
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. P. Dillenbourg, président du jury
Prof. A. Ailamaki,   directrice de thèse

Prof. S. Babu, rapporteur
Dr A. Balmin, rapporteur

Prof. K. Aberer, rapporteur

Runtime Prediction for Scale-Out Data Analytics

THÈSE NO 6629 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 2 JUILLET 2015

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTÈMES ET APPLICATIONS DE TRAITEMENT DE DONNÉES MASSIVES

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2015

PAR

Adrian Daniel POPESCU





Your time is limited, so don’t waste it living someone else’s life.

Don’t be trapped by dogma - which is living with the results of

other people’s thinking. Don’t let the noise of others’ opinions

drown out your own inner voice. And most important,

have the courage to follow your heart and intuition.

—Steve Jobs

In the memory of my mother, Ilona, to my beloved father, Dumitru,

to my caring siblings, Gabriela and Cristian,

and to my dearest pals, Daniel and Marina.

I dedicate this thesis to them.





Acknowledgements
First and foremost, I would like to thank my advisor Anastasia Ailamaki for all the guidance

and support she has given to me. Without her enthusiasm, energy, and encouragements over

the PhD years this work would not be possible. I am profoundly grateful to her for encouraging

me to pursue my own research ideas, for boosting my research skills through constructive

feedback, and for allowing me to follow my path towards PhD. I consider myself fortunate to

have received her excellent advice that shaped me as a more confident person today.

I would like to thank to all the members of my thesis committee that kindly accepted to offer

their time and energy to assess my dissertation and to suggest improvements. I would like to

thank Vuk Ercegovac for mentoring me during my internship at IBM Almaden, and to all the

other members of the group with whom I was fortunate to discuss with. My discussions with

Vuk, Andrey Balmin, and Carl-Christian Kanne contributed significantly in shaping the intern-

ship project. Special thanks to Andrey Balmin and Vuk Ercegovac for the fruitful collaboration

we had after the internship period. Their comments were invaluable in developing PREDIcT,

the core of my thesis work.

During my last PhD years I was fortunate to collaborate with Shivnath Babu. I am so grateful

for all the discussions we had, for his insightful suggestions, for his enthusiasm and for his

guidance. I felt privileged to chat with him multiple times at very late hours during the night.

One chapter of this thesis is done in collaboration with him.

I would like to thank to all the members of the DIAS lab for making my PhD journey an

enjoyable one. I thank Thomas Heinis for his excellent advice, encouragements, and friend-

ship. He kindly offered his help each time I was seeking an opinion on my work. Debabrata

Dash, Verena Kantere mentored me during my first PhD year for which I am grateful. I thank

Farhan Tauheed, my sleepless office mate, for tolerating me over the years and for inspiring

me through his photographic work. I thank Danica Porobic and Renata Borovica-Gajic for

their invaluable feedback on my research work. I would also like to thank Pinar Tözün, Manos

Athanassoulis, Radu Stoica, Ioannis Alagiannis, Eleni Tzirita Zacharatou, Mirjana Pavlovic, Eri-

etta Liarou, Manos Karpathiotakis, Miguel Branco, Matt Olma, Cesar Matos, Raja Appuswamy,

Satya Valluri, Darius Sidlauskas, Utku Sirin for the invaluable discussions, insightful comments,

and the constructive feedback on my ongoing research and on my presentations. I would

like to thank Erika Raetz for helping me countlessly over the years in all the administrative

i



Acknowledgements

problems I faced, and Dimitra Tsaoussis Melissargos for the administrative help and for her

feedback on my paper submissions.

Thank you to Daniel Lupei and to Marina Boia for the precious time spent together outdoors,

indoors, or at EPFL, for all the small, very small, and tiny jokes that made me smile, for our

countless debates on sports, on stand-up comedy, and on music, just to name a few, for

their encouragements and moral support, and foremost, for being my best friends I could

have. I have greatly enjoyed the friendship of Immanuel Trummer, Thomas Heinis, Ayush

Bhandari, Lada Sycheva, Valentina Sintsova, Eleni Tzirita Zacharatou, Mirjana Pavlovic, Alina

Dudeanu, Cristina Ghiurcuta, Danica Porobic, Renata Borovica-Gajic, Pinar Tözün, Denisa

Ghita, Mihai Martalogu, Florin Dinu, Andrew Becker, Gregoire Devauchelle, Onur Yürüten. It

was my pleasure to spend time together at joyful dinners, pancake parties, barbecues over the

lake, biking trips, and hikes in the Alps. Thanks to Immanuel the abstract of this thesis is also

available in German.

I would like to thank my family for their unconditional moral support and love.

Finally, I am grateful to NCCR MICS and Hasler Foundation for supporting my research activ-

ity during my PhD, and to Amazon for granting me hardware resources on the Amazon Web

Services infrastructure.

Lausanne, June 2015 A. D. P.

ii



Abstract
Many analytics applications generate mixed workloads, i.e., workloads comprised of analytical

tasks with different processing characteristics including data pre-processing, SQL, and itera-

tive machine learning algorithms. Examples of such mixed workloads can be found in web

data analysis, social media analysis, and graph analytics, where they are executed repetitively

on large input datasets (e.g., Find the average user time spent on the top 10 most popular web

pages on the UK domain web graph.). Scale-out processing engines satisfy the needs of these

applications by distributing the data and the processing task efficiently among multiple work-

ers that are first reserved and then used to execute the task in parallel on a cluster of machines.

Finding the resource allocation that can complete the workload execution within a given

time constraint, and optimizing cluster resource allocations among multiple analytical work-

loads motivates the need for estimating the runtime of the workload before its actual execution.

Predicting runtime of analytical workloads is a challenging problem as runtime depends on

a large number of factors that are hard to model a priori execution. These factors can be

summarized as workload characteristics (data statistics and processing costs) , the execution

configuration (deployment, resource allocation, and software settings), and the cost model that

captures the interplay among all of the above parameters. While conventional cost models

proposed in the context of query optimization can assess the relative order among alternative

SQL query plans, they are not aimed to estimate absolute runtime. Additionally, conventional

models are ill-equipped to estimate the runtime of iterative analytics that are executed repeti-

tively until convergence and that of user defined data pre-processing operators which are not

“owned” by the underlying data management system.

This thesis demonstrates that runtime for data analytics can be predicted accurately by break-

ing the analytical tasks into multiple processing phases, collecting key input features during a

reference execution on a sample of the dataset, and then using the features to build per-phase

cost models. We develop prediction models for three categories of data analytics produced

by social media applications: iterative machine learning, data pre-processing, and reporting

SQL. The prediction framework for iterative analytics, PREDIcT, addresses the challenging

problem of estimating the number of iterations, and per-iteration runtime for a class of it-

erative machine learning algorithms that are run repetitively until convergence. The hybrid

prediction models we develop for data pre-processing tasks and for reporting SQL combine

the benefits of analytical modeling with that of machine learning-based models. Through a

iii



Acknowledgements

training methodology and a pruning algorithm we reduce the cost of running training queries

to a minimum while maintaining a good level of accuracy for the models.

Key words: database management systems, distributed data management, runtime pre-

diction, data analytics, MapReduce, graph analytics, Bulk Synchronous Parallel, iterative

processing, complex analytics, cost model, analytical model, machine learning.

iv



Zusammenfassung
Viele analytische Anwendungen führen zu einem gemischten Workload, bestehend aus Verar-

beitungseinheiten völlig unterschiedlichen Typs die zum Beispiel Datenvorverarbeitung, SQL

Queries oder iterative Verfahren zum maschinellen Lernen beinhalten können. Die Analyse

des Internets, die Analyse von sozialen Medien oder Graph-Analyse sind nur einige wenige

Beispiele für Bereiche in denen gemischte Workloads anzutreffen sind und häufig und auf

großen Datenmengen ausgeführt werden (zum Beispiel um die durchschnittliche Zeit zu

berechnen, die Benutzer auf den 10 populärsten Internetseiten im englischsprachigen Raum

verbringen). Horizontal skalierende Systeme genügen den Ansprüchen solcher Anwendun-

gen, indem sie die Daten und Verarbeitungsschritte effizient zwischen mehreren Rechnern

aufteilen. Diese Rechner müssen zuerst reserviert werden bevor sie anschliessend die ihnen

zugeteilten Aufgaben gleichzeitig ausführen. Um herauszufinden, welche Rechenkapazität

benötigt wird um einen gegebenen Workload innerhalb eines vorgegebenen Zeitrahmens

auszuführen oder um die beste Aufteilung der vorhandenen Rechenkapazitäten zwischen

unterschiedlichen Anwendungen zu ermitteln, ist es notwendig die Laufzeit einer Anwendung

zu schätzen bevor die Anwendung gestartet wird.

Die Laufzeit einer analytischen Anwendung ist im Vorhinein schwierig einzuschätzen da sie

von vielen Faktoren abhängt, die schwer zu modellieren sind. Diese Faktoren können grob

in drei Kategorien eingeteilt werden: Workload Charakteristika (beispielsweise Statistiken

die die zu verarbeiteten Daten beschreiben), die Ausführungskonfiguration (Konfiguration

der verwendeten Software, Zuteilung der Rechenkapazität) und das Kostenmodel, welches

das Zusammenspiel aller bisher genannten Faktoren erfasst. Kostenmodelle wie sie zur Opti-

mierung von Datenbank Queries verwendet werden sind darauf zugeschnitten, alternative

Verarbeitungspläne miteinander zu vergleichen aber nicht dafür geeignet, die absolute Lauf-

zeit akkurat einzuschätzen. Solche Kostenmodelle sind ebenfalls ungeeignet dafür, die Laufzeit

iterativer Prozesse einzuschätzen die bis zur Konvergenz wiederholt werden. Gleichfalls ist es

mit solchen Kostenmodellen nicht möglich, die Laufzeit von Benutzer-definierten Funktionen

einzuschätzen.

In dieser Doktorarbeit wird der Beweis erbracht, dass die Laufzeit analytischer Prozesse ak-

kurat vorhergesagt werden kann, indem wir den analytischen Prozess in mehrere Phasen

unterteilen und während eines Testlaufs Schlüsselstatistiken zu jeder Phase erstellen, welche

dann dazu verwendet werden um phasenspezifische Vorhersagemodelle zu kreieren. Wir ent-

v



Acknowledgements

wickeln Vorhersagemodelle für drei Kategorien analytischer Anwendungen wie sie im Bereich

der Analyse sozialer Medien auftreten: iterative Verfahren zum maschinelles Lernen, Daten-

vorverarbeitung und SQL Verarbeitung. Unser Vorhersagemodell für iterative Datenanalyse,

PREDIcT, stellt sich der schwierigen Aufgabe, sowohl die Anzahl der Wiederholungen als auch

die Laufzeit einer einzelnen Wiederholung vorherzusagen für eine Klasse von Algorithmen

zum maschinellen Lernen, welche bis zur Konvergenz iteriert werden. Die von uns entwickel-

ten, gemischten Vorhersagemodelle verbinden die Vorteile analytischer Modelle mit denen

von auf maschinellem Lernen aufbauenden Modellen. Mithilfe ausgefeilter Trainingsmetho-

den und eines Algorithmus zur effizienten Aussortierung suboptimaler Lösungen konnten wir

die Kosten der Trainingsphase signifikant reduzieren bei weiterhin guter Vorhersagequalität.

Stichwörter: Datenbanksysteme, verteilte Datenbanksysteme, Laufzeitvorhersage, Datenana-

lyse, MapReduce, Graph-Analyse, bulk synchronous parallel, iterative Verarbeitung, komplexe

Datenanalyse, Kostenmodelle, analytische Modelle, maschinelles Lernen.

vi



Contents
Acknowledgements i

Abstract (English/Deutsch) iii

1 Introduction 1

1.1 Motivating Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Data Analytics Today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Example: Pipeline of Analytical Tasks . . . . . . . . . . . . . . . . . . . . . 4

1.3 Prediction Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Iterative Analytics on BSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 SQL and ETL Analytics on MapReduce . . . . . . . . . . . . . . . . . . . . 6

1.4 Technical Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 11

2.1 Distributed Processing Engines for Scale-Out Analytics . . . . . . . . . . . . . . 11

2.1.1 MapReduce Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Distributed Graph Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Spark Processing Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Estimating and Optimizing Iterative Processing . . . . . . . . . . . . . . . . . . . 16

2.2.1 Approximating and Sampling Large Graphs . . . . . . . . . . . . . . . . . 17

2.3 Performance Prediction for DBMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Nearest Neighbors-based Prediction . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Operator Level Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Progress Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Performance Modeling for Storage Devices . . . . . . . . . . . . . . . . . . 20

2.4 Performance Prediction for MapReduce . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Self-tuning and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Nearest neighbors-based prediction . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Resource Allocation and Scheduling . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Existing Prediction Approaches vs. Current Requirements . . . . . . . . . . . . . 22

2.6 Runtime Modeling: Background Concepts . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Runtime Modeling Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 Collecting Input Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



Contents

2.6.3 Building a Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.5 Accuracy Metrics of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Runtime Prediction for Iterative Analytics 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Sketch of Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 The BSP Processing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Modeling Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 PREDIcT’s Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Transform Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Model Fitting and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Key Input Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.2 Customizable Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 End-to-end Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.1 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.2 Semi-clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.3 Top-k Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.4 Neighborhood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.5 Labeling Connected Components . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8.1 Setup and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8.2 Estimating Key Input Features . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8.3 Upper Bound Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8.4 Estimating Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8.5 Sensitivity to Sampling Technique . . . . . . . . . . . . . . . . . . . . . . . 56

3.8.6 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8.7 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.9 Summary of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Predicting Runtime of Data Pre-processing 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Jaql . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Query Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.2 Query Compilation in Jaql . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Modeling Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Model Fitting and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



Contents

4.4.1 Sketch of Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Modeling Segment Performance . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.3 Modeling Query Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.4 Sources of Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.3 Job-Level Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.4 Query-Level Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Summary of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Runtime Prediction for Reporting SQL Analytics 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Foundations and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Query Execution in HiveQL . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.3 Starfish’s Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.4 TITAN Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 TITAN Prediction Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Modeling Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.2 Hybrid Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.3 Localized Training based Models . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.4 Global Analytical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Training Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Query Template Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.2 Synthetic Query Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Translation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.2 Operator Phase and Data Mappings . . . . . . . . . . . . . . . . . . . . . . 93

5.5.3 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6.1 Setup and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6.2 Training Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.3 Testing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6.4 Answering Performance Boost Questions . . . . . . . . . . . . . . . . . . . 105

5.7 Summary of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Conclusions 109

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.1 Generality of Techniques to Similar Problems . . . . . . . . . . . . . . . . 111

ix



Contents

6.3 Predictable vs. Non-Predictable Analytics . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Looking Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 SLA Driven Job Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.2 Cost Models for In-memory Analytical Engines . . . . . . . . . . . . . . . 114

6.4.3 Sharing Cluster Resources Among Analytical Engines . . . . . . . . . . . 114

List of figures 115

List of tables 119

Bibliography 126

Curriculum Vitae 127

x



1 Introduction

Predicting the runtime performance of large scale analytics is motivated by a number of

data management tasks including workload optimization ([2]), resource management, and

scheduling ([79, 76, 21]). At one end of the spectrum, users and application managers target

to optimize the execution of their workloads such that pre-specified time constraints are

met (i.e., deadlines). At the other end of the spectrum, resource providers aim to satisfy

users’ requirements while improving utilization of their resources. In particular, schedulers

and resource managers reduce unnecessary over-provisioning of resources through efficient

prioritization of resource allocations.

Analytical workloads can be broadly classified into: i) deadline driven workloads with stringent

time requirements, ii) best-effort workloads where explicit deadlines are not specified. Ideally,

the scheduler interleaves the execution of the workloads such that deadlines are satisfied for

the first category, and acceptable latencies are offered for the second category (e.g., Rayon

scheduler [21]). Efficient resource planning is however possible only for the cases that the

resources required to satisfy a particular optimization goal (e.g., deadline) are known in

advance, before the workload execution. Therefore, a mechanism to assess the runtime

performance of alternative hypothetical resource allocation configurations is required.

Query cost modeling has been studied in the context of database optimization, where the end

goal is to find the query plan with the smallest execution cost. From a large set of possible query

plans, the query optimizer quantifies the cost of each plan by using a set of analytical formulas

that approximate the computational requirements of the plan. While query optimizers’ cost

models were designed to quantify the relative order among alternative query plans, they are

not very accurate when the goal is to estimate absolute time estimates (e.g., [29, 50, 6]). That

is due to several factors which can be summarized as: simplification assumptions in the

analytical model, inaccurate processing cost estimates, and inaccurate data statistics. For this

purpose, runtime prediction models that are designed from the ground up to estimate runtime

performance have been proposed in the recent years.

1



Chapter 1. Introduction

1.1 Motivating Use Cases

Runtime prediction models have high practical applicability for answering What-If perfor-

mance questions when an execution configuration1 that can satisfy user requested deadlines

is sought. More recently, with the prevalence of using hardware infrastructure as a service

(IaaS) for data management tasks, answering cluster sizing questions and feasibility analysis

questions for hypothetical configurations became crucial ([39]). In this spectrum, questions

like: "What hardware configuration and how many machine instances are needed to meet

the runtime deadline of my analytical application?" are common, especially when transiting

workloads from development clusters into production. Hence, a mechanism for assessing

performance of alternative hypothetical configurations is required. We summarize the main

use cases for runtime performance prediction bellow.

• Feasibility analysis: Given a workload of analytical queries, a plan for each query from

the workload, and an execution configuration (i.e., hardware/software configuration

and deployment), will the workload complete within a pre-defined deadline? This use

case occurs in scheduling and resource allocation where reserving resources over time

has to be performed in advance of the workload execution.

• Workload on-boarding: Given a workload, a plan for for each query from the workload,

and an execution configuration, the runtime execution on the development cluster

takes t hours. What execution configuration can reduce the workload execution time to

t/2 hours?

• Performance boost: Given a workload and an execution configuration, the runtime ex-

ecution on the deployment cluster takes t hours. Is there a new execution configuration

that can boost the actual performance of the workload by a factor of 2x?”

1.2 Data Analytics Today

Today’s analytical requirements are complex, going beyond the traditional analytical operators

used to compute statistical summaries over the input datasets [20]. Recent research shows that

business intelligence moves towards including complex analytics into the business process. In

particular, data mining algorithms are often used in analytical pipelines for finding correlations

in the ever increasing datasets (e.g., clustering, ranking) [44, 52]. For instance, social networks

use machine learning to order stories in the user’s news feed (i.e., ranking). They also use data

mining to group users with similar interests together (i.e., clustering).

Independently to the complexity of the analytical operators, data analytics can be categorized

based on the query processing characteristics into: reporting queries, and ad-hoc queries.

In contrast to ad-hoc queries which are exploratory, customized to the user’s immediate

1 The execution configuration consists of a subset of the following parameters: software configuration settings,
operator(s) implementation, and an allocation of resources.

2



1.2. Data Analytics Today

needs, reporting queries are mostly static, and are executed periodically on similar datasets or

on different portions of the input dataset to answer pre-defined analytical questions about

the operational state of a business. Hence, they open up opportunities for workload re-

optimization ([37, 9]) and elastic workload deployment, where the deployment setting can

be chosen such that application pre-specified time constraints are met ([39]). Table 1.1

summarizes the conceptual differences between reporting, and ad-hoc query processing.

Workload Workload Processing Data
type sub-type characteristics characteristics
reporting ETL, SQL, repetitive incremental

complex analytics updates
ad-hoc SQL, complex ad-hoc ad-hoc

analytics

Table 1.1 – Conceptual differences between reporting and ad-hoc query processing.

Within the complex analytics category, iterative processing became prevalent in the last few

years partly due to the inherent iterative nature of many machine learning tasks used today

in web analytics and social media (e.g., clustering, ranking, belief propagation), partly due to

the prevalence of distributed graph processing engines that adopted the Bulk Synchronous

Parallel (BSP) [55] or the Gather-Scatter [52] execution models. For these processing models

abstractions, any algorithm is inherently iterative: it is a succession of processing steps that

are executed in parallel on multiple processing nodes. The main difference between iterative

processing and traditional query processing is that the iterative task is executed repetitively

until a convergence condition is met, or a maximum number of iterations is reached. Figure

1.1 illustrates the concept of iterative processing on two input tables S, and T. In DBMS

terminology, iterative processing can be interpreted as a join aggregate query among a relation

that does not change S and a relation that gets updated in each iteration T . In this thesis we

consider iterative tasks that are executed on input datasets that are represented as graphs.

Popular examples of iterative analytics used today in social media and web analytics include:

PageRank [59], Top-K ranking [45], Semi-clustering [55], statistics computation in social/web

graphs (e.g., Labeling Connected Components, Neighborhood / diameter estimation [44]).

Data pre-processing tasks, commonly known as Extract Transform Load (ETL), and SQL

analytics at scale are regularly executed on top of the MapReduce [23] processing engine.

MapReduce is a distributed processing model that was designed to scale to thousands of

commodity nodes by considering availability and fault tolerance as first class concerns. A data

processing task executing in MapReduce is decomposed into a direct acyclic graph (DAG) of

one or multiple MapReduce jobs. Within a MapReduce job, two processing phases exist: a

map phase followed by a reduce phase. The two processing phases are parallelized by splitting

the input data into partitions and by allocating multiple tasks to process the input partitions

in parallel. The map tasks (i.e., the tasks executing the map phase) read, process the input

partitions, and produce a set of intermediate results as key-value pairs. The reduce tasks (i.e.,

the tasks executing the reduce phase) aggregate all of the intermediate results with the same

key generated by the map tasks and produce the final result of the MapReduce job. To tolerate

3



Chapter 1. Introduction

Figure 1.1 – Iterative Processing: S, input dataset that does not change as a result of executing
the iterative task (i.e., input graph structure), T, input that gets updated at the end of every
iteration.

failures gracefully, MapReduce stores multiple copies of the data in a distributed file system

and it checkpoints intermediate results on disk at the end of each processing task. In the case

of a failure only the failed task is re-executed on another machine that is available.

While MapReduce was originally designed to execute ETL tasks, it is also used to execute

SQL-like analytics at scale. Several high-level, SQL-like languages have been introduced to

simplify querying in MapReduce (or MapReduce-like frameworks): HiveQL[70] (Facebook),

Pig Latin[58] (Yahoo!), Jaql[11] (IBM), DryadLINQ[83] (Microsoft), and others. These languages

enable users to express their queries declaratively while their underlying engines automatically

translate them into flows of jobs.

Compared with Pig and Jaql, HiveQL resembles the most the ANSI SQL language. HiveQL is

extensively used at Facebook to execute data warehousing queries [70]. A recent study that

analyses multiple production workloads from Facebook and Cloudera [18] shows that more

than 50% of the total tasks execution time of the analytical workloads is spent in running

HiveQL queries. Jaql and Pig provide powerful transformations on semi-structured data sets in

addition to a large subset of supported SQL constructs. For instance, Jaql is actively used in the

context of social media analytics, and machine learning pre-processing (e.g., summarization,

cleansing, and statistics computation) [11, 63].

1.2.1 Example: Pipeline of Analytical Tasks

Figure 1.2 shows a motivating pipeline of analytical tasks in the context of web data analysis.

The analytical pipeline finds the top ten best ranked pages within a web domain using a

ranking algorithm, then, for each of these pages, it computes the average time the users spent

4



1.3. Prediction Challenges

Figure 1.2 – Pipeline of Analytical Tasks in Web Data Analysis

on it during the last week. The first stage of the analytical pipeline consists of an ETL task that

from a list of web pages crawled from the web extracts the hyperlinks with all the other pages

(to build the web graph). Then, it filters out the pages outside of the targeted web domain.

The second stage runs an iterative ranking algorithm on the input graph corresponding to the

web domain. The third stage joins the output produced by the ranking algorithm with the log

table that keeps statistics about page visits. Such pipelines of mixed analytical tasks (i.e., ETL,

iterative ML, and SQL) are common in web analysis, blog analysis, social media analytics [82],

and are executed repetitively (e.g., every week, every month) on updated input datasets.

To estimate performance of mixed analytical tasks, mechanisms for estimating the runtime of

each task are required. In the following section we discuss the prediction challenges associated

with each analytical task sub-category.

1.3 Prediction Challenges

Runtime prediction in a distributed setting is inherently a hard problem as runtime depends

on a large number of factors that are hard to model a priori execution. Such factors include

workload characteristics represented by: data statistics that determine the input processed

by each database operator, and processing costs that measure the cost of executing each

operator per data unit (e.g., per input tuple cost). Additional factors include the execution

configuration (i.e., the resources that are allocated, the software configuration settings, the

level of parallelism) and the current system state. Building highly accurate analytical models

that can account for all these factors is very challenging taking into consideration the com-

plexity of the modern hardware components and the complexity of the multi-layered software

stack. Depending on the workload category (i.e., iterative ML, ETL, SQL), and the execution

configuration used for running the workload there are different challenges for predicting the

runtime. We discuss them in turn.

5



Chapter 1. Introduction

1.3.1 Iterative Analytics on BSP

Predicting the runtime of iterative analytics poses two main challenges that are not addressed

by conventional prediction approaches proposed in the context of DBMS: i) predicting the

number of iterations, and ii) predicting the processing time of each iteration. As both parame-

ters depend on the characteristics of the dataset and on the convergence function, estimating

their values before execution is difficult.

On one hand, the number of iterations depends on how fast the algorithm converges. Con-

vergence is typically given by a distance metric that measures incremental updates between

consecutive iterations. Unfortunately, an accurate closed-form formula cannot be built in

advance, before materializing all intermediate results. On the other hand, the runtime of any

given iteration may vary widely compared with the subsequent iterations according to the

algorithm’s semantics and as a function of the iteration’s current working set [26]: Conceptually,

different code paths are executed from one iteration to the next according to the working set.

Figure 1.3 shows the accuracy limitations of analytical upper bounds when estimating the

number of iterations for algorithms with constant resource requirements per iteration (e.g.,

PageRank), and for algorithms with variable resource requirements per iteration (e.g., con-

nected components). For PageRank the analytical upper bounds over-estimate the number of

iterations by a factor of 2.5 on average on multiple input datasets. For connected components,

analytical upper bounds over-estimate per iteration resource requirements (here, message

bytes transferred) by two orders of magnitude starting from the fifth iteration.

Figure 1.3 – Using analytical upper bounds to approximate the number of iterations for
PageRank algorithm (left), and per iteration resource requirements (i.e., message bytes) for
connected components (right).

1.3.2 SQL and ETL Analytics on MapReduce

Cost modeling and prediction of more traditional SQL analytics is also a very challenging

task as it can be seen in the large body of work carried over the past decades. While there are

many analytical models proposed in the context of query optimization (e.g., [67, 54]), recent

6



1.4. Technical Contributions

research showed that the cost models used by query optimizers are not very accurate when

the goal is to predict runtime performance metrics [29, 50, 6]. As analytical models are aimed

to assess the relative order among alternative query plans, they make simplifying assumptions

about the processing costs of the operators such as: i) using a constant per tuple cost metric,

independent of the workload characteristics, and ii) disregarding the current system execution

state.

As a result, machine learning based approaches were proposed as an alternative approach

for estimating the runtime of analytical queries (e.g., [4, 25, 29, 50, 6, 28, 63]). When using

training datasets that cover the space of input queries such models are more accurate than

pure analytical models as they can capture a wide range of runtime execution effects that are

hard to model otherwise (e.g., interplay among workload, DBMS and underlying hardware,

impact of batching). While training based prediction models can alleviate the inaccuracies

introduced by simplifying modeling assumption of conventional analytical models, they have

two main limitations: high re-training cost, which is required each time the testing workload

or the execution setting changes, and reduced accuracy outside of the training boundaries.

In contrast to SQL-like analytics, modeling query runtime performance for ETL analytics on

MapReduce using pure analytical models (as in traditional query optimization) is still an open

problem. One of the main differences, is that MapReduce does not always “own" the data or

the query’s operators. The input data is in-situ files whose structure may be opaque to the

system. Queries, even if written in a high-level language, often contain user defined functions

(UDFs) typically written in Java. In this context, modeling the query runtime using machine

learning techniques based on historical executions is more feasible.

1.4 Technical Contributions

Runtime prediction of data analytics produced by social media applications is key to facilitate

feasibility analysis and cluster resource allocation as presented in Section 1.1. This thesis shows

that runtime can be predicted accurately through hybrid prediction models that combine

the benefits of analytical modeling with the advantages of machine learning-based models

and simulation. The generic prediction methodology we develop breaks the analytical task

into multiple processing phases (based on semantics), collects key input features during a

reference execution on a sample of the dataset, and then uses the collected features to build

per-phase cost models. We customize this methodology for three categories of workloads:

iterative machine learning, data pre-processing, and reporting SQL. We elaborate the technical

contributions of this thesis bellow:

• Sampling and Input Transformations for Iterative Processing on Graphs: We develop

the set of transformations applied to the input graph dataset and to the input parameters

that altogether can preserve the processing characteristics of the iterative task during a

short run on sample dataset. We propose Biased Random Jump, a sampling technique

7



Chapter 1. Introduction

that exploits the connectivity among highly connected nodes in scale-free graphs, and

can be successfully used for prediction for a number of iterative algorithms widely used

in analyzing social media data. We empirically show that the judicious choice of the

sampling technique, that preserves key properties of the input dataset, altogether with

input parameter transformations can be effectively used in prediction.

• Hybrid Prediction Models for Data Analytics: We design hybrid prediction models

that combine the generality of analytical models , with the power of machine learning

models to exploit prior workload executions. Such a modeling design allows to estimate

the runtime of both conventional SQL operators, but also the runtime of user defined

pre-processing tasks, and that of iterative analytics that are not “owned” by the data

management layer. Additionally, our contribution includes the pool of key features that

we identified for each workload category.

• Training Methodology and Translation Models for Reporting SQL: We propose a method-

ology for generating training queries and a pruning algorithm that limit the number of

queries used in the training workload to a minimum. The training methodology reduces

the time of running the training workload from days to hours while maintaining a good

level of prediction accuracy for the models. Translation models, i.e., relative prediction

models that exploit prior reference executions of the query that is predicted, improve the

prediction accuracy of conventional prediction models beyond the training boundaries.

1.5 Thesis Outline

In this thesis we propose performance prediction techniques for reporting queries that include

a class of iterative machine learning algorithms executing on BSP, ETL tasks expressed in Jaql,

and SQL-like queries expressed in HiveQL.

The following section summarizes the contributions of the thesis and gives an overview of the

next chapters.

• Background: Chapter 2 introduces general related work in the context of runtime

performance prediction for data analytics. We start with background concepts on

distributed processing engines in Section 2.1. Estimation techniques and sampling for

iterative processing are presented in Section 2.2. Prediction approaches for DBMS are

presented in Section 2.3, while prediction approaches for MapReduce are presented

in Section 2.4. Section 2.5 summarizes recent prediction approaches while illustrating

their limitations. Section 2.6 presents background modeling concepts that we later

use for designing prediction models for iterative analytics, data pre-processing, and

reporting SQL.

• Runtime Prediction Methodology for Iterative Analytics: Chapter 3 considers the

problem of estimating the runtime of a class of iterative analytics operating on graph

8



1.5. Thesis Outline

datasets. Our main contribution for this problem is PREDIcT, an experimental method-

ology that proposes a set of transformations that can be used to estimate the number

of iterations and the key input features of the iterative task using a sample-run on a

small sample of the input dataset. The other contribution of this chapter is the design

of a framework for building customized cost models for iterative analytics executing

on top of Bulk Synchronous Parallel execution model (in particular, the Apache Giraph

implementation). Finally, we present a thorough performance evaluation of PREDIcT

on real datasets. For a 10% sample, the relative errors for estimating key input features

range in between 5%-20%, while the errors for estimating the runtime range in between

10%-30% for all the scale-free graphs analyzed.

• Runtime Prediction for Data Pre-processing (ETL Tasks): Chapter 4 tackles the prob-

lem of predicting the runtime of data pre-processing tasks. Examples of data pre-

processing tasks include machine learning pre-processing (e.g., data cleaning) and ETL

(Extract Transform Load). In this chapter, we propose a technique that predicts the

runtime performance of a class of fixed queries running over varying input data sets. Our

approach uses minimal statistics about the input data sets (e.g., input size, tuple size,

cardinality), which are complemented with historical information about prior query

executions (e.g., execution time). Our experiments on real workloads show the feasibility

of the approach: we obtain less than 25% relative prediction error for 90% of predictions.

• Runtime Prediction Methodology for SQL Analytics: Chapter 5 addresses the problem

of estimating the runtime of reporting SQL analytics. Starting from a prior execution

of a reporting query we propose an approach for estimating the runtime of the query

for other hypothetical configurations consisting of: i) query plan re-writes in terms of

different operator implementation and possibly different packings of operators within

one or several MapReduce jobs, and ii) a pool of potential hardware deployments. For

this purpose we develop TITAN: i.e., Training Methodology and Translation Models for

runtime prediction. Our contributions include a hybrid prediction approach and a train-

ing methodology that altogether reduce the training cost of state of the art prediction

approaches while maintaining a good level of accuracy for the models. Our experiments

show the feasibility of the prediction approach both on private and on public clusters.

The 95-percentile average relative error is less than 25% on the testing benchmarks.

• Conclusions: Chapter 6 summarizes this thesis and outlines future avenues of research

in query runtime prediction. We discuss a number of interesting topics that are worth

pursuing in the context of scheduling, in-memory analytical engines, and shared infras-

tructures.

9





2 Background

In the first sections of this chapter we present related work on distributed processing engines

and runtime prediction techniques applied for data analytics in general. Specific differences

with respect to the prediction techniques proposed in this thesis are also summarized later

in the respective chapters. In the last section of this chapter we introduce runtime modeling

concepts that we use for runtime prediction in all of the following chapters.

2.1 Distributed Processing Engines for Scale-Out Analytics

2.1.1 MapReduce Execution Model

MapReduce is a programming model and a framework for processing large sets of raw data. A

MapReduce program consists of two functions: map and reduce. The map function process

the input data and produces a set of intermediate results as key-value pairs, while the reduce

function aggregates all the intermediate results with the same key to produce the final result.

MapReduce framework operates in conjunction with a distributed file system, where it stores

the input and output data. Input data is represented as text or key/value pairs. Hence, the

burden of data parsing is passed to the user’s code. The data model allows for more flexibility

as compared with state-of-the-art DBMS where the data has predefined structure, but comes

at the cost of parsing the data each time a task is being executed.

Figure 2.1 illustrates the processing phases when running an analytical job on MapReduce.

The job has three map tasks that read the input from the distributed file system, then apply the

user defined transformations defined in the map function. Map tasks produce intermediate

results as key-value pairs which are spilled to the local file system of each of the map tasks.

Two reduce tasks copy the key-value pairs assigned to them based on a partitioning strategy on

key, merge key-value pairs having the same key, then apply the user defined reduce function

that produces the final result.

Some of the features that made MapReduce execution model popular among practitioners of

11



Chapter 2. Background

Map$

Map$

Reduce$

Map$

read$

Reduce$

Shuffle,$$
merge$

Collect,$$
spill,$merge$

Distributed$File$
System$

write$

Distributed$File$
System$

Intermediate$$
results$

Figure 2.1 – MapReduce Execution Model: Map tasks transform the input data and output
intermediate results as key-value pairs. The reduce tasks copy and merge all the values
corresponding to the same key, then apply the reduce function to produce the final result.

data analytics:

• Fault Tolerance and Scalability: Designed to process large amounts of data using thou-

sands of commodity machines, MapReduce has mechanisms to tolerate failures grace-

fully. MapReduce is resilient to large scale worker node failures by re-scheduling tasks

on live nodes and by checkpointing intermediate results of the MapReduce job. Hence,

in the case of a node failure the framework re-executes only the failed task of the MapRe-

duce job.

• Elasticity: Worker nodes can be easily added in or removed. The underlying filesystem

takes care of balancing the load among all the data nodes, while computation is uni-

formly balanced across all the worker nodes. Extending deployment of a traditional

parallel database requires significant efforts in tuning it before actually exploiting the

new hardware resources efficiently.

• Load Balancing: The MapReduce framework divides the Map and Reduce phases into a

number of pieces much larger than the number of machines such that each machine

executes many different tasks. This improves dynamic load balancing and recovery. If

a node fails, tasks executed on the failed node can be spread out across all the other

machines. Additionally, to deal with straggler nodes (i.e., machine that is performing

poorly), MapReduce schedules backup tasks. Specifically, when the job is close to

completion the master node schedules backup executions for the remaining tasks. A

task finishes when either the primary or backup task completes its execution.

• Open Implementation: A big advantage of MapReduce based systems is that there is

12



2.1. Distributed Processing Engines for Scale-Out Analytics

an open source implementation that is available for free. Hadoop1 is an open source

implementation of the MapReduce framework.

Traditional applications of MapReduce include: ETL systems (Extract, Transform, Load) that

transform data into different formats that are further consumed by other storage systems,

complex analytics that cannot be expressed in SQL (multiple passes over the data: e.g., data

mining, data clustering) or data analytics on unstructured data (grep, URL access frequency,

inverted index).

Iterative Processing on MapReduce

Mahout [7] is a library for MapReduce that aims to scale the execution of machine learning

algorithms on large input datasets. The library includes both iterative and non-iterative

algorithms. The iterative category includes: clustering (e.g., spectral, k-means, canopy) and

algorithms used by recommender systems (e.g., matrix factorization, collaborative filtering).

The non-iterative category includes: classification (e.g., Naive Bayes, Logistic Regression),

dimensionality reduction (e.g., PCA), etc.

Pegasus [44] is a similar effort as Mahout with the difference that the project is targeting to

mine large input graphs. Pegasus proposes efficient matrix-vector multiplication abstractions

that can be used to implement a class of graph mining algorithms on top of MapReduce

engine. Examples of algorithms that benefit from such an abstraction: connected components,

diameter/radius estimation, random walks, PageRank.

HaLoop [14] proposes optimization techniques when executing iterative computation on

MapReduce. As explained in Section 1.2 and illustrated in Figure 1.1, iterative processing is

executed among one relation that does not change and one relation that gets updated in every

iteration. The MapReduce execution model is inherently inappropriate to execute iterative

processing efficiently as it requires to read both inputs at the beginning of every iteration,

and additionally it shuffles and then spills intermediate results on disk. For algorithms with

a large number of iterations such an execution model is very inefficient. In this context,

HaLoop [14] caches invariant input datasets in memory when executing iterative algorithms

on MapReduce.

2.1.2 Distributed Graph Processing

An important class of analytics today is executed on graphs. Social media analysis and blog

analysis require graph processing engines that can process large data sets efficiently. Recent

graph processing engines use a vertex centric approach, that is, each vertex executes an in-

stance of a vertex program towards implementing the graph algorithm. Concretely, each vertex

executes local computation on its local data structures (state information can be associated

1https://hadoop.apache.org/

13



Chapter 2. Background

with the vertex and the neighboring edges), then it communicates with other vertices of the

graph as needed to implement the semantics of the algorithm. The distributed algorithm

implementation is in fact a succession of iterations that are composed of local computation

and communication. Based on the communication and synchronization models (whether

synchronization among all vertex programs is enforced or not at the end of each iteration), we

can classify engines into: synchronous and asynchronous. In the following, we describe Pregel

[55], a synchronous graph processing engine, and GraphLab [52] an asynchronous variant.

Pregel

Pregel follows a bulk synchronous parallel (BSP) [73] processing model that uses message

passing for communication. All vertices run their vertex programs in parallel for a number

of iterations (aka, super-steps). Before starting a new iteration, each vertex receives all its

designated messages from the other vertices that were sent in the previous iteration. At

the end of an iteration, each vertex send messages to its neighbors as needed. A barrier

synchronization point is enforced at the end of each iteration to ensure that all messages send

in one iteration are received before starting the next iteration. Vertices that completed running

their vertex program can vote to halt. By doing so they remove themselves from the list of

vertices that will execute computation in the next iteration. A halted vertex that receives a

message it is automatically re-started in the next superstep. The algorithm completes when

there are no more messages to be sent among vertices and all vertices voted to halt. Pregel

introduces the concept of combiners which are user defined function that merge messages

destined to the same vertex. Combiners are required to be associative and commutative

operators.

GraphLab

GraphLab builds on an asynchronous distributed shared memory abstraction. In this pro-

cessing model, vertex programs have shared access to a distributed graph. Concretely, each

vertex program can access the data of its current vertex, of the neighboring vertices, and of the

neighboring edges. A vertex program can be scheduled to be re-executed again (i.e., a new

iteration) by itself or by its neighboring vertices through a signaling mechanism. We observe

that GraphLab removes message passing interface and the synchronization point at the end of

each iteration. Instead of using a barrier among all vertex programs, the underlying processing

engine ensures serializability by preventing neighboring vertices (that access the same shared

state) to be executed at the same time.

GraphLab introduces the Gather-Apply-Scatter (GAS) model to represent the conceptual

phases of a vertex program. During the gather phase, state about adjacent vertices and edges

is collected and aggregated into aggregator object. The aggregate operator can be a generalized

sum over the neighborhood of the current vertex, and it must be associative and commutative.

During the apply phase the current vertex value and the aggregator value are used to update

14



2.1. Distributed Processing Engines for Scale-Out Analytics

the new vertex value. Finally, during the scatter phase the new vertex value is used to update

the data on adjacent edges and vertices. We note that the scatter and gather phases control

the fan-in and the fan-out of the vertex program.

PowerGraph [31] was introduced to address the challenges of power-law graphs where there

is a lot of work imbalance among vertices of the graph. In particular, power-law graphs have a

small number of vertices that have much larger neighborhoods than most of the vertices of

the graph. For such graphs, processing abstractions that distribute work symmetrically among

vertices suffer from per iteration processing time imbalance. PowerGraph is a hybrid approach

that adds parallelization within a vertex program. That is, vertices with large neighborhoods

distribute the vertex program among multiple workers. PowerGraph is in fact a hybrid of

GraphLab and Pregel abstractions, inheriting from GraphLab the asynchronous engine and

the distributed shared memory model for data access, and from Pregel the combiner concept.

PowerGraph parallelizes the gather and scatter phases of the GAS abstraction, uses a combiner

to aggregate all the results created during the gather phase, then executes the apply function

to update the vertex value with the aggregated result.

Other Graph Processing Engines

Other graph processing engines that optimize the runtime performance when processing

large scale graphs in parallel were proposed in the recent years. Mizan [45] is a BSP graph

processing engine that balances the load dynamically among workers based on performance

characteristics collected at runtime. XStream [66] is a system for processing both in-memory

and out-of-core graphs using a shared memory machine. GreenMarl [42] is a domain specific

language abstraction and a runtime system that allows users to express their graph processing

algorithms declaratively while not trading-off on the performance. The optimizer takes full

control of translating the high level code into optimized code that is then executed in parallel

using a distributed shared memory abstraction.

2.1.3 Spark Processing Engine

Spark [84] is an alternative MapReduce paradigm implementation that was designed for very

fast computation. Spark is compatible with Hadoop’s storage API, and is on average 40x faster

than Hadoop [82]. Spark develops an in-memory storage structure called resilient distributed

datasets (RDDs) for storing intermediate results. As a result of saving intermediate results on

RDDs instead of saving them on disks, Spark is very efficient for iterative computation with a

large number of iterations.

RDDs are a restricted form of distributed shared memory. They were designed to offer high

throughput (close to the maximum given by the memory bandwidth) for coarse granularity

updates. Concretely, RDDs are distributed collection of records that are immutable and cached

in the memory of the cluster. They can only be built through coarse-grained deterministic

15



Chapter 2. Background

parallel transformations (e.g., map, filter, join, etc). In the case of failures, RDDs are re-built

using lineage.

Shark Processing Engine for Mixed Analytics: Shark [82] is an execution engine for mixed

analytics that supports both efficient SQL and machine learning computation at scale with

fine grain fault tolerance. Shark is essentially HiveQL on Spark and is compatible with Hive’s

interfaces. Overall, Shark is in the range of (10x, 100x) faster than HiveQL on Hadoop. Besides

the performance improvements due to using Spark’s resilient distributed datasets abstraction,

query planning in Shark benefits from additional optimizations such as: partial DAG execution,

map pruning, efficient memory storage.

Partial dag execution: collects statistics at the runtime that are later used to select a particular

join implementation (e.g., map join or shuffle join), and the degree of parallelism of the

following jobs in the query DAG. For instance, based on the partition sizes fine grain partitions

can be coalesced into coarse partitions. Other statistics that are collected: record counts,

approximate histograms.

Map pruning: is a mechanism of pruning partitions that do not contain query results based

on statistics that are collected during the data loading phase of each partition.

Efficient memory storage: Shark employs column-oriented storage using arrays of primitive

types instead of storing rows as Java objects. Shark reduces the book-keeping overhead and at

the same time it reduces the access time.

2.2 Estimating and Optimizing Iterative Processing

Prior work on iterative algorithms mainly focuses on providing theoretical bounds for the

number of iterations an algorithm requires to converge (e.g., [46, 44, 34]) or worst case time

complexity (e.g., [8]). These parameters, however, are not sufficient for providing wall time

estimates due to the following two reasons: i) As simplifying assumptions about the charac-

teristics of the input dataset are made, theoretical bounds on the number of iterations are

typically loose [46, 8]. This problem is further exacerbated for a category of iterative algorithms

executing sparse computation, where the processing requirements of any arbitrary iteration

vary a lot as compared with subsequent/prior iterations [26, 52]. For such algorithms, per

iteration worst case time complexities are impractical when the goal is to estimate actual run-

time. ii) Per iteration processing runtime cannot be captured solely by a complexity formula.

System level resource requirements (i.e., CPU, networking, I/O), critical path modeling and a

cost model are additionally required for modeling runtime.

Iterative execution was also analyzed in the context of recursive query processing. In partic-

ular, multiple research efforts [10, 3, 13] discuss execution strategies (i.e., top-down versus

bottom-up) with the goal of performance optimization. Ewen et al. [26] optimize execution

of incremental iterations that are characterized by few localized updates, in contrast with

16



2.2. Estimating and Optimizing Iterative Processing

bulk iterations, that always update the complete dataset. Although performance optimization

has an immediate impact on the runtime of the queries, the aforementioned techniques are

complementary to the runtime prediction problem we study in this thesis.

2.2.1 Approximating and Sampling Large Graphs

With the goal of reducing the processing time of ever increasing input graphs, sampling and

sketching techniques that can approximate some of the properties of the complete graph have

been studied over the past recent years (e.g., [47, 48, 33, 43]). In these works, the main goal is

to take a sample that can be used to approximate the result of the graph processing task. For

instance, evaluating whether the input graph is connected, approximating the in/out node

degree distributions, the effective diameter (i.e., 90-th percentile longest distance).

Sampling graphs had been analyzed in the context of social networks. Leskovec et al. propose

sampling techniques based on random walks [47] with the goal of maintaining certain proper-

ties on the sample such as the in/out node degree distributions, clustering coefficient, and

effective diameter.

A random walk on a graph starting at a vertex v corresponds to randomly picking an edge that

starts at v and ends at one of v ’s neighboring vertices. A sampling technique based on random

walk takes multiple random walks on the input graph until a certain percentage of vertices

(or edges) have been sampled. There are multiple variants of sampling algorithms based on

random walks. An excellent survey is that of Hu et al. [43]. In the following we summarize the

best performing sampling techniques in the context of preserving connectivity, node in/out

degree proportionality, and the effective diameter of the sampled graph.

• Random Walk [47]: Random Walk picks a starting seed vertex uniformly at random from

all the input vertices. Then, at each sampling step an outgoing edge of the current vertex

is picked uniformly at random and the current vertex is updated with the destination

vertex of the picked edge. With a probability p the current walk is ended and a new

random walk is started from the original seed vertex. The process continues until the

number of vertices picked reaches the sampling ratio. With this sampling strategy there

is a risk of getting stuck, if the starting vertex is a sink, or if it belongs to a small isolated

component. If after a long number of sampling steps there is no progress in the number

of picked vertices, random walk re-initializes the starting node to a new arbitrary vertex

of the graph.

• Random Jump [47]: Random Jump is very similar with Random Walk. The difference

is that Random Jump re-initializes the starting node to an arbitrary vertex of the graph

each time a new random walk is started. Hence, this sampling scheme has no risk in

getting stuck during the sampling process.

• Metropolis-Hastings Random Walk [30]: Sampling techniques based on random walk

17



Chapter 2. Background

are known to have bias towards high degree nodes in the input graph. That is vertices

with high out degree are likely to be visited more often during the sampling process than

vertices with low out degree. With the goal of sampling vertices uniformly at random

(i.e., with a probability of 1
|V | , where |V | the total number of vertices in the graph),

Metropolis-Hastings Random Walk adjusts the transition probability within a random

walk as follows:

Pv,w =



1

kv
×mi n(1,

kv

kw
), if w is neighbor of v

(1− ∑
y !=v

Pv,y ), if w = v

0, for any other vertex of the graph

, where kv , and kw the out degrees of vertices v , and w . In summary, MHRW always

accepts a walk towards a vertex with a lower degree and rejects some of the moves

to vertices with higher degree. Thus, it eliminates the bias towards vertices with high

degree.

Sampling vs. Sketching

In the context of data streaming model, McGregor et al. proposes sketching techniques with

the goal of reducing the cost of processing large input graphs [33, 5]. Concretely, sketches

reduce the algorithm processing space complexity from O(n2) to O(n×pol yl og (n)). Sketching

techniques use multiple linear projections of the input graph so that they can preserve a certain

property of the original graph (such as connectivity, k-connectivity, bipartiteness) in the sketch

space with high probability. Once a sketch is constructed, the algorithm is executed in the

sketch space to approximate results: Given a graph processing task T, an input graph G, and a

corresponding sketch S, the result of executing T on G is approximated with the result obtained

by executing T on S. The main differences with sampling approaches based on random walks

can be summarized as follows: i) random walk-based sampling approaches aim to preserve

multiple properties of the input graph while sketching is customized to preserve only one

input property with high probability. ii) random walk samples are used to summarize some of

the characteristics of the complete graph whereas sketches aim to reduce the memory (space)

requirements of processing large input graphs in the context of data streams.

2.3 Performance Prediction for DBMS

Estimating the runtime execution of analytical workloads was heavily studied in the DBMS

context from multiple angles: initial runtime predictors [29, 4, 25], progress estimators [16, 53,

57], and self-tuning systems [40, 38]. Prediction approaches proposed in the DBMS context

account for system level resource requirements (i.e., CPU, IO, network, memory) and use a

18



2.3. Performance Prediction for DBMS

cost model (either analytical, based on black box modeling or a hybrid) for translating them

into runtime. For instance, [29] proposes a technique to predict query performance using a

cost model based on machine learning that clusters queries with similar performance based

on query’s input parameters as known as input features in the machine learning community.

2.3.1 Nearest Neighbors-based Prediction

Ganapathi et al. propose an approach for predicting the runtime execution of HP Neoview

queries using statistical methods based on Kernel Canonical Correlation Analysis [29]. The

proposed model predicts the runtime of a query based on the runtime of m nearest neighbor

queries for which performance was tracked during a training phase. For finding the nearest

neighbors an n-dimensional distance metric is used (i.e., kernel), the dimension being given

by the size of the feature vector. The key input features include operator types, operator counts,

and input data statistics as returned from the query optimizer.

A related approach that uses linear regression to model the runtime of analytical queries was

proposed by Zhu et al. in the context of Multi Database Systems [86]. The proposed method

separates queries into classes according to their access methods so that the cost of the queries

in each query class can be approximated by the same formula. The set of features considered

are the input/output cardinalities, the size of intermediate results, the tuple length and the

physical size of the input/output tables. The approach uses multi-variate linear regression to

model the cost of queries.

2.3.2 Operator Level Models

Recent research introduced the idea of using operator level machine learning models [6, 50].

In particular, Akdere et al. [6] propose multiple granularity prediction models: “plan level”

models, “operator level” models or hybrids of the above two with the goal of predicting the

runtime of analytical queries for both static and ad-hoc workloads. Their work stresses the idea

of model re-usability through operator level models. While operator models are more accurate

for computing the runtime of operators, they require additional modeling mechanisms for

computing query level estimates (i.e., modeling the critical paths, taking into account operator

pipelining).

Li et al. propose an approach for improving the prediction accuracy on testing sets outside

of the training boundaries [50]. In particular, each operator is modeled through a hybrid of

models with a fixed functional form and decision trees which are discrete (i.e., in particular,

Multiple Additive Regression Trees). Based on the observation that models with a fixed

functional form are more powerful on testing sets outside of the training boundaries, and that

decision trees are more accurate when the training sets have a good coverage of the testing set,

they propose a hybrid of the two.

19



Chapter 2. Background

2.3.3 Progress Estimators

A sub-class of performance estimators focuses on estimating the progress of queries at runtime

(e.g., [16, 53, 57]) rather than on predicting their runtime before execution. In contrast with

prediction mechanisms, progress estimators benefit from a feedback loop mechanism which

can correct wrong estimates at the runtime. Similar adaptive techniques that are calibrating

statistics at runtime were also proposed in the literature [69, 24]. Progress estimators do

not replace the requirement for runtime predictors, as for many use cases (i.e., scheduling,

resource allocation) runtime estimates are required before the query starts execution. In

fact, runtime predictors can be used in conjunction with progress estimators to estimate the

runtime of forthcoming query pipelines for which dynamic statistics (collected at runtime)

are not yet available.

2.3.4 Performance Modeling for Storage Devices

Mesnier et al. [56] propose relative fitness models for storage devices that estimate perfor-

mance of a workload on device D1 based on a set of features that include performance and

resource utilization counters (in addition to the workload characteristics) corresponding to

the workload execution on another device D2. The training phase consists of: i) running

synthetic benchmarks on all storage devices that are representative for a large spectrum of real

workloads, and ii) building pairwise models among pairs of devices that exploit correlations

among performance metrics of a given workload executing on different devices. Classification

and Regression Tree (CART) models are used in the model fitting phase due to their simplicity

and flexibility.

2.4 Performance Prediction for MapReduce

2.4.1 Self-tuning and Optimization

Herodotou et al. propose Starfish [38], a self-tuning system for Extract Transform Load (ETL)

workloads that uses performance models with the goal of workload tuning, in particular,

finding the best set of configuration settings for a given workload and a cluster deployment.

Starfish was designed to help practitioners in data analytics getting the best job performance

without requiring them to know the tuning knobs of the underlying MapReduce infrastructure.

The key building block for finding the best configuration settings is the job profile, which

models the processing characteristics of an input job. The processing characteristics are

grouped into: processing cost factors, and data statistics. Given a MapReduce job, a job profile

is taken by executing the job on a sample of the input dataset. Then, the approach uses the

job’s processing characteristics from the job profile, a set of analytical models, and simulation

to predict the job’s runtime for a range of input configuration settings. Starfish’s What-If engine

is called for each potential input configuration, and the best configuration setting is returned

to the user.

20



2.4. Performance Prediction for MapReduce

Elastisizer [39] extends Starfish’s approach for the cluster sizing problem, which stands for

finding the cluster size and the type of machine instances (in terms of resource characteris-

tics) that best meet the requirements of the workload. Hence, in addition to configuration

settings, the search space includes cluster resources in terms of instance types on Amazon

EC2. Elastisizer uses controlled black box models for estimating the processing cost factors

on the target deployment. A set of synthetic workloads are generated and executed on each

instance type to generate the data that is used for training. In terms of model fitting algorithm,

M5 tree models [65] are used. M5 tree is a decision tree that instead of using the average of

all training examples falling within a leaf node, uses a second level modeling phase among

all observation falling within each leaf node. In particular, linear regression models are used

to fit the observations within each node. We make several observations: Both Starfish and

Elastisizer average processing cost factors among the job’s task profiles to produce a reference

profile that is later used in prediction. As we later show averaging processing cost factors

among tasks with very different input data properties is one source of modeling error that

may cause important inaccuracies when estimating the runtime with Starfish’s analytical

models. The task profiles are collected at MapReduce phase granularity and thus, do not track

more specific information about the processing tasks executed within the map, and reduce

functions (e.g., scan, join, project operators).

Wu et al. [80] propose analytical cost models for HiveQL operators with the underlying

goal of query optimization. Their work is tailored towards reducing the size of intermediate

results by adaptively grouping join operators that can be processed in one single MapReduce

job. Unlike conventional optimization, the proposed optimization approach is tailored to

the characteristics of MapReduce processing model such as materialization of intermediate

results and data shuffling. Similarly with PostgreSQL cost model, or the query cost calibration

approaches proposed for PostgreSQL [81, 68], processing cost factors are assumed constant

for a given hardware infrastructure.

2.4.2 Nearest neighbors-based prediction

Ganapathi et al. extend their method proposed in the context of database queries [29] for

HiveQL queries executing on top of MapReduce [28]. The input features used include a mix

of MapReduce specific configuration settings and query features taken from the query plan.

The models are built at coarse granularity (job/query granularity). The set of input features

considered include configuration parameters and input data characteristics: i.e., number

and location of map/reduce slots, input bytes, bytes read from local disk, bytes read from the

distributed file system (i.e., HDFS in Hadoop). A large number of training queries is used for

fitting the models (in the order of 1000s).

21



Chapter 2. Background

2.4.3 Resource Allocation and Scheduling

FLEX [79], ARIA [76], and Rayon [21] optimize resource allocation for large scale analytical

workloads in accordance with deadlines and user contracted Service Level Agreements (SLAs).

For finding an optimal allocation of resources all of the above schedulers require as input

query runtime estimates corresponding to each potential resource allocation configuration.

Thus, mechanisms for estimating the runtime requirements associated with each resource

allocation configuration are of paramount importance.

ARIA is an SLA aware scheduler based on the Earliest Deadline First scheduling policy. Given a

MapReduce job and a deadline, ARIA estimates the resources required to execute the job while

satisfying the deadline. The prediction component of ARIA uses a job profile to summarize

the performance characteristics of the job. Their workloads include ETL tasks such as: word

count, sort, classification, term frequency - inverse document frequency (TF-IDF).

Rayon system [21] introduces the concept of resource reservations into YARN [75] aiming to

provide predictable resource allocations for mixed analytical workloads. Rayon is built on top

of the capacity scheduler configured with one dedicated queue where it accepts reservation

requests for production jobs (that have strict deadline constraints), and one default queue

where it accepts requests for best effort jobs (with no time constraints, but sensitive to latency).

Given this workload mix, Rayon targets to improve the resource utilization of the cluster as

much as possible while satisfying deadline constraints for production jobs, and minimizing

latency for best effort jobs.

2.5 Existing Prediction Approaches vs. Current Requirements

Table 2.1 summarizes recent prediction approaches proposed in the context of DBMS and

MapReduce along multiple dimensions: workload type, modeling approach, modeling gran-

ularity, and prediction goal. Prediction approaches proposed in the DBMS context that use

machine learning as their underlying technique: KCCA, Hybrid QPP, and MART show that

machine learning models are more accurate than pure analytical models when the training

datasets cover the input query space well. The reason is that they can capture a wide range of

runtime execution effects (e.g., interplay among workload, DBMS and underlying hardware)

implicitly rather than explicitly by exploiting prior query executions. To improve the appli-

cability of training based approaches to a broader set of testing queries, not covered by the

queries from the training set, operator granularity models were proposed by Hybrid QPP and

MART as a replacement to the query granularity models proposed by KCCA. Enhanced Post-

greSQL proposes mechanisms to calibrate PostgreSQL’s cost models and use a pure analytical

approach.

Prediction approaches proposed in the MapReduce context target workload optimization (i.e.,

AQUA) and tuning, i.e., finding the set of configuration settings that give the best performance

for a given workload (i.e., Starfish and Elastisizer). With the exception of Elastisizer and KCCA

22



2.6. Runtime Modeling: Background Concepts

for MapReduce, they use an analytical approach for building the cost models at the granularity

of MapReduce phases.

We observe that neither of these approaches addresses the problem of estimating the runtime

of iterative analytics which are prevalent in today’s analytical workflows (as presented in

Section 1.2). Additionally, all of the prediction approaches that use machine learning as

their underlying modeling technique are targeted for fixed deployments and use a very large

number of queries for training their models. While for fixed deployments training incurs an one

time cost, in the context of elastic deployments, where a large number of potential hardware

deployments can be provided to applications on-demand, high training cost is unacceptable.

Finally, neither approaches analyzes the trade-offs among analytical modeling versus hybrid

modeling for reporting SQL queries executed at scale. This thesis aims to fill in these gaps.

Name Workload Workload Context Modeling Model Training Deploy- Goal
type sub-type approach granularity cost ment

KCCA [29, 28] ad-hoc SQL DBMS ML query 1000 training fixed prediction
MapReduce queries (days)

Hybrid ad-hoc SQL DBMS hybrid operator 800 training fixed prediction
QPP [6] single node queries (days)
MART [50] ad-hoc SQL DBMS hybrid operator 2500 training fixed prediction

single node queries (days)
Enhanced ad-hoc SQL DBMS analytical optimizer sample run, fixed prediction
Postgre- single node cost model calibration
SQL [81] queries

(an hour)
AQUA [80] ad-hoc HiveQL MapReduce analytical operator calibration fixed optimi-

distributed queries (NA) zation
Starfish [38] reporting ETL MapReduce analytical average sample run fixed tuning

distributed task (p% of actual
phase run, e.g., 10%)

Elasti- reporting ETL MapReduce hybrid average sample run, elastic tuning,
sizer [39] distributed task calibration resource

phase queries allocation
phase (hours)

Table 2.1 – Recent prediction approaches for analytical workloads.

2.6 Runtime Modeling: Background Concepts

In this section we describe the core concepts used for building hybrid prediction models in

the following chapters. We start with an overview on the modeling steps required to build cost

models using a machine learning approach. We detail each step in turn, then, give examples of

fitting algorithms used for building the models. In the end, we present the metrics of interest

for assessing the accuracy performance of the models.

2.6.1 Runtime Modeling Overview

Building a cost model using a learning approach involves multiple phases: i) generating

training data sets; ii) collecting and identifying key input features (i.e., input parameters)

that have a high impact on the query runtime (i.e., candidate input features extraction); iii)

23



Chapter 2. Background

building the cost model that maps key input feature values into runtime (i.e., model fitting).

After the model is built we can use it for prediction. For estimating the runtime of a query

Q we have only to input its key input features into the cost model which was trained to turn

them into runtime.

We categorize key input features into: operator features that relate to the semantics of the query,

data features that relate to the characteristics of the input dataset and the query, performance

features that include the costs of executing different operator phases, and configuration settings

that include the software settings and hardware resource allocation. In the following sub-

sections we describe in more details the process of collecting key input features and that of

building cost models.

2.6.2 Collecting Input Features

For building cost models based on learning training data is required. Training data is generated

by running a number of synthetic or real workloads on a range of input datasets and execution

configurations. The query execution is instrumented such that data features, operator features

and performance features are collected by a profiler and stored into a centralized database.

We collect key input features at the granularity of MapReduce tasks and store them into task

profiles. Concretely, for a MapReduce job with m mappers and r reducers, a number of m + r

profiles are collected. Within a task data features, operator features and performance features

are collected based on domain knowledge about the operator’s semantics. Generally, two

categories of features are collected: runtime execution specific (i.e., MapReduce framework de-

pendent), and workload specific (e.g., at the query processing layer, or at the graph processing

layer, etc).

We use BTrace 2 to profile the execution of distributed queries. BTrace allows users to write

scripts (annotated Java programs) that specify profiling rules. BTrace uses java agents to run

the compiled script into the same JVM as the actual java program. When the precondition of a

BTrace rule is satisfied, the bytecode corresponding to the rule is executed. Thus, collecting

query input features is possible for any arbitrary method for which a triggering rule exists, and

that is called during the query’s execution.

Figure 2.2 shows a code fragment corresponding to a BTrace rule. The BTrace rule intercepts

the call to getOrCreatePartitions method of GraphTaskManager class, located inside the pro-

cessGraphPartitions method. The profiling method onGraphTaskManager_on_processGraph-

Partitions waits until the intercepted method completes, as specified with the where clause,

where = Where.AFTER, then it accesses two attributes of the returned object i.e., partition

(lines 216-217). The parameters of the profiling method have the same signature with that of

the intercepted method and can be accessed at the interception time. Returned values are

also available for profiling if they are intercepted through the Return annotation.

2https://kenai.com/projects/btrace

24



2.6. Runtime Modeling: Background Concepts

Figure 2.2 – BTrace profiling rule example.

2.6.3 Building a Cost Model

There are multiple ways of building a cost model: explicitly through analytical modeling,

implicitly through machine learning given that training data is available, or as a hybrid of

the two. Analytical models are built by experts based on domain knowledge about the query

processing model, and use explicit formulas among key input features to compute the output

feature (runtime). Instead of using explicit formulas, learning based models build implicit

models through training (i.e., model fitting). In the following we describe multiple model

fitting mechanisms that we later use for prediction.

Depending on how much information is available regarding the functional dependency among

the key input features and the output feature (i.e., runtime) we can categorize model fitting

algorithms into: i) algorithms with a fixed functional form, where the canonical form of the

modeled cost function is known a priori and the only unknowns are the coefficients of the

function which are learned from the training data, and ii) algorithms with unknown functional

form, where the function corresponding to the modeled output is unknown. For the last case,

algorithms that quantify similarity among input features based on a distance metric (e.g.,

nearest neighbors, kernel methods, support vector machine) or that segment the input feature

space (i.e., decision trees) are used instead.

Any given fitting algorithm has an objective function (also known as the loss function) that

drives the process of optimizing the model using training samples. One of the most common

objective function for regressive models, that predict continuous values, is to minimize the

mean squared error between the actual and predicted value on the samples from the training

set. We further detail the objective function when describing each model fitting mechanism in

particular.

Model Fitting for Fixed Functional Forms

Multi-variate Linear Regression: Formally, given a set of input features X1, ..., Xk , and one

25



Chapter 2. Background

Figure 2.3 – CART decision tree with four input features F1 −F4, four conditionals, and five
possible predicted values C1 −C5.

output feature Y (i.e., processing phase runtime), the model has the functional form:

f (X1, ..., Xk ) = c1X1 + c2X2 + ...+ ck Xk + r

where ci are the coefficients and r is the residual value. The model fitting algorithm for multi-

variate regression seeks to find the coefficients and the residual value such that the mean

squared error among the estimated runtime value and the actual runtime value for the queries

from the training set is minimized. In fact the coefficients of the model can be interpreted as

the "cost values" corresponding to each input feature.

Model Fitting for Unknown Functional Forms

Decision trees are a good modeling approach when the underlying dependency among the

input features and the output feature is not known in advance or when the dependency does

not follow a fixed functional form. Decision trees are thus general and applicable to a large

class of prediction problems. A large number of fitting algorithms based on decision trees

exist [35].

Classification Classification and Regression Trees (CART): CART models are well known

among decision tree algorithms due to their generality, practicality, and expressivity. CART

models grow a decision tree by classifying the samples from the training set into multiple

zones based on a recursive binary tree growing procedure. Initially, all the training samples

are located in one single node. In the next step, the split (i.e., the input feature and the

26



2.6. Runtime Modeling: Background Concepts

Figure 2.4 – MART decision trees with two boosting iterations (i.e., two trees) and four input
features F1 −F4. The predicted value is a summation over the predicted values of each tree.

threshold value) that best separates the training samples into two subsets is searched for. A

good separation is achieved when there is small discrepancy among the output feature value

assigned to a tree node (i.e., the average output feature value of all samples within that node)

and the actual output feature values of the samples within that node. More concretely, the split

that reduces the average squared error the most is chosen. The process continues iteratively

until there is no more significant error reduction or until the minimum number of samples

within a leaf node has been reached (no more splits are allowed). Figure 2.3 shows a CART

tree with four input features, four conditionals (the intermediate tree nodes), and five possible

predicted values (the leaf nodes).

Multiple Additive Regression Trees (MART): In contrast with CART, MART iteratively builds

a sequence of regression trees instead of building one single regression tree per model. The

advantage is that each subsequent tree in the sequence is built to compensate for the residual

errors observed on the training data on the current tree, hence prediction errors can be further

reduced. Figure 2.4 shows a MART model with two trees. MART models were shown to have

very good properties in the context of runtime and resource prediction [50].

Hybrid Decision Trees: Hybrid decision trees combine the power of decision trees of seg-

menting the input feature space into multiple zones and the generality of fixed functional

forms within a leaf node. That is, instead of estimating the average output feature value of all

samples within a leaf node, a fixed functional form is fitted instead. Thus, different output

feature values can be predicted from the same leaf node. This set of features make hybrid

27



Chapter 2. Background

decision trees powerful, and more advantageous to use compared with simple tree models

(e.g., CART), and fixed functional form models (e.g., multi-variate linear regression). M5 Tree

[65] is a model fitting algorithm that is implementing such a hybrid decision tree model.

2.6.4 Prediction

During the prediction phase the output performance metric is estimated using the models

built in the model building phase. For instance, for the decision tree model illustrated in Figure

2.3, and a query Q with feature vector (F1,F2,F3,F4) = (2t1,0.5t2,0.5t3,2t4), the estimated value

is obtained by finding the leaf node that satisfies all the conditionals encountered during the

tree traversal on the input feature vector. Thus, in this example the predicted value is C2.

2.6.5 Accuracy Metrics of Interest

We quantify the accuracy of the prediction models on multiple accuracy metrics to assess the

quality of estimations for different end-to-end use cases, as presented in Section 1.1.

Relative prediction error (RE): Conventional metric used in runtime prediction (e.g., [29, 6, 81]).

It is defined as: RE = |Pr edi cted−Actual |×100%
Actual and it measures the relative error of the predicted

runtime with respect to the actual runtime.

Average relative prediction error (RE): It is defined as the average relative prediction error

corresponding to a workload of analytical queries: RE = 1
n ×∑n

i=1 REi .

Cumulative distribution function of relative error (CDF): It shows the distribution of the relative

prediction errors corresponding to a workload. It can be used to quantify the proportion of

predictions that have a relative error bellow a target error.

Ratio Error: It shows the maximum ratio error among the predicted runtime and the actual

runtime. It is defined as: Rati o_Er r or = max{ Pr edi cted
Actual , Actual

Pr edi cted }.

Order preserving degree (OPD): Given a workload for which predictions are computed, the

order preserving degree measures the proportion of predictions for which the relative order

among pairs of predictions is maintained the same with to the relative order among the

corresponding pairs of actual values. This metric was proposed in query optimization to

assess the accuracy of the optimizer to compare alternative query plans (e.g., [85]). The order

preserving degree is also very useful in the context of resource allocation and deployment. For

instance, when targeting to answer performance boost questions: i.e., that aims to find the

execution configuration that can improve the actual performance of the workload by a given

factor.

Coefficient of determination (R2): Measures how well the training data fits the model. We use

the following formula for computing this metric: R2 = 1−
∑

i (Actuali−Pr edi ctedi )2∑
i (Actuali− ¯Actual )2 The closer the

value is to one, the better the model fits the training data.

28



2.7. Summary

As there is no one single error metric to capture the quality of predictions for all potential

prediction use cases, we choose to quantify the accuracy of our models on multiple prediction

metrics. In the sections where we target a particular use case, we focus on the metrics that are

the most relevant for that use case.

2.7 Summary

In this chapter we presented distributed processing engines for scale-out data analytics, state

of the art prediction approaches, and background concepts for runtime cost modeling. In

the first section, we started with the MapReduce execution model that received momentum

in the recent years due to its scalability and fault tolerance properties for executing data

processing tasks on large cluster deployments. We then discussed iterative processing and

distributed graph processing models that can be used for executing iterative computation at

scale. We briefly summarized alternative MapReduce-like paradigms for very fast computation

using in-memory storage structures. In the following sections we presented an overview of

prediction approaches in the context of iterative processing, DBMS, and MapReduce. While

in the context of iterative processing there are no empirical approaches aimed to estimate

runtime, cost models based on analytical modeling and machine learning are available for

conventional SQL and non-iterative ETL. We summarized existing approaches and at the

same time pin-pointed prediction requirements that are not yet addresses in the literature. At

the end, we briefly presented background concepts for building cost models using machine

learning-based models.

29





3 Runtime Prediction for Iterative Ana-
lytics

3.1 Introduction

Today’s data management requirements are more complex than ever, going beyond the tra-

ditional DBMS operators [20]. Analytical tasks often include iterative machine learning or

graph mining algorithms [44, 52] executed on large input datasets. For instance, Facebook

uses machine learning to order stories in the news feed (i.e., ranking), and to group users

with similar interests together (i.e., clustering). Similarly, LinkedIn uses large scale graph

processing to offer customized statistics to users (e.g., total number of professionals reachable

within a few hops). These algorithms are often iterative: one or more processing steps are

executed repetitively until a convergence condition is met [44].

Predicting the runtime of iterative algorithms poses two main challenges: i) predicting the

number of iterations, and ii) predicting the runtime of each iteration. In addition to the algo-

rithm’s semantics, both types of prediction depend on the characteristics of the input dataset,

and the intermediate results of all prior iterations. On one hand, the number of iterations

depends on how fast the algorithm converges. Convergence is typically given by a distance

metric that measures incremental updates between consecutive iterations. Unfortunately, an

accurate closed-form formula cannot be built in advance, before materializing all interme-

diate results. On the other hand, the runtime of a given iteration may vary widely compared

with the subsequent iterations according to the algorithm’s semantics and as a function of

the iteration’s current working set [26]. Due to sparse computation, updating an element of

the intermediate result may have an immediate impact only on a limited number of other

elements (e.g., propagating the smallest vertex identifier in a graph structure using only point

to point messages among neighboring elements). Hence, estimating the time requirements,

or alternatively, the size of the working sets of each iteration before execution is difficult.

Existing Approaches: Prior work on estimating the runtime or the progress of analytical

queries in DBMS (e.g., [4, 16, 25, 29, 51]) or more recent MapReduce systems (e.g., [38, 40,

57, 63]) do not address the problem of predicting the runtime of analytical workflows that

include iterative algorithms. For certain algorithms theoretical bounds for the number of

31



Chapter 3. Runtime Prediction for Iterative Analytics

Key input features 

Extrapolator 

 
Model fitting /  

feature selection 
 

Historical 
runs 

Prediction 

Sample run 
Transform 
function 

Sampling 
technique 

Scaled features 
Default 

transformations 

F(X,Y,Z) 

Figure 3.1 – PREDIcT’s methodology for estimating the key input features and runtime of
iterative algorithms.

iterations were defined (e.g., [34, 44, 46]). However, due to simplifying assumptions on the

characteristics of the input dataset theoretical bounds are typically too coarse to be useful in

practice.

3.1.1 Sketch of Proposed Approach

In this chapter we introduce PREDIcT, an experimental methodology for iterative algorithms

that estimates the number of iterations and per iteration key input features capturing resource

requirements (such as function call counters, message byte counters), which are subsequently

translated into runtime using a cost model. Figure 3.1 illustrates PREDIcT’s approach to

estimate the runtime of iterative algorithms. One of the key components of PREDIcT is the

sample run, a short execution of the algorithm on a sample dataset. During the sample

run key input features are collected and used later as a basis for estimating the processing

characteristics of the algorithm on the complete input dataset. However, as some algorithm

parameters are tuned to a certain dataset size, a sampling run cannot simply execute the

same algorithm with the same parameters on a smaller dataset. We first have to identify the

parameters that need to be scaled and then apply the transform function to obtain the suitable

values for the sample dataset size. One such parameter is the convergence threshold used

by PageRank [59] and other algorithms. We illustrate the need to scale the threshold with an

example.

Example: PageRank is an iterative algorithm that computes the rank of all vertices of a directed

graph by associating to each vertex a rank value that is proportional with the number of refer-

ences it receives from the other vertices, and their corresponding PageRank values. PageRank

converges when the average delta change of PageRank at the graph level from one iteration

to the next decreases below a user defined threshold τ≥ 0. For acyclic graphs convergence

32



3.1. Introduction

3 

7 

5 

S1 6 

2 4 

3 S2 5 

1 3 

8 

5 

S3 

1 

2 4 

3 

8 

7 

6 

5 

G 

Figure 3.2 – Maintaining invariants for the number of iterations when executing PageRank on
sample graphs.

to τ= 0 is given by D +1, where D is the diameter of the graph. Consider Figure 3.2 showing

an input graph G, and three arbitrary samples S1-S3, with a sampling ratio of 50% of vertices.

The complete graph requires three iterations to converge (i.e., D = 2). Sample S1 requires only

two iterations, while samples S2 and S3 require three iterations as they preserve the diameter.

However, none of the samples above maintain invariants for the number of iterations given

an arbitrary convergence threshold τ> 0. Due to the different number of vertices, edges or

in/out node degree ratios of samples S1-S3 as compared with G, the average delta change of

PageRank on the samples is not the same when compared to the corresponding average delta

change on G. Computing the average delta change of PageRank for the first iteration results in:

∆S1,1 = 3d/16, ∆S2,1 = d/8, ∆S3,1 = d/8, and ∆G ,1 = d/16, where d = 0.85 is the damping factor

(for deriving the values please see Section 3.6.1). For this example, for a threshold τ= d/16

the actual run converges after one iteration, whereas all sample runs continue execution. By

applying the transformation T = (τS = τG ×2) during the sample run on samples S2 or S3, the

same number of iterations is maintained as on the complete graph. Hence, only by combining

a transform function with a sampling technique (which maintains certain properties of G: e.g.,

diameter), invariants can be preserved.

PREDIcT proposes the methodology for providing transformation functions on a class of

iterative algorithms that operate on homogeneous graph structures, and have a global conver-

gence condition: i.e., computing an aggregate at the graph level. Examples of such algorithms

include: ranking (e.g., PageRank, top-k ranking), clustering on graphs (e.g., semi-clustering),

and graph processing (e.g., neighborhood estimation). PREDIcT provides a set of default rules

for choosing the transformations that work for a representative class of algorithms. At the

same time, users can plug in their own set of transformations based on domain knowledge,

if the semantics of the algorithm are not already captured by the default rules. Considering

that a representative set of iterative, machine learning algorithms are executed repetitively on

different input datasets [20, 44, 52], and that the space of possible algorithms is not prohibitive,

33



Chapter 3. Runtime Prediction for Iterative Analytics

deriving such a set of customized transformations is also practical and worthwhile.

As Figure 3.1 shows, after key input features (including iterations) are profiled during the

sample run and extrapolated to the scale of the complete dataset, a cost model is required for

translating key input features into runtime estimates. For this purpose, PREDIcT introduces a

framework for building customizable cost models for network intensive iterative algorithms

executing using the Bulk Synchronous Parallel (BSP) [73] execution model, in particular the

Apache Giraph implementation1. Our framework identifies a set of key input features that

are effective for network intensive algorithms, it includes them into a pool of features, and

then uses a model fitting approach (i.e., multivariate linear regression) and a feature selection

mechanism for building the cost model. The cost model is trained on the set of input features

profiled during the sample run, and additionally, on the set of input features of prior actual

runs of the algorithm on different input datasets (if such runs exist). Such historical runs are

typically available for analytical applications that are executed repetitively over newly arriving

data sets. Examples include: ranking, clustering, social media analytics.

3.1.2 Contributions

To the best of our knowledge, PREDIcT is the first approach that targets to predict the runtime

of a class of iterative algorithms executing on large-scale distributed infrastructures. Although

sampling techniques have been used before in the context of graph analysis (e.g., [30, 47]), or

DBMS (e.g., [17]), this is the first approach that proposes the transform function for maintain-

ing invariants among the sample run and the actual run in the context of iterative algorithms

and demonstrates its practical applicability for prediction. We note that the methodology

we propose for estimating key input features is conceptually not tied to Giraph, and hence,

could be used as a reference for other execution models operating on graph structures such as

GraphLab [52] or Grace [78]. To this end identifying the key input features that significantly

affect the runtime performance of these engines is required. For some iterative algorithms

(that operate on graphs) our approach for estimating iterations can be applied even to non-BSP

frameworks like Spark [84] and Mahout2.

In this chapter we make the following contributions:

• We develop PREDIcT, an experimental methodology for predicting the runtime of a class

of network intensive iterative algorithms. PREDIcT was designed to predict not only

the number of iterations, but also the key input features of each iteration, which makes

it applicable for algorithms with very different runtime patterns among subsequent

iterations.

• We propose a framework for building customized cost models for iterative algorithms

executing on top of Giraph. Although the complete set of key features and the cost

1http://giraph.apache.org
2http://mahout.apache.org/

34



3.2. The BSP Processing Model

model per se will vary from one BSP implementation to another (in a similar fashion as

DBMS cost models vary from one DBMS vendor to another), our proposed methodology

is generic. Hence, it can be used as a reference when building similar cost models on

alternative BSP implementations.

• We evaluate PREDIcT on a representative set of algorithms using real datasets, showing

PREDIcT’s practicality over analytical upper bounds. For a 10% sample, the relative

errors for estimating key input features range in between 5%-20%, while the errors for

estimating the runtime range in between 10%-30%, including algorithms with up to

100x runtime variability among consecutive iterations.

3.2 The BSP Processing Model

Any algorithm executed on top of BSP is inherently iterative: It runs in a succession of super-

steps (i.e., iterations) until a termination condition is satisfied. Each superstep is composed

of three phases: i) concurrent computation, ii) communication, and iii) synchronization. In

the first phase, each worker performs computation on the data stored in the local memory.

In the second phase, the workers exchange data among themselves over the network. In the

last phase, all workers synchronize at a barrier to ensure that all workers have completed.

Subsequently, a new superstep is started unless a termination condition is satisfied.

In the context of graph processing, algorithms are parallelized using a vertex centric model:

Each vertex of the input graph has associated customized data structures for maintaining

state information and a user defined compute function for implementing the semantics

of the algorithm. Intermediate results are sent to destination vertices using a messaging

interface. Any vertex can inspect the state of its neighbors from the previous iteration, and can

communicate with any other vertices of the graph based on their identifiers. Messages sent in

one superstep are received by the targeted vertices in the subsequent superstep. Note that

not all the vertices are active (i.e., executing the compute function) in all supersteps. A vertex

that has finished its local computation can vote to halt (i.e., switch to the inactive mode). An

inactive vertex can however be re-activated by a designated message received during any of

the following supersteps. The algorithm completes when all active vertices vote to halt.

In Apache Giraph the BSP processing model is implemented as a master-slave infrastructure,

with one master and multiple workers (or slaves). The master is in charge of partitioning the

input data according to a partitioning strategy, allocating partitions to workers and coordinat-

ing the execution of each superstep (i.e., synchronization among workers). The workers are

in charge of executing the compute function for every vertex of its allocated partition(s) and

sending out messages to destination vertices. Each worker owns a pool of threads which are

triggered to send out messages whenever the size of message buffers goes beyond a certain

specified value. The worker with the largest amount of processing work is on the critical path,

and hence determines the runtime of a superstep.

35



Chapter 3. Runtime Prediction for Iterative Analytics

The runtime of an iterative algorithm executed in Giraph can be broken down into multiple

phases: the setup phase, the read phase, the supersteps phase and the write phase. In the

setup phase, the master setups the workers and allocates them partitions of the input graph

based on a partitioning strategy; in the read phase, each worker reads its share of the input

graph from the Hadoop file system (i.e., HDFS) into the memory; during the supersteps phase,

the actual algorithm is executed, while in the write phase, the output graph is written back

to HDFS. The supersteps phase includes the runtime of n supersteps (until the termination

condition gets satisfied), and hence, it is the most challenging to predict from all the other

phases.

3.3 Modeling Assumptions

In our proposed prediction methodology we make the following assumptions:

• All the iterative algorithms we analyze in this chapter are guaranteed to converge.

• Input datasets are graphs, and are amenable to sampling; the sample graph maintains

its key properties similar or proportional with those of the original graph.

• Both the sample run and the actual run use the same execution framework (i.e., Giraph)

and system configuration parameters.

• All the worker nodes have uniform resource allocations, hence processing costs among

different workers are similar.

• The dominating part of the runtime of the algorithms is networking: i.e., sending/re-

ceiving messages from other vertices.

Such assumptions hold for a class of algorithms implemented on top of BSP which are domi-

nated by network processing costs: Some of them have very short per vertex computation (e.g.,

PageRank), while some others have larger per vertex computation cost which is largely pro-

portional with the size and the number of messages received (sent) from (to) the neighboring

nodes (e.g., semi-clustering [55], top-k ranking [45]).

3.4 PREDIcT’s Transformations

The sample run is the preliminary phase of the prediction approach that executes the algorithm

on the sample dataset. As explained in section 3.1.1, two sets of transformations characterize

the execution of the algorithm during the sample run: the sampling technique adopted and the

transform function. Once the set of transformations is determined, the algorithm is executed

on the sample. During the sample run, per iteration key input features are profiled and used

later in the prediction phase as a basis for estimating the corresponding features of the actual

run.

36



3.4. PREDIcT’s Transformations

3.4.1 Sampling Techniques

The sampling technique has to maintain key properties of the sample graph similar or pro-

portional with those of the original graph: Examples of such properties include in/out degree

proportionality, effective diameter, clustering coefficient. Hence, we adopt similar sampling

techniques with those proposed by Leskovec et al. [47], which show that such graph properties

on the sample can be maintained similar to those on the actual graph.

Random Jump: We choose Random Jump (RJ) from the set of sampling methods proposed in

[47], because it is the sampling method that has no risks of getting stuck in an isolated region

of the graph, while maintaining comparable results for all the key properties of the graph with

Random Walk and Forest Fire (D-statistic scores, that measure how closely the properties of

the sample fit the properties of the graph, are shown in Table 1 of [47]). RJ picks a starting

seed vertex uniformly at random from all the input vertices. Then, at each sampling step

an outgoing edge of the current vertex is picked uniformly at random and the current vertex

is updated with the destination vertex of the picked edge. With a probability p the current

walk is ended and a new random walk is started from a new seed vertex chosen at random.

The process continues until the number of vertices picked satisfies the sampling ratio. Such

a sampling technique has the property of maintaining connectivity within a walk. Random

jump achieves connectivity among multiple walks by returning to already visited vertices on

different edges. Returning to already visited nodes also improves the probability of preserving

the in/out node degree proportionality.

Biased Random Jump: Based on the observation that convergence of multiple iterative algo-

rithms we analyze is inherently dictated by high out-degree vertices (e.g., PageRank, top-k

ranking, semi-clustering), we propose Biased Random Jump (BRJ), a variation of Random

Jump. BRJ is biased towards high out degree vertices: Compared with RJ which picks the seed

vertices uniformly at random from the entire set of graph vertices, the seed vertices of BRJ are

comprised of the top k vertices with the highest out-degree. Then, for each new random walk

performed a starting vertex is picked uniformly at random from the set of seed vertices. The

intuition of BRJ is to prioritize sampling towards the “core of the network”, that include vertices

with high out degrees. Biased random jump trades-off sampling uniformity for improved

connectivity: By starting random walks from highly connected nodes (i.e., hub nodes), BRJ

has a higher probability of maintaining connectivity among sampled walks than RJ, where

jumps to any arbitrary nodes are possible. We empirically find that BRJ has higher accuracy

than RJ in maintaining key properties of the graph (such as connectivity), especially at small

sampling ratios (the sampling ratio proposed for RJ in [47] is 25%). Hence, BRJ is used as our

default sampling mechanism.

3.4.2 Transform Function

The transform function T is formally described by two pairs of adjustments: T = (Con fS =>
Con fG ,ConvS =>ConvG ), where Con fS =>Con fG denotes configuration parameter map-

37



Chapter 3. Runtime Prediction for Iterative Analytics

pings, while ConvS =>ConvG denotes convergence parameter mappings. For instance, the

transformation T = (dS = dG ,τS = τG × 1
sr ) for PageRank algorithm denotes: Maintain the

damping factor value on the sample run equal with the corresponding value of the actual run,

and scale the convergence threshold. Table 3.1 summarizes the notations used for represent-

ing the transform function. While the transform function requires domain knowledge about

the algorithm semantics, we provide a default rule which works for a set of representative

algorithms and can be used as a reference when choosing alternative transformations. For the

case that the convergence threshold is tuned to size of the input dataset (i.e., convergence is de-

termined by an absolute aggregated value, as for PageRank): Tde f aul t = (I DCon f ,τS = τG × 1
sr ),

while for the case that convergence threshold is not tuned to the size of the input dataset (i.e.,

convergence is determined by a relative aggregated value or a ratio that is maintained con-

stant on a proportionally smaller dataset, as for top-k ranking): Tde f aul t = (I DCon f ,τS = τG ).

Specifically, we maintain all the configuration parameters of the algorithm during the sample

run (identity function over the configuration space) and we scale or maintain the convergence

threshold for the sample run.

Notation Description
T Transformation
d Damping factor for PageRank

algorithm, by default d = 0.85
τ Convergence threshold
sr Sampling ratio
I D Identity function
Con f Configuration parameters
Conv Convergence parameters

Table 3.1 – Notations used for representing the transform function.

3.5 Model Fitting and Prediction

3.5.1 Key Input Features

We identify the key input features for the Giraph execution model based on a mix of domain

knowledge and experimentation. Table 3.2 shows the set of key input features we identified for

modeling the runtime of network intensive iterative algorithms. The number of iterations is

not extrapolated, since the transform function attempts to preserve the number of iterations

during the sample run. In order to understand the selection of key input features, consider

Figure 3.3 that illustrates the execution phases of an arbitrary iteration of an iterative algorithm

that uses BSP. Each worker executes three phases: compute, messaging, and synchronization,

as explained in section 3.2.

Compute phase: In this phase the user defined function that implements the semantics of

the iterative algorithm is executed for every vertex of the input graph. For a large category

38



3.5. Model Fitting and Prediction

compute 

message 

sync 

It
er

at
io

n
 

W1 W2 W3 

Figure 3.3 – BSP execution phases of an arbitrary iteration.

of network intensive algorithms the cost of local, per vertex computation (executing the

semantics of the algorithm) can be approximated by a constant cost factor, while the cost of

initiating messages to neighboring nodes is proportional with the number of messages each

vertex sends. Hence, the compute time of each worker (which has multiple vertices allocated

to it) is proportional with the total number of active vertices (i.e., executing actual work), and

the number of messages each worker sends.

Messaging phase: During this phase, messages are sent over the network and added into the

memory of the destination nodes. Some BSP implementations can spill messages to disk.

Hence, the runtime of this phase is proportional with the number of messages, their sizes, and

the number and sizes of messages spilled to disk (if spilling occurs).

Synchronization phase: The synchronization time of a worker w.r.t. the worker on the critical

path (the slowest worker) depends on the partitioning scheme adopted, which in turn may

result in skewed work assignment among workers. Instead of trying to model the synchroniza-

tion time among workers explicitly, we model it implicitly by identifying the worker on the

critical path, which has close to zero synchronization time.

Name Description Extrapolation
ActVert Number of active vertices yes
TotVert Number of total vertices yes
LocMsg Number of local messages yes
RemMsg Number of remote messages yes
LocMsgSize Size of local messages yes
RemMsgSize Size of remote messages yes
AvgMsgSize Average message size no
NumIter Number of iterations no

Table 3.2 – Key Input Features

39



Chapter 3. Runtime Prediction for Iterative Analytics

While the set of features illustrated in Table 3.2 is effective for network intensive algorithms,

they should not be interpreted as complete. Given the generality of selecting input features

into the cost model, our proposed methodology can be extended to include additional key

input features in the pool of candidate input features. For instance, counters corresponding

to spilling messages to disk during the messaging phase shall be also considered if spilling

occurs. Giraph currently does not support spilling of messages to disk, hence such features

were not required in our experiments.

3.5.2 Customizable Cost Model

Based on the processing model breakdown presented in Section 3.5.1, we propose a cost

modeling technique for network intensive algorithms that uses multivariate linear regression

to fit a set of key input features into per iteration runtime. Formally, given a set of input

features X1, ..., Xk , and one output feature Y (i.e., per iteration runtime), the model has the

functional form: f (X1, ..., Xk ) = c1X1 +c2X2 + ...+ck Xk + r where ci are the coefficients and r

is the residual value. A modeling approach based on a fixed functional form was chosen for

several reasons: i) For network intensive algorithms, each phase of the Giraph BSP execution

model except the synchronization phase can be approximated by a fixed functional form

(multivariate linear regression). The synchronization phase is modeled implicitly, as explained

in section 3.5.1. ii) A fixed functional form can be used for prediction on input feature ranges

that are outside of the training boundaries (e.g., train on sample run, test on actual run). In

fact the coefficients of the model can be interpreted as the "cost values" corresponding to

each input feature.

We use the set of features presented in Table 3.2 as candidates in the cost model. Customization

of the cost model for a given iterative algorithm is done by selecting the actual input features

that have a high impact on the response variable Y , and yield a good fitting coefficient for

the resulting model. In particular, selecting the actual key features from the above pool of

features is based on an sequential forward selection mechanism [35] that selects the features

that yield the best prediction accuracy on the training data. The forward selection mechanism

is a greedy algorithm to select input features from a pool of candidate features. Concretely,

the selection procedure adds input features into the model one by one, by always picking the

feature that reduces the cross validation error of the current model the most. The process

continues until there are no more features to select from or until there is no further model

improvement (i.e., the addition of any other feature does not reduce the error any further).

Cost Model Extensions: For the cases where the compute phase is not linearly proportional

with the number of active vertices, and the number and size of messages, our proposed cost

model is extensible as follows: i) The compute phase and messaging phase are separately

profiled; ii) A similar approach as above is used to model the messaging phase; iii) A non linear

approach is used to model the compute function (e.g., decision trees). For this purpose, MART

scale [51] can be used, as it was designed to be accurate even on key input features outside of

40



3.5. Model Fitting and Prediction

the training boundaries.

Modeling the Critical Path: In the BSP processing model, the runtime of one iteration is given

by the worker on the critical path (i.e., the slowest worker). In a homogeneous environment

where each worker has the same share of system resources, the worker on the critical path is the

worker processing the largest part of the input graph. For a vertex centric partitioning scheme,

non-uniform allocations may exist if some vertices are better connected than others, which in

turn results into larger processing requirements. This observation holds for network intensive

algorithms, where the number of outgoing edges determine the messaging requirements of

the vertex, and in turn, the runtime. We adopt the following methodology for finding the

worker on the critical path: For a given partitioning scheme of vertices to partitions, and a

mapping of partitions to workers, the total number of outbound edges for each worker is

computed. The worker with the largest number of outbound edges is considered to be on

the critical path. Such a method for finding the slowest worker can be piggybacked in the

initialization phase of the algorithm, in the read phase, and can be exploited for prediction

just before the algorithm starts its effective execution in the superstep phase.

Training Methodology: For training the cost model we use both sample runs and measure-

ments of previous runs of the algorithm that were given different datasets as input (if such

runs exist). Such a training scenario is applicable for the class of algorithms we address in

this chapter, as the underlying cost functions corresponding to each input feature: i.e., cost of

sending/receiving messages, or the cost of executing the compute function, are similar when

executing the same algorithm on different input datasets. Hence, once a cost model is built, it

can be reused for predicting the runtime of the algorithm on different input datasets.

The cost model is trained at the granularity of iterations: Key input features are profiled and

maintained on a per-worker basis for each iteration of the algorithm. Specifically, the code

path of each BSP worker was instrumented with counters for all the input features potentially

required in the cost model. Then, all counters are used to train the model.

3.5.3 Prediction

There are two phases in the prediction process: i) extrapolation of key input features profiled

during the sample run, and ii) estimating runtime by plugging in extrapolated features into a

cost model.

Extrapolator: As shown in Figure 3.1, in the first prediction phase an extrapolator is used to

scale-up input features profiled during the sample run. The input metrics that are used in

the extrapolation phase are the number of edges and the number of vertices of the sample

graph S, and the corresponding number of edges and vertices of the complete graph G. We

use two extrapolation factors: i) For features that primarily depend on the number of vertices

(e.g., ActVert), we extrapolate with a scaling factor on vertices: i.e., eV = |VG |
|VS | . ii) For features

that depend both on the number of input nodes and edges (e.g., message counts depend on

41



Chapter 3. Runtime Prediction for Iterative Analytics

how many outbound edges a vertex has) we extrapolate with a scaling factor on edges: i.e.,

eE = |EG |
|ES | . Note that not all key input features require extrapolation: e.g., number of iterations

is preserved during the sample run. Extrapolation of input features is done at the granularity

of iterations: i.e., the input features of an arbitrary iteration of the sample run are extrapolated

and then used to predict the runtime of the corresponding iteration of the actual run.

Estimation: In the second phase extrapolated features are plugged into the cost model to

compute estimated runtime. The cost model is invoked multiple times, on extrapolated input

features corresponding to each iteration of the sample run. Hence, the number of iterations is

used implicitly rather than explicitly in prediction.

3.6 End-to-end Use Cases

3.6.1 PageRank

PageRank is an iterative algorithm proposed in the context of the Web graph, where vertices

are web pages and edges are references from one page to the other. Conceptually, PageRank

associates to each vertex a rank value proportional with the number of inbound links from the

other vertices, and their corresponding PageRank values. In order to understand how is the

rank transfer between vertices affecting the number of iterations, we introduce the formula

used for computing PageRank [59]:

PR(pi )i t = 1−d

N
+d

∑
p j∈M(pi )

PR(p j )i t−1

L(p j )
(3.1)

where PR(pi ) is the PageRank of the vertex pi , N is the total number of vertices, d is the

damping factor (typically set to 0.85), p1, p2, ..., pN are the vertices for which the rank is

computed, M(pi ) is the set of vertices that link to pi , and L(p j ) is the number of outbound

edges of vertex p j . The rank value of each vertex is initialized to 1/N .

Convergence: PageRank algorithm converges when the average delta change of PageRank

value at the graph level goes below a user defined threshold τ. Formally, the delta change of

PageRank for an arbitrary vertex pi , corresponding to an iteration i t , is defined as: δi ,i t =
|PR(pi )i t−PR(pi )i t−1|, and the average delta change of PageRank on graph G is: ∆G ,i t = 1

N

∑
i δi ,i t .

For simplicity, ∆G ,i t =∆G when referring to any arbitrary iteration. It can be shown that for a

directed acyclic graph the maximum number of iterations required for PageRank to converge

to ∆G = 0 is the diameter of the graph D plus one. For real graphs, however, the DAG assump-

tion does not hold as cycles between vertices are typical. Therefore, an additional number of

iterations is required for the algorithm to converge to a convergence threshold τ> 0.

Sampling Requirements: In order to take a representative sample that can maintain the

number of iterations of the actual run similar with that of the sample run we make the following

observations: i) Maintaining connectivity is crucial in propagating the PageRank transfer

42



3.6. End-to-end Use Cases

among graph vertices. Therefore, the sampling technique should maintain the connectivity

among sampled vertices (i.e., the sample should not degenerate into multiple isolated sub-

graphs). ii) The PageRank delta change per vertex depends on the number of incoming and

outgoing edges. The sample should ideally maintain the in/out node degree ratio similar with

the corresponding ratio on the original graph. iii) The diameter of the graph determines the

number of iterations required to propagate the PageRank transfer among vertices located at

the graph boundaries. Hence, ideally the diameter of the sample graph shall be similar with

the diameter of the original graph. In practice, maintaining the effective diameter of the graph

(as introduced in [44]) is more feasible, i.e., the shortest distance in which 90% of all connected

pairs of nodes can reach each other.

Transform Function: Consider the example introduced in Figure 3.2: It can be shown that for

any arbitrary iteration, the average delta change of PageRank on graph S3 can be maintained

the same with the average delta change of PageRank on graph G (i.e.,∆S3 =∆G ) by the following

transform function: T = (I DCon f ,τS = τG × 1
sr ), where Con f = {d}, and sr is the sampling

ratio.

For a better understanding of transformation T, we compute the PageRank of vertex 5 on graph

G, and then on graph S3, for the first iteration of the algorithm. On graph G, the PageRank of

vertex 5 is given by: (1−d)/N +2d/4N =(2−d)/2N , while on graph S3: (1−d)/(N /2)+d/(2∗
(N /2)) = (2−d)/N . We observe that the PageRank value of node 5 on the sample S3 is twice of

the corresponding PageRank value on graph G (equal with the inverse of the sampling ratio),

as the sample maintains the structure of the original graph (i.e., in/out node degree ratio

and diameter). Similarly, it can be shown that the average delta change of PageRank on the

sample graph S3 is twice of the corresponding average delta change of PageRank on graph

G (i.e., ∆S3 =∆G ×2 =∆G × 1
sr ). Hence, by applying the transform function T for the sample

run, invariants are maintained for the number of iterations. In real graphs such symmetric

structures cannot be assumed. Still, we can use such transformations as a basis for an heuristic

approach that shows good results in practice.

3.6.2 Semi-clustering

Semi-clustering is an iterative algorithm popular in social networks as it aims to find groups of

people who interact frequently with each other and less frequently with others. A particularity

of semi-clustering as compared with the other clustering algorithms is that a vertex can belong

to more than one cluster. We adopt the parallel semi-clustering algorithm as described in [55].

The input is an undirected weighted graph while the output is an undirected graph where

each vertex holds a maximum number of Cmax semi-clusters it belongs to. Each semi-cluster

has associated a score value:

Sc = Ic − fB ∗Bc

Vc (Vc −1)/2
(3.2)

43



Chapter 3. Runtime Prediction for Iterative Analytics

where Ic is the sum of the weights of all internal edges of the semi-cluster, Bc is the sum of the

weights of all boundary edges, fB is the boundary edge factor (i.e., 0 < fB < 1, a user defined

parameter) which penalizes the total score value, and Vc is the number of vertices in the

semi-cluster. As it can be noticed, the score is normalized to the number of edges in a clique

of size Vc such that large semi-clusters are not favored. The maximum number of vertices in a

semi-cluster is bounded to a user settable parameter Vmax .

Convergence: The algorithm runs in iterations: In the first iteration, each vertex adds itself to

a semi-cluster of size one which is then sent to all of its neighbors. In the following iterations:

i) Each vertex V iterates over the semi-clusters sent to it in the previous iteration. If a semi-

cluster sc does not contain vertex V and Vc < Vmax , then V is added to sc to form sc ′. ii)

The semi-clusters sck that were sent to V in the previous iteration together with the newly

formed semi-clusters sc ′k are sorted by score and the best Smax semi-clusters (i.e., with the

highest score) are sent out to V’s neighbors. iii) Vertex V updates its list of Cmax best semi-

clusters with the newly received / formed semi-clusters (i.e., the semi-clusters from the set:

sck , sc ′k ) that contain V. The algorithm converges when there are no further updates to the

lists of best semi-clusters, that are maintained at each vertex. As such a stopping condition

requires a large number of iterations an alternative stopping condition that considers the

proportion of semi-cluster updates is more practical. More precisely: upd atedC l uster s
tot alC luster s < τ,

where upd atedC l uster s represents the number of semi-clusters updated during the current

iteration, while tot alC luster s represents the total number of semi-clusters in the graph.After

the algorithm converges, the lists of best semi-clusters are aggregated into a global list of best

semi-clusters.

Sampling Requirements: Semi-clustering has similar sampling requirements as PageRank: In

particular, the sampling mechanism should maintain the connectivity among vertices (to avoid

isolated sub-graphs) and the in/out node degrees proportionality, such that a proportionally

smaller number of semi-clusters are sent along the edges of the sample graph in each iteration

of the sample run.

Transform Function: For semi-clustering the convergence threshold is not tuned to the size

of the dataset as a ratio of cluster updates decides convergence. Hence, we use the transform

function: T = (I DCon f ,τS = τG ), with Con f = { fB ,Vmax ,Cmax ,Smax }, and sr is the sampling

ratio. Intuitively, the total number of cluster updates on a sample that preserves the structure

of the original graph is proportionally smaller than the total number of cluster updates on the

complete graph. As for PageRank algorithm, such transformations assume perfect structural

symmetry of the sample w.r.t. the original graph. Therefore, we adopt it as an heuristic, which

shows good results in practice.

3.6.3 Top-k Ranking

Top-k ranking for PageRank [45] finds the top k highest ranks reachable to a vertex. Top-k

ranking operates on output generated by PageRank and it proceeds as follows: In the first

44



3.6. End-to-end Use Cases

iteration, each vertex sends its rank to the direct neighbors. In the following iterations, each

vertex receives a list of ranks from all the neighboring nodes, it updates its local list of top-k

ranks, and then it sends the updated list of ranks to the direct neighbors. A node that does

not perform any update to its list of ranks in one iteration does not send any messages to the

neighbors. As the number of messages and the message byte counts sent in each iteration is

variable (depending on the number of ranks stored per node, and whether the node performed

any updates), the runtime of consecutive iterations is not constant.

Convergence: Top-k ranking it is executed iteratively until a fixed point is reached [45], or

alternatively, until the total number of vertices executing updates goes below a user defined

threshold: i.e., acti veV er t i ces
tot alV er ti ces < τ.

Sampling Requirements: There are two main requirements: i) Maintaining connectivity,

in/out node degrees and effective diameter among sampled vertices as for PageRank algorithm,

and ii) Maintaining the relative ordering of ranks for sampled vertices. Top-k ranking is

executed on output generated by PageRank. Assuming an input sample that satisfies the

sampling requirements of PageRank, the resulting output generated by PageRank preserves

the connectivity and the relative order of rank values. Consider Figure 3.2, the rank of any

node on S3 is twice the rank of the corresponding node on G .

Transform function: We observe that the convergence condition is not tuned to the size of

the dataset as it uses a ratio of updates to decide convergence. For a sample that satisfies the

sampling requirements, the ratio of rank updates on the sample is maintained in pair with the

ratio of rank updates on the complete graph, hence, unlike PageRank algorithm, no scaling is

required: T = (I DCon f , I DConv ), where Con f = {topK }, Conv = {τS = τG }.

3.6.4 Neighborhood Estimation

Estimating the number of vertices reachable from a vertex v within h hops or shortly the

neighborhood of v is used in social applications today. LinkedIn for instance provides infor-

mation on the number of professionals reachable within h hops from any given user. We

implement neighborhood estimation for all the vertices of an input graph using an iterative,

probabilistic algorithm similar with estimating effective diameters and radii in large graphs

[44]: Each vertex v of the graph stores the number of neighbors reachable from v in h hops

as a set of k probabilistic Flajolet-Martin bitstrings bk (h, v) [27]. In the first iteration, each

vertex is initialized with a set of k random bitstrings. After initialization, each vertex sends its

own bitstrings to the neighboring vertices. In the following iterations, each vertex updates its

bitstrings using a bitwise OR operator among its bitstrings and the corresponding bitstrings

received from the neighboring nodes. Only if the bitstrings are updated during the current

iteration, the vertex sends again its updated bitstrings to the neighboring nodes. The algorithm

has variable resource requirements per iteration as the number of messages sent, and the

number of active vertices of each iteration depend on the actual number of vertices updating

their bitstrings.

45



Chapter 3. Runtime Prediction for Iterative Analytics

Convergence: Unlike other algorithms, neighborhood estimation is executed until a fixed

point is reached. The challenge stands in estimating per iteration key features such as active

vertices and message byte counts as they vary from one iteration to the next. The neighborhood

of a vertex v after h iterations is computed from the k Flajolet-Martin bitstrings by: N (h, v) =
1

0.77351 2
1
k

∑k
l=1 bl (i ), where bl (i ) is the position of leftmost 0 bit of the l th bitstring of node v , and

k is the number of bitstrings stored at each node (a constant, typically 32 [44]).

Sampling Requirements: Maintaining connectivity among nodes, and effective diameter are

primarily required. Preserving distances among sampled vertices contributes in propagating

the bitstrings updates of the sample run at the same pace with those of the actual run.

Transform function: For a sample that satisfies the sampling requirements, the neighborhood

function on the sample grows with the same rate as on the original graph: Consider vertex 1

in Figure 3.2: The number of vertices reachable within two hops on G, is twice the number

of vertices reachable within two hops on S3. Hence, the processing requirements during the

sample run can be maintained proportional with the processing requirements of the actual

run using a sample that satisfies the sampling requirements. Considering that the neighbor-

hood is estimated probabilistically starting from a set of k bitstrings that each vertex keeps

updating, the only transformation required is to maintain the same set of initial bitstrings

on the sampled nodes as on the complete graph. In particular, T = (I DCon f , I DConv ), where

Con f = {K , seedi }, Conv = {}. K is the number of bitstrings (e.g., 32), and seedi is the seed

used in generating the bitstrings of each node (each vertex sets its seed as the vertex id, such

that the same initial bitstrings are generated for both the sample and the actual runs).

3.6.5 Labeling Connected Components

Labeling connected components is an algorithm that finds the number of connected compo-

nents in a graph by mapping each vertex to a connected component identifier. The algorithm

can be implemented in an iterative fashion as follows: Initially, the connected component

value (i.e., CCV) of each vertex is initialized with the vertex identifier. In the first iteration,

each vertex inspects the CCV of the neighboring vertices. If any of these values is smaller than

the current CCV, the vertex changes its CCV with that one and broadcasts a message with

the updated value to all of its neighboring vertices. In the following iterations, each vertex

checks all the messages received from its neighbors. If any message includes a CCV smaller

than the current identifier, the vertex changes its value and broadcasts a message with the

updated CCV to all of its neighbors. The algorithm continues in a similar fashion until no new

messages are being sent. A main characteristic difference between connected components

and the previous algorithms is that the processing requirements of consecutive iterations may

vary widely. Typically, a few long iterations are followed by multiple very short iterations.

Convergence: The total number of iterations required for running the connected components

algorithm is bounded by the diameter of the graph [44].

46



3.7. Limitations

Sampling Requirements: All of the three sampling requirements of the PageRank algorithm

are equally important for connected components. We emphasize that vertices with a high-

out degree (i.e., hub nodes) have a high impact on the convergence speed of the connected

components algorithm. As such nodes are highly connected, their corresponding connected

component identifier can be propagated towards other regions of the graph in a few steps.

Hence, starting the sampling process from such nodes would be beneficial.

Transform function: Prior research showed that for uniform graphs, sampling mechanisms

based on random walks typically maintain the diameter of the sample similar with the one of

the complete graph [47]. For example, the sample graph S3 presented in Figure 3.2 has the

same diameter with graph G. Therefore, an explicit transform function is not required as for

the other algorithms. In particular, T = (I DCon f , I DConv ), where Con f = {}, Conv = {}.

3.7 Limitations

PREDICT was designed for a class of iterative algorithms that operate on homogeneous graph

structures and use a global convergence condition: e.g., computing an average or a ratio at the

graph level. Algorithms for which convergence is highly influenced by the local state of any

arbitrary vertex of the graph are not amenable to sampling, and hence, PREDIcT methodology

cannot be used for these cases. Similarly, PREDIcT cannot be used on degenerate graph

structures where maintaining key graph properties in a sample graph is not possible. Similar

to traditional DBMS techniques, we cannot use a sample of a dataset to estimate outliers, but

we can use it to produce average values. We note that the sampling requirements in our case

are more relaxed, as we do not use sampling to approximate results. Instead, sampling is used

as a mechanism to approximate the processing characteristics of the actual run. Examples of

algorithms where our methodology is not applicable: collaborative filtering (heterogeneous

graphs with two entity types: e.g., users and movies) or simulating advertisements in social

networks [45] (the decision to further propagate an advertisement depends on the local

interest of the node receiving the advertisement (i.e., his interest list). Examples of datasets

where our methodology is not applicable: e.g., degenerated, non uniform graph structures,

e.g., lists.

3.8 Experimental Evaluation

3.8.1 Setup and Methodology

Experimental Setup: Experiments were performed on a cluster of 10 nodes, where each node

had two six-core CPUs Intel X5660 @ 2.80GHz, 48 GB RAM and 1 Gbps network bandwidth. All

experiments were run on top of Giraph 0.1.0, a library that implements the BSP model on top

of Hadoop. We use Hadoop 1.0.3 as the underlying MapReduce framework. Unless specified

otherwise each node is set with a maximum capacity of three mappers, each mapper having

allocated 15GB of memory. Hence, our Giraph setup has a total of 30 tasks (i.e., 29 workers

47



Chapter 3. Runtime Prediction for Iterative Analytics

and one master).

Datasets: Four real datasets are used for evaluating PREDIcT: Two of them are web graphs:

Wikipedia, and UK 2002, and the remaining two are social graphs: LiveJournal and Twitter.

The Wikipedia dataset is a subset of the online encyclopedia including the links among all

English page articles as of 2010, UK 2002 is the web graph of the .uk domain as crawled by

UbiCrawler3 in 2002, LiveJournal graph models the friendship relationship among an online

community of users4, while Twitter graph5 models the following relationships among users as

crawled in 2009 [15]. Table 3.3 illustrates the characteristics of each dataset.

All datasets are directed graphs. For algorithms operating on undirected graphs we trans-

form directed graphs into the corresponding undirected graphs. In Giraph, which inherently

supports only directed graphs, a reverse edge is added to each edge.

Name Prefix # Nodes # Edges Size
[GB]

LiveJournal LJ 4,847,571 68,993,777 1
Wikipedia Wiki 11,712,323 97,652,232 1.4
Twitter TW 40,103,281 1,468,365,182 25
UK-2002 UK 18,520,486 298,113,762 4.7

Table 3.3 – Graph Datasets

Algorithms: We evaluate PREDIcT on a set of representative algorithms for ranking (i.e.,

PageRank, top-k ranking), clustering (i.e., semi-clustering), and graph processing (i.e., labeling

connected components, and neighborhood estimation).

Metrics of Interest: For validating our methodology, we compute standard error metrics used

in statistics that show the accuracy of the fitted model on the training data. In particular, we

consider: the coefficient of determination (i.e., R2), and the signed relative error (i.e., negative

errors correspond to under-predictions, while positive errors correspond to over-predictions).

Sources of Error: There are two sources of error when providing end-to-end runtime esti-

mates: i) Misestimating key input features; ii) Misestimating cost factors used in the cost

model. Depending on the the error sign of the two types of estimates, the aggregated errors

can either accumulate or reduce the overall error. Hence, we first provide results on estimating

key input features, then, we provide end-to-end runtime results.

Memory Limits: The memory resources of our deployment are almost fully utilized when

executing the algorithms on the largest datasets: i.e., Twitter and UK. In Apache Giraph, in

addition to the input graph which is read and maintained into the memory, per vertex state

and per vertex message buffers are also stored into the memory. Hence, the overall memory

3http://law.di.unimi.it/software.php/#ubicrawler
4Courtesy of Stanford Large Network Dataset Collection
5Courtesy of Max Planck Institute for Software Systems

48



3.8. Experimental Evaluation

requirements are much larger than the size of the dataset itself. For instance, executing semi-

clustering (which sends a large number of large messages) on the UK dataset requires 90% of

the full RAM capacity of our cluster, hence, the memory resources of our setup are almost fully

utilized. As Giraph is currently lacking the capability of spilling messages to disk, we run out

of memory when trying to run semi-clustering, top-k ranking, and neighborhood estimation

on the Twitter dataset6.

3.8.2 Estimating Key Input Features

In this section we report experimental results for estimating the number of iterations and per

iteration key input features that have a high impact on predicting runtime, as summarized in

Table 3.2. Runtime prediction results are presented in Section 3.8.4.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
It

e
ra

ti
o

n
s 

Sampling Ratio 

LJ Wiki UK Twitter

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
It

e
ra

ti
o

n
s 

Sampling Ratio 

LJ Wiki UK Twitter

Figure 3.4 – The accuracy of predicting the number of iterations for PageRank for ε= 0.01 (left)
and for ε= 0.001 (right).

PageRank: This set of experiments shows the accuracy of predicting the number of iterations

for PageRank algorithm as the size of the sampling ratio increases from 0.01 to 0.25. The

convergence threshold value is set as τ = 1/N × ε, where N is the number of vertices in the

graph, while ε is the convergence tolerance level, a sensitivity parameter varied between 0.01

and 0.001. Figure 3.4 shows the results for all datasets when BRJ is adopted as the underlying

sampling scheme. Sensitivity analysis w.r.t. the sampling method is deferred to section 3.8.5.

For a sampling ratio of 0.1, and a tolerance level of ε= 0.01 the maximum mis-prediction for

the web graphs and Twitter datasets is less than 20%. LiveJournal has 40% relative error for

the same sampling ratio. For this dataset, our results on multiple algorithms are consistently

showing that the sampling method adopted cannot capture a representative sample as for the

other algorithms due to its underlying graph structure which is not scale-free7. Lower errors

correspond to a tolerance level of ε= 0.001, when PageRank converges in a larger number of

iterations. The relative errors for all datasets are maintained bellow 10% including LiveJournal.

This is a desired outcome for a prediction mechanism, as accurate predictions are typically

more useful for long running algorithms.

6Similar observations w.r.t Giraph are presented in [26].
7We have analyzed the out-degree distribution of LJ and we observed that it is not following a power law. Similar

observations are presented in the study of Leskovec et al. [49] or Gjoka et al. [30].

49



Chapter 3. Runtime Prediction for Iterative Analytics

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
It

e
ra

ti
o

n
s 

Sampling Ratio 

LJ Wiki UK

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
It

e
ra

ti
o

n
s 

Sampling Ratio 

LJ Wiki UK

Figure 3.5 – The accuracy of predicting the number of iterations for semi-clustering for τ= 0.01
(left) and for τ= 0.001 (right).

Semi-clustering: In this section we analyze the accuracy of predicting iterations for semi-

clustering. The base settings we use in evaluation are: Cmax = 1,Smax = 1,Vmax = 10, fB =
0.1,τ = 0.001. Figure 3.5 shows the accuracy results for all datasets but Twitter for two

convergence ratios for τ= 0.01, and τ= 0.001. As explained in experimental methodology, as

the memory footprint of semi-clustering algorithm on Twitter is much larger than the total

memory capacity of our cluster we could not perform experiments on this dataset. For a

sampling ratio of 0.1 the relative errors corresponding to all web graphs analyzed are below

20%. Again, LiveJournal dataset shows higher variability in its error trend due to its underlying

graph structure which is less amenable to sampling.

We have performed sensitivity analysis w.r.t. Smax and Vmax when running semi-clustering on

LJ dataset, which has the highest relative error on the base settings. In particular, we analyzed

two cases: i) increasing Smax from one to three, and ii) increasing Vmax from ten to twenty.

Compared with the base settings, for a sampling ratio of 0.1 (or larger) the relative errors were

maintained in similar bounds for all sampling ratios.

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
 

It
e

ra
ti

o
n

s 

Sampling Ratio 

LJ Wiki UK

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
R

e
m

o
te

 M
e

ss
ag

e
 B

yt
e

s 

Sampling Ratio 

LJ Wiki UK

Figure 3.6 – Top-k ranking key input features estimation: a) Estimating iterations (left), b)
Estimating remote message bytes (right).

Top-K Ranking: We analyze the accuracy of estimating iterations and the accuracy of estimat-

ing key input features (i.e., remote message bytes) in Figure 3.6. We execute sample runs on

output generated by PageRank algorithm, and use a convergence threshold of τ= 0.001. We

50



3.8. Experimental Evaluation

observe that the relative errors for estimating iterations are bellow 35% for all scale free graphs

analyzed, while the errors for estimating remote message bytes are bellow 10%. Similarly to

our experiments on PageRank and semi-clustering, higher errors are observed for LiveJournal

dataset: for a sampling ratio of 0.1, the number of iterations are over-estimated by a factor

of 1.5, while the message byte counts by 40%. An interesting observation for top-k ranking is

that the accuracy in estimating the message byte counts is more important than the accuracy

of estimating the number of iterations per se. That is because the runtime of consecutive

iterations varies and is proportional with the number of message byte counts and the number

of active vertices of each iteration (results on estimating runtime are shown later, in Figure

3.11).

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
It

e
ra

ti
o

n
s 

Sampling Ratio 

LJ Wiki UK TW

-0.5

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
A

ct
iv

e
 V

e
rt

ic
e

s 

Sampling Ratio 

LJ Wiki UK Twitter

Figure 3.7 – Predicting key input features for connected components: a) number of iterations
(left), b) active vertices (right).

Connected components: For this experiment each cluster node was set with a maximum

capacity of six mappers, each mapper having allocated 7GB of memory, accounting for a total

of 60 tasks (i.e., 59 workers and one master). Due to the large processing variability among

subsequent iterations, the number of iterations per se is not sufficient for predicting the

runtime of connected components algorithm. Hence, we present the accuracy of estimating

active vertices in addition to estimating iterations. Figure 3.7 a) shows the accuracy results

when estimating iterations. For a sampling ratio of 0.1, the relative errors for all datasets but LJ

are bellow 25%. Figure 3.7 b) shows the estimated total number of active vertices required for

the execution of the algorithm (summed up for all iterations). For a sampling ratio of 0.1, the

relative error for both web graphs is less than 10%. The reason that LJ highly over-estimates

the total number of active vertices for a sampling ratio of 0.1 is that it is not scale-free, hence,

the sample cannot capture the structure of the original graph. For Twitter, on the other hand,

the sample of 0.1 is too small to capture key input features with a better accuracy than 81%

due to the density of the graph (i.e., a very large number of incident edges per node): The

sampling ratio of 0.1 vertices corresponds to a ratio of only 0.002 in terms of edges. Higher

sampling ratios improve the accuracy results: For a sampling ratio of 0.25 the error decreases

to 46%.

Sensitivity analysis w.r.t. sampling is showing that a smaller number of seed vertices used in

BRJ sampling (k = 100 instead of k = 1% of total vertices) improves the accuracy on Twitter

51



Chapter 3. Runtime Prediction for Iterative Analytics

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 

Sampling Ratio 

LJ Wiki UK Twitter

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
R

e
m

o
te

 M
e

ss
ag

e
 B

yt
e

s 

Sampling Ratio 

LJ Wiki UK

Figure 3.8 – a) Predicting active vertices for connected components with guided sampling
(left), b) Predicting remote message bytes for neighborhood estimation (right).

dataset to 21% relative error for a sampling ratio of 0.25 (Figure 3.8 a)). When using a smaller

number of seed nodes in sampling, the average out degree of vertices increases (random

walks return to already visited nodes more often, and more incident edges are picked), hence,

the propagation of the connected components ids to all the vertices of the sample takes a

fewer steps, as in the original graph. This result shows that additional information on the

characteristics of the dataset and on the algorithm can guide the sampling process to achieve

higher accuracy results. Similar trends are observed for predicting other input features such

as message byte counters.

Neighborhood Estimation: We execute neighborhood estimation for a fixed number of iter-

ations numI ter = 10: i.e., finding the number of vertices reachable within 10 hops. Figure

3.8 shows results for estimating remote message bytes. For a sampling ratio of 0.1 the rela-

tive errors for estimating remote message bytes are less than 19% for all datasets analyzed.

Compared with the other algorithms, we observe that the errors for LJ are much smaller for

this case: As the number of iterations is fixed and the key input features variability among

consecutive iterations is less pronounced than for algorithms like top-k ranking or connected

components (a large number of vertices stay active and propagate messages to neighbors for

the first 10 iterations), the overall estimations errors are reduced.

3.8.3 Upper Bound Estimates

In the following we analyze the accuracy of predicting iterations for PageRank when using

analytical upper bound estimates. In particular, for PageRank iterations are approximated

using the analytical upper bound as defined in the detailed survey of Langville et al. [46]:

#i ter ati ons = l og10ε
log10d , where ε is the tolerance level as defined above, and d = 0.85 is the

dumping factor. Note that the formula does not consider the characteristics of the input

dataset, and as we show next, such bounds are loose. For instance, for a tolerance level of

ε = 0.001 we obtain a number of 42 iterations using the above formula, whereas the actual

number of iterations is less than 21 for all datasets (a factor of 2x misprediction). Figure 3.9

shows the actual number of iterations, the estimated number of iterations using the above

52



3.8. Experimental Evaluation

0 

13 

25 

38 

50 

LJ Wiki UK-2002 Twitter 

N
u
m

b
e
r
 o

f 
it

e
r
a
t
io

n
s
 

Actual UpBound PREDIcT 

Figure 3.9 – Estimating the number of iterations: Analytical upper bounds versus PREDIcT.

formula, and the predicted number of iterations for PREDIcT when using a sample of 10%.

We observe that PREDIcT improves the accuracy of analytical upper bounds for estimating

iterations, as it reduces the relative error of analytical upper bounds from [104,168]% to a

relative error of [0,11]%.

3.8.4 Estimating Runtime

In this section we show the accuracy of predicting the end-to-end runtime execution for

semi-clustering, top-k ranking, connected components, and neighborhood estimation. As

they show runtime variability among subsequent iterations, they are more challenging to

predict than algorithms with constant per iteration runtime (i.e., PageRank). For training

the cost model we show results for two cases: i) no prior executions of the algorithm exist

(no history); ii) historical executions of the algorithm on different datasets exist. For the case

that no history exists, sample-runs on samples of 0.05, 0.1, 0.15 and 0.2 are used for training.

For the case that history exists, prior runs on all other datasets but the predicted one are

additionally considered. We note that once a cost model is built it is used multiple times, for

predicting the runtime of the same algorithm on different input datasets.

Semi-clustering: Figure 3.10 a) shows the accuracy of predicting runtime for the case that

history does not exist. The coefficient of determination of the cost models corresponding

to the three datasets on which predictions are made are as follows: R2
LJ = 0.82, R2

W i ki = 0.89

and R2
U K = 0.84, and are showing that each multi-variate regression model fits the training

data (the closer the value to one, the better the model is). The key input features that achieve

the highest correlation on the multi-variate model are the local and remote message byte

counters. It can be observed that the error trend for each dataset is very similar with the

corresponding error trend for predicting iterations (see Figure 3.5 for τ= 0.001). In contrast to

predicting iterations, additional errors in estimating per-iteration input features (i.e., message

byte counters) and cost model approximations are determining an error difference between

53



Chapter 3. Runtime Prediction for Iterative Analytics

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
R

u
n

ti
m

e
 

Sampling Ratio 

LJ Wiki UK

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
R

u
n

ti
m

e
 

Sampling Ratio 

LJ Wiki UK

Figure 3.10 – Semi-clustering runtime prediction: a) Training with sample-runs (left), b)
Training with sample- and actual-runs (right).

the two graphs. For a sampling ratio of 0.1 the errors are less than 30% for the scale free graphs

and less than 50% for LiveJournal.

Figure 3.10 b) shows similar results for the case that history exists. The corresponding coeffi-

cient of determination of each of the three models is improved: i.e., R2
LJ = 0.95, R2

W i ki = 0.95

and R2
U K = 0.88. The error trends for Wikipedia and LiveJournal are similar as for the case that

sample-runs are used for training. The cost factors for the UK dataset are improved and the

errors are reduced to less than 10% when using a sampling ratio of 0.1 or larger.

-1

-0.5

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
R

u
n

ti
m

e
 

Sampling Ratio 

LJ Wiki UK

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
 

R
u

n
ti

m
e

 

Sampling Ratio 

LJ Wiki UK

Figure 3.11 – Top-k ranking runtime prediction: a) Training with sample-runs (left), b) Training
with sample- and actual-runs (right).

Top-K Ranking: We analyze the accuracy of estimating time in Figure 3.11. We observe that the

error trends are less than 10% for the scale free graphs analyzed. The key input features that

achieve the highest correlation on the multivariate model are the local and remote message

bytes and their corresponding message counts. For the case history is not used, the coefficient

of determination of the models are as follows: R2
LJ = 0.95, R2

W i ki = 0.96 and R2
U K = 0.99. Yet,

the cost factors corresponding to the cost model for LJ dataset are over-predicted: That is due

to the training phase which uses very short sample runs, especially for small datasets such

as LJ. As the overhead of running very short iterations surpasses the actual processing cost

associated to each key input feature, the coefficients of the cost model are over-estimated.

Hence, the end to end relative errors are determined not only by over-predicting key input

54



3.8. Experimental Evaluation

features, but also by over-predicting cost factors. In contrast to LJ, for larger datasets fairly

accurate cost models can be built using sample-runs. For the case history is used, all the

cost models are improved. The coefficient of determination of the models are: R2
LJ = 0.99,

R2
W i ki = 0.99 and R2

U K = 0.99. We observe that the error trends are in pair with the error trends

for estimating message byte counts (Figure 3.6 b)).

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3R
e

la
ti

ve
 E

rr
o

r 
 

R
u

n
ti

m
e

 

Sampling Ratio 

LJ Wiki UK

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
R

u
n

ti
m

e
 

Sampling Ratio 

LJ Wiki UK

Figure 3.12 – Predicting runtime for neighborhood estimation: a) Training with sample-runs
(left), b) Training with sample- and actual-runs (right).

Neighborhood Estimation: Figure 3.12 shows accuracy results for estimating runtime for

neighborhood estimation. For a sampling ratio of 0.1 the relative errors for estimating runtime

in the case that history is not used are less than 21%, while for the case history is used, all

errors are reduced to less than 10% for the same sampling ratio. The key input features that

achieve the highest correlation on the multivariate model are the active vertices, the total

vertices, and the local and remote message bytes, and the coefficient of determination of the

models: R2
LJ = 0.99, R2

W i ki = 0.99, and R2
U K = 0.98.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
R

u
n

ti
m

e
 

Sampling Ratio 

LJ Wiki UK Twitter

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
R

u
n

ti
m

e
 

Sampling Ratio 

LJ Wiki UK Twitter

Figure 3.13 – Connected components runtime prediction: a) Training with sample-runs (left),
b) Training with sample- and actual-runs (right).

Connected components: Figure 3.13 a) shows runtime results for the case that only sample-

runs are used in training. Similar error trends as for the case of estimating active vertices are

observed (see Figure 3.7 b)). We note that due to the variability among consecutive iterations,

the number of active vertices and the message byte counts have a higher impact on runtime

of connected components algorithm than the number of iterations per se.

55



Chapter 3. Runtime Prediction for Iterative Analytics

-0.5

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 

Sample Ratio 

LJ Wiki UK Twitter

Figure 3.14 – Connected components runtime prediction: Training with sample- and actual-
runs for guided sampling.

The key input features that achieve the highest correlation on the multi-variate model are the

number of active vertices, the local and the remote message byte counters. The coefficient

of determination of the models corresponding to the four datasets on which predictions are

made are as follows: R2
LJ = 0.88, R2

W i ki = 0.94, R2
U K = 0.98, and R2

T W = 0.99. For a sampling

ratio of 0.1 the relative error for Wikipedia dataset is 28% and for UK is -23%. When historical

runs are additionally used in training the corresponding errors decrease to 19% and -8%

respectively. The high errors on LiveJournal datasets are determined in part by key input

features over-predictions and in part by cost factors over-estimations (for a very similar reason

as for top-k algorithms explained above). The causes of errors for Twitter are mainly coming

from over-predicting key input features. Figure 3.14 is showing the corresponding results

when the number of seed nodes used for BRJ sampling is set to 100 (guided sampling). While

the web graphs are marginally affected by a smaller number of seed nodes, the accuracy on

Twitter is improved by 30% for a 0.25 sampling ratio.

3.8.5 Sensitivity to Sampling Technique

In this section we analyze the accuracy of predicting iterations when varying the underlying

sampling technique. In order to analyze the impact of bias on maintaining key properties on

the sample, we compare RJ with BRJ. Additionally, we select MHRW [30], another sampling

technique based on random walks that in contrast with RJ, removes all the bias from the

random walk, which is known to inherently have some bias towards high degree vertices. All

sampling techniques use a probability p = 0.15 for restarting the walk, while the number of

seed vertices for BRJ is k = 1% of the total vertices of the graph. Figure 3.15 shows sensitivity

analysis for predicting iterations for PageRank, semi-clustering and top-k ranking on UK

dataset. Figure 3.16 shows sensitivity analysis for predicting key input features for connected

components (i.e., active vertices, iterations) and neighborhood estimation (i.e., remote mes-

sage bytes). We observe that for a sampling ratio of 0.1, the relative error for BRJ sampling

are generally better than for all the other sampling techniques. The result shows that the bias

towards high out-degree vertices of BRJ contributes to a good accuracy in prediction for the

algorithms we analyze in this chapter. The reason is that convergence of these algorithms

56



3.8. Experimental Evaluation

-0.1

-0.05

0

0.05

0.1

0.15

0 0.05 0.1 0.15 0.2 0.25 0.3R
e

la
ti

ve
 E

rr
o

r 
It

e
ra

ti
o

n
s 

(P
R

) 

Sampling Ratio 

BRJ RJ MHRJ

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
It

e
ra

ti
o

n
s 

(S
C

) 

Sampling Ratio 

BRJ RJ MHRJ

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
It

e
ra

ti
o

n
s 

(T
o

p
-k

) 

Sampling Ratio 

BRJ RJ MHRJ

Figure 3.15 – Predicting iterations: sensi-
tivity analysis w.r.t. sampling technique
for PageRank (top), semi-clustering (mid-
dle), and top-k ranking (bottom) on UK
web graph.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
A

ct
iv

e
 V

e
rt

ic
e

s 
 (

C
C

) 

Sampling Ratio 

BRJ RJ MHRJ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.05 0.1 0.15 0.2 0.25 0.3
R

e
la

ti
ve

 E
rr

o
r 

It
e

ra
ti

o
n

s 
(C

C
) 

Sampling Ratio 

BRJ RJ MHRJ

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
R

e
m

o
te

 M
sg

 B
yt

e
s 

(N
H

) 

Sampling Ratio 

BRJ RJ MHRJ

Figure 3.16 – Predicting key input features:
sensitivity analysis w.r.t. sampling tech-
nique for connected components (top and
middle), and neighborhood estimation
(bottom) on UK web graph.

is inherently “dictated” by highly connected nodes: For instance, for PageRank such nodes

contribute a large share to the average rank value, or for semi-clustering they contribute

significantly to the ratio of semi-cluster updates. While other iterative algorithms executing

graph processing tasks such as: random walks with restart [44] (proximity estimation), or

Markov clustering [74] are expected to benefit from similar sampling methods based on ran-

dom walks, customized sampling methods may be required for other algorithms. In Figure

3.13 c) we showed one example dataset for connected components algorithm, where guiding

the sampling process can further improve the accuracy of results, given that more information

about the input dataset is available.

57



Chapter 3. Runtime Prediction for Iterative Analytics

Sampling Consistency: Finally, in order to evaluate the consistency of the sampling method,

we perform further sensitivity analysis: For each sampling ratio we take multiple samples

(using different starting seeds for the random number generator), we run sample-runs on each

of them and evaluate the standard deviation for estimating iterations. For a sampling ratio

of 0.1, the largest deviations observed are as follows: For PageRank: 3% for scale free graphs

and 0% for LiveJournal, for semi-clustering: 5% on scale free graphs and 14% on LiveJournal,

and for connected components: 9% on scale free graphs and 10% on LiveJournal. While there

is some inherent variability in the sampling process, the error trends are maintained similar

among different sample instances.

Sampling cost: For a sampling ratio of 0.1 the cost of taking a BRJ sample on the in memory

graph using a sequential random walk implementation ranges between tens of seconds and

14 minutes for our datasets. The cost of taking a similar sample with RJ ranges between tens

of seconds and 3 minutes. The cost of BRJ is higher because the probability of reaching new

vertices decreases after the hub of highly connected nodes was already sampled. As more

rounds of walks are necessary to reach new vertices, more time is required for sampling. Taking

a sample can be sped up by using a parallel approach, where multiple workers are used for

running independent random walks in parallel. Algorithms on distributed random walks exist

and can be used for parallelizing the sampling task [22, 30].

3.8.6 Overhead Analysis

This section compares the runtime of the sample-run for a sample ratio of 0.1 with that of the

actual-run. Figure 3.17 shows the runtime of all algorithms for the largest graphs: Twitter and

UK. For PageRank, the runtime of the sample-run on a sample of 0.1 of the Twitter dataset

accounts for 3.5% of the runtime of the actual-run. The reason is that the our sampling

mechanism stops after a given ratio of vertices (not edges) is sampled. As Twitter graph is

much denser than the others, the average number of incident edges per vertex is almost 9x

smaller in the sample graph. For semi-clustering, the runtime of the sample-run on a 0.1

sample of the UK dataset accounts for 4.8% of the runtime of the actual-run for a similar

reason as before.

We note that the runtime of the sample-run is much smaller than the runtime of the actual-run

particularly for long running algorithms, where the runtime of the iterations dominate the

runtime of the algorithm (i.e., the overhead of pre-processing the graph is relatively small).

For algorithms where the overhead of pre-processing the graph dominates, the overhead of

running sample-runs is higher. Connected components on Twitter is one such example: The

actual time spent in running iterations is 19 seconds for the sample-run, which accounts for

4% of the time spent in running iterations for the actual-run (i.e., 465 sec). Yet, due to the

overhead of reading, partitioning and outputting the result, that accounts for more than 80%

of the sample-run time, the overall runtime of the sample-run relative to the runtime of the

actual-run is higher, accounting for 12% of its time.

58



3.8. Experimental Evaluation

Figure 3.17 – Runtime of sample-runs and actual-runs for PageRank (PR), semi-clustering (SC),
connected components (CC), top-k ranking (TOP-K), and neighborhood estimation (NH), in
seconds.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r 
R

u
n

ti
m

e
 

Sampling Ratio 

LJ Wiki UK

Figure 3.18 – Estimating runtime for semi-clustering for a different slot allocation.

3.8.7 Resource Allocation

We present one experiment that demonstrates PREDIcT’s applicability for estimating runtime

when a different resource allocation (i.e., number of slots) is used during the sample run: In

particular, we use 15 workers for the sample-run, and 29 workers for the actual run. Figure

3.18 shows the results for estimating runtime for semi-clustering algorithm. In contrast with

Figure 3.10 b) (where the same slot configuration was used for the sample and the actual

runs) increased errors are observed (in particular for UK dataset) due to an additional level of

critical path approximation: i.e., given a different number of slots to execute the algorithm, we

use an uniform scaling factor to scale the two extrapolating factors (on edges and vertices).

For higher accuracy results, our framework is extensible to support per worker extrapolating

factors, according to the partition size of each worker (i.e., number of edges and vertices each

worker is allocated with).

59



Chapter 3. Runtime Prediction for Iterative Analytics

3.9 Summary of Related Work

The main limitations of existing theoretical approaches (e.g., [46, 44, 34, 8]) is that they provide

loose upper bounds on the number of iterations an algorithm requires to converge (as shown

in Section 3.8.3) and do not model system level resource requirements. Although DBMS-like

approaches (e.g., [29, 50, 6]) are conceptually ready for modeling resource requirements of

bulk iterations (i.e., that have uniform resource requirements per iteration), they lack the

mechanism of estimating resources of sparse iterations, and do not estimate the number of

iterations. PREDIcT uses an experimental approach to overcome the challenges of iterative

algorithms: Sample-runs are used to quantify the number of iterations, and per-iteration

resource requirements. This set of characteristics enables PREDIcT to accurately estimate the

runtime of iterative algorithms.

3.10 Conclusion

In this chapter we presented PREDIcT, an experimental methodology for predicting the run-

time of a class of iterative algorithms operating on graph structures. PREDIcT builds on the

insight that the algorithm execution on a small sample can be transformed to capture the pro-

cessing characteristics of the complete input dataset. Given an iterative algorithm, PREDIcT

proposes a set of transformations: i.e., a sample technique and a transform function, that in

combination can maintain key input feature invariants among the sample run and the actual

run.

PREDIcT introduces an extensible framework for building customized cost models for iterative

algorithms executing on top of Apache Giraph, a BSP implementation. Our experimental

analysis of a set of diverse algorithms: i.e., ranking, semi-clustering, and graph processing

shows promising results both for estimating key input features and time estimates. For a

sample ratio of 10%, the relative error for predicting key input features ranges in between

5%-35%, while the corresponding error for predicting runtime ranges in between 10%-30% for

all scale-free graphs analyzed.

60



4 Predicting Runtime of Data Pre-
processing

4.1 Introduction

In this chapter we consider analytical workloads produced by data pre-processing tasks: i.e.,

tasks that Extract, Transform, and Load (ETL) the input for further analysis and more complex

processing. In contrast to ad-hoc query workloads, data pre-processing tasks are comprised of

fixed data flows that are run repetitively over newly arriving data sets or on different portions

of an existing data set. For such workloads, mechanisms to predict the runtime performance

for incrementally updated input data sets are required.

In contrast with analytical queries consisting of traditional database operators, ETL processing

tasks executing on MapReduce often include user defined map and reduce functions written

in imperative languages such as Java. The input data is read from in-situ files whose structure

may be opaque to the system. One of the main differences, is that MapReduce does not always

“own" the data or the query’s operators. In this context, modeling the query runtime using

state-of-the-art analytical modeling is still an open problem.

In this chapter we develop hybrid prediction models customized per query segment type.

We specialize models per query segment type in order to reduce the corresponding domain

knowledge required about the operators’ semantics and implementation when collecting the

features. Concretely, our models use a small number of key input features (i.e., tuple size, input

cardinality) and exploit historical information about prior query executions (i.e., per tuple

processing cost). To compute a runtime estimate, our approach combines a set of machine

learning models with a global analytical model. Machine learning models are used as building

blocks to capture the processing cost and the output cardinalities of each query segment. An

analytical model is then used to compute the query runtime from its segments’ estimates.

A query can be modeled using one segment (coarse-grain) or multiple segments (fine-grain).

We consider several options for segmentation since different granularities may be useful for

different scenarios. For example, coarse grain segments are good candidates for dedicated

infrastructures where performance interference and runtime variability is low. In contrast,

61



Chapter 4. Predicting Runtime of Data Pre-processing

fine granularity segments are good candidates for shared infrastructures where the dynamics

of the system (e.g., slowdown/speed-up) must be captured. For example, such segmentation

is used for query progress estimators [53, 57]. Since all of these scenarios are of interest for

our workloads, we propose a generic prediction mechanism which can be applied at different

segment granularities according to the particular use case at hand.

Figure 4.1 – Input / output cardinality cor-
relations for Workload-A

Figure 4.2 – Input cardinality / processing
speed correlations for Workload-A

In this chapter, we evaluate our proposed prediction technique in the context of applications

that were written using Jaql. We investigated correlations between input / output query

features including data characteristics and per segment processing costs for several real

workloads such as social media analytics, data pre-process for machine learning algorithms,

and general analytics (the set of workloads is described in Section 5.6). As a result of the

analysis, we found strong correlations between per segment input / output cardinalities, and

between input cardinalities / segment processing speeds. Figure 4.1 and Figure 4.2 show the

observed correlations for a a typical task (pre-process for mining step of social media analytics).

We note that, if the observed correlations can be mapped to a function, it is possible to model

them either using simple linear regression (i.e., for linear functions) or more specialized

regression models such as transform regression [61], which can handle non-linearities in the

data (i.e., for more complex functions).

The proposed technique is applicable to MapReduce jobs in general and other high-level

languages so long as sufficient information is available in log files to identify traces from

similar MapReduce jobs. We note that identifying job types by only comparing job binaries

is not robust because additional configuration parameters may be used to decide the actual

code fragments executed by the job. For our case, Jaql’s use of transparent functions and their

parameters facilitated this task.

In this chapter we make the following contributions:

• We develop hybrid prediction models that estimate the runtime of the same set of ETL

queries executing on different input datasets.

• We analyze the sources of errors when predicting the query runtime and discuss the

error propagation pipeline for the models.

62



4.2. Jaql

• We evaluate and show the feasibility of the prediction models for different levels of

segment granularities on real analytical workloads. In our experiments, we obtain less

than 25% runtime prediction errors for 90% of predictions.

4.2 Jaql

Jaql is a declarative query language and a runtime system for enterprise data analytics de-

signed to leverage Hadoop’s MapReduce distributed processing model. Jaql is used by several

products at IBM (including Cognos Consumer Insights, and InfoSphere BigInsights) [11] that

influenced the design and development of the language itself and the processing system. Jaql

is used by a range of data centric applications including: data search, data cleaning, machine

learning, machine learning pre-processing, log analysis.

While Jaql shares similarities with the other declarative languages designed for data analytics

at scale: e.g., HiveQL, Pig, DryadLINQ, etc, it has some specific features that make it attractive

to use for data analysis both in the early stages of the analysis (i.e., semi-structured data), but

also in the later stages of the processing pipeline (i.e., structured data). Concretely, Jaql uses

the JSON data format which inherently supports both semi-structured and structured data

(i.e., data model flexibility). Jaql borrows concepts from functional languages like: allowing

lazy evaluation and high order functions, thus it can process expressions for which the input

schema is partially known at runtime. Additionally, Jaql allows users to specify scripts at

various levels of abstraction (i.e., high level operators can be combined with low level oper-

ators) and it exposes control and access to the physical query plan if needed (aka, physical

transparency).

4.2.1 Query Example

Figure 4.3 shows a query example that from a list of web pages it extracts the web graph

corresponding to a particular web domain. The main script (lines 11-13) reads the input pages

from HDFS, it calls the extractWebGraph jaql function for the “uk” domain (defined above

(lines 2-5)), finally it writes results back to HDFS. Jaql uses the pipe operator -> to specify the

input/output flow of data. The extractWebGraph function applies a filter operator to select

only the pages corresponding to the selected domain, then it applies a transform operator that

produces an output record with the schema page_url, valid_links. valid_links is a subset of

the web addresses included in links. filterByDomainName is the jaql function that filters out

the links outside of the selected domain. extractDomainName is a user defined function (i.e.,

java UDF) that extracts the domain name from an input URL. Its implementation is defined in

“ch.epfl.jaql.examples.ExtractDomainNameFromURL” class (not shown here).

63



Chapter 4. Predicting Runtime of Data Pre-processing

1: extractDomainName = javaudf("ch.epfl.jaql.examples.ExtractDomainNameFromURL");
2: extractWebGraph = fn (webPages, domain)(
3: webPages -> filter extractDomainName($.page_url) == ’uk’
4: -> transform {$.page_url, valid_links: filterByDomainName($.links, “uk”)}
5: );
6:

7: filterByDomainName = fn (listOfLinks, domain)(
8: listOfLinks -> filter extractDomainName($) == domain;
9: );

10:

11: read(hdfs(“crawledPages.dat”)
12: -> extractWebGraph(“uk”)
13: -> write(hdfs(“webGraphUK.dat”);

Figure 4.3 – Jaql query (script) example that extracts from a list of web pages the web graph
corresponding to a particular web domain.

4.2.2 Query Compilation in Jaql

For an input query expressed in Jaql the compiler produces an optimized query plan that

will be executed as a pipeline of MapReduce jobs. Jaql’s compiler associates to each job a

portion of the query plan tree that it will execute during the map phase, and a portion of

the query plan that will run in the reduce phase of the job. These portions of the query plan

corresponding to a MapReduce job are saved inside the job’s configuration file as “Jaql strings”

and are expressed also in Jaql. At execution time, Jaql’s runtime parses the Jaql string of the

64



4.3. Modeling Assumptions

map (or reduce) phase and executes the underlying operators.

4.3 Modeling Assumptions

First, we assume that the cluster configuration settings are constant. This assumption typically

holds in practice if we consider that the best set of configuration settings is usually chosen

at the deployment time per workload rather than per each input query. Second, we assume

that data distribution of the inputs does not change. Increasing the table sizes maintains the

relative distribution of values constant, i.e. all datasets sample data from the same distribution.

An important effect of this assumption is data proportionality. I.e., for an input schema, the

average record size remains constant. We experimentally validated the last assumption on the

workloads that we investigated, which were typically composed of multiple UDFs that were

executed on semi-structured data. However, if the data distribution assumption does not hold

for workloads which store data in more traditional, structured format, orthogonal approaches

may be employed to build histograms on the columns of interest. For instance, online aggre-

gation techniques as proposed in [60] may be used to build approximate histograms at a low

cost.

4.4 Model Fitting and Prediction

4.4.1 Sketch of Proposed Approach

We separate queries into query types and we build prediction models per query-type as follows.

Each query type is defined by the set of MapReduce jobs it requires in the query execution.

Further, each MapReduce job is identified by the set of Jaql functions that describe the query

semantics of the given job (e. g., filter, aggregate, join, etc). In order to filter the log files

of a workload on a particular query-type, we use the following definition of job similarity:

two jobs are considered similar iff all of their Jaql functions are equal. While using a less

restrictive definition of similarity is possible, our definition of job similarity allows us to use

a feature vector consisting of only data processing characteristics instead of a query feature

vector that combines query semantics with data processing characteristics. Building models

per query type with this definition of job similarity is in fact not very different than the sample

run prediction step we use in the context of iterative processing to capture the processing

characteristics of the analytical task (as shown in Section 3.4). One of the main differences is

that we do not explicitly run the query on a sample, but we exploit prior reference executions

of the query on different input datasets, that are already available inside the query logs.

A typical Jaql query is composed of several MapReduce jobs. A MapReduce job consists of

several phases (i.e., the map and reduce phases). In turn, each phase has several processing

steps (i.e., read, map, sort, write, shuffle, reduce). In our approach we break the query into

several segments and build prediction models at segment granularity. Then, we compute

the query runtime using a global model that aggregates each segment’s performance. A

65



Chapter 4. Predicting Runtime of Data Pre-processing

Figure 4.4 – Modeling per segment cardinality functions (i.e., Ci ) and processing speed func-
tions (i.e., Pi ) for phase-level segments.

segment can be a query, a job, a phase or a processing step according to the level of granularity

considered. Figure 4.4 illustrates phase-level segments.

There was no overhead to collect the data needed to build the models since existing logs were

used ’as-is’. The time to build the models for the experiments used in this chapter ranged

from seconds to minutes, depending the amount of log files analyzed. This overhead and the

required disk space needed to store the logs can be tuned as needed by limiting the maximum

number of instances stored per job type.

4.4.2 Modeling Segment Performance

We use two machine learning models to predict segment performance. A model is used to

predict the processing speed of the segment and another model is used to predict the output

cardinality of the segment. For constructing these models, we use uni-variate linear regression

as follows: For predicting the processing speed we use a feature vector (input cardinality,

processing speed), while for predicting the output cardinality of a segment we use a feature

vector (input cardinality, output cardinality). These models are later used to compute the

runtime estimate of the segment. Using the input cardinality and the processing speed we

compute the system utilization time of the segment, while the output cardinality is used as the

input into the subsequent segment. For the first segment of the query pipeline we compute

the input cardinality based on the input and tuple size of the input datasets.

66



4.4. Model Fitting and Prediction

4.4.3 Modeling Query Runtime

To predict the query runtime we combine the performance of each segment on the critical path

of the query using a global analytical model. Depending on the level of segment granularity,

there are several factors that may need to be considered such as: the level of parallelism (i.e.,

the number of map / reduce tasks), scheduling overheads, segment overlaps and data skew. In

the following we present the methodology for computing the query runtime performance for

prediction models that use phase-level segments. This methodology can be easily adapted for

other segment granularities (e.g., job, query), and therefore is not presented here.

In order to compute the effective running time of a segment, we divide the system utilization

time of the segment by the actual number of tasks used to execute the segment (i.e., multiple

tasks are used to increase the degree of parallelism). The actual number of tasks is determined

by the cluster configuration, the job configuration and the amount of input data processed.

For instance, the number of map tasks is usually computed based on the size of the input data,

while the number of reduce tasks is typically taken from the configuration file.

Given that there are no queuing delays in the system and that the MapReduce cluster is

configured such that the reduce phase starts after the map phase finishes, we can use the

following formulas to compute the runtime estimate of a query:

Seg mentRunti me = (TaskRunti me +SOt ask )×numW aves (4.1)

where TaskRunti me is the average runtime of a map task or a reduce task, SOt ask is the

average scheduling overhead per task, and numW aves is the number of waves (i.e., the

maximum number of tasks that a worker node is expected to run sequentially) required to

execute the job.

The job runtime is computed as follows:

JobRunti me =∑
k

Seg mentRunti mek +SO j ob (4.2)

where Seg mentRunti mek is given by the previous formula and the SO j ob is the scheduling

overhead per job. Currently, all the MapReduce jobs of a given Jaql query are executed

sequentially. Therefore, the query runtime estimate is given by adding up the runtime of all

MapReduce jobs. For parallel job executions, identifying the jobs on the critical path of the

query is further required to compute the query runtime.

4.4.4 Sources of Errors

There are two categories of factors that contribute to inaccurate runtime predictions: i)

Prediction errors caused by non-representative feature vectors or insufficient training at

67



Chapter 4. Predicting Runtime of Data Pre-processing

the segment level; in the same category, we also include prediction errors caused by inter-

connecting segment models together (i.e., using the predicted output cardinality of one

segment as the input of the subsequent segment). ii) Simplification assumptions about the

scheduler (i.e., potential schedules, scheduling overheads), simplification assumptions about

data skew and hardware homogeneity assumptions across cluster nodes;

In order to compare the errors introduced by the segment level models (case i)) with the errors

introduced by simplification assumptions used in the global analytical model (case ii)), we

introduce a new metric called the aggregated runtime. The aggregated runtime is the query

runtime computed using the global analytical model presented in Section 4.4.3 that takes as

input perfect segment level runtime values. Thus, the aggregated runtime exposes the errors

that are introduced by the global analytical model and the simplification assumptions (i.e., it

is effectively quantifying the second category of errors).

We currently account for data skew at the reduce tasks by modeling the skew exposed by earlier

job runs on already seen data sets (i.e., we model the performance of the longest reduce task

rather than that of the average task). Yet, we omit possible block size differences at the map

tasks which may cause additional estimation errors (i.e., we use the average performance of a

map task in the global analytical model).

4.5 Experimental Study

We evaluate our prediction techniques on a standard benchmark on decision support systems

and on several real workloads.

TPC-DS [71]: TPC-DS is a decision support workload modeling a retail supplier. We use

TPC-DS because it covers a large variety of decision support queries (e.g., reporting, iterative,

data mining) which were designed to cover more realistic scenarios [62] as compared with its

precursor (i.e., TPC-H [72]).

Workload-A: Social media data analysis. The categories of queries investigated include: min-

ing pre-process, general pre-process and analytics.

Workload-B: Data pre-processing for machine learning algorithms. The categories of queries

include: summarization, cleansing, and statistics computation.

4.5.1 Experimental Methodology

Each of the above workloads was run on a dedicated cluster. Each time a MapReduce job is

executed, it outputs a historical file that summarizes how it ran. For Workload-A, we used

existing historical files instead of re-executing the queries. For evaluating our models, we used

k-fold cross-validation [35]. Historical files corresponding to each query were split into k sets

where k-1 sets were used for training the models, and 1 set was used for testing the model. For

68



4.5. Experimental Study

building these sets, we considered only historical files corresponding to query executions on

different input data sets. This process was repeated k times. All prediction errors are computed

as the relative error between the predicted and the actual values. We report all prediction

errors as cumulative distribution functions.

4.5.2 Experimental Setup

We use several different cluster infrastructures. For the TPC-DS benchmark we run our

experiments on a 10 node cluster, each of the node having two 6-core CPUs Intel X5660 @

2.80GHz, 48 GB RAM and 1 Gbps network bandwidth. Workload-A uses a 4 node cluster, while

Workload-B uses a 20 node cluster. In all experiments we use Hadoop 0.20.2 configured with

FAIR scheduler. The reason for using several infrastructures is that for particular workloads we

use existing historical log files from production clusters instead of re-playing all the workloads

on the same cluster infrastructure.

4.5.3 Job-Level Predictions

We evaluate job-level predictions at multiple segment granularities: i.e., job and phase level.

We use 3-level cross-validation to validate our prediction models.

Our first workload consists of a mix of three TPC-DS queries (i.e., Q3, Q7, Q10) and three

synthetic queries, all of them using the TPC-DS data. We choose these queries because they

include a different number of joins and aggregates, and hence have different complexity (i.e.,

with query pipelines varying from one single MapReduce job up to a maximum of seven

MapReduce jobs). The job runtime varies in the range of [25sec, 4mins]. Figure 4.5 shows

the cumulative distribution function of errors for a total of 186 predictions. For 95% of the

workload the prediction errors were less than 20% for all the prediction models analyzed,

while job-level models were more accurate, with 10% error for 95% of the workload. The

reason that job-level models were more accurate is that they do not require to model the

scheduling overheads or the critical path of the query explicitly. The effects of these factors are

implicitly included into the features of the job-level models. The small differences between

the aggregated runtime and the predicted runtime for phase-level segments show that the

main causes that induced a large part of errors for phase-level segments were the simplifying

assumptions presented in Section 4.4.4 rather than the fine grain models per se.

Figure 4.6 illustrates the absolute predicted values as compared with the actual values for

phase-level segments. With a few outliers the predicted values closely match the actual values.

This is also illustrated by traditional metrics used in prediction: the coefficient of determination

R2=0.98 (the closer to 1, the better), the normalized root-mean-squared error NRMSE=0.09

(the closer to 0, the better), and the maximum under-prediction error MUPE=22% (for a job of

136 sec). A full description of these metrics can be found in [35] and a summary in Section 4.2

of [85].

69



Chapter 4. Predicting Runtime of Data Pre-processing

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error [%]

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

●
●
●●
●
●
●●
●
●
●●
●●
●
●
●●
●
●
●
●
●●
●●
●
●
●●
●
●
●
●
●●
●●
●
●
●●
●●
●
●
●
●●
●
●●
●
●
●
●●
●●
●●
●●
●
●
●
●●
●
●●
●●
●
●
●
●●
●
●●
●●
●●

●●
●
●●
●●●

●
●
●●
● ●

●
●●

●
●

●
●
●

●
●●
●

●●
●

●
●

●

Predicted Runtime (job granularity)
Aggregated Runtime (phase granularity)
Predicted Runtime (phase granularity)

Figure 4.5 – Job runtime estimation for
TPC-DS

Figure 4.6 – Actual Runtime vs. Predicted
Runtime for TPC-DS

Similar results for Workload A and Workload B are illustrated in Figure 4.7. These graphs show

the prediction errors for phase-level segments only. For Workload A, the job running time

varied in the range [16sec, 7.5 hrs], while the job runtime estimation error is less than 15% for

80% of the workload. For Workload B, the job running time varied in the range [1min, 30mins],

while the job runtime estimation error is 30% for 80% of the workload. In both cases, our

predictions are very close to the aggregated runtime, effectively showing that the prediction

models per se have a good accuracy. Similarly, most of the prediction errors were caused by

scheduling and critical path approximations.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error [%]

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●
●●●●●
●●●●
●●●●●
●●●●
●●●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●
●●●●
●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●
●●●●●
●●●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●●●
●●●●●
●●●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●●●
●●●●
●●●●●
●●●●●●
●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●

●●●●●●●●
●●●●

●●●●
●●● ●● ● ●● ● ●●

● Aggregated Runtime
Predicted Runtime

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error [%]

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

●●
●
●
●●
●
●
●●

●●
●
●
●
●
●
●●
●
●
●
●
●●
●
●●

●●
●●
●
●
●
●●

●
●
●●
●
●
●●
●
●●
●
●●
●●

●●
●
●
●
●●

●
●
●
●
●
●●
●●
●●

●
●●●

●
●●
●●

●●
●●

●
●●

●●
●

●
●

●
●

● ●

● Aggregated Runtime
Predicted Runtime

Figure 4.7 – Job runtime estimation for Workload-A (left), and Workload-B (right).

70



4.5. Experimental Study

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error [%]

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Predicted Runtime (query granularity)
Predicted Runtime (job granularity)
Aggregated Runtime (phase granularity)
Predicted Runtime (phase granularity)

Figure 4.8 – Query runtime estimation for TPC-DS

4.5.4 Query-Level Predictions

We evaluated query level predictions at various levels of segment granularities: i.e., query, job

and phase levels. We used 3-level cross-validation to validate our prediction models. Figure

4.8 shows the distribution of prediction errors for the TPC-DS workload. We use the same

set of queries as presented in Section 4.5.3. The errors introduced by all prediction schemes

was kept under 25% for 90% of the workload. Similarly with job-level predictions, coarse

granularity models (i.e., that use query level segments) achieved better accuracy than fine

granularity models (i.e., that use job or phase level segments).

Typically, queries with a larger number of MapReduce jobs accumulate more errors than

queries with a fewer number of jobs. Yet, an interesting observation is that fine granularity

models do not only cumulate errors on the critical path of the query, but may also neutralize

cumulated errors if both over- and under- estimations are present. This is one of the reasons

that phase granularity models accumulate only 10% more errors than query granularity models

for query pipelines composed of up to seven MapReduce jobs.

The total number of predictions is less than for the case of predicting job-level performance

because only query-level predictions are reported. For the job-level case, prediction errors

for all the jobs of a query were reported. Traditional metrics used in prediction are still

in reasonable limits as follows. For phase granularity models: R2=0.97, NRMSE=0.25, and

MUPE=45%, while for query granularity models: R2=0.99, the NRMSE=0.07, and MUPE=12%.

Fine vs. Coarse Granularity Query Segments: In the context of dedicated cluster infrastruc-

tures, our technique is more accurate when applied on coarse grain segments rather than

on fine grain segments. This result is not surprising, considering the additional sources of

errors for fine granularity models (i.e., scheduling approximations, data skew) and the cu-

71



Chapter 4. Predicting Runtime of Data Pre-processing

mulative errors caused by connecting a larger number of models together. This point is also

corroborated by small differences between the predicted runtime and the aggregated runtime,

which show the maximum achievable accuracy for fine granularity models. An interesting

direction of future work is to combine fine granularity models with coarse granularity models

to further improve runtime estimations. The idea is to use the fine granularity models that

predict the size and the speed of processing intermediate results and then to use the predicted

values as additional inputs in the feature vector of the coarser grain models. Such an approach

resembles the models proposed in [86] with the difference that some of the input features of

the model are at their turn predicted in a preliminary phase.

4.6 Summary of Related Work

Previous works on runtime prediction, in the context of traditional DBMS [29, 4, 25] or in the

context of MapReduce [28], focus on estimating the runtime performance of similar queries

on the same input datasets. Such techniques use a similarity metric to correlate the query of

interest, whose runtime is being predicted, with other similar queries from the training set,

for which the runtime is known. For ETL analytics, applications use fixed data flows that are

run at regularly scheduled intervals over newly arriving data sets. For such cases, traditional

approaches require re-training on each of the datasets to provide accurate estimates, or

runtime must be extrapolated. In contrast, our approach can accurately model the processing

cost functions corresponding to various query pipelines and input data sets.

Herodotou et al. propose Starfish [40, 38], a self-tuning system for Hadoop that aims to find

the best set of configuration settings. The key building block of Starfish is the job profile, which

models the processing characteristics of each job. Compared with Starfish, our models use

several prior query executions on multiple data sets to fit processing cost functions instead of

assuming that the cost functions are constant.

Morton et al. propose ParaTimer [57], a progress estimator for MapReduce DAGs. ParaTimer

splits each MapReduce job into segments and builds the estimated time left until the query

completes execution using the processing speeds and the input cardinalities of each query seg-

ment. Our approach complements ParaTimer as it builds models that predict the cardinality

and the processing speed of each query segment.

4.7 Conclusion

In this chapter we presented an approach for predicting the runtime of Jaql queries executing

data pre-processing tasks when the input datasets change. We developed a hybrid prediction

method which combines localized machine learning models with a global analytical model.

Machine learning models are customized per query segment type. This modeling decision al-

lowed us to use a small number of data features for building the models. Two types of machine

learning models were used: processing cost models for estimating the normalized processing

72



4.7. Conclusion

cost of a query segment and output cardinalities models for estimating the selectivity of a

query segment. After estimating per segment runtime using machine learning models, an

analytical model is used to compute the query runtime by summing up the segment-level

estimates on the critical path of the query.

We evaluated the feasibility of our approach at various levels of segment granularities on

several real workloads used at IBM, and on a selection of TPC-DS queries. In our experiments,

the 90th percentile of predictions have an average relative error less than 25%. The sensitivity

analysis we performed shows that in the context of dedicated cluster infrastructures, coarse

granularity models are more accurate than fine grain models. Fine granularity models have

additional sources of error than coarse grain models (e.g., task scheduling approximations),

and they accumulate additional errors when inter-connecting a larger numbers of models

together.

73





5 Runtime Prediction for Reporting SQL
Analytics

5.1 Introduction

With the prevalence of using hardware infrastructure as a service (IaaS) for data management

tasks, answering feasibility analysis questions for hypothetical execution configurations and

identifying the execution configurations that can boost the actual performance of the workload

by a given factor are fundamental requirements for many analytical applications. In this

context, questions like: "What hardware configuration and which execution strategy for the

workload can improve the actual performance by 2x?” are common. In order to answer such

performance questions, mechanisms that estimate the workload performance for a set of

potential execution configurations are required.

In this chapter we consider workloads of reporting SQL analytics that are run repetitively

to compute periodic reports about the operational state of a business (e.g., computing log

analysis, statistical summaries, etc). Reporting SQL analytics are prevalent in decision support

queries [72, 71], data warehousing, web and social media analysis, and are often times executed

as part of mixed analytical workflows that include other analytical tasks such as data pre-

processing and iterative machine learning (as shown in Section 1.2.1). Executing reporting

queries on large input datasets demands for a distributed processing engine that parallelizes

the execution across a cluster of machines. In this work, we focus on reporting queries that are

expressed in HiveQL and that are executing at scale on top of the MapReduce infrastructure.

We have seen in Section 2.5 that there are two main approaches to estimate the runtime of

SQL queries: that of using analytical models and that of using machine learning models. While

building accurate analytical models is a very challenging task, prior research showed that

training-based models can be more accurate than pure analytical models when the training

datasets cover well the space of testing queries. The reason is that training-based models

can capture a wide range of runtime execution effects that are hard to model otherwise (e.g.,

[29, 6, 50]). While training based prediction models can alleviate the inaccuracies introduced

by simplifying modeling assumption of conventional analytical models, they have two main

limitations: high training cost, which is required each time the testing workload or the execu-

75



Chapter 5. Runtime Prediction for Reporting SQL Analytics

tion setting changes, and reduced accuracy outside of the training boundaries.

As recent work shows [29, 28, 6, 50, 81] and Table 2.1 summarizes, running benchmark queries

for building the training set is an expensive task, as hundreds or even thousands of queries are

executed to achieve a good coverage of the testing set. While for fixed deployments training

incurs an one-time cost, and hence it is justified, in the context of elastic workload deploy-

ment, where a large number of potential hardware configurations are made available to end

applications on demand and re-training is often required, high training cost is unacceptable.

To alleviate the inaccuracies of conventional analytical models and the high cost of training

based approaches we develop TITAN: i.e., Training Methodology and Translation Models for

runtime prediction. TITAN takes a new approach to training in order to reduce the training

cost of state of the art prediction approaches. In particular, in this chapter we propose: i)

A methodology for generating synthetic benchmark queries complemented with a pruning

algorithm that altogether produces a concise benchmark that takes a short time to execute

while not losing much on the prediction accuracy (i.e., covered input feature space). ii) For

the cases that the input feature space of the testing workload is outside the boundaries of the

training workload, and hence re-training is required, we propose novel translation models that

exploit the existing training data to build relative performance models among different operator

implementations. Such relative models prove to be useful for repeatedly run workloads where

a reference query execution is available, and a better execution setting (in terms of operator

implementation or deployment) is sought.

TITAN targets repetitive reporting workloads executed on MapReduce and it extends the state

of the art approaches in this context, i.e., Starfish [38] and Elastisizer [39] at multiple levels: it

uses a hybrid prediction approach and a relative performance model to estimate per operator

processing cost factors for a range of workload characteristics and execution settings (as we

further detail in Section 5.2.4), it reduces the modeling errors introduced in Starfish’s analytical

model by the average task profile, and it models HiveQL [70] operators in addition to ETL.

Contributions and Outline: In this chapter we make the following contributions:

1) We propose a training methodology and a pruning algorithm that reduce the number of

benchmark queries to a minimum. Through the pruning algorithm TITAN reduces the time of

running benchmark queries from days to hours while maintaining a good level of accuracy for

the models.

2) To improve the accuracy of analytical models and reduce the cost of training based models,

we develop a hybrid prediction approach that limits the use of machine learning for modeling

processing cost factors at operator phase granularity for a range of execution settings and

workload characteristics.

3) When the training queries do not cover the input feature space of the testing workload, we

propose translation models, relative performance models that can exploit reference executions

76



5.2. Foundations and Overview

Map 

Map 

Reduce 

Map 

write 

read 

Reduce 

Shuffle,  
merge 

Collect,  
spill, merge 

Scan, select, 
project 

Join 

Figure 5.1 – Query Processing Model in HiveQL

of the workload corresponding to different execution settings.

5.2 Foundations and Overview

5.2.1 Query Execution in HiveQL

We choose HiveQL as the distributed data processing engine for executing SQL analytics

at scale. HiveQL translates SQL queries into workflows of jobs that are executed on top of

MapReduce. In particular, pipelines of SQL operators are plugged into the map and reduce

functions of the job. Figure 5.1 shows the workflow resulting from executing a select-project-

join query: SELECT S.A, T.B from S JOIN T where S.A=T.B and S.A < 100. Within a MapReduce

job we notice two types of tasks: MapReduce specific tasks (e.g., read, collect, spill, merge,

shuffle, write) which are implemented in the underlying MapReduce framework, and SQL

operator specific tasks which are implemented inside the map() and reduce() functions and

provided by the HiveQL engine. The scan, selection and projection operators are executed

in the map function of the job, while the join operator per se is executed inside the reduce

function of the job. The join operator implementation that is executed inside the reduce phase

of the job is called the common join, and is the default join implementation in HiveQL.

5.2.2 Problem Definition

This chapter focuses on estimating the runtime of reporting SQL queries, i.e., SQL queries

that are executed periodically on similar datasets or on different portions of the input dataset

to answer pre-defined analytical questions about the operational state of a business: E.g.,

run reporting query Q on log datasets collected during the last week. In contrast to ad-

hoc query execution, for repeatedly run workloads input statistics change slowly with time.

Therefore, such workloads open up opportunities for workload re-optimization ([37, 9]) and

elastic workload deployment, where the deployment setting is chosen such that application

77



Chapter 5. Runtime Prediction for Reporting SQL Analytics

pre-specified time constraints can be met ([39]).

While traditionally workload/query re-optimization is a risky task due to inaccurate statistics of

intermediate results (and unaccounted correlations among table attributes: e.g., [19, 32, 12]),

in this chapter we address a related, but different problem: That of estimating query runtime

performance for a potential set of execution settings consisting of: i) query plan re-writes in

terms of different operator implementation and possibly different packings of operators within

one or several MapReduce jobs, and ii) a pool of potential hardware deployments, starting

from a prior query execution for which input data statistics were collected in a database. This

problem has a high practical applicability when transiting workloads from development into

production and when seeking an elastic deployment that can safely guarantee user requested

SLAs as exemplified in the prediction use cases in Section 1.1. In the rest of this chapter, we

use the terms execution setting and execution configuration interchangeably.

5.2.3 Starfish’s Limitations

0"

200"

400"

600"

800"

1000"

1200"

Join"job"
(Q7)""

Join"job"
(Q8)"

Join"job"
(Q8)"

Join"job"
(Q18)"

Ru
n$

m
e'
(s
ec
on

ds
)'

Es4mated" Actual"

Figure 5.2 – Selection of common join jobs
where the main source of error is Starfish’s ana-
lytical model.

0"

100"

200"

300"

400"

500"

600"

700"

Join"job"
(Q2)""

Join"job"
(Q5)"

Join"job"
(Q11)"

Join"job"
(Q9)"

Join"job"
(Q20)"

Ru
n$

m
e'
(s
ec
on

ds
)'

Es6mated" Actual"

Figure 5.3 – Selection of common join jobs
where the main source of error is the task uni-
formity assumption.

To better understand why pure analytical models are problematic for estimating the query

runtime for the capacity planning problem defined above we present one experiment in

Starfish [38], state of the art analytical model for the MapReduce ecosystem. The workload

consisted of TPC-H queries translated into HiveQL that were executed on top of five databases

(scaling factors 1, 10, 30, 60, and 100, as specified in Section 5.6.1). We used the query profiles

corresponding to the workload execution on scaling factor ten as the reference profiles for the

Starfish’s What-If engine. That is, they are used as input into the What-If engine (i.e., reference

workload). The What-If engine is then invoked to estimate the runtime of the workload on

scaling factors 1, 30, 60, and 100 (testing workload). A summary of the Starfish’s What-If engine

is presented in Section 5.3.2.

The 95-percentile average ratio error of all MapReduce jobs of the workload that are executing

78



5.2. Foundations and Overview

a common join operator is 2.77 (as opposed to an ideal ratio of 1.0), and the corresponding

95-percentile average relative error is 164% (as opposed to an ideal relative error of 0%).

We identify two sources of error in the Starfish’s what-if engine: i) in-accurate analytical

model: that assumes that the processing time varies linearly with the number of input rows

processed; ii) task uniformity assumption: that is, per tuple processing costs corresponding to

a given operator phase are uniformly averaged among all tasks executing the operator phase,

independently on the workload characteristics of each task (e.g., level of batching, input size),

as we further detail in Section 5.3.2.

Figure 5.2 shows the estimated runtime versus the actual runtime for a selection of join jobs

where the main source of error is the analytical model. For this set of jobs Starfish under-

predicts the runtime by a factor of 1.8 up to a factor of 2.9. Figure 5.3 shows the runtime for a

selection of join jobs where the main source of error is the task uniformity assumption. For

this selection of jobs the main source of error is the shuffle phase, where the network transfer

cost is heavily over-estimated. Concretely, varying levels of batching for the reference job’s

tasks executing the shuffle phase combined with cost averaging (independently on the level

of batching) causes an over-estimated network transfer cost in the reference profile. As a

consequence, the runtime of the jobs is over-estimated at prediction time by a factor of 1.6

up to a factor of 17.3. TITAN addresses these issues by extending Starfish profiler with SQL

constructs, by making its analytical model aware of non-linear SQL operators (such as joins),

and finally, by using a trained model that learns a range of processing cost factors as a function

of the workload characteristics.

5.2.4 TITAN Overview

In the following we present an overview of our proposed hybrid approach that overcomes

the inaccuracies of conventional analytical models, while at the same time it reduces the

training time of training based prediction approaches. TITAN achieves its goal through a set

of modeling design principles as we show next.

Training Methodology: We propose a training methodology at operator phase granularity that

aims to cover the space of SQL operators and MapReduce phases. Using minimum amount

of information about the testing workload (i.e., input schema, query operators used in the

workload, and few configuration settings), we generate synthetic tables, query templates,

and then query instances such that each operator phase and MapReduce phase is profiled

multiple times, for a range of input data properties. Finding the minimal training dataset that

maximizes the models accuracy is nevertheless a very hard problem, unsolved to date [35].

Therefore, instead of trying to generate a concise collection of benchmark queries in the first

place we propose a heuristic that prunes a large collection of training query instances. Our

algorithm shrinks the size of the training set iteratively, as long as the generalization error of

the models from one iteration to the next changes less than a threshold value. Our approach

uses geometric progressive sampling [64] to shrink the size of the original training set, and

79



Chapter 5. Runtime Prediction for Reporting SQL Analytics

k-fold cross validation [35] to compute the generalization error of the models for each pass.

Localized Training Based Models: To reduce training costs we propose a hybrid modeling

approach that uses localized training based models that are compensated with global analyti-

cal models. Localized models require fewer input features and additionally do not need to

capture the logic of a full-fledged cost model implicitly. Similar observations that motivate

the use of fine grain, operator level models were proposed in the context of DBMS [6, 50]. We

apply similar ideas in the context of SQL analytics executed on MapReduce, and go one level

further by splitting up operators into multiple phases if the operator is sensitive to input data

distributions (e.g., joins). Reducing the impact of input data distributions on the processing

cost factors of an operator has beneficial outcomes in reducing training set sizes. We experi-

mentally validate that fine grain models are more accurate than coarse grain models at small

training set sizes.

Translation Model: For the cases that the training datasets do not cover the input parameter

space of the testing workload, problem that often occurs in practice, we propose the translation

model, a relative performance model that in contrast with conventional modeling learns

processing cost ratios among pairs of operator pipelines having the same semantics but running

with different execution settings (e.g., operator implementation, deployment). Once built,

the translation model estimates the processing cost factor of a query pipeline P for execution

setting E2 using a reference run of the same query pipeline P for execution setting E1 and the

relative performance ratio learned during the training phase. For example, the translation

model can be used to estimate the processing cost of a map join (i.e., the hash join of HiveQL),

given the processing cost of the corresponding common join (i.e., the repartitioning join

of HiveQL), and their relative performance ratio rM J/C J . The translation model has two

advantages over an absolute model: i) it exploits a prior, reference execution of the query

being predicted, corresponding to a different execution setting; ii) as the trained model is

relative, it is more likely to hold beyond the boundaries of the training dataset.

5.3 TITAN Prediction Approach

In this Section we present the end to end approach we propose for estimating the runtime of

SQL analytics executed at scale. We first introduce the modeling assumptions and the main

components of the prediction engine. Then, we present the hybrid prediction model in detail.

5.3.1 Modeling Assumptions

We make the following modeling assumptions:

• Input data statistics corresponding to the input tables and queries are collected into a

database during the reference execution of the workload. Hence, they can be re-used

during prediction.

80



5.3. TITAN Prediction Approach

Starfish scheduler 
simulator 

Configuration 
settings 

MapReduce 
Phase Models 

(black box) 

Data features 

Global (task level) white box model 

HiveQL 
Translation 

Model 
(black box) 

HiveQL 
Operator 
Models 

(black box) 

Execution setting Reference 
execution(s) 

Job time 
estimate 

Figure 5.4 – Hybrid prediction engine for estimating the runtime of HiveQL queries.

• Without loss of generality, we implement prediction models for join/select/project

operators. Extending our approach for other SQL query operators such as aggregations

can be performed by following a similar methodology.

5.3.2 Hybrid Prediction Model

At the high level, our proposed approach is a hybrid of analytical models, machine learning

models, and simulation. Machine learning models are used to estimate the processing cost

corresponding to each SQL operator phase (e.g., join operator phase) and MapReduce specific

phase (e.g., read, collect, merge, shuffle). Analytical modeling is used to estimate the runtime

of each MapReduce task by summing up the runtime of each operator phase. Once the runtime

of all map and reduce tasks was estimated, simulation is used to produce an ordering of tasks

according to a scheduling policy (e.g., FIFO). The job runtime is the longest sequence of tasks

that are executed sequentially. The end to end runtime of a query, that may be composed

of multiple MapReduce jobs, is computed by summing up the runtime of each job on the

critical path of the query. Figure 5.4 shows the main components of the prediction engine. We

observe that there are two possibilities for modeling the processing cost of HiveQL operators:

i) to use conventional machine learning models that learn absolute processing costs, ii) to

use translation models which learn processing cost ratios among pairs of operator phases

with similar semantics, but corresponding to different execution settings: E.g., estimate the

processing cost of the map join, given the processing cost of the common join. While the

two alternative modeling techniques are applied differently, they share the same prediction

framework: the set of features, the fitting algorithm, and the global analytical model. The

rest of the section describes the end to end prediction framework; translation models are

presented in detail in Section 5.5.

81



Chapter 5. Runtime Prediction for Reporting SQL Analytics

Map$Profile$

Map$

Map$

Reduce$

Reference$$
run$on$sample$

AVG$

row$size,$
map$selec:vity$

read/write$IO$cost,$
map$CPU$cost$

map$input,$
spilled$bytes$

Reduce$
AVG$

Data$$
Stats$

Cost$$
Stats$
Data$$
Flow$

Reduce$Profile$

row$size,$$
reduce$selec:vity$

read/write$IO$cost,$
reduce$CPU$cost$

reduce$input,$
input$groups$

Data$$
Stats$

Cost$$
Stats$
Data$$
Flow$

Map$

Job$Profile$
Job$tasks$

Figure 5.5 – Starfish reference profiles summarize the processing characteristics of a MapRe-
duce job.

Starfish’s What-If Engine: TITAN is built on top of Starfish’s What-If engine that was designed

to estimate the runtime of ETL workloads with the end goal of workload tuning, i.e., given

a MapReduce job, an input dataset and a cluster deployment, Starfish finds the best set of

configuration settings that optimizes the job performance. The key building block of the

What-If engine is the job profile, which summarizes the processing characteristics of an input

job. The processing characteristics are grouped into: processing cost factors (or cost statistics),

data statistics, and data flow information. Figure 5.5 illustrates the processing characteristics

that are collected in the job profile when executing the input job on a sample of the input

dataset. Processing cost factors include per tuple or per byte costs for executing MapReduce

phases (e.g., per tuple map cost, per tuple reduce cost, per byte cost of reading from disk /

HDFS, etc), data statistics include row sizes and per phase selectivities (e.g., map row size, map

selectivity, reduce selectivity, etc), while data flow information include data characteristics

as captured at different points in the query pipeline (e.g., map input/output records, map

input/output size, reduce input groups, etc). Processing characteristics are collected for each

task executing the MapReduce job, then they are summarized into a set of reference profiles

corresponding to each task type (i.e., one map profile and one reduce profile; for multi-input

operators, such as joins, one profile per logical input is built). Starfish uses the task uniformity

assumption for computing the reference profiles, that is, processing cost factors and data

statistics are averaged uniformly among all tasks of the same type.

Once the reference profiles are built the What-If engine can be invoked to estimate the runtime

82



5.3. TITAN Prediction Approach

What%If%%
Engine%

Dataset% Configura4on%

Job%profile%

Scheduler%
simulator% Run4me%Virtual%%

profile%

Policy%

Per%task%es4mated%
run4me%

Map%
Reduce%

Reference%
profiles%

Figure 5.6 – Runtime prediction using Starfish’s What-If engine.

1"

Run&me"

Map"tasks"

Reduce"tasks"
Map"slots"

1"
2"
3"

Reduce"slots"
1"

2"

Figure 5.7 – Critical path modeling for a MapReduce job with five map tasks and three reduce
tasks.

of the job on a larger input dataset. The prediction steps used by Starfish’s What-If engine are

illustrated in Figure 5.6. In the first step, the What-If engine estimates the number of tasks

and it computes the data flow information of each task using some basic information about

the input dataset that will be processed (e.g., input size, chunk size, # of input files), the data

statistics taken from the reference profiles, and the configuration settings. Then, it computes

the duration of each task using a set of analytical formulas that take into consideration the data

flow information, the processing costs of each MapReduce phase as taken from the reference

profiles, and the set of configuration parameters. A scheduler simulator is used to provide

an ordering of tasks according to a scheduling policy (e.g., FIFO, Fair, etc) and a resource

allocation configuration (e.g., number of map/reduce slots). The runtime of the job is the

longest sequence of map and reduce tasks (also known as the critical path of the job). Figure

5.7 shows an ordering of tasks for a MapReduce job with five map tasks, three reduce tasks,

and a resource allocation with three map slots and two reduce slots. Two map profiles, and

one reduce profile were used as reference in the What-If engine for this example.

Localized Training based Models: As we had shown with experiments in Section 5.2.3, the

task uniformity assumption used in Starfish introduces significant errors for reporting SQL

83



Chapter 5. Runtime Prediction for Reporting SQL Analytics

0

200000

400000

600000

800000

1 2 3 4 5 6 7 8 9 10 11 12

G
e

n
O

u
t 

C
o

st
 (

n
s)

 

Task 

Figure 5.8 – GenOut processing cost variation with the number of rows processed.

workloads. One of the sources of error is that per tuple processing costs corresponding to

different processing phases of the MapReduce job, as used in Starfish What-If engine, vary

the workload characteristics of each task (e.g., vary with the level of batching, and the tuple

size). For instance, Figure 5.8 shows the GenOut processing cost (i.e., the cost of joining and

outputting tuples) corresponding to all the concurrent tasks executing a common join query

in HiveQL of the form SELECT B.VAL from A JOIN B ON (A.KEY = B.KEY) on two synthetic

tables of sizes of 1GB and 5GB (for the experimental setup please see Section 5.6.1). As

different tasks of the job process a different number of rows (i.e., different level of batching),

per tuple processing costs can vary heavily among different tasks (up to a factor of 15 for

this experiment). Hence, the average per tuple cost, computed as the average of all GenOut

processing cost observations, is prone to either under-predict or to over-predict the actual

runtime.

Therefore, instead of taking the average processing cost factor among all task instances ex-

ecuting the operator phase, which would either under-predict or over-predict the runtime

of the phase, we propose to model it using a learning approach. Figure 5.9 shows a decision

tree example that models the GenOut processing cost of the common join operator as a func-

tion of the input workload characteristics. Each internal node in the tree splits the training

samples of the node into two subsets according to an input feature value that categorizes the

samples the best. The leaf nodes correspond to the output variable (i.e., estimated processing

cost). For example, for OutRow s > 1000, and OutB y tes < 48MB , the GenOut cost is 350,000

ns. For OutRow s > 1000, OutB y tes > 48MB , and OutRowSi ze > 100B , the GenOut cost is

200,000 ns, etc. Hence, in contrast with Starfish and with calibration based approaches which

take the average cost value among all task instances executing the same operator phase (e.g.,

[38, 81]), TITAN models multiple processing cost values for each operator phase by taking into

consideration the characteristics of the input workload.

Global Analytical Models: We motivate a hybrid prediction approach that uses a global an-

alytical model for the following reasons: i) Given that input data properties are available,

84



5.3. TITAN Prediction Approach

OutRows(>(1000(

OutBytes(>(48MB(

OutRowSize(<(100B(

OutRows(<(1(mil(

100000( 50000(

200000(

350000(

800000(

True(
False(

Figure 5.9 – Decision tree example for modeling the GenOut cost factor.

certain runtime decisions can be modeled precisely using analytical models: For instance,

in a MapReduce job, the spilling phase occurs only if the amount of data collected into the

memory buffer of the map phase is higher than a threshold value (i.e., i o.sor t .mb) [36]. While

the analytical rule is straightforward, the alternative learning approach requires multiple exe-

cutions with different input feature combinations to build a model. Additionally, for the case

that the configuration threshold changes, new training executions are required. ii) Adopting a

machine learning approach at coarse granularity (e.g., operator pipeline, job, query) requires

more training samples than when it is used at fine granularity (e.g., operator phase) as the

model needs to also capture the logic of the global cost model implicitly.

5.3.3 Localized Training based Models

In this Section we describe in detail the localized training based models that are used to model

the processing cost factors of SQL operators and MapReduce specific phases. In particular, we

present the model fitting mechanism, and the key input features that we use.

Model Fitting: We use decision trees to fit the processing cost of each MapReduce specific

phase or join operator phase. Decision trees are a good modeling approach when the underly-

ing dependency among the input features and the output feature is not known in advance or

when the dependency does not follow a fixed functional form. Decision trees are thus general

and applicable to a large class of prediction problems. A large number of fitting algorithms

based on decision trees exist [35]. We choose Classification and Regression Trees (CART) as

our default algorithm due to their generality, practicality, and the fact that they do not have

minimum requirements regarding the training set size.

Input Features: Two categories of input features are used to fit the prediction models: MapRe-

duce specific features, used for estimating the MapReduce phases (i.e., read, write, sort, merge,

spill, shuffle), and operator specific features used for estimating the HiveQL operators exe-

cuted inside the map() and reduce() functions. We choose features based on a mix of domain

85



Chapter 5. Runtime Prediction for Reporting SQL Analytics

knowledge about the semantics of the operators and experimentation. Table 5.1 summa-

rizes the input/output features used for modeling MapReduce specific phases, while Table

5.2 shows the features used for modeling join operators. We make several modeling design

choices: i) We do not use configuration settings as input features into the learning models.

Instead, we model the impact of configuration settings analytically. For instance, the number

of map and reduce slots are used as input by the scheduler simulator, memory buffer sizes are

used as input into the analytical model (i.e., analytical rule) which decides whether a specific

MapReduce phase will occur or not (e.g., spilling, merging, etc). ii) For multi input operators

(i.e., joins) we break down the operator execution into multiple phases (e.g., hash table loading

phase, streaming input phase, generating output phase), such that the processing cost of each

phase can be normalized by the number of input/output tuples, and thus, can be modeled

separately.

Name Feature Type
Map/Reduce Input/Output Records Input
Map/Reduce Input/Output Bytes Input
Reduce Shuffle Bytes Input
Spilled Records Input
Spilled Record Size Input
Records Per Buffer Spill Input
Local Bytes Read/Written Input
HDFS Bytes Read/Written Input
Read/Write local cost (per byte) Output
Read/Write HDFS cost (per byte) Output
NetworkCost (per byte) Output
PartitioningCost (per record) Output
SortCost (per record) Output
MergeCost (per record) Output

Table 5.1 – MapReduce specific features

Limitations: Through the set of input features described in the previous section TITAN ad-

dresses the runtime prediction problem for distributed queries running with dedicated CPU

and memory resources, and with uniformly shared disk bandwidth among concurrent tasks.

While modeling inter-query interference is outside of the scope of this chapter, we note that the

hybrid prediction approach TITAN proposes is extensible to support the impact of inter-query

interference through a set of additional features such as the mix of query operators executing

concurrently, altogether with the corresponding slow-down factor on to the processing cost

of the operator. Such features for modeling interference among concurrent query workloads

were proposed in the context of PostgreSQL [4, 25].

86



5.3. TITAN Prediction Approach

Name Description Notes
InBytes/OutBytes Input/output bytes all
InRows/OutRows Input/output rows all
InRowSize/OutRowSize Avg. row size all
FilteredBytes Join input bytes all
FilteredRows Join input rows all
NumProject # of projections all
HashEntries Hash entries Map join
HashEntrySize Hash entry size Map join
HashSize Hash size Map join
LoadedTuples Loaded tuples Map join
LoadedBytes Loaded bytes Map join
MapInitCost initialization cost all
ReduceInitCost initialization cost all
StreamInCost streaming phase all
GenOutCost joining phase all
BuildHashCost hash building Map join
LoadHashCost hash loading Map join

Table 5.2 – Join specific features

5.3.4 Global Analytical Models

Cost factors estimated through localized machine learning models are plugged into a global

analytical model to compute the end to end runtime. Configuration settings such as the

number of map/reduce slots, buffer sizes, threshold memory sizes (e.g., that control when

spilling occurs), are taken as input into the analytical model as shown in Figure 5.4 and

summarized in Table 5.3.

We extend Starfish’s performance models [36] proposed in the context of ETL workloads to

make them HiveQL operator aware. In particular, we model the map(), and reduce() functions

by taking into consideration the HiveQL operator(s) they execute. In the following we present

as an example the analytical models we use to model the runtime of two types of joins in

HiveQL: the map join and the common join.

Map join: The map join resembles the hash join from traditional DBMS and it is entirely

executed during the map phase of the job (map only job). When using the map join, it is

assumed that one of the input tables is small enough that can be buffered entirely into the

memory of each map task. We split the map function into three phases: initialization (i.e., Init),

hash loading (i.e., HashLd), streaming inputs (i.e., StreamIn), and generating outputs (i.e.,

GenOut). During the initialization phase, input tuples are deserialized, filtered horizontally

and vertically (select and filter operators). In the HashLoad phase the hashtable corresponding

to the small input is read and stored into the memory. During the StreamIn phase, input tuples

from the input tables are saved into an in memory buffer if the probe operation finds matching

87



Chapter 5. Runtime Prediction for Reporting SQL Analytics

Name Description
MapSlots # of map slots
ReduceSlots # of reduce slots
TaskMem Map/reduce task memory
IoSortMb Buffer size for sorting files
IoSortFactor # of files to merge at once
IoSortSpillPercent Threshold value

that triggers the spill
IoSortRecordPercent Memory quota for

storing record metadata
InmemMergeThreshold # of map output files

that trigger the merge
ShuffleInputBufferPercent Percentage of heap allocated

for storing map output
ShuffleMergePercent Memory quota that triggers

the in memory merge
ReduceInputBufferPercent Maximum quota for map

output (reduce phase)

Table 5.3 – Examples of configuration settings considered in the analytical model.

tuples into the hash. During the GenOut phase, result sets are generated and forwarded to the

file sink operator which outputs the results. We note that HiveQL uses serialization/deserializa-

tion interface (i.e., SerDe) to serialize/deserialize tuples at the end/beginning of the processing

pipeline. In contrast with traditional DBMS, the end of a processing pipeline in MapReduce is

determined by the end of the map/reduce phases as they materialize intermediate results to

disk. The equation we use to compute the runtime of the map function when executing the

map join is the following:

Runti meM ap,M J = M apInRec × cIni t +H ashSz × cH ashLd

+ (InRow sLar g eTab +LoadedTuplesSmal lTab)× cStr eamIn

+OutRow s × cGenOut (5.1)

where cIni t , cH ashLd , cStr eamIn , and cGenOut are the normalized processing costs of each phase,

M apInRec and InRow sLar g eTab are the number of unfiltered / filtered tuples from the large

table, H ashSz is the hash size, LoadedTuplesSmal lTab is the total number of matching tuples

from the small table that were successfully probed, and OutRow s is the number of tuples of

the result set.

Common join: The common join resembles the traditional repartitioning join in MapReduce.

In the map phase the two input tables are read, filtered, and partitioned on the joining key.

Tuples corresponding to the same joining key are sent to one single reducer which performs

the join in the reduce phase. We similarly split the reduce function into three phases: Init,

88



5.4. Training Methodology

StreamIn, and GenOut. There are several differences when compared with the map join: i)

Filtering input tuples is performed during the map phase of the job, not during the Init phase

of the join; ii) Input tuples from all the input tables are sorted on key, so each input tuple

is loaded into the in memory buffers only once (i.e., no probe operation exists); iii) Results

are forwarded to the file sink operator after all the input tuples corresponding to the current

join key were buffered, or alternatively after all tuples corresponding to the n-1 tables, and

additionally a threshold number of tuples from the last table were buffered. Hence, result

sets corresponding to a join key are generated at once in the same batch, or in multiple

batches, in contrast with the map join where result sets are generated after each successful

probe operation. The equation we use to compute the runtime of the reduce function when

executing the common join is:

Runti meReduce,C J = Red InRec × cIni t + (InRow sLar g eTab

+ InRow sSmal lTab)× cStr eamIn +OutRow s × cGenOut (5.2)

5.4 Training Methodology

In this Section we propose a training methodology targeted to reduce the training time in

terms of running benchmark queries compared with extensive training with state of the art

analytical benchmarks adopted in prior work (e.g., TPC-H used in [50, 6], and TPC-DS used in

[29]) without sacrificing on accuracy.

5.4.1 Query Template Pruning

Starting from a large set of training queries we propose an iterative query pruning procedure

as shown by Algorithm 1. In the first iteration, the training set T is instantiated with a random

sample of n0 queries from the full set of benchmark queries Q. Then, in each subsequent iter-

ation the training set size is augmented progressively as long as the accuracy of the prediction

models improves beyond a threshold value th. To quantify the model accuracy improvement

of each iteration we use k-fold cross validation, a widely used method for estimating the pre-

diction error [35]. K-fold cross validation divides the training set into k folds of approximately

of equal size, then uses k-1 folds to train the models and uses one fold to test the models.

The process is repeated k times, for each possible train/test folds combination. For all the

queries of the testing fold Fi the aggregated prediction error is computed as the squared error

of the predicted value w.r.t. the actual value (line 13). Then the cross validation estimate

of the prediction error is computed on line 15. Finally, the rate of accuracy improvement is

computed as the ratio of the cross validation estimate of the previous iteration to the cross

validation estimate of the current iteration. With respect to the sampling procedure we use

progressive sampling with geometric rate (i.e., 2i ∗n0, line 21) inspired by the work of Provost

et al. [64] which shows that geometric sampling is remarkably efficient in finding the conver-

gence plateau in a few number of steps (compared with linear sampling). While the algorithm

89



Chapter 5. Runtime Prediction for Reporting SQL Analytics

requires to execute two times more queries than the minimum (i.e., in order to compare the

model improvement with the previous step), all sub-sequent re-training phases benefit from a

smaller subset of queries that have to be re-executed.

Algorithm 1 Iterative query pruning procedure. Notations: initial number of training queries
n0, query set Q, number of folds k, convergence threshold th, number of training queries n,
training query set T , iteration i t , rate of accuracy improvement R, cross validation error CV .

1: Input: n0, Q, k, th
2: n = n0, T =;, R = 0, i t = 1
3: while n ≤ |Q| and (i t ≤ 2 or R > th) do
4: if i t == 1 then
5: T = {random set of n queries from Q}
6: else
7: T = T ∪ {random set of n/2 queries from {Q −T }}
8: end if
9: separate T into k folds Fi , 1 <= i <= k

10: for i = 1; i <= k; i ++ do
11: train models with all Fl s.t. l <> i , 1 <= l <= k
12: test models on queries Q j from fold Fi

13: CVi =∑|Fi |
j=1(Pr edi cted j − Actual j )2

14: end for
15: CV i t = 1

n

∑k
i=1 CVi

16: if i t >= 2 then
17: R =CV i t−1/CV i t

18: end if
19: i t = i t +1
20: n = n ×2
21: end while

5.4.2 Synthetic Query Generation

Assuming that some minimal information about the testing workload is available (i.e., schema

information, query operators in the workload) we suggest a methodology for generating

synthetic datasets and queries that can be used as input into the pruning algorithm. As we

show with experiments, synthetically generated benchmark queries can be more concise (have

less training data overlap) than state of the art query template instances and reduce further

the training time. In the following we summarize the ideas we use for generating synthetic

benchmark queries and present the key differences compared with state of the art training that

uses TPC-H/-DS query templates. A synthetic workload instance that follows the methodlogy

described bellow is presented in Section 5.6.1.

• Synthetic queries and data: We generate both synthetic datasets and synthetic queries

to make the training methodology generally applicable for a larger set of testing work-

loads instead of using an existing benchmark that is tight to a fixed schema.

90



5.5. Translation Models

• Reducing overlap: In order to remove unnecessary profile data overlap that inherently

occurs for long running workflows, queries are generated such that they include only

short pipelines of query operators. For instance, a TPCH query includes multiple

instances of the same operator implementation in one single query. While we also

profile any given operator multiple times, we explicitly map different executions of

the operator to different input data characteristics (e.g., input sizes, row sizes, data

distributions).

• Fine granularity, systematic training: Queries are generated such that all processing

phases that occur in the workload execution are covered for a range of row level data

properties established during the workload characterization phase (e.g., the join op-

erator processes input tuples with sizes in the range of 100 to 200 bytes). Building

training datasets for each operator in isolation reduces the number of queries required

for training because the number of operators is limited, unlike the number of potential

queries which is unbounded.

• Task heterogeneity / Data skew: Given the MapReduce execution model where multiple

tasks are executed in parallel, task heterogeneity in terms of data processing require-

ments is effective by capturing different “execution patterns” in one single query. Hence,

we propose to execute synthetic queries on skewed datasets such that different tasks

process a different number of rows.

• Reducing materialization: Training queries are generated such that the number of

MapReduce jobs in a query is minimized. Proceeding this way we aim to reduce the cost

of materializing intermediate results.

5.5 Translation Models

Translation models are prediction models that estimate the runtime of an operator given a set

of input features that include the performance metrics of a reference operator corresponding

to a different execution setting (i.e., different implementation). As we show in this section,

there are multiple scenarios from practice where such models are applicable and can be used

to boost prediction accuracy by exploiting prior executions of the workload.

5.5.1 Semantics

For a given operator phase, we build translation models of the form: Ce2 = Te1→e2(De2,Ce1,De1),

where Ce2, De2 are the processing cost factor and the data features corresponding to the exe-

cution setting e2, while Ce1, De1 are the processing cost and the data features of the operator

corresponding to the execution setting e1. In contrast to conventional models, the translation

model estimates the processing cost of the operator phase for the execution setting e2 using

not only the workload features of its execution setting but also performance and data features

of the reference execution: E.g., estimate the GenOutM J processing cost of the map join, given

91



Chapter 5. Runtime Prediction for Reporting SQL Analytics

the GenOutC J processing cost and the data features of a reference common join.

To make translation models applicable for testing workloads outside of the training boundaries,

we build relative translation models, which learn relative cost ratios instead of absolute cost

values: E.g., For data feature vector Dk , the map join is 2x faster than the corresponding

common join; for data feature vector Dl , the map join and the common join have the same

performance, etc. Then, using the cost ratio, rM J/C J and the cost of the common join tC J ,

the cost of the map join can be simply computed as the product of the two. To a certain

degree, the relative translation model is similar to the cost modeling technique proposed

in query optimization where each processing cost is expressed as a relative ratio w.r.t. the

processing cost of the sequential IO (e.g., the cost of random read = 4x cost of sequential

read in PostgreSQL, etc). The main difference is that such relative relations are learned for

multiple zones of the input data feature space and applied only for similar processing pipelines

operating under two different execution conditions.

0.0e+00 5.0e+09 1.0e+10 1.5e+10

50
00

10
00

0
15

00
0

20
00

0

Output Bytes

Ab
so

lu
te

 G
en

O
ut

 C
os

t (
ns

)

●

●●●

●●●●

●●●

●●
●

●●●

●●

●

●●●

●●●●

●●●●●●●●●

●
●
●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●●●●●

●

●●●

●●

●

●●●

●●●●●●●●●●●●●

●
●
●●●●●●●●●●●●●●●●

● ●

●

●

●

●

●

●

●

●●●

●●●●

●●●●●

●

●●●

●●●●●●

●●●●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●●●

●●

●

●●●

●●●●●●

●●●●

●●●●●●●●●

●

●

●

●

●●●●●
●●●●●●●●●

●

●

●

●

●

●
●

●

●

●●●

●●●●

●●●

●●

●

●●●●●●●●●

●●●●●●●●●●●●●

●

●

●

●

●●●●●

●●●●●●●●●

●

●●

●

●

●

●

●

●

●●●

●●●●

●●●

●●

●

●●●

●●●●●●

●●●●

●●●●●●●●●

●

●●

●

●●●●●

●●●●●●●●●

● ●

●

●

●

●
●

●

●

GenOut MJ
GenOut CJ

●●●

●

●

●●

●

●

●
●●

●
●
●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●●●

●

●

●

●

●
●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●●

●
●●

●

●

●
●●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●
●●

●

●

●
●

●

●

●
●●
●
●
●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●

●
●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●
●●

●

●

●
●
●

●●

●●
●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
● ● ●●
●

●

●●
●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●
●

●●

●

●

●

●●
●

●●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●
●

●

●●●

●

●

●
●

●

●
●

●

●
●●●

●

●

●

●●

●
●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●●

●
●●●
●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●

●●
●

●

●

● ●●

●

●
●

●

●●

●●

●

●●
●

●

●

●
●
●

●

●
●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

0.0e+00 5.0e+09 1.0e+10 1.5e+10

0.
0

0.
5

1.
0

1.
5

MJ Output Bytes

Re
la

tiv
e 

Co
st

 (G
en

O
ut

_M
J 

/ G
en

O
ut

_C
J)

Figure 5.10 – a) Absolute GenOut cost as a function of output bytes (left), and b) Relative
GenOut cost: GenOutM J/C J (right).

Figure 5.10 illustrates the intuition of the relative translation models with an example. Specifi-

cally, Figure 5.10 a) shows the absolute GenOut cost of processing output tuples for the MJ and

CJ operators, while b) shows the cost of generating output tuples for the MJ relative to the cost

of the CJ: GenOutM J/C J =GenOutM J / GenOutC J . We observe that the absolute processing

cost values vary over the span of output byte values (as they are dependent on other input

features such as the output row size, and level of batching). On the other hand, the relative

processing cost GenOutM J/C J is more stable. The reason is that corresponding tasks of the MJ

and CJ executing the GenOut phase of the join have similar data characteristics. Hence, the

relative cost ratio is less dependent on the workload characteristics and more dependent on

the actual performance of the two operator implementations. As we show with experiments in

Section 5.6, performance ratios are safer to use when the testing workload is not well covered

by the training data.

92



5.5. Translation Models

Reference Predicted 

Map Task 

Reduce Task 

1:1 

1:n 

n:1 

Reference Predicted 

1:n (multi-jobs) 

Figure 5.11 – Type of code/data mappings among MapReduce tasks.

5.5.2 Operator Phase and Data Mappings

Two steps are required to apply translation models for operator runtime prediction: i) phase

mapping: identifying corresponding task phases that have similar semantics; ii) input map-

ping: mapping task phases operating on inputs with similar row level data properties for

multi-input operators (i.e., joins).

Phase mappings: In the MapReduce ecosystem, an operator (or a set of packed operators)

is executed as one or multiple MapReduce jobs, where each job consists of multiple tasks

which are executed in parallel. Therefore, phase and data mappings have to be addressed

among corresponding task phases. Figure 5.11 illustrates possible phase mappings among

MapReduce tasks executing HiveQL operators. We observe that several phase mappings are

possible: i.e., 1:1 mapping, n:1 mapping, and 1:n mapping. In general, each task can have

multiple reference tasks, and any given task can serve as a reference for multiple other tasks.

The type of input mapping used depends on the operator implementation, and the execution

setting scenario.

Input mappings: In this step we map tasks operating on inputs with similar row characteristics.

We note that in practice it is highly unlikely to map tasks operating exactly on the same input

partition due to different data distribution, different operator placement (e.g., inside map vs.

inside map and reduce), and different configuration settings (e.g., the number of map slots

controls the number of input splits seen by each map task). Hence, we only target to maintain

the same logical input for multi-input operators, which in turn maintains the same row level

93



Chapter 5. Runtime Prediction for Reporting SQL Analytics

data properties and schema.

5.5.3 Use Cases

In the following we present several use cases from practice where we can apply translation

models. For each case in turn we explain the model semantics, and the phase and data

mappings we perform.

Common Join to Map Join

The common join to map join model estimates the runtime performance of a map join

operator given the data, and performance characteristics of the corresponding common join

operator. We recall that the map join operator performs the join inside the map task of the

MapReduce job (map only job) by joining input rows from the large input with corresponding

rows from the small input(s) that are probed from the local memory of each task. On the other

hand, the common join repartitions the input tables on the joining key in the map phase of

the job, before starting to join tuples in the reduce phase. While the two implementations

are different at a global level, a code mapping among join sub-phases can be performed at a

semantic level: In essence, each join implementation can be split into two phases: i) streaming

phase: in this phase the joining tables are fetched from the downstream operators that are

filtering the tables horizontally and vertically (i.e., project/select), and stored into the memory.

ii) joining phase: in this phase the tables are joined and the output tuples forwarded to the

file sink operator that materializes them on disk. We note that in HiveQL, the code fragment

corresponding to this phase is shared among all the join implementations.

Phase/Data Mappings: In terms of phase mappings, we map the streaming phase of the

common join (occurring in two sub steps inside the map and reduce tasks) to the streaming

phase of map join (occurring inside the map task), and the join phase of the common join

(occurring in the reduce task) to the corresponding join phase of map join (occurring in the

map task). In terms of data mappings, we target to match tasks based on the logical input

tables they process. For homogeneous task mappings (i.e., map/map, and reduce/reduce)

matching tasks operating on the same logical input(s) is possible. For heterogeneous task

mappings (reduce/map, map/reduce) where a 1:1 mapping is not possible, we relax the

matching problem to task phases operating on a portion of the same logical input(s). Figure

5.11, n:1 case, shows the task mappings for the TC J→M J model.

Map Join to Common Join

The map join to common join model is the reverse of the model above: It estimates the runtime

performance of a common operator given the data, and performance characteristics of the

corresponding map join operator.

94



5.6. Evaluation

Phase/Data Mappings: Figure 5.11, n:1 case, shows the code/data mappings for TM J→C J .

Common Join and Map Join to Skewed Join

The skew join is essentially a hybrid of a common join operator and a map join operator which

balances the load of generating result sets for a skewed key from one task to multiple tasks.

The skew join is composed of two jobs: the first job is a common join, with the difference that

skewed keys are identified at runtime and result sets are generated only for the join keys that

are not skewed, while the second job is a map join which performs the join of the skewed keys

identified in the previous job.

For this use case, the translation model estimates the performance of a skewed join operator

given the data, and the performance characteristics of two reference joins: the corresponding

common join, and map join operators. Two translation models are used: TC J→C J and TM J→M J ,

hence, this use case corresponds to a composable translation model.

Phase/Data Mappings: For this use case we have identity mapping at the phase level: corre-

sponding streaming phases and join phases are mapped among the same join operator types

(MJ to MJ and CJ to CJ). For data input mappings we match tasks operating on inputs with

similar row characteristics. Figure 5.11, 1:1, shows the code/data mappings for TC J ,M J→S J .

5.6 Evaluation

5.6.1 Setup and Methodology

Hardware and Software Setup: We evaluate prediction models on two setups: on a private

cluster of eight machines, and on the public cloud, i.e., Amazon EC2 instances. Our private

cluster consists of eight nodes, where each node has two six-core CPUs Intel X5660 @ 2.80GHz,

48 GB RAM and 1 Gbps network bandwidth. All experiments were run on top of HiveQL 0.11.0,

and Hadoop 1.0.3 as the underlying MapReduce framework. Unless specified otherwise each

node was set with a maximum capacity of eight mappers and two reducers, where each task

was allocated with 4GB of memory. Hence, our setup has a total capacity of 64 map slots and

16 reduce slots.

We validate part of our experiments on three deployments of Amazon EC2 instances: De-

ployment A: Cluster of ten slave nodes, m2.2xl ar g e instances, and one master, m1.xl ar g e.

Each slave node was set with a maximum of four mappers and two reducers, where each task

was allocated with 6GB of memory. Deployment B: Cluster of ten slave nodes, m2.4xl ar g e

instances, and one master, m2.2xl ar g e. Each slave node was set with a maximum of eight

mappers and four reducers, where each task was allocated with 6GB of memory. Deployment

C: Cluster of twenty slave nodes, m2.4xl ar g e instances, and one master, m2.2xl ar g e. Each

slave node was set with a maximum of eight mappers and four reducers, where each task was

allocated with 6GB of memory.

95



Chapter 5. Runtime Prediction for Reporting SQL Analytics

Workloads: We evaluate our approach on TPC-H [72], state of the art decision support bench-

mark, a selection of TPC-DS [71] queries, and on synthetic workloads. The TPC-H workload

consists of all queries except queries which either do not contain any joins (Q1, Q6) or they

include outer joins, currently not supported by our prediction framework (Q13, Q21, Q22).

We execute the TPC-H queries on five scaling factors: 1, 10, 30, 60 and 100, and we use the

skewed version of the TPC-H data generator [1] with a Zipf skew factor of 2. The TPC-DS

workload consists of a selection of join queries with different resource requirements, i.e.,

Q3, Q7, Q15, Q19, Q24, Q25, Q26, Q29, and Q82, selection that was inspired by the TPC-DS

workload analysis paper [62]. Similarly with the TPC-H workload, we execute the selection of

TPC-DS queries on five scaling factors: 1, 10, 30, 60, and 100.

Synthetic Workload (i.e., MBench): For training prediction models we generate a synthetic

workload following the methodology described in Section 5.4. Based on TPC-H schema

information we generate twelve tables with row sizes ranging between 50 and 200 bytes, and

join keys with both uniform and skewed distributions, with a skew factor ranging between 0

and 2. Then, we use a query template of the following form for generating query instances:

SELECT A.KEY, A.VAL, B.VAL from A JOIN B ON (A.KEY = B.KEY and A.KEY > t1 and A.KEY <
t2), where we varied: the joined tables (20 possibilities), the selected columns (2 possibilities),

and the selectivity of the query (3 possibilities: 0.1%, 0.5% and 1.0% of total range of values).

The resulting workload included = 20×2×3 = 120 queries, which were executed and profiled.

The workload instance above shall not be interpreted as complete for any testing scenario;

given more information about the testing workload and execution setting, more queries shall

be generated to ensure that the testing space is well covered. The pruning algorithm is in

charge of actually determining the minimum number of query instances that are actually

used in training. For evaluating the effectiveness of translation models outside of the training

boundaries (in Section 5.6.3), we build a second instance of the synthetic workload above

where instead of generating tables with rows sizes ranging in between 50 and 200 bytes, we

generate tables with rows sizes ranging in between 500 and 2000 bytes. The synthetic tables

that we generate have sizes in between 500MB and 10GB.

Prediction Schemes: In addition to Starfish, we compare the accuracy of the models with

MART [50], the best performing prediction approach at operator granularity proposed in the

context of DBMS, and KCCA [28] the machine learning approach that was proposed both in

the context of DBMS and MapReduce.

• Starfish: Prediction approach that uses reference profiles, analytical modeling, and simu-

lation to compute runtime estimates, as summarized in Section 5.3.2. For both TPC-H and

TPC-DS workloads, we used the query profiles corresponding to the workload execution on

scaling factor ten as the reference query profiles, that are used as input into Starfish’s What-If

engine. The What-If engine is then invoked to estimate the runtime of the workload on all the

other scaling factors.

• MART: Prediction approach that builds prediction models at operator granularity and uses

96



5.6. Evaluation

Multiple Additive Regression Trees as the underlying fitting mechanism (for details about the

model fitting algorithm please see Section 2.6.3). We use the same set of input features as for

TITAN.

• KCCA: Prediction approach that builds prediction models at job granularity and uses Kernel

Canonical Correlation Analysis as the underlying model fitting mechanism. We input configu-

ration parameters and data characteristics as the input features into the models as suggested

in the work of Ganapathi et al. [28].

• TITAN: Our proposed prediction approach that builds prediction models at operator phase

granularity. In contrast with MART and KCCA, TITAN’s models are used to estimate per

phase processing costs instead of absolute runtime. Runtime is computed analytically using

the analytical model presented in Section 5.3.4. By default, TITAN uses Classification and

Regression Trees (CART) as the underlying model fitting mechanism.

For performing sensitivity analysis with respect to the level of granularity of the models, and to

assess the usefulness of translation models outside of the training boundaries, we implement

multiple prediction policies with different modeling characteristics as follows. Unless specified

otherwise, we use Classification and Regression Trees (CART) as the underlying model fitting

mechanism.

• Predicted Fine (Pred-Fine): It is equivalent with TITAN.

• Predicted TM (Pred-TM): Prediction approach that uses translation models for estimating

the processing costs of HiveQL operator phases inside the map(), and reduce() functions, and

MapReduce phase models for estimating the processing costs of all the other phases.

• Predicted Coarse (Pred-Coarse): In contrast with Pred-Fine, which splits the map(), and

reduce() functions into multiple operator phases, and then builds one model per operator

phase, Pred-Coarse uses one single model for modeling the runtime of map() function, and

one single model for modeling the runtime of reduce() function. Additionally, these models

are built to estimate runtime instead of processing costs. The set of input features is shared

with Pred-Fine.

• Predicted MapReduce (Pred-MR): Prediction approach that uses only MapReduce specific

features for estimating the processing costs of all MapReduce phases: i.e., the models do not

use HiveQL specific features, thus, they are agnostic to the HiveQL operator semantics of the

underlying MapReduce job. One model per MapReduce phase is built (i.e., the granularity of

phases is as follows: read, map, spill, merge, collect, write, shuffle, sort, reduce, write).

With the purpose of identifying the sources of errors in the prediction models above, we

also show results for several “played back” policies. They are only used to quantify the errors

introduced by the scheduler simulator and the analytical model, and shall not be interpreted

as valid prediction policies.

97



Chapter 5. Runtime Prediction for Reporting SQL Analytics

• Scheduler simulator (PB-Sched): Played back policy that uses the actual runtime of tasks

as input into the scheduler simulator of Starfish. The scheme shows the errors caused by the

scheduling assumptions.

• Analytical Model (PB-AM): Played back policy that uses the actual processing cost factors

corresponding to each MapReduce phase. The scheme shows the cumulated errors introduced

by the scheduler simulator and the analytical model.

• Analytical Model Average (PB-AM-AVG): Played back policy that uses the average processing

cost factors corresponding to each MapReduce phase as computed and summarized into

Starfish’s reference profiles. Thus, this policy shows the cumulated errors introduced by the

scheduler simulator, the analytical model, and the task uniformity assumption.

Prediction Metrics: We evaluate the accuracy of the prediction schemes above using a number

of metrics: relative prediction error (RE), ratio error, cumulative distribution of relative error

(CDF), and order preserving degree (OPD) as summarized in Section 2.6.5. The order preserv-

ing degree in our context measures the proportion of predictions for which the relative order

among the estimated runtime values of the workload corresponding to alternative execution

settings is maintained the same with the relative order among the actual runtime values.

For pinpointing the errors that are on the critical path of a task, we introduce the task normal-

ized relative error (TNE) of a MapReduce phase as: |Pr edphase − Actualphase |/Actualt ask .

This metric is useful to identify MapReduce phases that are on the critical path and require

model improvement.

Model Fitting: For the cases that we use Classification and Regression Trees (CART), we set the

minimum split to 10, the complexity parameter to 0.005, and the number of cross validation

folds to three. For the cases that we use Multiple Additive Regression Trees (MART), we set a

number of 1000 boosting iterations, and a minimum number of ten observations in the trees

terminal nodes, as suggested by prior work [50]. Additionally, we use a shrinkage parameter

of 0.01, ten cross validation folds, and a training fraction of 0.75. For the cases that we use

Kernel Canonical Correlation Analysis (KCCA), we set the number of neighbors k = 3, and we

use a Gaussian Kernel with a scale factor of σ= 0.1, as suggested by prior work in the context

of query performance prediction [29].

Execution Settings: For each workload we consider two execution settings corresponding to

alternative join implementations used in the workload execution:

• Common join (CJ): For this setting the common join implementation is used by all join

operators of the workload.

• Map join (MJ): For this setting part of the join operators of the workload use the map join

implementation, while the rest use the common join. The reason that not only map joins are

used is that not all of the joining operators have a small input table that can fit entirely into

the memory.

98



5.6. Evaluation

We note that when predicting the runtime of a query corresponding to the CJ execution

setting, the translation model uses a reference execution of the query corresponding to the MJ

execution setting, and vice-versa.

5.6.2 Training Models

In this section we compare two training approaches for building prediction models: i) training

with a pre-defined workload as proposed by state of the art training-based approaches [29,

6, 50]; ii) training with a synthetic workload as we propose in Section 5.4. For both cases, we

analyze the trade-off among the models’ accuracy versus the training cost when using the

pruning algorithm that we propose in Section 5.4.1.

We clarify that the training cost is generally characterized by two components: i) the time to

run training workloads and to collect training data, and ii) the time to build the prediction

models (model fitting). In the context of runtime performance prediction for data analytics,

the training cost is dominated by the first component. E.g., It ranges in between (tens of hours,

few days) for running training workloads versus (tens of seconds, few minutes) for building

the models. That is why our goal in this work is to reduce the time required to run training

workloads. Unless specified otherwise, when using the term of training cost, we refer to the

time required to run and collect training data. We note that the time required to build the

models ranges between tens of seconds to a few minutes, depending on the amount of training

data available, on the model fitting algorithm, and on the number of models that are built.

Training'cost''
(i.e.,&collec*ng&
training&data)&

&
55&hr&

&
16&hr&

&
9&hr&

&
4.5&hr&

1&

1.2&

1.4&

1.6&

1.8&

2&

All&&&&&&&&
TPC>H&

Pruned&
TPC>H&

All&
MBench&

Pruned&
MBench&

95
.p
er
ce
n1

le
'A
ve
ra
ge
''

Ra
1o

'E
rr
or
'

KCCA& MART& Titan&

Figure 5.12 – Impact of pruning algorithm on prediction accuracy for training-based modeling
approaches.

99



Chapter 5. Runtime Prediction for Reporting SQL Analytics

Training with Pre-defined Workload

For the first training approach, the training workload consists of TPC-H query instances that

were randomly generated from TPC-H query templates using the TPC-H query generator

(i.e., qgen tool). In our experiment, we randomly generate 25 queries per query template

accounting for a total number of 425 query instances. We execute the workload of TPC-H

query instances on a database of scaling factor 10, we collect the corresponding execution

profiles, then we build prediction models for two training scenarios: i) training with all the 425

query instances; ii) training with a subset of query instances, as determined by the pruning

algorithm. We set the parameters for the pruning algorithm (described in Section 5.4.1) as

follows: n0 = 15 queries, model improvement threshold to th = 1.10, and the number of

cross validation folds to k = 5. We run the pruning algorithm with TITAN as the underlying

prediction policy. We evaluate the accuracy of the models on the TPC-H workload consisting

of different query instances than the training queries that were executed on scaling factors 1,

10, 30, 60, and 100, as described in Section 5.6.1.

The first two sets of bars of Figure 5.12 show the job level accuracy on the testing workload for

the two training scenarios. In addition to TITAN, we show accuracy results for KCCA and MART,

the two competing approaches that also use training-based models. We observe that while

there is a small decrease in accuracy for KCCA, neither MART, nor TITAN worsen their accuracy

significantly when using the pruned workload for training. Thus, the pruning algorithm can

select the minimum number of training queries for a given threshold on accuracy (e.g., model

improvement ratio < 1.10). In terms of the cost of running training queries, the pruning

algorithm outputs a number of 120 queries, which accounts for 16 hours of the total benchmark

time of 55 hours.

Training with Synthetic Workload

For the second training approach, the training workload consists of synthetic queries that

were generated as described in Section 5.6.1 (i.e., the first instance of MBench workload). As

for training with a pre-defined workload we test our models on the TPC-H workload for two

training scenarios: i) training with all the micro-benchmark query instances, ii) training with

the pruned queries as determined by the pruning algorithm. The last two sets of bars of Figure

5.12 show the job level accuracy results. While prediction models that model absolute runtime

such as KCCA (job level models), and MART (operator level models) have less prediction

accuracy as compared with the case of training with the TPC-H workload, TITAN, which

models processing costs instead of absolute runtime, has similar accuracy for all training

scenarios (i.e., having a ratio error of less than 1.15). In terms of the cost of running training

queries, the pruning algorithm outputs a number of 60 queries, which accounts for 4.5 hours

of the total benchmark time of 9 hours. Compared with the above approach that uses the

TPC-H workload for training, the cost of running training queries for the synthetic workload

case is further reduced by a factor of four.

100



5.6. Evaluation

We make several observations: i) The pruning algorithm and the hybrid modeling technique

reduce the number of queries required for training for both the cases that a pre-defined

workload or a synthetic workload are used in training. ii) The time required to run the complete

set of synthetic queries was 9 hours on our local cluster, while the time to run the complete set

of TPC-H query template instances lasted 55 hours. iii) Taking into consideration that only a

subset of 60 synthetic query instances was enough to train TITAN’s models (accounting for 4.5

hours of benchmarking), we use them as the default training benchmark for the rest of the

experiments 1.

5.6.3 Testing Models

2.77$ 3.34$

1$

1.2$

1.4$

1.6$

1.8$

2$

CJ$ MJ$

95
#p
er
ce
n)

le
+A
ve
ra
ge
++

Ra
)o

+E
rr
or
+

Starfish$ KCCA$ MART$ TITAN$

0"

20"

40"

60"

80"

100"

CJ" MJ"

95
#p
er
ce
n)

le
+A
ve
ra
ge
++

Re
la
)v

e+
Er
ro
r+[
%
]+

Starfish" KCCA" MART" TITAN"
164%" 224%"

Figure 5.13 – Job level accuracy results for TPC-H workload: a) Job level 95-percentile average
ratio error (left), and b) Job level 95-percentile average relative error (right).

1"
1.1"
1.2"
1.3"
1.4"
1.5"
1.6"
1.7"
1.8"
1.9"
2"

CJ" MJ"

95
#p
er
ce
n)

le
+A
ve
ra
ge
++

Ra
)o

+E
rr
or
+

Starfish" KCCA" MART" TITAN"
2.16"

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"

100"

CJ" MJ"

95
#p
er
ce
n)

le
+A
ve
ra
ge
++

Re
la
)v

e+
Er
ro
r+[
%
]+

Starfish" KCCA" MART" TITAN"
103%"

Figure 5.14 – Job level accuracy results for TPC-DS workload: a) Job level 95-percentile average
ratio error (left), and b) Job level 95-percentile average relative error (right).

1We note that although we use a small number of queries in training, the number of training samples is larger
(in the order of hundreds), and is equal with the total number of tasks that were used to execute the training
queries on top of Hive.

101



Chapter 5. Runtime Prediction for Reporting SQL Analytics

TITAN versus Alternative Approaches

In this section we compare TITAN with alternative prediction approaches proposed in the

literature: Starfish, the baseline for our proposed approach, MART, the best performing

policy proposed in the context of DBMS, and KCCA, the machine learning approach that was

proposed both in the context of DBMS and MapReduce.

In this experiment, we train prediction models with pruned micro-benchmark queries and we

test them on the TPC-H workload. Figure 5.13 a) shows the 95-percentile average ratio error.

The largest errors are observed for Starfish and the KCCA policy. Starfish has large estimation

errors for the CJ execution setting. The main sources of error are: i) the analytical model,

which was not designed to support non-linear operators (e.g., joins) and ii) the task uniformity

assumption, which introduces significant errors when the MapReduce job is composed of

tasks with very different workload characteristics, as summarized in Section 5.2.3. In contrast,

the workload characteristics of the map join tasks are fairly uniform when compared with

the corresponding common join tasks. Thus, for the MJ execution setting the task uniformity

assumption does not have a negative impact when computing the average cost values in

Starfish’s reference profiles. In terms of training-based models, the pruned micro-benchmark

queries are not sufficient for the KCCA policy to accurately predict the runtime. That is because

KCCA requires k jobs in the training set that are very similar with the job that is predicted (i.e.,

k nearest neighbors) in order to achieve a good prediction accuracy. We note that having a

number of k similar jobs in the training set for each possible testing query involves extensive

training which is in opposition with our goal to limit the training set size to a minimum. MART

and TITAN provide much more accurate predictions than KCCA at small training set sizes

by using models at operator phase granularity instead of job granularity. For both execution

scenarios, TITAN achieves the best prediction accuracy by using fine granularity models and by

modeling processing costs instead of absolute runtime. Figure 5.13 b) shows the 95-percentile

average relative error for the TPC-H workload. The error trends for all policies are similar with

those for the average ratio error.

We also evaluate our prediction models trained with pruned micro-benchmark queries on

a subset of the TPC-DS workload [71]. Figure 5.14 a) shows the 95-percentile average ratio

error, while Figure 5.14 b) shows the corresponding average relative error. While the ratio

errors for Starfish are smaller than for the TPC-H workload, the task uniformity assumption

still introduces large errors for the CJ execution setting (i.e., an average ratio error of 1.7).

KCCA has the largest error bars among all the training-based approaches. MART models

severely mispredict the runtime of the map() phase for the MJ execution setting. TITAN’s

finer granularity models improve the accuracy of MART by a factor of two or more for both

execution settings.

102



5.6. Evaluation

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error [%]

C
D

F

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

● ●●
● ● ● ●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●

●●●
● ●

●

●

PB−AM  (opd=0.91)
PB−AM−Avg  (opd=0.64)
Pred−TM  (opd=0.82)
Pred−Fine  (opd=0.79)
Pred−Coarse  (opd=0.76)

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error [%]

C
D

F

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●

●●
●●

●●
●●

●●
● ●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
● ●●

●

●

●

PB−AM  (opd=0.90)
PB−AM−Avg  (opd=0.91)
Pred−TM  (opd=0.92)
Pred−Fine  (opd=0.94)
Pred−Coarse  (opd=0.76)

Figure 5.15 – Query level accuracy results for TPC-H workload: a) CJ setting (left), and b) MJ
setting (right).

Fine vs. Coarse Models: Sensitivity Analysis on TPC-H

We perform sensitivity analysis with respect to the level of granularity of the models. As in

Section 5.6.3, we train models with pruned micro-benchmark queries and we test them on

the TPC-H workload. Figure 5.15 shows query level accuracy results for the TPC-H workload:

i.e., the cumulative distribution functions of the relative prediction errors for the CJ execution

setting (left) and for the MJ execution setting (right). In the legend corresponding to each

scheme we also show the order preserving degree ratio (OPD) among alternative execution

settings of the workload. Pred-Fine and Pred-TM schemes perform the best in terms of relative

prediction errors and order preserving degree for both execution settings, with less than 20%

relative error for 80% of workload for the CJ setting and less than 25% error for the MJ setting.

We observe that the relative prediction errors for Pred-Coarse are higher than for Pred-Fine

for both execution settings: i.e., for 80% of the workload, the relative errors are less than 35%

for the CJ setting, and less than 60% for the MJ setting. As coarse granularity models rely

solely on trained-based models for modeling the runtime of map() / reduce() functions, they

require significant training data to fully model the underlying cost model of the functions.

Fine granularity models split the map() / reduce() functions into multiple phases, and use

trained-based models only for modeling the processing costs of each phase. The runtime of

the functions is then computed analytically. This is the reason why fine granularity models are

more accurate that coarse models at small training set sizes.

Fine vs. Coarse Models: Sensitivity Analysis on Micro-benchmark

In this experiment we train prediction models using the subset of micro-benchmark queries

identified by the pruning algorithm for the Pred-Fine scheme, and test them on the remaining

set of the micro-benchmark. Figure 5.16 a) shows the cumulative distribution function of the

103



Chapter 5. Runtime Prediction for Reporting SQL Analytics

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Micro−benchmark Predictions (CJ execution setting)

Relative Error [%]

C
D

F

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

PB−Sched  (opd=1.0)
PB−AM  (opd=0.93)
PB−AM−Avg  (opd=0.83)
Pred−TM  (opd=0.93)
Pred−Fine  (opd=0.93)
Pred−Coarse  (opd=0.85)
Pred−MR  (opd=0.82)

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reduce Phase Errors

Task Normalized Relative Error [%]
C

D
F

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●

●

●

Shuffle
Sort
Reduce
Write

Figure 5.16 – Micro-benchmark results for the CJ setting: a) Query level relative prediction
errors (left), and b) Reduce phase task normalized errors (right).

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Micro−benchmark Predictions (MJ execution setting)

Relative Error [%]

C
D

F

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●

●

PB−Sched  (opd=1.0)
PB−AM  (opd=0.94)
PB−AM−Avg  (opd=0.94)
Pred−TM  (opd=0.94)
Pred−Fine  (opd=0.95)
Pred−Coarse  (opd=0.9)
Pred−MR  (opd=0.83)

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Map Phase Errors

Task Normalized Relative Error [%]

C
D

F

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

Read
Map
Collect
Spill
Merge

Figure 5.17 – Micro-benchmark results for the MJ setting: a) Query level relative prediction
errors (left), and b) Map phase task normalized errors (right).

relative prediction errors corresponding to the CJ execution setting. For 80% of the workload,

the relative prediction errors are less than 20% for both Pred-Fine and Pred-TM prediction

schemes, less than 30% for Pred-Coarse, while for Pred-MR are less than 60%. We observe

that both Pred-Fine and Pred-TM prediction schemes closely follow the PB-AM played back

scheme. We note that the OPD values for Pred-Fine and Pred-TM achieve a similar score

with PB-AM. Prediction errors at the granularity of reduce phases for the Pred-Fine scheme

are shown in Figure 5.16 b). We observe that most of the errors correspond to the reduce()

function per se, where the common join operator is being executed.

Figure 5.17 a) shows the error bounds corresponding to the MJ execution setting, where the

104



5.6. Evaluation

Table 5.4 – Prediction results for testing workloads outside of the training boundaries.

MJ exec. setting CJ exec. setting
RE OPD RE OPD

PB-AM 13% 0.97 10% 0.96
Pred-Fine 31% 0.91 93% 0.89
Pred-TM 21% 0.92 45% 0.92
Pred-Coarse 38% 0.91 19% 0.79

common joins of the micro-benchmark are replaced with map joins. While the error margins

stay in similar bounds for both Pred-Fine and Pred-TM (less than 20% relative error for 80% of

the workload), they are 10% higher compared with the PB-AM scheme, the main source of

prediction error being the map function, as shown in Figure 5.17 b).

Runtime Prediction Outside the Training Boundaries

We evaluate the accuracy of prediction models when the testing set is outside the boundaries

of the training set. Specifically, we change the training set with a new set of micro-benchmark

queries operating on tables with much larger row sizes, in the range of 500-2000 bytes. Then,

we test the models on the TPC-H workload. Table 5.4 shows the results. We observe that for

both execution settings, the translation models used by Pred-TM reduce the average relative

errors of Pred-Fine from 31% to 21% for the MJ setting, and from 93% to 45% for the CJ setting

while maintaining a high level of OPD. While for the CJ setting the smallest relative errors

are for the Pred-Coarse models, they are less competitive in preserving a high value of OPD.

Pred-TM achieves a good balance in terms of reduced relative errors compared with Pred-

Fine (which over-predicts runtime) and better OPD than Pred-Coarse (which under-predicts

runtime).

5.6.4 Answering Performance Boost Questions

In the following, we evaluate TITAN when answering the performance boost question as de-

fined in Section 1.1. Given a reference execution of a workload on deployment A that uses the

CJ execution strategy, we seek to find a new execution setting that reduces the workload exe-

cution time by a factor of 2x. We evaluate three possible deployment configurations Amazon

EC2 cloud infrastructure: Deployment A, B, and C, and two join operator implementations:

MJ and CJ. For each hardware configuration that has different underlying hardware than the

reference execution, we run the micro-benchmark queries selected by the pruning algorithm

to build prediction models. Figure 5.18 shows the absolute predicted values for each (operator

implementation, deployment) pair. We observe that neither a different operator implementa-

tion running on the original deployment, nor a different deployment when using the original

join implementation could achieve in isolation the target performance improvement of the

workload. Hence, the joint space of possible execution settings has to be considered. TITAN

105



Chapter 5. Runtime Prediction for Reporting SQL Analytics

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

CJ" MJ" CJ" MJ" CJ" MJ"

Deployment"A" Deployment"B" Deployment"C"

Ru
n$

m
e'
(s
ec
on

ds
)'

Actual" PB9AM" Titan"

Figure 5.18 – Estimating query runtime of a selection of TPCH queries on multiple cluster
allocations towards reducing the workload runtime of the original setting by 2x.

estimates that (MJ, Deployment B), and (MJ, Deployment C) are the execution settings that can

reduce the runtime of the workload by a factor of 2x or more. By measuring the actual runtime

reductions for the two configurations we obtain: a reduction of 1.9x for (MJ, Deployment B),

and a reduction of 2.07x for (MJ, Deployment C). While the predictions were not exact, TITAN

correctly identified the execution settings that closely approach the target runtime reduction.

We also observe that the order preserving degree among alternative execution settings of the

workload is 1.0 in this experiment.

5.7 Summary of Related Work

The closest work to TITAN is Starfish [38], a self-tuning system for Hadoop that uses perfor-

mance models with the goal of workload tuning, and Elastisizer [39] that applies Starfish’s

approach for cluster sizing, i.e., finding the cluster size and the type of resources to use that

best meet workload requirements. TITAN extends Starfish and Elastisizer at multiple levels: it

models HiveQL like operators executed at scale on top of MapReduce, it proposes a methodol-

ogy for collecting and pruning training datasets, and it reduces the modeling errors introduced

in Starfish’s analytical model by the average task profile through a hybrid prediction approach

that models processing cost factors.

TITAN uses similar fine grain models with those proposed in [6, 50] with several key differences

that target to reduce the training cost in terms of running benchmark queries: i) It splits

operator phases operating on multiple inputs (i.e., joins) into multiple sub-phases such that

the processing cost of each sub-phase can be normalized by its corresponding input feature.

Hence, it always models processing cost factors instead of absolute time. ii) Outside of the

106



5.8. Conclusions

training boundaries it proposes translation models to exploit prior executions of the workload

corresponding to different execution settings.

Wu et al. [80] propose analytical cost models for HiveQL operators with the underlying goal of

query optimization. Their work is tailored towards reducing the size of intermediate results

by adaptively grouping join operators that can be processed in one single MapReduce job.

Similarly with PostgreSQL cost model, or the query cost calibration approaches proposed

for PostgreSQL [81, 68], processing cost factors are assumed constant for a given hardware

infrastructure. In our work we go a step further by modeling the processing cost of each

operator phase for a range of workload characteristics, and execution settings.

In the context of relative performance modeling, Mesnier et al. [56] propose relative models for

storage devices for estimating performance of a workload on device D1 based on performance

of the same workload on device D2. We adopt a similar idea when building translation models

with the difference that we apply it in a different context (e.g., query operators), and with a

different goal: to compensate for the cases that the training data set does not cover the input

feature space of the testing data set. Our contribution is to propose the level of granularity at

which relative performance models can be applied in the context of HiveQL operators, the set

of features, and the modeling methodology.

5.8 Conclusions

In this chapter we presented TITAN, a hybrid prediction approach for reporting SQL queries

and a training methodology for generating benchmark queries that altogether reduce the cost

of training based modeling approaches from days to hours while maintaining a good level

of prediction accuracy of the models. The 95-percentile average relative error is less than

25% on the testing benchmarks. For the cases that the training dataset does not cover the

testing data, TITAN introduces novel translation models that exploit prior workload executions

corresponding to different configuration settings.

Our experiments show the feasibility of the proposed approach both in the context of static

deployments, and also in the context of elastic deployments (i.e., using platform as a service on

Amazon AWS). Our sensitivity analysis shows that fine granularity models are more accurate

than coarse granularity models at small training set sizes (by a factor of two on average). Trans-

lation models outperform conventional prediction models outside of the training boundaries.

TITAN can be used in all of the use cases presented in Section 1.1. For instance, Figure 5.18

shows how TITAN can be successfully used to find the execution setting that can satisfy the

user requested time constraints (i.e., 2x performance boost).

107





6 Conclusions

Analytics today comprise of mixed workflows that include a variety of analytical tasks start-

ing from the traditional SQL-like queries executing at scale, continuing with ETL, data pre-

processing, up to more complex iterative analytics and data mining algorithms [82, 20]. Tra-

ditional DBMS systems originally designed for SQL analytics, had already started to include

interfaces for ETL and more complex analytics into their engines1. Likewise, data processing

systems originally designed for scalable ETL (i.e., MapReduce) have been extended to offer

better support for SQL operators and complex analytics [84, 82]. Optimizing execution of such

mixed workflows on a distributed cluster of machines either on a dedicated infrastructure or

in the cloud (i.e., using Infrastructure as a Service on Amazon Web Services) motivated the

work of this thesis. Workload runtime estimates corresponding to a set of potential resource

allocation configurations are very useful to identify the resource allocation that satisfies the

desired performance for the end user. At the same time runtime estimates are also very useful

for resource managers and schedulers that aim to maximize the utilization of the cluster

resources (and thus, reducing the over-provisioning costs).

In the following section we summarize the prediction approaches we developed for estimating

the runtime of a class of iterative analytics, data pre-processing workflows, and reporting SQL,

while emphasizing the main contributions for each workload category. In the last section we

present future research avenues that are worth pursuing in the context of runtime prediction.

6.1 Summary of Contributions

Prediction Methodology for Iterative Analytics: In Chapter 3 we presented a methodology

that we developed for estimating the number of iterations and per iteration resource require-

ments for an important class of iterative analytics used today in social media. The core of

our methodology is represented by the transform function and the sampling technique that

altogether preserve similarity among the execution patterns of the analytical task executed on

1For instance, Greenplum, Vertica, Teradata provide interfaces to execute business intelligence and ETL queries
in parallel using MapReduce-like execution engines.

109



Chapter 6. Conclusions

a sample of the input dataset with the execution patterns of the analytical task executed on

the complete dataset. To the best of our knowledge, PREDIcT is the first empirical approach

designed for estimating iterations and runtime for a class of iterative analytics executing

on graphs. We exemplify and evaluate the set of transformations we propose for a number

of iterative algorithms including: PageRank, semi-clustering, top-k ranking, neighborhood

estimation, and labeling connected components.

Hybrid Models for Data Pre-processing Tasks: In Chapter 4 we presented prediction models

for a class of repetitive workloads executing data pre-processing and ETL tasks on different

datasets. By specializing models per query segment type we limited the domain knowledge

required to build the models, and consequently it allowed us to use a small number of generic

data features. For these workloads, we developed a hybrid prediction approach which com-

bines the benefits of localized machine learning models with that of a global analytical model.

Training Methodology and Hybrid Models for Reporting SQL: One of the stringent require-

ments in the context of elastic workload deployments is how to built accurate and generic

prediction models at a small training cost. Our work on estimating the runtime of reporting

SQL analytics addresses this challenge in Chapter 5. We show that selecting and limiting the

number of training queries to a minimum is possible without affecting the accuracy of the

models significantly. To this goal, we propose a training methodology and hybrid predic-

tion models at fine, per operator-phase granularity that have higher accuracy compared with

competing approaches at small training set sizes.

6.2 Impact

The prediction techniques we describe in this thesis are advancing the state-of-the-art in

three ways: i) by providing prediction mechanisms for a class of iterative analytics that were

not empirically addressed before and are widely used today in analytical workflows; ii) by

providing hybrid prediction models for different categories of data analytics and by analyzing

the trade-offs at varying levels of model granularities; iii) by providing mechanisms to reduce

the training cost while maintaining a competitive level of accuracy for the models.

PREDIcT improves the accuracy of analytical upper bounds for estimating iterations for

PageRank from a relative error of [104,168]% to [0,11]%. Overall, the runtime estimates

have an error of [10−30]% for all scale-free graph analyzed. Our training methodology for

reporting analytics reduces the time for running training queries from days to hours while

the 95-percentile average relative error is less than 25% on our testing benchmarks. We also

show the utility of predictions in an end-to-end use case in Section 5.6.4. There we show

that predictions that TITAN provides can be used to answer successfully resource allocation

questions, i.e., identifying the resource allocation(s) that can satisfy a target performance goal.

110



6.2. Impact

6.2.1 Generality of Techniques to Similar Problems

Resource Allocation for Iterative Processing: In this thesis we answer resource allocation

questions in the context of reporting analytics. The prediction techniques we develop for

iterative processing: i.e., sampling technique, transform function, and hybrid cost modeling

approach can be used as building blocks to answer similar resource allocation questions for

iterative analytics. We note that estimating the number of iterations for the BSP execution

model is independent on the resource allocation configuration. Hence, the sample-based

approach we develop to estimate the number of iterations can be re-used as it is. As the

worker on the critical path changes with the number of workers available and the partitioning

strategy used, estimating per task key features starting from the observations of the sample

run will require extensions to explicitly model the critical path of the actual run. Of particular

importance is to build mechanisms that model the critical path of each worker of the actual

run as a function of the data statistics collected during the sample run, a set of basic statistics

about the input dataset, and the partitioning strategy.

Incorporating Predictions into Online Estimation Techniques and Vice-versa: The predic-

tion techniques we propose in this thesis can be used in conjunction with online estimation

techniques such as those proposed in the context of query progress estimators [16, 53, 57],

and dynamic query re-optimization [69, 24] to improve the accuracy of estimations at runtime

as more information becomes available. While conventionally, runtime predictors target re-

source allocation where runtime estimates are required before the query starts execution, and

online estimation techniques target dynamic re-optimization and query progress monitoring,

we envision for the near future hybrid estimation approaches that combine the advantages of

predictors (i.e., runtime estimates before query execution) with those of online estimation

techniques (i.e., accuracy refinement by exploiting runtime data).

Concretely, incorporating predictions into online runtime estimators and progress estimators

is beneficial as it enables them to exploit the initial estimate information for the inactive

query pipelines for which runtime data is not yet available. In addition, certain processing

characteristics cannot be estimated at runtime. For instance, the number of iterations for

iterative analytics cannot be estimated at runtime, before the iterative task completes its

execution. The prediction techniques we develop in this context, such as: the sampling

technique and the transform function, can be used to provide initial runtime estimates.

Incorporating runtime data into runtime predictors can at its turn facilitate problematic predic-

tion models with high errors (i.e., model over-fitting or model under-fitting), and MapReduce

jobs for which input data statistics collected during a prior reference run are insufficient or

unavailable. For such cases, deliberately bring in more training data at runtime can improve

the prediction models. In addition, input data statistics collected for the currently executing

MapReduce job (e.g., task selectivities) can be used to refine the existing data statistics corre-

sponding to that job. Of particular importance is the adaptive mappers approach proposed in

the context of adaptive MapReduce [77]. While adaptive mappers were mainly used to balance

111



Chapter 6. Conclusions

the workload of a MapReduce job among concurrent tasks, the adaptive sampling component

could be also used to take approximate histograms at runtime. Thus, the tasks’ selectivity

information could be refined at runtime and used as input into prediction models.

Estimating Other Performance Features: While the focus of this thesis is to estimate the

runtime of a class of analytical workloads for a pre-specified execution setting, similar models

can be built to predict other performance metrics such as: the memory utilization and the

CPU utilization, averaged over the duration of the workload execution. Performance metrics

like these can be subsequently used to identify the optimal allocation of resources (in terms of

memory buffer sizes and task slots) that does not only aim to execute the workload within the

given deadline, but it also targets a high level of utilization for the resources that were allocated.

While the full set of input features for such estimation problems will include additional, specific

features to the performance metric that is modeled, the modeling approach per se at operator

phase granularity, and the training methodology can be re-used.

6.3 Predictable vs. Non-Predictable Analytics

This thesis proposes estimation techniques for a class of analytical workloads that are amenable

to sampling. For such cases, data characteristics observed during a short execution on the

sample (or during the reference execution on a similar input dataset) can be collected and

used later for prediction. The problem that we addressed in this context was two fold: i) how to

take such a sample (in particular for iterative analytics), and ii) how to build cost models that

estimate runtime as a function of the workload characteristics (for all classes of analytics we

analyze in this thesis). For such analytical workloads we show that we can answer feasibility

analysis questions and performance boost questions as the ones we summarize in Section

1.1. Thus, in contrast with conventional query optimization techniques that aim to compare

the relative performance among alternative execution strategies of a workload on a fixed

deployment, prediction techniques, like the ones we develop in this thesis, are enablers for

identifying the execution settings that can satisfy an absolute performance goal (i.e., deadline).

In addition, predictions can be used to assess the relative performance improvement of the

workload among alternative execution settings that can include different deployments.

As the accuracy metric that quantifies the quality of predictions is highly dependent on the

end application (use case), we show results for multiple accuracy metrics. We focus on

relative prediction error and ratio error when the goal is to estimate the absolute runtime

and on order preserving degree when the goal is to rank alternative execution settings. We

note that estimating the relative order among alternative execution settings (i.e., ranking

potential execution settings as in optimization) is generally easier than estimating the absolute

performance. The main reason for that is that ranking can tolerate errors in the models as

long as the modeling errors introduced are consistent for all the execution settings that are

compared. In contrast, all the modeling errors are visible when estimating the absolute

performance.

112



6.4. Looking Ahead

For the cases that the data statistics collected during a prior reference run of the query are

insufficient, and for the cases that the cost models are in-accurate due to little data overlap

among the training set and the testing set (e.g., model under-fitting or model over-fitting), we

can deliberately bring in more training data to improve the prediction models. The runtime

estimation techniques that are summarized in Section 6.2.1 can be used to refine the data

statistics as more information becomes available. For fixing the cost model fitting errors, we

can generate synthetic workloads with a large spectrum of workload characteristics such that

we can better cover the multi-dimensional input feature zone of the testing set. Then, we can

use the iterative training procedure we propose in Section 5.4.1 to update the models. From

our experience, we find that in many cases we can successfully use cross validation techniques

to identify cost modeling errors before the actual execution of the query. While cross validation

techniques can be used also to identify the consistency of a sampling technique, as we show

in the context of iterative processing in Section 3.8.5, such an approach is expensive to be

performed each time a prediction is sought. Thus, the modeling errors introduced by the

sampling technique are usually identified at runtime.

This thesis does not address the problem of estimating the runtime of data analytics that

are not amenable to sampling techniques, and that of ad-hoc analytics, where either the

data statistics or the processing characteristics of the input query are very different than the

training data that is currently available. For such cases, the only feasible option to produce an

estimate is to apply online estimation techniques (as the ones presented in Section 6.2.1). We

summarize the limitations of our prediction techniques in the context of iterative analytics in

Section 3.7, in the context of ETL in Section 4.3, and in the context of reporting SQL in Section

5.2.2.

6.4 Looking Ahead

In this thesis we provide the fundamental prediction mechanisms to estimate the runtime of

three categories of analytics that are widely used today in social media and web analysis and

are executed at scale using the MapReduce execution framework. Analytics are continuously

increasing in complexity as users pose analytical queries that require to find insights and

complex correlations from the ever increasing input data sets. At the same time, distributed

processing frameworks for big data analysis are constantly evolving adding more capabilities

to their core engines to support these queries. This evolution of queries and engines rises new

challenges and opportunities in query runtime prediction.

6.4.1 SLA Driven Job Scheduling

Rayon [21] is an example of an SLA-oriented scheduler that introduces the concept of pre-

dictable resource reservations for a pre-specified duration of time. Rayon assumes that the

end user can accurately assess his resource requirements and the maximum time allocation

for which his workload will use the resources. It is worthwhile to analyze the efficiency of

113



Chapter 6. Conclusions

such a scheduler when using runtime predictions instead of ground truth values. Studying

the tolerance of the scheduling policy with respect to the prediction accuracy is very useful to

assess both the effectiveness of the scheduler, and that of the prediction method in another

end-to-end use case. While this future direction of research is worth pursuing for all workload

categories, particular interest is represented by applications with gang-scheduling require-

ments, i.e., applications that have to receive all the resources they asked for before starting

execution. Iterative analytics executing on Giraph BSP fall into this category.

6.4.2 Cost Models for In-memory Analytical Engines

Estimating the runtime of data analytics on in-memory analytical engines that emerge as an

alternative for executing data analytics at scale (such as Spark [84]) open up new opportunities

in runtime modeling. While the prediction building blocks and methodologies we propose for:

i) estimating iterations, ii) building a hybrid prediction model at phase granularity, and iii)

training, are applicable in this context as well, the cost models per se require adjustments to

take into consideration new key input features corresponding to a different engine. Similarly

with the MapReduce execution model, two types of key features shall be considered: core

engine level features (e.g., Spark operators), and upper layer library features (e.g., Hive features,

when executing HiveQL queries on Spark).

6.4.3 Sharing Cluster Resources Among Analytical Engines

With the goal of reducing provisioning costs, resource managers often collocate multiple

analytical engines specialized for different classes of analytics within the same cluster de-

ployment (e.g., [41]). Sharing cluster resources among concurrent workloads increases the

resource utilization of the cluster. Yet, in order to keep up the performance demands of the

end applications that have stringent time requirements, resource managers shall carefully

consider the impact among concurrent workloads. While workload interference has been

studied recently especially in the context of single node DBMS (e.g., [4, 25]), new challenges

occur in a distributed setting where different engines execute concurrently. Of particular im-

portance is to identify the modeling granularity at which training cost is feasible yet effective

(due to the exponential size of the possible input feature combinations), and the key features

that can be collected and used to calibrate predictions.

114



List of Figures

1.1 Iterative Processing: S, input dataset that does not change as a result of executing

the iterative task (i.e., input graph structure), T, input that gets updated at the

end of every iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Pipeline of Analytical Tasks in Web Data Analysis . . . . . . . . . . . . . . . . . . 5

1.3 Using analytical upper bounds to approximate the number of iterations for

PageRank algorithm (left), and per iteration resource requirements (i.e., message

bytes) for connected components (right). . . . . . . . . . . . . . . . . . . . . . . 6

2.1 MapReduce Execution Model: Map tasks transform the input data and output

intermediate results as key-value pairs. The reduce tasks copy and merge all

the values corresponding to the same key, then apply the reduce function to

produce the final result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 BTrace profiling rule example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 CART decision tree with four input features F1 −F4, four conditionals, and five

possible predicted values C1 −C5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 MART decision trees with two boosting iterations (i.e., two trees) and four input

features F1 −F4. The predicted value is a summation over the predicted values

of each tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 PREDIcT’s methodology for estimating the key input features and runtime of

iterative algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Maintaining invariants for the number of iterations when executing PageRank

on sample graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 BSP execution phases of an arbitrary iteration. . . . . . . . . . . . . . . . . . . . . 39

115



List of Figures

3.4 The accuracy of predicting the number of iterations for PageRank for ε= 0.01

(left) and for ε= 0.001 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 The accuracy of predicting the number of iterations for semi-clustering for

τ= 0.01 (left) and for τ= 0.001 (right). . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Top-k ranking key input features estimation: a) Estimating iterations (left), b)

Estimating remote message bytes (right). . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Predicting key input features for connected components: a) number of iterations

(left), b) active vertices (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 a) Predicting active vertices for connected components with guided sampling

(left), b) Predicting remote message bytes for neighborhood estimation (right). 52

3.9 Estimating the number of iterations: Analytical upper bounds versus PREDIcT. 53

3.10 Semi-clustering runtime prediction: a) Training with sample-runs (left), b) Train-

ing with sample- and actual-runs (right). . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 Top-k ranking runtime prediction: a) Training with sample-runs (left), b) Train-

ing with sample- and actual-runs (right). . . . . . . . . . . . . . . . . . . . . . . . 54

3.12 Predicting runtime for neighborhood estimation: a) Training with sample-runs

(left), b) Training with sample- and actual-runs (right). . . . . . . . . . . . . . . . 55

3.13 Connected components runtime prediction: a) Training with sample-runs (left),

b) Training with sample- and actual-runs (right). . . . . . . . . . . . . . . . . . . 55

3.14 Connected components runtime prediction: Training with sample- and actual-

runs for guided sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.15 Predicting iterations: sensitivity analysis w.r.t. sampling technique for PageRank

(top), semi-clustering (middle), and top-k ranking (bottom) on UK web graph. 57

3.16 Predicting key input features: sensitivity analysis w.r.t. sampling technique

for connected components (top and middle), and neighborhood estimation

(bottom) on UK web graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.17 Runtime of sample-runs and actual-runs for PageRank (PR), semi-clustering

(SC), connected components (CC), top-k ranking (TOP-K), and neighborhood

estimation (NH), in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.18 Estimating runtime for semi-clustering for a different slot allocation. . . . . . . 59

4.1 Input / output cardinality correlations for Workload-A . . . . . . . . . . . . . . . 62

116



List of Figures

4.2 Input cardinality / processing speed correlations for Workload-A . . . . . . . . . 62

4.3 Jaql query (script) example that extracts from a list of web pages the web graph

corresponding to a particular web domain. . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Modeling per segment cardinality functions (i.e., Ci ) and processing speed func-

tions (i.e., Pi ) for phase-level segments. . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Job runtime estimation for TPC-DS . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Actual Runtime vs. Predicted Runtime for TPC-DS . . . . . . . . . . . . . . . . . 70

4.7 Job runtime estimation for Workload-A (left), and Workload-B (right). . . . . . . 70

4.8 Query runtime estimation for TPC-DS . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Query Processing Model in HiveQL . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Selection of common join jobs where the main source of error is Starfish’s analyt-

ical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Selection of common join jobs where the main source of error is the task unifor-

mity assumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Hybrid prediction engine for estimating the runtime of HiveQL queries. . . . . 81

5.5 Starfish reference profiles summarize the processing characteristics of a MapRe-

duce job. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Runtime prediction using Starfish’s What-If engine. . . . . . . . . . . . . . . . . . 83

5.7 Critical path modeling for a MapReduce job with five map tasks and three reduce

tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.8 GenOut processing cost variation with the number of rows processed. . . . . . 84

5.9 Decision tree example for modeling the GenOut cost factor. . . . . . . . . . . . 85

5.10 a) Absolute GenOut cost as a function of output bytes (left), and b) Relative

GenOut cost: GenOutM J/C J (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.11 Type of code/data mappings among MapReduce tasks. . . . . . . . . . . . . . . 93

5.12 Impact of pruning algorithm on prediction accuracy for training-based modeling

approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.13 Job level accuracy results for TPC-H workload: a) Job level 95-percentile average

ratio error (left), and b) Job level 95-percentile average relative error (right). . . 101

117



List of Figures

5.14 Job level accuracy results for TPC-DS workload: a) Job level 95-percentile average

ratio error (left), and b) Job level 95-percentile average relative error (right). . . 101

5.15 Query level accuracy results for TPC-H workload: a) CJ setting (left), and b) MJ

setting (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.16 Micro-benchmark results for the CJ setting: a) Query level relative prediction

errors (left), and b) Reduce phase task normalized errors (right). . . . . . . . . . 104

5.17 Micro-benchmark results for the MJ setting: a) Query level relative prediction

errors (left), and b) Map phase task normalized errors (right). . . . . . . . . . . 104

5.18 Estimating query runtime of a selection of TPCH queries on multiple cluster

allocations towards reducing the workload runtime of the original setting by 2x. 106

118



List of Tables

1.1 Conceptual differences between reporting and ad-hoc query processing. . . . . 3

2.1 Recent prediction approaches for analytical workloads. . . . . . . . . . . . . . . 23

3.1 Notations used for representing the transform function. . . . . . . . . . . . . . . 38

3.2 Key Input Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Graph Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 MapReduce specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Join specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Examples of configuration settings considered in the analytical model. . . . . . 88

5.4 Prediction results for testing workloads outside of the training boundaries. . . . 105

119





Bibliography

[1] Program for TPC-H Data Generation with Skew. ftp://ftp.research.microsoft.com/users

/viveknar/TPCDSkew/.

[2] A. Aboulnaga and S. Babu. Workload Management for Big Data Analytics. In SIGMOD,

pages 929–932, 2013.

[3] F. N. Afrati, V. Borkar, M. Carey, N. Polyzotis, and J. D. Ullman. Map-Reduce Extensions

and Recursive Queries. In EDBT, pages 1–8, 2011.

[4] M. Ahmad, S. Duan, A. Aboulnaga, and S. Babu. Interaction-aware Prediction of Business

Intelligence Workload Completion Times. In ICDE, pages 413–416, 2010.

[5] K. J. Ahn, S. Guha, and A. McGregor. Analyzing Graph Structure via Linear Measurements.

In SODA, pages 459–467, 2012.

[6] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik. Learning-based Query

Performance Modeling and Prediction. In ICDE, pages 390–401, 2012.

[7] Apache Mahout Framework. Project Website: http://mahout.apache.org/.

[8] D. Arthur and S. Vassilvitskii. How Slow is the k-means Method? In SCG, pages 144–153,

2006.

[9] S. Babu, P. Bizarro, and D. DeWitt. Proactive Re-optimization. In SIGMOD, pages 107–118,

2005.

[10] F. Bancilhon and R. Ramakrishnan. An Amateur’s Introduction to Recursive Query Pro-

cessing Strategies. In SIGMOD, pages 16–52, 1986.

[11] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-C. Kanne, F. Ozcan, and

E. J. Shekita. Jaql: A Scripting Language for Large Scale Semistructured Data Analysis. In

VLDB, 2011.

[12] R. Borovica, I. Alagiannis, and A. Ailamaki. Automated Physical Designers: What You See

is (Not) What You Get. In DBTest, 2012.

121



Bibliography

[13] Y. Bu, V. R. Borkar, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie, M. Weimer, and R. Ra-

makrishnan. Scaling Datalog for Machine Learning on Big Data. CoRR, abs/1203.0160,

2012.

[14] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: Efficient Iterative Data Processing

on Large Clusters. PVLDB, 3:285–296, 2010.

[15] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. Measuring User Influence in

Twitter: The Million Follower Fallacy. In ICWSM, 2010.

[16] S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When Can We Trust Progress Estimators

for SQL Queries? In SIGMOD, pages 575–586, 2005.

[17] S. Chaudhuri, R. Motwani, and V. Narasayya. Random Sampling for Histogram Construc-

tion: How Much is Enough? In SIGMOD, pages 436–447, 1998.

[18] Y. Chen, S. Alspaugh, and R. Katz. Interactive Analytical Processing in Big Data Systems:

A Cross-industry Study of MapReduce Workloads. PVLDB, 5(12):1802–1813, 2012.

[19] S. Christodoulakis. Implications of Certain Assumptions in Database Performance Evau-

ation. ACM Trans. Database Syst., 9(2):163–186, 1984.

[20] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton. MAD Skills: New Analysis

Practices for Big Data. PVLDB, 2(2):1481–1492, 2009.

[21] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, and S. Rao.

Reservation-based Scheduling: If You’re Late Don’t Blame Us! In SoCC, 2014.

[22] A. Das Sarma, D. Nanongkai, and G. Pandurangan. Fast Distributed Random Walks. In

PODC, 2009.

[23] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In

OSDI, 2004.

[24] A. Deshpande, Z. Ives, and V. Raman. Adaptive query processing. Found. Trends databases,

1(1):1–140, 2007.

[25] J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal. Performance Prediction for

Concurrent Database Workloads. In SIGMOD, pages 337–348, 2011.

[26] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spinning Fast Iterative Data Flows.

PVLDB, 5(11):1268–1279, 2012.

[27] P. Flajolet and G. N. Martin. Probabilistic Counting Algorithms for Data Base Applications.

Journal of Computer and System Sciences, 31(2):182–209, 1985.

[28] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson. Statistics-driven Workload

Modeling for the Cloud. In ICDEW, 2010.

122



Bibliography

[29] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and D. Patterson. Pre-

dicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning. In

ICDE, pages 592–603, 2009.

[30] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. Walking in Facebook: A Case Study

of Unbiased Sampling of OSNs. In INFOCOM, pages 2498–2506, 2010.

[31] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Distributed

Graph-parallel Computation on Natural Graphs. In OSDI, pages 17–30, 2012.

[32] G. Graefe, A. C. König, H. A. Kuno, V. Markl, and K.-U. Sattler. 10381 Summary and

Abstracts Collection – Robust Query Processing. In Robust Query Processing, Dagstuhl

Seminar Proceedings, 2011.

[33] S. Guha and A. McGregor. Graph Synopses, Sketches, and Streams: A Survey. PVLDB,

5(12):2030–2031, 2012.

[34] S. Har-Peled and B. Sadri. How Fast is the k-means Method? In SODA, pages 185–202,

2005.

[35] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data

Mining, Inference and Prediction, Second Edition. Springer, 2008.

[36] H. Herodotou. Hadoop Performance Models. Technical Report, CS-2011-05, Duke

University, 2010.

[37] H. Herodotou and S. Babu. Xplus: A SQL-Tuning-Aware Query Optimizer. PVLDB,

3(1-2):1149–1160, 2010.

[38] H. Herodotou and S. Babu. Profiling, What-if Analysis, and Cost-based Optimization of

MapReduce Programs. PVLDB, 4(11):1111–1122, 2011.

[39] H. Herodotou, F. Dong, and S. Babu. No One (Cluster) Size Fits All: Automatic Cluster

Sizing for Data-intensive Analytics. In SOCC, 2011.

[40] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu. Starfish: A

Self-tuning System for Big Data Analytics. In CIDR, pages 261–272, 2011.

[41] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker,

and I. Stoica. Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center.

In NSDI, 2011.

[42] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: A DSL for Easy and Efficient

Graph Analysis. In Proceedings of the Seventeenth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, pages 349–362,

2012.

123



Bibliography

[43] P. Hu and W. C. Lau. A Survey and Taxonomy of Graph Sampling. CoRR, abs/1308.5865,

2013.

[44] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A Peta-Scale Graph Mining

System Implementation and Observations. In ICDM, pages 229–238, 2009.

[45] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis. Mizan: A System

for Dynamic Load Balancing in Large-scale Graph Processing. In EuroSys, pages 169–182,

2013.

[46] A. N. Langville and C. D. Meyer. Deeper Inside PageRank. Internet Mathematics, 1(3):335–

380, 2003.

[47] J. Leskovec and C. Faloutsos. Sampling from Large Graphs. In KDD, pages 631–636, 2006.

[48] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking

diameters and possible explanations. In KDD, 2005.

[49] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical Properties of Com-

munity Structure in Large Social and Information Networks. In WWW, pages 695–704,

2008.

[50] J. Li, A. C. König, V. Narasayya, and S. Chaudhuri. Robust Estimation of Resource Con-

sumption for SQL Queries Using Statistical Techniques. PVLDB, 5(11):1555–1566, 2012.

[51] J. Li, A. C. König, V. Narasayya, and S. Chaudhuri. Robust Estimation of Resource Con-

sumption for SQL Queries Using Statistical Techniques. PVLDB, 5(11):1555–1566, 2012.

[52] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed

GraphLab: A Framework for Machine Learning and Data Mining in the Cloud. PVLDB,

5(8):716–727, 2012.

[53] G. Luo, J. F. Naughton, and P. S. Yu. Multi-query SQL Progress Indicators. In EDBT, pages

921–941, 2006.

[54] L. F. Mackert and G. M. Lohman. R* Optimizer Validation and Performance Evaluation

for Distributed Queries. In VLDB, pages 149–159, 1986.

[55] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.

Pregel: A System for Large-Scale Graph Processing. In SIGMOD, pages 135–146, 2010.

[56] M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. X. Zheng, and G. R. Ganger. Modeling the

Relative Fitness of Storage. In SIGMETRICS, 2007.

[57] K. Morton, M. Balazinska, and D. Grossman. ParaTimer: A Progress Indicator for MapRe-

duce DAGs. In SIGMOD, pages 507–518, 2010.

[58] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A Not-so-foreign

Language for Data Processing. In SIGMOD, 2008.

124



Bibliography

[59] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing

Order to the Web. Technical Report 1999-66, Stanford InfoLab, 1999.

[60] N. Pansare, V. Borkar, C. Jermaine, and T. Condie. Online Aggregation for Large MapRe-

duce Jobs. In VLDB, 2011.

[61] E. Pednault. Transform Regression and the Kolmogorov Superposition Theorem. In IBM

Research Report RC 23227, IBM Research Division, 2004.

[62] M. Poess, R. O. Nambiar, and D. Walrath. Why You Should Run TPC-DS: A Workload

Analysis. In VLDB, 2007.

[63] A. D. Popescu, V. Ercegovac, A. Balmin, M. Branco, and A. Ailamaki. Same Queries,

Different Data: Can We Predict Runtime Performance? In ICDE Workshops, pages 275–

280, 2012.

[64] F. Provost, D. Jensen, and T. Oates. Efficient progressive sampling. In KDD, pages 23–32,

1999.

[65] J. R. Quinlan. Learning With Continuous Classes. In Australian Joint Conference on

Artificial Intelligence, pages 343–348, 1992.

[66] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream: Edge-centric Graph Processing Using

Streaming Partitions. In SOSP, pages 472–488, 2013.

[67] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access Path

Selection in a Relational Database Management System. In SIGMOD, pages 23–34, 1979.

[68] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis, and S. Kamath. Automatic

Virtual Machine Configuration for Database Workloads. TODS, 35(1):7:1–7:47, 2008.

[69] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - DB2’s LEarning Optimizer. In

VLDB, pages 19–28, 2001.

[70] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and

R. Murthy. Hive: A Warehousing Solution over a Map-Reduce Framework. PVLDB,

2:1626–1629, 2009.

[71] Transaction Processing Performance Council. TPC Benchmark DS Draft Specification

Revision 32. http://www.tpc.org/tpcds.

[72] Transaction Processing Performance Council. TPC Benchmark H Standard Specification

Revision 2.12.0. http://www.tpc.org/tpch.

[73] L. G. Valiant. A Bridging Model for Parallel Computation. CACM, 33(8):103–111, 1990.

[74] S. van Dongen. A Cluster Algorithm for Graphs. Technical Report INS-R0010, CWI, 2000.

125



Bibliography

[75] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,

H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler.

Apache Hadoop YARN: Yet Another Resource Negotiator. In SOCC, pages 5:1–5:16, 2013.

[76] A. Verma, L. Cherkasova, and R. H. Campbell. ARIA: Automatic Resource Inference and

Allocation for MapReduce Environments. In ICAC, pages 235–244, 2011.

[77] R. Vernica, A. Balmin, K. S. Beyer, and V. Ercegovac. Adaptive MapReduce Using Situation-

aware Mappers. In EDBT, pages 420–431, 2012.

[78] G. Wang, W. Xie, A. J. Demers, and J. Gehrke. Asynchronous Large-Scale Graph Processing

Made Easy. In CIDR, 2013.

[79] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh, K.-L. Wu, and A. Balmin.

FLEX: A Slot Allocation Scheduling Optimizer for MapReduce Workloads. In Middleware,

pages 1–20, 2010.

[80] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query Optimization for Massively Parallel Data

Processing. In SOCC, 2011.

[81] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F. Naughton. Predicting Query

Execution Time: Are Optimizer Cost Models Really Unusable? In ICDE, 2013.

[82] R. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica. Shark: SQL and Rich

Analytics at Scale. Technical report, AMP Lab, 2012.

[83] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey. DryadLINQ:

A System for General-purpose Distributed Data-parallel Computing Using a High-level

Language. In OSDI, pages 1–14, 2008.

[84] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster

Computing with Working Sets. In HotCloud, 2010.

[85] N. Zhang, P. J. Haas, V. Josifovski, G. M. Lohman, and C. Zhang. Statistical Learning

Techniques for Costing XML Queries. In VLDB, pages 289–300, 2005.

[86] Q. Zhu and P.-A. Larson. Building Regression Cost Models for Multidatabase Systems. In

PDIS, 1996.

126



Adrian Daniel Popescu Curriculum Vitae

Personal Information

Birth date: 11 April, 1983
Nationality: Romanian
Phone (office): +41 21 693 1427
Phone (mobile): +41 762 209 880
E-mail: adrian.popescu@epfl.ch
Web: http://people.epfl.ch/adrian.popescu

Education
PhD candidate in Computer and Communication Sciences, (Sept. 2009 - present)
Ecole Polytechnique Federale de Lausanne (EPFL)
MASc Electrical and Computer Engineering, (Sept. 2007 - Aug. 2009)
University of Toronto (UofT)
BSc Computer Science and Engineering, (Oct. 2001 - Sept. 2006)
University ”Politehnica” of Bucharest (UPB)

Research and Work Experience
Research and Teaching Assistant at EPFL (2009-present)
Active Projects: PREDIcT: Predicting the Runtime of Iterative Analytics,
Predicting the Runtime Performance of Reporting Analytics
Past Project: HBaseSQL: Adaptive Query Processing in the Cloud

TAing for: Advanced Databases, Object Oriented Programming,
Programming Fundamentals
Activities: student advisor, preparing/grading assignments.

Summer Research Intern at IBM Almaden Research Center (July-September 2011)
Project: Predicting the Runtime Performance of Jaql Queries
Source code contributions into the IBM BigInsights product.

Research and Teaching Assistant at University of Toronto (2007-2009)
Thesis Project: SAAB: SLA-Aware Adaptive Data Broadcasting

TAing for: Communication and Design, Programming Fundamentals,
Computer Fundamentals
Activities: student advisor, grading assignments.

Research Assistant at FOKUS Fraunhofer Institute, Berlin (Sept. 2006 - July 2007)
Research on Next Generation Networks (NGN) and IP Multimedia
Subsystem (IMS). Projects: FOKUS Presence Service & FOKUS Home
Subscriber Server (FHoSS)

Internship at FOKUS Fraunhofer Institute, Berlin (March 2006 - Aug. 2006)
Diploma thesis: Presence Service in the IMS Playground - design,
implementation and integration into the IMS environment.

127



Teaching Assistant at University ”Politehnica” of Bucharest (Oct. 2005 - March 2006)
TAing for: Microprocessor Based System Design
Activities: student advisor, preparing/grading assignments.

PhD Research Direction

Predicting the runtime performance of large scale analytical workloads is motivated by a number of data
management tasks including workload optimization, resource management and scheduling, query progress
monitoring. More recently, with the prevalence of using hardware infrastructure as a service (IaaS) for data
management tasks, answering feasibility analysis questions for hypothetical configurations became critical.

My broad research interests lie at the intersection of database management systems with distributed
systems with a main focus on query performance modeling. My PhD thesis topic focuses on modeling the
runtime performance of analytical workloads that include workflows of iterative machine learning algorithms
and traditional SQL-like operators executing on large scale infrastructures such as MapReduce. In particular,
the set of prediction models I developed recently estimate the runtime performance of: i) a class of iterative
algorithms executing on graph datasets, and ii) reporting queries running HiveQL operators for a set of
execution settings (consisting of different operator implementations and hardware deployments).

More information: http://dias.epfl.ch/PREDIcT

Publications

“Query Runtime Prediction for Large Scale Reporting Analytics”. A. D. Popescu, S. Babu, and A.
Ailamaki. Submitted, under peer review.

“PREDIcT: Towards Predicting the Runtime of Large Scale Iterative Analytics”. A. D. Popescu, A.
Balmin, V. Ercegovac, and A. Ailamaki. In the Proceedings of the VLDB Endowment (PVLDB), 6(14):1678-
1689, September 2013.

“Same Queries, Different Data: Can we Predict Query Performance?”. A. D. Popescu, V. Ercegovac,
A. Balmin, M. Branco and A. Ailamaki. In the 7th International Workshop on Self Managing Database
Systems (SMDB), colocated with ICDE, Washington DC, USA, April 2012.

“Clearing the Clouds: A Study of Emerging Scale-out Workloads on Modern Hardware”. M. Ferdman, A.
Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki and B.
Falsafi. In the Seventeenth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), London, UK, March 2012.

“Adaptive Query Execution for Data Management in the Cloud”. A. D. Popescu, D. Dash, V. Kantere,
A. Ailamaki. In the Second International Workshop on Cloud Data Management (CloudDB), colocated with
CIKM, Toronto, Canada, October 2010.

“SLA-Aware Adaptive On-Demand Data Broadcasting in Wireless Environments”. A. D. Popescu, M. A.
Sharaf and C. Amza. In the Tenth International Conference on Mobile Data Management (MDM), Taipei,
Taiwan, May 2009.

“Dynamic Resource Allocation for Databases Running on Virtual Storage”. G. Soundararajan, D. Lupei,
S. Ghanbari, A. D. Popescu, J. Chen and C. Amza. In the 7th USENIX Conference on File and Storage
Technologies (FAST), San Francisco, CA, February 2009.

128



Academic Awards
• SoCC Travel Grant (2014)
• Rogers Scholarship, University of Toronto (2007 - 2009)
• Merit Scholarship awarded to (approx.) 3% students, UPB (2006)
• 3rd prize at UPB Annual Projects Competition, Hardware Section (2005)
• Study Scholarship awarded to (approx.) 10% students, UPB (2003 - 2006)
• 1st prize at the Regional Physics Olympiad Miercurea Ciuc, Romania (2001)

Service

External reviewer at the following venues: Middleware 2008, WWW 2009, HDMS 2010, VLDB 2011,
SMDB 2012, Transactions on Computers 2014, CIDR 2015.

Professional Skills
• Programming Languages: Java, C, C++
• Scripting Languages: Bash, Python
• Query Languages: SQL, Jaql, HiveQL, Pig
• Distributed Data Management: Hadoop, HBase, Giraph
• DBMS: IBM DB2, Oracle, MySQL, PostgreSQL
• Statistical computing: R, Matlab, Weka
• Distributed Systems: RPC, RMI, MPI, Open MP, JAVA2EE
• Operating Systems: Linux & Windows
• Compilers: Flex and Yacc
• AWS Experience: EC2, EMR, S3
• Developing Tools: Eclipse, gdb, gprof, svn, git

Pre-Phd Research Projects

SLA-Aware Adaptive Data Broadcasting in Wireless Environments (2008-2009)
UofT, Master’s project, Advisor: Prof. Cristiana Amza

Most of the existing broadcasting scheduling policies focused on either minimizing response time, or drop
rate when requests are associated with hard deadlines. The inherent inaccuracy of hard deadlines in a dy-
namic mobile environment motivated the use of Service Level Agreements (SLAs) where a user specifies the
utility of data as a function of its arrival time. Hence, I proposed SAAB which is an SLA-aware adaptive
data broadcast scheduling policy for maximizing the system utility under SLA-based performance measures.
To achieve this goal, SAAB considers both the characteristics of disseminated data objects as well as the
SLAs associated with them.

A Study on Performance Isolation Approaches for Consolidated Storage (2008)
UofT, Operating Systems course project, Advisor: Prof. Cristiana Amza

Due to maintenance and operational costs, production lines tend to consolidate several storage servers on a
single, dedicated server, which serve multiple workloads. In this context, it is essential to deploy mechanisms
that isolate the performance of each individual workload. In this project I studied and evaluated several
non-intrusive isolation approaches that are interposed between the application workloads and the storage
server. The metrics considered in the evaluation were the QoS guarantees: i.e., latency predictability and
head seek overhead.

129



FOKUS Home Subscriber Server (FHoSS) (2007)
FOKUS Fraunhofer Institute

As part of this project I re-designed and improved the Home Subscriber Server (HSS) implementation of the
OpenIMSCore environment. Specifically I worked on the interface between the HSS and the Call Session
Control Function nodes (Cx interface) and on the interface between the HSS and the Application Servers
(Sh interface). I also implemented a web interface for user provisioning.

Presence Service in the IP Multimedia Subsystem (2006)
FOKUS Fraunhofer Institute, Bachelor degree diploma project
Advisors: Prof. Valentin Cristea (UPB), Prof. Thomas Magedanz (FOKUS)

The Presence Service goal was to track and disseminate the presence status of IMS clients to their corre-
sponding subscribers. The basic features of the service included: a generic publish-subscription mechanism,
support for enriched presence information and buddy lists management. In addition, modalities to reduce the
presence information traffic over the low bandwidth networks were considered. Specifically, partial messages
and versioning techniques were used to achieve performance improvements.

Languages

English - fluent, Romanian - fluent (mother tongue)
Hungarian, French, German - conversational

References
Available upon request.

130


	Title page

	Acknowledgements
	Abstract (English/Deutsch)
	Introduction
	Motivating Use Cases
	Data Analytics Today
	Example: Pipeline of Analytical Tasks

	Prediction Challenges
	Iterative Analytics on BSP
	SQL and ETL Analytics on MapReduce

	Technical Contributions
	Thesis Outline

	Background
	Distributed Processing Engines for Scale-Out Analytics
	MapReduce Execution Model
	Distributed Graph Processing
	Spark Processing Engine

	Estimating and Optimizing Iterative Processing
	Approximating and Sampling Large Graphs

	Performance Prediction for DBMS
	Nearest Neighbors-based Prediction
	Operator Level Models
	Progress Estimators
	Performance Modeling for Storage Devices

	Performance Prediction for MapReduce
	Self-tuning and Optimization
	Nearest neighbors-based prediction
	Resource Allocation and Scheduling

	Existing Prediction Approaches vs. Current Requirements
	Runtime Modeling: Background Concepts
	Runtime Modeling Overview
	Collecting Input Features
	Building a Cost Model
	Prediction
	Accuracy Metrics of Interest

	Summary

	Runtime Prediction for Iterative Analytics
	Introduction
	Sketch of Proposed Approach
	Contributions

	The BSP Processing Model
	Modeling Assumptions
	PREDIcT's Transformations
	Sampling Techniques
	Transform Function

	Model Fitting and Prediction
	Key Input Features
	Customizable Cost Model
	Prediction

	End-to-end Use Cases
	PageRank
	Semi-clustering
	Top-k Ranking
	Neighborhood Estimation
	Labeling Connected Components

	Limitations
	Experimental Evaluation
	Setup and Methodology
	Estimating Key Input Features
	Upper Bound Estimates
	Estimating Runtime
	Sensitivity to Sampling Technique
	Overhead Analysis
	Resource Allocation

	Summary of Related Work
	Conclusion

	Predicting Runtime of Data Pre-processing
	Introduction
	Jaql
	Query Example
	Query Compilation in Jaql

	Modeling Assumptions
	Model Fitting and Prediction
	Sketch of Proposed Approach
	Modeling Segment Performance
	Modeling Query Runtime
	Sources of Errors

	Experimental Study
	Experimental Methodology
	Experimental Setup
	Job-Level Predictions
	Query-Level Predictions

	Summary of Related Work
	Conclusion

	Runtime Prediction for Reporting SQL Analytics
	Introduction
	Foundations and Overview
	Query Execution in HiveQL
	Problem Definition
	Starfish's Limitations
	TITAN Overview

	TITAN Prediction Approach
	Modeling Assumptions
	Hybrid Prediction Model
	Localized Training based Models
	Global Analytical Models

	Training Methodology
	Query Template Pruning
	Synthetic Query Generation

	Translation Models
	Semantics
	Operator Phase and Data Mappings
	Use Cases

	Evaluation
	Setup and Methodology
	Training Models
	Testing Models
	Answering Performance Boost Questions

	Summary of Related Work
	Conclusions

	Conclusions
	Summary of Contributions
	Impact
	Generality of Techniques to Similar Problems

	Predictable vs. Non-Predictable Analytics
	Looking Ahead
	SLA Driven Job Scheduling
	Cost Models for In-memory Analytical Engines
	Sharing Cluster Resources Among Analytical Engines


	List of figures
	List of tables
	Bibliography
	Curriculum Vitae



