

Setting the Standard for Automation™

Real-Time Optimization of Industrial Processes

Dominique Bonvin Laboratoire d'Automatique EPFL, Lausanne

En partenariat avec

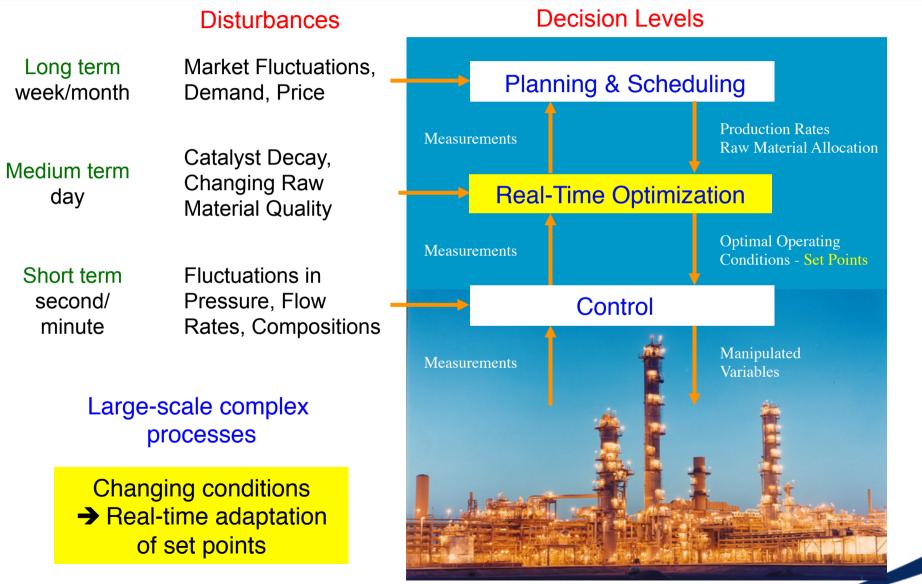
Maîtrise et optimisation des processus complexes – Angers - 22 octobre 2014

Outline

- 1. Optimization of process operation
 - Numerical vs. real-time optimization
 - Static optimization for continuous and batch plants
- 2. Real-time optimization schemes
 - Two explicit strategies (repeat numerical optimization)
 - One implicit strategy (use feedback control)
- 3. Experimental cases studies
 - Fuel-cell stack (a continuous plant)
 - Batch polymerization (a batch plant)
- 4. Conclusions

ISA

Optimization of a Continuous Plant



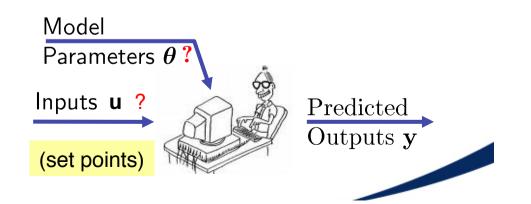
Optimization of a Continuous Plant Problem formulation

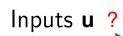
Optimize the steady-state performance of a (dynamic) process while satisfying a number of operating constraints

Plant

Model-based Numerical Optimization

 $\min_{\mathbf{u}} \quad \phi_p(\mathbf{u}, \mathbf{y}_p)$ s.t. $\mathbf{g}_p(\mathbf{u}, \mathbf{y}_p) \leq \mathbf{0}$ $F(\mathbf{u}, \mathbf{y}, \boldsymbol{\theta}) = \mathbf{0}$ min u s. t. $G(\mathbf{u}, \boldsymbol{\theta}) \coloneqq \phi(\mathbf{u}, \mathbf{y})$ $S. t. \quad G(\mathbf{u}, \boldsymbol{\theta}) \coloneqq g(\mathbf{u}, \mathbf{y}) \le \mathbf{0}$ NLP





(set points)

Optimize the dynamic performance of a batch process while satisfying a number of operational constraints

Batch unit with uncertainty regarding initial conditions, raw material quality and model accuracy

Uncertainty \rightarrow Real-time adaptation of trajectories

Run-to-run Optimization of a Batch Plant Problem formulation

Batch plant with finite terminal time

Input Parameterization

 $\mathbf{u}[0,t_f] = \mathbf{U}(\boldsymbol{\pi})$

Batch plant viewed as a static map

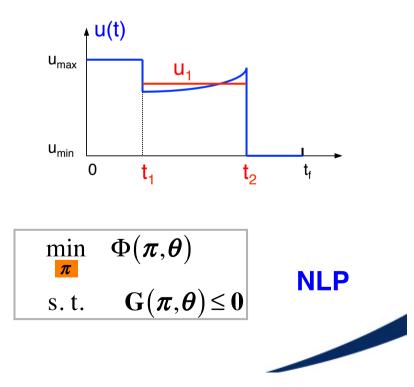
$$\min_{\mathbf{u}[0,t_f]} \Phi := \phi(\mathbf{x}(t_f))$$
s. t. $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x},\mathbf{u},\boldsymbol{\theta}) \quad \mathbf{x}(0) = \mathbf{x}_0$

$$\mathbf{S}(\mathbf{x},\mathbf{u}) \leq \mathbf{0}$$

$$\mathbf{T}(\mathbf{x}(t_f)) \leq \mathbf{0}$$

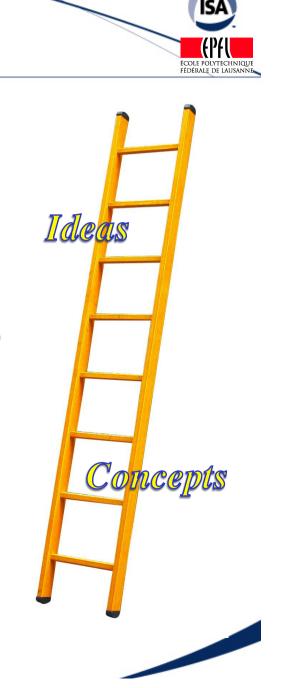
ISA

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE



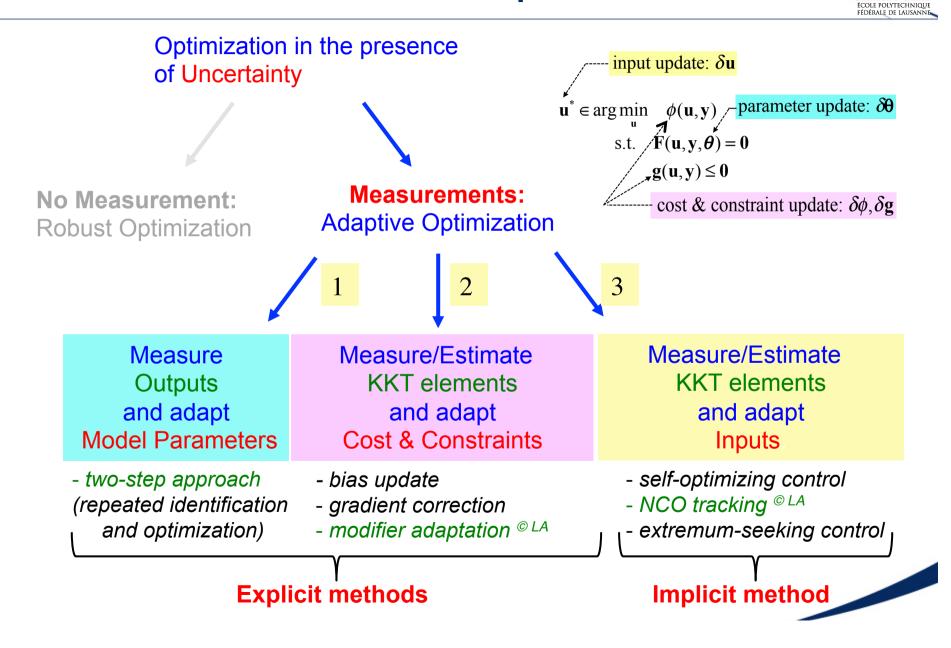
Outline

- 1. Optimization of process operation
 - Numerical vs. real-time optimization
 - Static optimization for continuous and batch plants
 - Optimization of a batch plant
- 2. Real-time optimization schemes
 - Two explicit strategies (repeat numerical optimization)
 - One implicit strategy (use feedback control)
- 3. Experimental cases studies
 - Fuel-cell stack (a continuous plant)
 - Batch polymerization (a batch plant)
- 4. Conclusions



Three Approaches for Static RTO

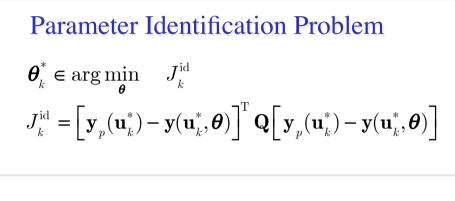
What to measure and what to adapt?

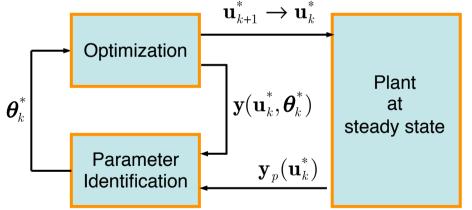


ISA

1. Adaptation of Model Parameters Two-step approach

ÉCOLE POINTECHNIQUE ÉCOLE POINTECHNIQUE ÉCOLE POINTECHNIQUE



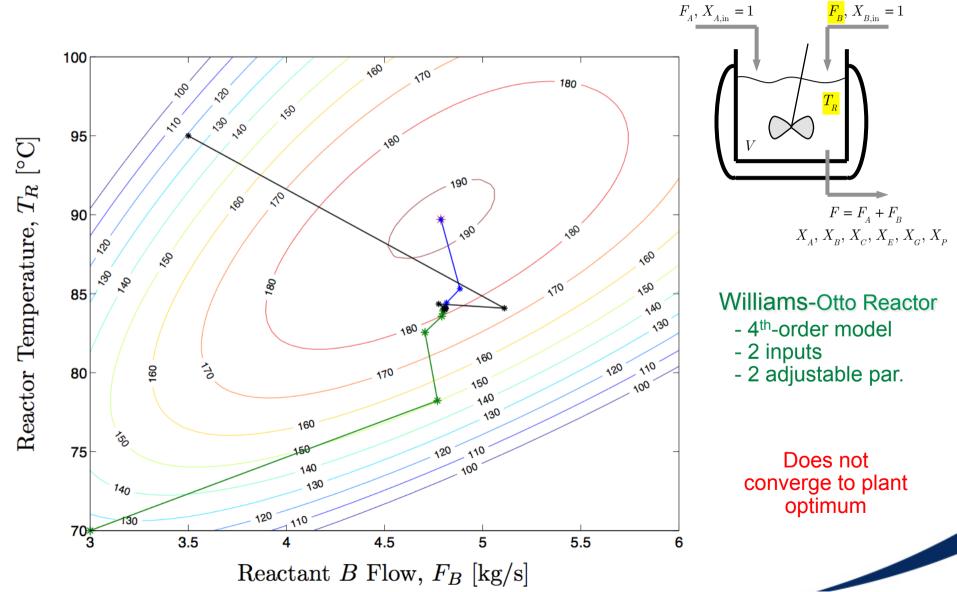


Optimization Problem	
$\mathbf{u}^*_{k+1} \in \argmin_{\mathbf{u}}$	$oldsymbol{\phi} \Big(\mathbf{u}, \mathbf{y}(\mathbf{u}, oldsymbol{ heta}_k^*) \Big)$
s.t.	$\mathbf{g}\!\left(\mathbf{u},\mathbf{y}\!\left(\mathbf{u},\boldsymbol{\theta}_{k}^{*}\right)\right) \leq 0$
	$\mathbf{u}^{\mathrm{L}} \leq \mathbf{u} \leq \mathbf{u}^{\mathrm{U}}$

Current Industrial Practice for tracking the changing optimum in the presence of disturbances

T.E. Marlin, A.N. Hrymak. Real-Time Operations Optimization of Continuous Processes, *AIChE Symposium Series - CPC-V,* **93**, 156-164, 1997

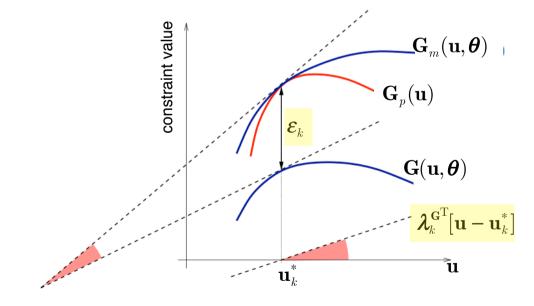
Two-step Approach With structurally incorrect model

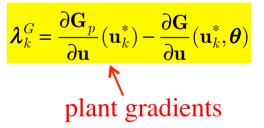


2. Adaptation of Cost & Constraints Input-affine correction to the model

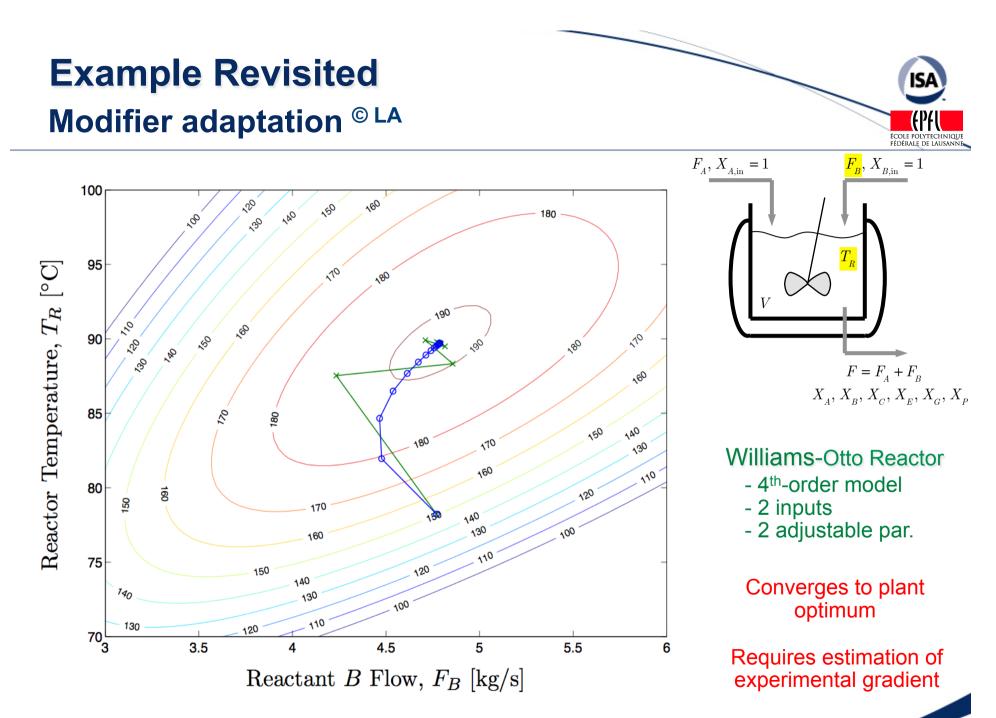
$$\begin{split} & \textbf{Modified Optimization Problem} \\ \mathbf{u}_{k+1}^* \in \arg\min_{\mathbf{u}} \quad \Phi_m(\mathbf{u}, \boldsymbol{\theta}) \coloneqq \Phi(\mathbf{u}, \boldsymbol{\theta}) + \frac{\boldsymbol{\lambda}_k^{\boldsymbol{\Phi}^{\mathrm{T}}}[\mathbf{u} - \mathbf{u}_k^*]}{\mathrm{s.t.} \quad \mathbf{G}_m(\mathbf{u}, \boldsymbol{\theta}) \coloneqq \mathbf{G}(\mathbf{u}, \boldsymbol{\theta}) + \frac{\boldsymbol{\varepsilon}_k}{\boldsymbol{\varepsilon}_k} + \frac{\boldsymbol{\lambda}_k^{\mathrm{G}^{\mathrm{T}}}[\mathbf{u} - \mathbf{u}_k^*]}{\boldsymbol{u}_k^{\mathrm{L}}} \leq \mathbf{0} \\ & \mathbf{u}^{\mathrm{L}} \leq \mathbf{u} \leq \mathbf{u}^{\mathrm{U}} \end{split}$$

Affine corrections of cost and constraint functions. The modified problem satisfies the first-order optimality conditions of the plant





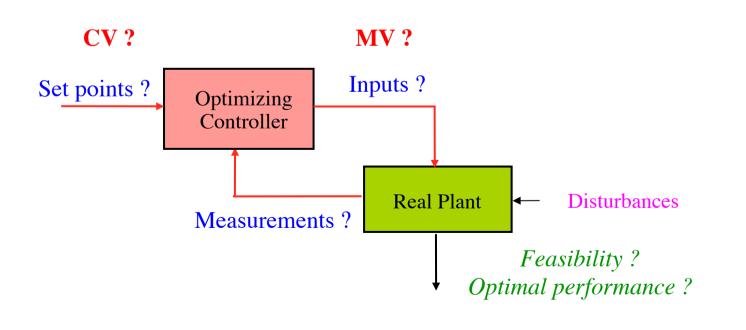
P.D. Roberts and T.W. Williams, On an Algorithm for Combined System Optimization and Parameter Estimation, *Automatica*, **17**(1), 199–209, 1981

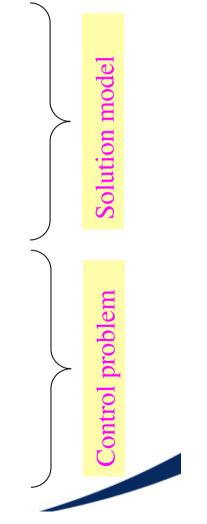


A. Marchetti, PhD thesis, EPFL, Modifier-Adaptation Methodology for Real-Time Optimization, 2009

3. Direct Adaptation of Inputs NCO tracking © LA

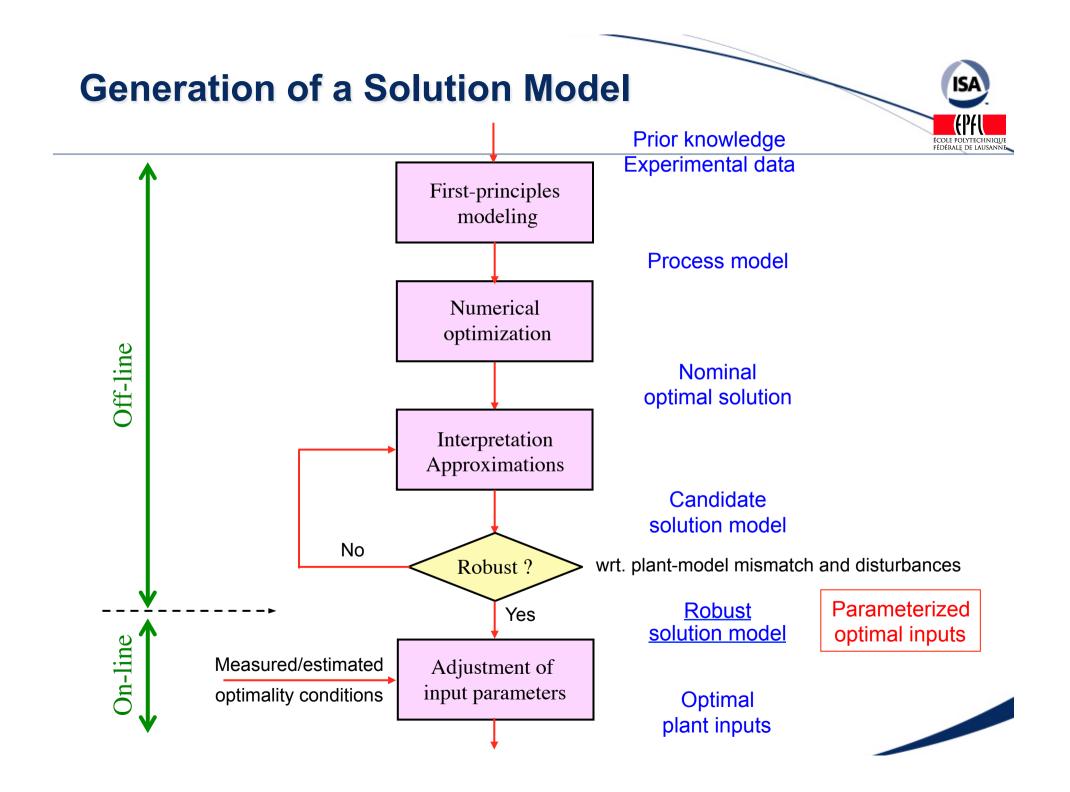
- Transform the optimization problem into a control problem
- Which setpoints to track for optimality?
 - The optimality conditions (active constraints, gradients)
 - Requires corresponding measurements





ISA

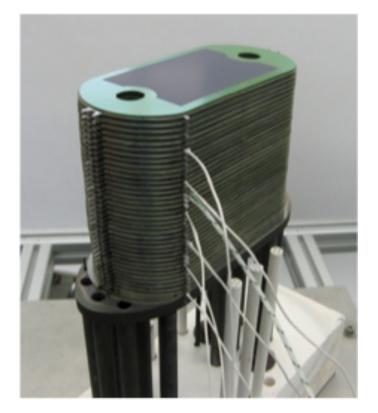
FÉDÉRALE DE LAUSANNE



Outline

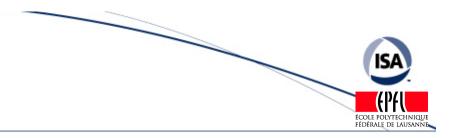
- 1. Optimization of process operation
 - Numerical vs. real-time optimization
 - Static optimization for continuousand batch plants
 - Optimization of a batch plant
- 2. Real-time optimization schemes
 - Two explicit strategies (repeated numerical optimization)
 - One implicit strategy (use of feedback control)
- 3. Experimental cases studies
 - Fuel-cell stack (a continuous plant) -- Approach 2
 - Batch polymerization (a batch plant) -- Approach 3
- 4. Conclusions

Solid Oxide Fuel Cell Stack RTO via modifier adaptation © LA



- $^{79\%}_{21\%} \overset{N_2}{}_{O_2} \overset{\text{Air}}{}_{\text{I}}$ Fuel ${}^{97\%}_{3\%}{}^{H_2}_{H_2O}$ Furnace Reaction: $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ 6-cell SOFC Stack Current e **He**erami, **SU**
- Stack of 6 cells, active area of 50 cm², metallic interconnector
- Anodes : standard nickel/yttrium stabilized-zirconia (Ni-YSZ)
- Electrolyte : dense YSZ.
- Cathodes: screen-printed (La, Sr)(Co, Fe)O₃
- Operation temperatures between 650 and 850°C.

Experimental Features



- Objective: maximize electrical efficiency
- Meet power demand that changes unexpectedly
- Inputs: flowrates of H₂ and O₂, current
- Outputs: power density, cell potential
- Time-scale separation
 - slow temperature dynamics, treated as process drift !
 - static model (for the rest)
- Inaccurate model in the operating region (power, cell)

G.A. Bunin *et al.*, Experimental Real-Time Optimization of a Solid Oxide Fuel Cell Stack via Constraint Adaptation, *Energy*, 39(1), 54-62, 2012

Strategy for Online Optimization

Repeated Numerical Optimization

- Solve a static optimization problem every 10 sec
- Apply the optimal inputs to the fuel cell stack
- Measure the resulting constraint values
- Adapt the modifiers $\frac{\varepsilon}{\varepsilon}$ to match the active constraints

$$\begin{split} \max_{\boldsymbol{u}_{k}} & \eta\left(\boldsymbol{u}_{k},\boldsymbol{\theta}\right) \\ \text{s.t.} & \boldsymbol{p}_{\text{el}}\left(\boldsymbol{u}_{k},\boldsymbol{\theta}\right) + \boldsymbol{\varepsilon}_{k-1}^{\boldsymbol{p}_{\text{el}}} = \underline{\boldsymbol{p}}_{\underline{\boldsymbol{e}}\underline{\boldsymbol{\ell}}}^{\boldsymbol{s}} \\ & \boldsymbol{U}_{\text{cell}}\left(\boldsymbol{u}_{k},\boldsymbol{\theta}\right) + \boldsymbol{\varepsilon}_{k-1}^{\text{U}_{\text{cell}}} \geq \underline{0.75}\,\boldsymbol{V} \\ & \boldsymbol{\nu}\left(\boldsymbol{u}_{k}\right) \leq \underline{0.75} \\ & \boldsymbol{4} \leq \lambda_{air}\left(\boldsymbol{u}_{k}\right) \leq 7 \\ & \boldsymbol{u}_{1,k} \geq 3.14\,\text{mL}/(\min\,\text{cm}^{2}) \\ & \boldsymbol{u}_{3,k} \leq 30\text{A} \end{split}$$

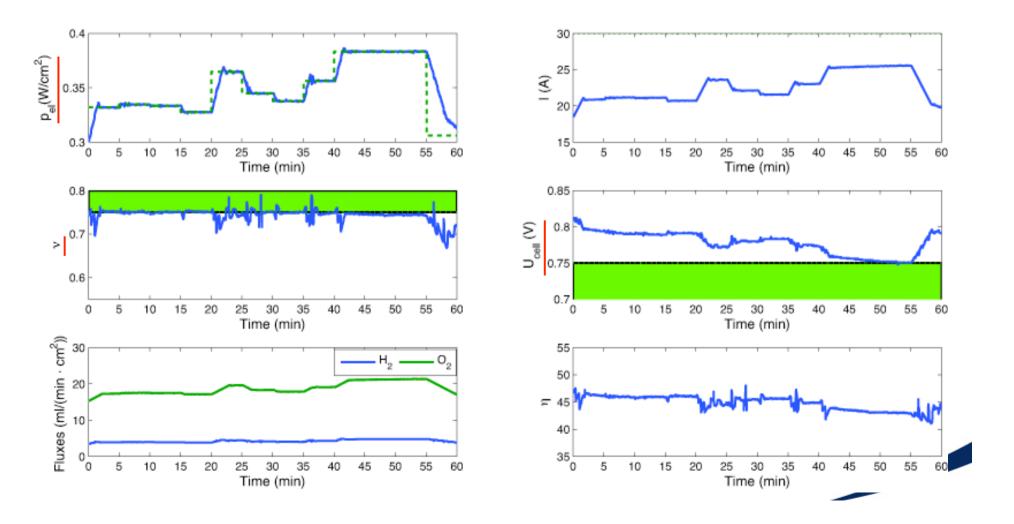
$$\mathbf{u}_{k} = \begin{bmatrix} u_{1,k} = \dot{n}_{H_{2},k} \\ u_{2,k} = \dot{n}_{O_{2},k} \\ u_{3,k} = I_{k} \end{bmatrix}$$
$$\varepsilon_{k}^{p_{el}} = (1 - K_{p_{el}})\varepsilon_{k-1}^{p_{el}} + K_{p_{el}}[p_{el,p,k} - p_{el}(\mathbf{u}_{k}, \boldsymbol{\theta})]$$
$$\varepsilon_{k}^{U_{cell}} = (1 - K_{U_{cell}})\varepsilon_{k-1}^{U_{cell}} + K_{U_{cell}}[U_{cell,p,k} - U_{cell}(\mathbf{u}_{k}, \boldsymbol{\theta})]$$

ISA

FÉDÉRALE DE LAUSANN

Experimental Results

- Random power changes every 5 min
- RTO every 10 sec, matches the active constraints at steady state



ISA

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Optimization of Polymerization Reactor NCO tracking © LA

Industrial features

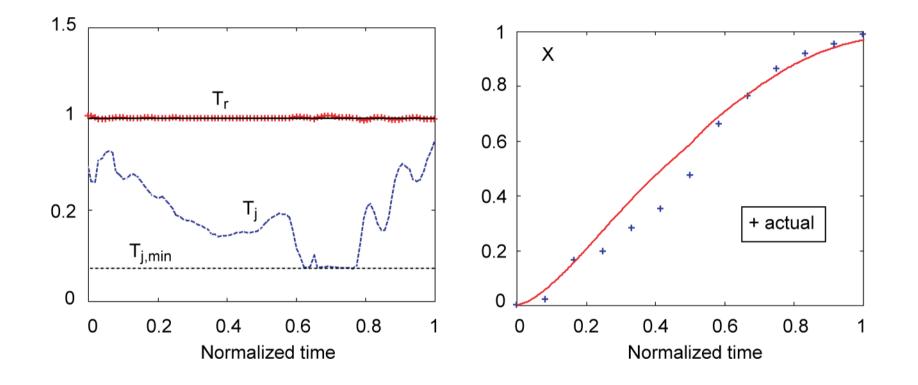
- 1-ton reactor, risk of runaway
- Initiator efficiency can vary considerably
- Several recipes

different initial conditions
 different initiator feeding policies
 use of chain transfer agent

➤use of reticulant

Challenge: Implement (near) optimal operation for various recipes

G. François *et al.*, Run-to-Run Adaptation of a Semi-Adiabatic Policy for the Optimization of an Industrial Batch Polymerization Process, *I&ECResearch*, *43*, 7238-7242 (2004)



 $T_r(t)$ to minimize the batch time ?

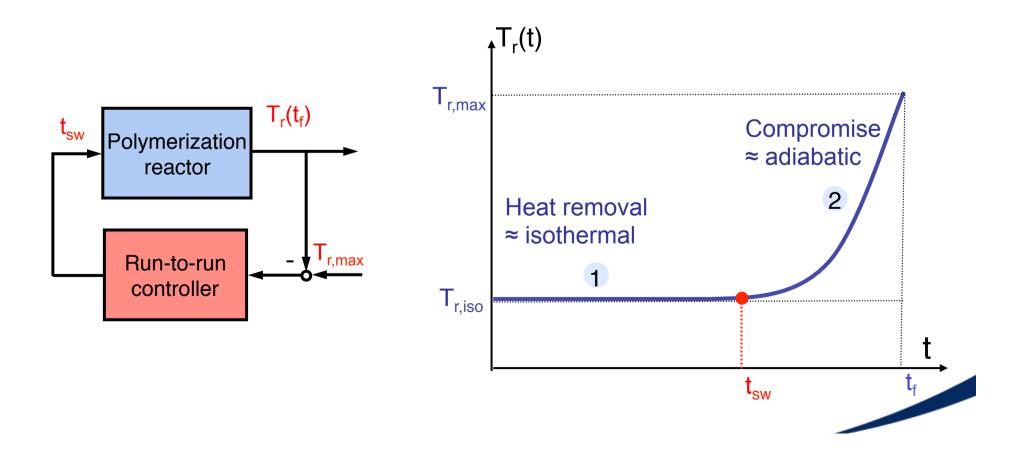
Strategy for Run-to-run Optimization

Tendency model

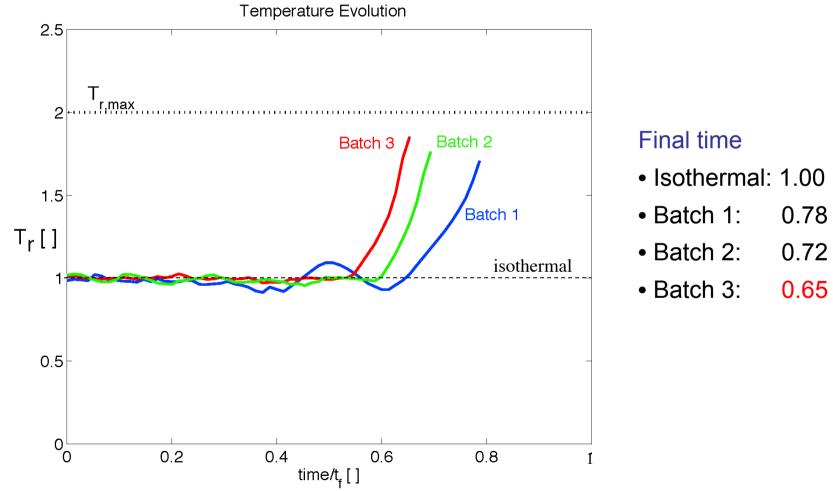
Optimality is linked with meeting the most restrictive constraint $T_r(t_f) = T_{r,max}$ Strategy: Manipulate t_{sw} on a run-to-run basis to force $T_r(t_f)$ at $T_{r,max}$

ISA

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

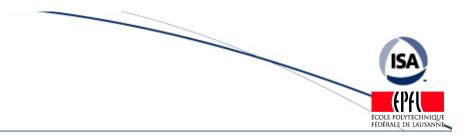


Industrial Results



ISA

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE



- Process models are often inadequate for optimization
 Juse real-time measurements for appropriate adaptation
- Which measurements to use? How to best exploit them?
 - Outputs: easily available, not necessarily appropriate
 - KKT modifiers allow meeting KKT conditions
 - modifier adaptation (explicit optimization)
 - > NCO tracking (implicit optimization
- Key challenge is estimation of plant gradient

