Assessment of thick-film resistors for manufacturing piezoresistive sensors

Thomas Maeder, Caroline Jacq and Peter Ryser
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Outline

1. Introduction – manufacturing & trimming issues
2. Resistor study
3. Overglazing, trimming, etc.
4. Conclusions & outlook
1. Introduction – manufacturing & trimming issues
2. Resistor study
3. Overglazing, trimming, etc.
4. Conclusions & outlook
Typical thick-film piezoresistive sensor

- **Typical elements**
 - Sensing bridge
 - Offset trim
 - TCO trim
 - Differential amplifier

- **Typical values (±)**
 - Offset ~30 mV/V
 - Response ~3 mV/V
 - TCO ~1 µV/V/K
 (50 K : ~0.05 mV/V)

- **For 0.1% F.S.:**
 - Offset reduction ~10'000×
 - Stability (bridge) ~10 ppm
Why trim?

- Modern digital chips
 - Input stage usually PGA (programmable-gain amplifier)
 - Gain limited by signal
 - In raw state, offset dominates signal, $>>$ response

- For optimal use, reduce offset to $<$ response
 - With typical raw offset \sim30 mV/V, max. gain \sim30×
 - With typical response \sim3 mV/V, typ. gain required \sim200×
 - Reduce offset typically by \sim10…30×

- Trimming of TCO usually not necessary with chips
 - Typically, temperature error $<$10% of piezoresistive response
 - Can be done digitally
 - Laser trim: large-scale production; better temperature sensing
Examples – pressure cell

Ceramic: classical layout

- All-active bridge
- Coarse offset trim on cell
- Direct TCO trim
 - Need good amplifier – usually not accessible after mounting of electronics

Steel: changes

- Issue: trim on dielectric
- Coarse offset trim off-cell
- Indirect TCO trim
 - PTC resistor on cell
 - Normal resistor in parallel
Examples – cantilever force cell

- All-active bridge
- Discrete offset trim (stable, active, ~no TCO change)
- Coarse classical trim (more precise)
- No TCO trim (on base, with fine trim)
Examples – glass-sealed pressure cell

- All-active bridge
- Discrete offset trim cuts only on cell
- All other trims on separate module
Trimming of sensor electronics

- Normally passive & active part
- High resistor values often problematic
- Harsh post-processing (breaking, soldering, ultrasound, …)
Factors for offset, TCO & stability

- **Resistor interactions**
 - Substrate (Al_2O_3, dielectric, LTCC…)
 - Terminations
 - Overglaze
 - \(TCO \neq TCR; \ TCO \text{ determined by } TCR \text{ tracking} \)

- **Trimming**
 - Discrete (stable) or classical (precise)
 - Trimming resistor used (coarse: use same as bridge)
 - Terminations (material near terminations \(\neq \) away)
 - Parameters & resistor material

- **Post-processing**
Outline

1. Introduction – manufacturing & trimming issues

2. Resistor study

3. Overglazing, trimming, etc.

4. Conclusions & outlook
Resistor study

<table>
<thead>
<tr>
<th>No</th>
<th>Film (Sheet res.) Screen$</th>
<th>Composition</th>
</tr>
</thead>
</table>
| 1 | Conductor 325 / 40 | A) ESL 9635G†
 | | B) ESL 9635B‡ (Pb)
 | | C) DP 5104‡ (Pb)
 | | D) ESL 8837* (Pb, Cd)
 | | E) ESL 9695$^\#$ (Pb)
 | | F) ESL 9562G$^\#$ (Pb)
 | | G) ESL 9912K$^{##}$ |
| 2 | Resistor (100 Ω PTC) 325 / 40 | K) ESL 2612I (Pb) |
| | Resistor (100 Ω) 325 / 40 | M) DP 2021 (Pb)
 | | N) ESL R312P (Pb)
 | | O) ESL 3912 (Pb, Cd)
| 3 | Resistor (10 kΩ) 325 / 40 | Q) DP 2041 (Pb)
 | | S) ESL R314P (Pb)
 | | T) ESL 3984 (Pb, Cd)
 | | U) ESL 3914 (Pb, Cd)
| 3 | Overglaze 325 / 20 | V) ESL G-485-1a (Pb)
 | | W) ESL G-481a (Pb)
 | | X) ESL 4771Pb (Pb)
 | | Z) DP QQ600a (Pb)

ESL = Electroscience Laboratories
DP = DuPont

- (Substrate = alumina)
- Termination material
- Resistor material & length
- Overglaze material
Processing parameters

- **Resistor under...overfired**
 - See whether this changes its interactions with overglaze
- **Overglaze under...overfired**
 - Extent of effect on resistor

<table>
<thead>
<tr>
<th>Code</th>
<th>Conductor</th>
<th>Resistor</th>
<th>Overglaze</th>
</tr>
</thead>
<tbody>
<tr>
<td>- -</td>
<td>850°C (n)</td>
<td>825°C (n-25°C)</td>
<td>VWZ : 575°C (n-25°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X : 525°C (n-25°C)</td>
</tr>
<tr>
<td>n -</td>
<td>850°C (n)</td>
<td>850°C (n)</td>
<td>VWZ : 575°C (n-25°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X : 525°C (n-25°C)</td>
</tr>
<tr>
<td>n n</td>
<td>850°C (n)</td>
<td>850°C (n)</td>
<td>VWZ : 600°C (n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X : 550°C (n)</td>
</tr>
<tr>
<td>n +</td>
<td>850°C (n)</td>
<td>850°C (n)</td>
<td>VWZ : 625°C (n+25°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X : 575°C (n+25°C)</td>
</tr>
<tr>
<td>++</td>
<td>850°C (n)</td>
<td>875°C (n+25°C)</td>
<td>VWZ : 625°C (n+25°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X : 575°C (n+25°C)</td>
</tr>
</tbody>
</table>
Newer resistor compositions (DP 2041 / R314P) better

Thin Au (D) terminations = lowest spread
- Low geometric disturbance of screen printing
- Low diffusion with terminations
As-fired 100 Ω – spread of values

- Less difference seen in 100 Ω compositions
- Not dominant – used for fine trimming
As-fired 10 kΩ – effect of process

- Process dependence of value & TCR different
- Strong length effects on TCR -> TCO for short resistors
Outline

1. Introduction – manufacturing & trimming issues
2. Resistor study
3. Overglazing, trimming, etc.
4. Conclusions & outlook
Overglazing resistors

- Overglazing above nominal temperature – : strong drift
- Length dependence on ΔTCR: leads to TCO
Trimming problems

- Behaviour mostly normal: slight value increase
- *Decrease* of value for 100 kΩ composition!
Trimming & stability of DP 2041 bridges

- Au initially \(~2\times\) better than Ag:Pd
 - After trimming
 - Trim + ultrasound

- Advantage lost upon overglazing
 - Trim-overglaze interactions dominant
 - Temperature not so dominant (anneals)
 - Better: refire overglaze or glaze again

- Offset [mV/V]
- TCO [\mu V/V/K]
Outline

1. Introduction – manufacturing & trimming issues
2. Resistor study
3. Overglazing, trimming, etc.
4. Conclusions & outlook
Conclusions & outlook

- **Thick-film piezoresistive sensors & laser trimming**
 - Relatively low signal + harsh environments: difficult
 - High process temperatures -> materials interactions critical
 - Few alternatives to laser trimming (voltage?) for large series (cost)
 - Best stability: start with discrete coarse trims
 - Parameter development can be tedious
 - Must ensure access of beam to resistor (not always practical!)

- **Software offset trimming**
 - $R_{adj} =$ same paste as bridge, long meander (value ~10× bridge)
 - Little to no effect on TCO (if DAC reasonably good)
Questions?

THANK YOU!
Gauge factor measurement

- Alumina cantilever
- Effective signal ~independent of loading errors