
1

Sort vs. Hash Join Revisited for
Near-Memory Execution

Nooshin Mirzadeh, Onur Kocberber,���
Babak Falsafi, Boris Grot

Emerging technology
§  Stacked memory: A logic die w/ a stack of DRAM dies
§  Makes near-memory processing practical

Why NMP?
§ Less data movement
à Less energy consumption
§ Leverage DRAM's massive internal BW & parallelism
à High performance

Exploit NMP to accelerate key algorithms

Near-Memory Processing (NMP)

2

Logic
DRAM
DRAM
DRAM

DRAM

A fundamental operation in database systems
§ Main contributor to execution time in analytic DBMSs

Find the matching keys in two tables

Ongoing debate over two main algorithms:
§ Hash-based: Current best for CPU execution

§ Cache-optimized
§ Sort-based

§ Higher computational complexity
§ But more regular memory access patterns

Revisit sort vs. hash for near-memory execution

Join Operation

3

Join

Near-Memory Join

Memory access patterns: Key for maximizing NMP efficiency
§ Sequential access patterns best exploit DRAM characteristics

Number of accesses is only part of the story
§ More sequential accesses better than fewer random accesses

Sort join trumps hash join
§ Sequential access pattern + Wide NMP sort logic���
à High efficiency

4
Sort ~2x better than hash in perf & energy-efficiency

Outline

Overview
Near-memory processing (NMP)
Join operator
Evaluation
Conclusion

5

Data Movement and Energy

6
Avoid unnecessary data movement through NMP

20 mm
64-bit DP
20 pJ

256-bit buses

26 pJ 256 pJ

Efficient���
off-chip link500 pJ

[Dally, SC’14 Panel]

Logic

Near-Memory Processing (NMP)

Emerging technology: 3D-stacked memory
§ Logic die in a stack of DRAM dies

§ Through-Silicon Via (TSV)
§  Low energy consumption

§ Separated vertical partitions “vaults”
§  Provide a high level of parallelism

§ E.g., Micron HMC, AMD HBM

7
Computation performed next to memory

3D stacked
memory

Vault

DRAM

NMP Realities
Stacked memory: Limited capacity per chip (≤	
 8GB)

§ High capacity requires multiple chips
§ Large datasets require chip-to-chip communication

8
NMP does not eliminate all data movement!

Link

Link

LinkLink

NMP: Key Aspects
Chip-to-chip accesses consume more energy per bit

§ At least ~2x more than intra-vault accesses
§ Must minimize chip-to-chip accesses for efficiency

DRAM implies wide interface and destructive accesses
§ Costly random accesses

9
NMP algorithms must consider access pattern & locality

256B

8B

DRAM row:

Link

Link

LinkLink

DRAM

Outline

Overview
Near-memory processing (NMP)
Join operator
Evaluation
Conclusion

10

What is a Join?
Iterates over a pair of tables
Finds the matching keys in two tables

11

Q: SELECT ... FROM R, S WHERE R.Key = S.Key

R
S

Join
Result

Hash vs. Sort Join

Hash-based algorithms: build and probe a hash table
Algorithm: Radix-Hash Join

ü Lower computational complexity: O(n)
✗ Random memory accesses

Sort-based algorithms: sort and merge the two tables
Algorithm: Partitioned Massively Parallel Sort-Merge (P-MPSM)
✗ Higher computational complexity: O(nlogn)
ü Sequential memory access

12
Computational complexity vs. memory access patterns

[Manegold et al., 2002]

[Albutiu et al., 2012]

NMP: Data Distribution
Data randomly distributed across memory chips

§ Data cannot fit in one chip
§  In each chip: data randomly distributed across vaults

13

R

S

LinkR R
S S

Hash Join
1. Partitioning phase: Partition two tables based on the keys

§ CPU-centric: exploit locality in caches
§ NMP: high locality in a vault

§ # of partitions = # of vaults

14

R

S

R partitions

S partitions

Partitioning

Partitioning

Random

Random

Random

Random

Near Memory Hash Join
1. Partitioning phase

15
Costly random access patterns and low access locality

Link

Random access patterns: both R and S
Low access locality: both R and S

Random

Random

Hash Join
2. Build phase: Build a hash table on R

§ Nearly constant look-up in the next phase

16

R

S

R partitions

S partitions

R hash tables

Building hash table

Near Memory Hash Join
2. Build phase: High locality

17
Costly random access pattern

Link

Random access pattern: building R’s hash tables

Hash Join
3. Probe phase: Probe the hash table with the other column

§ Scan S and look up the keys in R’s hash table

18

R partitions

S partitions

R hash tablesR

S

Probing the hash tables

Near Memory Hash Join
3. Probe phase: High locality

19
Costly random access pattern

Link

Random access pattern: R’s hash table

Link

Hash Join: Summary

20

L: Random access pattern (local or remote)

K: Sequential accesses (remote)

J: Sequential accesses (local)

Phases Hash Sort: O(nlogn)

1. Partitioning L L
2. Build / Sort L J
3. Probe / Merge L K

Sort Join
1. Partitioning phase: Partition R table based on the keys

§ Helps reducing merge-join time

21

R

S

R partitions

Random

Partitioning

Random

Near Memory Sort Join
1. Partitioning phase

22

Link

Random access pattern: only R
Low locality: only R

Random

Random

Costly random access pattern and low locality

Sort Join
2. Sort phase: Sort both tables

§ Allows linear-time and sequential merge-join

23

R

S

R partitions

Sorted S

Sorted R

Sorting

Sorting

Sequential

Sequential

Sequential

Sequential

Near Memory Sort Join
2. Sort phase: High locality

24
Sequential access pattern and high locality

Link

Sequential access pattern

Sort Join
3. Merge phase: Merge-join R wtih S

§ Access data sequentially

25

S

R partitions

Sorted S

Sorted R

Merging

R

Near Memory Sort Join
3. Merge phase: sequential access pattern

§ Stream each chunk of R and S

26
Low locality: one table

Link

Low locality: only R

Hash vs. Sort Join: Summary

27

L: Random accesses (local or remote)

K: Sequential accesses (remote)

J: Sequential accesses (local)

Phases Hash Sort

1. Partitioning L L
2. Build / Sort L J
3. Probe / Merge L K

Outline

Overview
Near-memory processing (NMP)
Join operator
Evaluation
Conclusion

28

Methodology

CMP Feature
§  22nm, 16 cores

Core
§ OoO, 3-wide, 2.5 GHz
§  512-bit SIMD
§  64KB L1-I/D, 64B block

LLC
§  4MB, 16-way

HMC
§  4 cubes, ring topology
§  8GB per cube
§  32 vaults per cube
§  4 links per cube

Join Logic
§  22nm logic die
§  256B SIMD
§  2D Mesh NoC

29

First order performance and energy model:

0

0.5

1

0

0.5

1

Sort Hash Sort Hash

CPU NMP

|S|=16|R|

N
or

m
ali

ze
d

En
er

gy
 C

on
su

m
pt

io
n

N
or

m
ali

ze
d

Ru
nt

im
e

Performance
Energy

Performance and Energy

30
 Energy-efficiency: 5.9-10.1x, performance:1.9-5.1x

0

1

2

3

4

5

6

7

8

9

Sort Hash Sort Hash

|S|=|R| |S|=16|R|

N
or

m
ali

ze
d

Ru
nt

im
e

Performance

NMP: Hash vs. Sort

31

0

1

2

3

4

5

6

7

Sort Hash Sort Hash

|S|=|R| |S|=16|R|

N
or

m
ali

ze
d

En
er

gy
 C

on
su

m
pt

io
n Data movement energy

DRAM energy
Computation energy

 Sort-Join is more efficient when |S| > |R|

Conclusion
NMP improves both performance & energy efficiency

§ Exploits internal DRAM bandwidth and parallelism
§ Reduces data movement

NMP algorithms must consider memory access patterns
§ Sequential accesses best leverage DRAM characteristics
§  Intra-chip accesses minimize data movement

Locality + Sequential access patterns���
à Sort join more efficient for NMP

§ Hash join still best for CPU

32

Thanks!
 Question?

33

