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Abstract
Long-lived particles are predicted by numerous theories beyond the Standard Model. This

thesis work is dedicated to the search for long-lived neutralinos decaying semileptonically into

standard model particles. This decay channel is allowed by R-parity violation in the Minimal

Supersymmetric Standard Model (MSSM) framework. A displaced vertex reconstructed with

several tracks and an isolated high-pT muon is the expected typical signature. This search

is motivated by the ability of the LHCb detector to reconstruct displaced vertices and by the

low pT threshold of the muon trigger system that allow to study yet unexplored region of the

theoretical parameter space. The analysis has been performed for neutralino masses between

38 and 198 GeV/c2 with a lifetime of 5, 10 and 50 ps on data collected from pp collisions at

center-of-mass energy of
p

s = 7 TeV and 8 TeV during 2011 and 2012 at LHCb. The signal

determination techniques has been validated with Z and W events with a topology similar to

the signal.

No evidence of these long-lived states has been observed, and upper limits on production

cross-sections have been set.

Key words: CERN, LHCb, Supersymmetry (SUSY), Displaced Vertices, Long-Lived Particles,

Neutralinos, Physics beyond the Standard Model
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Résumé
Les particles à long temps de vie sont prédites par un grand nombre de théories modélisant

la physique au-delà du modèle standard des particules. Cette thèse est dédiée à l’étude de

neutralinos à long temps de vie se désintégrant en particules du modèle standard dont le

canal de désintégration semileptonique est permis par la violation de la parité R dans le

cadre du modèle MSSM. Un vertex déplacé reconstruit à l’aide de plusieurs traces dont un

muon isolé de haut pT est la signature typique attendue. Cette recherche est motivée par la

capacité du détecteur LHCb à reconstruire des vertex déplacés et par le seuil relativement

bas en pT du muon dans le système de déclenchement qui permet d’étudier des régions

inexplorées dans l’espace des paramètres du modèle. Cette analyse a été effectuée pour des

modèles avec des neutralinos de masses se situant entre 38 et 198 GeV/c2 pour des temps de

vie allant de 5 à 50 ps. Les données collectées à partir des collisions pp à une énergie dans

le centre de masse de
p

s = 7 TeV et 8 TeV pour les années 2011 et 2012 ont été analysées.

Deux techniques d’extraction du signal qui modélisent le bruit de fonds de nature Quantum

chromodynamics (QCD) ont été utilisées et testées avec des modes de désintégration du

Z et du W . Aucune évidence de ces états à long temps de vie n’a été observée. Des limites

supérieures sur les sections efficaces de production entre 0.06 à 0.46 pb ont été posées pour

une efficacité totale de sélection allant de 1.9 à 6.0 %.

Mots clefs : CERN, LHCb, SUSY, Vertex Déplacés, Particules à long temps de vie, Neutralinos,

Physique au-delà du modèle standard
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Introduction

Superymmetry (SUSY) is one of the most popular extension of the Standard Model of par-

ticle physics (SM). It helps solving the hierarchy problem, unifying the gauge couplings at

the Planck scale in addition SUSY has dark matter candidates. Some of the SUSY models

predict the existence of exotic long-lived particles which could decay and be measured in the

LHCb experiment. In this analysis we focus on the search for massive long-lived particles

(LLP) decaying semi-leptonically to Standard Model particles via R-parity violation (R-parity

violation (RPV)) in the mSUGRA framework. A displaced vertex reconstructed from several

charged particles along with a well isolated high-pT muon is the studied signature. This

study performed with the LHCb experiment is motivated by the high precision of the vertex

reconstruction provided by the VErtex LOcator (VELO) which allows to observe particles with a

macroscopic distance of flight and by the low pT threshold of the muon trigger. Despite its re-

duced geometrical acceptance, these properties of the LHCb detector allow to be competitive

with similar analyses performed by ATLAS and CMS and even explore regions of the parameter

space where these two experiments are limited by their low efficiency to reconstruct highly

boosted light LLPs.

The aim of this analysis is to set upper limits on the production cross-section for a specific

region of the parameter space of mSUGRA with RPV.

The main sources of background are bb events and muons originating from Z or W decays

combined with other tracks close to the interaction points which are easily removed by asking

for a minimal displacement inside the VELO. Displaced vertices reconstructed with muons

from Z and W bosons have been exploited to validate two data-driven analysis methods.

This study extends the direct search of new physics at LHCb. Two studies are dedicated to the

search for long-lived particles decaying hadronically with R-parity violation in mSUGRA and

in Hidden Valleys models : a search for single exotic massive long-lived particles is presented

in [5] and a search for Higgs-like bosons decaying into a pair of exotic particles is described in

[6]. In the context of Minimal Gauge-Mediated Supersymmetry Breaking (mGMSB), a direct

search for long-lived staus pair production has been presented in [7].
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1 Theoretical Introduction

1.1 The Standard Model

The Standard Model (Standard Model (SM)) is a relativistic quantum field theory which de-

scribes the fundamental interactions and the known elementary particles. This gauge theory

is based on the SU (3)c ⊗SU (2)L ⊗U (1)Y non-abelian symmetry group which brings together

the forces present in Nature with the exception of the gravitational force described by General

Relativity [8, 9, 10]:

• The SU (3)c group constructed from the quantum chromodynamics (QCD) describes

the strong nuclear interactions between the color charged particles: the quarks. This

force is carried by 8 massless gauge bosons: the gluons g .

• The electro-weak interaction regroups the electromagnetic force between the charged

particles mediated by the photons γ and the weak nuclear force carried by the Z 0 and

W +/− bosons and is based on the SU (2)L ⊗U (1)Y group. The weak force is responsible

for the decay processes which follow from the flavor changing and mixing between the

different families of fermions described by the CKM (Cabibbo-Kobayashi-Maskawa)

matrix [11] [12].

The gauge bosons of spin 0,1 and 2 follow the Bose-Einstein statistics while the fermions of

spin 1/2 obey to the Fermi-Dirac statistics. The Standard Model includes 12 fermions:

• 3 families of pairs of quarks: u (up), d (down); c (charm), s (strange); t (top) and b

(bottom),

• 3 families of couples of leptons: electron (e−), electron neutrino (νe ); muon (µ−), muon

neutrino (νµ); tau (τ−), tau neutrino (ντ),

Due to the properties of the strong interaction, the quarks are presents in nature in bound

states as baryons (made of three quarks as for the proton) or mesons (made of a quark and an
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Chapter 1. Theoretical Introduction

antiquark as for the pion) while the leptons are observed as free states. Each fermion has a

corresponding anti-particle.

The Standard Model of particles and the three fundamental interactions are illustrated on

Figure 1.1. The masses of the electro-weak bosons (the Z 0 and W +/−) are generated by

the mechanism of spontaneous electro-weak symmetry breaking (Electro-Weak Symmetry

Breaking (EWSB)) induced by the Higgs field [13]. This mechanism is also responsible for the

generation of the lepton masses. A potential candidate for the Higgs boson has been discovered

in July 2012 by the ATLAS and CMS collaborations at CERN [14]. At present, all studies suggest

that this candidate is compatible with the Higgs boson predicted by the Standard Model.

Figure 1.1: Standard Model elementary particles and fundamental interactions : the charges of the

particles are specified in green and the spin in orange. The measured mass or the mass limit (in

electron volt eV) of each particles are indicated (gluons and photons are massless). It has been found

that neutrinos are massive by the measurement of the oscillation between its different flavor states [1].

The Standard Model is not a complete theory although all the observations are so far consistent

with the model. Nevertheless SM leaves several problems unsolved:

• There exists no complete quantum fields theory that incorporates General Relativity

in the Standard Model. Gravity is the weakest force in Nature (32 orders of magnitude

weaker than the weak nuclear force) and is extremely difficult to test at the quantum level

in particle experiments. Furthermore, the Standard Model does not provide answers

to physical observations of phenomena dominated by the gravity as black holes or

4



1.1. The Standard Model

gravitational waves and does not describe Nature just after the Big-Bang in particular

the inflation phase of the early Universe. A Higgs-like boson could be the "inflaton"

which is needed to clarify this question. The supergravity (mSUGRA) models introduced

in section 1.2.1 are field theories combining Supersymmetry and General Relativity and

could provide some answers to these unsolved problems of cosmological origin.

• The several orders of magnitude between the particles masses and the coupling con-

stants of the different forces are known as the hierarchy problem [15]. Why is the weak

force 32 order of magnitude stronger than gravity ? Why is the Planck scale 16 orders of

magnitudes above the weak scale ? Why is the Higgs bosons mass much lower than the

Planck scale despite the large quantum corrections requiring to adjust the parameters

of the model very precisely to be consistent with observations ? The high-level of fine-

tuning of the 25 Standard Model free parameters makes the theory "unnatural". The

supersymmetry (SUSY) theory presented in section 1.2 offers solution to the hierarchy

problem as well.

• Many astrophysical observations as the measurement of the spiral galaxy rotation curves,

the fluctuations in the cosmic microwave background, the gravitational lensing of galaxy

clusters or the behaviour of the large scale structure in the Universe have highlighted

the existence of a matter interacting with the "luminous" matter by gravitational force

only [16]. Cosmological considerations lead to an abundance of about 27% of this so-

called dark-matter in the Universe for less than 5% of Standard Model particles. Several

experiments are in progress to detect directly or indirectly dark-matter candidates. SUSY

theories provide some of these potential dark-matter candidates.

• The Charge Parity violation (known as Charge Parity (CP) violation) sources of the SM

are too small to explain the matter-antimatter asymmetry presents in the Universe.

Moreover no C P violation have been observed so far in the QCD sector while nothing

constraints the strong nuclear interaction to be C P invariant [17].

• The dark energy (∼ 68% of the universe composition) which induces the accelerated

expansion of the Universe is not included in the SM [18].
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Chapter 1. Theoretical Introduction

1.2 Supersymmetry : A natural extension of the Standard Model

Supersymmetry (SUSY) is a space-time symmetry of quantum field theory that relates fermions

to bosons. A brief overview of SUSY properties and consequences are presented in this section,

a detailed introduction can be found in [19]. This theory based on the super-Poincaré algebra

is one of the most popular extension of the Standard Model. A new generator Q is introduced

with the following action:

Q|Fer mi on〉 = |Boson〉

and vice-versa. In other words, it relates half-integer spin particles with integer spin particles.

The resulting associated particles of this transformation are called superpartners and have

the same physical properties as mass and quantum numbers except for the spin which differs

from a half integer. Each particle from the same supermultiplet has at least one superpartner

which is called with the prefix "s" for spin-0 partners (selectron, smuon, squark,...) and with

the suffix "ino" for spin- 1
2 partners (gluino, higgsino, zino,...). SUSY is not an exact symmetry

of Nature otherwise the particles and their sparticles are degenerated in mass and should have

been observed at a low energy scale. Thus, if Nature obeys to this framework, supersymmetry

should be broken. This theory provides solutions to the main unsolved problems of the

Standard Model:

• Adding superpartners to the quarks and leptons cancels the contributions of their scalar

couplings with the Higgs and then stabilizes the Higgs mass at tree level. Therefore, the

hierarchy problem can be solved and the Higgs mass becomes "natural". In general, in

a SUSY theory, the radiative corrections are partially canceled.

• The supersymmetric extension of the SM spectrum leads to a perfect matching between

the three gauge coupling and unifies the three fundamental interactions at the mass

scale MGU T ∼ 1016 GeV. This Grand Unified Theory (GUT) is illustrated in Figure 1.2.

• In several SUSY models, the lightest superpartner (Lightest Superpartner (LSP)) is a dark

matter candidate. This so-called "neutralino" is the eigenstate of the linear superposi-

tion of the SUSY partners of the neutral Higgs and the gauge bosons:

χi =αi 1B̃ 0 +αi 2W̃ 0 +αi 3H̃ 0
u +αi 4H̃ 0

d

However, in the model considered for this thesis work, the neutralino is not a dark matter

candidate because it has a too short lifetime and decays into Standard Model particles.
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1.2. Supersymmetry : A natural extension of the Standard Model

The minimal supersymmetric extension of the Standard Model is called the MSSM. Two Higgs

doublet fields are simply added to the different superpartners. The different MSSM fields are

illustrated on Figure 1.3. The charged and the neutral doublets of the Higgs field are needed for

the consistency of the theory. As the mass eigenstates are not necessarily the gauge eigenstates,

several mixing states are expected. In particular, the B̃ 0 and the W̃ 0 mix to form the Z̃ 0 and

the γ̃ after the electro-weak symmetry breaking. The baryon number and lepton number

conservation implies that the MSSM is at least approximately invariant under the R-parity

defined as follow:

Rp = (−1)3(B−L)+2S

where B and L are respectively the baryon and lepton numbers and S the spin.

Several versions of the MSSM and SUSY models exists. This thesis work is based on the

framework of the minimal Supergravity (mSUGRA), a constrained MSSM model with R-parity

violation which allows lepton and baryon numbers violation [20], [21]. The stability of the

proton is then provided by other ad hoc symmetries in the Lagrangian. This is motivated by

the fact that as the C and C P violation, the lepton number and the baryon number violation

are necessary conditions for a viable baryogenesis [22]. The next sections are dedicated to the

presentation of this model.

Figure 1.2: Illustration of the three coupling matching at the GUT scale : (left) Standard Model

prediction, (right) Standard Model extended with the supersymmetry lead to a perfect match. α1,α2

and α3 are respectively the strong, the electromagnetic and the weak couplings.
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Chapter 1. Theoretical Introduction

Figure 1.3: Particles spectrum of the different new sparticles generated in the MSSM.

1.2.1 mSUGRA with Lepton Number violation with bilinear R-parity violation

The mSUGRA (minimal SUper GRAvity) is a restricted framework of the MSSM which is

reducing the 124 SUSY free parameters to only 5:

m0,m1/2, A0, t an(β), si g n(µ);

where m0 and m1/2 are respectively the gaugino mass and the scalar soft SUSY breaking masses

at the unification scale, A0 is the universal trilinear term at the GUT scale and t an(β), si g n(µ)

are the ratio of the two vacuum expectation values and µ the Higgs mixing parameter. This

extended theory combines General Relativity and the principle of Supersymmetry which

requires the existence of a graviton field of spin 3/2. In this model, gravity mediates the

breaking of SUSY through a hidden sector at the GUT scale. A theoretical description of this

model can be found in [23].

The stability of the proton and the lightest supersymmetric particle (the neutralino) are

provided by the R-parity conservation in the MSSM. In mSUGRA, the neutralino is no longer

stable, violating the lepton or the baryon conserving part of the super potential by the following

terms:

W ⊃µi Li Hu +λi j k Li L j Ek +λ
′
i j k Li Q j Dk︸ ︷︷ ︸

Violate L Number

+ λ
′′
i j kUi D j Dk︸ ︷︷ ︸

Violate B Number
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1.3. Status of LLP searches at CMS and ATLAS

where L is the lepton doublet, H the Higgs doublet, E the lepton singlet, Q the quark doublet, D

the down quark singlet, U the up quark singlet andΛ ∈ (λi j k ,λ
′
i j k ,λ

′′
i j k ) the trilinear coupling

constants. The indices i j k denote the sum over the three fermion generations.

This R-parity violation (RPV) allows the neutralino to decay into visible standard model parti-

cles and generates the observed neutrino mass mixing. To prevent the proton decay, either

the lepton number or the baryon number can be violated, but not both. A theoretical sce-

nario of RPV is the bilinear R-parity violation (BRPV) which predict long-lived particles [24].

In the lepton number violation framework, the neutralino (χ̃0
1) may decay leptonically or

semileptonically. The second being the case studied in this work [25, 2]:

χ̃0
1 →µqi q j

The neutralino from squark-pair production (pp → q̃ q̃(q̃ → qχ̃0
1)) decays into two jets and an

isolated muon as depicted in Figure 1.4. The decay time of the χ̃0
1 is fixed by the lepton number

violating coupling (λ
′
i j k ). In this study, it has been tuned to obtain neutralino lifetimes of the

order of 10 ps for a decay well inside the VELO. The topology of the decay and therefore the

detection efficiency depends on the neutralino mass and lifetime, and the squark masses.

Here χ̃0
1 with lifetime (τχ̃0

1
) from 5 to 50 ps and masses from 38 up to 198 GeV/c2 have been

considered. The gluino mass is fixed at 2 TeV/c2 and squark masses at mq̃ = 1.3 TeV/c2. These

parameters have been chosen to cover a so far unexplored region of the theoretical parameter

space, as discussed in the next section.

CERN-PH-EP-2011-131

Search for displaced vertices arising from decays of new heavy particles
in 7 TeV pp collisions at ATLAS

The ATLAS Collaboration

Abstract

We present the results of a search for new, heavy particles that decay at a significant distance from their production
point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted
in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb�1 collected in
2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various
scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of
supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented
for di↵erent squark and neutralino masses, enabling extension of the limits to a variety of other models.

1. Introduction

Various scenarios of physics beyond the standard model
predict the production at the Large Hadron Collider
(LHC) of heavy particles with lifetimes that may be of
order picoseconds to about a nanosecond. An exam-
ple of such a scenario is gravity-mediated supersymmetry
(SUGRA) with R-parity violation (RPV), where current
limits on RPV couplings [1] allow for the decay vertex of
the lightest supersymmetric particle to be within the range
accessible to collider-based particle detectors. In gauge-
mediated supersymmetry models, the next-to-lightest su-
persymmetric particle may be long lived due to suppres-
sion of its decay by the large supersymmetry-breaking
scale [2]. Additional scenarios allowing for such a sig-
nature include split-supersymmetry [3], hidden-valley [4],
dark-sector gauge bosons [5], stealth supersymmetry [6],
or a meta-stable supersymmetry-breaking sector [7].

Searches for related signatures have been performed at
the Tevatron with

p
s = 1.96 TeV pp̄ collisions. The D0

collaboration has searched for a long-lived neutral particle
decaying into a final state containing two muons [8] or a bb̄
pair [9]. No signal was observed, and limits were computed
in the context of RPV and hidden-valley model scenarios.

In this letter, we report the results of a search for a
heavy particle decaying into several charged particles at a
distance of order millimeters to tens of centimeters from
the pp interaction point, in events containing a muon with
high transverse momentum (pT). We report the results
of the search in terms of limits within the SUGRA sce-
nario, where this signature corresponds to the decay of
the lightest supersymmetric particle due to non-zero RPV
couplings �0

2ij , via a diagram such as the one shown in
Fig. 1. However, it may also be the result of other mod-
els with heavy, long-lived particles that decay into or are

produced in association with a high-pT muon.

µ~0~χ λ

jq

iq‘

µ

~χ
ij2

λ iq‘

Figure 1: Example of a diagram of a new massive particle �̃0 (such
as the lightest neutralino) decaying into a muon and two jets via a
virtual smuon, with lepton-number and R-parity violating coupling
�0
2ij .

2. The ATLAS detector

The ATLAS detector [10] comprises a tracking inner de-
tector (ID) system, a calorimeter system, and an extensive
muon spectrometer (MS).

The ID operates in a 2 T magnetic field and provides
tracking and vertex information for charged particles in the
pseudorapidity range |⌘| < 2.5, where ⌘ ⌘ � ln tan(✓/2)
and ✓ is the polar angle, defined with respect to the cylin-
drical symmetry axis (the z axis) of the detector. At small
radii, high-resolution pattern recognition capability is ob-
tained using silicon pixel layers and stereo pairs of silicon
microstrip layers. The pixel system comprises three barrel
layers, and three forward disks on each side of the interac-
tion point. Of particular significance to this analysis are
the barrel pixel layers, which are positioned at radii of 50.5,
88.5, and 122.5 mm. The silicon microstrip tracker (SCT)
has four barrel layers, and nine forward disks on each side.

Preprint submitted to Physics Letters B December 28, 2011
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Figure 1.4: Feynman diagram for the channel of interest. The long-lived particle (τχ̃0
1
) is decaying

into a muon and a smuon which is decaying into two standard model quarks. A displaced vertex

reconstructed with a high transverse momentum muon and several tracks (jets) is the typical signature.

1.3 Status of LLP searches at CMS and ATLAS

Several analyses are dedicated to the search of new physics signatures of the SUSY type. In

this section, the last results of CMS and ATLAS constraining the benchmark model considered

in this analysis are summarized.
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Chapter 1. Theoretical Introduction

ATLAS has performed a search for long-lived particles in final states with a muon and a

multi-track displaced vertex [26]. The collaboration has studied the sets of neutralino and

squark masses of 494(mq̃ = 700 GeV/c2), 108 GeV/c2(mq̃ = 700 GeV/c2) and 108 GeV/c2(mq̃ =
1000 GeV/c2) for lifetimes of 1 < cτ< 1000 mm. The dataset collected in 2012 at

p
s = 8 TeV

corresponds to an integrated luminosity of 20.3 f b−1. In the ATLAS experiment, the muons

have a transverse momentum greater than 50 GeV/c which limits the lowest neutralino mass.

The CMS collaboration has performed a search for heavy resonances decaying to two long-

lived massive neutral particles decaying to leptons: H 0 → X X (X → l+l−) [27]. H 0 masses of

125 to 1000 GeV/c2 and X bosons masses of 20 to 350 GeV/c2 with a decay length of about

20 cm in the laboratory frame have been explored. The D0 collaboration has made a search

for neutral long-lived particles decaying into two muons in pp colisions at
p

s = 1.96 TeV [28].

They have studied neutrino masses of 3 to 40 GeV/c2 for a lifetime of 40ps.

The results of CMS and ATLAS have been combined in [2] to constrain the SUSY parameters

for several models. The paper claims that long-lived particles decaying into charged lepton

and quarks are only weakly constrained by the existing searches. In particular, the analyses

performed by ATLAS and CMS have a very low efficiency to high boosted long-lived particles

with a neutralinos mass below 150 GeV/c2. Indeed, in addition to the small transverse mo-

mentum of the muon, the jets and the muons tend to merge for very low mass neutralino. On

Figure 1.5, the exclusion graphs shows a quite large unexplored region for light neutralinos. In

the plot we also indicate the 3 signal models used in this study.
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FIG. 6: Constraints on a model as in figures 4 and 5, but shown in the plane of squark mass and LSP mass,

with the gluino mass fixed to 2 TeV. The LSP is assumed to decay 100% to a muon and two light quarks.

The e↵ect of the collimation of the LSP decay products as the LSP becomes light is clear.

coupled states such as singlinos and photinos may naturally be light. Figure 5 shows the bounds

on models with a 20 GeV LSP decaying to eqq (left) or µqq (right). The constraint from the

same-sign lepton search is greatly weakened, to the point where it is in fact less sensitive than the

ATLAS multijet search. However, since the LSP decay products almost always merge into a single

jet in this scenario, the CMS search for paired dijet resonances [48] becomes relevant. The dotted

orange contours of figure 5 are the constraints from this search on our simplified model with exactly

degenerate squarks, very similar to those for squark LSPs decaying through UDD (section II A).

(Unlike ATLAS, CMS analyses include muons when clustering jets.) Once again though small

perturbations away from exact squark degeneracy are enough to smear out the apparent resonance

so that this search is not directly applicable. This is therefore not a robust constraint on the scale

of the squark masses; light squarks (500 � 1000 GeV) are allowed provided that they are split by

⇠ 5� 10% of their mass. The merging of the LSP decay products into a single jet also means that

the CMS displaced dijet search will have sensitivity if the decay is displaced (as it will appear to

be two-body); in this case therefore decay to electrons will not be less constrained when displaced.

Remarkably, these models hide the colored superpartners as well or better than the best-case

baryonic RPV scenarios, despite the presence of two leptons in every SUSY event. The colored

superpartners could potentially all be lighter than ⇠ TeV in these models.

LV38 LV98 LV198

Monday 2 March 15

Figure 1.5: Exclusion graph from a combination of ATLAS and CMS results for the decay χ̃0
1 →

µqi q j [2]. Left: exclusion in the squark mass versus gluino mass plane for a fixed χ̃0
1 mass of 100 GeV/c2.

Right: exclusion in the squark mass versus χ̃0
1 mass plane for a fixed gluino mass of 2 TeV/c2 as well as

the different "LV" (Lepton Violation) fully simulated signal models considered in this study.
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2 CERN and the LHCb experiment

This chapter aims to present the CERN, the Large Hadron Collider (LHC) and the four main

experiments. The description on the LHCb experiment is given in Section 2.3 in more details.

2.1 CERN and the LHC

The European Organization for Nuclear Research (CERN) is an organization based in Geneva

and founded in 1954. CERN is dedicated to the exploration of the fundamental constituents

of matter and to the improvement of our understanding of the physical laws that govern our

Universe. 608 universities and 113 nationalities are represented at CERN. This organization

has achieved a lot of scientific discoveries in the last 60 years thanks to many experiments

made by the collaborations of many scientists. Two of the most important contributions were

the discoveries of the electroweak bosons (W and Z ) in 1983 and more recently, in 2012, the

measurement of a new boson consistent with the predicted Standard Model Higgs boson [29]

[30] [14]. The ever-increasing needs in computing resources for the different research helped

to develop pioneering computational methods as the Internet technology and several grid

computing projects.

The Large Hadron Collider (LHC) is a circular proton-proton synchrotron of 27 km of circum-

ference built to a mean depth of 100 m under the Swiss-French border. It has been designed

to reach an energy of 7 TeV corresponding to a center of mass energy of
p

s = 14 TeV for a

luminosity of 1×1034cm−2s−1. The energy reached in the center of mass was 7 TeV in 2011

and 8 TeV in 2012. The maximal speed of the protons in the LHC is 0.999999991 the speed

of light (Lorentz factor of ∼ 7500) which corresponds to 11000 revolutions per second. The

protons beams each consists of 2808 bunches with about 1.15×1011 protons which leads to a

bunch collision rate of 40 M H z [31]. Four interactions points are located along the ring. Four

of them are exploited by the following experiments:

• The four main detectors: ATLAS, CMS, LHCb and ALICE,

• TOTEM: a telescope evaluating with precision the LHC luminosity and measuring elastic
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Chapter 2. CERN and the LHCb experiment

and diffractive cross sections of particles emitted close to the interaction point of CMS

[32],

• LHCf: studies forward emitted particles to simulate cosmic rays effects in matter close

to the interaction point of ATLAS [33],

Figure 2.1: The LHC with the four main experiments : ATLAS, CMS, LHCb and ALICE.

The acceleration is performed in several steps. First, a linear accelerator (Linac2) injects

protons of 50 MeV in the PSB (Proton Synchrotron Booster). Then, protons of 1.4 GeV are

accelerated in the Proton Synchrotron (PS) reaching an energy of 25 GeV. Finally, the Super

Proton Synchrotron (SPS) accelerates the proton beam up to 450 GeV before the injection in

the LHC. The LHC hadron injector complex is illustrated on Figure 2.2.

LHC : Large Hadron Collider
SPS : Super Proton Synchrotron
AD : Antiproton Decelerator
ISOLDE Isotope Seperator OnLine DEvice
PSB : Proton Synchrotron Booster
PS : Proton Synchrotron 
LINAC : LINear ACcelerator
LEIR : Low Energy Ion Ring
CNGS : Cern Neutrinos to Gran Sasso

Thursday, August 14, 14

Figure 2.2: The LHC hadron injector complex.
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2.2 Overview of three experiments : ATLAS, CMS and ALICE

2.2.1 ATLAS

The Toroidal LHC AppartuS (ATLAS) is dedicated to the study of the Higgs boson and to the

physics beyond the Standard Model (as the CMS experiment). The ATLAS experiment is a

cylinder of 22 m of diameter for 40 m length and weights 7000 tones. It has been designed in

layers of sub-detectors as shown in Figure 2.3. It is made of an inner tracker dedicated to the

reconstruction of charged particles, an electromagnetic calorimeter, a hadronic calorimeter

and muon detectors. Neutrinos are the only particles missed by the ATLAS detector but their

energy can be estimated from the measurement of the missing energy. More information

about the purposes and the technical details of the ATLAS experiment can be found in [34].

Figure 2.3: The ATLAS detector.

2.2.2 CMS

The Compact Muon Solenoid (CMS) experiment is the heaviest detector build around the

LHC with its 12500 tons. As the ATLAS experiment the CMS detector consist of concentric

sub-detectors. Compared to ATLAS, the main differences are:

• CMS is using a stronger magnetic field to achieve a better momentum resolution,

• The ATLAS jet resolution in the HCAL is better than CMS while CMS has a better ECAL

resolution than ATLAS,
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The scheme of the CMS experiment is presented on Figure 2.4. The CMS experiment is

presented in [35].

Figure 2.4: The CMS detector.

2.2.3 ALICE

This experiment is dedicated to the study of the Quark and Gluon Plasma (QGP). It studies

heavy-ion (Pb −Pb) collisions at a center of mass energy of 2.76 TeV which reproduces the

physical conditions just after the Big-Bang when quarks and gluons are not yet bounded.

The comprehension of the phase transition between hadronic matter and the QGP predicted

by the Quantum Chromo Dynamic (QCD) could provide a better understanding of the early

Universe as well as collapses of dense stars [36].

The LHC injection stages are slightly different to accelerate and collide heavy lead ions than

protons. It requires a second linear accelerator (Linac3) to accelerate ions. The ionized Pb

nucleons reach an energy of 4.2 MeV and are collided with a carbon target to remove their

electrons. Then, they are injected in the LEIR (Low Energy Ion Ring) and accelerated up to

72 MeV per nucleons. An energy of 5.9 GeV is reached in the PS where a second carbon target is

present to remove the remaining electrons. Finally, the nucleons are accelerated up to 177 GeV

in the SPS before the injection in the LHC [37].

The ALICE detector is presented on Figure 2.5.
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Figure 2.5: The ALICE experiment.

2.3 The LHCb experiment

The LHCb (for LHC beauty) detector is a single-arm forward spectrometer dedicated to the

study of flavor physics. The principal aim of the LHCb experiment is to measure precisely C P

violation processes and to search for new physics signs in rare decays. Its geometrical accep-

tance of 15 < θ < 300 mrad, corresponding to a pseudorapidity (defined as η=−ln(t an(θ/2)))

of 1.8 < η< 4.9, has been chosen to study b and c hadrons. Indeed, b and c hadrons produced

at the interaction point are boosted along the beam direction with a high longitudinal momen-

tum for a relatively small transverse momentum. The luminosity at the LHCb interaction point

is of about L = 2×1032 cm−2s−1 which is lower than ATLAS and CMS. Indeed, the beams are

defocused on purpose at LHCb to reduce the number of primary interaction in an event. As

shown on Figure 2.6, in addition to the magnet, the LHCb experiment is composed of various

sub-detectors:

• A tracking system composed of the VErtex LOcator (VELO), the Tracker Turicensis (TT),

the three Tracking stations T1, T2 and T3 (each composed of an Inner Tracker (IT) and

an Outer Tracker (OT)),

• Two Ring Imaging CHerenkov Counter (RICH1 and RICH2),

• An Electromagnetic and a Hadronic CALorimeter (ECAL and HCAL),

• Five muon chambers (M1-M5),
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These sub-detectors are described in the following sections together with the presentation of

the track reconstruction procedure and the trigger systems. These sections summarize the

main properties of the LHCb detector detailed in Ref. [38].

Figure 2.6: The LHCb spectrometer in the non-bending plane with its different components.

2.3.1 The Magnet

A dipole magnet of dimension 11 m ×8 m ×2.6 m for 1600 tons has been build to ensure a

precise measurement of chaged tracks momentum. It is located between TT and the three

tracking station T1, T2 and T3. It provides an integrated magnetic field of 4 Tm for tracks of

10 m length (0.1159 Tm in a region of (0−2.5m) upstream the TT and 3.615 Tm in a region

of (2.5−7.95m) downstream the TT). Momentum resolution of around 0.4 % for momenta

up to 200 GeV /c requires a precise knowledge of the magnetic field. Typically, the integrated

magnetic field is determined with a precision of the order of 10−4. The nominal current of

5.85 k A for a total resistance of 100mΩ at 20◦C induces a power dissipation of about 4.2 MW

which requires a cooling system composed of a water flow of 150 m3/h under a pressure of

11 bar at 25◦C . On Figure 2.7, the magnet coil with its cooling system and power supplies are

presented.
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Figure 2.7: The LHCb dipole and its cooling system and power supplies in a transverse view.

2.3.2 The tracking system

2.3.2.a The VErtex LOcator

The VELO has been designed to measure the decay vertex positions of b and c hadrons. A

very good resolution on the primary and the secondary vertices positions and on the charged

tracks momentum are needed to measure lifetimes with precision. The search for Long-

Lived Particles (LLP) is exploiting the high accuracy of the VELO to reconstruct displaced

vertices thanks to this silicon sub-detector surrounding the interaction point. The VELO is

formed of two retractable detector halves composed of 25 stations of silicon sensors build

perpendicularly to the beam direction which measure the radial r and the azimutal φ position

of each tracks coming from the region close to the collision point. A scheme of the VELO

and its stations is shown on the top of Figure 2.8. The longitudinal positions are provided by

the z position of each stations. Each modules is composed of silicon strips dedicated to the

azimutal and radial detection. The VELO sensors are illustrated on Figure 2.9.
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Figure 2.8: The VELO dimensions represented in the plane (x,z) at y=0 illustrations of the open and

closed position.

Chapter 3. The LHC and the LHCb Experiment

of a crossing charged particle. The third spatial coordinate is simply given by the position of

each sensor plane within the experiment. A high precision is required to reconstruct decay

and production vertices of beauty and charmed hadrons in order to measure their lifetimes

and tag their flavor. The VELO is a crucial element on which the search for LLPs strongly relies.

As illustrated on the right plot of Figure 3.7, a module is made of azimuthal and quasi-radial de-

tection strips. Those strips are located from 8 to 41.9 mm in radial distance and the azimuthal

strips are thiner as the radial distance gets smaller.

2008 JINST 3 S08005

Figure 5.1: Cross section in the (x,z) plane of the VELO silicon sensors, at y = 0, with the detector
in the fully closed position. The front face of the first modules is also illustrated in both the closed
and open positions. The two pile-up veto stations are located upstream of the VELO sensors.

5.1.1 Requirements and constraints

The ability to reconstruct vertices is fundamental for the LHCb experiment. The track coordinates
provided by the VELO are used to reconstruct production and decay vertices of beauty- and charm-
hadrons, to provide an accurate measurement of their decay lifetimes and to measure the impact
parameter of particles used to tag their flavour. Detached vertices play a vital role in the High Level
Trigger (HLT, see section 7.2), and are used to enrich the b-hadron content of the data written to
tape, as well as in the LHCb off-line analysis. The global performance requirements of the detector
can be characterised with the following interrelated criteria:

• Signal to noise1 ratio (S/N): in order to ensure efficient trigger performance, the VELO
aimed for an initial signal to noise ratio of greater than 14 [29].

• Efficiency: the overall channel efficiency was required to be at least 99% for a signal to noise
cut S/N> 5 (giving about 200 noise hits per event in the whole VELO detector).

1Signal S is defined as the most probable value of a cluster due to a minimum-ionizing particle and noise N as the
RMS value of an individual channel.
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Figure 5.4: Sketch illustrating the r� geometry of the VELO sensors. For clarity, only a portion
of the strips are illustrated. In the � -sensor, the strips on two adjacent modules are indicated, to
highlight the stereo angle. The different arrangement of the bonding pads leads to the slightly
larger radius of the R-sensor; the sensitive area is identical.

is 38 µm, increasing linearly to 101.6 µm at the outer radius of 41.9 mm. This ensures that mea-
surements along the track contribute to the impact parameter precision with roughly equal weight.

The � -sensor is designed to readout the orthogonal coordinate to the R-sensor. In the simplest
possible design these strips would run radially from the inner to the outer radius and point at the
nominal LHC beam position with the pitch increasing linearly with radius starting with a pitch of
35.5 µm. However, this would result in unacceptably high strip occupancies and too large a strip
pitch at the outer edge of the sensor. Hence, the � -sensor is subdivided into two regions, inner
and outer. The outer region starts at a radius of 17.25 mm and its pitch is set to be roughly half
(39.3 µm) that of the inner region (78.3 µm), which ends at the same radius. The design of the
strips in the � -sensor is complicated by the introduction of a skew to improve pattern recognition.
At 8 mm from the beam the inner strips have an angle of approximately 20� to the radial whereas
the outer strips make an angle of approximately 10� to the radial at 17 mm. The skew of inner and
outer sections is reversed giving the strips a distinctive dog-leg design. The modules are placed so
that adjacent � -sensors have the opposite skew with respect to the each other. This ensures that
adjacent stations are able to distinguish ghost hits from true hits through the use of a traditional
stereo view. The principal characteristics of the VELO sensors are summarized in table 5.1.

The technology utilized in both the R- and � -sensors is otherwise identical. Both sets of
sensors are 300 µm thick. Readout of both R- and � -sensors is at the outer radius and requires
the use of a second layer of metal (a routing layer or double metal) isolated from the AC-coupled
diode strips by approximately 3 µm of chemically vapour deposited (CVD) SiO2. The second
metal layer is connected to the first metal layer by wet etched vias. The strips are biased using
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Figure 3.7: Illustration of the VELO in the (x,z) planes at y = 0 and (x,y). Notice the character-
istics of the open and closed VELO positions. Dimensions of a VELO sensor are given.

The geometrical acceptance of the detector covers a pseudorapidity region of 1.6 < ¥< 4.9 and

each track should at least intersect with three VELO modules to be reconstructed. Due to the

evolution of occupancy in this region, the width of each strip decreases from 101.6 to 38 µm.

A resolution as small as 7 µm can be reached. The temperature of the sensors is controlled

between -10 to 0 ±C by a cooling system. Details on the modules can be found in Figure 3.8.

During beam injection into the LHC, the VELO must be kept into the shadow of the LHCb

Beryllium beam pipe to protect it from damage. Therefore the detector halves can be retracted

by 3 cm, into an open position. This is achieved thanks to a remote controllable positioning

system. It is also important to notice that the detector is isolated from the interaction region

by a thin foil of aluminum (referred as RF-foil) to protect it against RF pickup and the RMS

spread of the beam just after the injection. This RF-foil structure is represented as modeled in

the software simulation tool in Figure 3.9.

3.3.2 The Magnet

A dipole magnet is needed to produce a strong magnetic field in order to bend the charged

particles trajectories to measure their momentum. The integrated magnetic field generated by

the LHCb magnet has a magnitude of 4 Tm for tracks of 10 m length. The measurement covers
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Figure 2.9: Geometry of the VELO sensors in φr and picture of sensors position on one of the two

retractable halves.

At least three VELO stations have to be crossed by the track to be reconstructed in the geomet-

rical acceptance of 1.6 < η< 4.6. The cooling system maintains the VELO, which is located

in an extreme radiation environment, at a temperature between −10 and 0◦C to minimize

radiation-induced effects. RF-boxes of 300µm thick aluminum protects the VELO from the

RF noise induced by the beam and dissociates it from the LHC vacuum. During the protons

injection, the sensors are in the “open“ position to avoid radiation damages. When stable

collisions are established, the sensors are placed in the “closed“ position for data acquisition

as shown in the bottom of Figure 2.8.

The VELO achieves quite impressive performances:
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• The signal to noise ratio (S/N ) ratio is better than 18,

• The best hit resolution is about 4 µm,

• It has a PV resolution of about 13 µm in the (X,Y) plane for 69 µm in the Z coordinate

(for 25 tracks/vertex.

2.3.2.b The Silicon Tracker (ST): The Tracker Turicensis and The Inner Tracker

The Silicon Tracker is make up of the Tracker Turicensis and the Inner Tracker which are made

of silicon microstrips of ∼ 200 µm thick providing a spatial resolution of ∼ 50µm. The TT

stations of dimension 150×130 cm have been build upstream the magnet in four stations of

four detection layers (x-u-v-x) as exposed on Figure 2.10. Its main purpose is to contribute

to the reconstruction of low momentum tracks and of long-lived particles decaying outside

the VELO. Vertical strips composed the first and the last layer while the second and third

layers are made of strips rotated by respectively −5◦ and +5◦. The strip lengths have been

optimized for different regions of the detector to maximize the strip occupancy. Typically, the

hit occupancy of charged particles are 5×10−2 per cm2 in the innermost regions whereas it is

falling to ∼ 5×10−4 per cm2 in the outermost regions.

Figure 2.10: The four detection layers (x-u-v-x) with illustrations of the silicon microstrips.

The Inner Tracker (IT) is composed of three stations of four boxes surrounding the beampipe

where the highest track density is observed (1.5×10−2 to 2×10−3 per cm2) as shown on Figure

2.11.

Approximately 20% of charged particles produced at the collision point hit the IT stations.

19



Chapter 2. CERN and the LHCb experiment

The IT is therefore designed to provide an optimal spatial resolution for region with a high

occupancy and support the radiation damages during a long operation time. Typically, the TT

temperature does not exceed 5◦C while the IT temperature is cooled at −15◦C with C6F14 to

avoid that the induced leakage currents reach a level affecting significantly the signal-to-noise

performance and to minimize the risk of thermal runaway.

2.4. L’expérience LHCb
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Figure 5.23: View of the four IT detector boxes arranged around the LHC beampipe.

Figure 5.24: Layout of an x detection layer in the second IT station.

IT detector modules

An exploded view of a detector module is shown in figure 5.25. The module consists of either one
or two silicon sensors that are connected via a pitch adapter to a front-end readout hybrid. The
sensor(s) and the readout hybrid are all glued onto a flat module support plate. Bias voltage is
provided to the sensor backplane from the strip side through n+ wells that are implanted in the n-
type silicon bulk. A small aluminium insert (minibalcony) that is embedded into the support plate
at the location of the readout hybrid provides the mechanical and thermal interface of the module
to the detector box.

Silicon sensors. Two types of silicon sensors of different thickness, but otherwise identical in
design, are used in the IT.17 They are single-sided p+-on-n sensors, 7.6 cm wide and 11 cm long,
and carry 384 readout strips with a strip pitch of 198 µm. The sensors for one-sensor modules
are 320 µm thick, those for two-sensor modules are 410 µm thick. As explained in section 5.2.4
below, these thicknesses were chosen to ensure sufficiently high signal-to-noise ratios for each
module type while minimising the material budget of the detector.

17The sensors were designed and produced by Hamamatsu Photonics K.K., Hamamatsu City, Japan.
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Figure 5.23: View of the four IT detector boxes arranged around the LHC beampipe.

Figure 5.24: Layout of an x detection layer in the second IT station.

IT detector modules

An exploded view of a detector module is shown in figure 5.25. The module consists of either one
or two silicon sensors that are connected via a pitch adapter to a front-end readout hybrid. The
sensor(s) and the readout hybrid are all glued onto a flat module support plate. Bias voltage is
provided to the sensor backplane from the strip side through n+ wells that are implanted in the n-
type silicon bulk. A small aluminium insert (minibalcony) that is embedded into the support plate
at the location of the readout hybrid provides the mechanical and thermal interface of the module
to the detector box.

Silicon sensors. Two types of silicon sensors of different thickness, but otherwise identical in
design, are used in the IT.17 They are single-sided p+-on-n sensors, 7.6 cm wide and 11 cm long,
and carry 384 readout strips with a strip pitch of 198 µm. The sensors for one-sensor modules
are 320 µm thick, those for two-sensor modules are 410 µm thick. As explained in section 5.2.4
below, these thicknesses were chosen to ensure sufficiently high signal-to-noise ratios for each
module type while minimising the material budget of the detector.

17The sensors were designed and produced by Hamamatsu Photonics K.K., Hamamatsu City, Japan.
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FIGURE 2.6 – Vue en perspective des 4 boîtes d’une des 3 stations de détection de l’IT disposées
autour du beampipe (à gauche) et vue dans le plan (x, y) de la seconde station de détection de
l’IT (à droite).

de micropistes inclinées de -5± et +5± respectivement. Les micropistes de 200 µm de large

apportent une résolution de 58 µm et la simulation a montré qu’une résolution inférieure à 50

µm serait dominée par la diffusion multiple des particules chargées. La température du TT est

maintenue inférieure à -5±C afin de limiter le bruit dû aux radiations. La densité de particules

chargées par événement est de 5 ·10°2/cm2 dans les régions internes et de 5 ·10°4/cm2 dans

les régions externes du TT. L’IT dispose d’un système de refroidissement fonctionnant avec

du C6F14 maintenant une température de -15±C . L’efficacité de détection des détecteurs à

silicium est de 99.8% pour un rapport signal sur bruit égal à 10.

Le LPHE a participé au développement, à la réalisation et à l’installation de l’IT au sein du

détecteur LHCb et est responsable de la maintenance de cette partie du détecteur. Actuelle-

ment, le LPHE travaille sur le développement du futur trajectographe interne qui sera non

plus un détecteur à silicium mais à fibres scintillantes. Nous reviendrons sur le détecteur à

fibres scintillantes dans le chapitre 3.

2.4.4 Le trajectographe externe

Le trajectographie externe (OT) est un détecteur à tubes à dérive. Il détecte le passage des

particules chargées et permet la mesure de la quantité de mouvement de ces particules. Il

couvre la surface du détecteur en complément au trajectographe interne et est présent dans

les stations T1,T2 et T3. Une excellente résolution est nécessaire pour déterminer la masse

invariante des hadrons beaux. A 10 MeV /c2 la résolution relative est d’environ 0.4%.

Chaque station est constituée de 4 couches disposées dans la configuration x °u ° v °x où

les couches x sont constituées de tubes verticaux et les couches u et v sont constituées de

tubes orientés à ±5±. Les tubes sont des tubes à dérive dont le diamètre interne est de 4.9

mm et contiennent un mélange de gaz Argon (70%) et CO2%. Ce mélange de gaz permet une

dérive rapide soit d’environ 50 ns. La résolution est inférieure à 200 µm pour une efficacité

21

Figure 2.11: Representation of the four boxes of an IT station build around the LHC beam bipe with its

dimension in the (x, y) plane.

2.3.2.c The Outer Tracker

The Outer Tracker is a drift-time detector build around the IT in the stations T 1, T 2 and T 3

to measure charged particles track position over a large acceptance area. OT is composed

of an array of gas-straw-tube modules which contains two layers of drift-tubes providing a

very good resolution for the position of the passing particle. As for TT, OT is composed of

four stations arranged in a geometrical configuration x −u − v −x where the first and the last

stations are made of vertical modules while the second and third stations are rotated by −5◦

and +5◦. The counting gas is a mix of Argon (70 %) and CO2 (30 %) allowing a drift time below

50ns. The drift tubes have been aligned up to an accuracy of 100 µm in the x coordinate and

1 mm in the z coordinate. This mechanical alignement of the OT is crucial to provide a single

cell resolution of 200 µm. On Figure 2.12, the whole tracking system composed of the TT

upstream the magnet and the three IT stations surrounded by the OT is presented.
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Monday, August 18, 14

Figure 2.12: Representation of the tracking system composed of the TT and of the three IT stations (ma-

genta) and of the OT (green) in addition with a picture of an OT station in the geometrical configuration

"u".

2.3.2.d Track reconstruction

The reconstruction algorithm uses the hits in the different sub-detectors of the tracking system

to compute the particles trajectory. The algorithm reconstructs the tracks starting from “seeds”

which are track candidates in the VELO regions and the T stations (T1, T2 and T3). The

trajectory is then refitted to deal with multiple scattering and are corrected for energy loss. A

track is reconstructible if it has enough hits in the relevant detectors.

Several type of tracks are categorized and illustrated on Figure 2.13:

• Long Tracks: these tracks with the most precise momentum calculation are passing

through the entire tracking system from the VELO to the T stations (T1, T2, T3),

• Downstream Tracks: these tracks are identified in the TT and the T stations and are

typically from particles decaying outside the VELO (as K 0
s andΛ),

• Upstream Tracks: tracks segment in the VELO and the TT only. These tracks are re-

constructed from low momentum particles deflected by the magnetic field outside the

detector after passing through the RICH1 detector. Cherenkov photons generated by

these tracks are useful to understand the backgrounds in the RICHes,

• VELO Tracks: these tracks are VELO segment only and are often backward tracks used

in the primary vertices reconstruction algorithm,

• T tracks: tracks crossing the T stations T1,T2 or T3 only which is the typical signature of

particles produced by a secondary interaction,
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• Downstream tracks traversing only the TT and the T stations most probably due to

decays of particles outside the VELO acceptance.

• VELO tracks useful for primary vertex reconstruction, they are typically large angle or

backward tracks.

• T tracks are only measured in the T stations
2008 JINST 3 S08005
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Figure 10.1: A schematic illustration of the various track types: long, upstream, downstream,
VELO and T tracks. For reference the main B-field component (By) is plotted above as a function
of the z coordinate.

velocities above threshold. They are therefore used to understand backgrounds in the RICH
particle identification algorithm. They may also be used for b-hadron decay reconstruction
or flavour tagging, although their momentum resolution is rather poor.

• Downstream tracks, traversing only the TT and T stations. The most relevant cases are the
decay products of K0

S and � that decay outside the VELO acceptance.

• VELO tracks, measured in the VELO only and are typically large angle or backward tracks,
useful for the primary vertex reconstruction.

• T tracks: are only measured in the T stations. They are typically produced in secondary
interactions, but are useful for the global pattern recognition in RICH 2.

The track reconstruction starts with a search for track seeds, the initial track candidates [222],
in the VELO region and the T stations where the magnetic field is low. After tracks have been
found, their trajectories are refitted with a Kalman filter [223] which accounts for multiple scatter-
ing and corrects for dE/dx energy loss. The quality of the reconstructed tracks is monitored by the
�2 of the fit and the pull distribution of the track parameters.

The pattern recognition performance is evaluated in terms of efficiencies and ghost rates. The
efficiencies are normalized to the reconstructible track samples. To be considered reconstructible,
a track must have a minimum number of hits in the relevant subdetectors. To be considered as
successfully reconstructed, a track must have at least 70% of its associated hits originating from
a single MonteCarlo particle. The reconstruction efficiency is defined as the fraction of recon-
structible tracks that are successfully reconstructed, and the ghost rate is defined as the fraction of
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Figure 3.23: Magnetic field amplitude in function of the z-coordinate (up) and different track
types (bottom)

To reconstruct a track, the software start with seeds that are the initial track candidates in the

VELO and the T stations where the magnetic field is low. Then the trajectories are refined

using Kalman filters (see for example [13]). The quality of the reconstruction is given by the ¬2

of the fit and the pull distribution of the track parameters. The performance of the pattern

recognition is evaluated in terms of efficiencies and ghost rates.

3.3.10 Stripping

In order to save computing time and avoid treating a too large amount of irrelevant events, the

data are classified and organized according to stripping lines. Each of those lines are dedicated

to specific physics analyses. For instance, the search for new long lived exotic particles has

dedicated stripping lines that selects relevant events for further studies. The stripping lines

are grouped onto "streams" in function of their overlaps. The streams are named Bhadron,

semileptonic, leptonic, PID, dimuon, calibration, radiative, CharmCompleteEvent, charm,

29

Figure 2.13: Definition of the different types of tracks considered by the reconstruction algorithms

together with the amplitude of the magnetic field B as a function of the z coordinate. The VELO and T

tracks used as "seeds" for the tracks reconstruction software are located in regions with low magnetic

field.

2.3.3 Ring Imaging CHerenkov RICH 1 and 2

The RICH detectors RICH1 and RICH2 are dedicated to the detection of Cherenkov photons

emitted by charged particles passing through a medium with a velocity β greater than the

speed of light in this medium. The opening angle of the light cone is related to the speed of

the charged particles which, combined with the momentum measured by the tracking system,

allows to determine the mass of the particles. The light is reflected and focalized by spherical

mirrors and deflected by planar mirrors to the Hybrid Photon Detectors (HPD) which allow to

reconstruct the an image of the Cherenkov rings. The RICH1 and RICH2 information play a key

role at LHCb in the particle identification procedure (PID). On Figure 2.14, the identification

of particles by Cherenkov effect is illustrated in addition with an example of Cherenkov rings.
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hypothesis, it is removed in the next iterations. These modi-
fications to the likelihood minimisation dramatically reduce
the CPU resources required.

The background contribution to the event likelihood
is determined prior to the likelihood algorithm described
above. This is done by comparing the expected signal in
each HPD, due to the reconstructed tracks and their assigned
mass hypothesis, to the observed signal. Any excess is used
to determine the background contribution for each HPD and
is included in the likelihood calculation.

The background estimation and likelihood minimisation
algorithms can be run multiple times for each event. In prac-
tice it is found that only two iterations of the algorithms
are needed to get convergence. The final results of the parti-
cle identification are differences in the log-likelihood values
! logL, which give for each track the change in the over-
all event log-likelihood when that track is changed from the
pion hypothesis to each of the electron, muon, kaon and pro-
ton hypotheses. These values are then used to identify parti-
cle types.

5.2 Performance with isolated tracks

A reconstructed Cherenkov ring will generally overlap with
several others. Solitary rings from isolated tracks provide a
useful test of the RICH performance, since the reconstructed
Cherenkov angle can be uniquely predicted. A track is de-
fined as isolated when its Cherenkov ring does not overlap
with any other ring from the same radiator.

Figure 14 shows the Cherenkov angle as a function of
particle momentum using information from the C4F10 radi-
ator for isolated tracks selected in data (∼2 % of all tracks).
As expected, the events are distributed into distinct bands
according to their mass. Whilst the RICH detectors are pri-
marily used for hadron identification, it is worth noting that
a distinct muon band can also be observed.

Fig. 14 Reconstructed Cherenkov angle as a function of track momen-
tum in the C4F10 radiator

5.3 PID calibration samples

In order to determine the PID performance on data, high
statistics samples of genuine K±,π±, p and p̄ tracks are
needed. The selection of such control samples must be in-
dependent of PID information, which would otherwise bias
the result. The strategy employed is to reconstruct, through
purely kinematic selections independent of RICH informa-
tion, exclusive decays of particles copiously produced and
reconstructed at LHCb.

The following decays, and their charge conjugates, are
identified: K0

S →π+π−, #→pπ−, D∗+ → D0(K−π+)π+.
This ensemble of final states provides a complete set of
charged particle types needed to comprehensively assess the
RICH detectors hadron PID performance. As demonstrated
in Fig. 15, the K0

S, #, and D∗ selections have extremely high
purity.

While high purity samples of the control modes can be
gathered through purely kinematic requirements alone, the
residual backgrounds present within each must still be ac-
counted for. To distinguish background from signal, a likeli-
hood technique, called sP lot [30], is used, where the invari-
ant mass of the composite particle K0

S,#, D0 is used as the
discriminating variable.

The power of the RICH PID can be appreciated by con-
sidering the ! logL distributions for each track type from
the control samples. Figures 16(a–c) show the correspond-
ing distributions in the 2D plane of ! logL(K − π) versus
! logL(p −π). Each particle type is seen within a quadrant
of the two dimensional ! logL space, and demonstrates the
powerful discrimination of the RICH.

5.4 PID performance

Utilizing the log-likelihood values obtained from the con-
trol channels, one is able to study the discrimination achiev-
able between any pair of track types by imposing require-
ments on their differences, such as ! log(K − π). Figure 17
demonstrates the kaon efficiency (kaons identified as kaons)
and pion misidentification (pions misidentified as kaons), as
a function of particle momentum, obtained from imposing
two different requirements on this distribution. Requiring
that the likelihood for each track with the kaon mass hy-
pothesis be larger than that with the pion hypothesis, i.e.
! logL(K − π) > 0, and averaging over the momentum
range 2–100 GeV/c, the kaon efficiency and pion misidenti-
fication fraction are found to be ∼95 % and ∼10 %, respec-
tively. The alternative PID requirement of ! logL(K−π) >

5 illustrates that the misidentification rate can be signifi-
cantly reduced to ∼3 % for a kaon efficiency of ∼85 %. Fig-
ure 18 shows the corresponding efficiencies and misidentifi-
cation fractions in simulation. In addition to K/π separation,
both p/π and p/K separation are equally vital for a large
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Figure 2.14: Left : Cherenkov angle for isolated tracks (Cherenkov ring does not overlap with others)

as a function of the track momentum from the C4F10 radiator. Right : Example of Cherenkov rings at

LHCb. [3]

RICH1 is located upstream the dipole magnet and covers charged particles momentum from

∼ 1 to 60 GeV/c by using the Cerenkov light emitted in the aerogel and C4F10 radiators. RICH2

uses a C F4 radiator and is placed after the T stations where the particles with highest momenta

are found. It covers a momentum range of 15−100 GeV/c. It has a limited angular acceptance

of ±15−120 mr ad horizontally for ±100 mr ad vertically while RICH1 covers the full LHCb

angular acceptance. RICH1 and RICH2 are presented on Figure 2.15.
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Figure 2.15: Representation of RICH1 and RICH2 with the different sets of mirrors and the HPD

detecting the light emitted from particles passing through the medium (Aerogel, C4F10 and C F4).
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Chapter 2. CERN and the LHCb experiment

2.3.4 Electromagnetic and Hadronic CALorimeters

The calorimeters are dedicated to energy and position measurements of electrons, photons

and hadrons. They also provide the transverse energy of hadron, electron and photon candi-

dates for the first trigger level.

The aim of the SPD/PS (Scintillating Pad Detector)/(PreShower) is to select charged particles

and distinguishes charged from neutral particles. The scintillation light of the SPD and PS

is collected using wavelength-shifting (WLS) fibers and are amplified by photomultipliers

(MAPMTs).

The ECAL is composed of alternated scintillating tiles and lead plates readout by WLS fibers

and for an angular acceptance coverage of±25 mr ad to±300 mr ad horizontally for±250 mr ad

vertically. It has been designed to measure 25 radiation lengths for an energy resolution of

aboutσ/E (GeV ) = 10%/
p

(E )⊗1%. The saturation starts when particles depose the equivalent

of ET > 10 GeV in a cell.

The HCAL is made of iron-scintillator samples which are playing the role of absorber and active

materials. As the HCAL is mainly exploited at the trigger level, it measures a hadron interaction

length of about 5.6 λI only while the ECAL is measuring the totality of the electromagnetic

shower. It is build to cover an angular acceptance similar to that of the ECAL for an energy

resolution of σ/E(GeV ) = (69±5)%/
p

(E)⊗ (9±2)%.

The segmentation structure of the SPD/PS, ECAL and the HCAL are presented on Figure 2.16.

The different sections defined in red, blue and yellow for the ECAL and in red and yellow for

the HCAL have been designed to keep a constant occupancy. Indeed, the hit density changes

by two orders of magnitude over the calorimeter surface. The smaller cells are closest to the

beam where the particle density is larger.

3.3. LHCb Experiment
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Figure 6.31: View from upstream of the HCAL detector installed behind the two retracted ECAL
halves in the LHCb cavern (left). A schematic of the internal cell structure (right). The exploded
view of two scintillator-absorber layers illustrates the elementary periodic structure of a HCAL
module.

tiles are interspersed with 1 cm of iron, whereas in the longitudinal direction the length of tiles and
iron spacers corresponds to the hadron interaction length �I in steel. The light in this structure is
collected by WLS fibres running along the detector towards the back side where photomultiplier
tubes (PMTs) are housed. As shown in figure 6.31, three scintillator tiles arranged in depth are in
optical contact with 1.2 mm diameter Kuraray20 Y-11(250)MSJ fibre [145] that run along the tile
edges. The total weight of the HCAL is about 500 tons.

The HCAL is segmented transeversely [146] into square cells of size 131.3 mm (inner section)
and 262.6 mm (outer section). Readout cells of different sizes are defined by grouping together dif-
ferent sets of fibres onto one photomultiplier tube that is fixed to the rear of the sampling structure.
The lateral dimensions of the two sections are ±2101 mm and ±4202 mm in x and ±1838 mm and
±3414 mm in y for the inner and outer section, respectively. The optics is designed such that the
two different cell sizes can be realized with an absorber structure that is identical over the whole
HCAL. The overall HCAL structure is built as a wall, positioned at a distance from the interaction
point of z=13.33 m with dimensions of 8.4 m in height, 6.8 m in width and 1.65 m in depth. The
structure is divided vertically into two symmetric parts that are positioned on movable platforms,
to allow access to the detector. Each half is built from 26 modules piled on top of each other in the
final installation phase. The assembled HCAL is shown in figure 6.31(left). The absorber structure,
shown in figure 6.31 (right), is made from laminated steel plates of only six different dimensions
that are glued together. Identical periods of 20 mm thickness are repeated 216 times in the mod-
ule. One period consists of two 6 mm thick master plates with a length of 1283 mm and a height
of 260 mm that are glued in two layers to several 4 mm thick spacers of 256.5 mm in height and
variable length. The space is filled with 3 mm scintillator.

20KURARAY Corp., 3-10, Nihonbashi, 2 chome, Chuo-ku, Tokyo, Japan.
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Figure 3.18: HCAL detector and, on the right-hand side, a schematic view of its internal cell
structure.

radiation lengths while the HCAL being mainly used by the trigger system measures only 5.6

interaction lengths to meet with space saving purposes. To keep a constant occupancy of the

cells, three regions for the ECAL and two regions for the HCAL of different sections have been

designed in function of their distance to the beam line. The sections are therefore smaller for

the inner part and larger for the outer part of the detector as illustrated by Figure 3.19.
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 121.2 mm cells 
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Figure 6.21: Lateral segmentation of the SPD/PS and ECAL (left) and the HCAL (right). One
quarter of the detector front face is shown. In the left figure the cell dimensions are given for the
ECAL.

6.2.1 General detector structure

A classical structure of an electromagnetic calorimeter (ECAL) followed by a hadron calorimeter
(HCAL) has been adopted. The most demanding identification is that of electrons. Within the
bandwidth allocated to the electron trigger (cf. section 7.1.2) the electron Level 0 trigger is required
to reject 99% of the inelastic pp interactions while providing an enrichment factor of at least 15
in b events. This is accomplished through the selection of electrons of large transverse energy
ET . The rejection of a high background of charged pions requires longitudinal segmentation
of the electromagnetic shower detection, i.e. a preshower detector (PS) followed by the main
section of the ECAL. The choice of the lead thickness results from a compromise between
trigger performance and ultimate energy resolution [122]. The electron trigger must also reject a
background of �0’s with high ET . Such rejection is provided by the introduction, in front of the
PS, of a scintillator pad detector (SPD) plane used to select charged particles. A thin lead converter
is placed between SPD and PS detectors. At Level 0, the background to the electron trigger will
then be dominated by photon conversions in the upstream spectrometer material, which cannot
be identified at this stage. Optimal energy resolution requires the full containment of the showers
from high energy photons. For this reason, the thickness of ECAL was chosen to be 25 radiation
lengths [123]. On the other hand, the trigger requirements on the HCAL resolution do not impose
a stringent hadronic shower containment condition. Its thickness is therefore set to 5.6 interaction
lengths [124] due to space limitations.

The PS/SPD, ECAL and HCAL adopt a variable lateral segmentation (shown in figure 6.21)
since the hit density varies by two orders of magnitude over the calorimeter surface. A segmenta-
tion into three different sections has been chosen for the ECAL and projectively for the SPD/PS.
Given the dimensions of the hadronic showers, the HCAL is segmented into two zones with larger
cell sizes.

All calorimeters follow the same basic principle: scintillation light is transmitted to a Photo-
Multiplier (PMT) by wavelength-shifting (WLS) fibres. The single fibres for the SPD/PS cells are
read out using multianode photomultiplier tubes (MAPMT), while the fibre bunches in the ECAL
and HCAL modules require individual phototubes. In order to have a constant ET scale the gain in
the ECAL and HCAL phototubes is set in proportion to their distance from the beampipe. Since
the light yield delivered by the HCAL module is a factor 30 less than that of the ECAL, the HCAL
tubes operate at higher gain.
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Figure 3.19: (x,y) view of the SPD/PS and ECAL on the left and of the HCAL on the right. Only
one fourth of the detector is depicted. Dimensions of the cells are given on the right-hand side
of the pictures.

The energy resolution of the ECAL is æE /E = 10% ©1% (E in GeV) and its acceptance is ±25

mrad to ±300 mrad horizontally and ±250 mrad vertically. A saturation of the cells appears

when the transverse momentum of the particle initiating the shower is greater or equal to 10

GeV/c.

The HCAL energy resolution is æE /E = (69.5±5%) ©(9±2)% (E in GeV) and its geometrical

acceptance is the same as the one of the ECAL.

25

Figure 2.16: Cells dimensions given for SPD/PS and ECAL (left) and for HCAL (right) presented on

one quarter of the detector in the (x, y) plane.
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2.3. The LHCb experiment

2.3.5 Muon chambers

Muons are detected by the muon system placed at the end of the spectrometer. It consists of

five chambers (M1-M5) of charged particles detectors. The first chamber is placed in front of

the calorimeter system for an improvement of the transverse momentum measurement at the

trigger level. The last four stations are interleaved with Fe absorbers of 80 cm of thickness. As

muons interact weakly with the detector material, they can penetrate through the calorimeter

and Fe absorbers while all the others particles are stopped. A minimal muon momentum of

6 GeV/c only is required to pass through the whole system which corresponds to about 20

radiation lengths.

The muon system which provides a pT resolution of 20% is made of 1380 muon chambers

covering a section of 435 m2 for a geometrical acceptance of 16 to 258 mr ad vertically and of

20 to 306 mr ad horizontally. The five muons chambers in addition with a transverse view of

the muon stations are illustrated on Figure 2.17.

The tracking device is composed of Multi Wire Proportional Chambers (MWPC) and Gas

Electron Multipliers (GEM). Since the interaction rate is high, triple GEM detectors are used

instead of MWPC in the inner region of M1.
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Figure 1: (a) Side view of the LHCb Muon Detector. (b) Station layout with the four regions
R1–R4.

track is first verified in the four stations M2–M5 searching for hits inside suitable fields of interest
(FOI) projective to the interaction point. If this alignment is found, the hits of M2 and M3 stations
are used to predict the track hit position in M1. If the M1 hit nearest to the prediction is found inside
a suitable FOI, this hit and the one in M2 are used to define the track after the magnet deflection.
The direction of such a track, its impact point at the magnet centre and the average pp interaction
point, provide a rough fast measurement of the magnet deflection and the pT used by L0MU. The
information of M1 station, placed in front of the calorimeter material, improves the pT resolution
from ⇠ 35 % to ⇠ 25 %, with respect to what could be obtained using only the 4 downstream
stations. The M1 information is however not helpful in the high level trigger or offline where a
direct matching of the tracks reconstructed making use of the full spectrometer (T-tracks) with the
muon track segment detected in M2–M5 can be performed. The high resolution momentum of the
matched T-track, typically ranging from 0.35 to 0.55 %, is assigned to the muon.

The geometry of the five stations is projective. The transverse dimensions of the stations scale
with their distance from the interaction point. The chambers are positioned to form, across the
stations, adjacent projective towers pointing to the beam crossing position.

The chambers are partitioned into physical channels whose size is constrained by construc-
tional reasons, or by requirements on their electrical capacitance and rate capability that influence
the noise level and dead time of the front end (FE) electronics. Appropriate combinations of phys-
ical channels are performed to build up rectangular logical pads having the x and y sizes required
to obtain the desired performance of muon trigger and offline muon identification.

Each station is divided into four regions with increasing distance from the beam axis as shown
in Fig. 1(b). The linear dimensions of the regions R1, R2, R3, R4, and the size of their logical pads,
scale in the ratio 1:2:4:8 (see Fig. 2). Since the dipole magnet provides bending in the horizontal

trigger where a minimal value of 1.3 Gev/c is required for the geometrical mean of the first largest and the second largest
muon pT found in the event.
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Figure 2.17: Side view of the LHCb Muon Detector (left) with the different stations M1-M5. Each

station is divided in four regions R1−R4 (right) where the size of their logical pads are scaled by the

ratio 1:2:4:8. [4]

2.3.6 The trigger systems

The role of the trigger systems is to reduce the number of recorded events, discarding events

which are not relevant for physics studies. It reduces the beam crossing rate of 40 M H z (but

10 M H z of visible crossing rate) to an acceptable rate for storage (∼ 2 kH z ). The main trigger

decisions are separated in three levels : Level-0 Trigger (L0), High-Level Trigger (HLT)1 and

HLT2.
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Chapter 2. CERN and the LHCb experiment

The L0 processes the data using the information of the hardware components of the LHCb

detector as the VELO, the calorimeters and the muon chambers.

The L0 is considering:

• hadrons, electrons and photons from calorimeter information with the largest ET (L0-

Calorimeter trigger),

• the two highest values of muon transverse momentum pT measured in the muon

chambers (L0-Muon trigger);

In addition, the L0-PileUp trigger of the VELO is used for the determination of the luminosity

by estimating the number of pp interactions in each bunch crossing.

L0 reduces the visible crossing rate from 10 MHz to 1 MHz. The High Level Trigger (HLT) is

a C++ software-only application which has access to the information of events passing L0

decisions (the lines). Those algorithms are based on the same software used for the LHCb

offline data processing. The HLT is composed of two sub-levels. HLT1 reduces the rate from

1 M H z to 43 kH z and refines the L0 decisions by reconstructing particle tracks from the VELO

and T stations hits in combination with requirements on the transverse momentum or impact

parameters of tracks. In addition, it confirms that no charged particles could be associated to

a γ or a π0 candidate in the calorimeters.

Tracks are combined in HLT2 to form composite particles as for the offline analysis but without

refitting tracks by a Kalman filter. HLT2 is performing combination of inclusive and exclusive

algorithms which aim to reconstruct and select the candidates required by the different

analysis performed at LHCb. At this stage, the rate is about 4 kH z and the data is stored for

further analysis. Additional information about the LHCb trigger system and its performance

in 2011 can be found in [39]. The architecture of the LHCb trigger is presented in Figure 2.18.
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3.3. LHCb Experiment

The Level-0 trigger (L0) achieves a rate reduction from 40 to 1 MHz. At this rate, the entire

detector can be read-out. The L0 trigger reconstructs the highest ET hadron, electron and pho-

ton clusters in the calorimeter system and the two highest pT muons in the muon chambers

with a ª20% resolution. In addition, the pile-up system in the VELO estimates the number

of pp interactions in each bunch crossing. This constitutes the three components of the L0

trigger system as illustrated in the Figure 3.21

2008 JINST 3 S08005

VELO MUONSPD/PS 

ECAL+HCAL

2048 2592019420

Figure 7.2: Overview of the Level-0 trigger. Every 25 ns the pile-up system receives 2048 chan-
nels from the pile-up detector, the Level-0 calorimeters 19420 channels from the scintillating pad
detector, preshower, electromagnetic and hadronic calorimeters while the Level-0 muon handles
25920 logical channels from the muon detector.

7.1 Level 0 trigger

7.1.1 Overview

As shown in figure 7.2, the Level-0 trigger is subdivided into three components: the pile-up system,
the Level-0 calorimeter trigger and the Level-0 muon trigger. Each component is connected to one
detector and to the Level-0 DU which collects all information calculated by the trigger systems to
evaluate the final decision.

The pile-up system aims at distinguishing between crossings with single and multiple visible
interactions. It uses four silicon sensors of the same type as those used in the VELO to measure
the radial position of tracks. The pile-up system provides the position of the primary vertices
candidates along the beam-line and a measure of the total backward charged track multiplicity.

The Calorimeter Trigger system looks for high ET particles: electrons, �’s, �0’s or hadrons.
It forms clusters by adding the ET of 2�2 cells and selecting the clusters with the largest ET.
Clusters are identified as electron, � or hadron based on the information from the SPD, PS, ECAL
and HCAL Calorimeter. The ET of all HCAL cells is summed to reject crossings without visible
interactions and to reject triggers on muon from the halo. The total number of SPD cells with a hit
are counted to provide a measure of the charged track multiplicity in the crossing.

The muon chambers allow stand-alone muon reconstruction with a pT resolution of � 20%.
Track finding is performed by processing elements which combine the strip and pad data from
the five muon stations to form towers pointing towards the interaction region. The Level-0 muon
trigger selects the two muons with the highest pT for each quadrant of the muon detector.
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Figure 3.21: Overview of the L0 trigger.

The L0 trigger is full synchronous with the 40 MHz bunch crossing rate. If one or all of the

three L0 components give a positive response, the event is passed to the High Level Trigger

(HLT) sequences. Examples of typical L0 criteria are: at least one cluster in the HCAL with

E hadr on
T > 3.5 GeV or in the ECAL with E∞,e,º0

T > 2.5 GeV or a muon candidate with pµT > 1.2

GeV or pµ1

T +pµ2

T > 1 GeV with µ1,2 being the two muons with the largest pT .

To further reduce the rate from 1 MHz to 5 KHz, the HLT uses the full event information. High

level triggers are C++ applications running on every CPU of up to 2000 computing nodes.

The HLT is divided into "alleys" to refine the L0 candidates. The selections are made based

on confirmation of the precedent trigger stage by requiring tracks in the VELO or T-stations,

with a combination of high pT or large impact parameters. By doing so, the rate is already

lowered to 30 KHz. Then, interesting final states are selected using inclusive or exclusive

criteria. Those criteria are of course less constraining then those of the offline analyses to let

space for adjustments and refinements.

The HLT1, given the 1 MHz rate of L0 and CPU power limitations, uses only part of the full

event data. Its aim is to reconstruct particles corresponding to L0 objects in the VELO and in

27
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Figure 2.18: Architecture of the LHCb trigger : scheme of the Level-0 trigger (left) and diagram of the

three trigger stages with their corresponding reduction rate (right).
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2.3.7 LHCb Software

The LHCb software is based on the open framework GAUDI [40] which provides the tools for

the Monte Carlo generation, the online and offline analysis. The main packages are:

• Gauss: this package manages the generation of Monte Carlo simulation. First, it gener-

ates the physics of the pp collisions and the different decay cascades of the particles in

the event through an event generators usually PYTHIA. The different physical processes

undergone by the generated particles inside the LHCb detector are then simulated with

Geant4 which models the LHCb detector,

• Boole: is dedicated to the digitalisation of the LHCb detector response of each particles

simulated by Gauss. It simulates the signal response of all the sub-detectors and taking

into account the several electronic noises,

• Moore: executes the high level trigger code of the different trigger lines for the HLT itself

and the Monte Carlo simulation,

• Brunel: the outputs from Boole are collected to perform the track reconstruction from

the different hits and from the information given by the calorimeters. The particles

properties as the PID determined from the RICH or the particle momentum are stored

in data summary tape (known as DST) to be processed in offline analysis,

• DaVinci: the data are organized in different streams dedicated to specific analysis in

order to reduce the data storage and the computing time. These Stripping lines are

implemented with the DaVinci software which is also used for the offline analysis. It

provides a large number of tools dedicated to the handling of the physical information

available in the DST.
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3 Search for long-lived particles decay-
ing semileptonically

This section presents the criteria considered for the selection and reconstruction of events

with LLPs. The procedure is subdivided into two main steps. In the first step events with a

displaced high pT muon are selected. For this we exploit dedicated trigger and stripping lines.

Then a displaced vertex is reconstructed by combining charged tracks including the muon.

Simulated events are used to define the analysis criteria and to compute the detection effi-

ciency.

3.1 Events samples considered in this study

Table 3.1 presents a summary of the different set of events used in this analysis. The datasets

collected in 2011 and 2012 correspond to 0.98 fb−1 and 1.98 f b−1 respectively. The signal and

background models have been generated by Pythia 8 and fully simulated by GEANT4 with the

official simulations conditions for the two years.

The SUSY parameters for each simulated signal sample are presented on Table 3.2. At least one

χ̃0
1 and one muon in the enlarged LHCb acceptance 1.5 ≤ η≤ 5 are required. Similar criteria

are applied for the production of the background MC samples.

The main source of background is from bb events. The LHCb standard inclusive b simulation

is ineffective for this analysis which requires a high pT muon. The muon can be produced in a

restrictive portion of the phase space where the b quarks are produced with a large transverse

momentum. Therefore, a special bb production has been done to better match the phase

space of interest, as described in Section 3.1.2. Because of the large computing time required,

this production has been performed only for
p

s = 7 TeV.
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Chapter 3. Search for long-lived particles decaying semileptonically

Table 3.1: Summary of data and full simulation MC (2011 and 2012) sets of events used in this study.

N (year ) is the number of generated events with the simulations conditions for the given year. Mass

units are in GeV/c2. The number of collisions per bunch in the beam settings of the full simulated

samples is ν= 2 for 2011 and ν= 2.5 for 2012. The geometrical acceptance is defined as 1.5 ≤ ηµ ≤ 5.

Set N (2011) N (2012)

LV38 5ps m(χ̃0
1)=38 τ= 5 ps 42.9k 38.7k

LV38 10ps m(χ̃0
1)=38 τ= 10 ps 41.4k 38.9k

LV38 50ps m(χ̃0
1)=38 τ= 50 ps 42.3k 39.0k

LV98 5ps m(χ̃0
1)=98 τ= 5 ps 34.1k 38.2k

LV98 10ps m(χ̃0
1)=98 τ= 10 ps 43.5k 38.3k

LV98 50ps m(χ̃0
1)=98 τ= 50 ps 43.1k 37.9k

LV198 5ps m(χ̃0
1)=198 τ= 5 ps 44.6k 38.0k

LV198 10ps m(χ̃0
1)=198 τ= 10 ps 43.0k 37.7k

LV198 50ps m(χ̃0
1)=198 τ= 50 ps 35.0k 38.1k

W →µν 5M

Z /γ∗ →µµ 2M

W → τν 5M

Z → ττ 1.05M

t t̄ t →bb + 1 lepton(pT > 10GeV /c) 493.2k

Special bb̄ one b in acceptance 1.5 ≤ η≤ 5 214.1k

+ one µ in acceptance, pT (µ) > 12 GeV/c

Data 2011 Reco14 (EW) Strip20r1p1
∫

Ldt = 0.98 f b−1

Data 2012 Reco14 (EW) Strip20r0p1
∫

Ldt = 1.98 f b−1

3.1.1 Signal samples

Table 3.2, presents the SUSY parameters M1, M2, tanβ, µ and mq̃ used to produce the particle

spectrum. All other SUSY parameters are set to their default Pythia values. The masses of

the SUSY particles and therefore the kinematics of the process are determined by the SUSY

parameters together with the lifetime τ of the neutralino which has been chosen to be 5,10

and 50 ps. The efficiencies at generator level, εGen , requiring at least one muon and one LLP

in the LHCb acceptance are of the order of 11% and can be found on Table 3.3.
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3.1. Events samples considered in this study

Table 3.2: SUSY parameters of the models considered. The LLP of the LV model is the lightest

super-partner, the neutralino : χ̃0
1. M1 and M2 are the Pythia parameters RMSS(1) and RMSS(2), mg̃ is

RMSS(3), µ is RMSS(4), tanβ RMSS(5) and mq̃ is RMSS(8-12). Samples with lifetime of 5,10 and 50 ps

have been generated for each mass. The lifetime of the LLP is fixed by hand.

Model M1 M2 mg̃ tanβ µ mq̃ mLLP (GeV /c2)

LV38 40 2000 2000 2.0 1200 1300 38

LV98 100 2000 2000 2.0 1200 1300 98

LV198 200 2000 2000 2.0 1200 1300 198

Table 3.3: Generator efficiency, εGen , (in percent) for events with at least one LLP and one muon

in the LHCb acceptance at
p

s = 7 TeV (2011) and
p

s = 8 TeV (2012) of the different models and the

corresponding lifetime.
PPPPPPPPPModel

τ (ps)
5 10 50

LV38 (2011) 11.08±0.10 11.09±0.07 11.30±0.11

LV98 (2011) 11.00±0.08 11.30±0.19 11.08±0.10

LV198 (2011) 11.07±0.10 11.12±0.10 11.14±0.05

LV38 (2012) 12.15±0.09 12.17±0.10 12.34±0.11

LV98 (2012) 12.09±0.10 12.07±0.10 12.22±0.08

LV198 (2012) 12.07±0.11 12.24±0.11 11.81±0.10

3.1.2 Background samples

The typical signature of massive long-lived particles decaying semileptonically is a displaced

vertex reconstructed with several tracks and a high transverse momentum lepton. Several

types of SM background processes can fake a displaced vertex with a lepton. The following

processes have been identified:

• semi-leptonic decay of b-hadron (QCD background) decaying into a high pT muon and

several tracks,

• idem for c-hadrons,

• muonic decays of W and Z with additional tracks from the PV, for instance,

• t t̄ ,

• “punch-through” hadrons misidentified as muons subsequently combined with other

tracks,

• particle interacting with the detector structure, mainly the RF-shield in the VELO.
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Chapter 3. Search for long-lived particles decaying semileptonically

The interactions with the detector material are discarded by the procedure described in

Section 3.3.3. After that, the main source of background is from QCD processes with b-

hadrons. cc̄ and t t̄ contributions are found to be negligible. W and Z muonic decays are

efficiently discarded by requiring that the muon is non prompt. Note that the high pT muons

coming from the W and Z background share the kinematical properties of the muons from

signal. Therefore these similarities allow to use such decays as control channels.

The punch-trough component can be removed by requiring a maximal fraction of energy

deposit by the muon candidate in the calorimeters [41].

3.1.2.a Special bb production

The aim of the special generation of bb events is to provide a simulated set with kinematic

properties similar to the signal. A study has been made to optimize a cut on the partonic p̂T of

the generation process. The corresponding distribution in Pythia is shown in Figure 3.1. Only

quarks with a relatively large p̂T can produce high energy hadrons subsequently decaying

into high-pT muons. The MC generator efficiency has been maximized while preserving

the coverage of the kinematical properties of bb as required by the present analysis. The

minimal value of p̂T has been determined at the generator level by computing the generator

cross-section times the fraction εg en of events satisfying some basic analysis criteria:

• a muon of pT > 12 GeV/c in the pseudorapidity window η ∈[1.5,5],

• and a b-hadron with pT > 2 GeV/c also in η ∈[1.5,5],

Figure 3.2 shows the evolution of εg en ×σ (cross-section) as a function of p̂T which is quite

flat up to p̂mi n
T ∼ 20 GeV/c. Therefore, this value has been chosen for the production of the

special bb MC sample.

htemp
Entries  35253
Mean   1.152e+04
RMS      6790

Pt Parton (MeV/c)
0 10000 20000 30000 40000 50000 60000 700000

1000

2000

3000

4000

5000

6000

7000

htemp
Entries  35253
Mean   1.152e+04
RMS      6790

Thursday, January 16, 14

Figure 3.1: Pythia p̂T distribution for bb generation.
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Figure 3.2: Cross-section times the fraction of events εg en with a muon of pT > 12 GeV/c and a

b-hadron in the LHCb enlarged geometrical acceptance η ∈[1.5,5], as a function of the p̂mi n
T .

The generator efficiency for the special sample is (9.29±0.11)·10−4. The p̂mi n
T cut improves this

efficiency by a factor of about 105 in comparison with the standard inclusive bb̄ simulation.

In the following, for the prediction of the bb̄ background yield we consider the total inclusive

value of σ(pp → bbX ) =σbb
i ncl = 288±4±48 µb measured by LHCb [42]. As previously stated

we do not have MC samples at 8 TeV. From an estimate done with the Pythia generator, the

cross-section is about 20% larger than at 7 TeV, allowing a simple extrapolation.

3.2 Characteristics of the signal from MC truth (generator-level stud-

ies)

For neutralino masses of 38 and 98 GeV/c2, the branching ratio of χ̃0
1 → µ+qi q j (µ−q̄i q̄ j ) is

8.3 % for each quark composition (qi = u,c and q j = d̄ , s̄, b̄) with 50% of µ+ and µ−. A small

contribution of qi = t (0.02%) arises for models with neutralino mass of 198 GeV/c2.

Some kinematical properties provided by the 4-vector information of the LLP and the associ-

ated muon can be found in the Figures from 3.3 to 3.6, for the different neutralino masses and

lifetime.

Figure 3.3 shows the pT , the isolation variable and the impact parameter to the Primary

Vertex (PV) of the muon. The muon isolation is defined as the sum of the energy of tracks

surrounding the muon in a cone build in the (η,φ) space of radius RηΦ = 0.3 divided by the

energy of the muon track (a value of one denotes a fully isolated muon). Because of the high

masses of the LLPs the muon is expected to be more isolated on average in comparison with

muons coming from the background due to b-hadrons decays. The impact parameter of the
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Chapter 3. Search for long-lived particles decaying semileptonically

muon with respect to the associated primary vertex is shown for different lifetime of the LLP.

This parameter distinguish LLP muons from muons coming from W and Z decays.

Figure 3.4 shows the flight distance of the LLP defined as the distance between the associated

primary vertex and the decay position of the LLP. On Figure 3.5 the radial distance to the z

axis and the z decay position of the LLP are presented. The radial distance is a key variable for

the displaced vertices reconstruction algorithm implemented for this analysis. By requiring a

minimal radial distance of the vertex, the prompt background component can be discarded.

This is the case for W and Z decays.

The reconstructed transverse momentum of the LLP is shown on Figure 3.6 together with the

mass of the LLP. To get closer to the analysis conditions, only charged stable particles falling

inside the LHCb acceptance have been considered for this reconstruction.
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Figure 3.3: Properties of the muon coming from the LLP. Top: transverse momentum of the muon in

the LHCb acceptance. Bottom left: isolation variable of the muon. Bottom right: impact parameter of

the muon with respect to the associated primary vertex.
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Figure 3.4: Flight distance of the LLP for several masses (left) and different lifetime for LV38 (right).
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Figure 3.5: Geometrical properties of the LLP decay vertex for several masses (left) and different

lifetime for LV38 (right): Top: radial distance to the Z axis, bottom: Z decay position of the LLP.
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Figure 3.6: Transverse momentum of the LLP (top). Mass of the LLP reconstructed with the stable

charged daughters in the LHCb acceptance (bottom left). Number of stable charged daughters in the

LHCb acceptance (bottom right).
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3.3. Data selection

3.3 Data selection

3.3.1 Trigger and Stripping algorithms

The selection applied at the trigger and the stripping level are summarized on Table 3.4.

Events are required to pass the L0Muon, Hlt1SingleMuonHighPT,

Hlt2SingleMuonHighPT and finally the StrippingLLP2MuXHighPTHighIPMuon. The strip-

ping algorithm is part of the Electro-Weak (EW) stripping 20r1p1 for 2011 data (incremental

restripping of 2011 data with the reconstruction Reco14) and stripping 20r0p1 for 2012. It

asks for a muon with a minimum transverse momentum of 12 GeV/c and a minimum impact

parameter with respect to the best primary vertex of 0.25 mm in the event.

Table 3.4: Summary of the selection criteria applied on the muon at the

Hlt1SingleMuonHighPTDecision, Hlt2SingleMuonHighPTDecision and

StrippingLLP2MuXHighPTHighIPMuonLine level.

Track pT I P

Hlt1SingleMuonHighPTDecision χ2/nDoF < 3 pT > 4.8 GeV/c X

Hlt2SingleMuonHighPTDecision X pT > 10 GeV/c X

StrippingLLP2MuXHighPTHighIPMuon X pT > 12 GeV/c I P > 0.25 mm

The efficiency of the trigger and stripping is determined from the Monte Carlo signal samples.

The results are summarized on Table 3.5 , 3.6 and 3.7 for
p

s = 7 TeV (2011) and on Table 3.8 ,

3.9 and 3.10 for
p

s = 8 TeV (2012). The systematic uncertainties on the selection efficiency

induced by the trigger and the stripping have been estimated with Z → µ+µ− events as

presented in Section 3.5.

Table 3.5: Trigger and stripping efficiencies in percent for signal models with a mass of 38 GeV/c2

at
p

s = 7 TeV. The uncertainties are statistical. Hlt1, Hlt2 and Stripping is refering to

Hlt1SingleMuonHighPTDecision, Hlt2SingleMuonHighPTDecision and

StrippingLLP2MuXHighPTHighIPMuonLine.

LV 38,5ps LV 38,10ps LV 38,50ps

L0Muon 81.13±0.19 81.38±0.19 80.96±0.19

Hl t1 57.98±0.26 55.34±0.27 37.70±0.26

Hl t2 78.92±0.29 79.22±0.30 77.39±0.37

Str i ppi ng 49.59±0.42 61.72±0.38 70.78±0.65

Total 18.42±0.19 22.02±0.20 16.72±0.18
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Table 3.6: Same as Table 3.5 for signal models with a mass of 98 GeV/c2.

LV 98,5ps LV 98,10ps LV 98,50ps

L0Muon 83.72±0.20 83.41±0.18 83.69±0.18

Hl t1 62.27±0.29 60.06±0.26 43.80±0.26

Hl t2 82.90±0.28 82.97±0.25 82.86±0.30

Str i ppi ng 53.24±0.30 66.57±0.37 76.51±0.63

Total 23.01±0.23 27.67±0.21 23.24±0.20

Table 3.7: Same as Table 3.5 for signal models with a mass of 198 GeV/c2.

LV 198,5ps LV 198,10ps LV 198,50ps

L0Muon 85.45±0.17 85.65±0.17 85.11±0.19

Hl t1 62.98±0.25 60.02±0.26 42.28±0.29

Hl t2 89.47±0.20 89.71±0.20 88.95±0.28

Str i ppi ng 62.43±0.52 73.75±0.34 83.76±0.61

Total 30.06±0.22 34.01±0.23 26.81±0.22

Table 3.8: Trigger and stripping efficiencies in percent for signal models with a mass of 38 GeV/c2

at
p

s = 8 TeV. The uncertainties are statistical. Hlt1, Hlt2 and Stripping is refering to

Hlt1SingleMuonHighPTDecision, Hlt2SingleMuonHighPTDecision and

StrippingLLP2MuXHighPTHighIPMuonLine.

LV 38,5ps LV 38,10ps LV 38,50ps

L0Muon 81.53±0.20 81.79±0.20 81.50±0.20

Hl t1 60.12±0.28 56.35±0.28 37.80±0.27

Hl t2 80.66±0.29 80.33±0.30 79.50±0.37

Str i ppi ng 52.61±0.34 64.04±0.42 71.37±0.66

Total 20.80±0.21 23.71±0.22 17.48±0.19

Table 3.9: Same as Table 3.8 for signal models with a mass of 98 GeV/c2.

LV 98,5ps LV 98,10ps LV 98,50ps

L0Muon 84.28±0.19 84.12±0.19 84.25±0.19

Hl t1 63.05±0.27 60.53±0.27 43.61±0.28

Hl t2 84.50±0.25 84.84±0.26 84.85±0.30

Str i ppi ng 56.23±0.32 68.06±0.40 77.88±0.60

Total 25.25±0.22 29.40±0.23 24.28±0.22
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3.3. Data selection

Table 3.10: Same as Table 3.8 for signal models with a mass of 198 GeV/c2.

LV 198,5ps LV 198,10ps LV 198,50ps

L0Muon 85.98±0.17 86.02±0.18 85.52±0.18

Hl t1 63.53±0.25 61.16±0.26 43.25±0.27

Hl t2 90.36±0.20 90.45±0.21 90.52±0.25

Str i ppi ng 62.74±0.31 74.94±0.39 85.00±0.61

Total 30.97±0.24 35.66±0.25 28.46±0.23
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Chapter 3. Search for long-lived particles decaying semileptonically

3.3.2 Preliminary event selection (preselection)

The preselection initially identifies events with at least one muon firing the trigger and strip-

ping lines, adding quality cuts to remove background coming from mis-identified muons

or muons badly reconstructed. Then a displaced vertex is reconstructed with several tracks

including the preselected muon. Global event cuts and a "Matter Veto" (MV) have been added

to the vertex selection to discard "beam-splash" events and vertices produced by the particle

interacting with the detector material. In the following two sections, the preselection criteria

are described in details as well as the properties of the selected events.

3.3.2.a Muon preselection

In addition to a minimal transverse momentum and a minimal impact parameter required at

the stripping level, loose quality cuts are applied. To discard kaons or pions punching through

the calorimeters and being mis-identified as muons, the corresponding energy deposit in the

calorimeters is considered. This selection is similar as that described in the W →µν analysis

[43].

In summary, the muons selected at this stage have:

• pµ

T > 12 GeV/c (stripping)

• Impact parameter (Impact Parameter (IP)) of the muon with respect to the best PV :

I P > 0.25 mm (stripping)

• Error on the muon momentum divided by the momentum: σ(Pµ)/Pµ < 0.05

• Quality of the muon track: χ2/DoF < 2

• (EEcal +EHcal )/Pµ < 0.04

Figure 3.7 shows the muon properties of events after trigger and stripping. The distribution

from the 2011 dataset are compared to the MC signal model LV 38 10ps and to the bb̄ sim-

ulated sample. The bb̄ distributions and the data are very close. As discussed in Section

3.3.4, displaced muons with a poor isolation coming from bb̄ events are the main source of

background.

No stronger selection has been made on the muon isolation to preserve enough background

events in a signal free region: this is necessary for the two signal determination techniques

described in Section 3.4.

The distributions for 2011 and 2012 of different muon properties are compared on Figure 3.8

as well. Given the small difference in
p

s the distributions coincide.
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Figure 3.7: Distributions of the muon variables for the 2011 dataset, compared to simulated bb̄ and to

the MC signal LV 38 10ps, for events after trigger and stripping. Top left: Muon impact parameter with

respect to the best primary vertex. Top right : E (Ecal )/Pµ+E (Hcal )/Pµ. Bottom left : Muon isolation.

Bottom right : muon transverse momentum. The distributions are normalized to unity.
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Figure 3.8: Like Figure 3.7, comparison between 2011 and 2012 data.
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Chapter 3. Search for long-lived particles decaying semileptonically

3.3.2.b The reconstruction of primary and secondary vertices

This section presents the procedure implemented to identify secondary vertices in the event.

This algorithm is the same used for the search for Higgs-like bosons decaying into a pair of

long-lived exotic particles but tuned for this specific analysis, as originally presented in [6].

The same sequence of algorithms is used for Primary Vertices (PV), and for secondary ver-

tices reconstruction. The two consecutive steps executed to select Reconstructed Vertices

(Reconstructed Vertices (RV)) are summarized hereby. The algorithms rely on fully recon-

structed tracks.

In the first step an algorithm (PVSeed3DTool) creates seeds by looking for points in the VELO

with a sufficient number of tracks passing close to each others. It starts from a track, called

base track, and determines the number of tracks with a distance of closest approach (Distance

of Closest Approach (DOCA)) smaller than 0.3 mm. If the number of close tracks is smaller

than 4, another base track is considered. Then, for every track pair, the average point of

closest approach (Point of Closest Approach (POCA)) is calculated and an average is made in

a two-steps procedure. POCA with distance larger than 3 mm to the mean are removed and

the calculation is done again. A weight is then associated to each POCA entry, taking typical

track parameter errors and opening angle of the track into account. When the number of close

tracks with maximal z spread distance exceeds the minimal number of close tracks required,

the seed is accepted. The tuning of this procedure is designed to maximize the efficiency,

allowing for some fake seeds. This have been proven not to affect much the performance of

the PV reconstruction [44]. The second step consists on an adaptive least square fit performed

by LSAdaptPV3DFitter from the combination of seeds. The procedure has been developed

to avoid systematic shifts of the PV due to a fraction of badly measured tracks (ghosts and

multiple scattering effects). An adaptive weight least square method, the Tukey biweight

method, is used to assign a (1−χ2
I P /C 2

T )2 weight to a track according to its χ2
I P . CT is the

Tukey constant. The procedure requires a minimum number of tracks (generally 5 for primary

and 3 for displaced vertices) with a maximum χ2 (typically 9) and a minimum track weight

of 1×10−8. Afterwards, tracks that have a maximum χ2 larger than 25 are removed from the

list used for further vertex searches. It has to be noticed that the online version relies on

straight-line extrapolation of tracks and makes less use of tracks uncertainties. This results in a

poor efficiency for vertices further than 200 mm of the interaction point, very weakly affecting

the detection efficiency for the models considered in this work (compare to Figure 3.5, for

instance). The selection of the PVs is done by requiring for each candidate:

• at least 10 tracks

• at least one forward track and one backward track

• a radial distance distance not larger than 0.3 mm from the reconstructed beam position,

and |z| < 400 mm.

42



3.3. Data selection

3.3.2.c Displaced vertex preselection

Once the set of PVs identified, all the other RVs are candidates for the decay position of LLPs.

The beam-line position is given by the VELO position in the beginning of each run. The

position recorded in 2011 data is illustrated in Figure 3.9, showing an average displacement in

the x coordinate of 0.46 mm (0.61 mm for 2012 data).

The event preselection requires at least one PV in the event and at least one LLP candidate

with:

• at least 4 forward tracks including the preselected muon;

• no backward tracks;

• an invariant reconstructed mass from tracks larger than 4.5 GeV/c2;

• The MV is activated to reconstruct LLP candidates outside the detector material. The

Matter-Veto is a geometrical cut which removes vertices falling inside the detector

structure as described in Appendix C of [6];

a minimum number of tracks (generally 5 for primary and 4 for displaced vertices) with224

a maximum �2 (typically 9). Afterwards, tracks that have a maximum �2 larger than 25225

are removed from the list used for further vertex searches. It has to be noticed that the226

online version relies on straight-line extrapolation of tracks and makes less use of tracks227

uncertainties. This results on a poor e�ciency for vertices further than 200 mm of the228

interaction point, very weakly a↵ecting the detection e�ciency for the models considered229

in this work (compare to Figure 2, for instance).230
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Figure 7: X and y positions of the reconstructed primary vertices obtained after the R< 0.3
mm cut.

The selection of the PVs is done by requiring for each candidate:232

• at least 10 tracks233

• at least one forward track and one backward track234

• a radial distance R not larger than 0.3 mm from the reconstructed beam position,235

and |z| < 400 mm.236

Once the set of PVs identified, all the other RVs are candidates for the decay of LLPs.237

Primary and LLP vertices are distinguished by the radial distance R with respect to238

the beam-line position. The beam-line position is given by the VELO position in the239

beginning of each run. The position recorded in 2011 data is illustrated in Figure 7,240

showing the average displacement in the x coordinate of 0.46 mm.241

5.2 Trigger and stripping242

For the present study there are no dedicated L0 and HLT1 lines. The simulation indicates243

that the L0Hadron line covers 92% e�ciency for the BV48 signal and 97% for BV35, see244

Section 7.1.c. For HLT1 the full signal acceptance can be obtained by the sum of TrackAll245

and TrackMuon. Similar conditions are valid for the bb background. A comparison of the246

retention fractions in Data and MC are given in Section 7.1.c.247

Specific HLT2 and Stripping lines have been designed to select couples of LLPs (“Dou-248

ble” lines), with the parameters shown in Table 5. The stripping line is part of the249

14

Monday 9 February 15

Figure 3.9: x and y positions of the reconstructed primary vertices obtained after the R < 0.3 mm cut

for 2011 data.

3.3.3 Properties of the selected vertices, the matter veto

Figures 3.10 and 3.11 show the distributions of the longitudinal and of the radial position

of the RVs, and Figure 3.12 the (x,z) scatter plot with and without MV. The position of the

detector material is clearly visible: the region beyond R ∼ 5 mm is heavily polluted by the

products of particles interacting with matter. The MV procedure removes such background

discarding RVs falling in the detector material.
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Figure 3.10: From preselected 2011 data, the longitudinal (left plot) and radial (right plot) coordinates

(lab frame) of the reconstructed secondary vertices with at least four forward tracks including the

preselected muon, no backward tracks, and an invariant mass larger than 4.5 GeV/c2 without MV.
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Figure 3.11: Like Figure 3.10, for preselected 2012 data.
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Figure 3.12: Like Figure 3.10, position of the reconstructed vertices in coordinates (x,z) (lab frame).

The data are presented by categorizing events kept after the MV procedure (in red) and events removed

by the MV (in blue). Left: from the 2011 dataset. Right: from the 2012 dataset.

As discussed in [6] and [5], special "global event cuts" have been set to remove events coming

from interactions of the beam-halo with the material upstream or downstream of the VELO

that increases the number of fake RVs at large distance from the beam. This effects is known

as "beam-splash" events.
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3.3. Data selection

First, a cut is requiring that the number of VELO tracks does not exceed one-tenth of the

number of VELO clusters to avoid too much near-parralel tracks reconstructed from the large

number of hits in the polluted region. Secondly, as the hits associated to the beam-splash

particles are close in φ in the VELO, a vector sum in the transverse plane has been defined:

Dφ =
∑

φ hits i

(
cosφi

sinφi

)
(3.1)

where the sum runs over all hits in VELO φ-strips and φi is the direction of the strip. The

distributions of the quantity is illustrated in Figure 3.13. To reject beam-splash events we

require that ‖Dφ‖ < 250. The selection leaves the signal efficiency quasi unmodified.
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Figure 3.13: Distribution of ‖Dφ‖ in simulated events (black) and 2011 data selected for the displaced

vertex analysis (red and blue). The vertical line corresponds to the cut applied in the analysis.

After applying the MV filter, most of the structure has disappeared but not completely, most

likely because of reconstruction errors, as shown on Figure 3.14. Note that at this point of the

analysis no minimal radial distance to the beam line is applied. The vertex reconstruction

efficiency has been tested on B 0 → J/ψK ∗0 events and the discrepancy between data and

Monte Carlo have been taken into account as a systematics effect on the selection efficiency

for the different signal models. This study is presented on Section 3.5.2.

45



Chapter 3. Search for long-lived particles decaying semileptonically
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Figure 3.14: Like Figure 3.12 but for events selected after the MV procedure. Left: 2011 dataset. Right:

2012 dataset.
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3.3. Data selection

3.3.4 Situation after the preselection, background studies

In this section, the properties of the preselected and MV filtered events are presented. The

results are compared to the background and signal predictions.

The number of events after the displaced vertex reconstruction are shown on Table 3.11 for the

2011 and 2012 datasets. The number of events with positive and negative muon candidates

are also given. The number of expected events for the different simulated background samples

are also given in the table for the year 2011. Table 3.12 shows that less than 1 % of events have

more than one candidate in data and also in the background sets. 4–5% of the signal events

contain more than one candidate. In the following, when more than one candidate is present

in the event, the one with the highest pT muon is chosen.

Table 3.11: Number of preselected events for each background MC sample,
p

s = 7 TeV,
p

s = 8 TeV,

and the number of expected background events in 2011. The values for LV38 10 ps are also reported.

The last line is for the 2012 dataset.
Sample Generated N (µ+) N (µ−) Total Expected (0.98 f b−1)

LV38 10 ps 45 k 1124 1070 2194

Special bb 214.4 k 75 90 165 18147±3566

W →µν 5 M 911 617 1528 539±60

Z →µµ 2.0 M 194 192 386 52±6

W → τν 5 M 39 16 55 19±4

Z → ττ 1.05 M 13 8 21 5±2

tt 509.6k 2 3 5 < 0.1

2011 data 10945 10551 21496 (18.8±3.6) ·103

2012 data 30667 30211 60878

Table 3.12: Fraction of events with more than one candidate.
Sample Fraction

LV models (
p

s = 7 TeV ) (3.6−5.5) %

LV models (
p

s = 8 TeV ) (3.9−6.1) %

Special bb, W and Z < 1 %

2011 and 2012 data < 1 %

The observed asymmetry between µ+ and µ− in the W →µν events results from the produc-

tion processes of the W bosons dominated by ud̄(ūd) →W +(W −). Therefore, the production

cross-section is larger for W + in pp collisions because of the proton valence quark composi-

tion (two quarks u and one quark d).

The (18.8±3.6) ·103 background events predicted are compatible with the number of events
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Chapter 3. Search for long-lived particles decaying semileptonically

recorded in 2011. As expected, the background is highly dominated by bb events (QCD

background) with a small contributions from W and Z bosons. We remember that the special

bb sample has been generated with a p̂T > 20 GeV/c required to increase the probability to

find a high pT muon in the b-hadron decays. In the following, the numerical value of this

prediction is not used because the background yield will be estimated from the data itself.

Only the background distribution shapes will be used as prototypes.

The prediction for the 2012 dataset is obtained by considering a cross-section 20% larger than

the corresponding value at 7 TeV. (44.1±8.8) ·103 bb events at
p

s = 8 TeV are estimated, close

to the 60.8k events observed.

On Figure 3.15 and 3.16, several distributions of the preselected events are presented for the

2011 dataset in comparison with the different sources of background. As an example of signal,

the distribution of LV 38(τ= 10 ps) is displayed as well.
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Figure 3.15: Distributions from 2011 data compared to simulated events, after preselection. Top left:

muon transverse momentum Top right: the muon impact parameter with respect to the best primary

vertex. Bottom left: the reconstructed mass of the displaced vertex computed with the outgoing tracks.

Bottom right: muon isolation. The distribution are normalized to unity.
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Figure 3.16: Distributions from 2011 data compared to simulated events, after preselection. Top left:

the number of tracks that have been used to reconstruct the vertex including the muon. Top right: the

radial distance R to the beam line of the reconstructed vertex. Bottom left: the longitudinal vertex fit

error. Bottom right: the radial vertex fit error. The distribution are normalized to unity.

From Figure 3.15, we see that the majority of the signal has an isolation variable peaked at 1

which is not the case for tracks from b hadrons. This effect is also highlighted on the plots of

the vertex fit radial and longitudinal errors provided by the vertex reconstruction algorithm.

Light boosted particles will produce close parallel tracks, producing a worse fit quality than

the vertex reconstructed with more diverging tracks from a heavier particles. It is important to

note that at this stage of the analysis no selections has been applied on the radial distance R

of the reconstructed LLP vertex from the beam line.

The background can be divided in two categories, taking the muon isolation and the LLP

vertex radial distance as parameters:

• Displaced vertex reconstructed with a non-isolated muon: mainly the QCD background,

• Prompt and well isolated muons are the signature of W or Z decays.

The background associated to W or Z bosons can be easily removed by asking a minimal

value of R. Choosing R > 0.55 mm, the results of Table 3.14 are obtained. In practice only bb

events remain after this selection. On Figure 3.19 and 3.20, simulated bb events are compared

to the 2011 data after the minimal displacement requirement. The distributions are consistent

with a pure bb background.
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Chapter 3. Search for long-lived particles decaying semileptonically

On table 3.14, the selection criteria applied at this stage of the analysis are summarized. The

contributions of the different step of the analysis to the selection efficiency are presented on

Table 3.15, 3.16 and 3.17 for the different signal models considered at
p

s = 7 TeV (2011) and

on table 3.18, 3.19 and 3.20 for
p

s = 8 TeV (2012). The statistics for the 2011 and 2012 datasets

are given in Table 3.21.

Figures 3.17 and 3.18 compares the distributions from the 2011 datasets to the same from the

2012 dataset. No substantial difference is visible.

Table 3.13: Number of events after the radial cut (R > 0.55 mm) in data and in the simulated sets, for

2011. The results from the 2012 dataset are also given.

Sample Generated Total Expected (2011)

LV38 10 ps 45 k 2083

Special bb 214.4 k 135 14848±3297

W →µν 5M 11 4±2

Z →µµ 2.0M 5 2±1

W → τν 5M 3 1±1

Z → ττ 1.05M 3 1±1

tt 509.6k 0 < 0.01

2011 data 18925 14852 ±3297

2012 data 53331

Table 3.14: Summary of the preselection criteria.

Variable Value

Muon preselection pµ

T > 12 GeV/c

I Pµ > 0.25 mm

χ2/DoF of the µ track < 2

σ(Pµ)/Pµ < 0.05
E(Ecal (µ))

Pµ + E(Hcal (µ))
Pµ < 0.04

Displaced vertex preselection N tr ack including µ ≥ 4

mLLP reconstructed ≥ 4.5 GeV/c2

Backward tracks No

MV active

Number of PV upstream of the RV ≥ 1

Additional selection (intermediate) R to the beam line ≥ 0.55 mm
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3.3. Data selection

Table 3.15: Summary of the selection efficiencies (in percent) at the the different stage of the analysis

for model with a LV model with a neutralino mass of 38 GeV/c2 at
p

s = 7 TeV (2011).

Selection stages LV 38,5ps LV 38,10ps LV 38,50ps

Generator cut 11.08±0.10 11.09±0.07 11.30±0.11

Trigger and Stripping selection 18.42±0.19 22.02±0.20 16.72±0.18

Displaced Vertex Reconstruction 48.07±0.56 50.95±0.52 51.07±0.59

MV 86.93±0.55 79.37±0.59 65.39±0.79

Muon quality cuts 81.00±0.68 79.75±0.66 80.15±0.81

R > 0.55 mm 93.81±0.47 95.74±0.37 97.09±0.38

Total 0.65±0.03 0.75±0.04 0.49±0.02

Table 3.16: Summary of the selection efficiencies (in percent) at different stage of the analysis for

signal models with a neutralino mass of 98 GeV/c2 at
p

s = 7 TeV (2011).

Selection stages LV 98,5ps LV 98,10ps LV 98,50ps

Generator cut 11.00±0.08 11.30±0.19 11.08±0.10

Trigger and Stripping selection 23.01±0.23 27.67±0.21 23.24±0.20

Displaced Vertex Reconstruction 34.77±0.54 37.48±0.44 38.02±0.49

MV 96.22±0.37 91.50±0.42 76.06±0.69

Muon quality cuts 85.52±0.70 86.22±0.54 85.89±0.64

R > 0.55 mm 85.35±0.75 89.96±0.50 93.84±0.57

Total 0.61±0.03 0.81±0.04 0.60±0.03

Table 3.17: Like 3.16, for a neutralino mass of 198 GeV/c2 at
p

s = 7 TeV (2011).

Selection stages LV 198,5ps LV 198,10ps LV 198,50ps

Generator cut 11.07±0.10 11.12±0.10 11.14±0.05

Trigger and Stripping selection 30.06±0.22 34.01±0.23 26.81±0.22

Displaced Vertex Reconstruction 25.61±0.58 27.52±0.37 28.95±0.43

MV 99.04±0.17 95.20±0.34 78.79±0.72

Muon quality cuts 87.88±0.56 87.64±0.53 87.46±0.65

R > 0.55 mm 83.83±0.67 88.91±0.54 95.04±0.49

Total 0.62±0.02 0.76±0.03 0.56±0.02
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Table 3.18: Like 3.16, for a neutralino mass of 38 GeV/c2 at
p

s = 8 TeV (2012).

Selection stages LV 38,5ps LV 38,10ps LV 38,50ps

Generator cut 12.15±0.09 12.17±0.10 12.34±0.11

Trigger and Stripping selection 20.80±0.21 23.71±0.22 17.48±0.66

Displaced Vertex Reconstruction 51.85±0.56 56.25±0.52 55.49±0.60

MV 84.97±0.55 77.15±0.59 64.11±0.78

Muon quality cuts 79.93±0.68 78.90±0.65 78.20±0.84

R > 0.55 mm 95.22±0.40 96.60±0.32 97.36±0.38

Total 0.84±0.02 0.95±0.02 0.58±0.01

Table 3.19: Like 3.16, for a neutralino mass of 98 GeV/c2 at
p

s = 8 TeV (2012).

Selection stages LV 98,5ps LV 98,10ps LV 98,50ps

Generator cut 12.09±0.10 12.07±0.10 12.22±0.08

Trigger and Stripping selection 25.25±0.22 29.40±0.23 24.28±0.22

Displaced Vertex Reconstruction 40.62±0.50 43.78±0.47 43.04±0.52

MV 96.27±0.30 89.90±0.43 76.03±0.69

Muon quality cuts 85.77±0.57 85.65±0.53 84.67±0.66

R > 0.55 mm 86.04±0.61 90.57±0.47 95.05±0.43

Total 0.88±0.02 1.09±0.02 0.78±0.02

Table 3.20: Like 3.16, for a neutralino mass of 198 GeV/c2 at
p

s = 8 TeV (2012).

Selection stages LV 198,5ps LV 198,10ps LV 198,50ps

Generator cut 12.07±0.11 12.24±0.11 11.81±0.10

Trigger and Stripping selection 30.97±0.24 35.66±0.25 28.46±0.23

Displaced Vertex Reconstruction 31.89±0.43 34.72±0.41 34.51±0.46

MV 98.77±0.18 94.34±0.34 78.37±0.67

Muon quality cuts 87.50±0.54 88.09±0.49 87.27±0.62

R > 0.55 mm 83.28±0.66 90.15±0.48 95.62±0.40

Total 0.86±0.02 1.13±0.02 0.76±0.02
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Table 3.21: Number of events selected at each selection stages, for the 2011 and 2012 datasets.

Selection stages 2011 data 2012 data

Stripping selection 4.9 M 12.0 M

Muon quality cuts 1.8 M 4.3 M

Displaced Vertex Reconstruction 28890 82108

MV 21496 60878

R > 0.55 mm 18925 53331
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Figure 3.17: Same as Figure 3.15 but for the comparison of the 2011 and 2012 datasets. LV 38 10 ps is

also show for comparison.
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Figure 3.18: Same as Figure 3.16 but for the comparison of the 2011 and 2012 datasets. LV 38 10 ps is

also show for comparison.
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Figure 3.19: 2011 data compared to simulated bb events after the requirement of a minimal distance

R to the beam axis of 0.55 mm. Top left: muon transverse momentum. Top right: muon impact

parameter with respect to the best primary vertex. Bottom left: reconstructed mass of the displaced

vertex. Bottom right: muon isolation. The distribution are normalized to unity.
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Figure 3.20: 2011 data compared to simulated bb events after the requirement of a minimal distance

R to the beam axis of 0.55 mm. Top left: number of tracks used to reconstruct the vertex including the

muon. Top right: radial distance R to the beam line of reconstructed vertex. Bottom left: longitudinal

vertex fit error. Bottom right: radial vertex fit error. The distribution are normalized to unity.

56



3.3. Data selection

3.3.5 Neural Network

After the minimal displacement requirement, a multi-layer perceptron (MLP) neural network

is used to purify the events. The MLP is an option of the Toolkit for Multivariate Data Analysis

(TMVA version 4.2.0) [45].

The MLP input variables are the following:

• PT_MUON: the muon transverse momentum,

• IP_MUON: the muon impact parameter with respect to the best PV,

• N_LLP: number of charged tracks used to reconstruct the LLP,

• R_LLP: LLP radial distance from the beam line,

• SIGMA_R_LLP: uncertainty on the radial coordinate of the vertex fit,

• SIGMA_Z_LLP: uncertainty on the longitudinal coordinate of the vertex fit,

The muon isolation (ISO_MUON) and the reconstructed mass of the long-lived particles

(M_LLP) are not included in the neural network classifier. Indeed, the discrimination power

of these two variables is subsequently exploited in the two data driven signal determination

methods.

The training of the MLP requires samples of signal and background events. Signal events

are easily provided by the simulation. This is not the case for the background because, of

the too low simulated bb statistics available. To cope with this, the data itself has been used

to represent the background. The hypothesis is that the amount of signal in the dataset is

small. Half of the Monte Carlo sample of signal events have been used for the training stage in

addition with the same amount of data events. This procedure has been reproduced for each

signal model. As an example, the input variables distributions are presented on Figure 3.21 for

the 2011 data and for the LV38 (τ= 10 ps) signal model. On Figure 3.22 the transformation of

the variables into gaussian distributions after the "decorrelation" phases are illustrated for

LV38 (τ= 10 ps). On Figure 3.23 the linear correlation between the input variables are shown

for the signal and the background (2011 data). In addition, the muon isolation (ISO_MUON)

and the reconstructed mass (M_LLP) have been added as “spectator variable” (i. e. not used

for the selection) to highlight the low correlation between these two variables.
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Figure 3.21: Input variables distributions of the multi-layer perceptron (MLP) neural network for the

signal (LV38 (τ= 10 ps)) and the background model (2011 data).
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Figure 3.22: Distributions of the MLP input variables for the signal (LV38 (τ = 10 ps)) and the

background transformed into gaussian distributions after the decorrelation phase that take into account

the linear correlation between each variables.
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Figure 3.23: Linear correlation coefficient matrix for signal events (LV38 (τ= 10 ps)) and background

events computed by TMVA for the input and spectator variables. Note the low correlation between

muon isolation and the LLP reconstructed mass.

The MLP is using a "sigmoid" activation function type trained with a Back-Propagation (Back

Propagation (BP)) algorithm with a number of cycles of Nc ycles and 5 hidden layers. On

Figure 3.24 the convergence and the overtraining tests are presented. The test sample for the

background is defined by the data selected at the intermediate selection stage without the 2k

events used for the training phase. The error on the estimator converged after 600 training

epochs. The distributions of the MLP response for the training and the test samples coincide

showing no overtraining effects.
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Figure 3.24: Convergence and overtraining tests : (left) error on the estimator as a function of the

number of epochs (cycles) and (right) MLP response distributions of the trained and test sample for

signal (LV38 (τ= 10 ps)) and background (2011 data).

To quantify the potential bias induced by a “contamination” of the background sample by

signal events, a large fraction of signal events (2.5 to 5 %) are added to the background data

set used for the MLP training. As shown on Figure 3.26, no significant bias from a possible

contamination by signal events is expected for a reasonable cut on the neural network response

(MLP cut). The same conclusion has been reached for all signal model and for the two datasets

(the corresponding plots are present on in Appendix A.4).

The optimal MLP cut has been determined by maximising the significance defined by Ŝ =
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S/
p

(S +B) with a hypothetical presence of 5 signal events. For LV38 (τ= 10 ps), a maximal

significance of 0.336 is obtained when cutting at 0.65 on the MLP output as presented on

Figure 3.25. The background rejection obtained by this selection also allows to keep enough

background events which are required for the signal determination procedure.
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Figure 3.25: Signal significance, signal efficiency and background rejection as a function of the MLP

cut for LV38 (τ= 10 ps).

Thus, depending on the signal model analyzed, a cut on the MLP response between 0.48

and 0.65 for 2011 data and between 0.55 and 0.85 for 2012 has been applied. The signal and

background MLP responses for each signal models for 2011 and 2012 analysis are presented

on Appendix A.3.
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Figure 3.26: Signal (LV38 (τ= 10 ps)) efficiency as a function of the MLP response for different fraction

of signal event added to the background model (2011 data) at the training stage.
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3.4. Signal determination

3.4 Signal determination

After the MLP filter no simulated background survives. Therefore two data driven methods

have been used to estimate the residual background : The first, described in Section 3.4.1, is

an extended likelihood fit of the reconstructed LLP mass (performed with RooFit [46]). The

background is modeled by events from a sideband selected by a cut on the muon isolation

variable. The second method is a two-dimensional sideband technique, the "ABCD" method,

used as a cross-check (Section 3.4.2). Both methods are exploiting the low correlation between

the LLP mass and the muon isolation, variables which are not included in the neural network

active inputs. Furthermore, they have been tested and validated with W and Z decays that

share similar properties with signal events (Section 3.4.1.b and 3.4.2.c).

3.4.1 LLP mass fit

The muon isolation distribution for the 2011 data and LV38 signal is displayed in Figure 3.27,

after the MLP selection. The region Isolation < 1.4, which contains (95±2) % of the signal, is

chosen as “signal” region, while the “background” (sideband) region is chosen in the window

1.4 < Isolation < 1.9. With this choice, the signal and the background regions have about the

same number of events from data. The situation is presented on Figure 3.28 and 3.29 showing

the properties of the LLP candidates chosen in the two regions, and, for comparison, the

expected signal shape for LV38 10 ps. Figure 3.29 is for the number of tracks, radial distance of

the vertex and the vertex errors. The χ2/nDoF between the distributions from the sideband

and the signal region for each variable are between 0.6 and 1.5 as presented on table 3.22. This

indicates that the nature of the candidates in the two regions are similar and that the chosen

sideband can be used to model the background in the signal region. Therefore, an extended

likelihood simultaneous fit of the the LLP reconstructed mass in the signal and the sideband

region is performed for the signal determination.
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Figure 3.27: Muon isolation for 2011 data compared to LV 38 10 ps signal model after the MLP cut

with the definition of the signal-free sideband region used to model the background LLP mass shape in

the signal region.
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Figure 3.28: Distribution from the 2011 dataset. In black the candidates from the signal region, in

dashed blue from the sideband. The predicted LV38 10 ps distribution is in red. Top right: the LLP

reconstructed mass. Bottom left: the transverse momentum of the muon. Bottom right: the muon

impact parameter with respect to the best primary vertex. The distributions are normalized to unity.
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Figure 3.29: Same as figure 3.28 for other variables. Top left: the number of tracks used to reconstruct

the LLP. Top right: LLP radial distance R to the beam line. Bottom left and right: the longitudinal and

the radial errors on the LLP vertex fit. The distributions are normalized to unity.

Table 3.22: χ2/nDoF between the distributions from the sideband and the signal region for each

variable.
Variables mLLP pµ

T I Pµ N R σz σR

χ2/nDoF 1.1 0.6 1.5 1.0 1.0 1.1 0.9

3.4.1.a Fit of LV models to the 2011 and 2012 dataset

An unbinned extended likelihood fit of the LLP mass, mLLP , is applied to determine the pres-

ence of signal assuming the different LV models. The background pdf (probability density

function) is modeled by the sum of two decreasing exponentials and the signal by an exponen-

tial convoluted with a Gaussian (single sided RooDecay function). Therefore, the pdfs for the

sideband and for the signal region are defined as follow:

• Sideband region:

Fsi de (mLLP ) = fQC D ·e
− mLLP

τmLLP + (1− fQC D ) ·e
− mLLP

r ·τmLLP (3.2)
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Chapter 3. Search for long-lived particles decaying semileptonically

• Signal region:

Fsi g (mLLP ) = Nbkg ·Fsi de (mLLP ) (3.3)

+ Nsi g ·e
−mLLP

τLV ⊗G(mLLP ,µmLLP ,si g ,σmLLP ,si g )

The fit is performed simultaneously on the simulated signal events, the background events

from the sideband, and the candidates selected in the signal region. The result of the fits of

the signal shape for three signal models are presented on Figure 3.30 with the corresponding

fit parameters of the RooDecay function on Table 3.23. For candidates with a mass larger

than ∼ 100 GeV/c2 a deterioration of the resolution is expected due to particles escaping the

geometrical acceptance. This appears in a larger value of the slope of the exponential tail.

Typically, the exponential component of the mass shape becomes dominant for LV198.

Table 3.23: Fit parameters of the RooDecay function for the different signal model considered

(τ= 10 ps,
p

s = 7 TeV)).

Model τLV µmLLP , si g σmLLP ,si g

LV38 3346.8±479.5 15481.4±271.0 7080.3±305.6

LV98 8937.5±2109.0 12016.6±1712.0 24778.9±1646.3

LV198 34790.2±984.2 5401.2±1280.0 9911.4±1850.5
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Figure 3.30: Fit results of the different signal model in the signal region with a single side RooDecay

function (τ= 10 ps) : LV38 (top), LV98 (bottom left) and LV198 (bottom right).

On Figure 3.31 and 3.32 the result of the simultaneous fit in the sideband and in the signal

region for 2011 and 2012 data for LV38 (τ= 10 ps) are presented. The fit parameters obtained

for the 2011 data are summarized in Table 3.24 for this model. The parameters for the other

models, for the 2011 and 2012 datasets are listed in Appendix A.2.
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Figure 3.31: Results of the fit performed on 2011 data for LV38 10 ps. The results of the simultaneous

fit in the sideband region (right) and in the signal region (left) are shown. The green dashed function is

the background component. The blue curve represents the total function (background + signal) in the

signal region.
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Figure 3.32: Same as Figure 3.31 for the 2012 dataset.

Table 3.24: Parameters from fit performed on the 2011 data sample for LV38 10 ps. See formulas 3.2

and 3.2. Nsi g and Nbkg represent the number of signal events and background events respectively.

µmLLP ,si g (15481.4±271.0) MeV /c2

σmLLP ,si g (7080.3±305.6) MeV /c2

τLV 3346.8±479.5

τmLLP 7771.2±534.2

r 6.32±1.32

fQC D 0.97±0.02

Nbkg 126.23±12.25

Nsi g −0.31±1.17

On Table 3.25 and 3.26 the results of the fit are summarized for each signal model for the 2011

and 2012 datasets. The results are compatible with zero signal candidates for all the models.

The number of background events computed by the fit are in agreement with the number of

observed background events. In the table the MLP threshold value is also given.

66



3.4. Signal determination

Table 3.25: Results of the fitting procedure for each model performed on 2011 data: MLP min is the

threshold value on the Neural Network response, Nsideband the number of events in the sideband region,

Nsignal the number of events in the signal region. Nsi g , f i t and Nbkg , f i t are the fitted numbers of signal

and background events in the signal region.

Model MLP min Nsignal Nsideband Nbkg , f i t Nsi g , f i t

LV38 , τ= 5 ps 0.65 102 74 99.01±11.22 2.97±2.52

LV38 , τ= 10 ps 0.65 126 76 126.23±12.25 −0.31±1.17

LV38 , τ= 50 ps 0.65 83 56 86.89±10.18 −2.01±1.66

LV98 , τ= 5 ps 0.6 84 92 86.34±9.90 −2.34±3.01

LV98 , τ= 10 ps 0.55 88 59 90.75±10.44 −2.78±3.90

LV98 , τ= 50 ps 0.55 87 63 89.86±10.37 −2.82±3.83

LV198 , τ= 5 ps 0.55 97 77 99.87±10.58 −2.87±3.04

LV198 , τ= 10 ps 0.48 114 115 118.98±11.60 −3.04±3.42

LV198 , τ= 50 ps 0.48 83 60 85.22±10.10 −2.16±3.82

Table 3.26: Like Table 3.25 for 2012 data (
p

s = 8 TeV).

Model MLP Nsignal Nsideband Nbkg , f i t Nsi g , f i t

LV38 , τ= 5 ps 0.7 168 92 169.69±14.03 −1.68±4.57

LV38 , τ= 10 ps 0.85 174 94 177.30±20.72 −3.21±4.93

LV38 , τ= 50 ps 0.8 167 98 164.72±12.85 2.07±5.04

LV98 , τ= 5 ps 0.65 153 89 150.85±12.58 2.28±3.08

LV98 , τ= 10 ps 0.7 146 78 143.23±12.18 2.78±2.80

LV98 , τ= 50 ps 0.65 128 71 125.81±11.45 2.20±2.72

LV198 , τ= 5 ps 0.6 178 89 176.17±13.29 1.84±2.09

LV198 , τ= 10 ps 0.7 183 85 180.50±13.46 2.51±2.40

LV198 , τ= 50 ps 0.55 138 84 135.65±11.84 2.35±2.66

The sensitivity of the method has been tested with toy Monte Carlo experiments. A fixed

amount of signal events, Ns , is randomly extracted from the signal Monte Carlo sample and

added to the dataset for each toy experiment. The fit procedure is applied and the number of

signal events found is compared to the true value Ns . 5000 toy experiments are generated and

analyzed. On Table 3.27, the number of signal events determined by the fit are given for each

Ns values. The method has a 4σ sensitivity for ∼ 5 LLPs. The pull distributions are given on

Figure 3.33.
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Table 3.27: Number of signal events extracted from the fit of the Monte Carlo toy experiments for

different models with a fixed lifetime of τ= 10 ps and a number Ns of signal events. The number of

background has been fixed to respectively 126, 88 and 114 for LV38, LV98 and LV198, as it is the case in

the 2011 data analysis.

Model Ns = 1 Ns = 2 Ns = 3 Ns = 4 Ns = 5 Ns = 10

LV38 0.84±1.17 1.61±1.24 2.73±1.37 3.90±1.54 4.89±1.21 9.64±1.40

LV98 0.21±3.93 1.43±4.04 2.57±3.41 3.61±3.94 4.74±3.62 9.70±3.80

LV198 0.35±3.57 1.32±3.79 2.84±3.69 3.51±3.61 4.73±3.54 9.88±3.77
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Figure 3.33: Pull distribution of the number of extracted signal events for different number of injected

of signal events injected for LV38 (τ= 10 ps). µpul l and σpul l are the mean and the standard deviation

of the gaussian fit. The pull distribution is defined as: Pul l = N
f i t
s −Ns
σ

N
f i t
s

.

3.4.1.b Fit method applied to W and Z decays

The aim of this study is to test and validate the fitting method on W →µν and Z →µµ decays.

The displaced vertex reconstructed from W and Z events are preselected probably by missing

the primary vertex in the displaced vertex algorithm. Besides the position of the vertex, the

LV signals and these two channels share quite similar properties. In particular the muon is

isolated and has a large pT . The LLP candidate is formed by collecting tracks from the primary

vertex. In the case of Z →µµ, when the two muons are collected accompanied by soft tracks,
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Chapter 3. Search for long-lived particles decaying semileptonically

the Z mass peak is visible in the distribution. The fit method has been applied to events after

preselection, before the radial cut in such a way to preserve the W and Z (prompt) decays.

As it has been the case for the LV analysis, the sideband is defined to be a region of the muon

isolation were the presence of W and the Z events is negligible in comparison to the amount

of bb events. The chosen signal and sideband regions are the same for W and Z event:

• Signal region 1 ≤ E/E(µ) < 1.4: W and Z events + QCD background

• Sideband region 1.9 > E/E(µ) > 1.4: containing mainly QCD background

On Figure 3.34 the bi-parametric distribution of the muon isolation versus the reconstructed

mass of the LLP are presented for the data, W and Z events. For comparison, the prediction

for the signal LV 38 10ps is also shown.

Figure 3.34: LLP reconstructed mass versus the muon isolation. Top Left: 2011 data. Bottom left:

bb simulated events. Top Right: W and Z MC events. Bottom Right: LV 38 10ps signal events for

comparison.

A simultaneous fit of the mass of the LLP candidates in the signal and background regions

is made in the range mLLP ∈ (5,150) GeV/c2, pµ

T ∈ (16,70) GeV/c. This corresponds to the

range where the probability to observe W and Z is greater than QCD background and the

contribution of W → τν and Z → ττ negligible.
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3.4. Signal determination

The W → µν signal distribution has been modeled with two exponentials convoluted by a

Gaussian resolution function:

FW (m) = ( fW exp(− m

τW,1
)+ (1− fW )exp(− m

τW,2
))⊗G(m,µW ,σW ) (3.4)

For the Z , a similar function is used plus a Breit-Wigner for the Z peak:

FZ (m) = fZ ,1BW (m,µZ ,BW , gZ )+ (1− fZ ,1)( fZ ,2exp(− m

τZ
)+ (1− fZ ,2)G(m,µZ ,2,σZ ))(3.5)

Figure 3.35 shows the fit results of the W →µν and Z →µµMonte Carlo sample for
p

s = 7 TeV.
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Figure 3.35: W → µν and Z → µµ Monte Carlo sample mass fit for 2011 conditions. Left: W → µν

mass fit with FW (m), in red and green the two exponential convoluted with the same gaussian resolution

function. χ2/nDoF = 1.6. Right: Z →µµ mass fit FZ (m), in red the Breit-Wigner function and in green

the sum of the exponential and the Gaussian function. χ2/nDoF = 2.2.

The QCD background has been modeled by two negative slope exponentials:

FQC D (m) = fQC D ·e
− m

τQC D + (1− fQC D ) ·e
− m

r ·τQC D (3.6)

Therefore, the functions to be fitted are the following:

71



Chapter 3. Search for long-lived particles decaying semileptonically

• sideband region:

Fsi de (m) = Nsi de FQC D (m) (3.7)

• Signal region:

Fsi g (m) = NQC D FQC D (m) (3.8)

+ NEW ( fEW ·FW (m)+ (1− fEW ) ·FZ (m)) (3.9)

Nsi de , NQC D and NEW are the number of events in the sideband region, the number of QCD

background events in the signal region and the number of W plus Z events in the signal region.

Figure 3.36 shows the result of the simultaneous fit of the candidate mass distribution in the

signal region and in the sideband region for the 2011 data. The fitted parameters are given in

Table 3.28.
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Figure 3.36: Mass fit for the determination of the W and Z signal in the 2011 dataset. Left: the

fit for candidates from the sideband region; in green and red the two exponential, in blue the total

fitted function. Right: the fit for candidates from the signal region; in blue the total fitted function,

in magenta, the W component modeled with FW (m), and, in green, the Z component modeled with

FZ (m). The fit gives χ2/nDoF = 1.8.

The same procedure has been reproduced by considering separately the positive and the

negative charge of the preselected muons to extract the observed cross-section W + → µ+ν
and W − →µ−ν for 2011. The results are given in Figure 3.37 and Table 3.28.
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Figure 3.37: Same as Figure 3.36. Top: fit of events with a positive charged preselected muon.

χ2/nDoF = 1.4. Bottom: fit of events with a negative charged preselected muon. χ2/nDoF = 2.3.
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Table 3.28: Parameters of the simultaneous fit procedure of 2011 data with W and Z decay channel

playing the role of signal. Total denotes no distinction in the muons charge.

Total Positive charged muon Negative charged muon

Fsi g (m)

NQC D 1284.7±71.2 641.3±48.5 657.9±54.5

NEW 482.3±65.3 303.7±44.8 164.2±49.7

fEW 0.859±0.036 0.870±0.040 0.846±0.074

Fsi de (m)

Nsi de 1041.0±32.3 545.0±23.3 496.0±22.3

FQC D (m)

τQC D (−1.1±0.1)×10−4 (−1.3±0.2)×10−4 (−0.8±0.2)×10−4

r 3.792±0.349 3.857±0.388 4.098±0.786

fQC D 0.2407±0.056 0.328±0.098 0.143±0.057

FZ (m)

µZ ,BW 91655.7±382.6 91521.1±457.1 91779.4±692.4

gZ 6105.5±841.4 5506.4±927.5 7038.5±1733.8

µZ ,2 9921.3±517.9 9833.2±824.9 9981.3±664.4

σZ ,2 3928.0±517.8 3994.8±859.2 3865.1±644.8

τZ (−3.3±0.8)×10−5 (−3.4±1.2)×10−5 (−3.2±1.0)×10−5

fZ ,1 0.674±0.029 0.625±0.041 0.072±0.042

fZ ,2 0.653±0.056 0.637±0.090 0.663±0.073

FW (m)

µW 6461.7±243.9 6620.7±277.2 6114.8±522.8

σW 2829.1±355.9 2476.1±407.1 3522.1±782.6

fW 0.077±0.044 0.109±0.075 0.049±0.047

τW,1 15276.4±4049.0 13924.0±4304.3 17477.5±8497.6

τW,2 4406.7±424.2 4334.9±609.4 4382.3±695.3

68±20 Z → µ+µ− events have been computed from the fit which is compatible with 48±6

events predicted by the MC simulation for 2011, in the signal region for mLLP ∈ [5,150] GeV/c2

and pµ

T ∈ [16,70] GeV/c.

From simulation, the preselection efficiencies for W + and W − events are respectively εW + =
(3.00±0.10) ·10−4 and εW − = (2.64±0.13) ·10−4 (uncertainties are statistical). The production

cross-section of W +/− →µ+/−ν(ν̄) and the ratio RW are then:
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3.4. Signal determination

σW +→µ+ν = 878±144 pb (3.10)

σW −→µ−ν̄ = 526±169 pb (3.11)

RW = σW +→µ+ν

σW −→µ−ν̄
= 1.7±0.6 (3.12)

The uncertainties are statistical only. These values are compatible with the measured cross-

sections made by LHCb for 2011 data with an integrated luminosity of 1 f b−1 at LHCb [41]:

σW +→µ+ν = 846.9±2.0±10.9±29.9 pb (3.13)

σW −→µ−ν̄ = 664.6±1.8±8.7±23.5 pb (3.14)

RW = σW +→µ+ν

σW −→µ−ν̄
= 1.274±0.005±0.009 (3.15)

where the first uncertainty is statistical, the second is systematical and the third is due to the

luminosity determination. The production cross-sections at
p

s = 8 TeV have been estimated

from this results by comparing the production cross-section given by MadGraph 5 [47] at the

Next-to-leading Order (NLO) at
p

s = 7 and 8 TeV.

The proportionality factors are:

kW + = σW +(8 TeV )

σW +(7 TeV )
= 1.14 (3.16)

kW − = σW −(8 TeV )

σW −(7 TeV )
= 1.16 (3.17)

(3.18)

Thus, this fitting procedure, presented in Appendix A.6, have been reproduced for 2012 dataset

with an integrated luminosity of 1.98 f b−1 and leads to the following production cross-section

and ratio at
p

s = 8 TeV:
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σW +→µ+ν = 1025±113 pb (3.19)

σW −→µ−ν̄ = 740±84 pb (3.20)

RW = σW +→µ+ν

σW −→µ−ν̄
= 1.4±0.2 (3.21)

These values are compatible with the production cross-sections made for 2011 data multiplied

by the proportionality factors kW + and kW − .

It has been possible to extract a correct Z and W signal yield from the simultaneous fit

procedure. This study is a good indication that the events collected in the sideband defined by

a cut on the muon isolation variable, allow to model the background in the signal region.

3.4.2 The ABCD method

This method exploits the low correlation between the LLP reconstructed mass, mLLP , and the

isolation variable for the muon, together with the relatively good separation of the signal and

the background in a bi-parametric distribution (mLLP , 1/Isolation).

Choosing two boundary values in the (mLLP , 1/Isolation) plane four regions A,B,C, and D are

defined, with their respective observed number of events NA , NB , NC , and ND . The region D

contains the largest fraction of signal. If a negligible amount of signal is present in A, B, C,

and if the background does not show a correlation in the two variables the estimates for the

number of background events in D, B̄D , and for the signal, S̄D , are:

B̄D = NB NC

NA
(3.22)

S̄D = ND − B̄D (3.23)

When a too large amount of signal is present in the “sideband” regions A, B and C , if known,

the signal “contamination” can be subtracted to improve the estimate. The optimization of the

boundaries defining the four regions in the plane (mLLP , 1/Isolation) is done by maximizing

the significance of the signal (SD /
√

SD + B̄D ) with a set of 1000 toy Monte Carlo experiments.

The significance can be approximated by:
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3.4. Signal determination

Ŝ = SD√
SD + B̄ 2

D ( 1
NA

+ 1
NB

+ 1
NC

)
(3.24)

This quantity depends on the number of signal events hypothesis. For illustration, Figure

3.38 shows the computed significance values for different set of cuts in the plane (mLLP ,

1/Isolation). For this example, 200 background events and 5 LV38 signal events have been

considered. The background is obtained from the data bi-parametric distribution after the

MLP selection. The four regions with the optimal boundaries (16 GeV/c2, 0.9) are presented

on Figure 3.39 for a toy experiment. The larger portion of the signal is in the D region, but a

quite large fraction is also present in the sidebands.
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Figure 3.38: Example of the significance values for 200 background events and 5 signal events as a

function of the cuts on the LLP mass and the muon isolation. The significance is multiplied by a factor

100. The blue circle denotes the boundaries with the best significance.
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Figure 3.39: Example of toy experiment with 200 background events (red) and 5 signal events based

on LV38 (τ= 10 ps) (blue boxes). A, B, and C are the sidebands used to estimate the background in D.

The implementation and test of the ABCD method consist of the following steps. The region

boundaries are chosen for each model, based on the best significance. Some level of corre-

lation between mLLP and 1/i sol ati on can affect the ABCD procedure: the second step is to

estimate the effects of such correlation, Section 3.4.2.a. Then the ABCD is applied for each

model to the events of the two datasets, Section 3.4.2.a. Finally the method is tested on Z →µµ

decays for the 2011 dataset, Section 3.4.2.c.

3.4.2.a Definition of boundaries and estimate of the correlation bias

For the setup of the ABCD method toy MC experiments are used. For this, the number of data

events available to model the background for the generation of the experiments is increased

up to about 2000 by relaxing the MLP selection by a factor 0.8 (see Appendix A.5).

Based on equation 3.24, the boundaries that give the best signal significance assuming 5 signal

events and 200 background events are calculated for each signal model and datasets. The

values are given in Table 3.29.

To quantify the effect of a potential correlation between the mLLP and the 1/I sol ati on vari-

ables, the results from the toy experiments generated from the bi-parametric distribution

PDF (mLLP ,1/I sol ati on) are compared to the results obtained by a generation from the two

projections, i. e. from PDF (mLLP )×PDF (1/I sol ati on). On Table 3.30 the results of the MC

toy study are presented for the 2011 dataset and LV 38 10 ps. The average number of signal

events in the region A, B and C have been subtracted to determine the signal and background

yields. From the generation based on the bi-parametric distribution, S̄D = 2.64±2.92 signal

events (B̄D = 4.58±1.48 background events) are predicted. In comparison, 1.96±2.97 signal
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events (4.99±1.58 background events) are obtained with toys based on the projections. Both

tests are compatible with the average number of signal events in the region D, 2±1, which in-

dicates a low level of correlation. A correction on the number of events given by the difference

1.96−2.64 =−0.68 is used to account for the correlation.

The results of this procedure applied to the 2011 and 2012 data, and for each signal modes, are

presented on Appendix A.6). The level of bias is about 0.7 signal events, on the average.

As a cross-check, the determination of the bias from correlation has been performed on MC

bb background events and 2011 data, after totally removing the MLP selection, see Appendix

A.7). These tests indicate that the method is reliable.

Table 3.29: Optimized boundaries for the ABCD analysis of the 2011 (left table) and 2012 (right table)

dataset. The MLP cut used is also indicated.

2011

Model MLP min mLLP I so−1

(GeV /c2)

LV38, (τ= 5 ps) 0.52 16 0.9

LV38, (τ= 10 ps) 0.52 16 0.9

LV38, (τ= 50 ps) 0.52 16 0.9

LV98, (τ= 5 ps) 0.48 16.5 0.93

LV98, (τ= 10 ps) 0.44 16.5 0.93

LV98, (τ= 50 ps) 0.44 16.5 0.93

LV198, (τ= 5 ps) 0.44 21.5 0.93

LV198, (τ= 10 ps) 0.38 21.5 0.93

LV198, (τ= 50 ps) 0.38 21.5 0.93

2012

MLP min mLLP I so−1

(GeV /c2)

0.63 16 0.9

0.76 16 0.9

0.72 16 0.9

0.58 16.5 0.93

0.63 16.5 0.93

0.58 16.5 0.93

0.54 21.5 0.93

0.63 21.5 0.93

0.49 21.5 0.93

Table 3.30: Results of 1000 toy experiments for LV 38 10 ps signal events and 2011 data with the

boundaries placed at mLLP = 16 GeV/c2 and I so−1 = 0.9, for 200 background and 5 signal events. "Total"

defines the average of the sum of background and signal events in each region and "signal" correspond

to the number of signal events. "2D" and "Proj" are referring to the toys based on the bi-parametric

PDF (mLLP ,1/I sol ati on) and on the projections PDF (mLLP )×PDF (1/I sol ati on), respectively. The

uncertainties are the RMS.

Model S̄D B̄D NA NB NC ND

LV38 (τ= 10 ps) (2D,total) 2.64±2.92 4.58±1.48 29.00±4.92 144.16±6.48 24.62±4.76 7.22±2.52

LV38 (τ= 10 ps) (2D,signal) 0.94±0.88 0.83±0.84 1.25±0.95 1.98±1.09

LV38 (τ= 10 ps) (Proj,total) 1.96±2.97 4.99±1.58 30.59±5.12 142.25±6.22 25.21±4.69 6.95±2.52

LV38 (τ= 10 ps) (Proj,signal) 1.04±0.91 0.70±0.75 1.32±0.97 1.94±1.10
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3.4.2.b Determination of the signal for the 2011 and 2012 datasets

The ABCD method is applied to the data for each signal model after the selection on the

MLP. On Table 3.31 and 3.32, the results of the procedure are presented for the 2011 and 2012

datasets. The statistical uncertainties are obtained from the toy Monte Carlo. The estimated

number of signal events has been corrected for correlation effects and is compatible with zero

for all LV models.

Table 3.31: Results of the ABCD method applied to the 2011 dataset, for each signal model. The

number of estimated signal events S̄D is corrected for the correlation effects.

Model (Nr em event) MLP S̄D B̄D NA NB NC ND

LV38 (τ= 5 ps) (1069) 0.65 −1.8±3.9 11.1±2.1 52 140 30 10

LV38 (τ= 10 ps) (1222) 0.65 −0.7±4.2 12.1±2.4 50 170 41 12

LV38 (τ= 50 ps) (801) 0.65 −1.8±3.7 9.7±2.3 36 115 31 9

LV98 (τ= 5 ps) (1296) 0.60 0.1±2.8 5.5±1.4 45 165 20 6

LV98 (τ= 10 ps) (2111) 0.55 −0.7±3.6 9.5±2.0 54 177 31 9

LV98 (τ= 50 ps) (1509) 0.55 3.0±3.1 5.0±1.4 34 136 20 8

LV198 (τ= 5 ps) (1589) 0.55 −0.1±1.9 3.1±0.8 27 256 29 3

LV198 (τ= 10 ps) (1974) 0.48 −2.3±1.8 4.7±1.1 32 237 35 2

LV198 (τ= 50 ps) (1383) 0.48 1.2±2.2 3.0±0.9 18 158 26 4

Table 3.32: Same as Table 3.31 for the 2012 dataset.
Model (Nr em event) MLP S̄D B̄D NA NB NC ND

LV38 (τ= 5 ps) (1034) 0.7 3.6±5.0 19.0±3.0 114 246 41 25

LV38 (τ= 10 ps) (1152) 0.85 1.7±6.4 22.7±4.3 112 257 52 27

LV38 (τ= 50 ps) (745) 0.8 2.5±6.1 16.4±3.6 94 252 44 21

LV98 (τ= 5 ps) (1795) 0.65 0.6±4.4 13.5±2.5 98 246 34 15

LV98 (τ= 10 ps) (2310) 0.7 0.0±3.8 10.9±1.9 79 261 36 11

LV98 (τ= 50 ps) (1553) 0.65 −2.0±4.1 13.8±2.4 83 204 34 12

LV198 (τ= 5 ps) (1800) 0.6 −0.5±2.7 8.4±1.2 49 328 56 8

LV198 (τ= 10 ps) (2263) 0.7 0.4±2.5 7.1±1.1 43 335 55 7

LV198 (τ= 50 ps) (1570) 0.55 −2.2±2.3 7.3±1.2 45 273 44 6

3.4.2.c Validation with Z →µµ as a control channel

The ABCD method is applied to the preselected 2011 dataset, considering Z →µµ events as

the target signal. On Figure 3.40, the region A,B,C and D are highlighted for 2011 data, with

simulated Z events superposed. The best significance has been obtained with boundaries

placed at mLLP = 70 GeV/c2 and 1/I sol ati on = 0.93, assuming 20 signal events. The MC

prediction is 17±4 Z →µµ events in the D region.
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Figure 3.40: The A,B,C and D regions defined in the plane (mLLP ,1/I sol ati on). The 2011 data

preselected events are plotted in red for masses of the LLP greater than 40 GeV/c2. The contours are

obtained from Z →µµ simulated decays.

The number of events in the region A,B, C and D in the 2011 dataset are respectively 15, 121,

35 and 20. The events in the region A and B are pure QCD background, while the C region

contains 17.6±5.1 W →µν decays on average, and 2.6±1.5 Z →µµ.

The number of events in each region after the subtraction of the Z and W predicted number of

events in the region C are summarized on Table 3.33. 18.2±4.3 signal events (S̄D ) and 1.8±0.7

background events (B̄D ) are obtained.

For 18 Z events and 150 background events, an average S̄D = 20.1±3.4 ( B̄D = 1.6±0.9 ) is

obtained when the PDF is the bi-parametric distribution, while S̄D = 15.9±3.3 ( B̄D = 3.6±1.7

) is obtained from the projections. Thus, 4.2 events are subtracted from the 17.6, to correct for

correlation effects. Therefore, the number of Z →µµ events in the region D from the ABCD

method is 14.1±4.3 comparing well with the 17±4 Z →µµ events predicted.

Table 3.33: From the ABCD method applied to the measurement of the number of Z events in the

2011 dataset. number of events in the four regions and estimates for the signal and background in D.

The average number of W and Z decays predicted from the simulation have been subtracted from NC .

NA NB NC ND S̄D B̄D

2011 data 15 121 14.8 20 18.2±4.3 1.8±0.7
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3.5 Detection efficiency and systematic effects

On Table 3.34 and 3.35, the contributions to the efficiency at different stages of the event

selection obtained from the analysis of simulated events are presented for
p

s = 7 and 8 TeV.

The range indicated covers the LLP lifetimes of 5,10 and 50 ps.

Table 3.34: Contributions to the efficiency in percent at the different stages of the event selection atp
s = 7 TeV. The range is for the LV models with lifetime of τ= 5,10 and 50 ps.

Selection stage LV 38 LV 98 LV 198

Trigger and Stripping selection 16.7−22.0 23.0−27.7 26.8−34.0

Displaced Vertex Reconstruction 48.1−51.1 34.8−37.5 25.6−29.0

MV 65.4−86.9 91.5−96.2 78.8−99.0

Muon quality cuts 79.8−81.0 85.5−86.2 87.5−87.9

R > 0.55 mm 93.8−97.1 85.4−90.0 83.8−95.0

MLP and Isolation 78.0−90.2 92.2−94.3 95.5−98.4

Total 3.6−5.3 5.0−6.8 4.9−6.8

Table 3.35: Same as table 3.34 for
p

s = 8 TeV

Selection stage LV 38 LV 98 LV 198

Trigger and Stripping selection 17.5−23.7 24.3−29.4 28.5−35.6

Displaced Vertex Reconstruction 51.9−56.3 40.6−43.8 31.9−34.7

MV 64.1−85.0 76.0−97.3 78.4−98.8

Muon quality cuts 78.2−79.9 84.7−85.8 87.5−88.1

R > 0.55 mm 95.2−97.4 86.0−95.1 83.3−95.6

MLP and Isolation 82.2−98.5 89.1−91.0 90.6−93.4

Total 3.6−5.4 5.8−8.1 5.8−8.4

The discussion of the sources of systematic uncertainties follows the analysis flow:

• We first consider the detection of the muon, in Section 3.5.1,

• Section 3.5.2 treats the vertex reconstruction

• Section 3.5.3 the MLP filter

• Section 3.5.4 the mass and muon isolation calibration

• Section 3.5.5 the beam line position

• Section 3.5.6 the integrated luminosity
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The different contributions for the analysis of the 2011 and 2012 datasets are summarized on

table 3.36 and 3.37 .

Table 3.36: Summary of the systematic uncertainties, in %, on the selection efficiency for the 2011

dataset analysis.
Contribution / Model LV38 LV38 LV38 LV98 LV98 LV98 LV198 LV198 LV198

5ps 10ps 50ps 5ps 10ps 50ps 5ps 10ps 50ps

Muon reconstruction 4.5 4.5 4.5 3.9 3.9 3.9 3.9 3.9 3.9

IP cut (Stripping) 1.6 0.9 0.5 1.1 0.5 0.4 0.7 0.6 0.4

Vertex reconstruction 8 8 8 8 8 8 8 8 8

Neural network 1.4 1.4 1.4 1.6 1.8 1.6 2.1 1.3 1.6

Number of tracks cut 5 5 5 5 5 5 5 5 5

Isolation cut 3.5 3 3.1 1.1 1.0 1.2 0.8 1.0 1.1

Mass cut 1.4 2.0 2.5 1.2 1.4 1.3 1.3 1.3 1.2

Beam line position 0.2 0.2 0.1 0.6 0.5 0.3 0.8 0.7 0.5

Luminosity 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7

Total 11.4 11.3 11.4 10.7 10.7 10.6 10.7 10.6 10.6

Table 3.37: Same as table 3.36 for the analysis of the 2012 dataset.
Contribution / Model LV38 LV38 LV38 LV98 LV98 LV98 LV198 LV198 LV198

5ps 10ps 50ps 5ps 10ps 50ps 5ps 10ps 50ps

Muon reconstruction 4.5 4.5 4.5 3.9 3.9 3.9 3.9 3.9 3.9

IP cut (Stripping) 1.6 1.1 0.5 1.0 0.4 0.2 0.6 0.5 0.6

Vertex reconstruction 6 6 6 6 6 6 6 6 6

Neural network 1.7 2.9 2.9 3.3 3.2 2.5 3.8 4.9 2.2

Number of tracks cut 5 5 5 5 5 5 5 5 5

Isolation cut 4.3 3.6 3.5 1.5 1.4 1.5 0.7 1.1 1.0

Mass cut 1.1 1.5 0.9 0.9 0.9 1.4 0.8 0.8 1.0

Beam line position 0.2 0.2 0.2 0.6 0.4 0.4 1.0 0.5 0.3

Luminosity 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16

Total 10.5 10.4 10.2 9.6 9.5 9.4 9.7 10.2 9.2

3.5.1 Muon reconstruction

The muon reconstruction efficiency εr ec can be factorized into the product of the trigger

efficiency (L0 x Hlt1 x Hlt2), the efficiency to identify a long track as a muon, and the track

reconstruction efficiency:

εr ec = εtr i g ×εi d ×εtr ck
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Chapter 3. Search for long-lived particles decaying semileptonically

εr ec is determined by a tag and probe method performed on Z → µµ events, similar to the

analysis of Ref. [48]. As a control, the procedure has been first performed on the 2011 data

and simulated events with exactly the same selection used in the quoted analysis note. Subse-

quently, the selection criteria on the muons are adjusted to the conditions used in this analysis:

in particular, the pT threshold has been lowered to 10 GeV/c.

The MC simulation and data events are triggered by the L0Muon, Hlt1SingleMuonHighPT
and Hlt2SingleMuonHighPT, and preselected by the StrippingZ02MuMuLine which ask for

two muons in the LHCb acceptance, with transverse momentum greater than 3 GeV/c2. In

addition, the Z →µµ events are required to fall in a mass window of 60 < Mµµ < 120 GeV/c2

and the vertex quality χ2
v t x /nDoF < 5.

The contributions to the muon reconstruction efficiency uncertainties are discussed in the

following sections and are summarized on Table 3.38. As no significant differences have been

observed between 2011 and 2012 data or Monte Carlo simulation for Z → µµ events, and

motivated by the results of Ref. [48], the values obtained from the 2011 dataset are also used

for 2012.

Table 3.38: Systematic contributions from the different step of the muon reconstruction efficiency.

mLLP < 90 GeV/c2 mLLP > 90 GeV/c2

Trigger 3 % 3 %

Muon identification 3 % 2 %

Track reconstruction 1.5 % 1.5 %

Total 4.5 % 3.5 %

3.5.1.a Muon Trigger study by tag and probe

One of the two well identified muons, the “tag” is required to fire the trigger lines described

above and to pass the conditions detailed on Table 3.39 (which are the preselection conditions

of this analysis). The “probe” is selected by the same quality criteria. The distributions of the

Z reconstructed mass and of the probe transverse momentum for 2011 data and simulated

events are presented on Figure 3.41. The analysis described in Ref. [48] has demonstrated that

the background contamination is negligible, less than 0.2 %. The trigger efficiency is defined

by the ratio between the number of probe candidates passing the three trigger stages and the

number of tag muons. On Figure 3.42, the muon trigger efficiency is shown for the 2011 data

and Monte Carlo, for 14 pT bins. The discrepancy between simulation and data is always less

than 3 %. This value is taken as contribution to the uncertainty.
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Table 3.39: Muon selections criteria for the tag and probe procedure.

Tag Probe

Triggered -

IsMuon IsMuon

pT > 10 GeV/c2

σ(Pµ)/Pµ < 0.1

E(Ecal )/Pµ+E(Hcal )/Pµ < 0.04

χ2/nDoF < 2

2 < η< 4.5
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Figure 3.41: Left, transverse momentum of the probed muon and, right, dimuon mass for data and

simulated events.
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Figure 3.42: Trigger efficiency as a function of the muon transverse momentum determined by the tag

and probe technique for data and simulated events.

3.5.1.b Muon identification efficiency

The muon identification efficiency has also been determined from the tag an probe procedure.

The probe is a long track with the requirements given in Table 3.40. The identification efficiency
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is the fraction of probes recognized as muons (by the "IsMuon" flag). On Figure 3.43, the

muon identification efficiency is given for the 2011 dataset and simulated events, at different

pT bins. As already observed in Ref. [48], the efficiency drops for momentum below 40 GeV/c.

A maximal discrepancy between simulation and data of 3 % is observed for low pT . A 3 %

systematic uncertainty is assumed for the neutralino mass of 38 GeV/c2, and 2 % for higher

masses.

Table 3.40: Selections criteria for the determination of the muon identification efficiency.

Tag Probe

Long Track Long Track

Triggered -

IsMuon -

pT > 10 GeV/c2

σ(Pµ)/Pµ < 0.1

E(Ecal )/Pµ+E(Hcal )/Pµ < 0.04

χ2/nDoF < 2

2 < η< 4.5
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Figure 3.43: Muon identification efficiency as a function of the muon transverse momentum deter-

mined by the tag and probe technique, for data and simulated events.

3.5.1.c Muon track Reconstruction efficiency

The track reconstruction for low pT and high pT muons has been studied in LHCb with tag

and probe analysis performed with J/ψ→µµ and Z →µµ respectively [49, 48]. From these

results, a maximal systematic effect of 1.5% on the muon track reconstruction efficiency is

assumed.
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3.5.1.d Muon impact parameter

Muons with an impact parameter larger than 0.25 mm are selected at the stripping level. The

systematic uncertainty has been determined by comparing the impact parameter distribution

of high pT muon in the simulation and in data for Z →µµ events, Figure 3.44. The MC/data

ratio is also shown. The data and MC distribution averages differ by less than 20 µm which

correspond to a 9 % discrepancy. Therefore, the systematic uncertainty has been estimated by

moving the muon IP cut by this amount. The results for the different models are summarized

in Table 3.41.
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Figure 3.44: Left: muon impact parameter distribution in Monte Carlo and data for Z →µµ events.

Right: ratio Data/MC.

Table 3.41: Systematic contributions in percent associated to the impact parameter selection.

2011 2012

LV38 , τ= 5 ps 1.6 1.6

LV38 , τ= 10 ps 0.9 1.1

LV38 , τ= 50 ps 0.5 0.5

LV98 , τ= 5 ps 1.1 1.0

LV98 , τ= 10 ps 0.5 0.4

LV98 , τ= 50 ps 0.4 0.2

LV198 , τ= 5 ps 0.7 0.6

LV198 , τ= 10 ps 0.6 0.5

LV198 , τ= 50 ps 0.4 0.6

3.5.1.e Muon transverse momentum

The mean of the transverse momentum distributions for data and simulation of Figure 3.41 for

Z →µ+µ− events differ by less than 900 MeV/c. From this comparison, a maximal contribution

to uncertainty of 2 % is inferred. Figure 3.45 shows the ratio Data/MC.
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Figure 3.45: Data/MC ratio of the muon pT distributions for Z →µµ events.
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3.5.2 Displaced vertex reconstruction

The vertex finding efficiency of the displaced vertex algorithm has been studied on well recon-

structed B 0 → J/ψK ∗0. A procedure similar to the one presented in the appendix of Ref. [5]

has been adopted. This decay provides a large amount of candidates easily isolated from

the combinatorial background. Furthermore, the B 0 gives rise to a vertex with four tracks

through the decay of the J/ψ into muons and the K ∗0 into a charged kaon and a pion. The

determination of the vertex finding efficiency has been made in two steps. First, B 0 candidates

from the stripping line BetaSBd2JpsiKstarDetachedLine are selected with a minimal radial

distance to the beam line of 0.2 mm and a maximal χ2/nDoF < 5 for the vertex fit ("decaytre-

efitter") with a PV constraint. In addition, events are required to pass Hlt1DiMuonHighMass
and (Hlt2DiMuonJPsi or Hlt2DiMuonDetachedJPsi) trigger lines. These requirements

aims to reduce the combinatorial background significantly and provides well reconstructed

vertices with a very good quality. Then, the Displaced Vertex (DV) algorithm presented in

section 3.3.2.b is applied to the exclusive B 0 candidates with the following tuning:

• the DV is reconstructed with exactly 4 tracks,

• at least one muon with pT > 100 MeV/c is required,

• a minimal pT of the B 0 candidates of 3 GeV/c is required,

• the MV selection is active,

• The DV must have a minimal radial distance of 0.2 mm from the beam line.

The B 0 mass distributions for exclusive B 0 candidates and inclusive candidates reconstructed

with the displaced vertex algorithm are presented on Figure 3.46 for the 2011 dataset and

simulated events. The results for the 2012 dataset are presented on Figure 3.47 as well. The

displaced vertex efficiency is subsequently defined by the number of inclusive signal can-

didates divided by the number of exclusive candidates. The number of signal candidates

and the corresponding re-weighted kinematical distributions have been determined by the

sPlot technique [50]. A double Gaussian with a common mean for the signal peak plus an

exponential background have been used to model the B 0 → J/ψK ∗0 mass distribution [51].

On Figures 3.48,3.49, and 3.50, the data and Monte Carlo vertex finding efficiency are given

as a function of η, pT , R and number of primary vertices. A maximal discrepancy of 8% for

the 2011 dataset, and 6% for the 2012 dataset, is observed and adopted as a contribution to

systematics. As mentioned in [5], the losses in the vertex finding efficiency occurs mostly

because tracks that belong to the "signal" vertex are erroneously assigned to another vertex.

Note that the events chosen for this test provide the worst-case scenario, where the loss of

only one track leads to a substantial efficiency drop. As the different LV signal models have a

higher track multiplicity than B 0 → J/ψK ∗0, the systematic uncertainty contribution on the

signal efficiency of the vertex finding algorithm is therefore overestimated by this study.
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Figure 3.46: Top, mass fit of B 0 exclusive candidates and, bottom, inclusive candidates reconstructed

with the displaced vertex algorithm. At the left, the 2011 data, at right the simulation. In green, the

exponential shape which models the combinatorial background. In red, the signal peak modelled by

two gaussian. In blue, the total fitted function.
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Figure 3.47: Like Figure 3.46, for the analysis of 2012 data.

90



3.5. Detection efficiency and systematic effects

0Bη
2 3 4 5

V
er

te
x 

Fi
nd

in
g 

E
ff

ic
ie

nc
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2011 data Reco14

MC 2011 Reco14

 [GeV/c]
0B

T
p

10 20 30

V
er

te
x 

Fi
nd

in
g 

E
ff

ic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

2011 data Reco14

MC 2011 Reco14

Radial distance to the beam axis [mm]
0 2 4

V
er

te
x 

Fi
nd

in
g 

E
ff

ic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

2011 data Reco14

MC 2011 Reco14

Number of PV
0 2 4 6

V
er

te
x 

Fi
nd

in
g 

E
ff

ic
ie

nc
y

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2011 data Reco14

MC 2011 Reco14

Figure 3.48: Comparison of the vertex finding efficiency for data and simulated events, from the

analysis of B 0 candidates as a function of η (top left), pT (top right), R distance to the beam axis

(bottom left) and the number of primary vertices (bottom right). A reweighting procedure is performed

to match the signal kinematics.
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Figure 3.49: Like Figure 3.48 for the 2012 data analysis.
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Figure 3.50: Data/MC ratio of the vertex finding efficiency as a function of the distance to the beam

axis. 2011 data at left, and 2012 data at right.

3.5.2.a Radial dependency

A study about the efficiency to detect secondary vertices as a function of the radial distance

can be found in the note Ref. [51], about the b-hadron lifetime measurement. The kaon track

detection efficiency has been studied as a function of the DV radial distance for B+ → J/ψK +.

In the note, the figures 46 and 51 show the efficiency for the data and simulation for online

and offline reconstruction. The efficiency decreases by ∼ 30 % at R = 5 mm for the online

reconstruction, while the offline only losses 10 %. Nevertheless the simulation agrees with the

data within ∼ 3 % up to 4−5 mm, as one can see from the plots on Figure 3.51, showing the

MC/data ratio. A maximal discrepancy of 5% has been adopted into account to deal with the

few events reconstructed above 5 mm. Integrating over the R distributions for the different LV

models, the contribution of this source of systematics is totally negligible.

Figure 36: MC/data ratio of the reconstruction e�ciency for kaon tracks reconstructed using
the online (left) and o✏ine (right) algorithms as a function of the radial distance R.

49

Figure 3.51: MC/data ratio of the reconstruction efficiency for kaon tracks reconstructed using the

online (left plot) and offline (right plot) algorithms as a function of the radial distance R.
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3.5.3 Neural Network Classifier

The imprecision of the models used to train the MLP is source of a contribution to the system-

atics uncertainties. The potential biases on the input variables are:

• the precision on the muon impact parameter is 9 %, and on the muon transverse

momentum 2 %, as discussed in Section 3.5.1.d and 3.5.1.e respectively ,

• the precision on the σR , σZ and Ntr acks variables: 3 %, 4 % and 5 % respectively are

obtained by comparison of data and Monte Carlo distributions at the preselection stage

(Section 3.3.4). These values are the same as in Ref. [6],

• for the radial distance to the beam axis R an uncertainty of 5 % is inferred from the study

presented in Section 3.5.2.a.

In order to study the effect on the MLP selection, toy experiments are performed. At the MLP

test stage each input variable is modified by a scale factor randomly selected in a Gaussian

distribution of width equal to the corresponding bias. For each LV model, the effect is deter-

mined after the LLP mass fit, as explained in Section 3.4.1.a. The RMS of the signal efficiency

distribution after the MLP filter is taken as systematic uncertainty as summarized in Table

3.42.

For illustration, the distribution of the different biases are presented on Figure 3.52 for the

2011 data and LV38 (τ= 5 ps). The distribution of the difference between the signal efficiency

εMLP,tr ue determined without bias and the efficiency εMLP,Toy from a biased sample is shown

on Figure 3.53. For this example, an uncertainty of 1.2 % has been estimated. In addition,

the scatter plot of the difference in efficiency versus the bias introduced is shown for each

variables on Figure 3.54, showing a considerable sensitivity of the MLP on the LLP number of

tracks.
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Figure 3.52: Biases introduced at the testing stage of the MLP, corresponding to each input variables.

10000 toy experiments have been generated.
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Figure 3.53: Difference between efficiency measured in the toy study and the efficiency obtained

without any bias.
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Figure 3.54: For each MLP input, the abscissa of the corresponding scatter plot is the difference

between efficiency measured in the toy study with and without bias, for the bias factor given in the

ordinate of the plot.

Table 3.42: Contribution to the systematic uncertainty in percent due to the MLP for the different

signal models.

2011 2012

LV38 , τ= 5 ps 1.2 1.7

LV38 , τ= 10 ps 1.4 2.9

LV38 , τ= 50 ps 1.4 2.9

LV98 , τ= 5 ps 1.6 3.3

LV98 , τ= 10 ps 1.8 3.2

LV98 , τ= 50 ps 1.6 2.5

LV198 , τ= 5 ps 2.1 3.8

LV198 , τ= 10 ps 1.3 4.9

LV198 , τ= 50 ps 1.6 2.2

3.5.4 Muon isolation and LLP reconstructed mass

The muon isolation and the LLP reconstructed mass are the variables relevant to both the

LLP mass fit and the ABCD method. The systematic uncertainties on the signal efficiency

induced by the imprecision on these two variables have been determined by studying the

QCD background at the intermediate stage of the analysis. After the suppression of W and Z

events and assuming a negligible amounts of signal events, only bb events survive, populating

the low mass, larger isolation region.

On Figure 3.55, the muon isolation distribution is presented for the 2011 data and bb simulated
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events. The mean of these two distributions differ by less than 0.1. We recall that the signal

and sideband regions are defined by an isolation cut of 1.4. Thus, to estimate the systematic

uncertainty induced by a cut on the muon isolation, the cut value is moved by ±0.1 and the

efficiency is compared to the nominal value. On Table 3.43, the variations for each signal

model are given. The maximal variation for each couple of is considered as contribution to

the systematic uncertainty.
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Figure 3.55: Left: Muon isolation distribution for 2011 data and bb simulated events. Right: ratio of

the two distributions fitted by a constant.

Table 3.43: Systematic contributions in percent to the muon isolation selection for the different signal

models computed by taking the difference in efficiencies induced by a cut variation of ±0.1 for 2011

and 2012 analysis.

2011 2012

LV38 , τ= 5 ps (−3.5,+2.8) (−4.3,+3.6)

LV38 , τ= 10 ps (−3.0,+2.6) (−3.6,+2.9)

LV38 , τ= 50 ps (−3.1,+2.5) (−3.5,+1.5)

LV98 , τ= 5 ps (−1.1,+1) (−1.5,+1.1)

LV98 , τ= 10 ps (−1.0,+0.5) (−1.4,+0.9)

LV98 , τ= 50 ps (−1.2,+0.7) (−1.5,+0.6)

LV198 , τ= 5 ps (−0.8,+0.6) (−0.7,+0.5)

LV198 , τ= 10 ps (−1.0,+0.5) (−1.1,+0.7)

LV198 , τ= 50 ps (−1.1,+0.7) (−1.0,+0.3)

The same procedure is used for the LLP mass. On Figure 3.56, the comparison and the ratio

between the LLP reconstructed mass distribution for 2011 data and the bb Monte-Carlo

sample are shown. We recall that at the preselection stage a minimal reconstructed mass of

4.5 GeV/c2 is required. The MC and data distributions differ by less than 1 GeV/c2. Therefore,

the systematic uncertainty on the signal efficiency has been evaluated by varying the mass cut

by this amount. The results are given on Table 3.44.
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Figure 3.56: Left: LLP reconstructed mass distribution for 2011 data and the special bb Monte-Carlo

sample. Right: ratio of the two distributions with a constant fit.

Table 3.44: Systematic contributions in percent on signal efficiency in percent caused by the LLP

reconstructed mass cut for the different signal model estimated by taking the difference in efficiency

induced by a mass cut variation of 1 GeV/c2.

2011 2012

LV38 , τ= 5 ps 1.4 1.1

LV38 , τ= 10 ps 2.0 1.5

LV38 , τ= 50 ps 2.5 0.9

LV98 , τ= 5 ps 1.2 0.9

LV98 , τ= 10 ps 1.4 0.9

LV98 , τ= 50 ps 1.3 1.4

LV198 , τ= 5 ps 1.3 0.8

LV198 , τ= 10 ps 1.3 0.8

LV198 , τ= 50 ps 1.2 1.0

3.5.5 Beam line position

A 10 µm inaccuracy in the position of the beam line has been assumed as presented in Ref. [6].

On Table 3.45, the change in efficiency by moving the radial cut of the LLP by that amount is

presented for each signal models.
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Table 3.45: Systematic contributions on signal efficiency in percent caused by the beam line position

by taking the difference in efficiency induced by a radial cut variation of 10 µm.

2011 2012

LV38 , τ= 5 ps 0.2 0.2

LV38 , τ= 10 ps 0.2 0.2

LV38 , τ= 50 ps 0.1 0.2

LV98 , τ= 5 ps 0.6 0.6

LV98 , τ= 10 ps 0.5 0.4

LV98 , τ= 50 ps 0.3 0.4

LV198 , τ= 5 ps 0.8 1.0

LV198 , τ= 10 ps 0.7 0.5

LV198 , τ= 50 ps 0.5 0.3

3.5.6 Luminosity

Integrated luminosity of 0.98 f b−1 and 1.98 f b−1 have been analyzed in 2011 and 2012.

The uncertainties on the integrated luminosities determined by a precision measurement

presented in [52] are 1.7 % for 2011 dataset and 1.16 % for 2012 dataset.

3.6 Upper limit on production cross-section

The 95% C L upper limits on the production cross-sections, σup , has been computed from

the results of the LLP mass fit for the different signal model considered in this analysis. The

C Ls techniques has been applied to the results of the fit and to the ABCD results as well. This

statistical test is using the profile likelihood ratio Q [53]:

Q = L (signal+background)

L (background)

where L (background) denotes the likelihood corresponding to the background only hy-

pothesis (alternative hypothesis) while L (signal+background) is the likelihood of the null

hypothesis where a signal component is needed to understand the data. The likelihood

are computed for the fit results presented on Section 3.4.1.a. The ratio Q is scanned and

evaluated for different values of the production cross-section σ where the statistical test is

performed on pseudo-datasets generated from the background model (σ fixed at 0) and for

the signal+background hypotheses (σ fixed to the evaluated value).

The consistency test for the background only hypothesis, C Lb , is defined as:
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3.6. Upper limit on production cross-section

1−C Lb =
∫ Qobs

−∞
P (Q

′ |background)dQ
′

with Qobs the observed profile likelihood ratio.

The background+signal consistency test, C Ls+b hypothesis, is defined as :

C Ls+b =
∫ +∞

Qobs

P (Q
′ |signal+background)dQ

′

Therefore, the confidence level C Ls is :

C Ls =
C Ls+b

C Lb

where C Ls > 0.05 corresponds to a 95 % confidence level.

The first steps of the algorithm implemented with the RooStat tools [54] are illustrated on

Figure 3.57. The tool scans the production cross-section from zero and computes the pro-

file likelihood ratio for background only hypothesis (BModel), for signal plus background

hypothesis (SbModel) and the observed profile likelihood ratio. At each steps, the C Ls ratio is

determined until it reaches 0.05 for a given value of σ defining the upper limit on the produc-

tion cross-section, as it is shown on Figure 3.58, where the p-value for the different hypotheses

is given as a function of the production cross-section. Statistical and systematic uncertainties

on the signal efficiencies have been injected as nuisance parameters of the likelihood function,

assuming Gaussian distributions.
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Figure 3.57: Illustration of the first steps of the C Ls algorithm. In blue: the profile likelihood ratio

for background only hypothesis (σ= 0). In red: the profile likelihood ratio for signal plus background

hypothesis for a given value of σ. In black: the observed profile likelihood ratio. Each bins contain the

results from pseudo-datasets generated from the background model.
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Figure 3.58: Frequentist scan of the C Ls algorithm for 2011 data analysis, and the LV38 (τ= 10 ps)

signal model. cx refers to the production cross-section in pb.

On Table 3.46 and 3.47, the upper limits on the production cross-sections computed from the

fitting method and the C Ls procedure are presented for 2011 and 2012 data analysis, together
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with the selection efficiency for each full simulated models.

Table 3.46: Detection efficiency and upper limit on the production cross-section, σup , from the 2011

dataset and for each signal model, computed from the LLP mass fit results. The uncertainties on the

efficiency are statistical only.

Model εsel [%] σLHC b
up [pb] σ4π

up [pb]

LV38 , τ= 5 ps 4.54±0.10 0.63 5.69

LV38 , τ= 10 ps 5.32±0.11 0.50 4.51

LV38 , τ= 50 ps 3.62±0.09 0.54 4.79

LV98 , τ= 5 ps 5.23±0.12 0.14 1.27

LV98 , τ= 10 ps 6.84±0.12 0.13 1.15

LV98 , τ= 50 ps 5.03±0.11 0.17 1.53

LV198 , τ= 5 ps 5.38±0.11 0.11 0.99

LV198 , τ= 10 ps 6.80±0.12 0.09 0.81

LV198 , τ= 50 ps 4.87±0.13 0.12 1.08

Table 3.47: Like table 3.46, for the 2012 dataset.

Model εsel (%) σLHC b
up [pb] σ4π

up [pb]

LV38 , τ= 5 ps 3.61±0.09 0.51 4.20

LV38 , τ= 10 ps 5.40±0.11 0.31 2.54

LV38 , τ= 50 ps 4.71±0.11 0.34 2.76

LV98 , τ= 5 ps 6.46±0.13 0.09 0.74

LV98 , τ= 10 ps 8.13±0.14 0.07 0.58

LV98 , τ= 50 ps 5.77±0.12 0.11 0.90

LV198 , τ= 5 ps 6.54±0.13 0.04 0.33

LV198 , τ= 10 ps 8.43±0.14 0.06 0.49

LV198 , τ= 50 ps 5.84±0.12 0.09 0.76

For the ABCD method, the likelihood ratio has been build from the Poisson distribution for

background only and for signal and background hypotheses. Indeed, the ABCD method

can be considered as a counting experiment in the region C where an expected number of

background and signal events are compared with an observed number of events in 2011 and

2012 data. Therefore, the likelihood ratio is defined in terms of probability Ppoi ss as follow:

Q = Ppoiss(data|signal+background)

Ppoiss(data|background)
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where Ppoiss(data|signal+background) denotes the probability to observed N events of back-

ground in the data given Ns signal events plus Nbkg background events.

The consistency tests in terms of probabilities are:

1−C Lb = P (Q ≥Qobs |background)

and

C Ls+b = P (Q ≤Qobs |signal+background)

As for the C Ls algorithm performed on the results of the fitting method, the nuisance parame-

ters have been considered as Gaussian constraints.

On Table 3.48 and 3.49, the upper limits on the production cross-section in the LHCb forward

region computed from the ABCD method and the C Ls procedure are presented for 2011 and

2012 data analysis together with the selection efficiency on each full simulated models.

Table 3.48: Detection efficiency and upper limits on the production cross-section, σup , from the 2011

dataset and for each signal model computed from the ABCD results. The errors on the efficiency are

statistical only.

Model εABC D
sel (%) σup [pb]

LV38 , τ= 5 ps 2.49±0.08 0.34

LV38 , τ= 10 ps 2.95±0.08 0.35

LV38 , τ= 50 ps 1.86±0.07 0.46

LV98 , τ= 5 ps 3.80±0.10 0.21

LV98 , τ= 10 ps 4.85±0.10 0.18

LV98 , τ= 50 ps 3.50±0.09 0.28

LV198 , τ= 5 ps 3.56±0.09 0.15

LV198 , τ= 10 ps 4.59±0.10 0.09

LV198 , τ= 50 ps 3.30±0.09 0.20
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Table 3.49: Like table 3.48 for the 2012 dataset
Model εABC D

sel (%) σup [pb]

LV38 , τ= 5 ps 2.67±0.08 0.35

LV38 , τ= 10 ps 2.96±0.09 0.31

LV38 , τ= 50 ps 1.91±0.07 0.44

LV98 , τ= 5 ps 4.70±0.11 0.13

LV98 , τ= 10 ps 6.03±0.12 0.08

LV98 , τ= 50 ps 4.70±0.10 0.10

LV198 , τ= 5 ps 4.74±0.11 0.08

LV198 , τ= 10 ps 6.00±0.12 0.06

LV198 , τ= 50 ps 4.12±0.10 0.08

103





4 Conclusion and Perspectives

This thesis work is dedicated to the search for neutralino decaying semileptonically into

Standard Model particles. This decay can occur through R-parity violation in the mSUGRA

theoretical framework. A displaced vertex reconstructed with several tracks accompanied by a

muon is the signature of neutralinos decaying semileptonically, with lepton number violation.

Although the LHCb detector has been build for the b or c-hadrons studies, the excellent vertex

position resolution provided by the VELO as well as the pT requirements of the muon trigger

system allowed to study unexplored regions of the SUSY parameter space.

It has been observed that the background is dominated by bb̄ events together with a small

contribution of W and Z bosons decays close to the interaction point. A neural network

classifier which takes as input variables the muon and the displaced vertex properties is used

for the selection of candidates.

The signal is determined by a fit of the LLP mass distribution, and , as a cross-check by the

ABCD method, based on the LLP mass and the muon isolation variable.

In both cases, in the absence of a sufficient amount of simulated background, a data driven

approach is used to determine the background characteristics.

The procedure has been successfully tested on W and Z decays.

Data samples with a size of 0.98 f b−1 and 1.98 f b−1 collected at a center-of-mass energy ofp
s = 7 TeV and 8 TeV in 2011 and 2012 have been analyzed. The results are consistent with

zero signal events for the set of models studied. Thereby, upper limits on the production cross

sections from 0.06 to 0.46 pb were set for a total selection efficiency from 1.9 to 6.0 %.

A fast simulation is in preparation in order to cover and study a larger region of the mSUGRA

parameter space as presented on Figure 4.1. This method is calibrated by the different results

obtained in this thesis work and the same analysis techniques will be performed to set limits

on the production cross section.
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FIG. 6: Constraints on a model as in figures 4 and 5, but shown in the plane of squark mass and LSP mass,

with the gluino mass fixed to 2 TeV. The LSP is assumed to decay 100% to a muon and two light quarks.

The e↵ect of the collimation of the LSP decay products as the LSP becomes light is clear.

coupled states such as singlinos and photinos may naturally be light. Figure 5 shows the bounds

on models with a 20 GeV LSP decaying to eqq (left) or µqq (right). The constraint from the

same-sign lepton search is greatly weakened, to the point where it is in fact less sensitive than the

ATLAS multijet search. However, since the LSP decay products almost always merge into a single

jet in this scenario, the CMS search for paired dijet resonances [48] becomes relevant. The dotted

orange contours of figure 5 are the constraints from this search on our simplified model with exactly

degenerate squarks, very similar to those for squark LSPs decaying through UDD (section II A).

(Unlike ATLAS, CMS analyses include muons when clustering jets.) Once again though small

perturbations away from exact squark degeneracy are enough to smear out the apparent resonance

so that this search is not directly applicable. This is therefore not a robust constraint on the scale

of the squark masses; light squarks (500 � 1000 GeV) are allowed provided that they are split by

⇠ 5� 10% of their mass. The merging of the LSP decay products into a single jet also means that

the CMS displaced dijet search will have sensitivity if the decay is displaced (as it will appear to

be two-body); in this case therefore decay to electrons will not be less constrained when displaced.

Remarkably, these models hide the colored superpartners as well or better than the best-case

baryonic RPV scenarios, despite the presence of two leptons in every SUSY event. The colored

superpartners could potentially all be lighter than ⇠ TeV in these models.

LV38 LV98 LV198

Monday 2 March 15

Fast Simulation

Monday 2 March 15

Figure 4.1: Graphs from models considered from the CMS results with the LV models studied in this

analysis together with the region of the parameter space targeted by the the fast simulation.

Finally, motivated by the results of this analysis and the future recorded data at a center-

of-mass energy of 13 and 14 TeV, it would be interesting to search for neutralino decaying

semileptonically into quarks and electrons in addition to muons. The study of this decay

channel would be very challenging and may allow to look at large unexplored regions of the

parameter space [2].
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A Appendix

A.1 Results of the fitting procedure with W and Z events as signal

events for 2012 data

The results of the fitting procedure used for the determination of the production cross-sections

of W + →µ+ν and W − →µ−ν for 2012 data are presented on Figure A.1
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Figure A.1: Same as figure 3.37 for 2012 data.
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A.2 Simultaneous fit parameters

The fit parameters of the signal and background model obtained from the simultaneous fit

technique are listed for 2011 and 2012 data analysis for each signal models.

Table A.1: Fit parameters of the signal and background model for the analysis of 2011 data and LV 38

models together with the χ2/nDoF .

LV38 , τ= 5 ps LV38 , τ= 10 ps LV38 , τ= 50 ps

τLV 3769.6±431.5 3346.8±479.5 3310.1±619.2

µmLLP ,si g 14135.0±375.7 15481.4±271.0 14972.8±432.4

σmLLP ,si g 6772.7±304.2 7080.3±305.6 8180.4±253.4

τmLLP 7830.2±723.8 7771.2±534.2 7038.4±684.2

r 6.97±1.41 6.32±1.32 7.08±2.22

fQC D 0.99±0.03 0.97±0.02 0.95±0.08

χ2/nDoF 1.08 0.78 2.20

Table A.2: Same as Table A.1 for LV 98 models.
LV98 , τ= 5 ps LV98 , τ= 10 ps LV98 , τ= 50 ps

τLV 11337.7±1772.5 8937.5±2109.0 8698.4±1987.8

µmLLP ,si g 11982.9±1718.6 12016.6±1712.0 13778.2±1732.4

σmLLP ,si g 22994.4±1892.9 24778.9±1646.3 27515.0±1047.5

τmLLP 7971.0±614.8 8279.8±590.0 8049.4±656.6

r 6.16±1.10 4.49±1.46 5.16±3.22

fQC D 0.99±0.02 0.97±0.10 0.96±0.04

χ2/nDoF 1.56 0.69 0.78

Table A.3: Same as Table A.1 for LV 198 models.
LV198 , τ= 5 ps LV198 , τ= 10 ps LV198 , τ= 50 ps

τLV 36780.6±984.2 34790.2±945.9 32625.5±1184.6

µmLLP ,si g 6403.5±747.4 5401.2±1280.0 5215.9±1182.1

σmLLP ,si g 5516.1±1419.0 9911.4±1850.5 11462.2±2058.7

τmLLP 7123.5±476.9 7507.0±505.7 7698.9±631.9

r 6.42±1.12 9.32±2.41 6.82±1.43

fQC D 0.98±0.02 0.97±0.10 0.96±0.08

χ2/nDoF 0.85 1.26 0.89
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Table A.4: Fit parameters of the signal and background model for the analysis of 2012 data and LV 38

models together with the χ2/nDoF .

LV38 , τ= 5 ps LV38 , τ= 10 ps LV38 , τ= 50 ps

τLV 4143.4±384.4 4059.6±372.2 3738.6±511.0

µmLLP ,si g 14785.2±375.3 14654.2±363.7 15096.8±499.7

σmLLP ,si g 6551.0±286.2 6476.3±275.2 6607.6±355.2

τmLLP 8534.0±400.1 9076.3±528.7 8883.2±725.0

r 4.21±2.58 6.28±4.38 3.52±2.33

fQC D 0.99±0.02 0.99±0.01 0.96±0.05

χ2/nDoF 1.84 1.61 2.32

Table A.5: Same as Table A.4 for LV 98 models.
LV98 , τ= 5 ps LV98 , τ= 10 ps LV98 , τ= 50 ps

τLV 11067.5±1263.4 11582.6±1059.6 10294.7±1536.7

µmLLP ,si g 17957.0±1146.0 17600.8±978.3 13150.9±1413.4

σmLLP ,si g 20684.8±1216.1 20278.2±1071.6 21505.1±1533.1

τmLLP 8790.3±556.2 7529.1±489.1 8314.0±576.7

r 3.56±0.96 3.94±3.18 4.45±2.68

fQC D 0.98±0.01 0.97±0.04 0.98±0.02

χ2/nDoF 2.05 1.87 2.05

Table A.6: Same as Table A.4 for LV 198 models.
LV198 , τ= 5 ps LV198 , τ= 10 ps LV198 , τ= 50 ps

τLV 33294.6±3070.5 31552.6±3253.6 33947.8±3537.2

µmLLP ,si g 5823.5±649.5 5395.5±623.6 5305.3±841.3

σmLLP ,si g 4149.3±561.2 5733.1±891.7 4733.1±898.2

τmLLP 7913.1±645.1 7066.0±419.9 8830.1±580.6

r 8.01±5.09 4.77±1.34 3.94±2.49

fQC D 0.99±0.01 0.99±0.06 0.99±0.02

χ2/nDoF 1.47 1.59 2.02
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A.3 Multilayer Perceptron response

The overtraining checks and the selection applied on the neural network response of the

multilayer perceptron of the different signal models are presented for 2011 and 2012 data

analysis.
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Figure A.2: Overtraining check of the MLP classifier for 2011 data and LV 38 signal models together

with the MLP response selection applied for the signal extraction techniques : τ= 5 (left), 10 (center)

and 50 ps (right).
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Figure A.3: Like Figure A.2 for LV 98 models.
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Figure A.4: Like Figure A.2 for LV 198 models.
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Figure A.5: Overtraining check of the MLP classifier for 2012 data and LV 38 signal models together

with the MLP response selection applied for the signal extraction techniques : τ= 5 (left), 10 (center)

and 50 ps (right).
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Figure A.6: Like Figure A.5 for LV 98 models.
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Figure A.7: Like Figure A.5 for LV 198 models.
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A.4 Neural Network classifier polluted by signal events

The efficiencies as a function of the MLP response for different fraction of signal events added

to the background sample (data) at the training stage of the neural network together with the

selection applied on each signal models are presented for 2011 and 2012 data analysis.
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Figure A.8: Signal efficiency as a function of the MLP response selection for different fraction of signal

events added to the background for 2011 data and LV 38 signal models : τ= 5 (left), 10 (center) and

50 ps (right).
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Figure A.9: Like Figure A.8 for LV 98 models.
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Figure A.10: Like Figure A.8 for LV 198 models.
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Figure A.11: Signal efficiency as a function of the MLP response selection for different fraction of

signal events added to the background for 2012 data and LV 38 signal models : τ= 5 (left), 10 (center)

and 50 ps (right).
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Figure A.12: Like Figure A.11 for LV 98 models.
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Figure A.13: Like Figure A.11 for LV 198 models.
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A.5 Effects of the MLP on mLLP and 1/I sol ati on

On figure A.14 and A.15, PDF (mLLP ,1/I sol ati on) and separatelyPDF (mLLP ) and PDF (1/I sol ati on)

are presented for different values of the selection on the neural network response (MLP) (no

cut, 0.2, 0.4 and 0.6) for LV 38 (τ = 10 ps) and 2011 dataset. It shows that the MLP tends to

remove events with a small isolation and a low mass which corresponds mainly to the C region

where the background is dominant with respect to signal events.
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Figure A.14: Effect of N Ncut (MLP) on the bi-parametric distribution. The contour define 2011 data

distribution in comparison with the signal LV 38 (τ= 10 ps) as an example (black dots).
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Figure A.15: Effect of N Ncut (MLP) on the distribution of the bi-parametric projections for 2011

data and LV 38 (τ= 10 ps) as an example . Inverse of the isolation (left) and reconstructed mass of the

long-lived particle candidate (right).
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A.6. Estimation of the effects from for each signal models and datasets

A.6 Estimation of the effects from for each signal models and datasets

Table A.7: Results of 1000 toy experiments for the 2011 dataset. 200 events of background and 5 events

of signal has been generated in the bi-parametric distributions and its projections. "Total" defines the

average of the background plus signal events in each region, "signal" correspond to the average of the

number of signal events.
Model S̄D B̄D NA NB NC ND

LV38 (τ= 5 ps) (2D,total) 2.58±2.53 3.56±1.26 30.34±5.08 149.31±6.26 19.22±4.18 6.14±2.20

LV38 (τ= 5 ps) (2D,signal) 0.97±0.91 0.86±0.86 1.24±0.95 1.94±1.09

LV38 (τ= 5 ps) (Proj,total) 1.85±2.52 3.86±1.32 31.60±5.27 147.81±6.24 19.89±4.11 5.70±2.15

LV38 (τ= 5 ps) (Proj,signal) 1.12±0.92 0.72±0.75 1.28±0.95 1.88±1.09

LV38 (τ= 10 ps) (2D,total) 2.64±2.92 4.58±1.48 29.00±4.92 144.16±6.48 24.62±4.76 7.22±2.52

LV38 (τ= 10 ps) (2D,signal) 0.94±0.88 0.83±0.84 1.25±0.95 1.98±1.09

LV38 (τ= 10 ps) (Proj,total) 1.96±2.97 4.99±1.58 30.59±5.12 142.25±6.22 25.21±4.69 6.95±2.52

LV38 (τ= 10 ps) (Proj,signal) 1.04±0.91 0.70±0.75 1.32±0.97 1.94±1.10

LV38 (τ= 50 ps) (2D,total) 3.15±2.92 4.12±1.35 26.67±4.79 146.26±6.41 24.79±4.60 7.27±2.58

LV38 (τ= 50 ps) (2D,signal) 0.80±0.80 0.70±0.76 1.61±1.00 1.90±1.06

LV38 (τ= 50 ps) (Proj,total) 2.01±2.82 4.68±1.51 29.02±4.98 143.97±6.58 25.32±4.75 6.68±2.38

LV38 (τ= 50 ps) (Proj,signal) 0.85±0.85 0.65±0.77 1.53±1.04 1.97±1.07

LV98 (τ= 5 ps) (2D,total) 3.72±2.02 2.04±0.86 29.68±4.93 157.62±5.62 11.93±3.31 5.77±1.83

LV98 (τ= 5 ps) (2D,signal) 0.63±0.71 0.40±0.62 0.87±0.80 3.10±1.06

LV98 (τ= 5 ps) (Proj,total) 3.30±2.04 2.19±0.94 31.43±5.14 156.00±5.74 12.08±3.37 5.50±1.81

LV98 (τ= 5 ps) (Proj,signal) 0.82±0.89 0.25±0.49 0.92±0.86 3.00±1.12

LV98 (τ= 10 ps) (2D,total) 3.30±2.40 3.06±1.13 30.51±5.05 151.59±6.27 16.54±3.93 6.36±2.11

LV98 (τ= 10 ps) (2D,signal) 0.66±0.74 0.40±0.60 1.03±0.91 2.92±1.14

LV98 (τ= 10 ps) (Proj,total) 3.11±2.30 3.20±1.17 31.64±5.12 150.49±5.99 16.56±3.88 6.31±1.98

LV98 (τ= 10 ps) (Proj,signal) 0.77±0.81 0.26±0.51 0.99±0.91 2.98±1.13

LV98 (τ= 50 ps) (2D,total) 2.74±2.39 3.57±1.27 31.07±5.33 149.14±6.25 18.49±4.18 6.30±2.02

LV98 (τ= 50 ps) (2D,signal) 0.63±0.73 0.37±0.59 1.06±0.91 2.94±1.08

LV98 (τ= 50 ps) (Proj,total) 2.98±2.47 3.51±1.26 31.98±5.39 148.73±6.58 17.80±4.00 6.49±2.12

LV98 (τ= 50 ps) (Proj,signal) 0.79±0.81 0.27±0.52 1.08±0.95 2.86±1.11

LV198 (τ= 5 ps) (2D,total) 3.54±1.32 0.78±0.39 11.01±3.18 175.47±4.53 14.21±3.58 4.32±1.26

LV198 (τ= 5 ps) (2D,signal) 0.51±0.64 0.39±0.58 1.18±0.98 2.92±1.14

LV198 (τ= 5 ps) (Proj,total) 3.58±1.36 0.82±0.41 11.55±3.16 174.88±4.93 14.17±3.78 4.40±1.29

LV198 (τ= 5 ps) (Proj,signal) 0.59±0.72 0.29±0.52 1.16±0.91 2.96±1.07

LV198 (τ= 10 ps) (2D,total) 3.28±1.36 0.97±0.46 12.85±3.44 173.10±4.59 14.80±3.49 4.25±1.28

LV198 (τ= 10 ps) (2D,signal) 0.60±0.72 0.38±0.60 1.15±0.98 2.88±1.10

LV198 (τ= 10 ps) (Proj,total) 3.48±1.39 0.97±0.46 12.77±3.37 172.77±4.87 15.01±3.56 4.45±1.31

LV198 (τ= 10 ps) (Proj,signal) 0.66±0.73 0.25±0.48 1.15±0.94 2.94±1.06

LV198 (τ= 50 ps) (2D,total) 3.52±1.71 1.48±0.62 14.16±3.61 166.67±5.34 19.17±4.11 5.00±1.59

LV198 (τ= 50 ps) (2D,signal) 0.45±0.62 0.39±0.61 1.29±1.03 2.88±1.11

LV198 (τ= 50 ps) (Proj,total) 3.37±1.69 1.52±0.65 14.63±3.77 166.27±5.28 19.22±4.01 4.88±1.56

LV198 (τ= 50 ps) (Proj,signal) 0.62±0.75 0.28±0.53 1.25±0.98 2.86±1.11
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Table A.8: Same as table A.7 for the 2012 dataset.
Model S̄D B̄D NA NB NC ND

LV38 (τ= 5 ps) (2D,total) 4.25±3.36 5.15±1.73 42.81±5.87 135.12±6.97 17.67±3.89 9.40±2.88

LV38 (τ= 5 ps) (2D,signal) 1.17±0.91 0.82±0.81 1.05±0.88 1.96±1.11

LV38 (τ= 5 ps) (Proj,total) 1.80±3.19 5.87±1.90 44.61±5.86 133.61±6.64 19.10±4.03 7.67±2.57

LV38 (τ= 5 ps) (Proj,signal) 1.28±0.97 0.72±0.77 1.12±0.94 1.88±1.05

LV38 (τ= 10 ps) (2D,total) 4.55±3.98 7.24±2.19 43.21±5.85 127.15±6.78 22.84±4.47 11.79±3.32

LV38 (τ= 10 ps) (2D,signal) 1.04±0.91 0.80±0.84 1.16±0.96 2.01±1.10

LV38 (τ= 10 ps) (Proj,total) 2.07±3.90 8.29±2.38 45.40±6.02 124.79±6.96 24.45±4.43 10.36±3.09

LV38 (τ= 10 ps) (Proj,signal) 1.11±0.92 0.67±0.77 1.21±0.95 2.01±1.10

LV38 (τ= 50 ps) (2D,total) 4.22±3.95 7.40±2.19 44.69±5.66 126.23±6.80 22.48±4.30 11.61±3.28

LV38 (τ= 50 ps) (2D,signal) 0.83±0.82 0.73±0.78 1.31±0.99 2.12±1.12

LV38 (τ= 50 ps) (Proj,total) 2.09±4.09 8.67±2.56 47.88±6.07 122.51±6.84 23.85±4.58 10.76±3.19

LV38 (τ= 50 ps) (Proj,signal) 0.97±0.87 0.63±0.76 1.32±0.99 2.08±1.13

LV98 (τ= 5 ps) (2D,total) 3.77±3.00 4.71±1.67 45.11±5.88 136.16±6.65 15.25±3.78 8.48±2.50

LV98 (τ= 5 ps) (2D,signal) 0.95±0.88 0.28±0.51 0.77±0.79 3.00±1.08

LV98 (τ= 5 ps) (Proj,total) 3.11±3.00 5.03±1.75 46.66±6.16 134.63±6.69 15.56±3.74 8.15±2.44

LV98 (τ= 5 ps) (Proj,signal) 0.91±0.86 0.26±0.48 0.78±0.81 3.06±1.04

LV98 (τ= 10 ps) (2D,total) 3.18±2.90 5.12±1.67 41.67±5.85 137.14±6.62 17.89±3.96 8.30±2.37

LV98 (τ= 10 ps) (2D,signal) 0.82±0.85 0.28±0.51 0.75±0.80 3.15±1.11

LV98 (τ= 10 ps) (Proj,total) 3.10±3.03 5.29±1.73 42.36±5.85 136.18±6.86 18.07±4.06 8.39±2.49

LV98 (τ= 10 ps) (Proj,signal) 0.90±0.83 0.21±0.46 0.72±0.79 3.17±1.09

LV98 (τ= 50 ps) (2D,total) 3.24±3.19 5.62±1.83 46.47±5.82 132.54±6.44 17.12±3.83 8.87±2.61

LV98 (τ= 50 ps) (2D,signal) 0.63±0.74 0.41±0.61 0.92±0.83 3.04±1.05

LV98 (τ= 50 ps) (Proj,total) 3.03±3.28 5.77±1.93 47.14±6.10 131.69±6.66 17.37±3.94 8.80±2.65

LV98 (τ= 50 ps) (Proj,signal) 0.79±0.83 0.28±0.50 1.01±0.88 2.91±1.07

LV198 (τ= 5 ps) (2D,total) 3.48±2.02 2.54±0.91 19.11±4.16 157.45±5.62 22.42±4.37 6.02±1.80

LV198 (τ= 5 ps) (2D,signal) 0.44±0.63 0.28±0.53 1.00±0.89 3.28±1.08

LV198 (τ= 5 ps) (Proj,total) 3.34±2.17 2.65±0.93 20.45±4.16 156.62±5.76 21.94±4.28 5.99±1.96

LV198 (τ= 5 ps) (Proj,signal) 0.60±0.69 0.21±0.45 1.04±0.93 3.15±1.07

LV198 (τ= 10 ps) (2D,total) 2.89±1.86 2.32±0.90 15.68±3.96 158.59±5.90 25.51±4.66 5.21±1.63

LV198 (τ= 10 ps) (2D,signal) 0.63±0.72 0.30±0.53 1.07±0.93 3.01±1.10

LV198 (τ= 10 ps) (Proj,total) 3.24±1.95 2.47±0.93 16.79±3.91 157.41±5.85 25.10±4.85 5.70±1.71

LV198 (τ= 10 ps) (Proj,signal) 0.69±0.76 0.25±0.48 1.01±0.85 3.05±1.04

LV198 (τ= 50 ps) (2D,total) 4.13±2.00 1.92±0.77 19.25±4.28 161.92±5.59 17.77±4.04 6.06±1.84

LV198 (τ= 50 ps) (2D,signal) 0.51±0.66 0.28±0.52 1.18±0.94 3.03±1.08

LV198 (τ= 50 ps) (Proj,total) 3.24±1.90 2.19±0.83 21.22±4.29 160.20±5.45 18.15±3.93 5.43±1.71

LV198 (τ= 50 ps) (Proj,signal) 0.64±0.74 0.25±0.51 1.15±0.95 2.97±1.12

A.7 Test of the ABCD method with bb MC events at the intermediate

selections stage

The optimization for LV signals made with toy MC experiments has been tested with bb events

at the intermediate stage of the selection where no selection are made on the MLP response. 5

LV 38 (τ= 10 ps) events are generated for each experiment plus 200 bb̄ background events.

In a second test, the same number of signal events are generated per experiment, but the

distributions from the data itself is used as background model. In both cases sets of 1000

experiments are generated and the significance computed by varying the boundaries on the
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(mLLP , 1/Isolation) plane. On figure A.16, an example of toy experiment is given for illustration.
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Figure A.16: Example of toy experiment with 200 background events (red) and 5 signal events based

on LV38 (τ= 10 ps) (blue boxes). Most of the signal is in the D regions. A, B, and C are the sidebands

used to estimate the background in D.

Both tests give about the same result: the best significance values are 1.19 and 1.23 for the

first and second test respectively, obtained with boundaries set at mLLP = 12.5 GeV /c2 and

I so−1 = 0.9. On the table A.9, the results of the 1000 toy experiments for MC bb and 2011 are

presented.

With this choice of boundaries, the average number of events expected in D is 2. The two tests

give equivalent results: the estimated number of signal events in D is 1.66±2.00 for the bb

based toys and 2.30±1.96 for the data based toys. A correction can be applied to take into

account the presence of signal in the A, B, C region. After this correction the average number

of events is 1.83±2.12 and 2.46±2.10 for the two tests, both compatible with the 2±1 events

expected in D. It is found that the number of events in each region are very close by comparing

the results obtained from the bi-parametric and the projections distributions which indicates

a very low correlation level. The bias estimated from the data is 2.51−2.30 = 0.21 with the

statistical uncertainty of the same magnitude.
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Table A.9: Results of 1000 toy experiments for MC events and 2011 data with mLLP = 12.5 GeV /c2

and I so−1 = 0.9 for 200 events of background and 5 events of signal. "Total" defines the mean of

the sum of background and signal events in each region and "signal" correspond to the mean of

the number of signal only. "2D" and "Proj" are referring to the toys based on the bi-parametric

PDF (mLLP ,1/I sol ati on) and the two projections PDF (mLLP )×PDF (1/I sol ati on) respectivaly. The

errors are RMS.
S̄D B̄D NA NB NC ND

MC bb (total, 2D) 1.66±2.00 1.40±0.80 7.78±2.76 164.53±6.05 29.63±5.28 3.06±1.20

MC bb (signal, 2D) 0.64±0.72 0.90±0.90 1.50±1.08 1.96±1.12

Data (total, 2D) 2.30±1.96 1.06±0.63 5.58±2.25 164.75±5.36 31.31±5.11 3.36±1.32

Data (signal, 2D) 0.61±0.77 0.75±0.75 1.67±1.09 1.97±1.11

MC bb (total, Proj) 2.37±1.99 1.07±0.64 6.16±2.43 164.41±5.18 28.98±4.92 3.44±1.36

MC bb (signal, Proj) 0.74±0.79 0.66±0.78 1.68±1.06 1.90±1.12

Data (total,Proj) 2.51±1.88 0.96±0.57 5.07±2.05 164.97±5.38 31.55±4.98 3.47±1.30

Data (signal,Proj) 0.74±0.74 0.65±0.76 1.57±1.00 2.03±1.08
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Acronyms

BP Back Propagation

CP Charge Parity

DOCA Distance of Closest Approach

DV Displaced Vertex

ECAL Electromagnetic Calorimeter

EWSB Electro-Weak Symmetry Breaking

GUT Grand Unified Theory

HCAL Hadronic Calorimeter

HLT High-Level Trigger

IP Impact Parameter

LLP Long-Lived Particles

LSP Lightest Superpartner

LV Lepton Violation

L0 Level-0 Trigger

MC Monte Carlo

mGMSB Minimal Gauge-Mediated Supersymmetry Breaking

MLP Multilayer Perceptron

mSUGRA Minimal Supergravity

MSSM Minimal Supersymmetric Standard Model

MV Matter Veto

NLO Next-to-leading Order
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Appendix A. Acronyms

POCA Point of Closest Approach

PV Primary Vertex

QCD Quantum chromodynamics

RMS Root Mean Square

RPV R-parity violation

RV Reconstructed Vertices

SM Standard Model

SUSY Supersymmetry

VELO VErtex LOcator
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