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Outline  
 
1.  Optimization of process operation 

–  Numerical vs. real-time optimization 

–  Static optimization for continuous and batch plants 

2.  Real-time optimization schemes 

–  Two explicit strategies (repeat numerical optimization) 

–  One implicit strategy (use feedback control) 

3.  Experimental cases studies 

–  Fuel-cell stack (a continuous plant) 

–  Batch polymerization  (a batch plant) 

4.  Conclusions 

  



Optimization of a Continuous Plant 

Planning & Scheduling"

Decision Levels Disturbances 

Market Fluctuations, 
Demand, Price 

Catalyst Decay, 
Changing Raw 
Material Quality 

Fluctuations in 
Pressure, Flow 
Rates, Compositions 

Long term 
week/month 

Medium term 
day 

Short term 
second/
minute 

Real-Time Optimization"

Control"

Production Rates ���
Raw Material Allocation	



Optimal Operating���
Conditions - Set Points	



Manipulated���
Variables	

Measurements	



Measurements	



Measurements	



Changing conditions"
 Real-time adaptation"

of set points"

Large-scale complex 
processes"



Optimize the steady-state performance of a (dynamic) process 	


while satisfying a number of operating constraints	



Plant	



min
u

φp u,y p( )
s. t. g p u,y p( ) ≤ 0

(set points)"

u"

Optimization of a Continuous Plant 
Problem formulation"

u  ?"

min
u

Φ(u,θ ) := φ u, y( )                                
s. t. G u,θ( ) := g u,y( ) ≤ 0          

NLP"

   Model-based Numerical Optimization 	



? 

F u,y,θ( ) = 0

(set points)"

u"u  ?"



Optimize the dynamic performance of a batch process 	


while satisfying a number of operational constraints	



Optimization of a Batch Plant 

u[0, t f ] x p(t f )

Feed rate"
Temperature"

Productivity"
Batch time"

Uncertainty    Real-time adaptation of trajectories"

Batch unit with uncertainty regarding initial conditions, raw 
material quality and model accuracy"



u(t) x p(t f )

Batch plant with finite terminal time"

u[0, t f ] = U(π )
Input Parameterization 

u(t)"
umax"

umin"
tf"t1" t2"

u1"

0"

min
π

Φ π ,θ( )                                            
s. t. G π ,θ( ) ≤ 0                     

Batch plant viewed as a static map"

π Φ p

G p NLP"

min
u[0,t f ]

Φ := φ x(t f )( )                                          
s. t. x = F(x,u,θ ) x(0) = x0                                  

           S(x,u) ≤ 0

           T x(t f )( ) ≤ 0

Run-to-run Optimization of a Batch Plant 
Problem formulation 
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Three Approaches for Static RTO 
What to measure and what to adapt? 

Optimization in the presence 
of Uncertainty 

Measurements: 
Adaptive Optimization 

No Measurement: 
Robust Optimization 

u* ∈argmin
u

φ (u,y)

s.t. F(u,y,θ ) = 0
g(u,y) ≤ 0

Measure 
Outputs 

and adapt 
 Model Parameters 
-  two-step approach 
(repeated identification  
     and optimization) 

 parameter update: δθ
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Measure/Estimate   
KKT elements 

and adapt 
Inputs. 

-  self-optimizing control 
-  NCO tracking © LA  
-  extremum-seeking control  

  input update: δu
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Measure/Estimate   
KKT elements 

and adapt 
Cost & Constraints 

- bias update 

-  gradient correction 
-  modifier adaptation © LA "

cost & constraint update: δφ,δg

2	



Explicit methods Implicit method 



θ
k
* ∈argmin

θ
J
k
id

J
k
id = y

p
(u
k
∗) − y(u

k
∗,θ)⎡⎣ ⎤⎦

T
Q y

p
(u
k
∗) − y(u

k
∗,θ)⎡⎣ ⎤⎦ s.t. g u,y(u,θ

k
∗)( ) ≤ 0

Parameter Identification Problem	

 Optimization Problem	



uk+1
∗ ∈argmin

u
φ u,y(u,θk∗)( )

  uL ≤ u ≤ uU

Plant"
at"

steady state"
Parameter"

Identification"

Optimization"

uk+1
∗ → uk

∗

θk*

yp(uk
∗)

T.E. Marlin, A.N. Hrymak. Real-Time Operations Optimization of Continuous Processes, 
 AIChE Symposium Series - CPC-V, 93, 156-164, 1997 

Current Industrial Practice 	


for tracking the changing optimum	



in the presence of disturbances	



y(uk
*,θk*)

   1.  Adaptation of Model Parameters 
     Two-step approach 



Does not 
converge to plant 

optimum 

Williams-Otto Reactor 
"- 4th-order model 

- 2 inputs 
- 2 adjustable par. 
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  Two-step Approach 
   With  structurally incorrect model 

 



uk+1
∗ ∈argmin

u
Φm(u,θ) := Φ(u,θ) + λkΦ [u − uk∗ ]

s.t. Gm(u,θ) := G(u,θ) + εk + λkG [u − uk∗ ] ≤ 0

Modified Optimization Problem	


Affine corrections of 
cost and constraint 
functions. The modified 
problem  satisfies the 
first-order optimality 
conditions of the plant 	


	



  uL ≤ u ≤ uU

T 

T 

2. Adaptation of Cost & Constraints 
     Input-affine correction to the model 

P.D. Roberts and T.W. Williams, On an Algorithm for Combined System Optimization  
and Parameter Estimation, Automatica, 17(1), 199–209, 1981 

co
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Example Revisited 
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Converges to plant 
optimum 

Williams-Otto Reactor 
"- 4th-order model 

- 2 inputs 
- 2 adjustable par. 
 

Modifier adaptation © LA  

A. Marchetti, PhD thesis, EPFL, Modifier-Adaptation Methodology for Real-Time Optimization, 2009  

Requires estimation of 
experimental gradient 



3.  Direct Adaptation of Inputs 
     NCO tracking © LA       

–  Transform the optimization problem into a control problem 

–  Which setpoints to track for optimality? 
–  The optimality conditions (active constraints, gradients) 

–  Requires corresponding measurements 

Real Plant	


Measurements ?	



Optimizing	


Controller	



Feasibility ?	


Optimal performance ?	



Disturbances	



Inputs ?	
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Set points ?	
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Generation of a Solution Model 

First-principles 
modeling	



Numerical 
optimization	



Prior knowledge 
Experimental data  

Process model 

Interpretation	


Approximations	



Robust 
solution model 

Nominal  
optimal solution 

Parameterized  
optimal inputs 

wrt. plant-model mismatch and disturbances 	



O
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Optimal  
plant inputs 
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Adjustment of 	


input parameters	



Measured/estimated 
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Outline  
 
1.  Optimization of process operation 

–  Numerical vs. real-time optimization 

–  Static optimization for continuousand batch plants 

–  Optimization of a batch plant 

2.  Real-time optimization schemes 

–  Two explicit strategies (repeated numerical optimization) 

–  One implicit strategy (use of feedback control) 

3.  Experimental cases studies 
–  Fuel-cell stack (a continuous plant)  --   Approach 2 

–  Batch polymerization  (a batch plant)  --   Approach 3 

4.  Conclusions 

  



Solid Oxide Fuel Cell Stack 
RTO via modifier adaptation © LA 
 

 

  Stack of 6 cells, active area of 50 cm2, metallic interconnector 
  Anodes : standard nickel/yttrium stabilized-zirconia (Ni-YSZ) 
  Electrolyte : dense YSZ.  
  Cathodes: screen-printed (La, Sr)(Co, Fe)O3 
  Operation temperatures between 650 and 850◦C.  



Experimental Features 
 

"
  Objective: maximize electrical efficiency"

  Meet power demand that changes unexpectedly"

  Inputs: flowrates  of H2 and O2, current "

  Outputs: power density, cell potential"

   Time-scale separation"
•  slow temperature dynamics, treated as process drift !  !

•  static model (for the rest)!

  Inaccurate model in the operating region (power, cell)"

G.A. Bunin et al., Experimental Real-Time Optimization of a Solid Oxide Fuel Cell Stack via 
Constraint Adaptation, Energy, 39(1), 54-62, 2012 
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uk

η u
k
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el
u
k
,θ( )+ εk−1pel = pelS
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u
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Strategy for Online Optimization 

Repeated Numerical Optimization 
•  Solve a static optimization problem every 10 sec 
•  Apply the optimal inputs to the fuel cell stack 
•  Measure the resulting constraint values 
•  Adapt the modifiers      to match the active constraints 	

ε



Experimental Results 
 

  Random power changes every 5 min"
  RTO every 10 sec, matches the active constraints at steady state"

!



  Industrial features"
•  1-ton reactor, risk of runaway"

•  Initiator efficiency can vary considerably"

•  Several recipes!

  different initial conditions!

 different initiator feeding policies!

  use of chain transfer agent!

 use of reticulant"

•  Modeling difficulties"
•  Uncertainty"

  Challenge: Implement (near) optimal operation for various recipes 

 Optimization of Polymerization Reactor 
 NCO tracking © LA  

G. François et al., Run-to-Run Adaptation of a Semi-Adiabatic Policy for the Optimization of an  
Industrial Batch Polymerization Process, I&ECResearch, 43, 7238-7242 (2004) 



Industrial Practice  

Tr(t) to minimize the batch time ?"



tsw"

t"

Tr(t)"

Tr,max"

Tr,iso"

tf"

1"

2"Heat removal 
≈ isothermal 

Compromise 
≈ adiabatic 

Strategy for Run-to-run Optimization 

Polymerization"
reactor"

Tr(tf) 

Run-to-run"
controller"

Tr,max -	



tsw 

Tendency model 

Optimality is linked with meeting the most restrictive constraint  Tr(tf) = Tr,max 

Strategy: Manipulate tsw on a run-to-run basis to force Tr(tf) at Tr,max 



Industrial Results 

Final time 
•  Isothermal: 1.00  
•  Batch 1:      0.78 
•  Batch 2:      0.72 
•  Batch 3:      0.65 

1	



isothermal	





Conclusions 

  Key challenge is estimation of plant gradient 

  Process models are often inadequate for optimization  
   use real-time measurements for appropriate adaptation 

  Which measurements to use? How to best exploit them? 
o  Outputs: easily available, not necessarily appropriate 

o  KKT modifiers allow meeting KKT conditions 
  modifier adaptation (explicit optimization) 

  NCO tracking (implicit optimization 


