overdrive voltage will be raised as we increase VTG.

The quantization direction is along the [100] crystal ori-

entation of Ge. Along this direction, the L electron valleysa)Electronic mail: jose.padilladelatorre@epfl.ch
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are fourfold degenerate with quantization effective mass

my¼ 0.12m0 and transverse effective masses mx¼ 0.15m0

and mz¼ 0.58m0. For the C valley, effective masses for

heavy holes, light holes, and electrons are mhh¼ 0.33m0,

mlh¼ 0.044m0, and me¼mlh, respectively.9

The simulation setup accounting for quantum confine-

ment was carefully described in Ref. 13 and is based on a

TCAD hybrid integration that combines the most recent ver-

sions of the two most widely used simulators: Silvaco ATLAS

(v.5.20.2.R)21 and Synopsys Sentaurus (v.2014.09).22 Similar

approaches have been very recently used in the literature.23

For analyzing Fig. 2 (and later on Fig. 3), three premises

need to be clearly stated: (i) bottom gate sweeps must be

understood not as conventional rampings, but rather as a

comparison between multiple potential scenarios, each of

which is characterized by a VBG value (and its associated

/tg;ol); (ii) along each curve where VTG¼VDD, the only volt-

age that we vary is VBG; and (iii) given the dependence of

Vinv with VBG (see inset) at a fixed drain bias (recall that we

take VDS¼ 0.3 V throughout all the paper), it is obvious that

along the curve VTG¼Vinv, both VBG and VTG vary.

Taking this into account, we observe that when no

asymmetry is induced, i.e., VBG¼ 0 V, efficiency remains

extremely low (�0.18) for all the curves corresponding to

VTG¼VDD; and jumping from one VDD to another at

VBG¼ 0 V has little impact on it. This is due to the fact that

for VBG¼ 0 V, Vinv is 0.05 V (see inset) and, therefore, all

the curves with VTG fixed to VDD verify that they stand for

situations where VTG is above Vinv. In other words, this

implies that for VBG¼ 0 V, the inversion layer for electrons

is formed in all cases, the energy subbands pinned and, thus,

the gate efficiency severely degraded. As we increase the

asymmetry between both gates (making VBG gradually more

negative), so does the gate efficiency go up because Vinv is

raised (again, see inset). It is straightforward to understand

that for a given VBG, the further we keep VTG below Vinv the

higher the efficiency that we obtain. For example, let us

focus on VBG¼�0.2 V, which provides Vinv¼ 0.33 V.

Observe that, in that case, for VDD values of 0.4 and 0.5 V

(i.e., VDD>Vinv) their corresponding curves feature efficien-

cies of 0.24 and 0.17, respectively. However, for VDD¼ 0.2

and 0.3 V, we have that VDD<Vinv and, consequently, for

those curves, the electron inversion layer is not formed yet

and the subbands remain unpinned. For these VDD values, we

report efficiencies of 0.48 and 0.4, respectively. Moreover,

we notice that for very strong asymmetric configurations,

gate efficiency tends to saturate to a value of 0.57. Impact of

quantum confinement on limiting gate-to-gate efficiencies

below 1 has been discussed in Ref. 18 and more recently in

Ref. 19.

Once we established that growing asymmetric layouts

feature increasing efficiencies for low operating voltages,

FIG. 1. (a) Schematic cross-section (not to scale) of Ge HG-EHBTFET considered in this work. The heterogate structure is introduced in both top and bottom

gates. (b) Band profile along the vertical �AB segment with vertical BTBT allowed between the first energy subband for heavy holes, Ehh1, and that for elec-

trons, Ee1. Eov stands for the energy overlap once alignment has been surpassed.

FIG. 2. Gate-to-gate efficiency controlling the energy overlap between first

energy subbands as defined in Ref. 18, at fixed VDS¼ 0.3 V. For each VTG,

efficiency increases as we induce stronger asymmetries saturating at dEov/

dVTG¼ 0.57. The inset shows the growing behavior of Vinv for increasing

asymmetric configurations.

FIG. 3. Dependence of minimum vertical BTBT distances, dtunn, on VBG for

VTG¼VDD¼ 0.2, 0.3, 0.4, and 0.5 V. VDS is fixed to 0.3 V in all cases. For

each top gate bias, there exists an optimized value of VBG that minimizes

dtunn. Notice that all dmin
tunn verify that VTG<Vinv.
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 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.179.166.199 On: Tue, 30 Jun 2015 15:23:47



one important question arises: is there a privileged degree of

asymmetry for a given VTG¼VDD so that its minimum tun-

neling distance could be optimized? The answer turns out to

be positive and indeed a favored asymmetric setup can be

found for a chosen VDD. In Fig. 3, we show the evolution of

dtunn as we increase (in negative terms) VBG. Notice how for

each fixed value of VTG, dtunn presents a minimum which, in

turn, matches with an asymmetric configuration where VTG

lies below Vinv. This means that the optimized asymmetries

correspond to configurations of the HG-EHBTFET where,

instead of a mostly symmetric electron-hole bilayer struc-

ture, electron concentrations at the top of the channel are

reduced giving rise to a more properly named pseudo-bilayer

structure. Notice that the increasing behavior of dtunn

observed at the right side of Fig. 3 is due to the switching

from triangular band profiles to more rounded ones taking

place at the bottom of the channel as a result of the hole

strong inversion induced by high jVBGj values.

The transfer characteristics for VDD¼ 0.2, 0.3, 0.4, and

0.5 V at the optimized bottom biases of Fig. 3 are shown in

Fig. 4. In each case, VBG could be absorbed into the corre-

sponding bottom gate workfunctions, /bg;ul and /bg;ol, so

that its value could be readjusted to 0 V. For the sake of com-

parison, we have also included the transfer characteristic

when no asymmetry is applied showing that considerably

lower current levels are attained in that case.

Table I summarizes the optimized setup for each VDD.

Electron and hole concentrations correspond to the maxi-

mum densities obtained along the AB cut of Fig. 1(a). It can

be noted that, consistently, the closer VTG is to its

corresponding Vinv, the higher the maximum electron con-

centration proves to be. In any case, for VTG¼VDD¼ 0.5 V,

the maximum concentration for electrons remains still more

than one decade below that for holes. SSpt is calculated at

VTG,align; and SSav is taken from VTG,align to VTG¼VDD.

Notice that these SS values have been obtained assuming

perfectly sharp band edges and not accounting for a potential

finite DOS distribution extending into the forbidden gap.

More realistic treatments taking this into account would be

expected to degrade to a certain extent the values shown in

Table I.

Finally, for the sake of completeness, it is interesting to

show the impact of some of these asymmetries on the output

characteristics of the device. In Fig. 5, we depict the aspect

of the IDS – VDS curves for the layouts with VBG¼ 0, �0.3

and �0.6 V corresponding, respectively, to the non-

optimized case and to the cases described by the first and last

rows of Table I. All the curves were obtained taking

VTG¼ 0.3 V. For the two cases with VBG¼�0.3 and �0.6 V,

the curves indicate that subband alignment had been already

attained for VDS¼ 0 V; whereas for VBG¼ 0 V, subbands

align at VDS¼ 0.12 V. Inspecting the shape of the curves in

linear scale (see bottom inset), we confirm the expected tran-

sition between a superlinear regime and a saturation

region.24 Top inset displays the behavior of the drain voltage

required to form the electron inversion layer, VDS,inv, as a

function of VBG. Both trends, the one shown in the top inset

of Fig. 5 and that reported in the inset of Fig. 2, are consist-

ent. The reason is simple. If the formation of the electron

inversion layer depends on the voltage difference between

the top gate and the drain; then, whatever the impact that a

FIG. 4. IDS – VTG curves for every operating voltage corresponding to the

different optimized VBG values. Switching behavior is gradually degraded

for increasing degrees of asymmetry. Dashed line stands for the transfer

characteristic when no bottom bias is applied. VDS is fixed to 0.3 V.

TABLE I. Optimized bottom gate biases and resulting values for VTG¼VDD¼ 0.2, 0.3, 0.4, and 0.5 V with VTG,align¼ 0.04 V in the Ge HG-EHBTFET.

VDD (V) VBG (V) /tg;olðeVÞ Vinv (V) dmin
tunnðnmÞ

Electron

concentration (cm�3)

Hole

concentration (cm�3) SSpt (mV/dec) SSav (mV/dec)

0.2 �0.3 3.30 0.41 4.37 1.613� 1016 8.159� 1018 2.57 26.83

0.3 �0.35 3.32 0.44 4.15 1.071� 1017 1.065� 1019 2.58 36.27

0.4 �0.45 3.35 0.48 3.95 4.433� 1017 2.036� 1019 4.80 44.86

0.5 �0.60 3.39 0.54 3.79 1.284� 1018 4.002� 1019 5.45 49.89

FIG. 5. IDS – VDS curves at fixed VTG¼ 0.3 V for the configurations corre-

sponding to VBG¼ 0, �0.3, and �0.6 V. Bottom inset illustrates the transi-

tion between superlinear regime and saturation, whereas top inset shows the

values of VDS at which the electron inversion layer is formed.
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negative ramping of VBG may have on one of these electro-

des for triggering the formation of the inversion layer, it will

entail the opposite effect on the other, provided that each

time we keep fixed the bias of the electrode not being

analyzed.

In this work, we have shown that for low operating vol-

tages in the heterogate germanium electron-hole bilayer tun-

nel field-effect transistor, there exists an optimal asymmetric

configuration that: (i) enhances the gate electrostatic control

over the channel, keeping the gate efficiency very high (close

to the saturation value) for the whole VTG ramping and (ii)

minimizes the lowest tunneling distance at the ON-state. We

have demonstrated that these optimized asymmetric layouts

feature pseudo-bilayer structures of electrons and holes in

which the maximum electron concentrations turn out to be

around two decades lower than their hole counterparts. The

effect of these optimized asymmetries on the output charac-

teristics of the device has been also elucidated.
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