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ABSTRACT
While compressive sensing (CS) has traditionally relied on
`2 as an error norm, a broad spectrum of applications has
emerged where robust estimators are required. Among those,
applications where the sampling process is performed in the
presence of impulsive noise, or where the sampling of the
high-dimensional sparse signals requires the preservation of
a distance different than `2. This article overviews robust
sampling and nonlinear reconstruction strategies for sparse
signals based on the Cauchy distribution and the Lorentzian
norm for the data fidelity. The derived methods outperform
existing compressed sensing techniques in impulsive environ-
ments, thus offering a robust framework for CS.

Index Terms— Compressed sensing, sampling methods,
robust signal reconstruction, nonlinear estimation, impulsive
noise

1. INTRODUCTION

The theory of compressive sensing (CS) introduces a signal
acquisition and reconstruction framework that goes beyond
the traditional Nyquist sampling paradigm [1]. Most CS re-
construction algorithms use the `2 norm as the metric for the
residual error. However, it is well-known that least squares
based estimators are highly sensitive to outliers present in the
measurement vector, leading to a poor performance when the
noise does not follow a Gaussian assumption but, instead, is
better characterized by heavier-than-Gaussian tailed distribu-
tions [2–5]. If the compressive sampling process has infinite,
or even very large variance, the reconstructed signal is far
from the desired original signal.

Recent works have begun to address the reconstruction of
sparse signals whose measurements were acquired such that
some metric, different than `2, is preserved, or when the sig-
nals were acquired in the presence of impulsive noise. Popilka
et al., propose a reconstruction strategy based on the sparsity
of the measurement error pattern to estimate first the error,
and then estimate the true signal, in an iterative process [6].
A similar approach is followed in [7] and [8]. These works

assume a sparse error and estimate both signal and error at
the same stage using a modified `1 minimization criterion. A
drawback of these approaches is that the reconstruction relies
on the error sparsity to first estimate the error, but if the spar-
sity condition is not met, the performance of the algorithm
degrades. Sparse models have also been used to address the
robust regression problem in [9–11].

Approaches based on robust statistics have also been pro-
posed. Carrillo et al., propose reconstruction approaches
based on the Lorentzian norm as data fidelity term [12, 13].
In addition, Ramirez et al., develop an iterative algorithm to
solve a Lorentzian `0-regularized cost function using itera-
tive weighted myriad filters [14]. A similar approach is used
in [15] by solving an `0-regularized least absolute deviation
regression problem yielding an iterative weighted median al-
gorithm. Greedy approaches have also been proposed based
on M-estimators [16, 17].

Notably, there exists a broad spectrum of applications
where practice has shown non-Gaussian, heavy-tailed pro-
cesses emerge. Examples of such applications are: wireless
communications, teletraffic, hydrology, geology, atmospheric
noise, economics and image and video processing (see [3] and
the references therein). Thus, the motivation is clear for de-
veloping robust CS techniques that address these challenging
environments. This article covers robust sampling (Section
3) and reconstruction strategies (Section 4) for sparse signals
in such environments. We approach the problem from a sta-
tistical point of view and review nonlinear methods based on
robust statistics [2], specifically methods derived from the
Cauchy distribution, that overcome the limitations of tradi-
tional linear signal processing methods in the presence of
impulsive noise [3].

2. THEORETICAL BACKGROUND

2.1. Compressive Sensing

Let x ∈ Rn be a signal that is either s-sparse or compress-
ible in some representation basis Ψ such that x = Ψα, where
α ∈ Rn is the vector of coefficients. Let Φ be an m × n



sensing matrix, m < n, with rows that form a set of vec-
tors incoherent with the sparsity basis [1]. The signal x is
measured by y = Φx. Setting Ξ = ΦΨ, the measurement
vector becomes y = Ξα. In the following we assume, with-
out loss of generality, that Ψ = I, the canonical basis for Rn,
thus x = α. It has been shown that a convex program (Basis
Pursuit) can recover the original signal, x, from y if the sens-
ing matrices obey the restricted isometry property (RIP) [18].
The restricted isometry constant is defined as follows.

Definition 1 The s-restricted isometry constant of Φ, δs, is
defined as the smallest positive quantity such that

(1− δs)‖v‖22 ≤ ‖Φv‖22 ≤ (1 + δs)‖v‖22

holds for all v ∈ Ωs, where Ωs = {v ∈ Rn|‖v‖0 ≤ s}. A
matrix Φ is said to satisfy the RIP of order s if δs ∈ (0, 1).

Basically, the RIP dictates that every set of columns of Φ with
cardinality smaller than s approximately behaves like an or-
thonormal system. It has been shown that random matrices
with Gaussian or sub-Gaussian entries meet the RIP with high
probability provided that m = O(s log(n)) [19].

In a realistic scenario, the measurements are corrupted by
noise and can be modeled as y = Φx + z, where z is zero-
mean additive white noise. Basis Pursuit Denoising (BPD)
relaxes the requirement that the reconstructed signal exactly
explain the measurements [1], solving the convex problem

min
x∈Rn

‖x‖1 subject to ‖y − Φx‖2 ≤ ε, (1)

for some small ε > 0. Candès shows in [18] that if ‖z‖2 ≤ ε
and δ2s <

√
2−1, then the reconstructed signal, x̂, is guaran-

teed to obey ‖x − x̂‖2 ≤ Cε, where the constant C depends
on δ2s. Unconstrained variations of (1) are also used in the
literature, known as `1-regularized least squares [20]. Other
sparse reconstruction approaches include greedy algorithms
that iteratively construct approximations. Orthogonal match-
ing pursuit (OMP) [21], and its relatives [22], and iterative
hard thresholding (IHT) [23] are examples of this class.

2.2. Lorentzian Norm

The Lorentzian norm for a vector u ∈ Rm is defined as:

‖u‖LL2,γ =

m∑
i=1

log{1 + γ−2u2i }, γ > 0. (2)

The Lorentzian norm (or LL2 norm) is not a norm in the strict
sense, since it does not meet the positive homogeneity and
subadditivity properties. However, it defines a robust met-
ric that does not heavily penalize large deviations, with the
robustness depending on the scale parameter γ, thus making
it an appropriate metric for impulsive environments (optimal
under the Cauchy model) [3, 4]. The Lorentzian norm is ev-
erywhere continuous and differentiable, and convex near the

origin behaving as an `2 cost function for small variations.
Further justification for the use of the Lorentzian norm is the
existence of logarithmic moments for algebraic-tailed distri-
butions, as second moments are infinite or not defined for
such distributions and therefore not an appropriate measure
of process strength [3].

3. ROBUST SAMPLING USING CAUCHY RANDOM
PROJECTIONS

The interest in Cauchy random projections arises due to ap-
plications where `1-distance preservation is preferred in the
reduced space. However, since Cauchy random projections
have undefined second-order statistics, the RIP condition
given by Definition 1 for random matrices is not satisfied, and
thus the large suite of methods developed for CS relying on
`2-norm properties can not be used for distance estimation or
sparse signal reconstruction [20, 24].

However, Ramirez et al., proposed in [14] a distance-
preserving condition between the geometric mean of the pro-
jections in the dimensionality reduced space, and the `1 norm
of the original high-dimensional space satisfied by Cauchy
random matrices. More precisely, the definition of the dis-
tance preservation condition for Cauchy random matrices is
as follows.

Definition 2 A matrix R ∈ Rk×n whose entries ri,j are i.i.d
Cauchy random distributed with location parameter 0 and
scale parameter 1 (i.e., ri,j ∼ C(0, 1)), satisfies the following
inequalities

(1− η)‖b‖1 ≤ ‖Rb‖gm ≤ (1 + η)‖b‖1

with high probability for all s-sparse vectors b ∈ Rn, where
‖b‖1 =

∑n
i=1 |bi|, and ‖z‖gm = (

∏k
i=1 |zi|)1/k; provided

that k > C1(δ)[log(2/ε)+s log(n/s)], where ε > 0,C1(δ) ∼
1
δ2 with δ > 0, and η > ε+δ

1−ε with ε > 0.

3.1. Lorentzian Based Coordinate-Descent Algorithm

If the sampling matrix R obeys the distance preservation con-
dition given in Definition 2, then every s−sparse signal has a
unique image under R, and every sketch c = Rb is different
for each s-sparse b. Therefore, given the sketch c, a sparse
vector b can be recovered by solving

min
b∈Rn

‖b‖0 subject to c = Rb. (3)

The proposed formulation in (3) can be modified to allow a
relaxation in the data fidelity term, and in an unconstrained
form. That is,

min
b∈Rn

‖c− Rb‖LL2,γ + λ‖b‖0 , (4)

where ‖ · ‖LL2,γ is the Lorentzian norm, and λ is a regu-
larization parameter. The ‖ · ‖0-norm encourages sparsity in



the solution and the Lorentzian norm is chosen in robust lin-
ear regression problems because it has optimality properties
for Cauchy distributed samples [3, 4]. The algorithm used
to solve the problem in (4) is based on a coordinate-descent
method, where at each iteration all the entries of the sparse
vector are held constant except one, which is allowed to vary,
and is estimated by a weighted myriad operator [14].

3.2. Computer Simulations and Performance

The following results validate the use of Cauchy projections
as robust compressive measurements and the `0-regularized
Lorentzian norm method, denoted as (`0 − `LL), for signal
recovery in the presence of impulsive noise environments. In
particular, we use alpha-stable distributions (0 < α < 2)
to model impulsive noise. The performance of the (`0 −
`LL) method is compared with those achieved using the `1-
regularized least squares (`1−`s) algorithm [20], the iterative
Weighted Median regression (Wmedian) algorithm [15], the
OMP algorithm (OMP) [21], and the `1-regularized `1 mini-
mization algorithm (`1 − `1) [25] .

In order to test the robustness of the proposed algorithm to
impulsive noise, an 8-sparse signal of length 400 is generated
with non-zero entries randomly placed having amplitudes in
the interval (−5, 5). The projected signal with 100 (25%N)
samples is then contaminated with noise obeying a statistical
model of a “zero-centered” symmetric alpha-stable distribu-
tion with α = 1.2. Fig. 1 depicts the curves of the normal-
ized mean square error NMSE (dB) vs Geometric-SNR (dB)
from the different reconstruction algorithms. Each point in
the curves is obtained by averaging 100 independent realiza-
tions of the Cauchy random matrix and the noise.

Note in Fig. 1 that the (`0 − `LL) method outperforms
other algorithms. Furthermore, the approach has approxi-
mately 3dB of improvement for different G-SNR values over
the (Wmedian) regression algorithm, and approximately 7dB
of improvement for different G-SNR values over the `1 − `1
algorithm.

4. ROBUST RECONSTRUCTION METHODS IN THE
PRESENCE OF IMPULSIVE NOISE

In this section we review robust reconstruction methods for
sparse signals when the measurements are (possibly) cor-
rupted by impulsive noise. The proposed approaches use
the Lorentzian norm as the data fidelity metric. The mea-
surement model is y = Φx0 + z, where z is zero-centered
additive white noise.

4.1. Lorentzian Based Basis Pursuit

Using the strong theoretical guarantees of `1 minimization
for sparse recovery of underdetermined systems of equations,
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Fig. 1. Normalized MSE reconstruction of sparse signal (n =
400, s = 8) from (k = 100) Cauchy random measurements
with α-stable noise (α = 1.2) for various G-SNR values.

Carrillo et al., propose in [12] the following nonconvex con-
strained optimization problem to estimate a sparse signal from
the noisy measurements y:

min
x∈Rn

‖x‖1 subject to ‖y − Φx‖LL2,γ ≤ ρ. (5)

The following theorem, proposed in [12], presents an up-
per bound for the reconstruction error of the proposed estima-
tor in (5).

Theorem 1 Let Φ be a sensing matrix such that δ2s <
√

2−
1. Then for any signal x0 such that |supp(x0)| ≤ s, and
observation noise z with ‖z‖LL2,γ ≤ ρ, the solution to (5),
x∗, obeys the following bound

‖x0 − x∗‖2 ≤ Csγ
√
m(eρ − 1), (6)

where the constant Cs depends only on δ2s.

Theorem 1 shows that the solution to (5) is a sparse signal
with an `2 error that is dependent on logarithmic moments.
Note that the dependence on the noise logarithmic moment,
rather than its second order moment, makes the formulation
in (5) robust and stable to algebraic-tailed and impulsive
corrupted samples. The problem in (5) is referred to as
Lorentzian BP (LBP). The parameter γ controls the robust-
ness of the employed norm and ρ the radius of the the LL2

ball thus defining the feasible set. Strategies to estimate both
γ and ρ are detailed in [12].

4.2. Lorentzian Based Iterative Hard Thresholding

Even though Lorentzian BP provides a robust CS framework
in heavy-tailed environments, numerical algorithms to solve



the proposed optimization problem are slow and complex
since the problem in (5) is noncovex [12]. Therefore, Carrillo
and Barner propose in [13] a Lorentzian based iterative hard
thresolding (IHT) algorithm. In order to estimate x0 from y
the following optimization problem is proposed:

min
x∈Rn

‖y − Φx‖LL2,γ subject to ‖x‖0 ≤ s. (7)

However, the problem in (7) is non-convex and combinatorial,
therefore we derive a suboptimal strategy to estimate x0 based
on the gradient projection algorithm [13]. The proposed strat-
egy is formulated as follows. Let x(t) denote the solution at
iteration time t and set x(0) to the zero vector. At each itera-
tion t the algorithm computes

x(t+1) = Hs

(
x(t) + µtΦ

TWt(y − Φx(t))
)

(8)

where Hs(a) is the non-linear operator that sets all but the
largest (in magnitude) s elements of a to zero, µt is a step size
and Wt is an m×m diagonal matrix defined next. Denote by
φi the i-th row of Φ. Each element on the diagonal is defined
as Wt(i, i) = γ2

(
γ2 + (yi − φTi x(t))2

)−1
, for i = 1, . . . ,m.

The algorithm defined by the update in (8) is coined
Lorentzian iterative hard thresholding (LIHT). Note that
Wt(i, i) ≤ 1, thus the weights diminish the effect of gross
errors by assigning a small weight (close to zero) for large
deviations compared to γ, and a weight near one for devia-
tions close to zero. In fact, if Wt is the identity matrix, the
algorithm reduces to the `2 based IHT. The derived algorithm
is a fast and simple method that only requires the application
of Φ and ΦT at each iteration.

Although the algorithm is not guaranteed to converge to
a global minima of (7), it can be shown that LIHT converges
to a local minima [13]. In the following, we show that LIHT
has theoretical stability guarantees similar to those of `2 based
IHT. For simplicity of the analysis we set µt = 1.

Theorem 2 Let x0 ∈ Rn. Define S = supp(x0), |S| ≤ s.
Suppose Φ ∈ Rm×n meets the RIP of order 3s and ‖Φ‖ ≤ 1,
where ‖·‖ denotes the spectral norm. Assume x(0) = 0. Then
if ‖z‖LL2,γ ≤ τ and δ3s < 1/

√
32 the reconstruction error

of the LIHT algorithm at iteration t is bounded by

‖x0 − x(t)‖2 ≤ αt‖x0‖2 + βγ
√
m(eτ − 1), (9)

where α =
√

8δ3s and β =
√

1 + δ2s(1− αt)(1− α)−1.

The results in Theorem 2 can be easily extended to compress-
ible signals using Lemma 6.1 in [22]. Strategies to estimate
γ from y and to adapt the step size µt are described in detail
in [13].

4.3. Computer Simulations

Numerical experiments that illustrate the effectiveness of the
Lorentzian based algorithms in impulsive environments are
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Fig. 2. Reconstruction SNR as a function of the of the tail
parameter, α. σ = 0.1, s = 8, n = 1024 and m = 128.

conducted. All experiments utilize synthetic s-sparse sig-
nals in a Hadamard basis, with s = 8 and n = 1024. The
nonzero coefficients have equal amplitude, equiprobable sign,
randomly chosen position, and average power fixed to 0.78.
Gaussian sensing matrices are employed with m = 128. One
hundred repetitions of each experiment are averaged and the
reconstruction SNR is used as the performance measure.

Weighted median regression (WMedian) [15], IHT [23]
and BPD [24] are used as benchmarks. Alpha-stable mea-
surement noise is used with the tail parameter, α, varied from
0.2 to 2, i.e., very impulsive compared to the Gaussian case,
when α is away from 2. The scale parameter is set as σ = 0.1,
resulting in an SNR of 20.42 dB when α = 2. The results
are shown in Fig. 2. For small values of α, all methods per-
form poorly, with LIHT yielding the most acceptable results.
Beyond α = 0.6, LBP and LIHT produce faithful reconstruc-
tions with a SNR greater than 20 dB, outperforming the re-
sults of all the other methods. Notice that when α = 2 (Gaus-
sian case) the performance of LBP and LIHT is comparable
with that of BPD and IHT, which are `2 based. Of note is
that LBP takes 26.31s on average to perform a reconstruction
while LIHT takes 0.043s.

5. CONCLUSIONS

This work overviews a set of robust sparse reconstruc-
tion algorithms from random measurements, based on the
Lorentzian norm as fitting term, having either `0 or `1 norms
as regularization terms. Numerical results show that the
Lorentzian based methods outperform `2 based methods in
impulsive environments, while having similar performance in
light-tailed environments.
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