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Summary

1. Digital elevation models (DEMs) are often used in landscape ecology to retrieve elevation or first derivative

terrain attributes such as slope or aspect in the context of species distributionmodelling. However, DEM-derived

variables are scale-dependent and, given the increasing availability of very high-resolution (VHR) DEMs, their

ecological relevancemust be assessed for different spatial resolutions.

2. In a study area located in the Swiss Western Alps, we computed VHR DEMs-derived variables related to

morphometry, hydrology and solar radiation. Based on an original spatial resolution of 0�5 m, we generated

DEM-derived variables at 1, 2 and 4 m spatial resolutions, applying aGaussian Pyramid. Their associationswith

local climatic factors, measured by sensors (direct and ambient air temperature, air humidity and soil moisture)

as well as ecological indicators derived from species composition, were assessed with multivariate generalized lin-

earmodels (GLM) andmixedmodels (GLMM).

3. Specific VHR DEM-derived variables showed significant associations with climatic factors. In addition to

slope, aspect and curvature, the underused wetness and ruggedness indices modelledmeasured ambient humidity

and soil moisture, respectively. Remarkably, spatial resolution of VHRDEM-derived variables had a significant

influence on models’ strength, with coefficients of determination decreasing with coarser resolutions or showing

a local optimumwith a 2 m resolution, depending on the variable considered.

4. These results support the relevance of using multi-scale DEM variables to provide surrogates for important

climatic variables such as humidity, moisture and temperature, offering suitable alternatives to direct measure-

ments for evolutionary ecology studies at a local scale.

Key-words: digital elevation models, generalized linear models, Landolt’s ecological indicators,

local scale, multi-scale analysis, temperature and humidity loggers, very high spatial resolution

Introduction

Digital elevation models (DEMs) are widely used in landscape

and evolutionary ecology to understand the distribution of

species and their genetic variation (Kozak, Graham & Wiens

2008). Their most common use in ecology consists in retrieving

elevation, or in computing primary terrain attributes (i.e. slope,

aspect and curvature), which underlie biophysical processes at

local or regional scales, especially in mountainous areas (Elith

& Leathwick 2009; Manel et al. 2010a). In many studies, pri-

mary attributes have been used as proxies for factors such as

solar radiation (Fu & Rich 2002), evapotranspiration (Guisan

& Zimmermann 2000), overland and subsurface flow (Brox-

ton, Troch & Lyon 2009), soil water content (Moore, Grayson

& Ladson 1991), wind, erosion/deposition rate, soil character-

istics (Wilson & Gallant 2000), climatic variables as well as

snow accumulation and thaw (Lyon et al. 2008; Dobrowski

2011). Their accuracy and increasing availability turned them

into accessible indicators of topographic variability, though

not necessarily those with the highest predictive potential (Gui-

san&Zimmermann 2000; Pradervand et al. 2014).

A large variety of DEM-derived variables can be computed.

Conventionally, primary terrain attributes are calculated on

the basis of 3 9 3 moving window (Wilson & Gallant 2000;

B€ohner et al. 2002), but more complex variables have been

developed over the last two decades tomodel hydrological pro-

cesses, solar radiation or local morphometry (Wilson & Gal-

lant 2000; Kalbermatten et al. 2012). Named secondary

topographic attributes, they are often a combination of

primary attributes calculated using a moving window of vary-

ing size. Solar radiation, for example, combines slope, aspect,

sunshine duration and adjacent relief (Wilson&Gallant 2000).

The higher explanatory power of secondary topographic attri-

butes such as wetness indices (Beven & Kirkby 1979), stream

power (Moore, Grayson & Ladson 1991), terrain ruggedness

(Riley, Degloria & Elliot 1999) or temperature (Wilson &*Correspondence author. E-mail: kevin.leempoel@epfl.ch
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Gallant 2000) may be of particular interest for assessing eco-

logical patterns related to specific processes at a landscape

scale. For example, B€ohner&Selige (2006) used two secondary

topographic attributes – a wetness index and a solifluction

index – to model soil pH and snow cover. Secondary topo-

graphic attributes were also developed for specific purposes,

such as differentiating habitats across different mountain

ranges using the vector ruggedness measure (vrm) developed

by Sappington, Longshore & Thompson (2007). Despite con-

vincing examples of their usefulness, DEM-derived variables’

diversity is rarely potentiated in species distribution models or

landscape genetics.

Commonly used DEMs show a moderate to coarse resolu-

tion (�30 m for ASTER GDEM, �90 m for SRTM) and a

poor accuracy (Tachikawa et al. 2011). In addition, most stud-

ies would only consider DEMs at their original resolution or

use GPS measurement to compute slope and aspect (Patsiou

et al. 2014; Greenwood et al. 2015). However, the gradual

emergence of very high-resolution (VHR, ≤1 m) elevation data

offered unprecedented level of details for exploring the

morphological characteristics of landscape and promoted new

applications (see Lassueur, Joost & Randin 2006; Kalbermat-

ten et al. 2012 and references therein).

Indeed, high resolution provides several advantages. It

improves the modelling of species distribution in response to

global changes, in particular the ability to identify microrefu-

gia (Dobrowski 2011). Climate experienced by an organism

is indeed a combination of regional climate pattern and local

terrain influence, which defines the habitat pattern an organ-

ism is presented with. For example, cold air drainage, eleva-

tion, topographic position, slope and aspect are the main

terrain factors influencing the coupling between micro- and

regional climatic conditions (Barry 1992). On the other hand,

VHR DEM-derived variables are not able to provide proxies

to some important environmental variables (e.g. precipita-

tion) and are more difficult to acquire and require a more

demanding processing. In particular, the use of VHR eleva-

tion data invites reconsidering a number of scale issues raised

20 years ago by Levin (1992). Among them, it is crucial to

remember that a high spatial resolution (a small grain) does

not necessarily imply better models. Accordingly, it is a key

to understand the scale dependency of topographic features

and thus to evaluate the usefulness of VHR DEM-derived

environmental variables for studies at local scales (�1 km²)
in the light of multi-scale analysis. With multi-scale, we des-

ignate the use of different grain sizes for a fixed extent. It is

indeed necessary to use spatial resolutions matching the geo-

graphic distribution of phenomena under study and the

accuracy of sampling’s georeferencing. Accordingly, evaluat-

ing the influence of scale on the computation of environmen-

tal variables is essential. In particular, to what extent VHR

elevation data likely evidence micro-relief and related micro-

climate physical phenomena that may not be grasped at

coarser resolutions remains poorly known (Levin 1992; Mar-

ceau & Hay 1999; Cavazzi et al. 2013). Furthermore, no

consensus has emerged yet on the benefits and drawbacks

of very high resolution, and this is well illustrated by the

multi-resolution approaches of Pradervand et al. (2014) that

did hardly improve species distribution models of alpine

plants at a regional scale, although the distribution of some

plants known to live in microhabitats was significantly better

predicted. Even though the relationship between species’

occurrences and a given environmental variable does not

necessarily hold across scales, most studies in ecology use

variables at a single resolution with no consideration of scale

representativeness.

The present work integrates the methodological constraints

mentioned above to illustrate how VHR DEM-derived vari-

ables can be used to characterize mosaic habitats along a

2 km long alpine ridge encompassing the subalpine–alpine
ecotone (Parisod & Christin 2008). Given the steep alpine

configuration of this landscape, topography was assumed to

be a major driver of air temperature and humidity, as well as

soil moisture, thus ruling the distribution of plants (K€orner

2003). Accordingly, our aims were to (i) assess the ecological

relevance of VHR DEM-derived variables by modelling the

relationship between primary as well as secondary VHR

DEM-derived environmental variables (e.g. direct solar radia-

tion, wetness index, vector ruggedness measure) and climatic

variables measured in the field, and (ii) to identify relevant

scales by computing VHR DEM-derived variables at spatial

resolutions of 0�5, 1, 2 and 4 m and assessing the goodness-

of-fit and significance of corresponding models. Climatic vari-

ables were obtained from different sources; 105 loggers were

distributed along the ridge to measure temperature and

humidity at high temporal resolution during several months.

In addition, we obtained one-time measurements of soil mois-

ture at high spatial density. Finally, we modelled the relation-

ship between the same VHR DEM-derived variables and a

series of ecological indicators derived from plant species com-

position (Landolt et al. 2010).

Materials andmethods

STUDY AREA AND SAMPLING DESIGN

The focal study area is a narrow ridge (Fig. 1a) located in the Swiss

Western Alps, at ‘Les Rochers-de-Naye’ (46°260000’ N, 6°580500’ E),
covering an elevation range included between 1864 and 2043 m.

Locally, adapted ecotypes of the plant Biscutella laevigata were shown

to grow within a distance of <10 m from the cliff in contrasted micro-

sites (Parisod & Bonvin 2008; Parisod & Joost 2010), and this area was

thus selected as a suitable model landscape to highlight mosaic habitats

across the local subalpine–alpine ecotone.

In order to assess the ecological relevance of VHR DEM-derived

environmental variables, the design and the georeferencing of sam-

pling locations are key elements since the precision of their location

has to exactly match the highest resolution of the DEM described in

the next section. Therefore, sampling locations were selected following

a random cluster sampling guided by the population density of the

focal species and guaranteeing that all data points are located within

pixels representing 0�5 9 0�5 m in the field, resulting in sixty 4 9 4 m

areas with at least five individuals of B. laevigata (see resulting distri-

bution in Fig. 1a). Briefly, direct air temperature (DT) was measured

with 60 uncovered temperature loggers placed at the centre of each
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area as well as 20 additional ones installed at random locations along

the ridge (Fig. 1a). Ambient temperature (AT) was measured with 25

temperature and humidity covered loggers, placed next to one uncov-

ered logger over three. Soil moisture was measured at 201 sampling

locations representative of the focal species (Fig. 2b). Furthermore,

species composition was assessed in 452 plots of 0�2 9 0�2 m at the

corners of 1 9 1 m squares located within the 60 areas as well as 53

additional ones randomly located along the ridge (Appendix S1,

Supporting information).

Details on thesemeasurements can be found in the next subsection.

All sampling points and loggers were georeferenced

with a differential GPS unit (TOPCON-HIPer Pro,

http://www.topcon.com.sg/survey/hiperpro.html) offering a horizontal

accuracy of c. 2–3 cm and a vertical accuracy of c. 3–4 cm.

(a)

(b)

Fig. 1. (a) Study zone and sampling locations for loggers on the ridge of Les Rochers-de-Naye in the Swiss Western Alps. Uncovered and covered

loggers were used to measure direct air temperature (DT) and ambient temperature, respectively [Background image with 50 m isoelevation lines:

Swissimage© 2013 swisstopo (JD100064)]. (b) Mean daily DT and standard deviation (in grey) from the 15 June to the 18 October 2013, measured

with uncovered loggers set 15 cm above soil level. Vertical lines delimit the defined periods. Retained periods for following analyses are in bold.
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TEMPERATURE, HUMIDITY AND SOIL MOISTURE DATA

Air temperature and humidity

Direct air temperature was measured with uncovered IButton loggers

(1922L) from Maxim Integrated (http://www.maximintegrated.com/)

placed 15 cm above the ground. Furthermore, covered temperature

and humidity loggers (IButton 1923) measured AT and humidity (HU)

at 15 cm above the ground (Fig. 1a). These loggers were covered with

a white shield pierced with several holes to avoid stagnant air. Loggers

were set to record information with a frequency of 30 min during

126 days, from 15 June 2013 to 18October 2013, with an accuracy level

of 0�5 °C and 5% for humidity. These 126 days were grouped in 9 peri-

ods of 14 days (P1: June 15–28; P2: June 29–July 12; P3: July 13–26;

P4: July 27–August 9; P5: August 10–23; P6: August 24–September 6;

P7: September 7–20; P8: September 21–October 4; P9: October 5–18).

The following descriptive statistics were computed for DT, AT and

HU during each period: minimum (MIN), maximum (MAX), mean

(MEA), standard deviation (SD), median (MED), mean value at 1 am

(M1A), mean value at 1 pm (M1P) andmean daily range (MDR).

Soil moisture

The soil volumetric water content was evaluated once with a FieldScout

TDR 300 Soil Moisture Meter (Spectrum Technologies, Inc., Aurora,

IL, USA, http://www.specmeters.com/). Following Le Roux et al.

(2012), soil moisture values are highly correlated among distinct sam-

pling events and a single measurement taken more than 24 h after rain-

fall was assumed to yield reliablemeasured soil moisture values (MSM).

ECOLOGICAL INDICATORS

Species composition was assessed in 452 plots (Appendix S1), with spe-

cies cover estimated as the proportions (%) of the plot covered by the

species. Landolt’s ecological indicator values (Landolt et al. 2010) were

used to provide an expert-based ecological characterization of sampling

plots from their composition in plant species. Landolt’s indicators spec-

ify tolerance of species of the Swiss flora to climatic or soil conditions,

including competitive interactions between species. They are better

adapted to the alpine flora than the more commonly used Ellen-

berg’s ecological indicators (Ellenberg et al. 1991). The mean value of

indicators, weighted by the square-rooted cover of species, was calcu-

lated at the plot level, providing a set of five soil indicators, LDT-col-

loidal_dispersion (soil aeration), LDT-moisture, LDT-humus (humus

proportion), LDT-nutritive_substances (soil fertility, mainly nitrogen),

LDT-pH_reaction (soil pH); and three climate indicators, LDT-conti-

nentality,LDT-light andLDT-temperature.

DIGITAL ELEVATION MODELS ACQUIS IT ION AND

PROCESSING

We acquired a VHR DEM based on airborne LIDAR (Light Detec-

tion And Range) technology. A Riegl VQ-480 laser scanner

(http://www.riegl.com/) was installed on a helicopter in October 2011

by the HELIMAP Company (http://www.helimap.ch/) to get an aver-

age density of 25 soil points m�2. The raw point cloud was then pro-

cessed with the TERRASCAN software (TERRASOLID Ltd,

Helsinki, Finland; http://www.terrasolid.fi/) to filter buildings, vegeta-

tion and all other surface elements in order to obtain a terrain model

(Liu 2008). The final density of the ground class was 10 points m�2

on average, and the spatial resolution of the DEM was set to 50 cm.

A few void locations (no data) were filled with the help of a 1 m reso-

lution model obtained from the State of Vaud (ASIT-VD; http://

www.asitvd.ch/) and using a Multilevel B-Spline Interpolation in

SAGA GIS (Seungyong, Wolberg & Sung-Yong 1997).

A multi-scale analysis framework was used to understand how

important micro-habitat conditions are and what level of detail is

necessary to optimally correlate climatic variables with topographic-re-

lated variables. Our approach is based on the work of Kalbermatten

(2010) and Kalbermatten et al. (2012), who showed that a wavelet

transform pipeline is a suitable way to generalize topography and

demonstrated the usefulness of B-splines, a generalization of Bezier

curve, tomodel arbitrary functions, such asDEMs. Therefore, we took

advantage of the Gaussian Pyramid algorithm implemented in

MATLAB (MATLAB Version 12b; The MathWorks Inc., Natick, MA,

USA) to approximate topography at multiple resolutions. The original

VHRDEM (50 cm) was thus generalized to 1, 2 and 4 m to constitute

themulti-scaleDEMdata sets.

We used SAGA GIS (B€ohner, McCloy & Strobl 2006) and the R

package RSAGA (Brenning 2008) to compute and automate the pro-

duction of DEM-derived variables. We initially computed 16 DEM

variables related to morphometry, hydrology and solar radiation, for

which details are provided in Appendix S2. Solar radiation variables

were computed during 1 month of the growing season (June).

SELECTION OF INDEPENDENT DEM-DERIVED

VARIABLES

Correlation between each pair of variable was assessed (Appendix S3),

and specific variables were omitted from subsequent analyses according

to the following rules: (i) the maximum correlation threshold was set to

0�6, (ii) secondary attributes that were highly correlated (>0�6) with pri-

mary attributes (i.e. slope and eastness/northness) were deleted, and

(iii) the remaining choice between eastness and northness was decided

at random due to the high correlation between these two variables. In

the end, eight independent variables were retained (Table 1): altitude

(alt), terrain wetness index (twi), sine of aspect or eastness (eas), down-

slope distance gradient (ddg), slope (slo), horizontal curvature (hcu),

vertical curvature (vcu) and vector ruggednessmeasure (vrm).

Given the limited number of covered loggers measuring ambient

temperature and humidity (n = 25), correlations between retained

DEM variables where higher than for uncovered loggers locations and

we had to limit the study to five independent DEM-derived variables

(Appendix S4): altitude (alt), eastness (eas), slope (slo), horizontal cur-

vature (hcu) and terrain wetness index (twi).

REGRESSION ANALYSIS

Multivariate regression models were performed to explain the variabil-

ity of climatic variables and ecological factors measured in the field, for

each spatial resolution. We used a step generalized linear models

(SGLM;Nelder &Wedderburn 1972) with a Gaussian family and con-

trolled the addition or removal of a term based on theAkaike Informa-

tion Criterion (AIC). After model completion, co-linearity between

variables was controlled using variance inflation factors (VIF; Mont-

gomery & Peck 1982), based on the threshold >3 (Zuur et al. 2009).

Models with variables having VIF >3 were processed again, excluding

the inflating variables. Landolt factors were log-transformed to fit at

normal distribution, and all variables were standardized. Adjusted R2

((N � 1)/(N � k � 1) where N = number of observations and

k = number of predictors) were calculated for eachmodel.
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Instead of generalized linear models (GLMs), generalized linear

mixedmodels (GLMMs) (Breslow &Clayton 1993; Bolker et al. 2009)

were performed on the data set of soil moisture and Landolt’s indica-

tors to take into account the possible effect of spurious spatial autocor-

relation. These variables were indeed collected in plots, and the

merging by plot was thus considered as a random effect. GLMMswere

performed with the LME4 R package (Bates & Maechler 2009). As the

package does not support step procedure, we used the resulting DEM-

derived variables from SGLMs procedures as fixed effects in the

GLMMs.

CONVENTIONS FOR VARIABLES ABBREVIAT IONS

To facilitate understanding of the following chapters, the conventions

used for abbreviations are here-below summarized.

Environmental variables from loggers are written in upper case and

with two letters (DT, AT, HU). Landolt indicators are written in upper

case with three letters in italic (ex: LDT-moisture) andMSMwith three

letters.

For DT, AT and HU models, measured variables are written in

upper case with three letters (MEA,MED,MIN,MAX,MDR,M1A,

M1P).

Finally, all DEM-derived variables are written in lower case (alt, slo,

twi, vrm, eas, hcu, vcu, ddg).

Results

The distribution of average DT over the whole sampling per-

iod provides a global view on climatic conditions during sum-

mer 2013 (mean 12�1 °C; Fig. 1b). We focused here on four

among the nine periods of 14 days representative of contrasted

weather conditions at such altitude: P1 and P9 are representa-

tive of the beginning and the end of the growing season and

present a cold and a snowy episode, respectively, whereas P3

and P6 are representative of early and late summer conditions,

respectively, and are characterized bywarm averages with high

standard deviations.

Together with altitude (alt), terrain wetness index (twi),

vector ruggedness measure (vrm), eastness (eas) and slope (slo)

are the DEM-derived variables that best explain the variance

of measured environmental variables. Hereunder, we present

the VHRDEM-derived variables showing the best model fit to

explain the variability of measured environmental variables

and ecological factors, depending on different spatial resolu-

tions and periods of time.

DIRECT AIR TEMPERATURE

Among all DT models, twi is the most frequently significant

DEM-derived variable (47% of the models). It is positively

correlated with measured variables related to high tempera-

tures (M1P, MAX, MDR) and negatively correlated with

those related to cold temperatures (M1A, MIN, MEA) (see

Table 2 and Appendix S5). Similarly, alt is also frequently sig-

nificant (55% of the models), but mainly with measured vari-

ables related to cold temperatures (M1A,MED,MEA,MIN).

Other DEM-derived variables such as slope, eastness and ddg

are less frequently significant.

Significance of DEM-derived variables varies considerably

with spatial resolution,whereas it remains relatively constant at

all resolutions for elevation.Although the significance for twi is

lower when computed at 0�5 or 1 m than at coarser resolutions

(Appendix S5), adjustedR2 (aR2) are usually highest in models

at 0�5 or 2 m resolution and almost systematically lower at

4 m. Noticeably, aR2 are higher for all measured variables

(except formean range) during periods P1 andP9, which corre-

spond to the two coldest periods among the four analysed.

AMBIENT TEMPERATURE

Significant contributions of DEM-derived variables in AT

models are much less frequent (49% of the models that con-

verged) than for previously presented DT models (91%;

Appendix S6). However, relevant variables are the same as for

DT models, except that horizontal curvature (hcu) is signifi-

cant at a 2 m resolution (Table 3). LikeDTmodels, twi is posi-

tively correlated with measured variables related to high

temperatures and negatively correlated with cold tempera-

tures. Altitude also remains a good explanatory variable and is

involved in the models with the highest R2, particularly during

the snow episode (P9).

Table 1. Description and parameters of selected digital elevation models (DEM) variables computed at each resolution (i.e. 0�5, 1, 2, 4 m). The full

table can be found inAppendix S2

Variable Abbreviation Description Units Parameters/Reference

Primary

attributes

Altitude alt DEMaltitude m

Slope slo Proxies for water flow,

snowmovements, erosion,

solar radiation

radians Method = Zevenbergen

andThorne (1987)Sinus of aspect (eastness) eas radians

Profile curvature vcu radians m�1

Plan curvature hcu radians m�1

Downslope distance gradient ddg Quantify downslope controls

on local drainage

radians Vertical distance = 2 m

(Hjerdt et al., 2004)

Secondary

attributes

Vector ruggednessmeasure vrm Quantifies ruggosity with less

correlation to slope

no unit Radius = 1 pixel

(Sappington, Longshore&

Thompson 2007)

Terrain wetness index twi Quantifies topographic control

on hydrological processes

Where a is the specific

catchment area

andS is the ddg

W ¼ a
lnðSÞ
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(a)

(b)

Fig. 2. (a) Map of the mean direct air temperature (DT) at 1 am (M1A) during period P6 (August 24–September 6). TerrainWetness Index at 1 m

resolution computed from the Digital elevation models (DEM) is in the background with 50 m iso-elevation lines. Additional zoom on the ridge to

distinguish the loggers and visualize the correlation between the measured variable and the twi. (b) Map of one-time measurements of soil moisture

(in%)with vector ruggednessmeasure at a 0�5 m resolution computed from theDEM is in the backgroundwith 50 m iso-elevation lines. Additional

zoom on the ridge to distinguish the loggers and visualize the correlation between soil moisture and the vrm. For more details on these results, refer

to Tables 2 and 5.
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AMBIENT HUMIDITY

Among the 112 HUmodels computed, only 35 (40%) showed

at least one significant variable (Appendix S7), contrasting

with prior models for DT (90%) and AT (70%). This is likely

related to the rare significance of altitude and of DEM-derived

variables such as eastness, slo and hcu in HU models (5% of

them). On the other hand, twi is the DEM-derived variable

with most frequently and highly significant models (37%). It is

significant for all categories of measured variables and all peri-

ods analysed, except during the snowy episode (P9). Like DT

models, resolution influences twi significance and models have

an aR2 optimum at 1 or 2 m (Table 4).

To assess the importance of the time period for the three cat-

egories of environmental variables (DT, AT, HU), we com-

puted models between DEM-derived variables and measured

variables over the entire fieldwork season (i.e. 15 June–18
October) (Appendix S8). Although the same DEM variables

are significant for almost the samemeasured climatic variables,

our results show that periods of cold, cloud cover (P1) or snow

cover (P9) contrasted with those of sunshine (P3, P6). Indeed,

a stronger significance of eas, slo, twi and a weaker significance

of altitude are observed during those sunshine periods. In addi-

tion, the use of several measured variables is justified in order

to distinguish different ecological conditions, as recommended

byAshcroft, French&Chisholm (2011) and Vercauteren et al.

(2012).

SOIL MOISTURE

In soil moisture models, vector ruggedness measure (vrm)

was the only DEM-derived variable that had a significant

contribution across resolutions (Table 5). However, its

contribution was dependent on resolution, as models were

less and less significant with coarser resolutions. Given

that alt showed a stable contribution though scales, the

highest aR2 was obtained at 0�5 m resolution.

ECOLOGICAL INDICATORS

Determination coefficients of models including Landolt’s eco-

logical indicators were low at all resolutions. Only LDT-mois-

ture and LDT-nutritive_substances showed aR2 above 0�15.
Two DEM-derived variables, twi and slope, showed a signifi-

cant contribution to LDT-moisture across scales (Appendix

S9). Unlike other models, GLMM’s aR2 values for LDT-mois-

turewere stable through resolutions.

Discussion

Variables derived from DEMs are crucial for species distribu-

tion models or landscape genetics, but their ecological

relevance remains subject to caution (Lassueur, Joost & Ran-

din 2006; Dubuis et al. 2013). In particular, the relationship

between DEM-derived variables and ecological features does

not necessarily hold across spatial scales and appears highly

Table 3. Summary of multivariate generalized linear models sorted by

adjusted R2 (aR2) in decreasing order for AMBIENT TEMPERA-

TURE (AT), measured with uncovered loggers at 15 cm above soil

level. First column is the abbreviation of themodel showed, with differ-

ent measured variables and time periods. The second column tells at

which resolution (Res) the highest aR2 was found

Model Res aR2 alt twi eas slo hcu

AT-MED-P9 0�5 0�89 �0�94*** �0�35**
AT-MED-P6 4 0�80 �0�74*** �0�44**
AT-MDR-P3 2 0�49 0�43* 0�52** �0�69***
AT-MAX-P6 2 0�43 0�48* �0�44*
AT-M1A-P3 2 0�40 �0�74*** 0�48*
AT-MIN-P1 2 0�38 �0�81*** 0�87** �0�75** 0�55*
AT-MDR-P6 1 0�31 0�58*
AT-MDR-P9 0�5 0�31 0�58*

Coefficients of each variable are showed when significant and signifi-

cance is expressed with ‘*’ where P-values <0�001 correspond to ***,
<0�01:
**, <0�05: *. All models at all resolutions can be found in Appendix S6.

Abbreviations as in Table 2.

Table 2. Summary of multivariate generalized linear models sorted by adjustedR2 (aR2) in decreasing order for DIRECTAIR TEMPERATURE

(DT), measured with uncovered loggers at 15 cm above soil level. First column is the abbreviation of the model showed, with different measured

variables and time periods. The second column tells at which resolution (Res) the highest aR2 was found

Model Res aR2 alt twi vrm eas slo hcu vcu ddg

DT-M1A-P9 0�5 0�69 �0�71*** 0�17* �0�21*
DT-MIN-P9 2 0�50 0�28**
DT-M1A-P6 1 0�46 �0�49*** �0�81*** 0�25** �0�20*
DT-MED-P3 2 0�37 �0�40*** �0�57***
DT-MEA-P6 2 0�32 �0�35** �0�80*** 0�41** �0�45*
DT-MDR-P3 0�5 0�22 0�25* 0�47*** �0�41***
DT-MDR-P1 2 0�19 �0�25* �0�38***
DT-MIN-P1 0�5 0�13 �0�37**

Measured variables:MIN,minimum;MAX,maximum;MEA,mean;MED,median;M1A,mean temperature at 1 am;M1P,mean temperature at

1 pm;MDR,mean daily range. Time periods: P1 = 15–28 June, P3 = 13–26 July, P6 = 24August to 06 September, P9 = 05–18October.Digital ele-

vation models-derived variables: alt, altitude; twi, terrain wetness index; vrm, vector ruggedness measure; eas, eastness; slo, slope; hcu, horizontal

curvature; vcu, vertical curvature; ddg, downslope distance gradient.

Coefficients of each variable are showed when significant and significance is expressed with ‘*’ where P-values <0�001 correspond to ***, <0�01:
**, <0�05: *. All models at all resolutions can be found in Appendix S5.
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dependent on the spatial resolution. In order to foster applica-

tion of DEMs in ecology and evolution, their relevance to

approximate environmental features must be evaluated and

suitable approaches should be further developed. Our results

validate two essential concerns regarding DEMs at a local

scale: (i) multi-scale approaches are valuable when facing

topographic heterogeneity, and (ii) it is crucial to investigate a

large diversity of DEM-derived variables in order to evaluate

all topographic aspects that might influence climatic variabil-

ity. Using a specific area with challenging features at the inter-

face between subalpine and alpine conditions, we were able to

show that DEM-derived variables can be used as relevant sur-

rogates for environmental variables and to better understand

relationships with local topography. Indeed, physiological

activity and adaptation of plants are affected by temperature,

humidity and soil characteristics (K€orner 2003; B€ohner &

Selige 2006;Manel et al. 2012).

Our models consistently report decreased adjusted R2 at

4 m spatial resolution, supporting the hypothesis that VHR

elevation data provide a higher explanatory power in heteroge-

neous areas such as mountains. However, our models did not

generally converge towards a clear optimal resolution and

reveal that the most suitable resolution depends on the type of

DEM-derived variable considered. This is particularly well

illustrated by vrm, showing highest significance at 0�5 m and

highlighting that soil characteristics are best grasped when ini-

tially computed with as much details as possible, whereas

hydrology variables, such as twi, reach optima at different res-

olutions (B€ohner & Selige 2006; Buchanan et al. 2013). Varia-

tion in the model fit across scales highlights the necessity of

implementing multi-scale methods in ecological studies involv-

ing DEM-derived variables. The computation of such

variables at multiple scales improves the modelling of micro-

climatic variables such as temperature, humidity and soil mois-

ture in amountainous area. Furthermore, usingDEMs at their

original grid resolution, without consideration of scale repre-

sentativeness, likely leads to an underestimated role of topo-

graphic features in ecological models. In fact, a too fine

resolutionmay hold an excess of details and generate toomuch

noise, while too coarse resolution would only show generalized

properties of the landscape and lose explanatory power

(Cavazzi et al. 2013). Although most studies using DEMs at

their original resolution often ended up with a minor contribu-

tion of topography in their models (Zimmermann & Kienast

1999; Manel et al. 2010b; Vercauteren et al. 2012; Patsiou

et al. 2014), we show here that coupling VHR DEMs with a

multi-scale approach generates variables with a high explana-

tory power. Accordingly, acquiring high-resolution or VHR

DEMs and performing multi-scale analysis further on repre-

sent a suitable approach for local scale studies in ecology and

evolution. At the moment, LIDAR represents the best DEM

acquisition technology, providing great precision and high res-

olution across hardly accessible terrains, but still expensive

(Liu 2008). Although they do not show the same level of preci-

sion like LIDAR, stereo-photogrammetry from unmanned

aerial vehicles (UAV) constitutes a less powerful but suitable

and cheaper alternative subject to intense research (Leempoel

& Joost 2012).

Our results further bring advantages of using a large panel

of DEM-derived variables. On the one hand, terrain wetness

index (twi) showed the highest explanatory power among the

DEM-derived variable here tested, highlighting a relevant

proxy for dryness across the studied landscape (Fig. 2a). In

addition, models includingmore variables such as eastness and

slope best predicted temperature, probably because these pri-

mary attributes have a high influence on radiation and wind

exposure (Wilson & Gallant 2000; McVicar et al. 2007;

Appendix S5). For instance, in our specific study area, twi par-

tially accounted for the distance to the ridge as well as for the

protection from wind, which could further contribute to tem-

perature and humidity variability. In fact, distance to ridge

and twi were moderately correlated at high resolution (i.e. 0�6
at 0�5 m and 0�7 at 1 m) and dropped to 0�3 at coarser resolu-
tions. Although such correlations are inevitable and likely blur

interpretations, our models showed that most of the significant

contribution of twi was obtained at 0�5 and 2 m, when the

correlation between twi and distance to ridge was not the

strongest. This, again, highlights the relevance of a multi-scale

analysis.

Among other overlooked DEM-derived variables in the lit-

erature, vector ruggedness measure (vrm) appeared as the best

Table 5. Summary of multivariate generalized linear mixed models on

one-time measurements of SOIL MOISTURE sorted by adjusted R2

(aR2)

Res aR2 alt twi vrm eas slo hcu vcu ddg

0�5 0�46 �0�26** �0�43***
1 0�43 �0�45*** �0�19**
2 0�41 �0�46*** �0�20*
4 0�35 �0�44*** �0�23**

Coefficients of each variable are showed when significant and signifi-

cance is expressed with ‘*’ where P-values <0�001 correspond to ***,
<0�01: **, <0�05: *. Abbreviations as in Table 2.

Table 4. Summary of multivariate generalized linear models sorted by

adjusted R2 (aR2) in decreasing order for AMBIENT HUMIDITY

(HU), measured with uncovered loggers at 15 cm above soil level. First

column is the abbreviation of the model showed, with different mea-

sured variables and time periods. The second column tells at which res-

olution (Res) the highest aR2 was found

Model Res aR2 alt twi eas slo hcu

HU-M1A-P6 1 0�76 0�82*** 0�48** 0�54**
HU-MDR-P1 2 0�48 �0�75*** 0�42*
HU-MED-P3 2 0�47 0�70**
HU-M1P-P6 0�5 0�38 0�55* �0�53*
HU-M1P-P1 2 0�28 0�59**
HU-MDR-P6 0�5 0�27 �0�63* 0�51*
HU-M1P-P9 1 0�23 �0�47*
HU-MDR-P3 1 0�19 �0�76*

Coefficients of each variable are showed when significant and signifi-

cance is expressed with ‘*’ where P-values <0�001 correspond to

***, <0�01: **, <0�05: *. All models at all resolutions can be found in

Appendix S7. Abbreviations as in Table 2.
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surrogate for soil moisture (MSM), suggesting that vrm at such

high resolution is a suitable proxy for the distribution of stony

soils along the ridge and thus for soils with different porosities.

Accordingly, the negative coefficients observed here support

this hypothesis that high roughness highlights stony soils

implying low soil moisture, whereas low roughness reflects

developed soils retaining higher moisture. This vrm variable,

measuring vector dispersion across the central pixel rather than

being a derivative of slope, represents amuch better proxy than

related proxies such as Terrain Ruggedness Index (Appendices

S3 and S4), as previously stressed by Sappington, Longshore

& Thompson (2007). Nevertheless, the present models demon-

strate a variety of DEM-derived variables as suitable or com-

plementary surrogates to in situ measurements for

characterization of plant habitats and we recommend to go

beyond their traditional use of elevation, slope and aspect (Do-

browski 2011).

In addition, DEM-derived variables are easy-to-compute

proxies of environmental features, involving limited fieldwork

but good knowledge of Geographic Information Systems,

DEM-derived variables should thus be widely used as proxies

of environmental features in ecology and evolution (Kozak,

Graham &Wiens 2008). Furthermore, open source GIS alter-

natives (e.g. SAGAGIS, Quantum GIS and GRASS) provide

algorithms to process a variety of secondary terrain attributes.

The distribution of the focal species along an apparently

homogeneous ridge showing a constant slope and slight

changes in orientation, in fact turned out to be highly heteroge-

neous at a high resolution. Prior work on ecotypes of B. laevi-

gata (Parisod & Christin 2008) suggested a mosaic distribution

of subalpine and alpine habitats, and the use of VHR DEM-

derived variables here permitted to highlight the topographic

control on micro-climatic patterns. Our results indeed show a

significant contribution of micro-topography to model micro-

habitat, even though unmeasured factors may play a major

role. For instance, high elevation and exposed sites are more

likely to be coupled with free air environment as compared

with low elevation sites that are protected (Pepin & Seidel

2005). However, we observed 5 °C difference in ranges for AT

and up to 8 °C forDT. Such important temperature variability

over short distances cannot only be due to large-scale effects

and support our evidence for a micro-topographic control

(Fridley 2009). In addition, VHR DEM-derived variables in

our models highlighted the lower relevance of elevation as

compared with studies at regional or continental scale. Despite

a correlation of �0�99 reported between temperature and ele-

vation across Switzerland (Zimmermann & Kienast 1999), we

here showed that the 0�5 °C decrease per 100 m elevation

increase did not hold at a local scale. Therefore, the important

variability of temperature observed here is likely valid in vari-

ous mountainous areas, even when microhabitats variability is

only partially distinguished from large-scale factors. Our

results thus confirm that proxies other than elevation can –
and in fact probably better – account for temperature variabil-

ity in asmountainous areas.

On top of micro-climatic factors, meso-climatic ones might

affect climatic variables in the study area. For instance, varying

wind patterns and cloud cover across the studied ridge could

impact on the variability of local climates. The results obtained

here for micro-topography are, however, not disqualified by

meso-climatic patterns. In contrast to common cloudiness on

the highest part of the study area early and late during the

growth season, the contribution of DEM-derived variables

appeared consistently significant at different time periods,

demonstrating a substantial effect of micro-topography. In

addition, several DEM variables such as protection index, sky

view factor or ruggedness might constitute surrogates for pro-

tection from wind at a micro-climatic level. Noticeably, tem-

peratures measured during the snow episode provide an

indirect measure of snow cover, as loggers situated under the

snow during that period did not show a daily cycle of tempera-

ture at sampling locations. Therefore, modelling of snow cover

heterogeneity could be improved by combining topographic

variables (Gottfried, Pauli & Grabherr 1998; Randin et al.

2009) with the daily cycles of loggers. Our results thus highlight

the role of micro-topographic effects and the need to consider

different measured variables and temporal variability at a scale

pertinent for plants, as previously reported by K€orner (2003)

and Scherrer &K€orner (2011).

Noticeably, variables derived from VHR DEM approxi-

mate Landolt indicators derived from species distribution

with less accuracy than climatic variables. Insufficient vari-

ability in this biological data set compared to extension of

Landolt’s indicator values (attributed to species across the

whole Alps (Landolt et al. 2010) certainly explains such lim-

ited relevance of micro-topography to a large extent. Our

data are indeed restricted to a single site and may thus not

show sufficient variation for indicators such as temperature

(here, only alpine belt), continentality (only oceanic condi-

tions), light (only open, alpine grasslands), soil pH (only

calcareous soils), humus and aeration (mainly humic and

silty soils). Furthermore, Landolt’s indicators include biotic

interactions such as competition that were not taken into

consideration by DEM-derived variables, and the small area

used for plant inventories (0�2 9 0�2 m) restricts the list to

a part of the plant community, what probably creates a

random variation in the calculated mean values at the com-

munity scale. Although the exact reasons underlying the rel-

atively low adjusted R2 in models derived from biotic data

remain elusive, this work shows that models using VHR

DEM-derived variable were generally significant for ecologi-

cal indicators showing a high variability at local scale in

mountainous environment, that is soil moisture and fertility

(K€orner 2003). Variables retained in models (i.e. wetness

index, ruggedness, slope and curvature) were indeed highly

coherent with factors related to micro-topography and to

slope, such as lower soil humidity on steep slopes leading

to higher drainage and in superficial soils likely developing

on mounds rather than in hollows (Gobat, Duckert & Gal-

landat 1989; Burga et al. 2010).

DEMs are underexploited compared with the large diversity

of variables that can be derived from them. In this paper, we

showed that VHR DEM-derived variables constitute robust

surrogates for ecological conditions and that they are relevant

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,
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to properly represent local topographic-related features,

enabling the computation of multi-scale climatic variables.

Despite the applicability of VHR DEMs across much larger

extents is likely to be limited, our results suggest that a multi-

scale approach is valuable to evaluate VHR relevance at differ-

ent scales inmountainous areas.
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